xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision edb31faf92b8685929a5bde6627ce351e8712d8c)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SDNodeDbgValue.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/Constants.h"
24 #include "llvm/CallingConv.h"
25 #include "llvm/DebugInfo.h"
26 #include "llvm/DerivedTypes.h"
27 #include "llvm/Function.h"
28 #include "llvm/GlobalVariable.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Instructions.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Module.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/FastISel.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCStrategy.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineJumpTableInfo.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/Target/TargetData.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetIntrinsicInfo.h"
51 #include "llvm/Target/TargetLibraryInfo.h"
52 #include "llvm/Target/TargetLowering.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/IntegersSubsetMapping.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/MathExtras.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 using namespace llvm;
62 
63 /// LimitFloatPrecision - Generate low-precision inline sequences for
64 /// some float libcalls (6, 8 or 12 bits).
65 static unsigned LimitFloatPrecision;
66 
67 static cl::opt<unsigned, true>
68 LimitFPPrecision("limit-float-precision",
69                  cl::desc("Generate low-precision inline sequences "
70                           "for some float libcalls"),
71                  cl::location(LimitFloatPrecision),
72                  cl::init(0));
73 
74 // Limit the width of DAG chains. This is important in general to prevent
75 // prevent DAG-based analysis from blowing up. For example, alias analysis and
76 // load clustering may not complete in reasonable time. It is difficult to
77 // recognize and avoid this situation within each individual analysis, and
78 // future analyses are likely to have the same behavior. Limiting DAG width is
79 // the safe approach, and will be especially important with global DAGs.
80 //
81 // MaxParallelChains default is arbitrarily high to avoid affecting
82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83 // sequence over this should have been converted to llvm.memcpy by the
84 // frontend. It easy to induce this behavior with .ll code such as:
85 // %buffer = alloca [4096 x i8]
86 // %data = load [4096 x i8]* %argPtr
87 // store [4096 x i8] %data, [4096 x i8]* %buffer
88 static const unsigned MaxParallelChains = 64;
89 
90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                       const SDValue *Parts, unsigned NumParts,
92                                       EVT PartVT, EVT ValueVT);
93 
94 /// getCopyFromParts - Create a value that contains the specified legal parts
95 /// combined into the value they represent.  If the parts combine to a type
96 /// larger then ValueVT then AssertOp can be used to specify whether the extra
97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98 /// (ISD::AssertSext).
99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                 const SDValue *Parts,
101                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
102                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
103   if (ValueVT.isVector())
104     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT);
105 
106   assert(NumParts > 0 && "No parts to assemble!");
107   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
108   SDValue Val = Parts[0];
109 
110   if (NumParts > 1) {
111     // Assemble the value from multiple parts.
112     if (ValueVT.isInteger()) {
113       unsigned PartBits = PartVT.getSizeInBits();
114       unsigned ValueBits = ValueVT.getSizeInBits();
115 
116       // Assemble the power of 2 part.
117       unsigned RoundParts = NumParts & (NumParts - 1) ?
118         1 << Log2_32(NumParts) : NumParts;
119       unsigned RoundBits = PartBits * RoundParts;
120       EVT RoundVT = RoundBits == ValueBits ?
121         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
122       SDValue Lo, Hi;
123 
124       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
125 
126       if (RoundParts > 2) {
127         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
128                               PartVT, HalfVT);
129         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
130                               RoundParts / 2, PartVT, HalfVT);
131       } else {
132         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
133         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
134       }
135 
136       if (TLI.isBigEndian())
137         std::swap(Lo, Hi);
138 
139       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
140 
141       if (RoundParts < NumParts) {
142         // Assemble the trailing non-power-of-2 part.
143         unsigned OddParts = NumParts - RoundParts;
144         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
145         Hi = getCopyFromParts(DAG, DL,
146                               Parts + RoundParts, OddParts, PartVT, OddVT);
147 
148         // Combine the round and odd parts.
149         Lo = Val;
150         if (TLI.isBigEndian())
151           std::swap(Lo, Hi);
152         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
153         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
154         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
155                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
156                                          TLI.getPointerTy()));
157         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
158         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
159       }
160     } else if (PartVT.isFloatingPoint()) {
161       // FP split into multiple FP parts (for ppcf128)
162       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
163              "Unexpected split");
164       SDValue Lo, Hi;
165       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
166       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
167       if (TLI.isBigEndian())
168         std::swap(Lo, Hi);
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
170     } else {
171       // FP split into integer parts (soft fp)
172       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
173              !PartVT.isVector() && "Unexpected split");
174       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
175       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT);
176     }
177   }
178 
179   // There is now one part, held in Val.  Correct it to match ValueVT.
180   PartVT = Val.getValueType();
181 
182   if (PartVT == ValueVT)
183     return Val;
184 
185   if (PartVT.isInteger() && ValueVT.isInteger()) {
186     if (ValueVT.bitsLT(PartVT)) {
187       // For a truncate, see if we have any information to
188       // indicate whether the truncated bits will always be
189       // zero or sign-extension.
190       if (AssertOp != ISD::DELETED_NODE)
191         Val = DAG.getNode(AssertOp, DL, PartVT, Val,
192                           DAG.getValueType(ValueVT));
193       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
194     }
195     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
196   }
197 
198   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
199     // FP_ROUND's are always exact here.
200     if (ValueVT.bitsLT(Val.getValueType()))
201       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
202                          DAG.getTargetConstant(1, TLI.getPointerTy()));
203 
204     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
205   }
206 
207   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
208     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
209 
210   llvm_unreachable("Unknown mismatch!");
211 }
212 
213 /// getCopyFromParts - Create a value that contains the specified legal parts
214 /// combined into the value they represent.  If the parts combine to a type
215 /// larger then ValueVT then AssertOp can be used to specify whether the extra
216 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
217 /// (ISD::AssertSext).
218 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
219                                       const SDValue *Parts, unsigned NumParts,
220                                       EVT PartVT, EVT ValueVT) {
221   assert(ValueVT.isVector() && "Not a vector value");
222   assert(NumParts > 0 && "No parts to assemble!");
223   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
224   SDValue Val = Parts[0];
225 
226   // Handle a multi-element vector.
227   if (NumParts > 1) {
228     EVT IntermediateVT, RegisterVT;
229     unsigned NumIntermediates;
230     unsigned NumRegs =
231     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
232                                NumIntermediates, RegisterVT);
233     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
234     NumParts = NumRegs; // Silence a compiler warning.
235     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
236     assert(RegisterVT == Parts[0].getValueType() &&
237            "Part type doesn't match part!");
238 
239     // Assemble the parts into intermediate operands.
240     SmallVector<SDValue, 8> Ops(NumIntermediates);
241     if (NumIntermediates == NumParts) {
242       // If the register was not expanded, truncate or copy the value,
243       // as appropriate.
244       for (unsigned i = 0; i != NumParts; ++i)
245         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
246                                   PartVT, IntermediateVT);
247     } else if (NumParts > 0) {
248       // If the intermediate type was expanded, build the intermediate
249       // operands from the parts.
250       assert(NumParts % NumIntermediates == 0 &&
251              "Must expand into a divisible number of parts!");
252       unsigned Factor = NumParts / NumIntermediates;
253       for (unsigned i = 0; i != NumIntermediates; ++i)
254         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
255                                   PartVT, IntermediateVT);
256     }
257 
258     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
259     // intermediate operands.
260     Val = DAG.getNode(IntermediateVT.isVector() ?
261                       ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
262                       ValueVT, &Ops[0], NumIntermediates);
263   }
264 
265   // There is now one part, held in Val.  Correct it to match ValueVT.
266   PartVT = Val.getValueType();
267 
268   if (PartVT == ValueVT)
269     return Val;
270 
271   if (PartVT.isVector()) {
272     // If the element type of the source/dest vectors are the same, but the
273     // parts vector has more elements than the value vector, then we have a
274     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
275     // elements we want.
276     if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
277       assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
278              "Cannot narrow, it would be a lossy transformation");
279       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
280                          DAG.getIntPtrConstant(0));
281     }
282 
283     // Vector/Vector bitcast.
284     if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
285       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
286 
287     assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
288       "Cannot handle this kind of promotion");
289     // Promoted vector extract
290     bool Smaller = ValueVT.bitsLE(PartVT);
291     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
292                        DL, ValueVT, Val);
293 
294   }
295 
296   // Trivial bitcast if the types are the same size and the destination
297   // vector type is legal.
298   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
299       TLI.isTypeLegal(ValueVT))
300     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
301 
302   // Handle cases such as i8 -> <1 x i1>
303   assert(ValueVT.getVectorNumElements() == 1 &&
304          "Only trivial scalar-to-vector conversions should get here!");
305 
306   if (ValueVT.getVectorNumElements() == 1 &&
307       ValueVT.getVectorElementType() != PartVT) {
308     bool Smaller = ValueVT.bitsLE(PartVT);
309     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
310                        DL, ValueVT.getScalarType(), Val);
311   }
312 
313   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
314 }
315 
316 
317 
318 
319 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
320                                  SDValue Val, SDValue *Parts, unsigned NumParts,
321                                  EVT PartVT);
322 
323 /// getCopyToParts - Create a series of nodes that contain the specified value
324 /// split into legal parts.  If the parts contain more bits than Val, then, for
325 /// integers, ExtendKind can be used to specify how to generate the extra bits.
326 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
327                            SDValue Val, SDValue *Parts, unsigned NumParts,
328                            EVT PartVT,
329                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
330   EVT ValueVT = Val.getValueType();
331 
332   // Handle the vector case separately.
333   if (ValueVT.isVector())
334     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT);
335 
336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
337   unsigned PartBits = PartVT.getSizeInBits();
338   unsigned OrigNumParts = NumParts;
339   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
340 
341   if (NumParts == 0)
342     return;
343 
344   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
345   if (PartVT == ValueVT) {
346     assert(NumParts == 1 && "No-op copy with multiple parts!");
347     Parts[0] = Val;
348     return;
349   }
350 
351   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
352     // If the parts cover more bits than the value has, promote the value.
353     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
354       assert(NumParts == 1 && "Do not know what to promote to!");
355       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
356     } else {
357       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
358              ValueVT.isInteger() &&
359              "Unknown mismatch!");
360       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
361       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
362       if (PartVT == MVT::x86mmx)
363         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
364     }
365   } else if (PartBits == ValueVT.getSizeInBits()) {
366     // Different types of the same size.
367     assert(NumParts == 1 && PartVT != ValueVT);
368     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
369   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
370     // If the parts cover less bits than value has, truncate the value.
371     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
372            ValueVT.isInteger() &&
373            "Unknown mismatch!");
374     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
375     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
376     if (PartVT == MVT::x86mmx)
377       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
378   }
379 
380   // The value may have changed - recompute ValueVT.
381   ValueVT = Val.getValueType();
382   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
383          "Failed to tile the value with PartVT!");
384 
385   if (NumParts == 1) {
386     assert(PartVT == ValueVT && "Type conversion failed!");
387     Parts[0] = Val;
388     return;
389   }
390 
391   // Expand the value into multiple parts.
392   if (NumParts & (NumParts - 1)) {
393     // The number of parts is not a power of 2.  Split off and copy the tail.
394     assert(PartVT.isInteger() && ValueVT.isInteger() &&
395            "Do not know what to expand to!");
396     unsigned RoundParts = 1 << Log2_32(NumParts);
397     unsigned RoundBits = RoundParts * PartBits;
398     unsigned OddParts = NumParts - RoundParts;
399     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
400                                  DAG.getIntPtrConstant(RoundBits));
401     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT);
402 
403     if (TLI.isBigEndian())
404       // The odd parts were reversed by getCopyToParts - unreverse them.
405       std::reverse(Parts + RoundParts, Parts + NumParts);
406 
407     NumParts = RoundParts;
408     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
409     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
410   }
411 
412   // The number of parts is a power of 2.  Repeatedly bisect the value using
413   // EXTRACT_ELEMENT.
414   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
415                          EVT::getIntegerVT(*DAG.getContext(),
416                                            ValueVT.getSizeInBits()),
417                          Val);
418 
419   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
420     for (unsigned i = 0; i < NumParts; i += StepSize) {
421       unsigned ThisBits = StepSize * PartBits / 2;
422       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
423       SDValue &Part0 = Parts[i];
424       SDValue &Part1 = Parts[i+StepSize/2];
425 
426       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
427                           ThisVT, Part0, DAG.getIntPtrConstant(1));
428       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
429                           ThisVT, Part0, DAG.getIntPtrConstant(0));
430 
431       if (ThisBits == PartBits && ThisVT != PartVT) {
432         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
433         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
434       }
435     }
436   }
437 
438   if (TLI.isBigEndian())
439     std::reverse(Parts, Parts + OrigNumParts);
440 }
441 
442 
443 /// getCopyToPartsVector - Create a series of nodes that contain the specified
444 /// value split into legal parts.
445 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
446                                  SDValue Val, SDValue *Parts, unsigned NumParts,
447                                  EVT PartVT) {
448   EVT ValueVT = Val.getValueType();
449   assert(ValueVT.isVector() && "Not a vector");
450   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
451 
452   if (NumParts == 1) {
453     if (PartVT == ValueVT) {
454       // Nothing to do.
455     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
456       // Bitconvert vector->vector case.
457       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
458     } else if (PartVT.isVector() &&
459                PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
460                PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
461       EVT ElementVT = PartVT.getVectorElementType();
462       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
463       // undef elements.
464       SmallVector<SDValue, 16> Ops;
465       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
466         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
467                                   ElementVT, Val, DAG.getIntPtrConstant(i)));
468 
469       for (unsigned i = ValueVT.getVectorNumElements(),
470            e = PartVT.getVectorNumElements(); i != e; ++i)
471         Ops.push_back(DAG.getUNDEF(ElementVT));
472 
473       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
474 
475       // FIXME: Use CONCAT for 2x -> 4x.
476 
477       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
478       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
479     } else if (PartVT.isVector() &&
480                PartVT.getVectorElementType().bitsGE(
481                  ValueVT.getVectorElementType()) &&
482                PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
483 
484       // Promoted vector extract
485       bool Smaller = PartVT.bitsLE(ValueVT);
486       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
487                         DL, PartVT, Val);
488     } else{
489       // Vector -> scalar conversion.
490       assert(ValueVT.getVectorNumElements() == 1 &&
491              "Only trivial vector-to-scalar conversions should get here!");
492       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493                         PartVT, Val, DAG.getIntPtrConstant(0));
494 
495       bool Smaller = ValueVT.bitsLE(PartVT);
496       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
497                          DL, PartVT, Val);
498     }
499 
500     Parts[0] = Val;
501     return;
502   }
503 
504   // Handle a multi-element vector.
505   EVT IntermediateVT, RegisterVT;
506   unsigned NumIntermediates;
507   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
508                                                 IntermediateVT,
509                                                 NumIntermediates, RegisterVT);
510   unsigned NumElements = ValueVT.getVectorNumElements();
511 
512   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
513   NumParts = NumRegs; // Silence a compiler warning.
514   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
515 
516   // Split the vector into intermediate operands.
517   SmallVector<SDValue, 8> Ops(NumIntermediates);
518   for (unsigned i = 0; i != NumIntermediates; ++i) {
519     if (IntermediateVT.isVector())
520       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
521                            IntermediateVT, Val,
522                    DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
523     else
524       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
525                            IntermediateVT, Val, DAG.getIntPtrConstant(i));
526   }
527 
528   // Split the intermediate operands into legal parts.
529   if (NumParts == NumIntermediates) {
530     // If the register was not expanded, promote or copy the value,
531     // as appropriate.
532     for (unsigned i = 0; i != NumParts; ++i)
533       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT);
534   } else if (NumParts > 0) {
535     // If the intermediate type was expanded, split each the value into
536     // legal parts.
537     assert(NumParts % NumIntermediates == 0 &&
538            "Must expand into a divisible number of parts!");
539     unsigned Factor = NumParts / NumIntermediates;
540     for (unsigned i = 0; i != NumIntermediates; ++i)
541       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT);
542   }
543 }
544 
545 
546 
547 
548 namespace {
549   /// RegsForValue - This struct represents the registers (physical or virtual)
550   /// that a particular set of values is assigned, and the type information
551   /// about the value. The most common situation is to represent one value at a
552   /// time, but struct or array values are handled element-wise as multiple
553   /// values.  The splitting of aggregates is performed recursively, so that we
554   /// never have aggregate-typed registers. The values at this point do not
555   /// necessarily have legal types, so each value may require one or more
556   /// registers of some legal type.
557   ///
558   struct RegsForValue {
559     /// ValueVTs - The value types of the values, which may not be legal, and
560     /// may need be promoted or synthesized from one or more registers.
561     ///
562     SmallVector<EVT, 4> ValueVTs;
563 
564     /// RegVTs - The value types of the registers. This is the same size as
565     /// ValueVTs and it records, for each value, what the type of the assigned
566     /// register or registers are. (Individual values are never synthesized
567     /// from more than one type of register.)
568     ///
569     /// With virtual registers, the contents of RegVTs is redundant with TLI's
570     /// getRegisterType member function, however when with physical registers
571     /// it is necessary to have a separate record of the types.
572     ///
573     SmallVector<EVT, 4> RegVTs;
574 
575     /// Regs - This list holds the registers assigned to the values.
576     /// Each legal or promoted value requires one register, and each
577     /// expanded value requires multiple registers.
578     ///
579     SmallVector<unsigned, 4> Regs;
580 
581     RegsForValue() {}
582 
583     RegsForValue(const SmallVector<unsigned, 4> &regs,
584                  EVT regvt, EVT valuevt)
585       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
586 
587     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
588                  unsigned Reg, Type *Ty) {
589       ComputeValueVTs(tli, Ty, ValueVTs);
590 
591       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
592         EVT ValueVT = ValueVTs[Value];
593         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
594         EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
595         for (unsigned i = 0; i != NumRegs; ++i)
596           Regs.push_back(Reg + i);
597         RegVTs.push_back(RegisterVT);
598         Reg += NumRegs;
599       }
600     }
601 
602     /// areValueTypesLegal - Return true if types of all the values are legal.
603     bool areValueTypesLegal(const TargetLowering &TLI) {
604       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
605         EVT RegisterVT = RegVTs[Value];
606         if (!TLI.isTypeLegal(RegisterVT))
607           return false;
608       }
609       return true;
610     }
611 
612     /// append - Add the specified values to this one.
613     void append(const RegsForValue &RHS) {
614       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
615       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
616       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
617     }
618 
619     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
620     /// this value and returns the result as a ValueVTs value.  This uses
621     /// Chain/Flag as the input and updates them for the output Chain/Flag.
622     /// If the Flag pointer is NULL, no flag is used.
623     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
624                             DebugLoc dl,
625                             SDValue &Chain, SDValue *Flag) const;
626 
627     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
628     /// specified value into the registers specified by this object.  This uses
629     /// Chain/Flag as the input and updates them for the output Chain/Flag.
630     /// If the Flag pointer is NULL, no flag is used.
631     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
632                        SDValue &Chain, SDValue *Flag) const;
633 
634     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
635     /// operand list.  This adds the code marker, matching input operand index
636     /// (if applicable), and includes the number of values added into it.
637     void AddInlineAsmOperands(unsigned Kind,
638                               bool HasMatching, unsigned MatchingIdx,
639                               SelectionDAG &DAG,
640                               std::vector<SDValue> &Ops) const;
641   };
642 }
643 
644 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
645 /// this value and returns the result as a ValueVT value.  This uses
646 /// Chain/Flag as the input and updates them for the output Chain/Flag.
647 /// If the Flag pointer is NULL, no flag is used.
648 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
649                                       FunctionLoweringInfo &FuncInfo,
650                                       DebugLoc dl,
651                                       SDValue &Chain, SDValue *Flag) const {
652   // A Value with type {} or [0 x %t] needs no registers.
653   if (ValueVTs.empty())
654     return SDValue();
655 
656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
657 
658   // Assemble the legal parts into the final values.
659   SmallVector<SDValue, 4> Values(ValueVTs.size());
660   SmallVector<SDValue, 8> Parts;
661   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
662     // Copy the legal parts from the registers.
663     EVT ValueVT = ValueVTs[Value];
664     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
665     EVT RegisterVT = RegVTs[Value];
666 
667     Parts.resize(NumRegs);
668     for (unsigned i = 0; i != NumRegs; ++i) {
669       SDValue P;
670       if (Flag == 0) {
671         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
672       } else {
673         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
674         *Flag = P.getValue(2);
675       }
676 
677       Chain = P.getValue(1);
678       Parts[i] = P;
679 
680       // If the source register was virtual and if we know something about it,
681       // add an assert node.
682       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
683           !RegisterVT.isInteger() || RegisterVT.isVector())
684         continue;
685 
686       const FunctionLoweringInfo::LiveOutInfo *LOI =
687         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
688       if (!LOI)
689         continue;
690 
691       unsigned RegSize = RegisterVT.getSizeInBits();
692       unsigned NumSignBits = LOI->NumSignBits;
693       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize)
700         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
701       else if (NumZeroBits >= RegSize-1)
702         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
703       else if (NumSignBits > RegSize-8)
704         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
705       else if (NumZeroBits >= RegSize-8)
706         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
707       else if (NumSignBits > RegSize-16)
708         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
709       else if (NumZeroBits >= RegSize-16)
710         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
711       else if (NumSignBits > RegSize-32)
712         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
713       else if (NumZeroBits >= RegSize-32)
714         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
715       else
716         continue;
717 
718       // Add an assertion node.
719       assert(FromVT != MVT::Other);
720       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
721                              RegisterVT, P, DAG.getValueType(FromVT));
722     }
723 
724     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
725                                      NumRegs, RegisterVT, ValueVT);
726     Part += NumRegs;
727     Parts.clear();
728   }
729 
730   return DAG.getNode(ISD::MERGE_VALUES, dl,
731                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
732                      &Values[0], ValueVTs.size());
733 }
734 
735 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
736 /// specified value into the registers specified by this object.  This uses
737 /// Chain/Flag as the input and updates them for the output Chain/Flag.
738 /// If the Flag pointer is NULL, no flag is used.
739 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
740                                  SDValue &Chain, SDValue *Flag) const {
741   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
742 
743   // Get the list of the values's legal parts.
744   unsigned NumRegs = Regs.size();
745   SmallVector<SDValue, 8> Parts(NumRegs);
746   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
747     EVT ValueVT = ValueVTs[Value];
748     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
749     EVT RegisterVT = RegVTs[Value];
750 
751     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
752                    &Parts[Part], NumParts, RegisterVT);
753     Part += NumParts;
754   }
755 
756   // Copy the parts into the registers.
757   SmallVector<SDValue, 8> Chains(NumRegs);
758   for (unsigned i = 0; i != NumRegs; ++i) {
759     SDValue Part;
760     if (Flag == 0) {
761       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
762     } else {
763       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
764       *Flag = Part.getValue(1);
765     }
766 
767     Chains[i] = Part.getValue(0);
768   }
769 
770   if (NumRegs == 1 || Flag)
771     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
772     // flagged to it. That is the CopyToReg nodes and the user are considered
773     // a single scheduling unit. If we create a TokenFactor and return it as
774     // chain, then the TokenFactor is both a predecessor (operand) of the
775     // user as well as a successor (the TF operands are flagged to the user).
776     // c1, f1 = CopyToReg
777     // c2, f2 = CopyToReg
778     // c3     = TokenFactor c1, c2
779     // ...
780     //        = op c3, ..., f2
781     Chain = Chains[NumRegs-1];
782   else
783     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
784 }
785 
786 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
787 /// operand list.  This adds the code marker and includes the number of
788 /// values added into it.
789 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
790                                         unsigned MatchingIdx,
791                                         SelectionDAG &DAG,
792                                         std::vector<SDValue> &Ops) const {
793   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
794 
795   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
796   if (HasMatching)
797     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
798   else if (!Regs.empty() &&
799            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
800     // Put the register class of the virtual registers in the flag word.  That
801     // way, later passes can recompute register class constraints for inline
802     // assembly as well as normal instructions.
803     // Don't do this for tied operands that can use the regclass information
804     // from the def.
805     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
806     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
807     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
808   }
809 
810   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
811   Ops.push_back(Res);
812 
813   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
814     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
815     EVT RegisterVT = RegVTs[Value];
816     for (unsigned i = 0; i != NumRegs; ++i) {
817       assert(Reg < Regs.size() && "Mismatch in # registers expected");
818       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
819     }
820   }
821 }
822 
823 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
824                                const TargetLibraryInfo *li) {
825   AA = &aa;
826   GFI = gfi;
827   LibInfo = li;
828   TD = DAG.getTarget().getTargetData();
829   Context = DAG.getContext();
830   LPadToCallSiteMap.clear();
831 }
832 
833 /// clear - Clear out the current SelectionDAG and the associated
834 /// state and prepare this SelectionDAGBuilder object to be used
835 /// for a new block. This doesn't clear out information about
836 /// additional blocks that are needed to complete switch lowering
837 /// or PHI node updating; that information is cleared out as it is
838 /// consumed.
839 void SelectionDAGBuilder::clear() {
840   NodeMap.clear();
841   UnusedArgNodeMap.clear();
842   PendingLoads.clear();
843   PendingExports.clear();
844   CurDebugLoc = DebugLoc();
845   HasTailCall = false;
846 }
847 
848 /// clearDanglingDebugInfo - Clear the dangling debug information
849 /// map. This function is separated from the clear so that debug
850 /// information that is dangling in a basic block can be properly
851 /// resolved in a different basic block. This allows the
852 /// SelectionDAG to resolve dangling debug information attached
853 /// to PHI nodes.
854 void SelectionDAGBuilder::clearDanglingDebugInfo() {
855   DanglingDebugInfoMap.clear();
856 }
857 
858 /// getRoot - Return the current virtual root of the Selection DAG,
859 /// flushing any PendingLoad items. This must be done before emitting
860 /// a store or any other node that may need to be ordered after any
861 /// prior load instructions.
862 ///
863 SDValue SelectionDAGBuilder::getRoot() {
864   if (PendingLoads.empty())
865     return DAG.getRoot();
866 
867   if (PendingLoads.size() == 1) {
868     SDValue Root = PendingLoads[0];
869     DAG.setRoot(Root);
870     PendingLoads.clear();
871     return Root;
872   }
873 
874   // Otherwise, we have to make a token factor node.
875   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
876                                &PendingLoads[0], PendingLoads.size());
877   PendingLoads.clear();
878   DAG.setRoot(Root);
879   return Root;
880 }
881 
882 /// getControlRoot - Similar to getRoot, but instead of flushing all the
883 /// PendingLoad items, flush all the PendingExports items. It is necessary
884 /// to do this before emitting a terminator instruction.
885 ///
886 SDValue SelectionDAGBuilder::getControlRoot() {
887   SDValue Root = DAG.getRoot();
888 
889   if (PendingExports.empty())
890     return Root;
891 
892   // Turn all of the CopyToReg chains into one factored node.
893   if (Root.getOpcode() != ISD::EntryToken) {
894     unsigned i = 0, e = PendingExports.size();
895     for (; i != e; ++i) {
896       assert(PendingExports[i].getNode()->getNumOperands() > 1);
897       if (PendingExports[i].getNode()->getOperand(0) == Root)
898         break;  // Don't add the root if we already indirectly depend on it.
899     }
900 
901     if (i == e)
902       PendingExports.push_back(Root);
903   }
904 
905   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
906                      &PendingExports[0],
907                      PendingExports.size());
908   PendingExports.clear();
909   DAG.setRoot(Root);
910   return Root;
911 }
912 
913 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
914   if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
915   DAG.AssignOrdering(Node, SDNodeOrder);
916 
917   for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
918     AssignOrderingToNode(Node->getOperand(I).getNode());
919 }
920 
921 void SelectionDAGBuilder::visit(const Instruction &I) {
922   // Set up outgoing PHI node register values before emitting the terminator.
923   if (isa<TerminatorInst>(&I))
924     HandlePHINodesInSuccessorBlocks(I.getParent());
925 
926   CurDebugLoc = I.getDebugLoc();
927 
928   visit(I.getOpcode(), I);
929 
930   if (!isa<TerminatorInst>(&I) && !HasTailCall)
931     CopyToExportRegsIfNeeded(&I);
932 
933   CurDebugLoc = DebugLoc();
934 }
935 
936 void SelectionDAGBuilder::visitPHI(const PHINode &) {
937   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
938 }
939 
940 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
941   // Note: this doesn't use InstVisitor, because it has to work with
942   // ConstantExpr's in addition to instructions.
943   switch (Opcode) {
944   default: llvm_unreachable("Unknown instruction type encountered!");
945     // Build the switch statement using the Instruction.def file.
946 #define HANDLE_INST(NUM, OPCODE, CLASS) \
947     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
948 #include "llvm/Instruction.def"
949   }
950 
951   // Assign the ordering to the freshly created DAG nodes.
952   if (NodeMap.count(&I)) {
953     ++SDNodeOrder;
954     AssignOrderingToNode(getValue(&I).getNode());
955   }
956 }
957 
958 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
959 // generate the debug data structures now that we've seen its definition.
960 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
961                                                    SDValue Val) {
962   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
963   if (DDI.getDI()) {
964     const DbgValueInst *DI = DDI.getDI();
965     DebugLoc dl = DDI.getdl();
966     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
967     MDNode *Variable = DI->getVariable();
968     uint64_t Offset = DI->getOffset();
969     SDDbgValue *SDV;
970     if (Val.getNode()) {
971       if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
972         SDV = DAG.getDbgValue(Variable, Val.getNode(),
973                               Val.getResNo(), Offset, dl, DbgSDNodeOrder);
974         DAG.AddDbgValue(SDV, Val.getNode(), false);
975       }
976     } else
977       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
978     DanglingDebugInfoMap[V] = DanglingDebugInfo();
979   }
980 }
981 
982 /// getValue - Return an SDValue for the given Value.
983 SDValue SelectionDAGBuilder::getValue(const Value *V) {
984   // If we already have an SDValue for this value, use it. It's important
985   // to do this first, so that we don't create a CopyFromReg if we already
986   // have a regular SDValue.
987   SDValue &N = NodeMap[V];
988   if (N.getNode()) return N;
989 
990   // If there's a virtual register allocated and initialized for this
991   // value, use it.
992   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
993   if (It != FuncInfo.ValueMap.end()) {
994     unsigned InReg = It->second;
995     RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
996     SDValue Chain = DAG.getEntryNode();
997     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
998     resolveDanglingDebugInfo(V, N);
999     return N;
1000   }
1001 
1002   // Otherwise create a new SDValue and remember it.
1003   SDValue Val = getValueImpl(V);
1004   NodeMap[V] = Val;
1005   resolveDanglingDebugInfo(V, Val);
1006   return Val;
1007 }
1008 
1009 /// getNonRegisterValue - Return an SDValue for the given Value, but
1010 /// don't look in FuncInfo.ValueMap for a virtual register.
1011 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1012   // If we already have an SDValue for this value, use it.
1013   SDValue &N = NodeMap[V];
1014   if (N.getNode()) return N;
1015 
1016   // Otherwise create a new SDValue and remember it.
1017   SDValue Val = getValueImpl(V);
1018   NodeMap[V] = Val;
1019   resolveDanglingDebugInfo(V, Val);
1020   return Val;
1021 }
1022 
1023 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1024 /// Create an SDValue for the given value.
1025 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1026   if (const Constant *C = dyn_cast<Constant>(V)) {
1027     EVT VT = TLI.getValueType(V->getType(), true);
1028 
1029     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1030       return DAG.getConstant(*CI, VT);
1031 
1032     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1033       return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1034 
1035     if (isa<ConstantPointerNull>(C))
1036       return DAG.getConstant(0, TLI.getPointerTy());
1037 
1038     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1039       return DAG.getConstantFP(*CFP, VT);
1040 
1041     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1042       return DAG.getUNDEF(VT);
1043 
1044     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1045       visit(CE->getOpcode(), *CE);
1046       SDValue N1 = NodeMap[V];
1047       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1048       return N1;
1049     }
1050 
1051     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1052       SmallVector<SDValue, 4> Constants;
1053       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1054            OI != OE; ++OI) {
1055         SDNode *Val = getValue(*OI).getNode();
1056         // If the operand is an empty aggregate, there are no values.
1057         if (!Val) continue;
1058         // Add each leaf value from the operand to the Constants list
1059         // to form a flattened list of all the values.
1060         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1061           Constants.push_back(SDValue(Val, i));
1062       }
1063 
1064       return DAG.getMergeValues(&Constants[0], Constants.size(),
1065                                 getCurDebugLoc());
1066     }
1067 
1068     if (const ConstantDataSequential *CDS =
1069           dyn_cast<ConstantDataSequential>(C)) {
1070       SmallVector<SDValue, 4> Ops;
1071       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1072         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1073         // Add each leaf value from the operand to the Constants list
1074         // to form a flattened list of all the values.
1075         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1076           Ops.push_back(SDValue(Val, i));
1077       }
1078 
1079       if (isa<ArrayType>(CDS->getType()))
1080         return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1081       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1082                                       VT, &Ops[0], Ops.size());
1083     }
1084 
1085     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1086       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1087              "Unknown struct or array constant!");
1088 
1089       SmallVector<EVT, 4> ValueVTs;
1090       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1091       unsigned NumElts = ValueVTs.size();
1092       if (NumElts == 0)
1093         return SDValue(); // empty struct
1094       SmallVector<SDValue, 4> Constants(NumElts);
1095       for (unsigned i = 0; i != NumElts; ++i) {
1096         EVT EltVT = ValueVTs[i];
1097         if (isa<UndefValue>(C))
1098           Constants[i] = DAG.getUNDEF(EltVT);
1099         else if (EltVT.isFloatingPoint())
1100           Constants[i] = DAG.getConstantFP(0, EltVT);
1101         else
1102           Constants[i] = DAG.getConstant(0, EltVT);
1103       }
1104 
1105       return DAG.getMergeValues(&Constants[0], NumElts,
1106                                 getCurDebugLoc());
1107     }
1108 
1109     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1110       return DAG.getBlockAddress(BA, VT);
1111 
1112     VectorType *VecTy = cast<VectorType>(V->getType());
1113     unsigned NumElements = VecTy->getNumElements();
1114 
1115     // Now that we know the number and type of the elements, get that number of
1116     // elements into the Ops array based on what kind of constant it is.
1117     SmallVector<SDValue, 16> Ops;
1118     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1119       for (unsigned i = 0; i != NumElements; ++i)
1120         Ops.push_back(getValue(CV->getOperand(i)));
1121     } else {
1122       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1123       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1124 
1125       SDValue Op;
1126       if (EltVT.isFloatingPoint())
1127         Op = DAG.getConstantFP(0, EltVT);
1128       else
1129         Op = DAG.getConstant(0, EltVT);
1130       Ops.assign(NumElements, Op);
1131     }
1132 
1133     // Create a BUILD_VECTOR node.
1134     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1135                                     VT, &Ops[0], Ops.size());
1136   }
1137 
1138   // If this is a static alloca, generate it as the frameindex instead of
1139   // computation.
1140   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1141     DenseMap<const AllocaInst*, int>::iterator SI =
1142       FuncInfo.StaticAllocaMap.find(AI);
1143     if (SI != FuncInfo.StaticAllocaMap.end())
1144       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1145   }
1146 
1147   // If this is an instruction which fast-isel has deferred, select it now.
1148   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1149     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1150     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1151     SDValue Chain = DAG.getEntryNode();
1152     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL);
1153   }
1154 
1155   llvm_unreachable("Can't get register for value!");
1156 }
1157 
1158 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1159   SDValue Chain = getControlRoot();
1160   SmallVector<ISD::OutputArg, 8> Outs;
1161   SmallVector<SDValue, 8> OutVals;
1162 
1163   if (!FuncInfo.CanLowerReturn) {
1164     unsigned DemoteReg = FuncInfo.DemoteRegister;
1165     const Function *F = I.getParent()->getParent();
1166 
1167     // Emit a store of the return value through the virtual register.
1168     // Leave Outs empty so that LowerReturn won't try to load return
1169     // registers the usual way.
1170     SmallVector<EVT, 1> PtrValueVTs;
1171     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1172                     PtrValueVTs);
1173 
1174     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1175     SDValue RetOp = getValue(I.getOperand(0));
1176 
1177     SmallVector<EVT, 4> ValueVTs;
1178     SmallVector<uint64_t, 4> Offsets;
1179     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1180     unsigned NumValues = ValueVTs.size();
1181 
1182     SmallVector<SDValue, 4> Chains(NumValues);
1183     for (unsigned i = 0; i != NumValues; ++i) {
1184       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1185                                 RetPtr.getValueType(), RetPtr,
1186                                 DAG.getIntPtrConstant(Offsets[i]));
1187       Chains[i] =
1188         DAG.getStore(Chain, getCurDebugLoc(),
1189                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1190                      // FIXME: better loc info would be nice.
1191                      Add, MachinePointerInfo(), false, false, 0);
1192     }
1193 
1194     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1195                         MVT::Other, &Chains[0], NumValues);
1196   } else if (I.getNumOperands() != 0) {
1197     SmallVector<EVT, 4> ValueVTs;
1198     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1199     unsigned NumValues = ValueVTs.size();
1200     if (NumValues) {
1201       SDValue RetOp = getValue(I.getOperand(0));
1202       for (unsigned j = 0, f = NumValues; j != f; ++j) {
1203         EVT VT = ValueVTs[j];
1204 
1205         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1206 
1207         const Function *F = I.getParent()->getParent();
1208         if (F->paramHasAttr(0, Attribute::SExt))
1209           ExtendKind = ISD::SIGN_EXTEND;
1210         else if (F->paramHasAttr(0, Attribute::ZExt))
1211           ExtendKind = ISD::ZERO_EXTEND;
1212 
1213         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1214           VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1215 
1216         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1217         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1218         SmallVector<SDValue, 4> Parts(NumParts);
1219         getCopyToParts(DAG, getCurDebugLoc(),
1220                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1221                        &Parts[0], NumParts, PartVT, ExtendKind);
1222 
1223         // 'inreg' on function refers to return value
1224         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1225         if (F->paramHasAttr(0, Attribute::InReg))
1226           Flags.setInReg();
1227 
1228         // Propagate extension type if any
1229         if (ExtendKind == ISD::SIGN_EXTEND)
1230           Flags.setSExt();
1231         else if (ExtendKind == ISD::ZERO_EXTEND)
1232           Flags.setZExt();
1233 
1234         for (unsigned i = 0; i < NumParts; ++i) {
1235           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1236                                         /*isfixed=*/true));
1237           OutVals.push_back(Parts[i]);
1238         }
1239       }
1240     }
1241   }
1242 
1243   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1244   CallingConv::ID CallConv =
1245     DAG.getMachineFunction().getFunction()->getCallingConv();
1246   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1247                           Outs, OutVals, getCurDebugLoc(), DAG);
1248 
1249   // Verify that the target's LowerReturn behaved as expected.
1250   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1251          "LowerReturn didn't return a valid chain!");
1252 
1253   // Update the DAG with the new chain value resulting from return lowering.
1254   DAG.setRoot(Chain);
1255 }
1256 
1257 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1258 /// created for it, emit nodes to copy the value into the virtual
1259 /// registers.
1260 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1261   // Skip empty types
1262   if (V->getType()->isEmptyTy())
1263     return;
1264 
1265   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1266   if (VMI != FuncInfo.ValueMap.end()) {
1267     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1268     CopyValueToVirtualRegister(V, VMI->second);
1269   }
1270 }
1271 
1272 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1273 /// the current basic block, add it to ValueMap now so that we'll get a
1274 /// CopyTo/FromReg.
1275 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1276   // No need to export constants.
1277   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1278 
1279   // Already exported?
1280   if (FuncInfo.isExportedInst(V)) return;
1281 
1282   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1283   CopyValueToVirtualRegister(V, Reg);
1284 }
1285 
1286 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1287                                                      const BasicBlock *FromBB) {
1288   // The operands of the setcc have to be in this block.  We don't know
1289   // how to export them from some other block.
1290   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1291     // Can export from current BB.
1292     if (VI->getParent() == FromBB)
1293       return true;
1294 
1295     // Is already exported, noop.
1296     return FuncInfo.isExportedInst(V);
1297   }
1298 
1299   // If this is an argument, we can export it if the BB is the entry block or
1300   // if it is already exported.
1301   if (isa<Argument>(V)) {
1302     if (FromBB == &FromBB->getParent()->getEntryBlock())
1303       return true;
1304 
1305     // Otherwise, can only export this if it is already exported.
1306     return FuncInfo.isExportedInst(V);
1307   }
1308 
1309   // Otherwise, constants can always be exported.
1310   return true;
1311 }
1312 
1313 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1314 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1315                                             const MachineBasicBlock *Dst) const {
1316   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1317   if (!BPI)
1318     return 0;
1319   const BasicBlock *SrcBB = Src->getBasicBlock();
1320   const BasicBlock *DstBB = Dst->getBasicBlock();
1321   return BPI->getEdgeWeight(SrcBB, DstBB);
1322 }
1323 
1324 void SelectionDAGBuilder::
1325 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1326                        uint32_t Weight /* = 0 */) {
1327   if (!Weight)
1328     Weight = getEdgeWeight(Src, Dst);
1329   Src->addSuccessor(Dst, Weight);
1330 }
1331 
1332 
1333 static bool InBlock(const Value *V, const BasicBlock *BB) {
1334   if (const Instruction *I = dyn_cast<Instruction>(V))
1335     return I->getParent() == BB;
1336   return true;
1337 }
1338 
1339 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1340 /// This function emits a branch and is used at the leaves of an OR or an
1341 /// AND operator tree.
1342 ///
1343 void
1344 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1345                                                   MachineBasicBlock *TBB,
1346                                                   MachineBasicBlock *FBB,
1347                                                   MachineBasicBlock *CurBB,
1348                                                   MachineBasicBlock *SwitchBB) {
1349   const BasicBlock *BB = CurBB->getBasicBlock();
1350 
1351   // If the leaf of the tree is a comparison, merge the condition into
1352   // the caseblock.
1353   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1354     // The operands of the cmp have to be in this block.  We don't know
1355     // how to export them from some other block.  If this is the first block
1356     // of the sequence, no exporting is needed.
1357     if (CurBB == SwitchBB ||
1358         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1359          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1360       ISD::CondCode Condition;
1361       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1362         Condition = getICmpCondCode(IC->getPredicate());
1363       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1364         Condition = getFCmpCondCode(FC->getPredicate());
1365         if (TM.Options.NoNaNsFPMath)
1366           Condition = getFCmpCodeWithoutNaN(Condition);
1367       } else {
1368         Condition = ISD::SETEQ; // silence warning.
1369         llvm_unreachable("Unknown compare instruction");
1370       }
1371 
1372       CaseBlock CB(Condition, BOp->getOperand(0),
1373                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1374       SwitchCases.push_back(CB);
1375       return;
1376     }
1377   }
1378 
1379   // Create a CaseBlock record representing this branch.
1380   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1381                NULL, TBB, FBB, CurBB);
1382   SwitchCases.push_back(CB);
1383 }
1384 
1385 /// FindMergedConditions - If Cond is an expression like
1386 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1387                                                MachineBasicBlock *TBB,
1388                                                MachineBasicBlock *FBB,
1389                                                MachineBasicBlock *CurBB,
1390                                                MachineBasicBlock *SwitchBB,
1391                                                unsigned Opc) {
1392   // If this node is not part of the or/and tree, emit it as a branch.
1393   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1394   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1395       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1396       BOp->getParent() != CurBB->getBasicBlock() ||
1397       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1398       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1399     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1400     return;
1401   }
1402 
1403   //  Create TmpBB after CurBB.
1404   MachineFunction::iterator BBI = CurBB;
1405   MachineFunction &MF = DAG.getMachineFunction();
1406   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1407   CurBB->getParent()->insert(++BBI, TmpBB);
1408 
1409   if (Opc == Instruction::Or) {
1410     // Codegen X | Y as:
1411     //   jmp_if_X TBB
1412     //   jmp TmpBB
1413     // TmpBB:
1414     //   jmp_if_Y TBB
1415     //   jmp FBB
1416     //
1417 
1418     // Emit the LHS condition.
1419     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1420 
1421     // Emit the RHS condition into TmpBB.
1422     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1423   } else {
1424     assert(Opc == Instruction::And && "Unknown merge op!");
1425     // Codegen X & Y as:
1426     //   jmp_if_X TmpBB
1427     //   jmp FBB
1428     // TmpBB:
1429     //   jmp_if_Y TBB
1430     //   jmp FBB
1431     //
1432     //  This requires creation of TmpBB after CurBB.
1433 
1434     // Emit the LHS condition.
1435     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1436 
1437     // Emit the RHS condition into TmpBB.
1438     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1439   }
1440 }
1441 
1442 /// If the set of cases should be emitted as a series of branches, return true.
1443 /// If we should emit this as a bunch of and/or'd together conditions, return
1444 /// false.
1445 bool
1446 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1447   if (Cases.size() != 2) return true;
1448 
1449   // If this is two comparisons of the same values or'd or and'd together, they
1450   // will get folded into a single comparison, so don't emit two blocks.
1451   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1452        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1453       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1454        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1455     return false;
1456   }
1457 
1458   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1459   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1460   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1461       Cases[0].CC == Cases[1].CC &&
1462       isa<Constant>(Cases[0].CmpRHS) &&
1463       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1464     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1465       return false;
1466     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1467       return false;
1468   }
1469 
1470   return true;
1471 }
1472 
1473 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1474   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1475 
1476   // Update machine-CFG edges.
1477   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1478 
1479   // Figure out which block is immediately after the current one.
1480   MachineBasicBlock *NextBlock = 0;
1481   MachineFunction::iterator BBI = BrMBB;
1482   if (++BBI != FuncInfo.MF->end())
1483     NextBlock = BBI;
1484 
1485   if (I.isUnconditional()) {
1486     // Update machine-CFG edges.
1487     BrMBB->addSuccessor(Succ0MBB);
1488 
1489     // If this is not a fall-through branch, emit the branch.
1490     if (Succ0MBB != NextBlock)
1491       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1492                               MVT::Other, getControlRoot(),
1493                               DAG.getBasicBlock(Succ0MBB)));
1494 
1495     return;
1496   }
1497 
1498   // If this condition is one of the special cases we handle, do special stuff
1499   // now.
1500   const Value *CondVal = I.getCondition();
1501   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1502 
1503   // If this is a series of conditions that are or'd or and'd together, emit
1504   // this as a sequence of branches instead of setcc's with and/or operations.
1505   // As long as jumps are not expensive, this should improve performance.
1506   // For example, instead of something like:
1507   //     cmp A, B
1508   //     C = seteq
1509   //     cmp D, E
1510   //     F = setle
1511   //     or C, F
1512   //     jnz foo
1513   // Emit:
1514   //     cmp A, B
1515   //     je foo
1516   //     cmp D, E
1517   //     jle foo
1518   //
1519   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1520     if (!TLI.isJumpExpensive() &&
1521         BOp->hasOneUse() &&
1522         (BOp->getOpcode() == Instruction::And ||
1523          BOp->getOpcode() == Instruction::Or)) {
1524       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1525                            BOp->getOpcode());
1526       // If the compares in later blocks need to use values not currently
1527       // exported from this block, export them now.  This block should always
1528       // be the first entry.
1529       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1530 
1531       // Allow some cases to be rejected.
1532       if (ShouldEmitAsBranches(SwitchCases)) {
1533         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1534           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1535           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1536         }
1537 
1538         // Emit the branch for this block.
1539         visitSwitchCase(SwitchCases[0], BrMBB);
1540         SwitchCases.erase(SwitchCases.begin());
1541         return;
1542       }
1543 
1544       // Okay, we decided not to do this, remove any inserted MBB's and clear
1545       // SwitchCases.
1546       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1547         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1548 
1549       SwitchCases.clear();
1550     }
1551   }
1552 
1553   // Create a CaseBlock record representing this branch.
1554   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1555                NULL, Succ0MBB, Succ1MBB, BrMBB);
1556 
1557   // Use visitSwitchCase to actually insert the fast branch sequence for this
1558   // cond branch.
1559   visitSwitchCase(CB, BrMBB);
1560 }
1561 
1562 /// visitSwitchCase - Emits the necessary code to represent a single node in
1563 /// the binary search tree resulting from lowering a switch instruction.
1564 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1565                                           MachineBasicBlock *SwitchBB) {
1566   SDValue Cond;
1567   SDValue CondLHS = getValue(CB.CmpLHS);
1568   DebugLoc dl = getCurDebugLoc();
1569 
1570   // Build the setcc now.
1571   if (CB.CmpMHS == NULL) {
1572     // Fold "(X == true)" to X and "(X == false)" to !X to
1573     // handle common cases produced by branch lowering.
1574     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1575         CB.CC == ISD::SETEQ)
1576       Cond = CondLHS;
1577     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1578              CB.CC == ISD::SETEQ) {
1579       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1580       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1581     } else
1582       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1583   } else {
1584     assert(CB.CC == ISD::SETCC_INVALID &&
1585            "Condition is undefined for to-the-range belonging check.");
1586 
1587     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1588     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1589 
1590     SDValue CmpOp = getValue(CB.CmpMHS);
1591     EVT VT = CmpOp.getValueType();
1592 
1593     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1594       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1595                           ISD::SETULE);
1596     } else {
1597       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1598                                 VT, CmpOp, DAG.getConstant(Low, VT));
1599       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1600                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1601     }
1602   }
1603 
1604   // Update successor info
1605   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1606   // TrueBB and FalseBB are always different unless the incoming IR is
1607   // degenerate. This only happens when running llc on weird IR.
1608   if (CB.TrueBB != CB.FalseBB)
1609     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1610 
1611   // Set NextBlock to be the MBB immediately after the current one, if any.
1612   // This is used to avoid emitting unnecessary branches to the next block.
1613   MachineBasicBlock *NextBlock = 0;
1614   MachineFunction::iterator BBI = SwitchBB;
1615   if (++BBI != FuncInfo.MF->end())
1616     NextBlock = BBI;
1617 
1618   // If the lhs block is the next block, invert the condition so that we can
1619   // fall through to the lhs instead of the rhs block.
1620   if (CB.TrueBB == NextBlock) {
1621     std::swap(CB.TrueBB, CB.FalseBB);
1622     SDValue True = DAG.getConstant(1, Cond.getValueType());
1623     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1624   }
1625 
1626   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1627                                MVT::Other, getControlRoot(), Cond,
1628                                DAG.getBasicBlock(CB.TrueBB));
1629 
1630   // Insert the false branch. Do this even if it's a fall through branch,
1631   // this makes it easier to do DAG optimizations which require inverting
1632   // the branch condition.
1633   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1634                        DAG.getBasicBlock(CB.FalseBB));
1635 
1636   DAG.setRoot(BrCond);
1637 }
1638 
1639 /// visitJumpTable - Emit JumpTable node in the current MBB
1640 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1641   // Emit the code for the jump table
1642   assert(JT.Reg != -1U && "Should lower JT Header first!");
1643   EVT PTy = TLI.getPointerTy();
1644   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1645                                      JT.Reg, PTy);
1646   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1647   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1648                                     MVT::Other, Index.getValue(1),
1649                                     Table, Index);
1650   DAG.setRoot(BrJumpTable);
1651 }
1652 
1653 /// visitJumpTableHeader - This function emits necessary code to produce index
1654 /// in the JumpTable from switch case.
1655 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1656                                                JumpTableHeader &JTH,
1657                                                MachineBasicBlock *SwitchBB) {
1658   // Subtract the lowest switch case value from the value being switched on and
1659   // conditional branch to default mbb if the result is greater than the
1660   // difference between smallest and largest cases.
1661   SDValue SwitchOp = getValue(JTH.SValue);
1662   EVT VT = SwitchOp.getValueType();
1663   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1664                             DAG.getConstant(JTH.First, VT));
1665 
1666   // The SDNode we just created, which holds the value being switched on minus
1667   // the smallest case value, needs to be copied to a virtual register so it
1668   // can be used as an index into the jump table in a subsequent basic block.
1669   // This value may be smaller or larger than the target's pointer type, and
1670   // therefore require extension or truncating.
1671   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1672 
1673   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1674   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1675                                     JumpTableReg, SwitchOp);
1676   JT.Reg = JumpTableReg;
1677 
1678   // Emit the range check for the jump table, and branch to the default block
1679   // for the switch statement if the value being switched on exceeds the largest
1680   // case in the switch.
1681   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1682                              TLI.getSetCCResultType(Sub.getValueType()), Sub,
1683                              DAG.getConstant(JTH.Last-JTH.First,VT),
1684                              ISD::SETUGT);
1685 
1686   // Set NextBlock to be the MBB immediately after the current one, if any.
1687   // This is used to avoid emitting unnecessary branches to the next block.
1688   MachineBasicBlock *NextBlock = 0;
1689   MachineFunction::iterator BBI = SwitchBB;
1690 
1691   if (++BBI != FuncInfo.MF->end())
1692     NextBlock = BBI;
1693 
1694   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1695                                MVT::Other, CopyTo, CMP,
1696                                DAG.getBasicBlock(JT.Default));
1697 
1698   if (JT.MBB != NextBlock)
1699     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1700                          DAG.getBasicBlock(JT.MBB));
1701 
1702   DAG.setRoot(BrCond);
1703 }
1704 
1705 /// visitBitTestHeader - This function emits necessary code to produce value
1706 /// suitable for "bit tests"
1707 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1708                                              MachineBasicBlock *SwitchBB) {
1709   // Subtract the minimum value
1710   SDValue SwitchOp = getValue(B.SValue);
1711   EVT VT = SwitchOp.getValueType();
1712   SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1713                             DAG.getConstant(B.First, VT));
1714 
1715   // Check range
1716   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1717                                   TLI.getSetCCResultType(Sub.getValueType()),
1718                                   Sub, DAG.getConstant(B.Range, VT),
1719                                   ISD::SETUGT);
1720 
1721   // Determine the type of the test operands.
1722   bool UsePtrType = false;
1723   if (!TLI.isTypeLegal(VT))
1724     UsePtrType = true;
1725   else {
1726     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1727       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1728         // Switch table case range are encoded into series of masks.
1729         // Just use pointer type, it's guaranteed to fit.
1730         UsePtrType = true;
1731         break;
1732       }
1733   }
1734   if (UsePtrType) {
1735     VT = TLI.getPointerTy();
1736     Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1737   }
1738 
1739   B.RegVT = VT;
1740   B.Reg = FuncInfo.CreateReg(VT);
1741   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1742                                     B.Reg, Sub);
1743 
1744   // Set NextBlock to be the MBB immediately after the current one, if any.
1745   // This is used to avoid emitting unnecessary branches to the next block.
1746   MachineBasicBlock *NextBlock = 0;
1747   MachineFunction::iterator BBI = SwitchBB;
1748   if (++BBI != FuncInfo.MF->end())
1749     NextBlock = BBI;
1750 
1751   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1752 
1753   addSuccessorWithWeight(SwitchBB, B.Default);
1754   addSuccessorWithWeight(SwitchBB, MBB);
1755 
1756   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1757                                 MVT::Other, CopyTo, RangeCmp,
1758                                 DAG.getBasicBlock(B.Default));
1759 
1760   if (MBB != NextBlock)
1761     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1762                           DAG.getBasicBlock(MBB));
1763 
1764   DAG.setRoot(BrRange);
1765 }
1766 
1767 /// visitBitTestCase - this function produces one "bit test"
1768 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1769                                            MachineBasicBlock* NextMBB,
1770                                            uint32_t BranchWeightToNext,
1771                                            unsigned Reg,
1772                                            BitTestCase &B,
1773                                            MachineBasicBlock *SwitchBB) {
1774   EVT VT = BB.RegVT;
1775   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1776                                        Reg, VT);
1777   SDValue Cmp;
1778   unsigned PopCount = CountPopulation_64(B.Mask);
1779   if (PopCount == 1) {
1780     // Testing for a single bit; just compare the shift count with what it
1781     // would need to be to shift a 1 bit in that position.
1782     Cmp = DAG.getSetCC(getCurDebugLoc(),
1783                        TLI.getSetCCResultType(VT),
1784                        ShiftOp,
1785                        DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1786                        ISD::SETEQ);
1787   } else if (PopCount == BB.Range) {
1788     // There is only one zero bit in the range, test for it directly.
1789     Cmp = DAG.getSetCC(getCurDebugLoc(),
1790                        TLI.getSetCCResultType(VT),
1791                        ShiftOp,
1792                        DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1793                        ISD::SETNE);
1794   } else {
1795     // Make desired shift
1796     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1797                                     DAG.getConstant(1, VT), ShiftOp);
1798 
1799     // Emit bit tests and jumps
1800     SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1801                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1802     Cmp = DAG.getSetCC(getCurDebugLoc(),
1803                        TLI.getSetCCResultType(VT),
1804                        AndOp, DAG.getConstant(0, VT),
1805                        ISD::SETNE);
1806   }
1807 
1808   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1809   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1810   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1811   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1812 
1813   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1814                               MVT::Other, getControlRoot(),
1815                               Cmp, DAG.getBasicBlock(B.TargetBB));
1816 
1817   // Set NextBlock to be the MBB immediately after the current one, if any.
1818   // This is used to avoid emitting unnecessary branches to the next block.
1819   MachineBasicBlock *NextBlock = 0;
1820   MachineFunction::iterator BBI = SwitchBB;
1821   if (++BBI != FuncInfo.MF->end())
1822     NextBlock = BBI;
1823 
1824   if (NextMBB != NextBlock)
1825     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1826                         DAG.getBasicBlock(NextMBB));
1827 
1828   DAG.setRoot(BrAnd);
1829 }
1830 
1831 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1832   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1833 
1834   // Retrieve successors.
1835   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1836   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1837 
1838   const Value *Callee(I.getCalledValue());
1839   const Function *Fn = dyn_cast<Function>(Callee);
1840   if (isa<InlineAsm>(Callee))
1841     visitInlineAsm(&I);
1842   else if (Fn && Fn->isIntrinsic()) {
1843     assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1844     // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1845   } else
1846     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1847 
1848   // If the value of the invoke is used outside of its defining block, make it
1849   // available as a virtual register.
1850   CopyToExportRegsIfNeeded(&I);
1851 
1852   // Update successor info
1853   addSuccessorWithWeight(InvokeMBB, Return);
1854   addSuccessorWithWeight(InvokeMBB, LandingPad);
1855 
1856   // Drop into normal successor.
1857   DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1858                           MVT::Other, getControlRoot(),
1859                           DAG.getBasicBlock(Return)));
1860 }
1861 
1862 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1863   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1864 }
1865 
1866 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1867   assert(FuncInfo.MBB->isLandingPad() &&
1868          "Call to landingpad not in landing pad!");
1869 
1870   MachineBasicBlock *MBB = FuncInfo.MBB;
1871   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1872   AddLandingPadInfo(LP, MMI, MBB);
1873 
1874   // If there aren't registers to copy the values into (e.g., during SjLj
1875   // exceptions), then don't bother to create these DAG nodes.
1876   if (TLI.getExceptionPointerRegister() == 0 &&
1877       TLI.getExceptionSelectorRegister() == 0)
1878     return;
1879 
1880   SmallVector<EVT, 2> ValueVTs;
1881   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1882 
1883   // Insert the EXCEPTIONADDR instruction.
1884   assert(FuncInfo.MBB->isLandingPad() &&
1885          "Call to eh.exception not in landing pad!");
1886   SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1887   SDValue Ops[2];
1888   Ops[0] = DAG.getRoot();
1889   SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1890   SDValue Chain = Op1.getValue(1);
1891 
1892   // Insert the EHSELECTION instruction.
1893   VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1894   Ops[0] = Op1;
1895   Ops[1] = Chain;
1896   SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1897   Chain = Op2.getValue(1);
1898   Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1899 
1900   Ops[0] = Op1;
1901   Ops[1] = Op2;
1902   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1903                             DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1904                             &Ops[0], 2);
1905 
1906   std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1907   setValue(&LP, RetPair.first);
1908   DAG.setRoot(RetPair.second);
1909 }
1910 
1911 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1912 /// small case ranges).
1913 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1914                                                  CaseRecVector& WorkList,
1915                                                  const Value* SV,
1916                                                  MachineBasicBlock *Default,
1917                                                  MachineBasicBlock *SwitchBB) {
1918   // Size is the number of Cases represented by this range.
1919   size_t Size = CR.Range.second - CR.Range.first;
1920   if (Size > 3)
1921     return false;
1922 
1923   // Get the MachineFunction which holds the current MBB.  This is used when
1924   // inserting any additional MBBs necessary to represent the switch.
1925   MachineFunction *CurMF = FuncInfo.MF;
1926 
1927   // Figure out which block is immediately after the current one.
1928   MachineBasicBlock *NextBlock = 0;
1929   MachineFunction::iterator BBI = CR.CaseBB;
1930 
1931   if (++BBI != FuncInfo.MF->end())
1932     NextBlock = BBI;
1933 
1934   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1935   // If any two of the cases has the same destination, and if one value
1936   // is the same as the other, but has one bit unset that the other has set,
1937   // use bit manipulation to do two compares at once.  For example:
1938   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1939   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1940   // TODO: Handle cases where CR.CaseBB != SwitchBB.
1941   if (Size == 2 && CR.CaseBB == SwitchBB) {
1942     Case &Small = *CR.Range.first;
1943     Case &Big = *(CR.Range.second-1);
1944 
1945     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1946       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1947       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1948 
1949       // Check that there is only one bit different.
1950       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1951           (SmallValue | BigValue) == BigValue) {
1952         // Isolate the common bit.
1953         APInt CommonBit = BigValue & ~SmallValue;
1954         assert((SmallValue | CommonBit) == BigValue &&
1955                CommonBit.countPopulation() == 1 && "Not a common bit?");
1956 
1957         SDValue CondLHS = getValue(SV);
1958         EVT VT = CondLHS.getValueType();
1959         DebugLoc DL = getCurDebugLoc();
1960 
1961         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1962                                  DAG.getConstant(CommonBit, VT));
1963         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1964                                     Or, DAG.getConstant(BigValue, VT),
1965                                     ISD::SETEQ);
1966 
1967         // Update successor info.
1968         // Both Small and Big will jump to Small.BB, so we sum up the weights.
1969         addSuccessorWithWeight(SwitchBB, Small.BB,
1970                                Small.ExtraWeight + Big.ExtraWeight);
1971         addSuccessorWithWeight(SwitchBB, Default,
1972           // The default destination is the first successor in IR.
1973           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1974 
1975         // Insert the true branch.
1976         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1977                                      getControlRoot(), Cond,
1978                                      DAG.getBasicBlock(Small.BB));
1979 
1980         // Insert the false branch.
1981         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
1982                              DAG.getBasicBlock(Default));
1983 
1984         DAG.setRoot(BrCond);
1985         return true;
1986       }
1987     }
1988   }
1989 
1990   // Order cases by weight so the most likely case will be checked first.
1991   uint32_t UnhandledWeights = 0;
1992   if (BPI) {
1993     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
1994       uint32_t IWeight = I->ExtraWeight;
1995       UnhandledWeights += IWeight;
1996       for (CaseItr J = CR.Range.first; J < I; ++J) {
1997         uint32_t JWeight = J->ExtraWeight;
1998         if (IWeight > JWeight)
1999           std::swap(*I, *J);
2000       }
2001     }
2002   }
2003   // Rearrange the case blocks so that the last one falls through if possible.
2004   Case &BackCase = *(CR.Range.second-1);
2005   if (Size > 1 &&
2006       NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2007     // The last case block won't fall through into 'NextBlock' if we emit the
2008     // branches in this order.  See if rearranging a case value would help.
2009     // We start at the bottom as it's the case with the least weight.
2010     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2011       if (I->BB == NextBlock) {
2012         std::swap(*I, BackCase);
2013         break;
2014       }
2015     }
2016   }
2017 
2018   // Create a CaseBlock record representing a conditional branch to
2019   // the Case's target mbb if the value being switched on SV is equal
2020   // to C.
2021   MachineBasicBlock *CurBlock = CR.CaseBB;
2022   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2023     MachineBasicBlock *FallThrough;
2024     if (I != E-1) {
2025       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2026       CurMF->insert(BBI, FallThrough);
2027 
2028       // Put SV in a virtual register to make it available from the new blocks.
2029       ExportFromCurrentBlock(SV);
2030     } else {
2031       // If the last case doesn't match, go to the default block.
2032       FallThrough = Default;
2033     }
2034 
2035     const Value *RHS, *LHS, *MHS;
2036     ISD::CondCode CC;
2037     if (I->High == I->Low) {
2038       // This is just small small case range :) containing exactly 1 case
2039       CC = ISD::SETEQ;
2040       LHS = SV; RHS = I->High; MHS = NULL;
2041     } else {
2042       CC = ISD::SETCC_INVALID;
2043       LHS = I->Low; MHS = SV; RHS = I->High;
2044     }
2045 
2046     // The false weight should be sum of all un-handled cases.
2047     UnhandledWeights -= I->ExtraWeight;
2048     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2049                  /* me */ CurBlock,
2050                  /* trueweight */ I->ExtraWeight,
2051                  /* falseweight */ UnhandledWeights);
2052 
2053     // If emitting the first comparison, just call visitSwitchCase to emit the
2054     // code into the current block.  Otherwise, push the CaseBlock onto the
2055     // vector to be later processed by SDISel, and insert the node's MBB
2056     // before the next MBB.
2057     if (CurBlock == SwitchBB)
2058       visitSwitchCase(CB, SwitchBB);
2059     else
2060       SwitchCases.push_back(CB);
2061 
2062     CurBlock = FallThrough;
2063   }
2064 
2065   return true;
2066 }
2067 
2068 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2069   return TLI.supportJumpTables() &&
2070           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2071            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2072 }
2073 
2074 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2075   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2076   APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2077   return (LastExt - FirstExt + 1ULL);
2078 }
2079 
2080 /// handleJTSwitchCase - Emit jumptable for current switch case range
2081 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2082                                              CaseRecVector &WorkList,
2083                                              const Value *SV,
2084                                              MachineBasicBlock *Default,
2085                                              MachineBasicBlock *SwitchBB) {
2086   Case& FrontCase = *CR.Range.first;
2087   Case& BackCase  = *(CR.Range.second-1);
2088 
2089   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2090   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2091 
2092   APInt TSize(First.getBitWidth(), 0);
2093   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2094     TSize += I->size();
2095 
2096   if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2097     return false;
2098 
2099   APInt Range = ComputeRange(First, Last);
2100   // The density is TSize / Range. Require at least 40%.
2101   // It should not be possible for IntTSize to saturate for sane code, but make
2102   // sure we handle Range saturation correctly.
2103   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2104   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2105   if (IntTSize * 10 < IntRange * 4)
2106     return false;
2107 
2108   DEBUG(dbgs() << "Lowering jump table\n"
2109                << "First entry: " << First << ". Last entry: " << Last << '\n'
2110                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2111 
2112   // Get the MachineFunction which holds the current MBB.  This is used when
2113   // inserting any additional MBBs necessary to represent the switch.
2114   MachineFunction *CurMF = FuncInfo.MF;
2115 
2116   // Figure out which block is immediately after the current one.
2117   MachineFunction::iterator BBI = CR.CaseBB;
2118   ++BBI;
2119 
2120   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2121 
2122   // Create a new basic block to hold the code for loading the address
2123   // of the jump table, and jumping to it.  Update successor information;
2124   // we will either branch to the default case for the switch, or the jump
2125   // table.
2126   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2127   CurMF->insert(BBI, JumpTableBB);
2128 
2129   addSuccessorWithWeight(CR.CaseBB, Default);
2130   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2131 
2132   // Build a vector of destination BBs, corresponding to each target
2133   // of the jump table. If the value of the jump table slot corresponds to
2134   // a case statement, push the case's BB onto the vector, otherwise, push
2135   // the default BB.
2136   std::vector<MachineBasicBlock*> DestBBs;
2137   APInt TEI = First;
2138   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2139     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2140     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2141 
2142     if (Low.ule(TEI) && TEI.ule(High)) {
2143       DestBBs.push_back(I->BB);
2144       if (TEI==High)
2145         ++I;
2146     } else {
2147       DestBBs.push_back(Default);
2148     }
2149   }
2150 
2151   // Calculate weight for each unique destination in CR.
2152   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2153   if (FuncInfo.BPI)
2154     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2155       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2156           DestWeights.find(I->BB);
2157       if (Itr != DestWeights.end())
2158         Itr->second += I->ExtraWeight;
2159       else
2160         DestWeights[I->BB] = I->ExtraWeight;
2161     }
2162 
2163   // Update successor info. Add one edge to each unique successor.
2164   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2165   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2166          E = DestBBs.end(); I != E; ++I) {
2167     if (!SuccsHandled[(*I)->getNumber()]) {
2168       SuccsHandled[(*I)->getNumber()] = true;
2169       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2170           DestWeights.find(*I);
2171       addSuccessorWithWeight(JumpTableBB, *I,
2172                              Itr != DestWeights.end() ? Itr->second : 0);
2173     }
2174   }
2175 
2176   // Create a jump table index for this jump table.
2177   unsigned JTEncoding = TLI.getJumpTableEncoding();
2178   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2179                        ->createJumpTableIndex(DestBBs);
2180 
2181   // Set the jump table information so that we can codegen it as a second
2182   // MachineBasicBlock
2183   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2184   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2185   if (CR.CaseBB == SwitchBB)
2186     visitJumpTableHeader(JT, JTH, SwitchBB);
2187 
2188   JTCases.push_back(JumpTableBlock(JTH, JT));
2189   return true;
2190 }
2191 
2192 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2193 /// 2 subtrees.
2194 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2195                                                   CaseRecVector& WorkList,
2196                                                   const Value* SV,
2197                                                   MachineBasicBlock *Default,
2198                                                   MachineBasicBlock *SwitchBB) {
2199   // Get the MachineFunction which holds the current MBB.  This is used when
2200   // inserting any additional MBBs necessary to represent the switch.
2201   MachineFunction *CurMF = FuncInfo.MF;
2202 
2203   // Figure out which block is immediately after the current one.
2204   MachineFunction::iterator BBI = CR.CaseBB;
2205   ++BBI;
2206 
2207   Case& FrontCase = *CR.Range.first;
2208   Case& BackCase  = *(CR.Range.second-1);
2209   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2210 
2211   // Size is the number of Cases represented by this range.
2212   unsigned Size = CR.Range.second - CR.Range.first;
2213 
2214   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2215   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2216   double FMetric = 0;
2217   CaseItr Pivot = CR.Range.first + Size/2;
2218 
2219   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2220   // (heuristically) allow us to emit JumpTable's later.
2221   APInt TSize(First.getBitWidth(), 0);
2222   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2223        I!=E; ++I)
2224     TSize += I->size();
2225 
2226   APInt LSize = FrontCase.size();
2227   APInt RSize = TSize-LSize;
2228   DEBUG(dbgs() << "Selecting best pivot: \n"
2229                << "First: " << First << ", Last: " << Last <<'\n'
2230                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2231   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2232        J!=E; ++I, ++J) {
2233     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2234     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2235     APInt Range = ComputeRange(LEnd, RBegin);
2236     assert((Range - 2ULL).isNonNegative() &&
2237            "Invalid case distance");
2238     // Use volatile double here to avoid excess precision issues on some hosts,
2239     // e.g. that use 80-bit X87 registers.
2240     volatile double LDensity =
2241        (double)LSize.roundToDouble() /
2242                            (LEnd - First + 1ULL).roundToDouble();
2243     volatile double RDensity =
2244       (double)RSize.roundToDouble() /
2245                            (Last - RBegin + 1ULL).roundToDouble();
2246     double Metric = Range.logBase2()*(LDensity+RDensity);
2247     // Should always split in some non-trivial place
2248     DEBUG(dbgs() <<"=>Step\n"
2249                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2250                  << "LDensity: " << LDensity
2251                  << ", RDensity: " << RDensity << '\n'
2252                  << "Metric: " << Metric << '\n');
2253     if (FMetric < Metric) {
2254       Pivot = J;
2255       FMetric = Metric;
2256       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2257     }
2258 
2259     LSize += J->size();
2260     RSize -= J->size();
2261   }
2262   if (areJTsAllowed(TLI)) {
2263     // If our case is dense we *really* should handle it earlier!
2264     assert((FMetric > 0) && "Should handle dense range earlier!");
2265   } else {
2266     Pivot = CR.Range.first + Size/2;
2267   }
2268 
2269   CaseRange LHSR(CR.Range.first, Pivot);
2270   CaseRange RHSR(Pivot, CR.Range.second);
2271   const Constant *C = Pivot->Low;
2272   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2273 
2274   // We know that we branch to the LHS if the Value being switched on is
2275   // less than the Pivot value, C.  We use this to optimize our binary
2276   // tree a bit, by recognizing that if SV is greater than or equal to the
2277   // LHS's Case Value, and that Case Value is exactly one less than the
2278   // Pivot's Value, then we can branch directly to the LHS's Target,
2279   // rather than creating a leaf node for it.
2280   if ((LHSR.second - LHSR.first) == 1 &&
2281       LHSR.first->High == CR.GE &&
2282       cast<ConstantInt>(C)->getValue() ==
2283       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2284     TrueBB = LHSR.first->BB;
2285   } else {
2286     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2287     CurMF->insert(BBI, TrueBB);
2288     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2289 
2290     // Put SV in a virtual register to make it available from the new blocks.
2291     ExportFromCurrentBlock(SV);
2292   }
2293 
2294   // Similar to the optimization above, if the Value being switched on is
2295   // known to be less than the Constant CR.LT, and the current Case Value
2296   // is CR.LT - 1, then we can branch directly to the target block for
2297   // the current Case Value, rather than emitting a RHS leaf node for it.
2298   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2299       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2300       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2301     FalseBB = RHSR.first->BB;
2302   } else {
2303     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2304     CurMF->insert(BBI, FalseBB);
2305     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2306 
2307     // Put SV in a virtual register to make it available from the new blocks.
2308     ExportFromCurrentBlock(SV);
2309   }
2310 
2311   // Create a CaseBlock record representing a conditional branch to
2312   // the LHS node if the value being switched on SV is less than C.
2313   // Otherwise, branch to LHS.
2314   CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2315 
2316   if (CR.CaseBB == SwitchBB)
2317     visitSwitchCase(CB, SwitchBB);
2318   else
2319     SwitchCases.push_back(CB);
2320 
2321   return true;
2322 }
2323 
2324 /// handleBitTestsSwitchCase - if current case range has few destination and
2325 /// range span less, than machine word bitwidth, encode case range into series
2326 /// of masks and emit bit tests with these masks.
2327 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2328                                                    CaseRecVector& WorkList,
2329                                                    const Value* SV,
2330                                                    MachineBasicBlock* Default,
2331                                                    MachineBasicBlock *SwitchBB){
2332   EVT PTy = TLI.getPointerTy();
2333   unsigned IntPtrBits = PTy.getSizeInBits();
2334 
2335   Case& FrontCase = *CR.Range.first;
2336   Case& BackCase  = *(CR.Range.second-1);
2337 
2338   // Get the MachineFunction which holds the current MBB.  This is used when
2339   // inserting any additional MBBs necessary to represent the switch.
2340   MachineFunction *CurMF = FuncInfo.MF;
2341 
2342   // If target does not have legal shift left, do not emit bit tests at all.
2343   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2344     return false;
2345 
2346   size_t numCmps = 0;
2347   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2348        I!=E; ++I) {
2349     // Single case counts one, case range - two.
2350     numCmps += (I->Low == I->High ? 1 : 2);
2351   }
2352 
2353   // Count unique destinations
2354   SmallSet<MachineBasicBlock*, 4> Dests;
2355   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2356     Dests.insert(I->BB);
2357     if (Dests.size() > 3)
2358       // Don't bother the code below, if there are too much unique destinations
2359       return false;
2360   }
2361   DEBUG(dbgs() << "Total number of unique destinations: "
2362         << Dests.size() << '\n'
2363         << "Total number of comparisons: " << numCmps << '\n');
2364 
2365   // Compute span of values.
2366   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2367   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2368   APInt cmpRange = maxValue - minValue;
2369 
2370   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2371                << "Low bound: " << minValue << '\n'
2372                << "High bound: " << maxValue << '\n');
2373 
2374   if (cmpRange.uge(IntPtrBits) ||
2375       (!(Dests.size() == 1 && numCmps >= 3) &&
2376        !(Dests.size() == 2 && numCmps >= 5) &&
2377        !(Dests.size() >= 3 && numCmps >= 6)))
2378     return false;
2379 
2380   DEBUG(dbgs() << "Emitting bit tests\n");
2381   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2382 
2383   // Optimize the case where all the case values fit in a
2384   // word without having to subtract minValue. In this case,
2385   // we can optimize away the subtraction.
2386   if (maxValue.ult(IntPtrBits)) {
2387     cmpRange = maxValue;
2388   } else {
2389     lowBound = minValue;
2390   }
2391 
2392   CaseBitsVector CasesBits;
2393   unsigned i, count = 0;
2394 
2395   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2396     MachineBasicBlock* Dest = I->BB;
2397     for (i = 0; i < count; ++i)
2398       if (Dest == CasesBits[i].BB)
2399         break;
2400 
2401     if (i == count) {
2402       assert((count < 3) && "Too much destinations to test!");
2403       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2404       count++;
2405     }
2406 
2407     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2408     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2409 
2410     uint64_t lo = (lowValue - lowBound).getZExtValue();
2411     uint64_t hi = (highValue - lowBound).getZExtValue();
2412     CasesBits[i].ExtraWeight += I->ExtraWeight;
2413 
2414     for (uint64_t j = lo; j <= hi; j++) {
2415       CasesBits[i].Mask |=  1ULL << j;
2416       CasesBits[i].Bits++;
2417     }
2418 
2419   }
2420   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2421 
2422   BitTestInfo BTC;
2423 
2424   // Figure out which block is immediately after the current one.
2425   MachineFunction::iterator BBI = CR.CaseBB;
2426   ++BBI;
2427 
2428   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2429 
2430   DEBUG(dbgs() << "Cases:\n");
2431   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2432     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2433                  << ", Bits: " << CasesBits[i].Bits
2434                  << ", BB: " << CasesBits[i].BB << '\n');
2435 
2436     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2437     CurMF->insert(BBI, CaseBB);
2438     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2439                               CaseBB,
2440                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
2441 
2442     // Put SV in a virtual register to make it available from the new blocks.
2443     ExportFromCurrentBlock(SV);
2444   }
2445 
2446   BitTestBlock BTB(lowBound, cmpRange, SV,
2447                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2448                    CR.CaseBB, Default, BTC);
2449 
2450   if (CR.CaseBB == SwitchBB)
2451     visitBitTestHeader(BTB, SwitchBB);
2452 
2453   BitTestCases.push_back(BTB);
2454 
2455   return true;
2456 }
2457 
2458 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2459 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2460                                        const SwitchInst& SI) {
2461 
2462   /// Use a shorter form of declaration, and also
2463   /// show the we want to use CRSBuilder as Clusterifier.
2464   typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2465 
2466   Clusterifier TheClusterifier;
2467 
2468   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2469   // Start with "simple" cases
2470   for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2471        i != e; ++i) {
2472     const BasicBlock *SuccBB = i.getCaseSuccessor();
2473     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2474 
2475     TheClusterifier.add(i.getCaseValueEx(), SMBB,
2476         BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2477   }
2478 
2479   TheClusterifier.optimize();
2480 
2481   size_t numCmps = 0;
2482   for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2483        e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2484     Clusterifier::Cluster &C = *i;
2485     // Update edge weight for the cluster.
2486     unsigned W = C.first.Weight;
2487 
2488     // FIXME: Currently work with ConstantInt based numbers.
2489     // Changing it to APInt based is a pretty heavy for this commit.
2490     Cases.push_back(Case(C.first.getLow().toConstantInt(),
2491                          C.first.getHigh().toConstantInt(), C.second, W));
2492 
2493     if (C.first.getLow() != C.first.getHigh())
2494     // A range counts double, since it requires two compares.
2495     ++numCmps;
2496   }
2497 
2498   return numCmps;
2499 }
2500 
2501 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2502                                            MachineBasicBlock *Last) {
2503   // Update JTCases.
2504   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2505     if (JTCases[i].first.HeaderBB == First)
2506       JTCases[i].first.HeaderBB = Last;
2507 
2508   // Update BitTestCases.
2509   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2510     if (BitTestCases[i].Parent == First)
2511       BitTestCases[i].Parent = Last;
2512 }
2513 
2514 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2515   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2516 
2517   // Figure out which block is immediately after the current one.
2518   MachineBasicBlock *NextBlock = 0;
2519   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2520 
2521   // If there is only the default destination, branch to it if it is not the
2522   // next basic block.  Otherwise, just fall through.
2523   if (!SI.getNumCases()) {
2524     // Update machine-CFG edges.
2525 
2526     // If this is not a fall-through branch, emit the branch.
2527     SwitchMBB->addSuccessor(Default);
2528     if (Default != NextBlock)
2529       DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2530                               MVT::Other, getControlRoot(),
2531                               DAG.getBasicBlock(Default)));
2532 
2533     return;
2534   }
2535 
2536   // If there are any non-default case statements, create a vector of Cases
2537   // representing each one, and sort the vector so that we can efficiently
2538   // create a binary search tree from them.
2539   CaseVector Cases;
2540   size_t numCmps = Clusterify(Cases, SI);
2541   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2542                << ". Total compares: " << numCmps << '\n');
2543   (void)numCmps;
2544 
2545   // Get the Value to be switched on and default basic blocks, which will be
2546   // inserted into CaseBlock records, representing basic blocks in the binary
2547   // search tree.
2548   const Value *SV = SI.getCondition();
2549 
2550   // Push the initial CaseRec onto the worklist
2551   CaseRecVector WorkList;
2552   WorkList.push_back(CaseRec(SwitchMBB,0,0,
2553                              CaseRange(Cases.begin(),Cases.end())));
2554 
2555   while (!WorkList.empty()) {
2556     // Grab a record representing a case range to process off the worklist
2557     CaseRec CR = WorkList.back();
2558     WorkList.pop_back();
2559 
2560     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2561       continue;
2562 
2563     // If the range has few cases (two or less) emit a series of specific
2564     // tests.
2565     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2566       continue;
2567 
2568     // If the switch has more than N blocks, and is at least 40% dense, and the
2569     // target supports indirect branches, then emit a jump table rather than
2570     // lowering the switch to a binary tree of conditional branches.
2571     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2572     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2573       continue;
2574 
2575     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2576     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2577     handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2578   }
2579 }
2580 
2581 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2582   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2583 
2584   // Update machine-CFG edges with unique successors.
2585   SmallVector<BasicBlock*, 32> succs;
2586   succs.reserve(I.getNumSuccessors());
2587   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2588     succs.push_back(I.getSuccessor(i));
2589   array_pod_sort(succs.begin(), succs.end());
2590   succs.erase(std::unique(succs.begin(), succs.end()), succs.end());
2591   for (unsigned i = 0, e = succs.size(); i != e; ++i) {
2592     MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]];
2593     addSuccessorWithWeight(IndirectBrMBB, Succ);
2594   }
2595 
2596   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2597                           MVT::Other, getControlRoot(),
2598                           getValue(I.getAddress())));
2599 }
2600 
2601 void SelectionDAGBuilder::visitFSub(const User &I) {
2602   // -0.0 - X --> fneg
2603   Type *Ty = I.getType();
2604   if (isa<Constant>(I.getOperand(0)) &&
2605       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2606     SDValue Op2 = getValue(I.getOperand(1));
2607     setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2608                              Op2.getValueType(), Op2));
2609     return;
2610   }
2611 
2612   visitBinary(I, ISD::FSUB);
2613 }
2614 
2615 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2616   SDValue Op1 = getValue(I.getOperand(0));
2617   SDValue Op2 = getValue(I.getOperand(1));
2618   setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2619                            Op1.getValueType(), Op1, Op2));
2620 }
2621 
2622 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2623   SDValue Op1 = getValue(I.getOperand(0));
2624   SDValue Op2 = getValue(I.getOperand(1));
2625 
2626   MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2627 
2628   // Coerce the shift amount to the right type if we can.
2629   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2630     unsigned ShiftSize = ShiftTy.getSizeInBits();
2631     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2632     DebugLoc DL = getCurDebugLoc();
2633 
2634     // If the operand is smaller than the shift count type, promote it.
2635     if (ShiftSize > Op2Size)
2636       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2637 
2638     // If the operand is larger than the shift count type but the shift
2639     // count type has enough bits to represent any shift value, truncate
2640     // it now. This is a common case and it exposes the truncate to
2641     // optimization early.
2642     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2643       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2644     // Otherwise we'll need to temporarily settle for some other convenient
2645     // type.  Type legalization will make adjustments once the shiftee is split.
2646     else
2647       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2648   }
2649 
2650   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2651                            Op1.getValueType(), Op1, Op2));
2652 }
2653 
2654 void SelectionDAGBuilder::visitSDiv(const User &I) {
2655   SDValue Op1 = getValue(I.getOperand(0));
2656   SDValue Op2 = getValue(I.getOperand(1));
2657 
2658   // Turn exact SDivs into multiplications.
2659   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2660   // exact bit.
2661   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2662       !isa<ConstantSDNode>(Op1) &&
2663       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2664     setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2665   else
2666     setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2667                              Op1, Op2));
2668 }
2669 
2670 void SelectionDAGBuilder::visitICmp(const User &I) {
2671   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2672   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2673     predicate = IC->getPredicate();
2674   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2675     predicate = ICmpInst::Predicate(IC->getPredicate());
2676   SDValue Op1 = getValue(I.getOperand(0));
2677   SDValue Op2 = getValue(I.getOperand(1));
2678   ISD::CondCode Opcode = getICmpCondCode(predicate);
2679 
2680   EVT DestVT = TLI.getValueType(I.getType());
2681   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2682 }
2683 
2684 void SelectionDAGBuilder::visitFCmp(const User &I) {
2685   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2686   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2687     predicate = FC->getPredicate();
2688   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2689     predicate = FCmpInst::Predicate(FC->getPredicate());
2690   SDValue Op1 = getValue(I.getOperand(0));
2691   SDValue Op2 = getValue(I.getOperand(1));
2692   ISD::CondCode Condition = getFCmpCondCode(predicate);
2693   if (TM.Options.NoNaNsFPMath)
2694     Condition = getFCmpCodeWithoutNaN(Condition);
2695   EVT DestVT = TLI.getValueType(I.getType());
2696   setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2697 }
2698 
2699 void SelectionDAGBuilder::visitSelect(const User &I) {
2700   SmallVector<EVT, 4> ValueVTs;
2701   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2702   unsigned NumValues = ValueVTs.size();
2703   if (NumValues == 0) return;
2704 
2705   SmallVector<SDValue, 4> Values(NumValues);
2706   SDValue Cond     = getValue(I.getOperand(0));
2707   SDValue TrueVal  = getValue(I.getOperand(1));
2708   SDValue FalseVal = getValue(I.getOperand(2));
2709   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2710     ISD::VSELECT : ISD::SELECT;
2711 
2712   for (unsigned i = 0; i != NumValues; ++i)
2713     Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2714                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2715                             Cond,
2716                             SDValue(TrueVal.getNode(),
2717                                     TrueVal.getResNo() + i),
2718                             SDValue(FalseVal.getNode(),
2719                                     FalseVal.getResNo() + i));
2720 
2721   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2722                            DAG.getVTList(&ValueVTs[0], NumValues),
2723                            &Values[0], NumValues));
2724 }
2725 
2726 void SelectionDAGBuilder::visitTrunc(const User &I) {
2727   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2728   SDValue N = getValue(I.getOperand(0));
2729   EVT DestVT = TLI.getValueType(I.getType());
2730   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2731 }
2732 
2733 void SelectionDAGBuilder::visitZExt(const User &I) {
2734   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2735   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2736   SDValue N = getValue(I.getOperand(0));
2737   EVT DestVT = TLI.getValueType(I.getType());
2738   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2739 }
2740 
2741 void SelectionDAGBuilder::visitSExt(const User &I) {
2742   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2743   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2744   SDValue N = getValue(I.getOperand(0));
2745   EVT DestVT = TLI.getValueType(I.getType());
2746   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2747 }
2748 
2749 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2750   // FPTrunc is never a no-op cast, no need to check
2751   SDValue N = getValue(I.getOperand(0));
2752   EVT DestVT = TLI.getValueType(I.getType());
2753   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2754                            DestVT, N,
2755                            DAG.getTargetConstant(0, TLI.getPointerTy())));
2756 }
2757 
2758 void SelectionDAGBuilder::visitFPExt(const User &I){
2759   // FPExt is never a no-op cast, no need to check
2760   SDValue N = getValue(I.getOperand(0));
2761   EVT DestVT = TLI.getValueType(I.getType());
2762   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2763 }
2764 
2765 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2766   // FPToUI is never a no-op cast, no need to check
2767   SDValue N = getValue(I.getOperand(0));
2768   EVT DestVT = TLI.getValueType(I.getType());
2769   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2770 }
2771 
2772 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2773   // FPToSI is never a no-op cast, no need to check
2774   SDValue N = getValue(I.getOperand(0));
2775   EVT DestVT = TLI.getValueType(I.getType());
2776   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2777 }
2778 
2779 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2780   // UIToFP is never a no-op cast, no need to check
2781   SDValue N = getValue(I.getOperand(0));
2782   EVT DestVT = TLI.getValueType(I.getType());
2783   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2784 }
2785 
2786 void SelectionDAGBuilder::visitSIToFP(const User &I){
2787   // SIToFP is never a no-op cast, no need to check
2788   SDValue N = getValue(I.getOperand(0));
2789   EVT DestVT = TLI.getValueType(I.getType());
2790   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2791 }
2792 
2793 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2794   // What to do depends on the size of the integer and the size of the pointer.
2795   // We can either truncate, zero extend, or no-op, accordingly.
2796   SDValue N = getValue(I.getOperand(0));
2797   EVT DestVT = TLI.getValueType(I.getType());
2798   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2799 }
2800 
2801 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2802   // What to do depends on the size of the integer and the size of the pointer.
2803   // We can either truncate, zero extend, or no-op, accordingly.
2804   SDValue N = getValue(I.getOperand(0));
2805   EVT DestVT = TLI.getValueType(I.getType());
2806   setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2807 }
2808 
2809 void SelectionDAGBuilder::visitBitCast(const User &I) {
2810   SDValue N = getValue(I.getOperand(0));
2811   EVT DestVT = TLI.getValueType(I.getType());
2812 
2813   // BitCast assures us that source and destination are the same size so this is
2814   // either a BITCAST or a no-op.
2815   if (DestVT != N.getValueType())
2816     setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2817                              DestVT, N)); // convert types.
2818   else
2819     setValue(&I, N);            // noop cast.
2820 }
2821 
2822 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2823   SDValue InVec = getValue(I.getOperand(0));
2824   SDValue InVal = getValue(I.getOperand(1));
2825   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2826                               TLI.getPointerTy(),
2827                               getValue(I.getOperand(2)));
2828   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2829                            TLI.getValueType(I.getType()),
2830                            InVec, InVal, InIdx));
2831 }
2832 
2833 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2834   SDValue InVec = getValue(I.getOperand(0));
2835   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2836                               TLI.getPointerTy(),
2837                               getValue(I.getOperand(1)));
2838   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2839                            TLI.getValueType(I.getType()), InVec, InIdx));
2840 }
2841 
2842 // Utility for visitShuffleVector - Return true if every element in Mask,
2843 // beginning from position Pos and ending in Pos+Size, falls within the
2844 // specified sequential range [L, L+Pos). or is undef.
2845 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2846                                 unsigned Pos, unsigned Size, int Low) {
2847   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2848     if (Mask[i] >= 0 && Mask[i] != Low)
2849       return false;
2850   return true;
2851 }
2852 
2853 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2854   SDValue Src1 = getValue(I.getOperand(0));
2855   SDValue Src2 = getValue(I.getOperand(1));
2856 
2857   SmallVector<int, 8> Mask;
2858   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2859   unsigned MaskNumElts = Mask.size();
2860 
2861   EVT VT = TLI.getValueType(I.getType());
2862   EVT SrcVT = Src1.getValueType();
2863   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2864 
2865   if (SrcNumElts == MaskNumElts) {
2866     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2867                                       &Mask[0]));
2868     return;
2869   }
2870 
2871   // Normalize the shuffle vector since mask and vector length don't match.
2872   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2873     // Mask is longer than the source vectors and is a multiple of the source
2874     // vectors.  We can use concatenate vector to make the mask and vectors
2875     // lengths match.
2876     if (SrcNumElts*2 == MaskNumElts) {
2877       // First check for Src1 in low and Src2 in high
2878       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2879           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2880         // The shuffle is concatenating two vectors together.
2881         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2882                                  VT, Src1, Src2));
2883         return;
2884       }
2885       // Then check for Src2 in low and Src1 in high
2886       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2887           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2888         // The shuffle is concatenating two vectors together.
2889         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2890                                  VT, Src2, Src1));
2891         return;
2892       }
2893     }
2894 
2895     // Pad both vectors with undefs to make them the same length as the mask.
2896     unsigned NumConcat = MaskNumElts / SrcNumElts;
2897     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2898     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2899     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2900 
2901     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2902     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2903     MOps1[0] = Src1;
2904     MOps2[0] = Src2;
2905 
2906     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2907                                                   getCurDebugLoc(), VT,
2908                                                   &MOps1[0], NumConcat);
2909     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2910                                                   getCurDebugLoc(), VT,
2911                                                   &MOps2[0], NumConcat);
2912 
2913     // Readjust mask for new input vector length.
2914     SmallVector<int, 8> MappedOps;
2915     for (unsigned i = 0; i != MaskNumElts; ++i) {
2916       int Idx = Mask[i];
2917       if (Idx >= (int)SrcNumElts)
2918         Idx -= SrcNumElts - MaskNumElts;
2919       MappedOps.push_back(Idx);
2920     }
2921 
2922     setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2923                                       &MappedOps[0]));
2924     return;
2925   }
2926 
2927   if (SrcNumElts > MaskNumElts) {
2928     // Analyze the access pattern of the vector to see if we can extract
2929     // two subvectors and do the shuffle. The analysis is done by calculating
2930     // the range of elements the mask access on both vectors.
2931     int MinRange[2] = { static_cast<int>(SrcNumElts),
2932                         static_cast<int>(SrcNumElts)};
2933     int MaxRange[2] = {-1, -1};
2934 
2935     for (unsigned i = 0; i != MaskNumElts; ++i) {
2936       int Idx = Mask[i];
2937       unsigned Input = 0;
2938       if (Idx < 0)
2939         continue;
2940 
2941       if (Idx >= (int)SrcNumElts) {
2942         Input = 1;
2943         Idx -= SrcNumElts;
2944       }
2945       if (Idx > MaxRange[Input])
2946         MaxRange[Input] = Idx;
2947       if (Idx < MinRange[Input])
2948         MinRange[Input] = Idx;
2949     }
2950 
2951     // Check if the access is smaller than the vector size and can we find
2952     // a reasonable extract index.
2953     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2954                                    // Extract.
2955     int StartIdx[2];  // StartIdx to extract from
2956     for (unsigned Input = 0; Input < 2; ++Input) {
2957       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2958         RangeUse[Input] = 0; // Unused
2959         StartIdx[Input] = 0;
2960         continue;
2961       }
2962 
2963       // Find a good start index that is a multiple of the mask length. Then
2964       // see if the rest of the elements are in range.
2965       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2966       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2967           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2968         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2969     }
2970 
2971     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2972       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2973       return;
2974     }
2975     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2976       // Extract appropriate subvector and generate a vector shuffle
2977       for (unsigned Input = 0; Input < 2; ++Input) {
2978         SDValue &Src = Input == 0 ? Src1 : Src2;
2979         if (RangeUse[Input] == 0)
2980           Src = DAG.getUNDEF(VT);
2981         else
2982           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2983                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2984       }
2985 
2986       // Calculate new mask.
2987       SmallVector<int, 8> MappedOps;
2988       for (unsigned i = 0; i != MaskNumElts; ++i) {
2989         int Idx = Mask[i];
2990         if (Idx >= 0) {
2991           if (Idx < (int)SrcNumElts)
2992             Idx -= StartIdx[0];
2993           else
2994             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2995         }
2996         MappedOps.push_back(Idx);
2997       }
2998 
2999       setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3000                                         &MappedOps[0]));
3001       return;
3002     }
3003   }
3004 
3005   // We can't use either concat vectors or extract subvectors so fall back to
3006   // replacing the shuffle with extract and build vector.
3007   // to insert and build vector.
3008   EVT EltVT = VT.getVectorElementType();
3009   EVT PtrVT = TLI.getPointerTy();
3010   SmallVector<SDValue,8> Ops;
3011   for (unsigned i = 0; i != MaskNumElts; ++i) {
3012     int Idx = Mask[i];
3013     SDValue Res;
3014 
3015     if (Idx < 0) {
3016       Res = DAG.getUNDEF(EltVT);
3017     } else {
3018       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3019       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3020 
3021       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3022                         EltVT, Src, DAG.getConstant(Idx, PtrVT));
3023     }
3024 
3025     Ops.push_back(Res);
3026   }
3027 
3028   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3029                            VT, &Ops[0], Ops.size()));
3030 }
3031 
3032 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3033   const Value *Op0 = I.getOperand(0);
3034   const Value *Op1 = I.getOperand(1);
3035   Type *AggTy = I.getType();
3036   Type *ValTy = Op1->getType();
3037   bool IntoUndef = isa<UndefValue>(Op0);
3038   bool FromUndef = isa<UndefValue>(Op1);
3039 
3040   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3041 
3042   SmallVector<EVT, 4> AggValueVTs;
3043   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3044   SmallVector<EVT, 4> ValValueVTs;
3045   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3046 
3047   unsigned NumAggValues = AggValueVTs.size();
3048   unsigned NumValValues = ValValueVTs.size();
3049   SmallVector<SDValue, 4> Values(NumAggValues);
3050 
3051   SDValue Agg = getValue(Op0);
3052   unsigned i = 0;
3053   // Copy the beginning value(s) from the original aggregate.
3054   for (; i != LinearIndex; ++i)
3055     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3056                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3057   // Copy values from the inserted value(s).
3058   if (NumValValues) {
3059     SDValue Val = getValue(Op1);
3060     for (; i != LinearIndex + NumValValues; ++i)
3061       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3062                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3063   }
3064   // Copy remaining value(s) from the original aggregate.
3065   for (; i != NumAggValues; ++i)
3066     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3067                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3068 
3069   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3070                            DAG.getVTList(&AggValueVTs[0], NumAggValues),
3071                            &Values[0], NumAggValues));
3072 }
3073 
3074 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3075   const Value *Op0 = I.getOperand(0);
3076   Type *AggTy = Op0->getType();
3077   Type *ValTy = I.getType();
3078   bool OutOfUndef = isa<UndefValue>(Op0);
3079 
3080   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3081 
3082   SmallVector<EVT, 4> ValValueVTs;
3083   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3084 
3085   unsigned NumValValues = ValValueVTs.size();
3086 
3087   // Ignore a extractvalue that produces an empty object
3088   if (!NumValValues) {
3089     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3090     return;
3091   }
3092 
3093   SmallVector<SDValue, 4> Values(NumValValues);
3094 
3095   SDValue Agg = getValue(Op0);
3096   // Copy out the selected value(s).
3097   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3098     Values[i - LinearIndex] =
3099       OutOfUndef ?
3100         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3101         SDValue(Agg.getNode(), Agg.getResNo() + i);
3102 
3103   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3104                            DAG.getVTList(&ValValueVTs[0], NumValValues),
3105                            &Values[0], NumValValues));
3106 }
3107 
3108 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3109   SDValue N = getValue(I.getOperand(0));
3110   // Note that the pointer operand may be a vector of pointers. Take the scalar
3111   // element which holds a pointer.
3112   Type *Ty = I.getOperand(0)->getType()->getScalarType();
3113 
3114   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3115        OI != E; ++OI) {
3116     const Value *Idx = *OI;
3117     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3118       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3119       if (Field) {
3120         // N = N + Offset
3121         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3122         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3123                         DAG.getIntPtrConstant(Offset));
3124       }
3125 
3126       Ty = StTy->getElementType(Field);
3127     } else {
3128       Ty = cast<SequentialType>(Ty)->getElementType();
3129 
3130       // If this is a constant subscript, handle it quickly.
3131       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3132         if (CI->isZero()) continue;
3133         uint64_t Offs =
3134             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3135         SDValue OffsVal;
3136         EVT PTy = TLI.getPointerTy();
3137         unsigned PtrBits = PTy.getSizeInBits();
3138         if (PtrBits < 64)
3139           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3140                                 TLI.getPointerTy(),
3141                                 DAG.getConstant(Offs, MVT::i64));
3142         else
3143           OffsVal = DAG.getIntPtrConstant(Offs);
3144 
3145         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3146                         OffsVal);
3147         continue;
3148       }
3149 
3150       // N = N + Idx * ElementSize;
3151       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3152                                 TD->getTypeAllocSize(Ty));
3153       SDValue IdxN = getValue(Idx);
3154 
3155       // If the index is smaller or larger than intptr_t, truncate or extend
3156       // it.
3157       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3158 
3159       // If this is a multiply by a power of two, turn it into a shl
3160       // immediately.  This is a very common case.
3161       if (ElementSize != 1) {
3162         if (ElementSize.isPowerOf2()) {
3163           unsigned Amt = ElementSize.logBase2();
3164           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3165                              N.getValueType(), IdxN,
3166                              DAG.getConstant(Amt, IdxN.getValueType()));
3167         } else {
3168           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3169           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3170                              N.getValueType(), IdxN, Scale);
3171         }
3172       }
3173 
3174       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3175                       N.getValueType(), N, IdxN);
3176     }
3177   }
3178 
3179   setValue(&I, N);
3180 }
3181 
3182 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3183   // If this is a fixed sized alloca in the entry block of the function,
3184   // allocate it statically on the stack.
3185   if (FuncInfo.StaticAllocaMap.count(&I))
3186     return;   // getValue will auto-populate this.
3187 
3188   Type *Ty = I.getAllocatedType();
3189   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3190   unsigned Align =
3191     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3192              I.getAlignment());
3193 
3194   SDValue AllocSize = getValue(I.getArraySize());
3195 
3196   EVT IntPtr = TLI.getPointerTy();
3197   if (AllocSize.getValueType() != IntPtr)
3198     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3199 
3200   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3201                           AllocSize,
3202                           DAG.getConstant(TySize, IntPtr));
3203 
3204   // Handle alignment.  If the requested alignment is less than or equal to
3205   // the stack alignment, ignore it.  If the size is greater than or equal to
3206   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3207   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3208   if (Align <= StackAlign)
3209     Align = 0;
3210 
3211   // Round the size of the allocation up to the stack alignment size
3212   // by add SA-1 to the size.
3213   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3214                           AllocSize.getValueType(), AllocSize,
3215                           DAG.getIntPtrConstant(StackAlign-1));
3216 
3217   // Mask out the low bits for alignment purposes.
3218   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3219                           AllocSize.getValueType(), AllocSize,
3220                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3221 
3222   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3223   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3224   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3225                             VTs, Ops, 3);
3226   setValue(&I, DSA);
3227   DAG.setRoot(DSA.getValue(1));
3228 
3229   // Inform the Frame Information that we have just allocated a variable-sized
3230   // object.
3231   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3232 }
3233 
3234 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3235   if (I.isAtomic())
3236     return visitAtomicLoad(I);
3237 
3238   const Value *SV = I.getOperand(0);
3239   SDValue Ptr = getValue(SV);
3240 
3241   Type *Ty = I.getType();
3242 
3243   bool isVolatile = I.isVolatile();
3244   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3245   bool isInvariant = I.getMetadata("invariant.load") != 0;
3246   unsigned Alignment = I.getAlignment();
3247   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3248   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3249 
3250   SmallVector<EVT, 4> ValueVTs;
3251   SmallVector<uint64_t, 4> Offsets;
3252   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3253   unsigned NumValues = ValueVTs.size();
3254   if (NumValues == 0)
3255     return;
3256 
3257   SDValue Root;
3258   bool ConstantMemory = false;
3259   if (I.isVolatile() || NumValues > MaxParallelChains)
3260     // Serialize volatile loads with other side effects.
3261     Root = getRoot();
3262   else if (AA->pointsToConstantMemory(
3263              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3264     // Do not serialize (non-volatile) loads of constant memory with anything.
3265     Root = DAG.getEntryNode();
3266     ConstantMemory = true;
3267   } else {
3268     // Do not serialize non-volatile loads against each other.
3269     Root = DAG.getRoot();
3270   }
3271 
3272   SmallVector<SDValue, 4> Values(NumValues);
3273   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3274                                           NumValues));
3275   EVT PtrVT = Ptr.getValueType();
3276   unsigned ChainI = 0;
3277   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3278     // Serializing loads here may result in excessive register pressure, and
3279     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3280     // could recover a bit by hoisting nodes upward in the chain by recognizing
3281     // they are side-effect free or do not alias. The optimizer should really
3282     // avoid this case by converting large object/array copies to llvm.memcpy
3283     // (MaxParallelChains should always remain as failsafe).
3284     if (ChainI == MaxParallelChains) {
3285       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3286       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3287                                   MVT::Other, &Chains[0], ChainI);
3288       Root = Chain;
3289       ChainI = 0;
3290     }
3291     SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3292                             PtrVT, Ptr,
3293                             DAG.getConstant(Offsets[i], PtrVT));
3294     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3295                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3296                             isNonTemporal, isInvariant, Alignment, TBAAInfo,
3297                             Ranges);
3298 
3299     Values[i] = L;
3300     Chains[ChainI] = L.getValue(1);
3301   }
3302 
3303   if (!ConstantMemory) {
3304     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3305                                 MVT::Other, &Chains[0], ChainI);
3306     if (isVolatile)
3307       DAG.setRoot(Chain);
3308     else
3309       PendingLoads.push_back(Chain);
3310   }
3311 
3312   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3313                            DAG.getVTList(&ValueVTs[0], NumValues),
3314                            &Values[0], NumValues));
3315 }
3316 
3317 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3318   if (I.isAtomic())
3319     return visitAtomicStore(I);
3320 
3321   const Value *SrcV = I.getOperand(0);
3322   const Value *PtrV = I.getOperand(1);
3323 
3324   SmallVector<EVT, 4> ValueVTs;
3325   SmallVector<uint64_t, 4> Offsets;
3326   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3327   unsigned NumValues = ValueVTs.size();
3328   if (NumValues == 0)
3329     return;
3330 
3331   // Get the lowered operands. Note that we do this after
3332   // checking if NumResults is zero, because with zero results
3333   // the operands won't have values in the map.
3334   SDValue Src = getValue(SrcV);
3335   SDValue Ptr = getValue(PtrV);
3336 
3337   SDValue Root = getRoot();
3338   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3339                                           NumValues));
3340   EVT PtrVT = Ptr.getValueType();
3341   bool isVolatile = I.isVolatile();
3342   bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3343   unsigned Alignment = I.getAlignment();
3344   const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3345 
3346   unsigned ChainI = 0;
3347   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3348     // See visitLoad comments.
3349     if (ChainI == MaxParallelChains) {
3350       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3351                                   MVT::Other, &Chains[0], ChainI);
3352       Root = Chain;
3353       ChainI = 0;
3354     }
3355     SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3356                               DAG.getConstant(Offsets[i], PtrVT));
3357     SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3358                               SDValue(Src.getNode(), Src.getResNo() + i),
3359                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3360                               isVolatile, isNonTemporal, Alignment, TBAAInfo);
3361     Chains[ChainI] = St;
3362   }
3363 
3364   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3365                                   MVT::Other, &Chains[0], ChainI);
3366   ++SDNodeOrder;
3367   AssignOrderingToNode(StoreNode.getNode());
3368   DAG.setRoot(StoreNode);
3369 }
3370 
3371 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3372                                     SynchronizationScope Scope,
3373                                     bool Before, DebugLoc dl,
3374                                     SelectionDAG &DAG,
3375                                     const TargetLowering &TLI) {
3376   // Fence, if necessary
3377   if (Before) {
3378     if (Order == AcquireRelease || Order == SequentiallyConsistent)
3379       Order = Release;
3380     else if (Order == Acquire || Order == Monotonic)
3381       return Chain;
3382   } else {
3383     if (Order == AcquireRelease)
3384       Order = Acquire;
3385     else if (Order == Release || Order == Monotonic)
3386       return Chain;
3387   }
3388   SDValue Ops[3];
3389   Ops[0] = Chain;
3390   Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3391   Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3392   return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3393 }
3394 
3395 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3396   DebugLoc dl = getCurDebugLoc();
3397   AtomicOrdering Order = I.getOrdering();
3398   SynchronizationScope Scope = I.getSynchScope();
3399 
3400   SDValue InChain = getRoot();
3401 
3402   if (TLI.getInsertFencesForAtomic())
3403     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3404                                    DAG, TLI);
3405 
3406   SDValue L =
3407     DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3408                   getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3409                   InChain,
3410                   getValue(I.getPointerOperand()),
3411                   getValue(I.getCompareOperand()),
3412                   getValue(I.getNewValOperand()),
3413                   MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3414                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3415                   Scope);
3416 
3417   SDValue OutChain = L.getValue(1);
3418 
3419   if (TLI.getInsertFencesForAtomic())
3420     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3421                                     DAG, TLI);
3422 
3423   setValue(&I, L);
3424   DAG.setRoot(OutChain);
3425 }
3426 
3427 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3428   DebugLoc dl = getCurDebugLoc();
3429   ISD::NodeType NT;
3430   switch (I.getOperation()) {
3431   default: llvm_unreachable("Unknown atomicrmw operation");
3432   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3433   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3434   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3435   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3436   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3437   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3438   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3439   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3440   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3441   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3442   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3443   }
3444   AtomicOrdering Order = I.getOrdering();
3445   SynchronizationScope Scope = I.getSynchScope();
3446 
3447   SDValue InChain = getRoot();
3448 
3449   if (TLI.getInsertFencesForAtomic())
3450     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3451                                    DAG, TLI);
3452 
3453   SDValue L =
3454     DAG.getAtomic(NT, dl,
3455                   getValue(I.getValOperand()).getValueType().getSimpleVT(),
3456                   InChain,
3457                   getValue(I.getPointerOperand()),
3458                   getValue(I.getValOperand()),
3459                   I.getPointerOperand(), 0 /* Alignment */,
3460                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3461                   Scope);
3462 
3463   SDValue OutChain = L.getValue(1);
3464 
3465   if (TLI.getInsertFencesForAtomic())
3466     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3467                                     DAG, TLI);
3468 
3469   setValue(&I, L);
3470   DAG.setRoot(OutChain);
3471 }
3472 
3473 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3474   DebugLoc dl = getCurDebugLoc();
3475   SDValue Ops[3];
3476   Ops[0] = getRoot();
3477   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3478   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3479   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3480 }
3481 
3482 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3483   DebugLoc dl = getCurDebugLoc();
3484   AtomicOrdering Order = I.getOrdering();
3485   SynchronizationScope Scope = I.getSynchScope();
3486 
3487   SDValue InChain = getRoot();
3488 
3489   EVT VT = TLI.getValueType(I.getType());
3490 
3491   if (I.getAlignment() * 8 < VT.getSizeInBits())
3492     report_fatal_error("Cannot generate unaligned atomic load");
3493 
3494   SDValue L =
3495     DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3496                   getValue(I.getPointerOperand()),
3497                   I.getPointerOperand(), I.getAlignment(),
3498                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3499                   Scope);
3500 
3501   SDValue OutChain = L.getValue(1);
3502 
3503   if (TLI.getInsertFencesForAtomic())
3504     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3505                                     DAG, TLI);
3506 
3507   setValue(&I, L);
3508   DAG.setRoot(OutChain);
3509 }
3510 
3511 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3512   DebugLoc dl = getCurDebugLoc();
3513 
3514   AtomicOrdering Order = I.getOrdering();
3515   SynchronizationScope Scope = I.getSynchScope();
3516 
3517   SDValue InChain = getRoot();
3518 
3519   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3520 
3521   if (I.getAlignment() * 8 < VT.getSizeInBits())
3522     report_fatal_error("Cannot generate unaligned atomic store");
3523 
3524   if (TLI.getInsertFencesForAtomic())
3525     InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3526                                    DAG, TLI);
3527 
3528   SDValue OutChain =
3529     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3530                   InChain,
3531                   getValue(I.getPointerOperand()),
3532                   getValue(I.getValueOperand()),
3533                   I.getPointerOperand(), I.getAlignment(),
3534                   TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3535                   Scope);
3536 
3537   if (TLI.getInsertFencesForAtomic())
3538     OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3539                                     DAG, TLI);
3540 
3541   DAG.setRoot(OutChain);
3542 }
3543 
3544 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3545 /// node.
3546 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3547                                                unsigned Intrinsic) {
3548   bool HasChain = !I.doesNotAccessMemory();
3549   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3550 
3551   // Build the operand list.
3552   SmallVector<SDValue, 8> Ops;
3553   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3554     if (OnlyLoad) {
3555       // We don't need to serialize loads against other loads.
3556       Ops.push_back(DAG.getRoot());
3557     } else {
3558       Ops.push_back(getRoot());
3559     }
3560   }
3561 
3562   // Info is set by getTgtMemInstrinsic
3563   TargetLowering::IntrinsicInfo Info;
3564   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3565 
3566   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3567   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3568       Info.opc == ISD::INTRINSIC_W_CHAIN)
3569     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3570 
3571   // Add all operands of the call to the operand list.
3572   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3573     SDValue Op = getValue(I.getArgOperand(i));
3574     Ops.push_back(Op);
3575   }
3576 
3577   SmallVector<EVT, 4> ValueVTs;
3578   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3579 
3580   if (HasChain)
3581     ValueVTs.push_back(MVT::Other);
3582 
3583   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3584 
3585   // Create the node.
3586   SDValue Result;
3587   if (IsTgtIntrinsic) {
3588     // This is target intrinsic that touches memory
3589     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3590                                      VTs, &Ops[0], Ops.size(),
3591                                      Info.memVT,
3592                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3593                                      Info.align, Info.vol,
3594                                      Info.readMem, Info.writeMem);
3595   } else if (!HasChain) {
3596     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3597                          VTs, &Ops[0], Ops.size());
3598   } else if (!I.getType()->isVoidTy()) {
3599     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3600                          VTs, &Ops[0], Ops.size());
3601   } else {
3602     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3603                          VTs, &Ops[0], Ops.size());
3604   }
3605 
3606   if (HasChain) {
3607     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3608     if (OnlyLoad)
3609       PendingLoads.push_back(Chain);
3610     else
3611       DAG.setRoot(Chain);
3612   }
3613 
3614   if (!I.getType()->isVoidTy()) {
3615     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3616       EVT VT = TLI.getValueType(PTy);
3617       Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3618     }
3619 
3620     setValue(&I, Result);
3621   } else {
3622     // Assign order to result here. If the intrinsic does not produce a result,
3623     // it won't be mapped to a SDNode and visit() will not assign it an order
3624     // number.
3625     ++SDNodeOrder;
3626     AssignOrderingToNode(Result.getNode());
3627   }
3628 }
3629 
3630 /// GetSignificand - Get the significand and build it into a floating-point
3631 /// number with exponent of 1:
3632 ///
3633 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3634 ///
3635 /// where Op is the hexidecimal representation of floating point value.
3636 static SDValue
3637 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3638   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3639                            DAG.getConstant(0x007fffff, MVT::i32));
3640   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3641                            DAG.getConstant(0x3f800000, MVT::i32));
3642   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3643 }
3644 
3645 /// GetExponent - Get the exponent:
3646 ///
3647 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3648 ///
3649 /// where Op is the hexidecimal representation of floating point value.
3650 static SDValue
3651 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3652             DebugLoc dl) {
3653   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3654                            DAG.getConstant(0x7f800000, MVT::i32));
3655   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3656                            DAG.getConstant(23, TLI.getPointerTy()));
3657   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3658                            DAG.getConstant(127, MVT::i32));
3659   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3660 }
3661 
3662 /// getF32Constant - Get 32-bit floating point constant.
3663 static SDValue
3664 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3665   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3666 }
3667 
3668 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3669 /// limited-precision mode.
3670 void
3671 SelectionDAGBuilder::visitExp(const CallInst &I) {
3672   SDValue result;
3673   DebugLoc dl = getCurDebugLoc();
3674 
3675   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3676       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3677     SDValue Op = getValue(I.getArgOperand(0));
3678 
3679     // Put the exponent in the right bit position for later addition to the
3680     // final result:
3681     //
3682     //   #define LOG2OFe 1.4426950f
3683     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3684     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3685                              getF32Constant(DAG, 0x3fb8aa3b));
3686     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3687 
3688     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3689     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3690     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3691 
3692     //   IntegerPartOfX <<= 23;
3693     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3694                                  DAG.getConstant(23, TLI.getPointerTy()));
3695 
3696     if (LimitFloatPrecision <= 6) {
3697       // For floating-point precision of 6:
3698       //
3699       //   TwoToFractionalPartOfX =
3700       //     0.997535578f +
3701       //       (0.735607626f + 0.252464424f * x) * x;
3702       //
3703       // error 0.0144103317, which is 6 bits
3704       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3705                                getF32Constant(DAG, 0x3e814304));
3706       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3707                                getF32Constant(DAG, 0x3f3c50c8));
3708       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3709       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3710                                getF32Constant(DAG, 0x3f7f5e7e));
3711       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3712 
3713       // Add the exponent into the result in integer domain.
3714       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3715                                TwoToFracPartOfX, IntegerPartOfX);
3716 
3717       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3718     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3719       // For floating-point precision of 12:
3720       //
3721       //   TwoToFractionalPartOfX =
3722       //     0.999892986f +
3723       //       (0.696457318f +
3724       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3725       //
3726       // 0.000107046256 error, which is 13 to 14 bits
3727       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3728                                getF32Constant(DAG, 0x3da235e3));
3729       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3730                                getF32Constant(DAG, 0x3e65b8f3));
3731       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3732       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3733                                getF32Constant(DAG, 0x3f324b07));
3734       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3735       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3736                                getF32Constant(DAG, 0x3f7ff8fd));
3737       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3738 
3739       // Add the exponent into the result in integer domain.
3740       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3741                                TwoToFracPartOfX, IntegerPartOfX);
3742 
3743       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3744     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3745       // For floating-point precision of 18:
3746       //
3747       //   TwoToFractionalPartOfX =
3748       //     0.999999982f +
3749       //       (0.693148872f +
3750       //         (0.240227044f +
3751       //           (0.554906021e-1f +
3752       //             (0.961591928e-2f +
3753       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3754       //
3755       // error 2.47208000*10^(-7), which is better than 18 bits
3756       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3757                                getF32Constant(DAG, 0x3924b03e));
3758       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3759                                getF32Constant(DAG, 0x3ab24b87));
3760       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3761       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3762                                getF32Constant(DAG, 0x3c1d8c17));
3763       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3764       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3765                                getF32Constant(DAG, 0x3d634a1d));
3766       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3767       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3768                                getF32Constant(DAG, 0x3e75fe14));
3769       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3770       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3771                                 getF32Constant(DAG, 0x3f317234));
3772       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3773       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3774                                 getF32Constant(DAG, 0x3f800000));
3775       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3776                                              MVT::i32, t13);
3777 
3778       // Add the exponent into the result in integer domain.
3779       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3780                                 TwoToFracPartOfX, IntegerPartOfX);
3781 
3782       result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3783     }
3784   } else {
3785     // No special expansion.
3786     result = DAG.getNode(ISD::FEXP, dl,
3787                          getValue(I.getArgOperand(0)).getValueType(),
3788                          getValue(I.getArgOperand(0)));
3789   }
3790 
3791   setValue(&I, result);
3792 }
3793 
3794 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3795 /// limited-precision mode.
3796 void
3797 SelectionDAGBuilder::visitLog(const CallInst &I) {
3798   SDValue result;
3799   DebugLoc dl = getCurDebugLoc();
3800 
3801   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3802       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3803     SDValue Op = getValue(I.getArgOperand(0));
3804     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3805 
3806     // Scale the exponent by log(2) [0.69314718f].
3807     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3808     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3809                                         getF32Constant(DAG, 0x3f317218));
3810 
3811     // Get the significand and build it into a floating-point number with
3812     // exponent of 1.
3813     SDValue X = GetSignificand(DAG, Op1, dl);
3814 
3815     if (LimitFloatPrecision <= 6) {
3816       // For floating-point precision of 6:
3817       //
3818       //   LogofMantissa =
3819       //     -1.1609546f +
3820       //       (1.4034025f - 0.23903021f * x) * x;
3821       //
3822       // error 0.0034276066, which is better than 8 bits
3823       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3824                                getF32Constant(DAG, 0xbe74c456));
3825       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3826                                getF32Constant(DAG, 0x3fb3a2b1));
3827       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3828       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3829                                           getF32Constant(DAG, 0x3f949a29));
3830 
3831       result = DAG.getNode(ISD::FADD, dl,
3832                            MVT::f32, LogOfExponent, LogOfMantissa);
3833     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3834       // For floating-point precision of 12:
3835       //
3836       //   LogOfMantissa =
3837       //     -1.7417939f +
3838       //       (2.8212026f +
3839       //         (-1.4699568f +
3840       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3841       //
3842       // error 0.000061011436, which is 14 bits
3843       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3844                                getF32Constant(DAG, 0xbd67b6d6));
3845       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3846                                getF32Constant(DAG, 0x3ee4f4b8));
3847       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3848       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3849                                getF32Constant(DAG, 0x3fbc278b));
3850       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3851       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3852                                getF32Constant(DAG, 0x40348e95));
3853       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3854       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3855                                           getF32Constant(DAG, 0x3fdef31a));
3856 
3857       result = DAG.getNode(ISD::FADD, dl,
3858                            MVT::f32, LogOfExponent, LogOfMantissa);
3859     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3860       // For floating-point precision of 18:
3861       //
3862       //   LogOfMantissa =
3863       //     -2.1072184f +
3864       //       (4.2372794f +
3865       //         (-3.7029485f +
3866       //           (2.2781945f +
3867       //             (-0.87823314f +
3868       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3869       //
3870       // error 0.0000023660568, which is better than 18 bits
3871       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3872                                getF32Constant(DAG, 0xbc91e5ac));
3873       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3874                                getF32Constant(DAG, 0x3e4350aa));
3875       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3876       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3877                                getF32Constant(DAG, 0x3f60d3e3));
3878       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3879       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3880                                getF32Constant(DAG, 0x4011cdf0));
3881       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3882       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3883                                getF32Constant(DAG, 0x406cfd1c));
3884       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3885       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3886                                getF32Constant(DAG, 0x408797cb));
3887       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3888       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3889                                           getF32Constant(DAG, 0x4006dcab));
3890 
3891       result = DAG.getNode(ISD::FADD, dl,
3892                            MVT::f32, LogOfExponent, LogOfMantissa);
3893     }
3894   } else {
3895     // No special expansion.
3896     result = DAG.getNode(ISD::FLOG, dl,
3897                          getValue(I.getArgOperand(0)).getValueType(),
3898                          getValue(I.getArgOperand(0)));
3899   }
3900 
3901   setValue(&I, result);
3902 }
3903 
3904 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3905 /// limited-precision mode.
3906 void
3907 SelectionDAGBuilder::visitLog2(const CallInst &I) {
3908   SDValue result;
3909   DebugLoc dl = getCurDebugLoc();
3910 
3911   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3912       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3913     SDValue Op = getValue(I.getArgOperand(0));
3914     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3915 
3916     // Get the exponent.
3917     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3918 
3919     // Get the significand and build it into a floating-point number with
3920     // exponent of 1.
3921     SDValue X = GetSignificand(DAG, Op1, dl);
3922 
3923     // Different possible minimax approximations of significand in
3924     // floating-point for various degrees of accuracy over [1,2].
3925     if (LimitFloatPrecision <= 6) {
3926       // For floating-point precision of 6:
3927       //
3928       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3929       //
3930       // error 0.0049451742, which is more than 7 bits
3931       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3932                                getF32Constant(DAG, 0xbeb08fe0));
3933       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3934                                getF32Constant(DAG, 0x40019463));
3935       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3936       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3937                                            getF32Constant(DAG, 0x3fd6633d));
3938 
3939       result = DAG.getNode(ISD::FADD, dl,
3940                            MVT::f32, LogOfExponent, Log2ofMantissa);
3941     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3942       // For floating-point precision of 12:
3943       //
3944       //   Log2ofMantissa =
3945       //     -2.51285454f +
3946       //       (4.07009056f +
3947       //         (-2.12067489f +
3948       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3949       //
3950       // error 0.0000876136000, which is better than 13 bits
3951       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3952                                getF32Constant(DAG, 0xbda7262e));
3953       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3954                                getF32Constant(DAG, 0x3f25280b));
3955       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3956       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3957                                getF32Constant(DAG, 0x4007b923));
3958       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3959       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3960                                getF32Constant(DAG, 0x40823e2f));
3961       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3962       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3963                                            getF32Constant(DAG, 0x4020d29c));
3964 
3965       result = DAG.getNode(ISD::FADD, dl,
3966                            MVT::f32, LogOfExponent, Log2ofMantissa);
3967     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3968       // For floating-point precision of 18:
3969       //
3970       //   Log2ofMantissa =
3971       //     -3.0400495f +
3972       //       (6.1129976f +
3973       //         (-5.3420409f +
3974       //           (3.2865683f +
3975       //             (-1.2669343f +
3976       //               (0.27515199f -
3977       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3978       //
3979       // error 0.0000018516, which is better than 18 bits
3980       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3981                                getF32Constant(DAG, 0xbcd2769e));
3982       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3983                                getF32Constant(DAG, 0x3e8ce0b9));
3984       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3985       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3986                                getF32Constant(DAG, 0x3fa22ae7));
3987       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3988       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3989                                getF32Constant(DAG, 0x40525723));
3990       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3991       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3992                                getF32Constant(DAG, 0x40aaf200));
3993       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3994       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3995                                getF32Constant(DAG, 0x40c39dad));
3996       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3997       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3998                                            getF32Constant(DAG, 0x4042902c));
3999 
4000       result = DAG.getNode(ISD::FADD, dl,
4001                            MVT::f32, LogOfExponent, Log2ofMantissa);
4002     }
4003   } else {
4004     // No special expansion.
4005     result = DAG.getNode(ISD::FLOG2, dl,
4006                          getValue(I.getArgOperand(0)).getValueType(),
4007                          getValue(I.getArgOperand(0)));
4008   }
4009 
4010   setValue(&I, result);
4011 }
4012 
4013 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
4014 /// limited-precision mode.
4015 void
4016 SelectionDAGBuilder::visitLog10(const CallInst &I) {
4017   SDValue result;
4018   DebugLoc dl = getCurDebugLoc();
4019 
4020   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4021       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4022     SDValue Op = getValue(I.getArgOperand(0));
4023     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4024 
4025     // Scale the exponent by log10(2) [0.30102999f].
4026     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4027     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4028                                         getF32Constant(DAG, 0x3e9a209a));
4029 
4030     // Get the significand and build it into a floating-point number with
4031     // exponent of 1.
4032     SDValue X = GetSignificand(DAG, Op1, dl);
4033 
4034     if (LimitFloatPrecision <= 6) {
4035       // For floating-point precision of 6:
4036       //
4037       //   Log10ofMantissa =
4038       //     -0.50419619f +
4039       //       (0.60948995f - 0.10380950f * x) * x;
4040       //
4041       // error 0.0014886165, which is 6 bits
4042       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4043                                getF32Constant(DAG, 0xbdd49a13));
4044       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4045                                getF32Constant(DAG, 0x3f1c0789));
4046       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4047       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4048                                             getF32Constant(DAG, 0x3f011300));
4049 
4050       result = DAG.getNode(ISD::FADD, dl,
4051                            MVT::f32, LogOfExponent, Log10ofMantissa);
4052     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4053       // For floating-point precision of 12:
4054       //
4055       //   Log10ofMantissa =
4056       //     -0.64831180f +
4057       //       (0.91751397f +
4058       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4059       //
4060       // error 0.00019228036, which is better than 12 bits
4061       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4062                                getF32Constant(DAG, 0x3d431f31));
4063       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4064                                getF32Constant(DAG, 0x3ea21fb2));
4065       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4066       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4067                                getF32Constant(DAG, 0x3f6ae232));
4068       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4069       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4070                                             getF32Constant(DAG, 0x3f25f7c3));
4071 
4072       result = DAG.getNode(ISD::FADD, dl,
4073                            MVT::f32, LogOfExponent, Log10ofMantissa);
4074     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4075       // For floating-point precision of 18:
4076       //
4077       //   Log10ofMantissa =
4078       //     -0.84299375f +
4079       //       (1.5327582f +
4080       //         (-1.0688956f +
4081       //           (0.49102474f +
4082       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4083       //
4084       // error 0.0000037995730, which is better than 18 bits
4085       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4086                                getF32Constant(DAG, 0x3c5d51ce));
4087       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4088                                getF32Constant(DAG, 0x3e00685a));
4089       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4090       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4091                                getF32Constant(DAG, 0x3efb6798));
4092       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4093       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4094                                getF32Constant(DAG, 0x3f88d192));
4095       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4096       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4097                                getF32Constant(DAG, 0x3fc4316c));
4098       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4099       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4100                                             getF32Constant(DAG, 0x3f57ce70));
4101 
4102       result = DAG.getNode(ISD::FADD, dl,
4103                            MVT::f32, LogOfExponent, Log10ofMantissa);
4104     }
4105   } else {
4106     // No special expansion.
4107     result = DAG.getNode(ISD::FLOG10, dl,
4108                          getValue(I.getArgOperand(0)).getValueType(),
4109                          getValue(I.getArgOperand(0)));
4110   }
4111 
4112   setValue(&I, result);
4113 }
4114 
4115 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4116 /// limited-precision mode.
4117 void
4118 SelectionDAGBuilder::visitExp2(const CallInst &I) {
4119   SDValue result;
4120   DebugLoc dl = getCurDebugLoc();
4121 
4122   if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4123       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4124     SDValue Op = getValue(I.getArgOperand(0));
4125 
4126     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4127 
4128     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4129     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4130     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4131 
4132     //   IntegerPartOfX <<= 23;
4133     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4134                                  DAG.getConstant(23, TLI.getPointerTy()));
4135 
4136     if (LimitFloatPrecision <= 6) {
4137       // For floating-point precision of 6:
4138       //
4139       //   TwoToFractionalPartOfX =
4140       //     0.997535578f +
4141       //       (0.735607626f + 0.252464424f * x) * x;
4142       //
4143       // error 0.0144103317, which is 6 bits
4144       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4145                                getF32Constant(DAG, 0x3e814304));
4146       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4147                                getF32Constant(DAG, 0x3f3c50c8));
4148       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4149       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4150                                getF32Constant(DAG, 0x3f7f5e7e));
4151       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4152       SDValue TwoToFractionalPartOfX =
4153         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4154 
4155       result = DAG.getNode(ISD::BITCAST, dl,
4156                            MVT::f32, TwoToFractionalPartOfX);
4157     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4158       // For floating-point precision of 12:
4159       //
4160       //   TwoToFractionalPartOfX =
4161       //     0.999892986f +
4162       //       (0.696457318f +
4163       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4164       //
4165       // error 0.000107046256, which is 13 to 14 bits
4166       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4167                                getF32Constant(DAG, 0x3da235e3));
4168       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4169                                getF32Constant(DAG, 0x3e65b8f3));
4170       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4171       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4172                                getF32Constant(DAG, 0x3f324b07));
4173       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4174       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4175                                getF32Constant(DAG, 0x3f7ff8fd));
4176       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4177       SDValue TwoToFractionalPartOfX =
4178         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4179 
4180       result = DAG.getNode(ISD::BITCAST, dl,
4181                            MVT::f32, TwoToFractionalPartOfX);
4182     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4183       // For floating-point precision of 18:
4184       //
4185       //   TwoToFractionalPartOfX =
4186       //     0.999999982f +
4187       //       (0.693148872f +
4188       //         (0.240227044f +
4189       //           (0.554906021e-1f +
4190       //             (0.961591928e-2f +
4191       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4192       // error 2.47208000*10^(-7), which is better than 18 bits
4193       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4194                                getF32Constant(DAG, 0x3924b03e));
4195       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4196                                getF32Constant(DAG, 0x3ab24b87));
4197       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4198       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4199                                getF32Constant(DAG, 0x3c1d8c17));
4200       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4201       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4202                                getF32Constant(DAG, 0x3d634a1d));
4203       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4204       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4205                                getF32Constant(DAG, 0x3e75fe14));
4206       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4207       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4208                                 getF32Constant(DAG, 0x3f317234));
4209       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4210       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4211                                 getF32Constant(DAG, 0x3f800000));
4212       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4213       SDValue TwoToFractionalPartOfX =
4214         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4215 
4216       result = DAG.getNode(ISD::BITCAST, dl,
4217                            MVT::f32, TwoToFractionalPartOfX);
4218     }
4219   } else {
4220     // No special expansion.
4221     result = DAG.getNode(ISD::FEXP2, dl,
4222                          getValue(I.getArgOperand(0)).getValueType(),
4223                          getValue(I.getArgOperand(0)));
4224   }
4225 
4226   setValue(&I, result);
4227 }
4228 
4229 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4230 /// limited-precision mode with x == 10.0f.
4231 void
4232 SelectionDAGBuilder::visitPow(const CallInst &I) {
4233   SDValue result;
4234   const Value *Val = I.getArgOperand(0);
4235   DebugLoc dl = getCurDebugLoc();
4236   bool IsExp10 = false;
4237 
4238   if (getValue(Val).getValueType() == MVT::f32 &&
4239       getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4240       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4241     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4242       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4243         APFloat Ten(10.0f);
4244         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4245       }
4246     }
4247   }
4248 
4249   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4250     SDValue Op = getValue(I.getArgOperand(1));
4251 
4252     // Put the exponent in the right bit position for later addition to the
4253     // final result:
4254     //
4255     //   #define LOG2OF10 3.3219281f
4256     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4257     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4258                              getF32Constant(DAG, 0x40549a78));
4259     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4260 
4261     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4262     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4263     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4264 
4265     //   IntegerPartOfX <<= 23;
4266     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4267                                  DAG.getConstant(23, TLI.getPointerTy()));
4268 
4269     if (LimitFloatPrecision <= 6) {
4270       // For floating-point precision of 6:
4271       //
4272       //   twoToFractionalPartOfX =
4273       //     0.997535578f +
4274       //       (0.735607626f + 0.252464424f * x) * x;
4275       //
4276       // error 0.0144103317, which is 6 bits
4277       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4278                                getF32Constant(DAG, 0x3e814304));
4279       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4280                                getF32Constant(DAG, 0x3f3c50c8));
4281       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4282       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4283                                getF32Constant(DAG, 0x3f7f5e7e));
4284       SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4285       SDValue TwoToFractionalPartOfX =
4286         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4287 
4288       result = DAG.getNode(ISD::BITCAST, dl,
4289                            MVT::f32, TwoToFractionalPartOfX);
4290     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4291       // For floating-point precision of 12:
4292       //
4293       //   TwoToFractionalPartOfX =
4294       //     0.999892986f +
4295       //       (0.696457318f +
4296       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4297       //
4298       // error 0.000107046256, which is 13 to 14 bits
4299       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4300                                getF32Constant(DAG, 0x3da235e3));
4301       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4302                                getF32Constant(DAG, 0x3e65b8f3));
4303       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4304       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4305                                getF32Constant(DAG, 0x3f324b07));
4306       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4307       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4308                                getF32Constant(DAG, 0x3f7ff8fd));
4309       SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4310       SDValue TwoToFractionalPartOfX =
4311         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4312 
4313       result = DAG.getNode(ISD::BITCAST, dl,
4314                            MVT::f32, TwoToFractionalPartOfX);
4315     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4316       // For floating-point precision of 18:
4317       //
4318       //   TwoToFractionalPartOfX =
4319       //     0.999999982f +
4320       //       (0.693148872f +
4321       //         (0.240227044f +
4322       //           (0.554906021e-1f +
4323       //             (0.961591928e-2f +
4324       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4325       // error 2.47208000*10^(-7), which is better than 18 bits
4326       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4327                                getF32Constant(DAG, 0x3924b03e));
4328       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4329                                getF32Constant(DAG, 0x3ab24b87));
4330       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4331       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4332                                getF32Constant(DAG, 0x3c1d8c17));
4333       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4334       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4335                                getF32Constant(DAG, 0x3d634a1d));
4336       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4337       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4338                                getF32Constant(DAG, 0x3e75fe14));
4339       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4340       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4341                                 getF32Constant(DAG, 0x3f317234));
4342       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4343       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4344                                 getF32Constant(DAG, 0x3f800000));
4345       SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4346       SDValue TwoToFractionalPartOfX =
4347         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4348 
4349       result = DAG.getNode(ISD::BITCAST, dl,
4350                            MVT::f32, TwoToFractionalPartOfX);
4351     }
4352   } else {
4353     // No special expansion.
4354     result = DAG.getNode(ISD::FPOW, dl,
4355                          getValue(I.getArgOperand(0)).getValueType(),
4356                          getValue(I.getArgOperand(0)),
4357                          getValue(I.getArgOperand(1)));
4358   }
4359 
4360   setValue(&I, result);
4361 }
4362 
4363 
4364 /// ExpandPowI - Expand a llvm.powi intrinsic.
4365 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4366                           SelectionDAG &DAG) {
4367   // If RHS is a constant, we can expand this out to a multiplication tree,
4368   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4369   // optimizing for size, we only want to do this if the expansion would produce
4370   // a small number of multiplies, otherwise we do the full expansion.
4371   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4372     // Get the exponent as a positive value.
4373     unsigned Val = RHSC->getSExtValue();
4374     if ((int)Val < 0) Val = -Val;
4375 
4376     // powi(x, 0) -> 1.0
4377     if (Val == 0)
4378       return DAG.getConstantFP(1.0, LHS.getValueType());
4379 
4380     const Function *F = DAG.getMachineFunction().getFunction();
4381     if (!F->hasFnAttr(Attribute::OptimizeForSize) ||
4382         // If optimizing for size, don't insert too many multiplies.  This
4383         // inserts up to 5 multiplies.
4384         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4385       // We use the simple binary decomposition method to generate the multiply
4386       // sequence.  There are more optimal ways to do this (for example,
4387       // powi(x,15) generates one more multiply than it should), but this has
4388       // the benefit of being both really simple and much better than a libcall.
4389       SDValue Res;  // Logically starts equal to 1.0
4390       SDValue CurSquare = LHS;
4391       while (Val) {
4392         if (Val & 1) {
4393           if (Res.getNode())
4394             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4395           else
4396             Res = CurSquare;  // 1.0*CurSquare.
4397         }
4398 
4399         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4400                                 CurSquare, CurSquare);
4401         Val >>= 1;
4402       }
4403 
4404       // If the original was negative, invert the result, producing 1/(x*x*x).
4405       if (RHSC->getSExtValue() < 0)
4406         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4407                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4408       return Res;
4409     }
4410   }
4411 
4412   // Otherwise, expand to a libcall.
4413   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4414 }
4415 
4416 // getTruncatedArgReg - Find underlying register used for an truncated
4417 // argument.
4418 static unsigned getTruncatedArgReg(const SDValue &N) {
4419   if (N.getOpcode() != ISD::TRUNCATE)
4420     return 0;
4421 
4422   const SDValue &Ext = N.getOperand(0);
4423   if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4424     const SDValue &CFR = Ext.getOperand(0);
4425     if (CFR.getOpcode() == ISD::CopyFromReg)
4426       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4427     if (CFR.getOpcode() == ISD::TRUNCATE)
4428       return getTruncatedArgReg(CFR);
4429   }
4430   return 0;
4431 }
4432 
4433 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4434 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4435 /// At the end of instruction selection, they will be inserted to the entry BB.
4436 bool
4437 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4438                                               int64_t Offset,
4439                                               const SDValue &N) {
4440   const Argument *Arg = dyn_cast<Argument>(V);
4441   if (!Arg)
4442     return false;
4443 
4444   MachineFunction &MF = DAG.getMachineFunction();
4445   const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4446   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4447 
4448   // Ignore inlined function arguments here.
4449   DIVariable DV(Variable);
4450   if (DV.isInlinedFnArgument(MF.getFunction()))
4451     return false;
4452 
4453   unsigned Reg = 0;
4454   // Some arguments' frame index is recorded during argument lowering.
4455   Offset = FuncInfo.getArgumentFrameIndex(Arg);
4456   if (Offset)
4457     Reg = TRI->getFrameRegister(MF);
4458 
4459   if (!Reg && N.getNode()) {
4460     if (N.getOpcode() == ISD::CopyFromReg)
4461       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4462     else
4463       Reg = getTruncatedArgReg(N);
4464     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4465       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4466       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4467       if (PR)
4468         Reg = PR;
4469     }
4470   }
4471 
4472   if (!Reg) {
4473     // Check if ValueMap has reg number.
4474     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4475     if (VMI != FuncInfo.ValueMap.end())
4476       Reg = VMI->second;
4477   }
4478 
4479   if (!Reg && N.getNode()) {
4480     // Check if frame index is available.
4481     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4482       if (FrameIndexSDNode *FINode =
4483           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4484         Reg = TRI->getFrameRegister(MF);
4485         Offset = FINode->getIndex();
4486       }
4487   }
4488 
4489   if (!Reg)
4490     return false;
4491 
4492   MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4493                                     TII->get(TargetOpcode::DBG_VALUE))
4494     .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4495   FuncInfo.ArgDbgValues.push_back(&*MIB);
4496   return true;
4497 }
4498 
4499 // VisualStudio defines setjmp as _setjmp
4500 #if defined(_MSC_VER) && defined(setjmp) && \
4501                          !defined(setjmp_undefined_for_msvc)
4502 #  pragma push_macro("setjmp")
4503 #  undef setjmp
4504 #  define setjmp_undefined_for_msvc
4505 #endif
4506 
4507 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4508 /// we want to emit this as a call to a named external function, return the name
4509 /// otherwise lower it and return null.
4510 const char *
4511 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4512   DebugLoc dl = getCurDebugLoc();
4513   SDValue Res;
4514 
4515   switch (Intrinsic) {
4516   default:
4517     // By default, turn this into a target intrinsic node.
4518     visitTargetIntrinsic(I, Intrinsic);
4519     return 0;
4520   case Intrinsic::vastart:  visitVAStart(I); return 0;
4521   case Intrinsic::vaend:    visitVAEnd(I); return 0;
4522   case Intrinsic::vacopy:   visitVACopy(I); return 0;
4523   case Intrinsic::returnaddress:
4524     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4525                              getValue(I.getArgOperand(0))));
4526     return 0;
4527   case Intrinsic::frameaddress:
4528     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4529                              getValue(I.getArgOperand(0))));
4530     return 0;
4531   case Intrinsic::setjmp:
4532     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4533   case Intrinsic::longjmp:
4534     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4535   case Intrinsic::memcpy: {
4536     // Assert for address < 256 since we support only user defined address
4537     // spaces.
4538     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4539            < 256 &&
4540            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4541            < 256 &&
4542            "Unknown address space");
4543     SDValue Op1 = getValue(I.getArgOperand(0));
4544     SDValue Op2 = getValue(I.getArgOperand(1));
4545     SDValue Op3 = getValue(I.getArgOperand(2));
4546     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4547     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4548     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4549                               MachinePointerInfo(I.getArgOperand(0)),
4550                               MachinePointerInfo(I.getArgOperand(1))));
4551     return 0;
4552   }
4553   case Intrinsic::memset: {
4554     // Assert for address < 256 since we support only user defined address
4555     // spaces.
4556     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4557            < 256 &&
4558            "Unknown address space");
4559     SDValue Op1 = getValue(I.getArgOperand(0));
4560     SDValue Op2 = getValue(I.getArgOperand(1));
4561     SDValue Op3 = getValue(I.getArgOperand(2));
4562     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4563     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4564     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4565                               MachinePointerInfo(I.getArgOperand(0))));
4566     return 0;
4567   }
4568   case Intrinsic::memmove: {
4569     // Assert for address < 256 since we support only user defined address
4570     // spaces.
4571     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4572            < 256 &&
4573            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4574            < 256 &&
4575            "Unknown address space");
4576     SDValue Op1 = getValue(I.getArgOperand(0));
4577     SDValue Op2 = getValue(I.getArgOperand(1));
4578     SDValue Op3 = getValue(I.getArgOperand(2));
4579     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4580     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4581     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4582                                MachinePointerInfo(I.getArgOperand(0)),
4583                                MachinePointerInfo(I.getArgOperand(1))));
4584     return 0;
4585   }
4586   case Intrinsic::dbg_declare: {
4587     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4588     MDNode *Variable = DI.getVariable();
4589     const Value *Address = DI.getAddress();
4590     if (!Address || !DIVariable(Variable).Verify()) {
4591       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4592       return 0;
4593     }
4594 
4595     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4596     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4597     // absolute, but not relative, values are different depending on whether
4598     // debug info exists.
4599     ++SDNodeOrder;
4600 
4601     // Check if address has undef value.
4602     if (isa<UndefValue>(Address) ||
4603         (Address->use_empty() && !isa<Argument>(Address))) {
4604       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4605       return 0;
4606     }
4607 
4608     SDValue &N = NodeMap[Address];
4609     if (!N.getNode() && isa<Argument>(Address))
4610       // Check unused arguments map.
4611       N = UnusedArgNodeMap[Address];
4612     SDDbgValue *SDV;
4613     if (N.getNode()) {
4614       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4615         Address = BCI->getOperand(0);
4616       // Parameters are handled specially.
4617       bool isParameter =
4618         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4619          isa<Argument>(Address));
4620 
4621       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4622 
4623       if (isParameter && !AI) {
4624         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4625         if (FINode)
4626           // Byval parameter.  We have a frame index at this point.
4627           SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4628                                 0, dl, SDNodeOrder);
4629         else {
4630           // Address is an argument, so try to emit its dbg value using
4631           // virtual register info from the FuncInfo.ValueMap.
4632           EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4633           return 0;
4634         }
4635       } else if (AI)
4636         SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4637                               0, dl, SDNodeOrder);
4638       else {
4639         // Can't do anything with other non-AI cases yet.
4640         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4641         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4642         DEBUG(Address->dump());
4643         return 0;
4644       }
4645       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4646     } else {
4647       // If Address is an argument then try to emit its dbg value using
4648       // virtual register info from the FuncInfo.ValueMap.
4649       if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4650         // If variable is pinned by a alloca in dominating bb then
4651         // use StaticAllocaMap.
4652         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4653           if (AI->getParent() != DI.getParent()) {
4654             DenseMap<const AllocaInst*, int>::iterator SI =
4655               FuncInfo.StaticAllocaMap.find(AI);
4656             if (SI != FuncInfo.StaticAllocaMap.end()) {
4657               SDV = DAG.getDbgValue(Variable, SI->second,
4658                                     0, dl, SDNodeOrder);
4659               DAG.AddDbgValue(SDV, 0, false);
4660               return 0;
4661             }
4662           }
4663         }
4664         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4665       }
4666     }
4667     return 0;
4668   }
4669   case Intrinsic::dbg_value: {
4670     const DbgValueInst &DI = cast<DbgValueInst>(I);
4671     if (!DIVariable(DI.getVariable()).Verify())
4672       return 0;
4673 
4674     MDNode *Variable = DI.getVariable();
4675     uint64_t Offset = DI.getOffset();
4676     const Value *V = DI.getValue();
4677     if (!V)
4678       return 0;
4679 
4680     // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4681     // but do not always have a corresponding SDNode built.  The SDNodeOrder
4682     // absolute, but not relative, values are different depending on whether
4683     // debug info exists.
4684     ++SDNodeOrder;
4685     SDDbgValue *SDV;
4686     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4687       SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4688       DAG.AddDbgValue(SDV, 0, false);
4689     } else {
4690       // Do not use getValue() in here; we don't want to generate code at
4691       // this point if it hasn't been done yet.
4692       SDValue N = NodeMap[V];
4693       if (!N.getNode() && isa<Argument>(V))
4694         // Check unused arguments map.
4695         N = UnusedArgNodeMap[V];
4696       if (N.getNode()) {
4697         if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4698           SDV = DAG.getDbgValue(Variable, N.getNode(),
4699                                 N.getResNo(), Offset, dl, SDNodeOrder);
4700           DAG.AddDbgValue(SDV, N.getNode(), false);
4701         }
4702       } else if (!V->use_empty() ) {
4703         // Do not call getValue(V) yet, as we don't want to generate code.
4704         // Remember it for later.
4705         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4706         DanglingDebugInfoMap[V] = DDI;
4707       } else {
4708         // We may expand this to cover more cases.  One case where we have no
4709         // data available is an unreferenced parameter.
4710         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4711       }
4712     }
4713 
4714     // Build a debug info table entry.
4715     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4716       V = BCI->getOperand(0);
4717     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4718     // Don't handle byval struct arguments or VLAs, for example.
4719     if (!AI) {
4720       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4721       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4722       return 0;
4723     }
4724     DenseMap<const AllocaInst*, int>::iterator SI =
4725       FuncInfo.StaticAllocaMap.find(AI);
4726     if (SI == FuncInfo.StaticAllocaMap.end())
4727       return 0; // VLAs.
4728     int FI = SI->second;
4729 
4730     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4731     if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4732       MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4733     return 0;
4734   }
4735 
4736   case Intrinsic::eh_typeid_for: {
4737     // Find the type id for the given typeinfo.
4738     GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4739     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4740     Res = DAG.getConstant(TypeID, MVT::i32);
4741     setValue(&I, Res);
4742     return 0;
4743   }
4744 
4745   case Intrinsic::eh_return_i32:
4746   case Intrinsic::eh_return_i64:
4747     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4748     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4749                             MVT::Other,
4750                             getControlRoot(),
4751                             getValue(I.getArgOperand(0)),
4752                             getValue(I.getArgOperand(1))));
4753     return 0;
4754   case Intrinsic::eh_unwind_init:
4755     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4756     return 0;
4757   case Intrinsic::eh_dwarf_cfa: {
4758     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4759                                         TLI.getPointerTy());
4760     SDValue Offset = DAG.getNode(ISD::ADD, dl,
4761                                  TLI.getPointerTy(),
4762                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4763                                              TLI.getPointerTy()),
4764                                  CfaArg);
4765     SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4766                              TLI.getPointerTy(),
4767                              DAG.getConstant(0, TLI.getPointerTy()));
4768     setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4769                              FA, Offset));
4770     return 0;
4771   }
4772   case Intrinsic::eh_sjlj_callsite: {
4773     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4774     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4775     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4776     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4777 
4778     MMI.setCurrentCallSite(CI->getZExtValue());
4779     return 0;
4780   }
4781   case Intrinsic::eh_sjlj_functioncontext: {
4782     // Get and store the index of the function context.
4783     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4784     AllocaInst *FnCtx =
4785       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4786     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4787     MFI->setFunctionContextIndex(FI);
4788     return 0;
4789   }
4790   case Intrinsic::eh_sjlj_setjmp: {
4791     SDValue Ops[2];
4792     Ops[0] = getRoot();
4793     Ops[1] = getValue(I.getArgOperand(0));
4794     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4795                              DAG.getVTList(MVT::i32, MVT::Other),
4796                              Ops, 2);
4797     setValue(&I, Op.getValue(0));
4798     DAG.setRoot(Op.getValue(1));
4799     return 0;
4800   }
4801   case Intrinsic::eh_sjlj_longjmp: {
4802     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4803                             getRoot(), getValue(I.getArgOperand(0))));
4804     return 0;
4805   }
4806 
4807   case Intrinsic::x86_mmx_pslli_w:
4808   case Intrinsic::x86_mmx_pslli_d:
4809   case Intrinsic::x86_mmx_pslli_q:
4810   case Intrinsic::x86_mmx_psrli_w:
4811   case Intrinsic::x86_mmx_psrli_d:
4812   case Intrinsic::x86_mmx_psrli_q:
4813   case Intrinsic::x86_mmx_psrai_w:
4814   case Intrinsic::x86_mmx_psrai_d: {
4815     SDValue ShAmt = getValue(I.getArgOperand(1));
4816     if (isa<ConstantSDNode>(ShAmt)) {
4817       visitTargetIntrinsic(I, Intrinsic);
4818       return 0;
4819     }
4820     unsigned NewIntrinsic = 0;
4821     EVT ShAmtVT = MVT::v2i32;
4822     switch (Intrinsic) {
4823     case Intrinsic::x86_mmx_pslli_w:
4824       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4825       break;
4826     case Intrinsic::x86_mmx_pslli_d:
4827       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4828       break;
4829     case Intrinsic::x86_mmx_pslli_q:
4830       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4831       break;
4832     case Intrinsic::x86_mmx_psrli_w:
4833       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4834       break;
4835     case Intrinsic::x86_mmx_psrli_d:
4836       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4837       break;
4838     case Intrinsic::x86_mmx_psrli_q:
4839       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4840       break;
4841     case Intrinsic::x86_mmx_psrai_w:
4842       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4843       break;
4844     case Intrinsic::x86_mmx_psrai_d:
4845       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4846       break;
4847     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4848     }
4849 
4850     // The vector shift intrinsics with scalars uses 32b shift amounts but
4851     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4852     // to be zero.
4853     // We must do this early because v2i32 is not a legal type.
4854     DebugLoc dl = getCurDebugLoc();
4855     SDValue ShOps[2];
4856     ShOps[0] = ShAmt;
4857     ShOps[1] = DAG.getConstant(0, MVT::i32);
4858     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4859     EVT DestVT = TLI.getValueType(I.getType());
4860     ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4861     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4862                        DAG.getConstant(NewIntrinsic, MVT::i32),
4863                        getValue(I.getArgOperand(0)), ShAmt);
4864     setValue(&I, Res);
4865     return 0;
4866   }
4867   case Intrinsic::x86_avx_vinsertf128_pd_256:
4868   case Intrinsic::x86_avx_vinsertf128_ps_256:
4869   case Intrinsic::x86_avx_vinsertf128_si_256:
4870   case Intrinsic::x86_avx2_vinserti128: {
4871     DebugLoc dl = getCurDebugLoc();
4872     EVT DestVT = TLI.getValueType(I.getType());
4873     EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4874     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4875                    ElVT.getVectorNumElements();
4876     Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4877                       getValue(I.getArgOperand(0)),
4878                       getValue(I.getArgOperand(1)),
4879                       DAG.getIntPtrConstant(Idx));
4880     setValue(&I, Res);
4881     return 0;
4882   }
4883   case Intrinsic::x86_avx_vextractf128_pd_256:
4884   case Intrinsic::x86_avx_vextractf128_ps_256:
4885   case Intrinsic::x86_avx_vextractf128_si_256:
4886   case Intrinsic::x86_avx2_vextracti128: {
4887     DebugLoc dl = getCurDebugLoc();
4888     EVT DestVT = TLI.getValueType(I.getType());
4889     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4890                    DestVT.getVectorNumElements();
4891     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4892                       getValue(I.getArgOperand(0)),
4893                       DAG.getIntPtrConstant(Idx));
4894     setValue(&I, Res);
4895     return 0;
4896   }
4897   case Intrinsic::convertff:
4898   case Intrinsic::convertfsi:
4899   case Intrinsic::convertfui:
4900   case Intrinsic::convertsif:
4901   case Intrinsic::convertuif:
4902   case Intrinsic::convertss:
4903   case Intrinsic::convertsu:
4904   case Intrinsic::convertus:
4905   case Intrinsic::convertuu: {
4906     ISD::CvtCode Code = ISD::CVT_INVALID;
4907     switch (Intrinsic) {
4908     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4909     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4910     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4911     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4912     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4913     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4914     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4915     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4916     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4917     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4918     }
4919     EVT DestVT = TLI.getValueType(I.getType());
4920     const Value *Op1 = I.getArgOperand(0);
4921     Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4922                                DAG.getValueType(DestVT),
4923                                DAG.getValueType(getValue(Op1).getValueType()),
4924                                getValue(I.getArgOperand(1)),
4925                                getValue(I.getArgOperand(2)),
4926                                Code);
4927     setValue(&I, Res);
4928     return 0;
4929   }
4930   case Intrinsic::sqrt:
4931     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4932                              getValue(I.getArgOperand(0)).getValueType(),
4933                              getValue(I.getArgOperand(0))));
4934     return 0;
4935   case Intrinsic::powi:
4936     setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4937                             getValue(I.getArgOperand(1)), DAG));
4938     return 0;
4939   case Intrinsic::sin:
4940     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4941                              getValue(I.getArgOperand(0)).getValueType(),
4942                              getValue(I.getArgOperand(0))));
4943     return 0;
4944   case Intrinsic::cos:
4945     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4946                              getValue(I.getArgOperand(0)).getValueType(),
4947                              getValue(I.getArgOperand(0))));
4948     return 0;
4949   case Intrinsic::log:
4950     visitLog(I);
4951     return 0;
4952   case Intrinsic::log2:
4953     visitLog2(I);
4954     return 0;
4955   case Intrinsic::log10:
4956     visitLog10(I);
4957     return 0;
4958   case Intrinsic::exp:
4959     visitExp(I);
4960     return 0;
4961   case Intrinsic::exp2:
4962     visitExp2(I);
4963     return 0;
4964   case Intrinsic::pow:
4965     visitPow(I);
4966     return 0;
4967   case Intrinsic::fabs:
4968     setValue(&I, DAG.getNode(ISD::FABS, dl,
4969                              getValue(I.getArgOperand(0)).getValueType(),
4970                              getValue(I.getArgOperand(0))));
4971     return 0;
4972   case Intrinsic::floor:
4973     setValue(&I, DAG.getNode(ISD::FFLOOR, dl,
4974                              getValue(I.getArgOperand(0)).getValueType(),
4975                              getValue(I.getArgOperand(0))));
4976     return 0;
4977   case Intrinsic::fma:
4978     setValue(&I, DAG.getNode(ISD::FMA, dl,
4979                              getValue(I.getArgOperand(0)).getValueType(),
4980                              getValue(I.getArgOperand(0)),
4981                              getValue(I.getArgOperand(1)),
4982                              getValue(I.getArgOperand(2))));
4983     return 0;
4984   case Intrinsic::fmuladd: {
4985     EVT VT = TLI.getValueType(I.getType());
4986     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4987         TLI.isOperationLegal(ISD::FMA, VT) &&
4988         TLI.isFMAFasterThanMulAndAdd(VT)){
4989       setValue(&I, DAG.getNode(ISD::FMA, dl,
4990                                getValue(I.getArgOperand(0)).getValueType(),
4991                                getValue(I.getArgOperand(0)),
4992                                getValue(I.getArgOperand(1)),
4993                                getValue(I.getArgOperand(2))));
4994     } else {
4995       SDValue Mul = DAG.getNode(ISD::FMUL, dl,
4996                                 getValue(I.getArgOperand(0)).getValueType(),
4997                                 getValue(I.getArgOperand(0)),
4998                                 getValue(I.getArgOperand(1)));
4999       SDValue Add = DAG.getNode(ISD::FADD, dl,
5000                                 getValue(I.getArgOperand(0)).getValueType(),
5001                                 Mul,
5002                                 getValue(I.getArgOperand(2)));
5003       setValue(&I, Add);
5004     }
5005     return 0;
5006   }
5007   case Intrinsic::convert_to_fp16:
5008     setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
5009                              MVT::i16, getValue(I.getArgOperand(0))));
5010     return 0;
5011   case Intrinsic::convert_from_fp16:
5012     setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
5013                              MVT::f32, getValue(I.getArgOperand(0))));
5014     return 0;
5015   case Intrinsic::pcmarker: {
5016     SDValue Tmp = getValue(I.getArgOperand(0));
5017     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
5018     return 0;
5019   }
5020   case Intrinsic::readcyclecounter: {
5021     SDValue Op = getRoot();
5022     Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
5023                       DAG.getVTList(MVT::i64, MVT::Other),
5024                       &Op, 1);
5025     setValue(&I, Res);
5026     DAG.setRoot(Res.getValue(1));
5027     return 0;
5028   }
5029   case Intrinsic::bswap:
5030     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
5031                              getValue(I.getArgOperand(0)).getValueType(),
5032                              getValue(I.getArgOperand(0))));
5033     return 0;
5034   case Intrinsic::cttz: {
5035     SDValue Arg = getValue(I.getArgOperand(0));
5036     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5037     EVT Ty = Arg.getValueType();
5038     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5039                              dl, Ty, Arg));
5040     return 0;
5041   }
5042   case Intrinsic::ctlz: {
5043     SDValue Arg = getValue(I.getArgOperand(0));
5044     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5045     EVT Ty = Arg.getValueType();
5046     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5047                              dl, Ty, Arg));
5048     return 0;
5049   }
5050   case Intrinsic::ctpop: {
5051     SDValue Arg = getValue(I.getArgOperand(0));
5052     EVT Ty = Arg.getValueType();
5053     setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
5054     return 0;
5055   }
5056   case Intrinsic::stacksave: {
5057     SDValue Op = getRoot();
5058     Res = DAG.getNode(ISD::STACKSAVE, dl,
5059                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
5060     setValue(&I, Res);
5061     DAG.setRoot(Res.getValue(1));
5062     return 0;
5063   }
5064   case Intrinsic::stackrestore: {
5065     Res = getValue(I.getArgOperand(0));
5066     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
5067     return 0;
5068   }
5069   case Intrinsic::stackprotector: {
5070     // Emit code into the DAG to store the stack guard onto the stack.
5071     MachineFunction &MF = DAG.getMachineFunction();
5072     MachineFrameInfo *MFI = MF.getFrameInfo();
5073     EVT PtrTy = TLI.getPointerTy();
5074 
5075     SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5076     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5077 
5078     int FI = FuncInfo.StaticAllocaMap[Slot];
5079     MFI->setStackProtectorIndex(FI);
5080 
5081     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5082 
5083     // Store the stack protector onto the stack.
5084     Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5085                        MachinePointerInfo::getFixedStack(FI),
5086                        true, false, 0);
5087     setValue(&I, Res);
5088     DAG.setRoot(Res);
5089     return 0;
5090   }
5091   case Intrinsic::objectsize: {
5092     // If we don't know by now, we're never going to know.
5093     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5094 
5095     assert(CI && "Non-constant type in __builtin_object_size?");
5096 
5097     SDValue Arg = getValue(I.getCalledValue());
5098     EVT Ty = Arg.getValueType();
5099 
5100     if (CI->isZero())
5101       Res = DAG.getConstant(-1ULL, Ty);
5102     else
5103       Res = DAG.getConstant(0, Ty);
5104 
5105     setValue(&I, Res);
5106     return 0;
5107   }
5108   case Intrinsic::var_annotation:
5109     // Discard annotate attributes
5110     return 0;
5111 
5112   case Intrinsic::init_trampoline: {
5113     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5114 
5115     SDValue Ops[6];
5116     Ops[0] = getRoot();
5117     Ops[1] = getValue(I.getArgOperand(0));
5118     Ops[2] = getValue(I.getArgOperand(1));
5119     Ops[3] = getValue(I.getArgOperand(2));
5120     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5121     Ops[5] = DAG.getSrcValue(F);
5122 
5123     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5124 
5125     DAG.setRoot(Res);
5126     return 0;
5127   }
5128   case Intrinsic::adjust_trampoline: {
5129     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5130                              TLI.getPointerTy(),
5131                              getValue(I.getArgOperand(0))));
5132     return 0;
5133   }
5134   case Intrinsic::gcroot:
5135     if (GFI) {
5136       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5137       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5138 
5139       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5140       GFI->addStackRoot(FI->getIndex(), TypeMap);
5141     }
5142     return 0;
5143   case Intrinsic::gcread:
5144   case Intrinsic::gcwrite:
5145     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5146   case Intrinsic::flt_rounds:
5147     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5148     return 0;
5149 
5150   case Intrinsic::expect: {
5151     // Just replace __builtin_expect(exp, c) with EXP.
5152     setValue(&I, getValue(I.getArgOperand(0)));
5153     return 0;
5154   }
5155 
5156   case Intrinsic::trap: {
5157     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5158     if (TrapFuncName.empty()) {
5159       DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
5160       return 0;
5161     }
5162     TargetLowering::ArgListTy Args;
5163     TargetLowering::
5164     CallLoweringInfo CLI(getRoot(), I.getType(),
5165                  false, false, false, false, 0, CallingConv::C,
5166                  /*isTailCall=*/false,
5167                  /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5168                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5169                  Args, DAG, getCurDebugLoc());
5170     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5171     DAG.setRoot(Result.second);
5172     return 0;
5173   }
5174   case Intrinsic::debugtrap: {
5175     DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot()));
5176     return 0;
5177   }
5178   case Intrinsic::uadd_with_overflow:
5179   case Intrinsic::sadd_with_overflow:
5180   case Intrinsic::usub_with_overflow:
5181   case Intrinsic::ssub_with_overflow:
5182   case Intrinsic::umul_with_overflow:
5183   case Intrinsic::smul_with_overflow: {
5184     ISD::NodeType Op;
5185     switch (Intrinsic) {
5186     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5187     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5188     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5189     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5190     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5191     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5192     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5193     }
5194     SDValue Op1 = getValue(I.getArgOperand(0));
5195     SDValue Op2 = getValue(I.getArgOperand(1));
5196 
5197     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5198     setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5199     return 0;
5200   }
5201   case Intrinsic::prefetch: {
5202     SDValue Ops[5];
5203     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5204     Ops[0] = getRoot();
5205     Ops[1] = getValue(I.getArgOperand(0));
5206     Ops[2] = getValue(I.getArgOperand(1));
5207     Ops[3] = getValue(I.getArgOperand(2));
5208     Ops[4] = getValue(I.getArgOperand(3));
5209     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5210                                         DAG.getVTList(MVT::Other),
5211                                         &Ops[0], 5,
5212                                         EVT::getIntegerVT(*Context, 8),
5213                                         MachinePointerInfo(I.getArgOperand(0)),
5214                                         0, /* align */
5215                                         false, /* volatile */
5216                                         rw==0, /* read */
5217                                         rw==1)); /* write */
5218     return 0;
5219   }
5220   case Intrinsic::lifetime_start:
5221   case Intrinsic::lifetime_end: {
5222     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5223     // Stack coloring is not enabled in O0, discard region information.
5224     if (TM.getOptLevel() == CodeGenOpt::None)
5225       return 0;
5226 
5227     SmallVector<Value *, 4> Allocas;
5228     GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5229 
5230     for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5231          E = Allocas.end(); Object != E; ++Object) {
5232       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5233 
5234       // Could not find an Alloca.
5235       if (!LifetimeObject)
5236         continue;
5237 
5238       int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5239 
5240       SDValue Ops[2];
5241       Ops[0] = getRoot();
5242       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5243       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5244 
5245       Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5246       DAG.setRoot(Res);
5247     }
5248   }
5249   case Intrinsic::invariant_start:
5250     // Discard region information.
5251     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5252     return 0;
5253   case Intrinsic::invariant_end:
5254     // Discard region information.
5255     return 0;
5256   case Intrinsic::donothing:
5257     // ignore
5258     return 0;
5259   }
5260 }
5261 
5262 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5263                                       bool isTailCall,
5264                                       MachineBasicBlock *LandingPad) {
5265   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5266   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5267   Type *RetTy = FTy->getReturnType();
5268   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5269   MCSymbol *BeginLabel = 0;
5270 
5271   TargetLowering::ArgListTy Args;
5272   TargetLowering::ArgListEntry Entry;
5273   Args.reserve(CS.arg_size());
5274 
5275   // Check whether the function can return without sret-demotion.
5276   SmallVector<ISD::OutputArg, 4> Outs;
5277   GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5278                 Outs, TLI);
5279 
5280   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5281                                            DAG.getMachineFunction(),
5282                                            FTy->isVarArg(), Outs,
5283                                            FTy->getContext());
5284 
5285   SDValue DemoteStackSlot;
5286   int DemoteStackIdx = -100;
5287 
5288   if (!CanLowerReturn) {
5289     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5290                       FTy->getReturnType());
5291     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5292                       FTy->getReturnType());
5293     MachineFunction &MF = DAG.getMachineFunction();
5294     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5295     Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5296 
5297     DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5298     Entry.Node = DemoteStackSlot;
5299     Entry.Ty = StackSlotPtrType;
5300     Entry.isSExt = false;
5301     Entry.isZExt = false;
5302     Entry.isInReg = false;
5303     Entry.isSRet = true;
5304     Entry.isNest = false;
5305     Entry.isByVal = false;
5306     Entry.Alignment = Align;
5307     Args.push_back(Entry);
5308     RetTy = Type::getVoidTy(FTy->getContext());
5309   }
5310 
5311   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5312        i != e; ++i) {
5313     const Value *V = *i;
5314 
5315     // Skip empty types
5316     if (V->getType()->isEmptyTy())
5317       continue;
5318 
5319     SDValue ArgNode = getValue(V);
5320     Entry.Node = ArgNode; Entry.Ty = V->getType();
5321 
5322     unsigned attrInd = i - CS.arg_begin() + 1;
5323     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5324     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5325     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5326     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5327     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5328     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5329     Entry.Alignment = CS.getParamAlignment(attrInd);
5330     Args.push_back(Entry);
5331   }
5332 
5333   if (LandingPad) {
5334     // Insert a label before the invoke call to mark the try range.  This can be
5335     // used to detect deletion of the invoke via the MachineModuleInfo.
5336     BeginLabel = MMI.getContext().CreateTempSymbol();
5337 
5338     // For SjLj, keep track of which landing pads go with which invokes
5339     // so as to maintain the ordering of pads in the LSDA.
5340     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5341     if (CallSiteIndex) {
5342       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5343       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5344 
5345       // Now that the call site is handled, stop tracking it.
5346       MMI.setCurrentCallSite(0);
5347     }
5348 
5349     // Both PendingLoads and PendingExports must be flushed here;
5350     // this call might not return.
5351     (void)getRoot();
5352     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5353   }
5354 
5355   // Check if target-independent constraints permit a tail call here.
5356   // Target-dependent constraints are checked within TLI.LowerCallTo.
5357   if (isTailCall &&
5358       !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5359     isTailCall = false;
5360 
5361   // If there's a possibility that fast-isel has already selected some amount
5362   // of the current basic block, don't emit a tail call.
5363   if (isTailCall && TM.Options.EnableFastISel)
5364     isTailCall = false;
5365 
5366   TargetLowering::
5367   CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5368                        getCurDebugLoc(), CS);
5369   std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5370   assert((isTailCall || Result.second.getNode()) &&
5371          "Non-null chain expected with non-tail call!");
5372   assert((Result.second.getNode() || !Result.first.getNode()) &&
5373          "Null value expected with tail call!");
5374   if (Result.first.getNode()) {
5375     setValue(CS.getInstruction(), Result.first);
5376   } else if (!CanLowerReturn && Result.second.getNode()) {
5377     // The instruction result is the result of loading from the
5378     // hidden sret parameter.
5379     SmallVector<EVT, 1> PVTs;
5380     Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5381 
5382     ComputeValueVTs(TLI, PtrRetTy, PVTs);
5383     assert(PVTs.size() == 1 && "Pointers should fit in one register");
5384     EVT PtrVT = PVTs[0];
5385 
5386     SmallVector<EVT, 4> RetTys;
5387     SmallVector<uint64_t, 4> Offsets;
5388     RetTy = FTy->getReturnType();
5389     ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5390 
5391     unsigned NumValues = RetTys.size();
5392     SmallVector<SDValue, 4> Values(NumValues);
5393     SmallVector<SDValue, 4> Chains(NumValues);
5394 
5395     for (unsigned i = 0; i < NumValues; ++i) {
5396       SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5397                                 DemoteStackSlot,
5398                                 DAG.getConstant(Offsets[i], PtrVT));
5399       SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5400                   MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5401                               false, false, false, 1);
5402       Values[i] = L;
5403       Chains[i] = L.getValue(1);
5404     }
5405 
5406     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5407                                 MVT::Other, &Chains[0], NumValues);
5408     PendingLoads.push_back(Chain);
5409 
5410     setValue(CS.getInstruction(),
5411              DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5412                          DAG.getVTList(&RetTys[0], RetTys.size()),
5413                          &Values[0], Values.size()));
5414   }
5415 
5416   // Assign order to nodes here. If the call does not produce a result, it won't
5417   // be mapped to a SDNode and visit() will not assign it an order number.
5418   if (!Result.second.getNode()) {
5419     // As a special case, a null chain means that a tail call has been emitted and
5420     // the DAG root is already updated.
5421     HasTailCall = true;
5422     ++SDNodeOrder;
5423     AssignOrderingToNode(DAG.getRoot().getNode());
5424   } else {
5425     DAG.setRoot(Result.second);
5426     ++SDNodeOrder;
5427     AssignOrderingToNode(Result.second.getNode());
5428   }
5429 
5430   if (LandingPad) {
5431     // Insert a label at the end of the invoke call to mark the try range.  This
5432     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5433     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5434     DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5435 
5436     // Inform MachineModuleInfo of range.
5437     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5438   }
5439 }
5440 
5441 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5442 /// value is equal or not-equal to zero.
5443 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5444   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5445        UI != E; ++UI) {
5446     if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5447       if (IC->isEquality())
5448         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5449           if (C->isNullValue())
5450             continue;
5451     // Unknown instruction.
5452     return false;
5453   }
5454   return true;
5455 }
5456 
5457 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5458                              Type *LoadTy,
5459                              SelectionDAGBuilder &Builder) {
5460 
5461   // Check to see if this load can be trivially constant folded, e.g. if the
5462   // input is from a string literal.
5463   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5464     // Cast pointer to the type we really want to load.
5465     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5466                                          PointerType::getUnqual(LoadTy));
5467 
5468     if (const Constant *LoadCst =
5469           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5470                                        Builder.TD))
5471       return Builder.getValue(LoadCst);
5472   }
5473 
5474   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5475   // still constant memory, the input chain can be the entry node.
5476   SDValue Root;
5477   bool ConstantMemory = false;
5478 
5479   // Do not serialize (non-volatile) loads of constant memory with anything.
5480   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5481     Root = Builder.DAG.getEntryNode();
5482     ConstantMemory = true;
5483   } else {
5484     // Do not serialize non-volatile loads against each other.
5485     Root = Builder.DAG.getRoot();
5486   }
5487 
5488   SDValue Ptr = Builder.getValue(PtrVal);
5489   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5490                                         Ptr, MachinePointerInfo(PtrVal),
5491                                         false /*volatile*/,
5492                                         false /*nontemporal*/,
5493                                         false /*isinvariant*/, 1 /* align=1 */);
5494 
5495   if (!ConstantMemory)
5496     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5497   return LoadVal;
5498 }
5499 
5500 
5501 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5502 /// If so, return true and lower it, otherwise return false and it will be
5503 /// lowered like a normal call.
5504 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5505   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5506   if (I.getNumArgOperands() != 3)
5507     return false;
5508 
5509   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5510   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5511       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5512       !I.getType()->isIntegerTy())
5513     return false;
5514 
5515   const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5516 
5517   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5518   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5519   if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5520     bool ActuallyDoIt = true;
5521     MVT LoadVT;
5522     Type *LoadTy;
5523     switch (Size->getZExtValue()) {
5524     default:
5525       LoadVT = MVT::Other;
5526       LoadTy = 0;
5527       ActuallyDoIt = false;
5528       break;
5529     case 2:
5530       LoadVT = MVT::i16;
5531       LoadTy = Type::getInt16Ty(Size->getContext());
5532       break;
5533     case 4:
5534       LoadVT = MVT::i32;
5535       LoadTy = Type::getInt32Ty(Size->getContext());
5536       break;
5537     case 8:
5538       LoadVT = MVT::i64;
5539       LoadTy = Type::getInt64Ty(Size->getContext());
5540       break;
5541         /*
5542     case 16:
5543       LoadVT = MVT::v4i32;
5544       LoadTy = Type::getInt32Ty(Size->getContext());
5545       LoadTy = VectorType::get(LoadTy, 4);
5546       break;
5547          */
5548     }
5549 
5550     // This turns into unaligned loads.  We only do this if the target natively
5551     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5552     // we'll only produce a small number of byte loads.
5553 
5554     // Require that we can find a legal MVT, and only do this if the target
5555     // supports unaligned loads of that type.  Expanding into byte loads would
5556     // bloat the code.
5557     if (ActuallyDoIt && Size->getZExtValue() > 4) {
5558       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5559       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5560       if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5561         ActuallyDoIt = false;
5562     }
5563 
5564     if (ActuallyDoIt) {
5565       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5566       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5567 
5568       SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5569                                  ISD::SETNE);
5570       EVT CallVT = TLI.getValueType(I.getType(), true);
5571       setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5572       return true;
5573     }
5574   }
5575 
5576 
5577   return false;
5578 }
5579 
5580 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5581 /// operation (as expected), translate it to an SDNode with the specified opcode
5582 /// and return true.
5583 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5584                                               unsigned Opcode) {
5585   // Sanity check that it really is a unary floating-point call.
5586   if (I.getNumArgOperands() != 1 ||
5587       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5588       I.getType() != I.getArgOperand(0)->getType() ||
5589       !I.onlyReadsMemory())
5590     return false;
5591 
5592   SDValue Tmp = getValue(I.getArgOperand(0));
5593   setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5594   return true;
5595 }
5596 
5597 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5598   // Handle inline assembly differently.
5599   if (isa<InlineAsm>(I.getCalledValue())) {
5600     visitInlineAsm(&I);
5601     return;
5602   }
5603 
5604   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5605   ComputeUsesVAFloatArgument(I, &MMI);
5606 
5607   const char *RenameFn = 0;
5608   if (Function *F = I.getCalledFunction()) {
5609     if (F->isDeclaration()) {
5610       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5611         if (unsigned IID = II->getIntrinsicID(F)) {
5612           RenameFn = visitIntrinsicCall(I, IID);
5613           if (!RenameFn)
5614             return;
5615         }
5616       }
5617       if (unsigned IID = F->getIntrinsicID()) {
5618         RenameFn = visitIntrinsicCall(I, IID);
5619         if (!RenameFn)
5620           return;
5621       }
5622     }
5623 
5624     // Check for well-known libc/libm calls.  If the function is internal, it
5625     // can't be a library call.
5626     LibFunc::Func Func;
5627     if (!F->hasLocalLinkage() && F->hasName() &&
5628         LibInfo->getLibFunc(F->getName(), Func) &&
5629         LibInfo->hasOptimizedCodeGen(Func)) {
5630       switch (Func) {
5631       default: break;
5632       case LibFunc::copysign:
5633       case LibFunc::copysignf:
5634       case LibFunc::copysignl:
5635         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5636             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5637             I.getType() == I.getArgOperand(0)->getType() &&
5638             I.getType() == I.getArgOperand(1)->getType() &&
5639             I.onlyReadsMemory()) {
5640           SDValue LHS = getValue(I.getArgOperand(0));
5641           SDValue RHS = getValue(I.getArgOperand(1));
5642           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5643                                    LHS.getValueType(), LHS, RHS));
5644           return;
5645         }
5646         break;
5647       case LibFunc::fabs:
5648       case LibFunc::fabsf:
5649       case LibFunc::fabsl:
5650         if (visitUnaryFloatCall(I, ISD::FABS))
5651           return;
5652         break;
5653       case LibFunc::sin:
5654       case LibFunc::sinf:
5655       case LibFunc::sinl:
5656         if (visitUnaryFloatCall(I, ISD::FSIN))
5657           return;
5658         break;
5659       case LibFunc::cos:
5660       case LibFunc::cosf:
5661       case LibFunc::cosl:
5662         if (visitUnaryFloatCall(I, ISD::FCOS))
5663           return;
5664         break;
5665       case LibFunc::sqrt:
5666       case LibFunc::sqrtf:
5667       case LibFunc::sqrtl:
5668         if (visitUnaryFloatCall(I, ISD::FSQRT))
5669           return;
5670         break;
5671       case LibFunc::floor:
5672       case LibFunc::floorf:
5673       case LibFunc::floorl:
5674         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5675           return;
5676         break;
5677       case LibFunc::nearbyint:
5678       case LibFunc::nearbyintf:
5679       case LibFunc::nearbyintl:
5680         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5681           return;
5682         break;
5683       case LibFunc::ceil:
5684       case LibFunc::ceilf:
5685       case LibFunc::ceill:
5686         if (visitUnaryFloatCall(I, ISD::FCEIL))
5687           return;
5688         break;
5689       case LibFunc::rint:
5690       case LibFunc::rintf:
5691       case LibFunc::rintl:
5692         if (visitUnaryFloatCall(I, ISD::FRINT))
5693           return;
5694         break;
5695       case LibFunc::trunc:
5696       case LibFunc::truncf:
5697       case LibFunc::truncl:
5698         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5699           return;
5700         break;
5701       case LibFunc::log2:
5702       case LibFunc::log2f:
5703       case LibFunc::log2l:
5704         if (visitUnaryFloatCall(I, ISD::FLOG2))
5705           return;
5706         break;
5707       case LibFunc::exp2:
5708       case LibFunc::exp2f:
5709       case LibFunc::exp2l:
5710         if (visitUnaryFloatCall(I, ISD::FEXP2))
5711           return;
5712         break;
5713       case LibFunc::memcmp:
5714         if (visitMemCmpCall(I))
5715           return;
5716         break;
5717       }
5718     }
5719   }
5720 
5721   SDValue Callee;
5722   if (!RenameFn)
5723     Callee = getValue(I.getCalledValue());
5724   else
5725     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5726 
5727   // Check if we can potentially perform a tail call. More detailed checking is
5728   // be done within LowerCallTo, after more information about the call is known.
5729   LowerCallTo(&I, Callee, I.isTailCall());
5730 }
5731 
5732 namespace {
5733 
5734 /// AsmOperandInfo - This contains information for each constraint that we are
5735 /// lowering.
5736 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5737 public:
5738   /// CallOperand - If this is the result output operand or a clobber
5739   /// this is null, otherwise it is the incoming operand to the CallInst.
5740   /// This gets modified as the asm is processed.
5741   SDValue CallOperand;
5742 
5743   /// AssignedRegs - If this is a register or register class operand, this
5744   /// contains the set of register corresponding to the operand.
5745   RegsForValue AssignedRegs;
5746 
5747   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5748     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5749   }
5750 
5751   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5752   /// corresponds to.  If there is no Value* for this operand, it returns
5753   /// MVT::Other.
5754   EVT getCallOperandValEVT(LLVMContext &Context,
5755                            const TargetLowering &TLI,
5756                            const TargetData *TD) const {
5757     if (CallOperandVal == 0) return MVT::Other;
5758 
5759     if (isa<BasicBlock>(CallOperandVal))
5760       return TLI.getPointerTy();
5761 
5762     llvm::Type *OpTy = CallOperandVal->getType();
5763 
5764     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5765     // If this is an indirect operand, the operand is a pointer to the
5766     // accessed type.
5767     if (isIndirect) {
5768       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5769       if (!PtrTy)
5770         report_fatal_error("Indirect operand for inline asm not a pointer!");
5771       OpTy = PtrTy->getElementType();
5772     }
5773 
5774     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5775     if (StructType *STy = dyn_cast<StructType>(OpTy))
5776       if (STy->getNumElements() == 1)
5777         OpTy = STy->getElementType(0);
5778 
5779     // If OpTy is not a single value, it may be a struct/union that we
5780     // can tile with integers.
5781     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5782       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5783       switch (BitSize) {
5784       default: break;
5785       case 1:
5786       case 8:
5787       case 16:
5788       case 32:
5789       case 64:
5790       case 128:
5791         OpTy = IntegerType::get(Context, BitSize);
5792         break;
5793       }
5794     }
5795 
5796     return TLI.getValueType(OpTy, true);
5797   }
5798 };
5799 
5800 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5801 
5802 } // end anonymous namespace
5803 
5804 /// GetRegistersForValue - Assign registers (virtual or physical) for the
5805 /// specified operand.  We prefer to assign virtual registers, to allow the
5806 /// register allocator to handle the assignment process.  However, if the asm
5807 /// uses features that we can't model on machineinstrs, we have SDISel do the
5808 /// allocation.  This produces generally horrible, but correct, code.
5809 ///
5810 ///   OpInfo describes the operand.
5811 ///
5812 static void GetRegistersForValue(SelectionDAG &DAG,
5813                                  const TargetLowering &TLI,
5814                                  DebugLoc DL,
5815                                  SDISelAsmOperandInfo &OpInfo) {
5816   LLVMContext &Context = *DAG.getContext();
5817 
5818   MachineFunction &MF = DAG.getMachineFunction();
5819   SmallVector<unsigned, 4> Regs;
5820 
5821   // If this is a constraint for a single physreg, or a constraint for a
5822   // register class, find it.
5823   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5824     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5825                                      OpInfo.ConstraintVT);
5826 
5827   unsigned NumRegs = 1;
5828   if (OpInfo.ConstraintVT != MVT::Other) {
5829     // If this is a FP input in an integer register (or visa versa) insert a bit
5830     // cast of the input value.  More generally, handle any case where the input
5831     // value disagrees with the register class we plan to stick this in.
5832     if (OpInfo.Type == InlineAsm::isInput &&
5833         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5834       // Try to convert to the first EVT that the reg class contains.  If the
5835       // types are identical size, use a bitcast to convert (e.g. two differing
5836       // vector types).
5837       EVT RegVT = *PhysReg.second->vt_begin();
5838       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5839         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5840                                          RegVT, OpInfo.CallOperand);
5841         OpInfo.ConstraintVT = RegVT;
5842       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5843         // If the input is a FP value and we want it in FP registers, do a
5844         // bitcast to the corresponding integer type.  This turns an f64 value
5845         // into i64, which can be passed with two i32 values on a 32-bit
5846         // machine.
5847         RegVT = EVT::getIntegerVT(Context,
5848                                   OpInfo.ConstraintVT.getSizeInBits());
5849         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5850                                          RegVT, OpInfo.CallOperand);
5851         OpInfo.ConstraintVT = RegVT;
5852       }
5853     }
5854 
5855     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5856   }
5857 
5858   EVT RegVT;
5859   EVT ValueVT = OpInfo.ConstraintVT;
5860 
5861   // If this is a constraint for a specific physical register, like {r17},
5862   // assign it now.
5863   if (unsigned AssignedReg = PhysReg.first) {
5864     const TargetRegisterClass *RC = PhysReg.second;
5865     if (OpInfo.ConstraintVT == MVT::Other)
5866       ValueVT = *RC->vt_begin();
5867 
5868     // Get the actual register value type.  This is important, because the user
5869     // may have asked for (e.g.) the AX register in i32 type.  We need to
5870     // remember that AX is actually i16 to get the right extension.
5871     RegVT = *RC->vt_begin();
5872 
5873     // This is a explicit reference to a physical register.
5874     Regs.push_back(AssignedReg);
5875 
5876     // If this is an expanded reference, add the rest of the regs to Regs.
5877     if (NumRegs != 1) {
5878       TargetRegisterClass::iterator I = RC->begin();
5879       for (; *I != AssignedReg; ++I)
5880         assert(I != RC->end() && "Didn't find reg!");
5881 
5882       // Already added the first reg.
5883       --NumRegs; ++I;
5884       for (; NumRegs; --NumRegs, ++I) {
5885         assert(I != RC->end() && "Ran out of registers to allocate!");
5886         Regs.push_back(*I);
5887       }
5888     }
5889 
5890     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5891     return;
5892   }
5893 
5894   // Otherwise, if this was a reference to an LLVM register class, create vregs
5895   // for this reference.
5896   if (const TargetRegisterClass *RC = PhysReg.second) {
5897     RegVT = *RC->vt_begin();
5898     if (OpInfo.ConstraintVT == MVT::Other)
5899       ValueVT = RegVT;
5900 
5901     // Create the appropriate number of virtual registers.
5902     MachineRegisterInfo &RegInfo = MF.getRegInfo();
5903     for (; NumRegs; --NumRegs)
5904       Regs.push_back(RegInfo.createVirtualRegister(RC));
5905 
5906     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5907     return;
5908   }
5909 
5910   // Otherwise, we couldn't allocate enough registers for this.
5911 }
5912 
5913 /// visitInlineAsm - Handle a call to an InlineAsm object.
5914 ///
5915 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5916   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5917 
5918   /// ConstraintOperands - Information about all of the constraints.
5919   SDISelAsmOperandInfoVector ConstraintOperands;
5920 
5921   TargetLowering::AsmOperandInfoVector
5922     TargetConstraints = TLI.ParseConstraints(CS);
5923 
5924   bool hasMemory = false;
5925 
5926   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5927   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5928   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5929     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5930     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5931 
5932     EVT OpVT = MVT::Other;
5933 
5934     // Compute the value type for each operand.
5935     switch (OpInfo.Type) {
5936     case InlineAsm::isOutput:
5937       // Indirect outputs just consume an argument.
5938       if (OpInfo.isIndirect) {
5939         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5940         break;
5941       }
5942 
5943       // The return value of the call is this value.  As such, there is no
5944       // corresponding argument.
5945       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5946       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5947         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5948       } else {
5949         assert(ResNo == 0 && "Asm only has one result!");
5950         OpVT = TLI.getValueType(CS.getType());
5951       }
5952       ++ResNo;
5953       break;
5954     case InlineAsm::isInput:
5955       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5956       break;
5957     case InlineAsm::isClobber:
5958       // Nothing to do.
5959       break;
5960     }
5961 
5962     // If this is an input or an indirect output, process the call argument.
5963     // BasicBlocks are labels, currently appearing only in asm's.
5964     if (OpInfo.CallOperandVal) {
5965       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5966         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5967       } else {
5968         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5969       }
5970 
5971       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5972     }
5973 
5974     OpInfo.ConstraintVT = OpVT;
5975 
5976     // Indirect operand accesses access memory.
5977     if (OpInfo.isIndirect)
5978       hasMemory = true;
5979     else {
5980       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
5981         TargetLowering::ConstraintType
5982           CType = TLI.getConstraintType(OpInfo.Codes[j]);
5983         if (CType == TargetLowering::C_Memory) {
5984           hasMemory = true;
5985           break;
5986         }
5987       }
5988     }
5989   }
5990 
5991   SDValue Chain, Flag;
5992 
5993   // We won't need to flush pending loads if this asm doesn't touch
5994   // memory and is nonvolatile.
5995   if (hasMemory || IA->hasSideEffects())
5996     Chain = getRoot();
5997   else
5998     Chain = DAG.getRoot();
5999 
6000   // Second pass over the constraints: compute which constraint option to use
6001   // and assign registers to constraints that want a specific physreg.
6002   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6003     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6004 
6005     // If this is an output operand with a matching input operand, look up the
6006     // matching input. If their types mismatch, e.g. one is an integer, the
6007     // other is floating point, or their sizes are different, flag it as an
6008     // error.
6009     if (OpInfo.hasMatchingInput()) {
6010       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6011 
6012       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6013         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6014           TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6015                                            OpInfo.ConstraintVT);
6016         std::pair<unsigned, const TargetRegisterClass*> InputRC =
6017           TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6018                                            Input.ConstraintVT);
6019         if ((OpInfo.ConstraintVT.isInteger() !=
6020              Input.ConstraintVT.isInteger()) ||
6021             (MatchRC.second != InputRC.second)) {
6022           report_fatal_error("Unsupported asm: input constraint"
6023                              " with a matching output constraint of"
6024                              " incompatible type!");
6025         }
6026         Input.ConstraintVT = OpInfo.ConstraintVT;
6027       }
6028     }
6029 
6030     // Compute the constraint code and ConstraintType to use.
6031     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6032 
6033     // If this is a memory input, and if the operand is not indirect, do what we
6034     // need to to provide an address for the memory input.
6035     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6036         !OpInfo.isIndirect) {
6037       assert((OpInfo.isMultipleAlternative ||
6038               (OpInfo.Type == InlineAsm::isInput)) &&
6039              "Can only indirectify direct input operands!");
6040 
6041       // Memory operands really want the address of the value.  If we don't have
6042       // an indirect input, put it in the constpool if we can, otherwise spill
6043       // it to a stack slot.
6044       // TODO: This isn't quite right. We need to handle these according to
6045       // the addressing mode that the constraint wants. Also, this may take
6046       // an additional register for the computation and we don't want that
6047       // either.
6048 
6049       // If the operand is a float, integer, or vector constant, spill to a
6050       // constant pool entry to get its address.
6051       const Value *OpVal = OpInfo.CallOperandVal;
6052       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6053           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6054         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6055                                                  TLI.getPointerTy());
6056       } else {
6057         // Otherwise, create a stack slot and emit a store to it before the
6058         // asm.
6059         Type *Ty = OpVal->getType();
6060         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6061         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6062         MachineFunction &MF = DAG.getMachineFunction();
6063         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6064         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6065         Chain = DAG.getStore(Chain, getCurDebugLoc(),
6066                              OpInfo.CallOperand, StackSlot,
6067                              MachinePointerInfo::getFixedStack(SSFI),
6068                              false, false, 0);
6069         OpInfo.CallOperand = StackSlot;
6070       }
6071 
6072       // There is no longer a Value* corresponding to this operand.
6073       OpInfo.CallOperandVal = 0;
6074 
6075       // It is now an indirect operand.
6076       OpInfo.isIndirect = true;
6077     }
6078 
6079     // If this constraint is for a specific register, allocate it before
6080     // anything else.
6081     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6082       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6083   }
6084 
6085   // Second pass - Loop over all of the operands, assigning virtual or physregs
6086   // to register class operands.
6087   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6088     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6089 
6090     // C_Register operands have already been allocated, Other/Memory don't need
6091     // to be.
6092     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6093       GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6094   }
6095 
6096   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6097   std::vector<SDValue> AsmNodeOperands;
6098   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6099   AsmNodeOperands.push_back(
6100           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6101                                       TLI.getPointerTy()));
6102 
6103   // If we have a !srcloc metadata node associated with it, we want to attach
6104   // this to the ultimately generated inline asm machineinstr.  To do this, we
6105   // pass in the third operand as this (potentially null) inline asm MDNode.
6106   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6107   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6108 
6109   // Remember the HasSideEffect, AlignStack and AsmDialect bits as operand 3.
6110   unsigned ExtraInfo = 0;
6111   if (IA->hasSideEffects())
6112     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6113   if (IA->isAlignStack())
6114     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6115   // Set the asm dialect.
6116   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6117   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6118                                                   TLI.getPointerTy()));
6119 
6120   // Loop over all of the inputs, copying the operand values into the
6121   // appropriate registers and processing the output regs.
6122   RegsForValue RetValRegs;
6123 
6124   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6125   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6126 
6127   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6128     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6129 
6130     switch (OpInfo.Type) {
6131     case InlineAsm::isOutput: {
6132       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6133           OpInfo.ConstraintType != TargetLowering::C_Register) {
6134         // Memory output, or 'other' output (e.g. 'X' constraint).
6135         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6136 
6137         // Add information to the INLINEASM node to know about this output.
6138         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6139         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6140                                                         TLI.getPointerTy()));
6141         AsmNodeOperands.push_back(OpInfo.CallOperand);
6142         break;
6143       }
6144 
6145       // Otherwise, this is a register or register class output.
6146 
6147       // Copy the output from the appropriate register.  Find a register that
6148       // we can use.
6149       if (OpInfo.AssignedRegs.Regs.empty()) {
6150         LLVMContext &Ctx = *DAG.getContext();
6151         Ctx.emitError(CS.getInstruction(),
6152                       "couldn't allocate output register for constraint '" +
6153                            Twine(OpInfo.ConstraintCode) + "'");
6154         break;
6155       }
6156 
6157       // If this is an indirect operand, store through the pointer after the
6158       // asm.
6159       if (OpInfo.isIndirect) {
6160         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6161                                                       OpInfo.CallOperandVal));
6162       } else {
6163         // This is the result value of the call.
6164         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6165         // Concatenate this output onto the outputs list.
6166         RetValRegs.append(OpInfo.AssignedRegs);
6167       }
6168 
6169       // Add information to the INLINEASM node to know that this register is
6170       // set.
6171       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6172                                            InlineAsm::Kind_RegDefEarlyClobber :
6173                                                InlineAsm::Kind_RegDef,
6174                                                false,
6175                                                0,
6176                                                DAG,
6177                                                AsmNodeOperands);
6178       break;
6179     }
6180     case InlineAsm::isInput: {
6181       SDValue InOperandVal = OpInfo.CallOperand;
6182 
6183       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6184         // If this is required to match an output register we have already set,
6185         // just use its register.
6186         unsigned OperandNo = OpInfo.getMatchedOperand();
6187 
6188         // Scan until we find the definition we already emitted of this operand.
6189         // When we find it, create a RegsForValue operand.
6190         unsigned CurOp = InlineAsm::Op_FirstOperand;
6191         for (; OperandNo; --OperandNo) {
6192           // Advance to the next operand.
6193           unsigned OpFlag =
6194             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6195           assert((InlineAsm::isRegDefKind(OpFlag) ||
6196                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6197                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6198           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6199         }
6200 
6201         unsigned OpFlag =
6202           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6203         if (InlineAsm::isRegDefKind(OpFlag) ||
6204             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6205           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6206           if (OpInfo.isIndirect) {
6207             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6208             LLVMContext &Ctx = *DAG.getContext();
6209             Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6210                           " don't know how to handle tied "
6211                           "indirect register inputs");
6212           }
6213 
6214           RegsForValue MatchedRegs;
6215           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6216           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6217           MatchedRegs.RegVTs.push_back(RegVT);
6218           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6219           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6220                i != e; ++i)
6221             MatchedRegs.Regs.push_back
6222               (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6223 
6224           // Use the produced MatchedRegs object to
6225           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6226                                     Chain, &Flag);
6227           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6228                                            true, OpInfo.getMatchedOperand(),
6229                                            DAG, AsmNodeOperands);
6230           break;
6231         }
6232 
6233         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6234         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6235                "Unexpected number of operands");
6236         // Add information to the INLINEASM node to know about this input.
6237         // See InlineAsm.h isUseOperandTiedToDef.
6238         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6239                                                     OpInfo.getMatchedOperand());
6240         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6241                                                         TLI.getPointerTy()));
6242         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6243         break;
6244       }
6245 
6246       // Treat indirect 'X' constraint as memory.
6247       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6248           OpInfo.isIndirect)
6249         OpInfo.ConstraintType = TargetLowering::C_Memory;
6250 
6251       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6252         std::vector<SDValue> Ops;
6253         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6254                                          Ops, DAG);
6255         if (Ops.empty()) {
6256           LLVMContext &Ctx = *DAG.getContext();
6257           Ctx.emitError(CS.getInstruction(),
6258                         "invalid operand for inline asm constraint '" +
6259                         Twine(OpInfo.ConstraintCode) + "'");
6260           break;
6261         }
6262 
6263         // Add information to the INLINEASM node to know about this input.
6264         unsigned ResOpType =
6265           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6266         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6267                                                         TLI.getPointerTy()));
6268         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6269         break;
6270       }
6271 
6272       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6273         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6274         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6275                "Memory operands expect pointer values");
6276 
6277         // Add information to the INLINEASM node to know about this input.
6278         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6279         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6280                                                         TLI.getPointerTy()));
6281         AsmNodeOperands.push_back(InOperandVal);
6282         break;
6283       }
6284 
6285       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6286               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6287              "Unknown constraint type!");
6288 
6289       // TODO: Support this.
6290       if (OpInfo.isIndirect) {
6291         LLVMContext &Ctx = *DAG.getContext();
6292         Ctx.emitError(CS.getInstruction(),
6293                       "Don't know how to handle indirect register inputs yet "
6294                       "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6295         break;
6296       }
6297 
6298       // Copy the input into the appropriate registers.
6299       if (OpInfo.AssignedRegs.Regs.empty()) {
6300         LLVMContext &Ctx = *DAG.getContext();
6301         Ctx.emitError(CS.getInstruction(),
6302                       "couldn't allocate input reg for constraint '" +
6303                            Twine(OpInfo.ConstraintCode) + "'");
6304         break;
6305       }
6306 
6307       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6308                                         Chain, &Flag);
6309 
6310       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6311                                                DAG, AsmNodeOperands);
6312       break;
6313     }
6314     case InlineAsm::isClobber: {
6315       // Add the clobbered value to the operand list, so that the register
6316       // allocator is aware that the physreg got clobbered.
6317       if (!OpInfo.AssignedRegs.Regs.empty())
6318         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6319                                                  false, 0, DAG,
6320                                                  AsmNodeOperands);
6321       break;
6322     }
6323     }
6324   }
6325 
6326   // Finish up input operands.  Set the input chain and add the flag last.
6327   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6328   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6329 
6330   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6331                       DAG.getVTList(MVT::Other, MVT::Glue),
6332                       &AsmNodeOperands[0], AsmNodeOperands.size());
6333   Flag = Chain.getValue(1);
6334 
6335   // If this asm returns a register value, copy the result from that register
6336   // and set it as the value of the call.
6337   if (!RetValRegs.Regs.empty()) {
6338     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6339                                              Chain, &Flag);
6340 
6341     // FIXME: Why don't we do this for inline asms with MRVs?
6342     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6343       EVT ResultType = TLI.getValueType(CS.getType());
6344 
6345       // If any of the results of the inline asm is a vector, it may have the
6346       // wrong width/num elts.  This can happen for register classes that can
6347       // contain multiple different value types.  The preg or vreg allocated may
6348       // not have the same VT as was expected.  Convert it to the right type
6349       // with bit_convert.
6350       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6351         Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6352                           ResultType, Val);
6353 
6354       } else if (ResultType != Val.getValueType() &&
6355                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6356         // If a result value was tied to an input value, the computed result may
6357         // have a wider width than the expected result.  Extract the relevant
6358         // portion.
6359         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6360       }
6361 
6362       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6363     }
6364 
6365     setValue(CS.getInstruction(), Val);
6366     // Don't need to use this as a chain in this case.
6367     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6368       return;
6369   }
6370 
6371   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6372 
6373   // Process indirect outputs, first output all of the flagged copies out of
6374   // physregs.
6375   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6376     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6377     const Value *Ptr = IndirectStoresToEmit[i].second;
6378     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6379                                              Chain, &Flag);
6380     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6381   }
6382 
6383   // Emit the non-flagged stores from the physregs.
6384   SmallVector<SDValue, 8> OutChains;
6385   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6386     SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6387                                StoresToEmit[i].first,
6388                                getValue(StoresToEmit[i].second),
6389                                MachinePointerInfo(StoresToEmit[i].second),
6390                                false, false, 0);
6391     OutChains.push_back(Val);
6392   }
6393 
6394   if (!OutChains.empty())
6395     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6396                         &OutChains[0], OutChains.size());
6397 
6398   DAG.setRoot(Chain);
6399 }
6400 
6401 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6402   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6403                           MVT::Other, getRoot(),
6404                           getValue(I.getArgOperand(0)),
6405                           DAG.getSrcValue(I.getArgOperand(0))));
6406 }
6407 
6408 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6409   const TargetData &TD = *TLI.getTargetData();
6410   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6411                            getRoot(), getValue(I.getOperand(0)),
6412                            DAG.getSrcValue(I.getOperand(0)),
6413                            TD.getABITypeAlignment(I.getType()));
6414   setValue(&I, V);
6415   DAG.setRoot(V.getValue(1));
6416 }
6417 
6418 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6419   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6420                           MVT::Other, getRoot(),
6421                           getValue(I.getArgOperand(0)),
6422                           DAG.getSrcValue(I.getArgOperand(0))));
6423 }
6424 
6425 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6426   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6427                           MVT::Other, getRoot(),
6428                           getValue(I.getArgOperand(0)),
6429                           getValue(I.getArgOperand(1)),
6430                           DAG.getSrcValue(I.getArgOperand(0)),
6431                           DAG.getSrcValue(I.getArgOperand(1))));
6432 }
6433 
6434 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6435 /// implementation, which just calls LowerCall.
6436 /// FIXME: When all targets are
6437 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6438 std::pair<SDValue, SDValue>
6439 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6440   // Handle all of the outgoing arguments.
6441   CLI.Outs.clear();
6442   CLI.OutVals.clear();
6443   ArgListTy &Args = CLI.Args;
6444   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6445     SmallVector<EVT, 4> ValueVTs;
6446     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6447     for (unsigned Value = 0, NumValues = ValueVTs.size();
6448          Value != NumValues; ++Value) {
6449       EVT VT = ValueVTs[Value];
6450       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6451       SDValue Op = SDValue(Args[i].Node.getNode(),
6452                            Args[i].Node.getResNo() + Value);
6453       ISD::ArgFlagsTy Flags;
6454       unsigned OriginalAlignment =
6455         getTargetData()->getABITypeAlignment(ArgTy);
6456 
6457       if (Args[i].isZExt)
6458         Flags.setZExt();
6459       if (Args[i].isSExt)
6460         Flags.setSExt();
6461       if (Args[i].isInReg)
6462         Flags.setInReg();
6463       if (Args[i].isSRet)
6464         Flags.setSRet();
6465       if (Args[i].isByVal) {
6466         Flags.setByVal();
6467         PointerType *Ty = cast<PointerType>(Args[i].Ty);
6468         Type *ElementTy = Ty->getElementType();
6469         Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6470         // For ByVal, alignment should come from FE.  BE will guess if this
6471         // info is not there but there are cases it cannot get right.
6472         unsigned FrameAlign;
6473         if (Args[i].Alignment)
6474           FrameAlign = Args[i].Alignment;
6475         else
6476           FrameAlign = getByValTypeAlignment(ElementTy);
6477         Flags.setByValAlign(FrameAlign);
6478       }
6479       if (Args[i].isNest)
6480         Flags.setNest();
6481       Flags.setOrigAlign(OriginalAlignment);
6482 
6483       EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6484       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6485       SmallVector<SDValue, 4> Parts(NumParts);
6486       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6487 
6488       if (Args[i].isSExt)
6489         ExtendKind = ISD::SIGN_EXTEND;
6490       else if (Args[i].isZExt)
6491         ExtendKind = ISD::ZERO_EXTEND;
6492 
6493       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6494                      PartVT, ExtendKind);
6495 
6496       for (unsigned j = 0; j != NumParts; ++j) {
6497         // if it isn't first piece, alignment must be 1
6498         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6499                                i < CLI.NumFixedArgs);
6500         if (NumParts > 1 && j == 0)
6501           MyFlags.Flags.setSplit();
6502         else if (j != 0)
6503           MyFlags.Flags.setOrigAlign(1);
6504 
6505         CLI.Outs.push_back(MyFlags);
6506         CLI.OutVals.push_back(Parts[j]);
6507       }
6508     }
6509   }
6510 
6511   // Handle the incoming return values from the call.
6512   CLI.Ins.clear();
6513   SmallVector<EVT, 4> RetTys;
6514   ComputeValueVTs(*this, CLI.RetTy, RetTys);
6515   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6516     EVT VT = RetTys[I];
6517     EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6518     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6519     for (unsigned i = 0; i != NumRegs; ++i) {
6520       ISD::InputArg MyFlags;
6521       MyFlags.VT = RegisterVT.getSimpleVT();
6522       MyFlags.Used = CLI.IsReturnValueUsed;
6523       if (CLI.RetSExt)
6524         MyFlags.Flags.setSExt();
6525       if (CLI.RetZExt)
6526         MyFlags.Flags.setZExt();
6527       if (CLI.IsInReg)
6528         MyFlags.Flags.setInReg();
6529       CLI.Ins.push_back(MyFlags);
6530     }
6531   }
6532 
6533   SmallVector<SDValue, 4> InVals;
6534   CLI.Chain = LowerCall(CLI, InVals);
6535 
6536   // Verify that the target's LowerCall behaved as expected.
6537   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6538          "LowerCall didn't return a valid chain!");
6539   assert((!CLI.IsTailCall || InVals.empty()) &&
6540          "LowerCall emitted a return value for a tail call!");
6541   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6542          "LowerCall didn't emit the correct number of values!");
6543 
6544   // For a tail call, the return value is merely live-out and there aren't
6545   // any nodes in the DAG representing it. Return a special value to
6546   // indicate that a tail call has been emitted and no more Instructions
6547   // should be processed in the current block.
6548   if (CLI.IsTailCall) {
6549     CLI.DAG.setRoot(CLI.Chain);
6550     return std::make_pair(SDValue(), SDValue());
6551   }
6552 
6553   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6554           assert(InVals[i].getNode() &&
6555                  "LowerCall emitted a null value!");
6556           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6557                  "LowerCall emitted a value with the wrong type!");
6558         });
6559 
6560   // Collect the legal value parts into potentially illegal values
6561   // that correspond to the original function's return values.
6562   ISD::NodeType AssertOp = ISD::DELETED_NODE;
6563   if (CLI.RetSExt)
6564     AssertOp = ISD::AssertSext;
6565   else if (CLI.RetZExt)
6566     AssertOp = ISD::AssertZext;
6567   SmallVector<SDValue, 4> ReturnValues;
6568   unsigned CurReg = 0;
6569   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6570     EVT VT = RetTys[I];
6571     EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6572     unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6573 
6574     ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6575                                             NumRegs, RegisterVT, VT,
6576                                             AssertOp));
6577     CurReg += NumRegs;
6578   }
6579 
6580   // For a function returning void, there is no return value. We can't create
6581   // such a node, so we just return a null return value in that case. In
6582   // that case, nothing will actually look at the value.
6583   if (ReturnValues.empty())
6584     return std::make_pair(SDValue(), CLI.Chain);
6585 
6586   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6587                                 CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6588                             &ReturnValues[0], ReturnValues.size());
6589   return std::make_pair(Res, CLI.Chain);
6590 }
6591 
6592 void TargetLowering::LowerOperationWrapper(SDNode *N,
6593                                            SmallVectorImpl<SDValue> &Results,
6594                                            SelectionDAG &DAG) const {
6595   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6596   if (Res.getNode())
6597     Results.push_back(Res);
6598 }
6599 
6600 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6601   llvm_unreachable("LowerOperation not implemented for this target!");
6602 }
6603 
6604 void
6605 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6606   SDValue Op = getNonRegisterValue(V);
6607   assert((Op.getOpcode() != ISD::CopyFromReg ||
6608           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6609          "Copy from a reg to the same reg!");
6610   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6611 
6612   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6613   SDValue Chain = DAG.getEntryNode();
6614   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
6615   PendingExports.push_back(Chain);
6616 }
6617 
6618 #include "llvm/CodeGen/SelectionDAGISel.h"
6619 
6620 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6621 /// entry block, return true.  This includes arguments used by switches, since
6622 /// the switch may expand into multiple basic blocks.
6623 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6624   // With FastISel active, we may be splitting blocks, so force creation
6625   // of virtual registers for all non-dead arguments.
6626   if (FastISel)
6627     return A->use_empty();
6628 
6629   const BasicBlock *Entry = A->getParent()->begin();
6630   for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6631        UI != E; ++UI) {
6632     const User *U = *UI;
6633     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6634       return false;  // Use not in entry block.
6635   }
6636   return true;
6637 }
6638 
6639 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6640   // If this is the entry block, emit arguments.
6641   const Function &F = *LLVMBB->getParent();
6642   SelectionDAG &DAG = SDB->DAG;
6643   DebugLoc dl = SDB->getCurDebugLoc();
6644   const TargetData *TD = TLI.getTargetData();
6645   SmallVector<ISD::InputArg, 16> Ins;
6646 
6647   // Check whether the function can return without sret-demotion.
6648   SmallVector<ISD::OutputArg, 4> Outs;
6649   GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6650                 Outs, TLI);
6651 
6652   if (!FuncInfo->CanLowerReturn) {
6653     // Put in an sret pointer parameter before all the other parameters.
6654     SmallVector<EVT, 1> ValueVTs;
6655     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6656 
6657     // NOTE: Assuming that a pointer will never break down to more than one VT
6658     // or one register.
6659     ISD::ArgFlagsTy Flags;
6660     Flags.setSRet();
6661     EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6662     ISD::InputArg RetArg(Flags, RegisterVT, true);
6663     Ins.push_back(RetArg);
6664   }
6665 
6666   // Set up the incoming argument description vector.
6667   unsigned Idx = 1;
6668   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6669        I != E; ++I, ++Idx) {
6670     SmallVector<EVT, 4> ValueVTs;
6671     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6672     bool isArgValueUsed = !I->use_empty();
6673     for (unsigned Value = 0, NumValues = ValueVTs.size();
6674          Value != NumValues; ++Value) {
6675       EVT VT = ValueVTs[Value];
6676       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6677       ISD::ArgFlagsTy Flags;
6678       unsigned OriginalAlignment =
6679         TD->getABITypeAlignment(ArgTy);
6680 
6681       if (F.paramHasAttr(Idx, Attribute::ZExt))
6682         Flags.setZExt();
6683       if (F.paramHasAttr(Idx, Attribute::SExt))
6684         Flags.setSExt();
6685       if (F.paramHasAttr(Idx, Attribute::InReg))
6686         Flags.setInReg();
6687       if (F.paramHasAttr(Idx, Attribute::StructRet))
6688         Flags.setSRet();
6689       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6690         Flags.setByVal();
6691         PointerType *Ty = cast<PointerType>(I->getType());
6692         Type *ElementTy = Ty->getElementType();
6693         Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6694         // For ByVal, alignment should be passed from FE.  BE will guess if
6695         // this info is not there but there are cases it cannot get right.
6696         unsigned FrameAlign;
6697         if (F.getParamAlignment(Idx))
6698           FrameAlign = F.getParamAlignment(Idx);
6699         else
6700           FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6701         Flags.setByValAlign(FrameAlign);
6702       }
6703       if (F.paramHasAttr(Idx, Attribute::Nest))
6704         Flags.setNest();
6705       Flags.setOrigAlign(OriginalAlignment);
6706 
6707       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6708       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6709       for (unsigned i = 0; i != NumRegs; ++i) {
6710         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
6711         if (NumRegs > 1 && i == 0)
6712           MyFlags.Flags.setSplit();
6713         // if it isn't first piece, alignment must be 1
6714         else if (i > 0)
6715           MyFlags.Flags.setOrigAlign(1);
6716         Ins.push_back(MyFlags);
6717       }
6718     }
6719   }
6720 
6721   // Call the target to set up the argument values.
6722   SmallVector<SDValue, 8> InVals;
6723   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6724                                              F.isVarArg(), Ins,
6725                                              dl, DAG, InVals);
6726 
6727   // Verify that the target's LowerFormalArguments behaved as expected.
6728   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6729          "LowerFormalArguments didn't return a valid chain!");
6730   assert(InVals.size() == Ins.size() &&
6731          "LowerFormalArguments didn't emit the correct number of values!");
6732   DEBUG({
6733       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6734         assert(InVals[i].getNode() &&
6735                "LowerFormalArguments emitted a null value!");
6736         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6737                "LowerFormalArguments emitted a value with the wrong type!");
6738       }
6739     });
6740 
6741   // Update the DAG with the new chain value resulting from argument lowering.
6742   DAG.setRoot(NewRoot);
6743 
6744   // Set up the argument values.
6745   unsigned i = 0;
6746   Idx = 1;
6747   if (!FuncInfo->CanLowerReturn) {
6748     // Create a virtual register for the sret pointer, and put in a copy
6749     // from the sret argument into it.
6750     SmallVector<EVT, 1> ValueVTs;
6751     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6752     EVT VT = ValueVTs[0];
6753     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6754     ISD::NodeType AssertOp = ISD::DELETED_NODE;
6755     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6756                                         RegVT, VT, AssertOp);
6757 
6758     MachineFunction& MF = SDB->DAG.getMachineFunction();
6759     MachineRegisterInfo& RegInfo = MF.getRegInfo();
6760     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6761     FuncInfo->DemoteRegister = SRetReg;
6762     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6763                                     SRetReg, ArgValue);
6764     DAG.setRoot(NewRoot);
6765 
6766     // i indexes lowered arguments.  Bump it past the hidden sret argument.
6767     // Idx indexes LLVM arguments.  Don't touch it.
6768     ++i;
6769   }
6770 
6771   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6772       ++I, ++Idx) {
6773     SmallVector<SDValue, 4> ArgValues;
6774     SmallVector<EVT, 4> ValueVTs;
6775     ComputeValueVTs(TLI, I->getType(), ValueVTs);
6776     unsigned NumValues = ValueVTs.size();
6777 
6778     // If this argument is unused then remember its value. It is used to generate
6779     // debugging information.
6780     if (I->use_empty() && NumValues)
6781       SDB->setUnusedArgValue(I, InVals[i]);
6782 
6783     for (unsigned Val = 0; Val != NumValues; ++Val) {
6784       EVT VT = ValueVTs[Val];
6785       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6786       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6787 
6788       if (!I->use_empty()) {
6789         ISD::NodeType AssertOp = ISD::DELETED_NODE;
6790         if (F.paramHasAttr(Idx, Attribute::SExt))
6791           AssertOp = ISD::AssertSext;
6792         else if (F.paramHasAttr(Idx, Attribute::ZExt))
6793           AssertOp = ISD::AssertZext;
6794 
6795         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6796                                              NumParts, PartVT, VT,
6797                                              AssertOp));
6798       }
6799 
6800       i += NumParts;
6801     }
6802 
6803     // We don't need to do anything else for unused arguments.
6804     if (ArgValues.empty())
6805       continue;
6806 
6807     // Note down frame index.
6808     if (FrameIndexSDNode *FI =
6809         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6810       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6811 
6812     SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6813                                      SDB->getCurDebugLoc());
6814 
6815     SDB->setValue(I, Res);
6816     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6817       if (LoadSDNode *LNode =
6818           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6819         if (FrameIndexSDNode *FI =
6820             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6821         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6822     }
6823 
6824     // If this argument is live outside of the entry block, insert a copy from
6825     // wherever we got it to the vreg that other BB's will reference it as.
6826     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6827       // If we can, though, try to skip creating an unnecessary vreg.
6828       // FIXME: This isn't very clean... it would be nice to make this more
6829       // general.  It's also subtly incompatible with the hacks FastISel
6830       // uses with vregs.
6831       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6832       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6833         FuncInfo->ValueMap[I] = Reg;
6834         continue;
6835       }
6836     }
6837     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6838       FuncInfo->InitializeRegForValue(I);
6839       SDB->CopyToExportRegsIfNeeded(I);
6840     }
6841   }
6842 
6843   assert(i == InVals.size() && "Argument register count mismatch!");
6844 
6845   // Finally, if the target has anything special to do, allow it to do so.
6846   // FIXME: this should insert code into the DAG!
6847   EmitFunctionEntryCode();
6848 }
6849 
6850 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6851 /// ensure constants are generated when needed.  Remember the virtual registers
6852 /// that need to be added to the Machine PHI nodes as input.  We cannot just
6853 /// directly add them, because expansion might result in multiple MBB's for one
6854 /// BB.  As such, the start of the BB might correspond to a different MBB than
6855 /// the end.
6856 ///
6857 void
6858 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6859   const TerminatorInst *TI = LLVMBB->getTerminator();
6860 
6861   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6862 
6863   // Check successor nodes' PHI nodes that expect a constant to be available
6864   // from this block.
6865   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6866     const BasicBlock *SuccBB = TI->getSuccessor(succ);
6867     if (!isa<PHINode>(SuccBB->begin())) continue;
6868     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6869 
6870     // If this terminator has multiple identical successors (common for
6871     // switches), only handle each succ once.
6872     if (!SuccsHandled.insert(SuccMBB)) continue;
6873 
6874     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6875 
6876     // At this point we know that there is a 1-1 correspondence between LLVM PHI
6877     // nodes and Machine PHI nodes, but the incoming operands have not been
6878     // emitted yet.
6879     for (BasicBlock::const_iterator I = SuccBB->begin();
6880          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6881       // Ignore dead phi's.
6882       if (PN->use_empty()) continue;
6883 
6884       // Skip empty types
6885       if (PN->getType()->isEmptyTy())
6886         continue;
6887 
6888       unsigned Reg;
6889       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6890 
6891       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6892         unsigned &RegOut = ConstantsOut[C];
6893         if (RegOut == 0) {
6894           RegOut = FuncInfo.CreateRegs(C->getType());
6895           CopyValueToVirtualRegister(C, RegOut);
6896         }
6897         Reg = RegOut;
6898       } else {
6899         DenseMap<const Value *, unsigned>::iterator I =
6900           FuncInfo.ValueMap.find(PHIOp);
6901         if (I != FuncInfo.ValueMap.end())
6902           Reg = I->second;
6903         else {
6904           assert(isa<AllocaInst>(PHIOp) &&
6905                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6906                  "Didn't codegen value into a register!??");
6907           Reg = FuncInfo.CreateRegs(PHIOp->getType());
6908           CopyValueToVirtualRegister(PHIOp, Reg);
6909         }
6910       }
6911 
6912       // Remember that this register needs to added to the machine PHI node as
6913       // the input for this MBB.
6914       SmallVector<EVT, 4> ValueVTs;
6915       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6916       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6917         EVT VT = ValueVTs[vti];
6918         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6919         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6920           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6921         Reg += NumRegisters;
6922       }
6923     }
6924   }
6925   ConstantsOut.clear();
6926 }
6927