1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "SDNodeDbgValue.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/CodeGen/Analysis.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/Constants.h" 37 #include "llvm/DataLayout.h" 38 #include "llvm/DebugInfo.h" 39 #include "llvm/DerivedTypes.h" 40 #include "llvm/Function.h" 41 #include "llvm/GlobalVariable.h" 42 #include "llvm/InlineAsm.h" 43 #include "llvm/Instructions.h" 44 #include "llvm/IntrinsicInst.h" 45 #include "llvm/Intrinsics.h" 46 #include "llvm/LLVMContext.h" 47 #include "llvm/Module.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/IntegersSubsetMapping.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static const unsigned MaxParallelChains = 64; 89 90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 91 const SDValue *Parts, unsigned NumParts, 92 EVT PartVT, EVT ValueVT, const Value *V); 93 94 /// getCopyFromParts - Create a value that contains the specified legal parts 95 /// combined into the value they represent. If the parts combine to a type 96 /// larger then ValueVT then AssertOp can be used to specify whether the extra 97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 98 /// (ISD::AssertSext). 99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 100 const SDValue *Parts, 101 unsigned NumParts, EVT PartVT, EVT ValueVT, 102 const Value *V, 103 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 104 if (ValueVT.isVector()) 105 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 106 PartVT, ValueVT, V); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT, V); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT, V); 133 } else { 134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT, V); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getTargetConstant(1, TLI.getPointerTy())); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 } 214 215 /// getCopyFromPartsVector - Create a value that contains the specified legal 216 /// parts combined into the value they represent. If the parts combine to a 217 /// type larger then ValueVT then AssertOp can be used to specify whether the 218 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 219 /// ValueVT (ISD::AssertSext). 220 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 221 const SDValue *Parts, unsigned NumParts, 222 EVT PartVT, EVT ValueVT, const Value *V) { 223 assert(ValueVT.isVector() && "Not a vector value"); 224 assert(NumParts > 0 && "No parts to assemble!"); 225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 226 SDValue Val = Parts[0]; 227 228 // Handle a multi-element vector. 229 if (NumParts > 1) { 230 EVT IntermediateVT, RegisterVT; 231 unsigned NumIntermediates; 232 unsigned NumRegs = 233 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 234 NumIntermediates, RegisterVT); 235 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 236 NumParts = NumRegs; // Silence a compiler warning. 237 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 238 assert(RegisterVT == Parts[0].getValueType() && 239 "Part type doesn't match part!"); 240 241 // Assemble the parts into intermediate operands. 242 SmallVector<SDValue, 8> Ops(NumIntermediates); 243 if (NumIntermediates == NumParts) { 244 // If the register was not expanded, truncate or copy the value, 245 // as appropriate. 246 for (unsigned i = 0; i != NumParts; ++i) 247 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 248 PartVT, IntermediateVT, V); 249 } else if (NumParts > 0) { 250 // If the intermediate type was expanded, build the intermediate 251 // operands from the parts. 252 assert(NumParts % NumIntermediates == 0 && 253 "Must expand into a divisible number of parts!"); 254 unsigned Factor = NumParts / NumIntermediates; 255 for (unsigned i = 0; i != NumIntermediates; ++i) 256 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 257 PartVT, IntermediateVT, V); 258 } 259 260 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 261 // intermediate operands. 262 Val = DAG.getNode(IntermediateVT.isVector() ? 263 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 264 ValueVT, &Ops[0], NumIntermediates); 265 } 266 267 // There is now one part, held in Val. Correct it to match ValueVT. 268 PartVT = Val.getValueType(); 269 270 if (PartVT == ValueVT) 271 return Val; 272 273 if (PartVT.isVector()) { 274 // If the element type of the source/dest vectors are the same, but the 275 // parts vector has more elements than the value vector, then we have a 276 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 277 // elements we want. 278 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 279 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 280 "Cannot narrow, it would be a lossy transformation"); 281 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 282 DAG.getIntPtrConstant(0)); 283 } 284 285 // Vector/Vector bitcast. 286 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 287 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 288 289 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 290 "Cannot handle this kind of promotion"); 291 // Promoted vector extract 292 bool Smaller = ValueVT.bitsLE(PartVT); 293 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 294 DL, ValueVT, Val); 295 296 } 297 298 // Trivial bitcast if the types are the same size and the destination 299 // vector type is legal. 300 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 301 TLI.isTypeLegal(ValueVT)) 302 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 303 304 // Handle cases such as i8 -> <1 x i1> 305 if (ValueVT.getVectorNumElements() != 1) { 306 LLVMContext &Ctx = *DAG.getContext(); 307 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 308 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (isa<InlineAsm>(CI->getCalledValue())) 311 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 312 Ctx.emitError(I, ErrMsg); 313 } else { 314 Ctx.emitError(ErrMsg); 315 } 316 report_fatal_error("Cannot handle scalar-to-vector conversion!"); 317 } 318 319 if (ValueVT.getVectorNumElements() == 1 && 320 ValueVT.getVectorElementType() != PartVT) { 321 bool Smaller = ValueVT.bitsLE(PartVT); 322 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 323 DL, ValueVT.getScalarType(), Val); 324 } 325 326 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 327 } 328 329 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 330 SDValue Val, SDValue *Parts, unsigned NumParts, 331 EVT PartVT, const Value *V); 332 333 /// getCopyToParts - Create a series of nodes that contain the specified value 334 /// split into legal parts. If the parts contain more bits than Val, then, for 335 /// integers, ExtendKind can be used to specify how to generate the extra bits. 336 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 337 SDValue Val, SDValue *Parts, unsigned NumParts, 338 EVT PartVT, const Value *V, 339 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 340 EVT ValueVT = Val.getValueType(); 341 342 // Handle the vector case separately. 343 if (ValueVT.isVector()) 344 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 unsigned PartBits = PartVT.getSizeInBits(); 348 unsigned OrigNumParts = NumParts; 349 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 350 351 if (NumParts == 0) 352 return; 353 354 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 355 if (PartVT == ValueVT) { 356 assert(NumParts == 1 && "No-op copy with multiple parts!"); 357 Parts[0] = Val; 358 return; 359 } 360 361 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 362 // If the parts cover more bits than the value has, promote the value. 363 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 364 assert(NumParts == 1 && "Do not know what to promote to!"); 365 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 366 } else { 367 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 368 ValueVT.isInteger() && 369 "Unknown mismatch!"); 370 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 371 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 372 if (PartVT == MVT::x86mmx) 373 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 374 } 375 } else if (PartBits == ValueVT.getSizeInBits()) { 376 // Different types of the same size. 377 assert(NumParts == 1 && PartVT != ValueVT); 378 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 379 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 380 // If the parts cover less bits than value has, truncate the value. 381 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 382 ValueVT.isInteger() && 383 "Unknown mismatch!"); 384 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 385 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 386 if (PartVT == MVT::x86mmx) 387 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 388 } 389 390 // The value may have changed - recompute ValueVT. 391 ValueVT = Val.getValueType(); 392 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 393 "Failed to tile the value with PartVT!"); 394 395 if (NumParts == 1) { 396 if (PartVT != ValueVT) { 397 LLVMContext &Ctx = *DAG.getContext(); 398 Twine ErrMsg("scalar-to-vector conversion failed"); 399 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 400 if (const CallInst *CI = dyn_cast<CallInst>(I)) 401 if (isa<InlineAsm>(CI->getCalledValue())) 402 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 403 Ctx.emitError(I, ErrMsg); 404 } else { 405 Ctx.emitError(ErrMsg); 406 } 407 } 408 409 Parts[0] = Val; 410 return; 411 } 412 413 // Expand the value into multiple parts. 414 if (NumParts & (NumParts - 1)) { 415 // The number of parts is not a power of 2. Split off and copy the tail. 416 assert(PartVT.isInteger() && ValueVT.isInteger() && 417 "Do not know what to expand to!"); 418 unsigned RoundParts = 1 << Log2_32(NumParts); 419 unsigned RoundBits = RoundParts * PartBits; 420 unsigned OddParts = NumParts - RoundParts; 421 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 422 DAG.getIntPtrConstant(RoundBits)); 423 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 424 425 if (TLI.isBigEndian()) 426 // The odd parts were reversed by getCopyToParts - unreverse them. 427 std::reverse(Parts + RoundParts, Parts + NumParts); 428 429 NumParts = RoundParts; 430 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 431 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 432 } 433 434 // The number of parts is a power of 2. Repeatedly bisect the value using 435 // EXTRACT_ELEMENT. 436 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 437 EVT::getIntegerVT(*DAG.getContext(), 438 ValueVT.getSizeInBits()), 439 Val); 440 441 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 442 for (unsigned i = 0; i < NumParts; i += StepSize) { 443 unsigned ThisBits = StepSize * PartBits / 2; 444 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 445 SDValue &Part0 = Parts[i]; 446 SDValue &Part1 = Parts[i+StepSize/2]; 447 448 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 449 ThisVT, Part0, DAG.getIntPtrConstant(1)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(0)); 452 453 if (ThisBits == PartBits && ThisVT != PartVT) { 454 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 455 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 456 } 457 } 458 } 459 460 if (TLI.isBigEndian()) 461 std::reverse(Parts, Parts + OrigNumParts); 462 } 463 464 465 /// getCopyToPartsVector - Create a series of nodes that contain the specified 466 /// value split into legal parts. 467 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 468 SDValue Val, SDValue *Parts, unsigned NumParts, 469 EVT PartVT, const Value *V) { 470 EVT ValueVT = Val.getValueType(); 471 assert(ValueVT.isVector() && "Not a vector"); 472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 473 474 if (NumParts == 1) { 475 if (PartVT == ValueVT) { 476 // Nothing to do. 477 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 478 // Bitconvert vector->vector case. 479 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 480 } else if (PartVT.isVector() && 481 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 482 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 483 EVT ElementVT = PartVT.getVectorElementType(); 484 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 485 // undef elements. 486 SmallVector<SDValue, 16> Ops; 487 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 488 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 489 ElementVT, Val, DAG.getIntPtrConstant(i))); 490 491 for (unsigned i = ValueVT.getVectorNumElements(), 492 e = PartVT.getVectorNumElements(); i != e; ++i) 493 Ops.push_back(DAG.getUNDEF(ElementVT)); 494 495 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 496 497 // FIXME: Use CONCAT for 2x -> 4x. 498 499 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 500 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 501 } else if (PartVT.isVector() && 502 PartVT.getVectorElementType().bitsGE( 503 ValueVT.getVectorElementType()) && 504 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 505 506 // Promoted vector extract 507 bool Smaller = PartVT.bitsLE(ValueVT); 508 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 509 DL, PartVT, Val); 510 } else{ 511 // Vector -> scalar conversion. 512 assert(ValueVT.getVectorNumElements() == 1 && 513 "Only trivial vector-to-scalar conversions should get here!"); 514 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 515 PartVT, Val, DAG.getIntPtrConstant(0)); 516 517 bool Smaller = ValueVT.bitsLE(PartVT); 518 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 519 DL, PartVT, Val); 520 } 521 522 Parts[0] = Val; 523 return; 524 } 525 526 // Handle a multi-element vector. 527 EVT IntermediateVT, RegisterVT; 528 unsigned NumIntermediates; 529 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 530 IntermediateVT, 531 NumIntermediates, RegisterVT); 532 unsigned NumElements = ValueVT.getVectorNumElements(); 533 534 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 535 NumParts = NumRegs; // Silence a compiler warning. 536 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 537 538 // Split the vector into intermediate operands. 539 SmallVector<SDValue, 8> Ops(NumIntermediates); 540 for (unsigned i = 0; i != NumIntermediates; ++i) { 541 if (IntermediateVT.isVector()) 542 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 543 IntermediateVT, Val, 544 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 545 else 546 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 547 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 548 } 549 550 // Split the intermediate operands into legal parts. 551 if (NumParts == NumIntermediates) { 552 // If the register was not expanded, promote or copy the value, 553 // as appropriate. 554 for (unsigned i = 0; i != NumParts; ++i) 555 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 556 } else if (NumParts > 0) { 557 // If the intermediate type was expanded, split each the value into 558 // legal parts. 559 assert(NumParts % NumIntermediates == 0 && 560 "Must expand into a divisible number of parts!"); 561 unsigned Factor = NumParts / NumIntermediates; 562 for (unsigned i = 0; i != NumIntermediates; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 564 } 565 } 566 567 namespace { 568 /// RegsForValue - This struct represents the registers (physical or virtual) 569 /// that a particular set of values is assigned, and the type information 570 /// about the value. The most common situation is to represent one value at a 571 /// time, but struct or array values are handled element-wise as multiple 572 /// values. The splitting of aggregates is performed recursively, so that we 573 /// never have aggregate-typed registers. The values at this point do not 574 /// necessarily have legal types, so each value may require one or more 575 /// registers of some legal type. 576 /// 577 struct RegsForValue { 578 /// ValueVTs - The value types of the values, which may not be legal, and 579 /// may need be promoted or synthesized from one or more registers. 580 /// 581 SmallVector<EVT, 4> ValueVTs; 582 583 /// RegVTs - The value types of the registers. This is the same size as 584 /// ValueVTs and it records, for each value, what the type of the assigned 585 /// register or registers are. (Individual values are never synthesized 586 /// from more than one type of register.) 587 /// 588 /// With virtual registers, the contents of RegVTs is redundant with TLI's 589 /// getRegisterType member function, however when with physical registers 590 /// it is necessary to have a separate record of the types. 591 /// 592 SmallVector<EVT, 4> RegVTs; 593 594 /// Regs - This list holds the registers assigned to the values. 595 /// Each legal or promoted value requires one register, and each 596 /// expanded value requires multiple registers. 597 /// 598 SmallVector<unsigned, 4> Regs; 599 600 RegsForValue() {} 601 602 RegsForValue(const SmallVector<unsigned, 4> ®s, 603 EVT regvt, EVT valuevt) 604 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 605 606 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 607 unsigned Reg, Type *Ty) { 608 ComputeValueVTs(tli, Ty, ValueVTs); 609 610 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 611 EVT ValueVT = ValueVTs[Value]; 612 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 613 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 614 for (unsigned i = 0; i != NumRegs; ++i) 615 Regs.push_back(Reg + i); 616 RegVTs.push_back(RegisterVT); 617 Reg += NumRegs; 618 } 619 } 620 621 /// areValueTypesLegal - Return true if types of all the values are legal. 622 bool areValueTypesLegal(const TargetLowering &TLI) { 623 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 EVT RegisterVT = RegVTs[Value]; 625 if (!TLI.isTypeLegal(RegisterVT)) 626 return false; 627 } 628 return true; 629 } 630 631 /// append - Add the specified values to this one. 632 void append(const RegsForValue &RHS) { 633 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 634 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 635 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 636 } 637 638 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 639 /// this value and returns the result as a ValueVTs value. This uses 640 /// Chain/Flag as the input and updates them for the output Chain/Flag. 641 /// If the Flag pointer is NULL, no flag is used. 642 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag, 645 const Value *V = 0) const; 646 647 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 648 /// specified value into the registers specified by this object. This uses 649 /// Chain/Flag as the input and updates them for the output Chain/Flag. 650 /// If the Flag pointer is NULL, no flag is used. 651 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 652 SDValue &Chain, SDValue *Flag, const Value *V) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 DebugLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 EVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (Flag == 0) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 // FIXME: We capture more information than the dag can represent. For 717 // now, just use the tightest assertzext/assertsext possible. 718 bool isSExt = true; 719 EVT FromVT(MVT::Other); 720 if (NumSignBits == RegSize) 721 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 722 else if (NumZeroBits >= RegSize-1) 723 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 724 else if (NumSignBits > RegSize-8) 725 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 726 else if (NumZeroBits >= RegSize-8) 727 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 728 else if (NumSignBits > RegSize-16) 729 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 730 else if (NumZeroBits >= RegSize-16) 731 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 732 else if (NumSignBits > RegSize-32) 733 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 734 else if (NumZeroBits >= RegSize-32) 735 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 736 else 737 continue; 738 739 // Add an assertion node. 740 assert(FromVT != MVT::Other); 741 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 742 RegisterVT, P, DAG.getValueType(FromVT)); 743 } 744 745 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 746 NumRegs, RegisterVT, ValueVT, V); 747 Part += NumRegs; 748 Parts.clear(); 749 } 750 751 return DAG.getNode(ISD::MERGE_VALUES, dl, 752 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 753 &Values[0], ValueVTs.size()); 754 } 755 756 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 757 /// specified value into the registers specified by this object. This uses 758 /// Chain/Flag as the input and updates them for the output Chain/Flag. 759 /// If the Flag pointer is NULL, no flag is used. 760 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 761 SDValue &Chain, SDValue *Flag, 762 const Value *V) const { 763 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 764 765 // Get the list of the values's legal parts. 766 unsigned NumRegs = Regs.size(); 767 SmallVector<SDValue, 8> Parts(NumRegs); 768 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 769 EVT ValueVT = ValueVTs[Value]; 770 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 771 EVT RegisterVT = RegVTs[Value]; 772 773 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 774 &Parts[Part], NumParts, RegisterVT, V); 775 Part += NumParts; 776 } 777 778 // Copy the parts into the registers. 779 SmallVector<SDValue, 8> Chains(NumRegs); 780 for (unsigned i = 0; i != NumRegs; ++i) { 781 SDValue Part; 782 if (Flag == 0) { 783 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 784 } else { 785 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 786 *Flag = Part.getValue(1); 787 } 788 789 Chains[i] = Part.getValue(0); 790 } 791 792 if (NumRegs == 1 || Flag) 793 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 794 // flagged to it. That is the CopyToReg nodes and the user are considered 795 // a single scheduling unit. If we create a TokenFactor and return it as 796 // chain, then the TokenFactor is both a predecessor (operand) of the 797 // user as well as a successor (the TF operands are flagged to the user). 798 // c1, f1 = CopyToReg 799 // c2, f2 = CopyToReg 800 // c3 = TokenFactor c1, c2 801 // ... 802 // = op c3, ..., f2 803 Chain = Chains[NumRegs-1]; 804 else 805 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 806 } 807 808 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 809 /// operand list. This adds the code marker and includes the number of 810 /// values added into it. 811 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 812 unsigned MatchingIdx, 813 SelectionDAG &DAG, 814 std::vector<SDValue> &Ops) const { 815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 816 817 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 818 if (HasMatching) 819 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 820 else if (!Regs.empty() && 821 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 822 // Put the register class of the virtual registers in the flag word. That 823 // way, later passes can recompute register class constraints for inline 824 // assembly as well as normal instructions. 825 // Don't do this for tied operands that can use the regclass information 826 // from the def. 827 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 828 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 829 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 830 } 831 832 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 833 Ops.push_back(Res); 834 835 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 836 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 837 EVT RegisterVT = RegVTs[Value]; 838 for (unsigned i = 0; i != NumRegs; ++i) { 839 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 840 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 841 } 842 } 843 } 844 845 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 846 const TargetLibraryInfo *li) { 847 AA = &aa; 848 GFI = gfi; 849 LibInfo = li; 850 TD = DAG.getTarget().getDataLayout(); 851 Context = DAG.getContext(); 852 LPadToCallSiteMap.clear(); 853 } 854 855 /// clear - Clear out the current SelectionDAG and the associated 856 /// state and prepare this SelectionDAGBuilder object to be used 857 /// for a new block. This doesn't clear out information about 858 /// additional blocks that are needed to complete switch lowering 859 /// or PHI node updating; that information is cleared out as it is 860 /// consumed. 861 void SelectionDAGBuilder::clear() { 862 NodeMap.clear(); 863 UnusedArgNodeMap.clear(); 864 PendingLoads.clear(); 865 PendingExports.clear(); 866 CurDebugLoc = DebugLoc(); 867 HasTailCall = false; 868 } 869 870 /// clearDanglingDebugInfo - Clear the dangling debug information 871 /// map. This function is separated from the clear so that debug 872 /// information that is dangling in a basic block can be properly 873 /// resolved in a different basic block. This allows the 874 /// SelectionDAG to resolve dangling debug information attached 875 /// to PHI nodes. 876 void SelectionDAGBuilder::clearDanglingDebugInfo() { 877 DanglingDebugInfoMap.clear(); 878 } 879 880 /// getRoot - Return the current virtual root of the Selection DAG, 881 /// flushing any PendingLoad items. This must be done before emitting 882 /// a store or any other node that may need to be ordered after any 883 /// prior load instructions. 884 /// 885 SDValue SelectionDAGBuilder::getRoot() { 886 if (PendingLoads.empty()) 887 return DAG.getRoot(); 888 889 if (PendingLoads.size() == 1) { 890 SDValue Root = PendingLoads[0]; 891 DAG.setRoot(Root); 892 PendingLoads.clear(); 893 return Root; 894 } 895 896 // Otherwise, we have to make a token factor node. 897 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 898 &PendingLoads[0], PendingLoads.size()); 899 PendingLoads.clear(); 900 DAG.setRoot(Root); 901 return Root; 902 } 903 904 /// getControlRoot - Similar to getRoot, but instead of flushing all the 905 /// PendingLoad items, flush all the PendingExports items. It is necessary 906 /// to do this before emitting a terminator instruction. 907 /// 908 SDValue SelectionDAGBuilder::getControlRoot() { 909 SDValue Root = DAG.getRoot(); 910 911 if (PendingExports.empty()) 912 return Root; 913 914 // Turn all of the CopyToReg chains into one factored node. 915 if (Root.getOpcode() != ISD::EntryToken) { 916 unsigned i = 0, e = PendingExports.size(); 917 for (; i != e; ++i) { 918 assert(PendingExports[i].getNode()->getNumOperands() > 1); 919 if (PendingExports[i].getNode()->getOperand(0) == Root) 920 break; // Don't add the root if we already indirectly depend on it. 921 } 922 923 if (i == e) 924 PendingExports.push_back(Root); 925 } 926 927 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 928 &PendingExports[0], 929 PendingExports.size()); 930 PendingExports.clear(); 931 DAG.setRoot(Root); 932 return Root; 933 } 934 935 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 936 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 937 DAG.AssignOrdering(Node, SDNodeOrder); 938 939 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 940 AssignOrderingToNode(Node->getOperand(I).getNode()); 941 } 942 943 void SelectionDAGBuilder::visit(const Instruction &I) { 944 // Set up outgoing PHI node register values before emitting the terminator. 945 if (isa<TerminatorInst>(&I)) 946 HandlePHINodesInSuccessorBlocks(I.getParent()); 947 948 CurDebugLoc = I.getDebugLoc(); 949 950 visit(I.getOpcode(), I); 951 952 if (!isa<TerminatorInst>(&I) && !HasTailCall) 953 CopyToExportRegsIfNeeded(&I); 954 955 CurDebugLoc = DebugLoc(); 956 } 957 958 void SelectionDAGBuilder::visitPHI(const PHINode &) { 959 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 960 } 961 962 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 963 // Note: this doesn't use InstVisitor, because it has to work with 964 // ConstantExpr's in addition to instructions. 965 switch (Opcode) { 966 default: llvm_unreachable("Unknown instruction type encountered!"); 967 // Build the switch statement using the Instruction.def file. 968 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 969 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 970 #include "llvm/Instruction.def" 971 } 972 973 // Assign the ordering to the freshly created DAG nodes. 974 if (NodeMap.count(&I)) { 975 ++SDNodeOrder; 976 AssignOrderingToNode(getValue(&I).getNode()); 977 } 978 } 979 980 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 981 // generate the debug data structures now that we've seen its definition. 982 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 983 SDValue Val) { 984 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 985 if (DDI.getDI()) { 986 const DbgValueInst *DI = DDI.getDI(); 987 DebugLoc dl = DDI.getdl(); 988 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 989 MDNode *Variable = DI->getVariable(); 990 uint64_t Offset = DI->getOffset(); 991 SDDbgValue *SDV; 992 if (Val.getNode()) { 993 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 994 SDV = DAG.getDbgValue(Variable, Val.getNode(), 995 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 996 DAG.AddDbgValue(SDV, Val.getNode(), false); 997 } 998 } else 999 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 1000 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1001 } 1002 } 1003 1004 /// getValue - Return an SDValue for the given Value. 1005 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1006 // If we already have an SDValue for this value, use it. It's important 1007 // to do this first, so that we don't create a CopyFromReg if we already 1008 // have a regular SDValue. 1009 SDValue &N = NodeMap[V]; 1010 if (N.getNode()) return N; 1011 1012 // If there's a virtual register allocated and initialized for this 1013 // value, use it. 1014 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1015 if (It != FuncInfo.ValueMap.end()) { 1016 unsigned InReg = It->second; 1017 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 1018 SDValue Chain = DAG.getEntryNode(); 1019 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1020 resolveDanglingDebugInfo(V, N); 1021 return N; 1022 } 1023 1024 // Otherwise create a new SDValue and remember it. 1025 SDValue Val = getValueImpl(V); 1026 NodeMap[V] = Val; 1027 resolveDanglingDebugInfo(V, Val); 1028 return Val; 1029 } 1030 1031 /// getNonRegisterValue - Return an SDValue for the given Value, but 1032 /// don't look in FuncInfo.ValueMap for a virtual register. 1033 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1034 // If we already have an SDValue for this value, use it. 1035 SDValue &N = NodeMap[V]; 1036 if (N.getNode()) return N; 1037 1038 // Otherwise create a new SDValue and remember it. 1039 SDValue Val = getValueImpl(V); 1040 NodeMap[V] = Val; 1041 resolveDanglingDebugInfo(V, Val); 1042 return Val; 1043 } 1044 1045 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1046 /// Create an SDValue for the given value. 1047 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1048 if (const Constant *C = dyn_cast<Constant>(V)) { 1049 EVT VT = TLI.getValueType(V->getType(), true); 1050 1051 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1052 return DAG.getConstant(*CI, VT); 1053 1054 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1055 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1056 1057 if (isa<ConstantPointerNull>(C)) 1058 return DAG.getConstant(0, TLI.getPointerTy()); 1059 1060 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1061 return DAG.getConstantFP(*CFP, VT); 1062 1063 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1064 return DAG.getUNDEF(VT); 1065 1066 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1067 visit(CE->getOpcode(), *CE); 1068 SDValue N1 = NodeMap[V]; 1069 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1070 return N1; 1071 } 1072 1073 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1074 SmallVector<SDValue, 4> Constants; 1075 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1076 OI != OE; ++OI) { 1077 SDNode *Val = getValue(*OI).getNode(); 1078 // If the operand is an empty aggregate, there are no values. 1079 if (!Val) continue; 1080 // Add each leaf value from the operand to the Constants list 1081 // to form a flattened list of all the values. 1082 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1083 Constants.push_back(SDValue(Val, i)); 1084 } 1085 1086 return DAG.getMergeValues(&Constants[0], Constants.size(), 1087 getCurDebugLoc()); 1088 } 1089 1090 if (const ConstantDataSequential *CDS = 1091 dyn_cast<ConstantDataSequential>(C)) { 1092 SmallVector<SDValue, 4> Ops; 1093 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1094 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Ops.push_back(SDValue(Val, i)); 1099 } 1100 1101 if (isa<ArrayType>(CDS->getType())) 1102 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1103 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1104 VT, &Ops[0], Ops.size()); 1105 } 1106 1107 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1108 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1109 "Unknown struct or array constant!"); 1110 1111 SmallVector<EVT, 4> ValueVTs; 1112 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1113 unsigned NumElts = ValueVTs.size(); 1114 if (NumElts == 0) 1115 return SDValue(); // empty struct 1116 SmallVector<SDValue, 4> Constants(NumElts); 1117 for (unsigned i = 0; i != NumElts; ++i) { 1118 EVT EltVT = ValueVTs[i]; 1119 if (isa<UndefValue>(C)) 1120 Constants[i] = DAG.getUNDEF(EltVT); 1121 else if (EltVT.isFloatingPoint()) 1122 Constants[i] = DAG.getConstantFP(0, EltVT); 1123 else 1124 Constants[i] = DAG.getConstant(0, EltVT); 1125 } 1126 1127 return DAG.getMergeValues(&Constants[0], NumElts, 1128 getCurDebugLoc()); 1129 } 1130 1131 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1132 return DAG.getBlockAddress(BA, VT); 1133 1134 VectorType *VecTy = cast<VectorType>(V->getType()); 1135 unsigned NumElements = VecTy->getNumElements(); 1136 1137 // Now that we know the number and type of the elements, get that number of 1138 // elements into the Ops array based on what kind of constant it is. 1139 SmallVector<SDValue, 16> Ops; 1140 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1141 for (unsigned i = 0; i != NumElements; ++i) 1142 Ops.push_back(getValue(CV->getOperand(i))); 1143 } else { 1144 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1145 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1146 1147 SDValue Op; 1148 if (EltVT.isFloatingPoint()) 1149 Op = DAG.getConstantFP(0, EltVT); 1150 else 1151 Op = DAG.getConstant(0, EltVT); 1152 Ops.assign(NumElements, Op); 1153 } 1154 1155 // Create a BUILD_VECTOR node. 1156 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1157 VT, &Ops[0], Ops.size()); 1158 } 1159 1160 // If this is a static alloca, generate it as the frameindex instead of 1161 // computation. 1162 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1163 DenseMap<const AllocaInst*, int>::iterator SI = 1164 FuncInfo.StaticAllocaMap.find(AI); 1165 if (SI != FuncInfo.StaticAllocaMap.end()) 1166 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1167 } 1168 1169 // If this is an instruction which fast-isel has deferred, select it now. 1170 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1171 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1172 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1173 SDValue Chain = DAG.getEntryNode(); 1174 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1175 } 1176 1177 llvm_unreachable("Can't get register for value!"); 1178 } 1179 1180 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1181 SDValue Chain = getControlRoot(); 1182 SmallVector<ISD::OutputArg, 8> Outs; 1183 SmallVector<SDValue, 8> OutVals; 1184 1185 if (!FuncInfo.CanLowerReturn) { 1186 unsigned DemoteReg = FuncInfo.DemoteRegister; 1187 const Function *F = I.getParent()->getParent(); 1188 1189 // Emit a store of the return value through the virtual register. 1190 // Leave Outs empty so that LowerReturn won't try to load return 1191 // registers the usual way. 1192 SmallVector<EVT, 1> PtrValueVTs; 1193 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1194 PtrValueVTs); 1195 1196 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1197 SDValue RetOp = getValue(I.getOperand(0)); 1198 1199 SmallVector<EVT, 4> ValueVTs; 1200 SmallVector<uint64_t, 4> Offsets; 1201 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1202 unsigned NumValues = ValueVTs.size(); 1203 1204 SmallVector<SDValue, 4> Chains(NumValues); 1205 for (unsigned i = 0; i != NumValues; ++i) { 1206 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1207 RetPtr.getValueType(), RetPtr, 1208 DAG.getIntPtrConstant(Offsets[i])); 1209 Chains[i] = 1210 DAG.getStore(Chain, getCurDebugLoc(), 1211 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1212 // FIXME: better loc info would be nice. 1213 Add, MachinePointerInfo(), false, false, 0); 1214 } 1215 1216 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1217 MVT::Other, &Chains[0], NumValues); 1218 } else if (I.getNumOperands() != 0) { 1219 SmallVector<EVT, 4> ValueVTs; 1220 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1221 unsigned NumValues = ValueVTs.size(); 1222 if (NumValues) { 1223 SDValue RetOp = getValue(I.getOperand(0)); 1224 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1225 EVT VT = ValueVTs[j]; 1226 1227 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1228 1229 const Function *F = I.getParent()->getParent(); 1230 if (F->getRetAttributes().hasAttribute(Attributes::SExt)) 1231 ExtendKind = ISD::SIGN_EXTEND; 1232 else if (F->getRetAttributes().hasAttribute(Attributes::ZExt)) 1233 ExtendKind = ISD::ZERO_EXTEND; 1234 1235 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1236 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1237 1238 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1239 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1240 SmallVector<SDValue, 4> Parts(NumParts); 1241 getCopyToParts(DAG, getCurDebugLoc(), 1242 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1243 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1244 1245 // 'inreg' on function refers to return value 1246 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1247 if (F->getRetAttributes().hasAttribute(Attributes::InReg)) 1248 Flags.setInReg(); 1249 1250 // Propagate extension type if any 1251 if (ExtendKind == ISD::SIGN_EXTEND) 1252 Flags.setSExt(); 1253 else if (ExtendKind == ISD::ZERO_EXTEND) 1254 Flags.setZExt(); 1255 1256 for (unsigned i = 0; i < NumParts; ++i) { 1257 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1258 /*isfixed=*/true, 0, 0)); 1259 OutVals.push_back(Parts[i]); 1260 } 1261 } 1262 } 1263 } 1264 1265 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1266 CallingConv::ID CallConv = 1267 DAG.getMachineFunction().getFunction()->getCallingConv(); 1268 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1269 Outs, OutVals, getCurDebugLoc(), DAG); 1270 1271 // Verify that the target's LowerReturn behaved as expected. 1272 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1273 "LowerReturn didn't return a valid chain!"); 1274 1275 // Update the DAG with the new chain value resulting from return lowering. 1276 DAG.setRoot(Chain); 1277 } 1278 1279 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1280 /// created for it, emit nodes to copy the value into the virtual 1281 /// registers. 1282 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1283 // Skip empty types 1284 if (V->getType()->isEmptyTy()) 1285 return; 1286 1287 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1288 if (VMI != FuncInfo.ValueMap.end()) { 1289 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1290 CopyValueToVirtualRegister(V, VMI->second); 1291 } 1292 } 1293 1294 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1295 /// the current basic block, add it to ValueMap now so that we'll get a 1296 /// CopyTo/FromReg. 1297 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1298 // No need to export constants. 1299 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1300 1301 // Already exported? 1302 if (FuncInfo.isExportedInst(V)) return; 1303 1304 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1305 CopyValueToVirtualRegister(V, Reg); 1306 } 1307 1308 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1309 const BasicBlock *FromBB) { 1310 // The operands of the setcc have to be in this block. We don't know 1311 // how to export them from some other block. 1312 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1313 // Can export from current BB. 1314 if (VI->getParent() == FromBB) 1315 return true; 1316 1317 // Is already exported, noop. 1318 return FuncInfo.isExportedInst(V); 1319 } 1320 1321 // If this is an argument, we can export it if the BB is the entry block or 1322 // if it is already exported. 1323 if (isa<Argument>(V)) { 1324 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1325 return true; 1326 1327 // Otherwise, can only export this if it is already exported. 1328 return FuncInfo.isExportedInst(V); 1329 } 1330 1331 // Otherwise, constants can always be exported. 1332 return true; 1333 } 1334 1335 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1336 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1337 const MachineBasicBlock *Dst) const { 1338 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1339 if (!BPI) 1340 return 0; 1341 const BasicBlock *SrcBB = Src->getBasicBlock(); 1342 const BasicBlock *DstBB = Dst->getBasicBlock(); 1343 return BPI->getEdgeWeight(SrcBB, DstBB); 1344 } 1345 1346 void SelectionDAGBuilder:: 1347 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1348 uint32_t Weight /* = 0 */) { 1349 if (!Weight) 1350 Weight = getEdgeWeight(Src, Dst); 1351 Src->addSuccessor(Dst, Weight); 1352 } 1353 1354 1355 static bool InBlock(const Value *V, const BasicBlock *BB) { 1356 if (const Instruction *I = dyn_cast<Instruction>(V)) 1357 return I->getParent() == BB; 1358 return true; 1359 } 1360 1361 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1362 /// This function emits a branch and is used at the leaves of an OR or an 1363 /// AND operator tree. 1364 /// 1365 void 1366 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1367 MachineBasicBlock *TBB, 1368 MachineBasicBlock *FBB, 1369 MachineBasicBlock *CurBB, 1370 MachineBasicBlock *SwitchBB) { 1371 const BasicBlock *BB = CurBB->getBasicBlock(); 1372 1373 // If the leaf of the tree is a comparison, merge the condition into 1374 // the caseblock. 1375 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1376 // The operands of the cmp have to be in this block. We don't know 1377 // how to export them from some other block. If this is the first block 1378 // of the sequence, no exporting is needed. 1379 if (CurBB == SwitchBB || 1380 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1381 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1382 ISD::CondCode Condition; 1383 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1384 Condition = getICmpCondCode(IC->getPredicate()); 1385 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1386 Condition = getFCmpCondCode(FC->getPredicate()); 1387 if (TM.Options.NoNaNsFPMath) 1388 Condition = getFCmpCodeWithoutNaN(Condition); 1389 } else { 1390 Condition = ISD::SETEQ; // silence warning. 1391 llvm_unreachable("Unknown compare instruction"); 1392 } 1393 1394 CaseBlock CB(Condition, BOp->getOperand(0), 1395 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1396 SwitchCases.push_back(CB); 1397 return; 1398 } 1399 } 1400 1401 // Create a CaseBlock record representing this branch. 1402 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1403 NULL, TBB, FBB, CurBB); 1404 SwitchCases.push_back(CB); 1405 } 1406 1407 /// FindMergedConditions - If Cond is an expression like 1408 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1409 MachineBasicBlock *TBB, 1410 MachineBasicBlock *FBB, 1411 MachineBasicBlock *CurBB, 1412 MachineBasicBlock *SwitchBB, 1413 unsigned Opc) { 1414 // If this node is not part of the or/and tree, emit it as a branch. 1415 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1416 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1417 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1418 BOp->getParent() != CurBB->getBasicBlock() || 1419 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1420 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1421 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1422 return; 1423 } 1424 1425 // Create TmpBB after CurBB. 1426 MachineFunction::iterator BBI = CurBB; 1427 MachineFunction &MF = DAG.getMachineFunction(); 1428 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1429 CurBB->getParent()->insert(++BBI, TmpBB); 1430 1431 if (Opc == Instruction::Or) { 1432 // Codegen X | Y as: 1433 // jmp_if_X TBB 1434 // jmp TmpBB 1435 // TmpBB: 1436 // jmp_if_Y TBB 1437 // jmp FBB 1438 // 1439 1440 // Emit the LHS condition. 1441 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1442 1443 // Emit the RHS condition into TmpBB. 1444 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1445 } else { 1446 assert(Opc == Instruction::And && "Unknown merge op!"); 1447 // Codegen X & Y as: 1448 // jmp_if_X TmpBB 1449 // jmp FBB 1450 // TmpBB: 1451 // jmp_if_Y TBB 1452 // jmp FBB 1453 // 1454 // This requires creation of TmpBB after CurBB. 1455 1456 // Emit the LHS condition. 1457 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1458 1459 // Emit the RHS condition into TmpBB. 1460 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1461 } 1462 } 1463 1464 /// If the set of cases should be emitted as a series of branches, return true. 1465 /// If we should emit this as a bunch of and/or'd together conditions, return 1466 /// false. 1467 bool 1468 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1469 if (Cases.size() != 2) return true; 1470 1471 // If this is two comparisons of the same values or'd or and'd together, they 1472 // will get folded into a single comparison, so don't emit two blocks. 1473 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1474 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1475 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1476 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1477 return false; 1478 } 1479 1480 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1481 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1482 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1483 Cases[0].CC == Cases[1].CC && 1484 isa<Constant>(Cases[0].CmpRHS) && 1485 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1486 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1487 return false; 1488 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1489 return false; 1490 } 1491 1492 return true; 1493 } 1494 1495 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1496 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1497 1498 // Update machine-CFG edges. 1499 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1500 1501 // Figure out which block is immediately after the current one. 1502 MachineBasicBlock *NextBlock = 0; 1503 MachineFunction::iterator BBI = BrMBB; 1504 if (++BBI != FuncInfo.MF->end()) 1505 NextBlock = BBI; 1506 1507 if (I.isUnconditional()) { 1508 // Update machine-CFG edges. 1509 BrMBB->addSuccessor(Succ0MBB); 1510 1511 // If this is not a fall-through branch, emit the branch. 1512 if (Succ0MBB != NextBlock) 1513 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1514 MVT::Other, getControlRoot(), 1515 DAG.getBasicBlock(Succ0MBB))); 1516 1517 return; 1518 } 1519 1520 // If this condition is one of the special cases we handle, do special stuff 1521 // now. 1522 const Value *CondVal = I.getCondition(); 1523 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1524 1525 // If this is a series of conditions that are or'd or and'd together, emit 1526 // this as a sequence of branches instead of setcc's with and/or operations. 1527 // As long as jumps are not expensive, this should improve performance. 1528 // For example, instead of something like: 1529 // cmp A, B 1530 // C = seteq 1531 // cmp D, E 1532 // F = setle 1533 // or C, F 1534 // jnz foo 1535 // Emit: 1536 // cmp A, B 1537 // je foo 1538 // cmp D, E 1539 // jle foo 1540 // 1541 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1542 if (!TLI.isJumpExpensive() && 1543 BOp->hasOneUse() && 1544 (BOp->getOpcode() == Instruction::And || 1545 BOp->getOpcode() == Instruction::Or)) { 1546 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1547 BOp->getOpcode()); 1548 // If the compares in later blocks need to use values not currently 1549 // exported from this block, export them now. This block should always 1550 // be the first entry. 1551 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1552 1553 // Allow some cases to be rejected. 1554 if (ShouldEmitAsBranches(SwitchCases)) { 1555 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1556 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1557 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1558 } 1559 1560 // Emit the branch for this block. 1561 visitSwitchCase(SwitchCases[0], BrMBB); 1562 SwitchCases.erase(SwitchCases.begin()); 1563 return; 1564 } 1565 1566 // Okay, we decided not to do this, remove any inserted MBB's and clear 1567 // SwitchCases. 1568 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1569 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1570 1571 SwitchCases.clear(); 1572 } 1573 } 1574 1575 // Create a CaseBlock record representing this branch. 1576 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1577 NULL, Succ0MBB, Succ1MBB, BrMBB); 1578 1579 // Use visitSwitchCase to actually insert the fast branch sequence for this 1580 // cond branch. 1581 visitSwitchCase(CB, BrMBB); 1582 } 1583 1584 /// visitSwitchCase - Emits the necessary code to represent a single node in 1585 /// the binary search tree resulting from lowering a switch instruction. 1586 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1587 MachineBasicBlock *SwitchBB) { 1588 SDValue Cond; 1589 SDValue CondLHS = getValue(CB.CmpLHS); 1590 DebugLoc dl = getCurDebugLoc(); 1591 1592 // Build the setcc now. 1593 if (CB.CmpMHS == NULL) { 1594 // Fold "(X == true)" to X and "(X == false)" to !X to 1595 // handle common cases produced by branch lowering. 1596 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1597 CB.CC == ISD::SETEQ) 1598 Cond = CondLHS; 1599 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1600 CB.CC == ISD::SETEQ) { 1601 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1602 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1603 } else 1604 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1605 } else { 1606 assert(CB.CC == ISD::SETCC_INVALID && 1607 "Condition is undefined for to-the-range belonging check."); 1608 1609 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1610 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1611 1612 SDValue CmpOp = getValue(CB.CmpMHS); 1613 EVT VT = CmpOp.getValueType(); 1614 1615 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1616 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1617 ISD::SETULE); 1618 } else { 1619 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1620 VT, CmpOp, DAG.getConstant(Low, VT)); 1621 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1622 DAG.getConstant(High-Low, VT), ISD::SETULE); 1623 } 1624 } 1625 1626 // Update successor info 1627 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1628 // TrueBB and FalseBB are always different unless the incoming IR is 1629 // degenerate. This only happens when running llc on weird IR. 1630 if (CB.TrueBB != CB.FalseBB) 1631 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1632 1633 // Set NextBlock to be the MBB immediately after the current one, if any. 1634 // This is used to avoid emitting unnecessary branches to the next block. 1635 MachineBasicBlock *NextBlock = 0; 1636 MachineFunction::iterator BBI = SwitchBB; 1637 if (++BBI != FuncInfo.MF->end()) 1638 NextBlock = BBI; 1639 1640 // If the lhs block is the next block, invert the condition so that we can 1641 // fall through to the lhs instead of the rhs block. 1642 if (CB.TrueBB == NextBlock) { 1643 std::swap(CB.TrueBB, CB.FalseBB); 1644 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1645 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1646 } 1647 1648 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1649 MVT::Other, getControlRoot(), Cond, 1650 DAG.getBasicBlock(CB.TrueBB)); 1651 1652 // Insert the false branch. Do this even if it's a fall through branch, 1653 // this makes it easier to do DAG optimizations which require inverting 1654 // the branch condition. 1655 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1656 DAG.getBasicBlock(CB.FalseBB)); 1657 1658 DAG.setRoot(BrCond); 1659 } 1660 1661 /// visitJumpTable - Emit JumpTable node in the current MBB 1662 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1663 // Emit the code for the jump table 1664 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1665 EVT PTy = TLI.getPointerTy(); 1666 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1667 JT.Reg, PTy); 1668 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1669 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1670 MVT::Other, Index.getValue(1), 1671 Table, Index); 1672 DAG.setRoot(BrJumpTable); 1673 } 1674 1675 /// visitJumpTableHeader - This function emits necessary code to produce index 1676 /// in the JumpTable from switch case. 1677 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1678 JumpTableHeader &JTH, 1679 MachineBasicBlock *SwitchBB) { 1680 // Subtract the lowest switch case value from the value being switched on and 1681 // conditional branch to default mbb if the result is greater than the 1682 // difference between smallest and largest cases. 1683 SDValue SwitchOp = getValue(JTH.SValue); 1684 EVT VT = SwitchOp.getValueType(); 1685 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1686 DAG.getConstant(JTH.First, VT)); 1687 1688 // The SDNode we just created, which holds the value being switched on minus 1689 // the smallest case value, needs to be copied to a virtual register so it 1690 // can be used as an index into the jump table in a subsequent basic block. 1691 // This value may be smaller or larger than the target's pointer type, and 1692 // therefore require extension or truncating. 1693 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1694 1695 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1696 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1697 JumpTableReg, SwitchOp); 1698 JT.Reg = JumpTableReg; 1699 1700 // Emit the range check for the jump table, and branch to the default block 1701 // for the switch statement if the value being switched on exceeds the largest 1702 // case in the switch. 1703 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1704 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1705 DAG.getConstant(JTH.Last-JTH.First,VT), 1706 ISD::SETUGT); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = 0; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 1713 if (++BBI != FuncInfo.MF->end()) 1714 NextBlock = BBI; 1715 1716 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1717 MVT::Other, CopyTo, CMP, 1718 DAG.getBasicBlock(JT.Default)); 1719 1720 if (JT.MBB != NextBlock) 1721 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1722 DAG.getBasicBlock(JT.MBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitBitTestHeader - This function emits necessary code to produce value 1728 /// suitable for "bit tests" 1729 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1730 MachineBasicBlock *SwitchBB) { 1731 // Subtract the minimum value 1732 SDValue SwitchOp = getValue(B.SValue); 1733 EVT VT = SwitchOp.getValueType(); 1734 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1735 DAG.getConstant(B.First, VT)); 1736 1737 // Check range 1738 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1739 TLI.getSetCCResultType(Sub.getValueType()), 1740 Sub, DAG.getConstant(B.Range, VT), 1741 ISD::SETUGT); 1742 1743 // Determine the type of the test operands. 1744 bool UsePtrType = false; 1745 if (!TLI.isTypeLegal(VT)) 1746 UsePtrType = true; 1747 else { 1748 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1749 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1750 // Switch table case range are encoded into series of masks. 1751 // Just use pointer type, it's guaranteed to fit. 1752 UsePtrType = true; 1753 break; 1754 } 1755 } 1756 if (UsePtrType) { 1757 VT = TLI.getPointerTy(); 1758 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1759 } 1760 1761 B.RegVT = VT; 1762 B.Reg = FuncInfo.CreateReg(VT); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1764 B.Reg, Sub); 1765 1766 // Set NextBlock to be the MBB immediately after the current one, if any. 1767 // This is used to avoid emitting unnecessary branches to the next block. 1768 MachineBasicBlock *NextBlock = 0; 1769 MachineFunction::iterator BBI = SwitchBB; 1770 if (++BBI != FuncInfo.MF->end()) 1771 NextBlock = BBI; 1772 1773 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1774 1775 addSuccessorWithWeight(SwitchBB, B.Default); 1776 addSuccessorWithWeight(SwitchBB, MBB); 1777 1778 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1779 MVT::Other, CopyTo, RangeCmp, 1780 DAG.getBasicBlock(B.Default)); 1781 1782 if (MBB != NextBlock) 1783 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1784 DAG.getBasicBlock(MBB)); 1785 1786 DAG.setRoot(BrRange); 1787 } 1788 1789 /// visitBitTestCase - this function produces one "bit test" 1790 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1791 MachineBasicBlock* NextMBB, 1792 uint32_t BranchWeightToNext, 1793 unsigned Reg, 1794 BitTestCase &B, 1795 MachineBasicBlock *SwitchBB) { 1796 EVT VT = BB.RegVT; 1797 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1798 Reg, VT); 1799 SDValue Cmp; 1800 unsigned PopCount = CountPopulation_64(B.Mask); 1801 if (PopCount == 1) { 1802 // Testing for a single bit; just compare the shift count with what it 1803 // would need to be to shift a 1 bit in that position. 1804 Cmp = DAG.getSetCC(getCurDebugLoc(), 1805 TLI.getSetCCResultType(VT), 1806 ShiftOp, 1807 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1808 ISD::SETEQ); 1809 } else if (PopCount == BB.Range) { 1810 // There is only one zero bit in the range, test for it directly. 1811 Cmp = DAG.getSetCC(getCurDebugLoc(), 1812 TLI.getSetCCResultType(VT), 1813 ShiftOp, 1814 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1815 ISD::SETNE); 1816 } else { 1817 // Make desired shift 1818 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1819 DAG.getConstant(1, VT), ShiftOp); 1820 1821 // Emit bit tests and jumps 1822 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1823 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1824 Cmp = DAG.getSetCC(getCurDebugLoc(), 1825 TLI.getSetCCResultType(VT), 1826 AndOp, DAG.getConstant(0, VT), 1827 ISD::SETNE); 1828 } 1829 1830 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1831 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1832 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1833 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1834 1835 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1836 MVT::Other, getControlRoot(), 1837 Cmp, DAG.getBasicBlock(B.TargetBB)); 1838 1839 // Set NextBlock to be the MBB immediately after the current one, if any. 1840 // This is used to avoid emitting unnecessary branches to the next block. 1841 MachineBasicBlock *NextBlock = 0; 1842 MachineFunction::iterator BBI = SwitchBB; 1843 if (++BBI != FuncInfo.MF->end()) 1844 NextBlock = BBI; 1845 1846 if (NextMBB != NextBlock) 1847 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1848 DAG.getBasicBlock(NextMBB)); 1849 1850 DAG.setRoot(BrAnd); 1851 } 1852 1853 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1854 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1855 1856 // Retrieve successors. 1857 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1858 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1859 1860 const Value *Callee(I.getCalledValue()); 1861 const Function *Fn = dyn_cast<Function>(Callee); 1862 if (isa<InlineAsm>(Callee)) 1863 visitInlineAsm(&I); 1864 else if (Fn && Fn->isIntrinsic()) { 1865 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1866 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1867 } else 1868 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1869 1870 // If the value of the invoke is used outside of its defining block, make it 1871 // available as a virtual register. 1872 CopyToExportRegsIfNeeded(&I); 1873 1874 // Update successor info 1875 addSuccessorWithWeight(InvokeMBB, Return); 1876 addSuccessorWithWeight(InvokeMBB, LandingPad); 1877 1878 // Drop into normal successor. 1879 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1880 MVT::Other, getControlRoot(), 1881 DAG.getBasicBlock(Return))); 1882 } 1883 1884 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1885 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1886 } 1887 1888 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1889 assert(FuncInfo.MBB->isLandingPad() && 1890 "Call to landingpad not in landing pad!"); 1891 1892 MachineBasicBlock *MBB = FuncInfo.MBB; 1893 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1894 AddLandingPadInfo(LP, MMI, MBB); 1895 1896 // If there aren't registers to copy the values into (e.g., during SjLj 1897 // exceptions), then don't bother to create these DAG nodes. 1898 if (TLI.getExceptionPointerRegister() == 0 && 1899 TLI.getExceptionSelectorRegister() == 0) 1900 return; 1901 1902 SmallVector<EVT, 2> ValueVTs; 1903 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1904 1905 // Insert the EXCEPTIONADDR instruction. 1906 assert(FuncInfo.MBB->isLandingPad() && 1907 "Call to eh.exception not in landing pad!"); 1908 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1909 SDValue Ops[2]; 1910 Ops[0] = DAG.getRoot(); 1911 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1912 SDValue Chain = Op1.getValue(1); 1913 1914 // Insert the EHSELECTION instruction. 1915 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1916 Ops[0] = Op1; 1917 Ops[1] = Chain; 1918 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1919 Chain = Op2.getValue(1); 1920 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1921 1922 Ops[0] = Op1; 1923 Ops[1] = Op2; 1924 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1925 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1926 &Ops[0], 2); 1927 1928 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1929 setValue(&LP, RetPair.first); 1930 DAG.setRoot(RetPair.second); 1931 } 1932 1933 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1934 /// small case ranges). 1935 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1936 CaseRecVector& WorkList, 1937 const Value* SV, 1938 MachineBasicBlock *Default, 1939 MachineBasicBlock *SwitchBB) { 1940 // Size is the number of Cases represented by this range. 1941 size_t Size = CR.Range.second - CR.Range.first; 1942 if (Size > 3) 1943 return false; 1944 1945 // Get the MachineFunction which holds the current MBB. This is used when 1946 // inserting any additional MBBs necessary to represent the switch. 1947 MachineFunction *CurMF = FuncInfo.MF; 1948 1949 // Figure out which block is immediately after the current one. 1950 MachineBasicBlock *NextBlock = 0; 1951 MachineFunction::iterator BBI = CR.CaseBB; 1952 1953 if (++BBI != FuncInfo.MF->end()) 1954 NextBlock = BBI; 1955 1956 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1957 // If any two of the cases has the same destination, and if one value 1958 // is the same as the other, but has one bit unset that the other has set, 1959 // use bit manipulation to do two compares at once. For example: 1960 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1961 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1962 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1963 if (Size == 2 && CR.CaseBB == SwitchBB) { 1964 Case &Small = *CR.Range.first; 1965 Case &Big = *(CR.Range.second-1); 1966 1967 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1968 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1969 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1970 1971 // Check that there is only one bit different. 1972 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1973 (SmallValue | BigValue) == BigValue) { 1974 // Isolate the common bit. 1975 APInt CommonBit = BigValue & ~SmallValue; 1976 assert((SmallValue | CommonBit) == BigValue && 1977 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1978 1979 SDValue CondLHS = getValue(SV); 1980 EVT VT = CondLHS.getValueType(); 1981 DebugLoc DL = getCurDebugLoc(); 1982 1983 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1984 DAG.getConstant(CommonBit, VT)); 1985 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1986 Or, DAG.getConstant(BigValue, VT), 1987 ISD::SETEQ); 1988 1989 // Update successor info. 1990 // Both Small and Big will jump to Small.BB, so we sum up the weights. 1991 addSuccessorWithWeight(SwitchBB, Small.BB, 1992 Small.ExtraWeight + Big.ExtraWeight); 1993 addSuccessorWithWeight(SwitchBB, Default, 1994 // The default destination is the first successor in IR. 1995 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 1996 1997 // Insert the true branch. 1998 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1999 getControlRoot(), Cond, 2000 DAG.getBasicBlock(Small.BB)); 2001 2002 // Insert the false branch. 2003 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2004 DAG.getBasicBlock(Default)); 2005 2006 DAG.setRoot(BrCond); 2007 return true; 2008 } 2009 } 2010 } 2011 2012 // Order cases by weight so the most likely case will be checked first. 2013 uint32_t UnhandledWeights = 0; 2014 if (BPI) { 2015 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2016 uint32_t IWeight = I->ExtraWeight; 2017 UnhandledWeights += IWeight; 2018 for (CaseItr J = CR.Range.first; J < I; ++J) { 2019 uint32_t JWeight = J->ExtraWeight; 2020 if (IWeight > JWeight) 2021 std::swap(*I, *J); 2022 } 2023 } 2024 } 2025 // Rearrange the case blocks so that the last one falls through if possible. 2026 Case &BackCase = *(CR.Range.second-1); 2027 if (Size > 1 && 2028 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2029 // The last case block won't fall through into 'NextBlock' if we emit the 2030 // branches in this order. See if rearranging a case value would help. 2031 // We start at the bottom as it's the case with the least weight. 2032 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2033 if (I->BB == NextBlock) { 2034 std::swap(*I, BackCase); 2035 break; 2036 } 2037 } 2038 } 2039 2040 // Create a CaseBlock record representing a conditional branch to 2041 // the Case's target mbb if the value being switched on SV is equal 2042 // to C. 2043 MachineBasicBlock *CurBlock = CR.CaseBB; 2044 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2045 MachineBasicBlock *FallThrough; 2046 if (I != E-1) { 2047 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2048 CurMF->insert(BBI, FallThrough); 2049 2050 // Put SV in a virtual register to make it available from the new blocks. 2051 ExportFromCurrentBlock(SV); 2052 } else { 2053 // If the last case doesn't match, go to the default block. 2054 FallThrough = Default; 2055 } 2056 2057 const Value *RHS, *LHS, *MHS; 2058 ISD::CondCode CC; 2059 if (I->High == I->Low) { 2060 // This is just small small case range :) containing exactly 1 case 2061 CC = ISD::SETEQ; 2062 LHS = SV; RHS = I->High; MHS = NULL; 2063 } else { 2064 CC = ISD::SETCC_INVALID; 2065 LHS = I->Low; MHS = SV; RHS = I->High; 2066 } 2067 2068 // The false weight should be sum of all un-handled cases. 2069 UnhandledWeights -= I->ExtraWeight; 2070 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2071 /* me */ CurBlock, 2072 /* trueweight */ I->ExtraWeight, 2073 /* falseweight */ UnhandledWeights); 2074 2075 // If emitting the first comparison, just call visitSwitchCase to emit the 2076 // code into the current block. Otherwise, push the CaseBlock onto the 2077 // vector to be later processed by SDISel, and insert the node's MBB 2078 // before the next MBB. 2079 if (CurBlock == SwitchBB) 2080 visitSwitchCase(CB, SwitchBB); 2081 else 2082 SwitchCases.push_back(CB); 2083 2084 CurBlock = FallThrough; 2085 } 2086 2087 return true; 2088 } 2089 2090 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2091 return TLI.supportJumpTables() && 2092 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2093 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2094 } 2095 2096 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2097 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2098 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2099 return (LastExt - FirstExt + 1ULL); 2100 } 2101 2102 /// handleJTSwitchCase - Emit jumptable for current switch case range 2103 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2104 CaseRecVector &WorkList, 2105 const Value *SV, 2106 MachineBasicBlock *Default, 2107 MachineBasicBlock *SwitchBB) { 2108 Case& FrontCase = *CR.Range.first; 2109 Case& BackCase = *(CR.Range.second-1); 2110 2111 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2112 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2113 2114 APInt TSize(First.getBitWidth(), 0); 2115 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2116 TSize += I->size(); 2117 2118 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2119 return false; 2120 2121 APInt Range = ComputeRange(First, Last); 2122 // The density is TSize / Range. Require at least 40%. 2123 // It should not be possible for IntTSize to saturate for sane code, but make 2124 // sure we handle Range saturation correctly. 2125 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2126 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2127 if (IntTSize * 10 < IntRange * 4) 2128 return false; 2129 2130 DEBUG(dbgs() << "Lowering jump table\n" 2131 << "First entry: " << First << ". Last entry: " << Last << '\n' 2132 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2133 2134 // Get the MachineFunction which holds the current MBB. This is used when 2135 // inserting any additional MBBs necessary to represent the switch. 2136 MachineFunction *CurMF = FuncInfo.MF; 2137 2138 // Figure out which block is immediately after the current one. 2139 MachineFunction::iterator BBI = CR.CaseBB; 2140 ++BBI; 2141 2142 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2143 2144 // Create a new basic block to hold the code for loading the address 2145 // of the jump table, and jumping to it. Update successor information; 2146 // we will either branch to the default case for the switch, or the jump 2147 // table. 2148 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2149 CurMF->insert(BBI, JumpTableBB); 2150 2151 addSuccessorWithWeight(CR.CaseBB, Default); 2152 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2153 2154 // Build a vector of destination BBs, corresponding to each target 2155 // of the jump table. If the value of the jump table slot corresponds to 2156 // a case statement, push the case's BB onto the vector, otherwise, push 2157 // the default BB. 2158 std::vector<MachineBasicBlock*> DestBBs; 2159 APInt TEI = First; 2160 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2161 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2162 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2163 2164 if (Low.ule(TEI) && TEI.ule(High)) { 2165 DestBBs.push_back(I->BB); 2166 if (TEI==High) 2167 ++I; 2168 } else { 2169 DestBBs.push_back(Default); 2170 } 2171 } 2172 2173 // Calculate weight for each unique destination in CR. 2174 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2175 if (FuncInfo.BPI) 2176 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2177 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2178 DestWeights.find(I->BB); 2179 if (Itr != DestWeights.end()) 2180 Itr->second += I->ExtraWeight; 2181 else 2182 DestWeights[I->BB] = I->ExtraWeight; 2183 } 2184 2185 // Update successor info. Add one edge to each unique successor. 2186 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2187 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2188 E = DestBBs.end(); I != E; ++I) { 2189 if (!SuccsHandled[(*I)->getNumber()]) { 2190 SuccsHandled[(*I)->getNumber()] = true; 2191 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2192 DestWeights.find(*I); 2193 addSuccessorWithWeight(JumpTableBB, *I, 2194 Itr != DestWeights.end() ? Itr->second : 0); 2195 } 2196 } 2197 2198 // Create a jump table index for this jump table. 2199 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2200 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2201 ->createJumpTableIndex(DestBBs); 2202 2203 // Set the jump table information so that we can codegen it as a second 2204 // MachineBasicBlock 2205 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2206 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2207 if (CR.CaseBB == SwitchBB) 2208 visitJumpTableHeader(JT, JTH, SwitchBB); 2209 2210 JTCases.push_back(JumpTableBlock(JTH, JT)); 2211 return true; 2212 } 2213 2214 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2215 /// 2 subtrees. 2216 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2217 CaseRecVector& WorkList, 2218 const Value* SV, 2219 MachineBasicBlock *Default, 2220 MachineBasicBlock *SwitchBB) { 2221 // Get the MachineFunction which holds the current MBB. This is used when 2222 // inserting any additional MBBs necessary to represent the switch. 2223 MachineFunction *CurMF = FuncInfo.MF; 2224 2225 // Figure out which block is immediately after the current one. 2226 MachineFunction::iterator BBI = CR.CaseBB; 2227 ++BBI; 2228 2229 Case& FrontCase = *CR.Range.first; 2230 Case& BackCase = *(CR.Range.second-1); 2231 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2232 2233 // Size is the number of Cases represented by this range. 2234 unsigned Size = CR.Range.second - CR.Range.first; 2235 2236 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2237 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2238 double FMetric = 0; 2239 CaseItr Pivot = CR.Range.first + Size/2; 2240 2241 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2242 // (heuristically) allow us to emit JumpTable's later. 2243 APInt TSize(First.getBitWidth(), 0); 2244 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2245 I!=E; ++I) 2246 TSize += I->size(); 2247 2248 APInt LSize = FrontCase.size(); 2249 APInt RSize = TSize-LSize; 2250 DEBUG(dbgs() << "Selecting best pivot: \n" 2251 << "First: " << First << ", Last: " << Last <<'\n' 2252 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2253 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2254 J!=E; ++I, ++J) { 2255 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2256 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2257 APInt Range = ComputeRange(LEnd, RBegin); 2258 assert((Range - 2ULL).isNonNegative() && 2259 "Invalid case distance"); 2260 // Use volatile double here to avoid excess precision issues on some hosts, 2261 // e.g. that use 80-bit X87 registers. 2262 volatile double LDensity = 2263 (double)LSize.roundToDouble() / 2264 (LEnd - First + 1ULL).roundToDouble(); 2265 volatile double RDensity = 2266 (double)RSize.roundToDouble() / 2267 (Last - RBegin + 1ULL).roundToDouble(); 2268 double Metric = Range.logBase2()*(LDensity+RDensity); 2269 // Should always split in some non-trivial place 2270 DEBUG(dbgs() <<"=>Step\n" 2271 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2272 << "LDensity: " << LDensity 2273 << ", RDensity: " << RDensity << '\n' 2274 << "Metric: " << Metric << '\n'); 2275 if (FMetric < Metric) { 2276 Pivot = J; 2277 FMetric = Metric; 2278 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2279 } 2280 2281 LSize += J->size(); 2282 RSize -= J->size(); 2283 } 2284 if (areJTsAllowed(TLI)) { 2285 // If our case is dense we *really* should handle it earlier! 2286 assert((FMetric > 0) && "Should handle dense range earlier!"); 2287 } else { 2288 Pivot = CR.Range.first + Size/2; 2289 } 2290 2291 CaseRange LHSR(CR.Range.first, Pivot); 2292 CaseRange RHSR(Pivot, CR.Range.second); 2293 const Constant *C = Pivot->Low; 2294 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2295 2296 // We know that we branch to the LHS if the Value being switched on is 2297 // less than the Pivot value, C. We use this to optimize our binary 2298 // tree a bit, by recognizing that if SV is greater than or equal to the 2299 // LHS's Case Value, and that Case Value is exactly one less than the 2300 // Pivot's Value, then we can branch directly to the LHS's Target, 2301 // rather than creating a leaf node for it. 2302 if ((LHSR.second - LHSR.first) == 1 && 2303 LHSR.first->High == CR.GE && 2304 cast<ConstantInt>(C)->getValue() == 2305 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2306 TrueBB = LHSR.first->BB; 2307 } else { 2308 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2309 CurMF->insert(BBI, TrueBB); 2310 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2311 2312 // Put SV in a virtual register to make it available from the new blocks. 2313 ExportFromCurrentBlock(SV); 2314 } 2315 2316 // Similar to the optimization above, if the Value being switched on is 2317 // known to be less than the Constant CR.LT, and the current Case Value 2318 // is CR.LT - 1, then we can branch directly to the target block for 2319 // the current Case Value, rather than emitting a RHS leaf node for it. 2320 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2321 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2322 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2323 FalseBB = RHSR.first->BB; 2324 } else { 2325 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2326 CurMF->insert(BBI, FalseBB); 2327 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2328 2329 // Put SV in a virtual register to make it available from the new blocks. 2330 ExportFromCurrentBlock(SV); 2331 } 2332 2333 // Create a CaseBlock record representing a conditional branch to 2334 // the LHS node if the value being switched on SV is less than C. 2335 // Otherwise, branch to LHS. 2336 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2337 2338 if (CR.CaseBB == SwitchBB) 2339 visitSwitchCase(CB, SwitchBB); 2340 else 2341 SwitchCases.push_back(CB); 2342 2343 return true; 2344 } 2345 2346 /// handleBitTestsSwitchCase - if current case range has few destination and 2347 /// range span less, than machine word bitwidth, encode case range into series 2348 /// of masks and emit bit tests with these masks. 2349 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2350 CaseRecVector& WorkList, 2351 const Value* SV, 2352 MachineBasicBlock* Default, 2353 MachineBasicBlock *SwitchBB){ 2354 EVT PTy = TLI.getPointerTy(); 2355 unsigned IntPtrBits = PTy.getSizeInBits(); 2356 2357 Case& FrontCase = *CR.Range.first; 2358 Case& BackCase = *(CR.Range.second-1); 2359 2360 // Get the MachineFunction which holds the current MBB. This is used when 2361 // inserting any additional MBBs necessary to represent the switch. 2362 MachineFunction *CurMF = FuncInfo.MF; 2363 2364 // If target does not have legal shift left, do not emit bit tests at all. 2365 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2366 return false; 2367 2368 size_t numCmps = 0; 2369 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2370 I!=E; ++I) { 2371 // Single case counts one, case range - two. 2372 numCmps += (I->Low == I->High ? 1 : 2); 2373 } 2374 2375 // Count unique destinations 2376 SmallSet<MachineBasicBlock*, 4> Dests; 2377 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2378 Dests.insert(I->BB); 2379 if (Dests.size() > 3) 2380 // Don't bother the code below, if there are too much unique destinations 2381 return false; 2382 } 2383 DEBUG(dbgs() << "Total number of unique destinations: " 2384 << Dests.size() << '\n' 2385 << "Total number of comparisons: " << numCmps << '\n'); 2386 2387 // Compute span of values. 2388 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2389 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2390 APInt cmpRange = maxValue - minValue; 2391 2392 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2393 << "Low bound: " << minValue << '\n' 2394 << "High bound: " << maxValue << '\n'); 2395 2396 if (cmpRange.uge(IntPtrBits) || 2397 (!(Dests.size() == 1 && numCmps >= 3) && 2398 !(Dests.size() == 2 && numCmps >= 5) && 2399 !(Dests.size() >= 3 && numCmps >= 6))) 2400 return false; 2401 2402 DEBUG(dbgs() << "Emitting bit tests\n"); 2403 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2404 2405 // Optimize the case where all the case values fit in a 2406 // word without having to subtract minValue. In this case, 2407 // we can optimize away the subtraction. 2408 if (maxValue.ult(IntPtrBits)) { 2409 cmpRange = maxValue; 2410 } else { 2411 lowBound = minValue; 2412 } 2413 2414 CaseBitsVector CasesBits; 2415 unsigned i, count = 0; 2416 2417 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2418 MachineBasicBlock* Dest = I->BB; 2419 for (i = 0; i < count; ++i) 2420 if (Dest == CasesBits[i].BB) 2421 break; 2422 2423 if (i == count) { 2424 assert((count < 3) && "Too much destinations to test!"); 2425 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2426 count++; 2427 } 2428 2429 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2430 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2431 2432 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2433 uint64_t hi = (highValue - lowBound).getZExtValue(); 2434 CasesBits[i].ExtraWeight += I->ExtraWeight; 2435 2436 for (uint64_t j = lo; j <= hi; j++) { 2437 CasesBits[i].Mask |= 1ULL << j; 2438 CasesBits[i].Bits++; 2439 } 2440 2441 } 2442 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2443 2444 BitTestInfo BTC; 2445 2446 // Figure out which block is immediately after the current one. 2447 MachineFunction::iterator BBI = CR.CaseBB; 2448 ++BBI; 2449 2450 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2451 2452 DEBUG(dbgs() << "Cases:\n"); 2453 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2454 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2455 << ", Bits: " << CasesBits[i].Bits 2456 << ", BB: " << CasesBits[i].BB << '\n'); 2457 2458 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2459 CurMF->insert(BBI, CaseBB); 2460 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2461 CaseBB, 2462 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2463 2464 // Put SV in a virtual register to make it available from the new blocks. 2465 ExportFromCurrentBlock(SV); 2466 } 2467 2468 BitTestBlock BTB(lowBound, cmpRange, SV, 2469 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2470 CR.CaseBB, Default, BTC); 2471 2472 if (CR.CaseBB == SwitchBB) 2473 visitBitTestHeader(BTB, SwitchBB); 2474 2475 BitTestCases.push_back(BTB); 2476 2477 return true; 2478 } 2479 2480 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2481 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2482 const SwitchInst& SI) { 2483 2484 /// Use a shorter form of declaration, and also 2485 /// show the we want to use CRSBuilder as Clusterifier. 2486 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2487 2488 Clusterifier TheClusterifier; 2489 2490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2491 // Start with "simple" cases 2492 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2493 i != e; ++i) { 2494 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2495 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2496 2497 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2498 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2499 } 2500 2501 TheClusterifier.optimize(); 2502 2503 size_t numCmps = 0; 2504 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2505 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2506 Clusterifier::Cluster &C = *i; 2507 // Update edge weight for the cluster. 2508 unsigned W = C.first.Weight; 2509 2510 // FIXME: Currently work with ConstantInt based numbers. 2511 // Changing it to APInt based is a pretty heavy for this commit. 2512 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2513 C.first.getHigh().toConstantInt(), C.second, W)); 2514 2515 if (C.first.getLow() != C.first.getHigh()) 2516 // A range counts double, since it requires two compares. 2517 ++numCmps; 2518 } 2519 2520 return numCmps; 2521 } 2522 2523 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2524 MachineBasicBlock *Last) { 2525 // Update JTCases. 2526 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2527 if (JTCases[i].first.HeaderBB == First) 2528 JTCases[i].first.HeaderBB = Last; 2529 2530 // Update BitTestCases. 2531 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2532 if (BitTestCases[i].Parent == First) 2533 BitTestCases[i].Parent = Last; 2534 } 2535 2536 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2537 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2538 2539 // Figure out which block is immediately after the current one. 2540 MachineBasicBlock *NextBlock = 0; 2541 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2542 2543 // If there is only the default destination, branch to it if it is not the 2544 // next basic block. Otherwise, just fall through. 2545 if (!SI.getNumCases()) { 2546 // Update machine-CFG edges. 2547 2548 // If this is not a fall-through branch, emit the branch. 2549 SwitchMBB->addSuccessor(Default); 2550 if (Default != NextBlock) 2551 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2552 MVT::Other, getControlRoot(), 2553 DAG.getBasicBlock(Default))); 2554 2555 return; 2556 } 2557 2558 // If there are any non-default case statements, create a vector of Cases 2559 // representing each one, and sort the vector so that we can efficiently 2560 // create a binary search tree from them. 2561 CaseVector Cases; 2562 size_t numCmps = Clusterify(Cases, SI); 2563 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2564 << ". Total compares: " << numCmps << '\n'); 2565 (void)numCmps; 2566 2567 // Get the Value to be switched on and default basic blocks, which will be 2568 // inserted into CaseBlock records, representing basic blocks in the binary 2569 // search tree. 2570 const Value *SV = SI.getCondition(); 2571 2572 // Push the initial CaseRec onto the worklist 2573 CaseRecVector WorkList; 2574 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2575 CaseRange(Cases.begin(),Cases.end()))); 2576 2577 while (!WorkList.empty()) { 2578 // Grab a record representing a case range to process off the worklist 2579 CaseRec CR = WorkList.back(); 2580 WorkList.pop_back(); 2581 2582 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2583 continue; 2584 2585 // If the range has few cases (two or less) emit a series of specific 2586 // tests. 2587 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2588 continue; 2589 2590 // If the switch has more than N blocks, and is at least 40% dense, and the 2591 // target supports indirect branches, then emit a jump table rather than 2592 // lowering the switch to a binary tree of conditional branches. 2593 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2594 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2595 continue; 2596 2597 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2598 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2599 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2600 } 2601 } 2602 2603 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2604 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2605 2606 // Update machine-CFG edges with unique successors. 2607 SmallSet<BasicBlock*, 32> Done; 2608 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2609 BasicBlock *BB = I.getSuccessor(i); 2610 bool Inserted = Done.insert(BB); 2611 if (!Inserted) 2612 continue; 2613 2614 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2615 addSuccessorWithWeight(IndirectBrMBB, Succ); 2616 } 2617 2618 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2619 MVT::Other, getControlRoot(), 2620 getValue(I.getAddress()))); 2621 } 2622 2623 void SelectionDAGBuilder::visitFSub(const User &I) { 2624 // -0.0 - X --> fneg 2625 Type *Ty = I.getType(); 2626 if (isa<Constant>(I.getOperand(0)) && 2627 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2628 SDValue Op2 = getValue(I.getOperand(1)); 2629 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2630 Op2.getValueType(), Op2)); 2631 return; 2632 } 2633 2634 visitBinary(I, ISD::FSUB); 2635 } 2636 2637 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2638 SDValue Op1 = getValue(I.getOperand(0)); 2639 SDValue Op2 = getValue(I.getOperand(1)); 2640 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2641 Op1.getValueType(), Op1, Op2)); 2642 } 2643 2644 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2645 SDValue Op1 = getValue(I.getOperand(0)); 2646 SDValue Op2 = getValue(I.getOperand(1)); 2647 2648 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2649 2650 // Coerce the shift amount to the right type if we can. 2651 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2652 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2653 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2654 DebugLoc DL = getCurDebugLoc(); 2655 2656 // If the operand is smaller than the shift count type, promote it. 2657 if (ShiftSize > Op2Size) 2658 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2659 2660 // If the operand is larger than the shift count type but the shift 2661 // count type has enough bits to represent any shift value, truncate 2662 // it now. This is a common case and it exposes the truncate to 2663 // optimization early. 2664 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2665 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2666 // Otherwise we'll need to temporarily settle for some other convenient 2667 // type. Type legalization will make adjustments once the shiftee is split. 2668 else 2669 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2670 } 2671 2672 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2673 Op1.getValueType(), Op1, Op2)); 2674 } 2675 2676 void SelectionDAGBuilder::visitSDiv(const User &I) { 2677 SDValue Op1 = getValue(I.getOperand(0)); 2678 SDValue Op2 = getValue(I.getOperand(1)); 2679 2680 // Turn exact SDivs into multiplications. 2681 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2682 // exact bit. 2683 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2684 !isa<ConstantSDNode>(Op1) && 2685 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2686 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2687 else 2688 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2689 Op1, Op2)); 2690 } 2691 2692 void SelectionDAGBuilder::visitICmp(const User &I) { 2693 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2694 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2695 predicate = IC->getPredicate(); 2696 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2697 predicate = ICmpInst::Predicate(IC->getPredicate()); 2698 SDValue Op1 = getValue(I.getOperand(0)); 2699 SDValue Op2 = getValue(I.getOperand(1)); 2700 ISD::CondCode Opcode = getICmpCondCode(predicate); 2701 2702 EVT DestVT = TLI.getValueType(I.getType()); 2703 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2704 } 2705 2706 void SelectionDAGBuilder::visitFCmp(const User &I) { 2707 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2708 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2709 predicate = FC->getPredicate(); 2710 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2711 predicate = FCmpInst::Predicate(FC->getPredicate()); 2712 SDValue Op1 = getValue(I.getOperand(0)); 2713 SDValue Op2 = getValue(I.getOperand(1)); 2714 ISD::CondCode Condition = getFCmpCondCode(predicate); 2715 if (TM.Options.NoNaNsFPMath) 2716 Condition = getFCmpCodeWithoutNaN(Condition); 2717 EVT DestVT = TLI.getValueType(I.getType()); 2718 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2719 } 2720 2721 void SelectionDAGBuilder::visitSelect(const User &I) { 2722 SmallVector<EVT, 4> ValueVTs; 2723 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2724 unsigned NumValues = ValueVTs.size(); 2725 if (NumValues == 0) return; 2726 2727 SmallVector<SDValue, 4> Values(NumValues); 2728 SDValue Cond = getValue(I.getOperand(0)); 2729 SDValue TrueVal = getValue(I.getOperand(1)); 2730 SDValue FalseVal = getValue(I.getOperand(2)); 2731 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2732 ISD::VSELECT : ISD::SELECT; 2733 2734 for (unsigned i = 0; i != NumValues; ++i) 2735 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2736 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2737 Cond, 2738 SDValue(TrueVal.getNode(), 2739 TrueVal.getResNo() + i), 2740 SDValue(FalseVal.getNode(), 2741 FalseVal.getResNo() + i)); 2742 2743 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2744 DAG.getVTList(&ValueVTs[0], NumValues), 2745 &Values[0], NumValues)); 2746 } 2747 2748 void SelectionDAGBuilder::visitTrunc(const User &I) { 2749 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2750 SDValue N = getValue(I.getOperand(0)); 2751 EVT DestVT = TLI.getValueType(I.getType()); 2752 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2753 } 2754 2755 void SelectionDAGBuilder::visitZExt(const User &I) { 2756 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2757 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2758 SDValue N = getValue(I.getOperand(0)); 2759 EVT DestVT = TLI.getValueType(I.getType()); 2760 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2761 } 2762 2763 void SelectionDAGBuilder::visitSExt(const User &I) { 2764 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2765 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2766 SDValue N = getValue(I.getOperand(0)); 2767 EVT DestVT = TLI.getValueType(I.getType()); 2768 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2769 } 2770 2771 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2772 // FPTrunc is never a no-op cast, no need to check 2773 SDValue N = getValue(I.getOperand(0)); 2774 EVT DestVT = TLI.getValueType(I.getType()); 2775 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2776 DestVT, N, 2777 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2778 } 2779 2780 void SelectionDAGBuilder::visitFPExt(const User &I){ 2781 // FPExt is never a no-op cast, no need to check 2782 SDValue N = getValue(I.getOperand(0)); 2783 EVT DestVT = TLI.getValueType(I.getType()); 2784 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2785 } 2786 2787 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2788 // FPToUI is never a no-op cast, no need to check 2789 SDValue N = getValue(I.getOperand(0)); 2790 EVT DestVT = TLI.getValueType(I.getType()); 2791 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2792 } 2793 2794 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2795 // FPToSI is never a no-op cast, no need to check 2796 SDValue N = getValue(I.getOperand(0)); 2797 EVT DestVT = TLI.getValueType(I.getType()); 2798 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2799 } 2800 2801 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2802 // UIToFP is never a no-op cast, no need to check 2803 SDValue N = getValue(I.getOperand(0)); 2804 EVT DestVT = TLI.getValueType(I.getType()); 2805 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2806 } 2807 2808 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2809 // SIToFP is never a no-op cast, no need to check 2810 SDValue N = getValue(I.getOperand(0)); 2811 EVT DestVT = TLI.getValueType(I.getType()); 2812 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2813 } 2814 2815 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2816 // What to do depends on the size of the integer and the size of the pointer. 2817 // We can either truncate, zero extend, or no-op, accordingly. 2818 SDValue N = getValue(I.getOperand(0)); 2819 EVT DestVT = TLI.getValueType(I.getType()); 2820 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2821 } 2822 2823 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2824 // What to do depends on the size of the integer and the size of the pointer. 2825 // We can either truncate, zero extend, or no-op, accordingly. 2826 SDValue N = getValue(I.getOperand(0)); 2827 EVT DestVT = TLI.getValueType(I.getType()); 2828 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2829 } 2830 2831 void SelectionDAGBuilder::visitBitCast(const User &I) { 2832 SDValue N = getValue(I.getOperand(0)); 2833 EVT DestVT = TLI.getValueType(I.getType()); 2834 2835 // BitCast assures us that source and destination are the same size so this is 2836 // either a BITCAST or a no-op. 2837 if (DestVT != N.getValueType()) 2838 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2839 DestVT, N)); // convert types. 2840 else 2841 setValue(&I, N); // noop cast. 2842 } 2843 2844 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2845 SDValue InVec = getValue(I.getOperand(0)); 2846 SDValue InVal = getValue(I.getOperand(1)); 2847 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2848 TLI.getPointerTy(), 2849 getValue(I.getOperand(2))); 2850 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2851 TLI.getValueType(I.getType()), 2852 InVec, InVal, InIdx)); 2853 } 2854 2855 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2856 SDValue InVec = getValue(I.getOperand(0)); 2857 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2858 TLI.getPointerTy(), 2859 getValue(I.getOperand(1))); 2860 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2861 TLI.getValueType(I.getType()), InVec, InIdx)); 2862 } 2863 2864 // Utility for visitShuffleVector - Return true if every element in Mask, 2865 // beginning from position Pos and ending in Pos+Size, falls within the 2866 // specified sequential range [L, L+Pos). or is undef. 2867 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2868 unsigned Pos, unsigned Size, int Low) { 2869 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2870 if (Mask[i] >= 0 && Mask[i] != Low) 2871 return false; 2872 return true; 2873 } 2874 2875 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2876 SDValue Src1 = getValue(I.getOperand(0)); 2877 SDValue Src2 = getValue(I.getOperand(1)); 2878 2879 SmallVector<int, 8> Mask; 2880 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2881 unsigned MaskNumElts = Mask.size(); 2882 2883 EVT VT = TLI.getValueType(I.getType()); 2884 EVT SrcVT = Src1.getValueType(); 2885 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2886 2887 if (SrcNumElts == MaskNumElts) { 2888 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2889 &Mask[0])); 2890 return; 2891 } 2892 2893 // Normalize the shuffle vector since mask and vector length don't match. 2894 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2895 // Mask is longer than the source vectors and is a multiple of the source 2896 // vectors. We can use concatenate vector to make the mask and vectors 2897 // lengths match. 2898 if (SrcNumElts*2 == MaskNumElts) { 2899 // First check for Src1 in low and Src2 in high 2900 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2901 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2902 // The shuffle is concatenating two vectors together. 2903 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2904 VT, Src1, Src2)); 2905 return; 2906 } 2907 // Then check for Src2 in low and Src1 in high 2908 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2909 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2910 // The shuffle is concatenating two vectors together. 2911 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2912 VT, Src2, Src1)); 2913 return; 2914 } 2915 } 2916 2917 // Pad both vectors with undefs to make them the same length as the mask. 2918 unsigned NumConcat = MaskNumElts / SrcNumElts; 2919 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2920 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2921 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2922 2923 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2924 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2925 MOps1[0] = Src1; 2926 MOps2[0] = Src2; 2927 2928 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2929 getCurDebugLoc(), VT, 2930 &MOps1[0], NumConcat); 2931 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2932 getCurDebugLoc(), VT, 2933 &MOps2[0], NumConcat); 2934 2935 // Readjust mask for new input vector length. 2936 SmallVector<int, 8> MappedOps; 2937 for (unsigned i = 0; i != MaskNumElts; ++i) { 2938 int Idx = Mask[i]; 2939 if (Idx >= (int)SrcNumElts) 2940 Idx -= SrcNumElts - MaskNumElts; 2941 MappedOps.push_back(Idx); 2942 } 2943 2944 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2945 &MappedOps[0])); 2946 return; 2947 } 2948 2949 if (SrcNumElts > MaskNumElts) { 2950 // Analyze the access pattern of the vector to see if we can extract 2951 // two subvectors and do the shuffle. The analysis is done by calculating 2952 // the range of elements the mask access on both vectors. 2953 int MinRange[2] = { static_cast<int>(SrcNumElts), 2954 static_cast<int>(SrcNumElts)}; 2955 int MaxRange[2] = {-1, -1}; 2956 2957 for (unsigned i = 0; i != MaskNumElts; ++i) { 2958 int Idx = Mask[i]; 2959 unsigned Input = 0; 2960 if (Idx < 0) 2961 continue; 2962 2963 if (Idx >= (int)SrcNumElts) { 2964 Input = 1; 2965 Idx -= SrcNumElts; 2966 } 2967 if (Idx > MaxRange[Input]) 2968 MaxRange[Input] = Idx; 2969 if (Idx < MinRange[Input]) 2970 MinRange[Input] = Idx; 2971 } 2972 2973 // Check if the access is smaller than the vector size and can we find 2974 // a reasonable extract index. 2975 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2976 // Extract. 2977 int StartIdx[2]; // StartIdx to extract from 2978 for (unsigned Input = 0; Input < 2; ++Input) { 2979 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2980 RangeUse[Input] = 0; // Unused 2981 StartIdx[Input] = 0; 2982 continue; 2983 } 2984 2985 // Find a good start index that is a multiple of the mask length. Then 2986 // see if the rest of the elements are in range. 2987 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2988 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2989 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2990 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2991 } 2992 2993 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2994 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2995 return; 2996 } 2997 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2998 // Extract appropriate subvector and generate a vector shuffle 2999 for (unsigned Input = 0; Input < 2; ++Input) { 3000 SDValue &Src = Input == 0 ? Src1 : Src2; 3001 if (RangeUse[Input] == 0) 3002 Src = DAG.getUNDEF(VT); 3003 else 3004 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 3005 Src, DAG.getIntPtrConstant(StartIdx[Input])); 3006 } 3007 3008 // Calculate new mask. 3009 SmallVector<int, 8> MappedOps; 3010 for (unsigned i = 0; i != MaskNumElts; ++i) { 3011 int Idx = Mask[i]; 3012 if (Idx >= 0) { 3013 if (Idx < (int)SrcNumElts) 3014 Idx -= StartIdx[0]; 3015 else 3016 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3017 } 3018 MappedOps.push_back(Idx); 3019 } 3020 3021 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 3022 &MappedOps[0])); 3023 return; 3024 } 3025 } 3026 3027 // We can't use either concat vectors or extract subvectors so fall back to 3028 // replacing the shuffle with extract and build vector. 3029 // to insert and build vector. 3030 EVT EltVT = VT.getVectorElementType(); 3031 EVT PtrVT = TLI.getPointerTy(); 3032 SmallVector<SDValue,8> Ops; 3033 for (unsigned i = 0; i != MaskNumElts; ++i) { 3034 int Idx = Mask[i]; 3035 SDValue Res; 3036 3037 if (Idx < 0) { 3038 Res = DAG.getUNDEF(EltVT); 3039 } else { 3040 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3041 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3042 3043 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 3044 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3045 } 3046 3047 Ops.push_back(Res); 3048 } 3049 3050 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3051 VT, &Ops[0], Ops.size())); 3052 } 3053 3054 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3055 const Value *Op0 = I.getOperand(0); 3056 const Value *Op1 = I.getOperand(1); 3057 Type *AggTy = I.getType(); 3058 Type *ValTy = Op1->getType(); 3059 bool IntoUndef = isa<UndefValue>(Op0); 3060 bool FromUndef = isa<UndefValue>(Op1); 3061 3062 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3063 3064 SmallVector<EVT, 4> AggValueVTs; 3065 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3066 SmallVector<EVT, 4> ValValueVTs; 3067 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3068 3069 unsigned NumAggValues = AggValueVTs.size(); 3070 unsigned NumValValues = ValValueVTs.size(); 3071 SmallVector<SDValue, 4> Values(NumAggValues); 3072 3073 SDValue Agg = getValue(Op0); 3074 unsigned i = 0; 3075 // Copy the beginning value(s) from the original aggregate. 3076 for (; i != LinearIndex; ++i) 3077 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3078 SDValue(Agg.getNode(), Agg.getResNo() + i); 3079 // Copy values from the inserted value(s). 3080 if (NumValValues) { 3081 SDValue Val = getValue(Op1); 3082 for (; i != LinearIndex + NumValValues; ++i) 3083 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3084 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3085 } 3086 // Copy remaining value(s) from the original aggregate. 3087 for (; i != NumAggValues; ++i) 3088 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3089 SDValue(Agg.getNode(), Agg.getResNo() + i); 3090 3091 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3092 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3093 &Values[0], NumAggValues)); 3094 } 3095 3096 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3097 const Value *Op0 = I.getOperand(0); 3098 Type *AggTy = Op0->getType(); 3099 Type *ValTy = I.getType(); 3100 bool OutOfUndef = isa<UndefValue>(Op0); 3101 3102 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3103 3104 SmallVector<EVT, 4> ValValueVTs; 3105 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3106 3107 unsigned NumValValues = ValValueVTs.size(); 3108 3109 // Ignore a extractvalue that produces an empty object 3110 if (!NumValValues) { 3111 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3112 return; 3113 } 3114 3115 SmallVector<SDValue, 4> Values(NumValValues); 3116 3117 SDValue Agg = getValue(Op0); 3118 // Copy out the selected value(s). 3119 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3120 Values[i - LinearIndex] = 3121 OutOfUndef ? 3122 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3123 SDValue(Agg.getNode(), Agg.getResNo() + i); 3124 3125 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3126 DAG.getVTList(&ValValueVTs[0], NumValValues), 3127 &Values[0], NumValValues)); 3128 } 3129 3130 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3131 SDValue N = getValue(I.getOperand(0)); 3132 // Note that the pointer operand may be a vector of pointers. Take the scalar 3133 // element which holds a pointer. 3134 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3135 3136 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3137 OI != E; ++OI) { 3138 const Value *Idx = *OI; 3139 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3140 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3141 if (Field) { 3142 // N = N + Offset 3143 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3144 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3145 DAG.getConstant(Offset, N.getValueType())); 3146 } 3147 3148 Ty = StTy->getElementType(Field); 3149 } else { 3150 Ty = cast<SequentialType>(Ty)->getElementType(); 3151 3152 // If this is a constant subscript, handle it quickly. 3153 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3154 if (CI->isZero()) continue; 3155 uint64_t Offs = 3156 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3157 SDValue OffsVal; 3158 EVT PTy = TLI.getPointerTy(); 3159 unsigned PtrBits = PTy.getSizeInBits(); 3160 if (PtrBits < 64) 3161 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3162 TLI.getPointerTy(), 3163 DAG.getConstant(Offs, MVT::i64)); 3164 else 3165 OffsVal = DAG.getIntPtrConstant(Offs); 3166 3167 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3168 OffsVal); 3169 continue; 3170 } 3171 3172 // N = N + Idx * ElementSize; 3173 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3174 TD->getTypeAllocSize(Ty)); 3175 SDValue IdxN = getValue(Idx); 3176 3177 // If the index is smaller or larger than intptr_t, truncate or extend 3178 // it. 3179 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3180 3181 // If this is a multiply by a power of two, turn it into a shl 3182 // immediately. This is a very common case. 3183 if (ElementSize != 1) { 3184 if (ElementSize.isPowerOf2()) { 3185 unsigned Amt = ElementSize.logBase2(); 3186 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3187 N.getValueType(), IdxN, 3188 DAG.getConstant(Amt, IdxN.getValueType())); 3189 } else { 3190 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3191 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3192 N.getValueType(), IdxN, Scale); 3193 } 3194 } 3195 3196 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3197 N.getValueType(), N, IdxN); 3198 } 3199 } 3200 3201 setValue(&I, N); 3202 } 3203 3204 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3205 // If this is a fixed sized alloca in the entry block of the function, 3206 // allocate it statically on the stack. 3207 if (FuncInfo.StaticAllocaMap.count(&I)) 3208 return; // getValue will auto-populate this. 3209 3210 Type *Ty = I.getAllocatedType(); 3211 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3212 unsigned Align = 3213 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3214 I.getAlignment()); 3215 3216 SDValue AllocSize = getValue(I.getArraySize()); 3217 3218 EVT IntPtr = TLI.getPointerTy(); 3219 if (AllocSize.getValueType() != IntPtr) 3220 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3221 3222 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3223 AllocSize, 3224 DAG.getConstant(TySize, IntPtr)); 3225 3226 // Handle alignment. If the requested alignment is less than or equal to 3227 // the stack alignment, ignore it. If the size is greater than or equal to 3228 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3229 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3230 if (Align <= StackAlign) 3231 Align = 0; 3232 3233 // Round the size of the allocation up to the stack alignment size 3234 // by add SA-1 to the size. 3235 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3236 AllocSize.getValueType(), AllocSize, 3237 DAG.getIntPtrConstant(StackAlign-1)); 3238 3239 // Mask out the low bits for alignment purposes. 3240 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3241 AllocSize.getValueType(), AllocSize, 3242 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3243 3244 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3245 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3246 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3247 VTs, Ops, 3); 3248 setValue(&I, DSA); 3249 DAG.setRoot(DSA.getValue(1)); 3250 3251 // Inform the Frame Information that we have just allocated a variable-sized 3252 // object. 3253 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3254 } 3255 3256 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3257 if (I.isAtomic()) 3258 return visitAtomicLoad(I); 3259 3260 const Value *SV = I.getOperand(0); 3261 SDValue Ptr = getValue(SV); 3262 3263 Type *Ty = I.getType(); 3264 3265 bool isVolatile = I.isVolatile(); 3266 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3267 bool isInvariant = I.getMetadata("invariant.load") != 0; 3268 unsigned Alignment = I.getAlignment(); 3269 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3270 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3271 3272 SmallVector<EVT, 4> ValueVTs; 3273 SmallVector<uint64_t, 4> Offsets; 3274 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3275 unsigned NumValues = ValueVTs.size(); 3276 if (NumValues == 0) 3277 return; 3278 3279 SDValue Root; 3280 bool ConstantMemory = false; 3281 if (I.isVolatile() || NumValues > MaxParallelChains) 3282 // Serialize volatile loads with other side effects. 3283 Root = getRoot(); 3284 else if (AA->pointsToConstantMemory( 3285 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3286 // Do not serialize (non-volatile) loads of constant memory with anything. 3287 Root = DAG.getEntryNode(); 3288 ConstantMemory = true; 3289 } else { 3290 // Do not serialize non-volatile loads against each other. 3291 Root = DAG.getRoot(); 3292 } 3293 3294 SmallVector<SDValue, 4> Values(NumValues); 3295 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3296 NumValues)); 3297 EVT PtrVT = Ptr.getValueType(); 3298 unsigned ChainI = 0; 3299 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3300 // Serializing loads here may result in excessive register pressure, and 3301 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3302 // could recover a bit by hoisting nodes upward in the chain by recognizing 3303 // they are side-effect free or do not alias. The optimizer should really 3304 // avoid this case by converting large object/array copies to llvm.memcpy 3305 // (MaxParallelChains should always remain as failsafe). 3306 if (ChainI == MaxParallelChains) { 3307 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3308 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3309 MVT::Other, &Chains[0], ChainI); 3310 Root = Chain; 3311 ChainI = 0; 3312 } 3313 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3314 PtrVT, Ptr, 3315 DAG.getConstant(Offsets[i], PtrVT)); 3316 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3317 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3318 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3319 Ranges); 3320 3321 Values[i] = L; 3322 Chains[ChainI] = L.getValue(1); 3323 } 3324 3325 if (!ConstantMemory) { 3326 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3327 MVT::Other, &Chains[0], ChainI); 3328 if (isVolatile) 3329 DAG.setRoot(Chain); 3330 else 3331 PendingLoads.push_back(Chain); 3332 } 3333 3334 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3335 DAG.getVTList(&ValueVTs[0], NumValues), 3336 &Values[0], NumValues)); 3337 } 3338 3339 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3340 if (I.isAtomic()) 3341 return visitAtomicStore(I); 3342 3343 const Value *SrcV = I.getOperand(0); 3344 const Value *PtrV = I.getOperand(1); 3345 3346 SmallVector<EVT, 4> ValueVTs; 3347 SmallVector<uint64_t, 4> Offsets; 3348 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3349 unsigned NumValues = ValueVTs.size(); 3350 if (NumValues == 0) 3351 return; 3352 3353 // Get the lowered operands. Note that we do this after 3354 // checking if NumResults is zero, because with zero results 3355 // the operands won't have values in the map. 3356 SDValue Src = getValue(SrcV); 3357 SDValue Ptr = getValue(PtrV); 3358 3359 SDValue Root = getRoot(); 3360 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3361 NumValues)); 3362 EVT PtrVT = Ptr.getValueType(); 3363 bool isVolatile = I.isVolatile(); 3364 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3365 unsigned Alignment = I.getAlignment(); 3366 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3367 3368 unsigned ChainI = 0; 3369 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3370 // See visitLoad comments. 3371 if (ChainI == MaxParallelChains) { 3372 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3373 MVT::Other, &Chains[0], ChainI); 3374 Root = Chain; 3375 ChainI = 0; 3376 } 3377 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3378 DAG.getConstant(Offsets[i], PtrVT)); 3379 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3380 SDValue(Src.getNode(), Src.getResNo() + i), 3381 Add, MachinePointerInfo(PtrV, Offsets[i]), 3382 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3383 Chains[ChainI] = St; 3384 } 3385 3386 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3387 MVT::Other, &Chains[0], ChainI); 3388 ++SDNodeOrder; 3389 AssignOrderingToNode(StoreNode.getNode()); 3390 DAG.setRoot(StoreNode); 3391 } 3392 3393 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3394 SynchronizationScope Scope, 3395 bool Before, DebugLoc dl, 3396 SelectionDAG &DAG, 3397 const TargetLowering &TLI) { 3398 // Fence, if necessary 3399 if (Before) { 3400 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3401 Order = Release; 3402 else if (Order == Acquire || Order == Monotonic) 3403 return Chain; 3404 } else { 3405 if (Order == AcquireRelease) 3406 Order = Acquire; 3407 else if (Order == Release || Order == Monotonic) 3408 return Chain; 3409 } 3410 SDValue Ops[3]; 3411 Ops[0] = Chain; 3412 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3413 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3414 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3415 } 3416 3417 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3418 DebugLoc dl = getCurDebugLoc(); 3419 AtomicOrdering Order = I.getOrdering(); 3420 SynchronizationScope Scope = I.getSynchScope(); 3421 3422 SDValue InChain = getRoot(); 3423 3424 if (TLI.getInsertFencesForAtomic()) 3425 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3426 DAG, TLI); 3427 3428 SDValue L = 3429 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3430 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3431 InChain, 3432 getValue(I.getPointerOperand()), 3433 getValue(I.getCompareOperand()), 3434 getValue(I.getNewValOperand()), 3435 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3436 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3437 Scope); 3438 3439 SDValue OutChain = L.getValue(1); 3440 3441 if (TLI.getInsertFencesForAtomic()) 3442 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3443 DAG, TLI); 3444 3445 setValue(&I, L); 3446 DAG.setRoot(OutChain); 3447 } 3448 3449 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3450 DebugLoc dl = getCurDebugLoc(); 3451 ISD::NodeType NT; 3452 switch (I.getOperation()) { 3453 default: llvm_unreachable("Unknown atomicrmw operation"); 3454 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3455 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3456 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3457 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3458 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3459 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3460 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3461 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3462 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3463 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3464 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3465 } 3466 AtomicOrdering Order = I.getOrdering(); 3467 SynchronizationScope Scope = I.getSynchScope(); 3468 3469 SDValue InChain = getRoot(); 3470 3471 if (TLI.getInsertFencesForAtomic()) 3472 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3473 DAG, TLI); 3474 3475 SDValue L = 3476 DAG.getAtomic(NT, dl, 3477 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3478 InChain, 3479 getValue(I.getPointerOperand()), 3480 getValue(I.getValOperand()), 3481 I.getPointerOperand(), 0 /* Alignment */, 3482 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3483 Scope); 3484 3485 SDValue OutChain = L.getValue(1); 3486 3487 if (TLI.getInsertFencesForAtomic()) 3488 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3489 DAG, TLI); 3490 3491 setValue(&I, L); 3492 DAG.setRoot(OutChain); 3493 } 3494 3495 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3496 DebugLoc dl = getCurDebugLoc(); 3497 SDValue Ops[3]; 3498 Ops[0] = getRoot(); 3499 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3500 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3501 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3502 } 3503 3504 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3505 DebugLoc dl = getCurDebugLoc(); 3506 AtomicOrdering Order = I.getOrdering(); 3507 SynchronizationScope Scope = I.getSynchScope(); 3508 3509 SDValue InChain = getRoot(); 3510 3511 EVT VT = TLI.getValueType(I.getType()); 3512 3513 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3514 report_fatal_error("Cannot generate unaligned atomic load"); 3515 3516 SDValue L = 3517 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3518 getValue(I.getPointerOperand()), 3519 I.getPointerOperand(), I.getAlignment(), 3520 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3521 Scope); 3522 3523 SDValue OutChain = L.getValue(1); 3524 3525 if (TLI.getInsertFencesForAtomic()) 3526 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3527 DAG, TLI); 3528 3529 setValue(&I, L); 3530 DAG.setRoot(OutChain); 3531 } 3532 3533 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3534 DebugLoc dl = getCurDebugLoc(); 3535 3536 AtomicOrdering Order = I.getOrdering(); 3537 SynchronizationScope Scope = I.getSynchScope(); 3538 3539 SDValue InChain = getRoot(); 3540 3541 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3542 3543 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3544 report_fatal_error("Cannot generate unaligned atomic store"); 3545 3546 if (TLI.getInsertFencesForAtomic()) 3547 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3548 DAG, TLI); 3549 3550 SDValue OutChain = 3551 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3552 InChain, 3553 getValue(I.getPointerOperand()), 3554 getValue(I.getValueOperand()), 3555 I.getPointerOperand(), I.getAlignment(), 3556 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3557 Scope); 3558 3559 if (TLI.getInsertFencesForAtomic()) 3560 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3561 DAG, TLI); 3562 3563 DAG.setRoot(OutChain); 3564 } 3565 3566 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3567 /// node. 3568 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3569 unsigned Intrinsic) { 3570 bool HasChain = !I.doesNotAccessMemory(); 3571 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3572 3573 // Build the operand list. 3574 SmallVector<SDValue, 8> Ops; 3575 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3576 if (OnlyLoad) { 3577 // We don't need to serialize loads against other loads. 3578 Ops.push_back(DAG.getRoot()); 3579 } else { 3580 Ops.push_back(getRoot()); 3581 } 3582 } 3583 3584 // Info is set by getTgtMemInstrinsic 3585 TargetLowering::IntrinsicInfo Info; 3586 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3587 3588 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3589 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3590 Info.opc == ISD::INTRINSIC_W_CHAIN) 3591 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3592 3593 // Add all operands of the call to the operand list. 3594 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3595 SDValue Op = getValue(I.getArgOperand(i)); 3596 Ops.push_back(Op); 3597 } 3598 3599 SmallVector<EVT, 4> ValueVTs; 3600 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3601 3602 if (HasChain) 3603 ValueVTs.push_back(MVT::Other); 3604 3605 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3606 3607 // Create the node. 3608 SDValue Result; 3609 if (IsTgtIntrinsic) { 3610 // This is target intrinsic that touches memory 3611 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3612 VTs, &Ops[0], Ops.size(), 3613 Info.memVT, 3614 MachinePointerInfo(Info.ptrVal, Info.offset), 3615 Info.align, Info.vol, 3616 Info.readMem, Info.writeMem); 3617 } else if (!HasChain) { 3618 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3619 VTs, &Ops[0], Ops.size()); 3620 } else if (!I.getType()->isVoidTy()) { 3621 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3622 VTs, &Ops[0], Ops.size()); 3623 } else { 3624 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3625 VTs, &Ops[0], Ops.size()); 3626 } 3627 3628 if (HasChain) { 3629 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3630 if (OnlyLoad) 3631 PendingLoads.push_back(Chain); 3632 else 3633 DAG.setRoot(Chain); 3634 } 3635 3636 if (!I.getType()->isVoidTy()) { 3637 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3638 EVT VT = TLI.getValueType(PTy); 3639 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3640 } 3641 3642 setValue(&I, Result); 3643 } else { 3644 // Assign order to result here. If the intrinsic does not produce a result, 3645 // it won't be mapped to a SDNode and visit() will not assign it an order 3646 // number. 3647 ++SDNodeOrder; 3648 AssignOrderingToNode(Result.getNode()); 3649 } 3650 } 3651 3652 /// GetSignificand - Get the significand and build it into a floating-point 3653 /// number with exponent of 1: 3654 /// 3655 /// Op = (Op & 0x007fffff) | 0x3f800000; 3656 /// 3657 /// where Op is the hexidecimal representation of floating point value. 3658 static SDValue 3659 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3660 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3661 DAG.getConstant(0x007fffff, MVT::i32)); 3662 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3663 DAG.getConstant(0x3f800000, MVT::i32)); 3664 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3665 } 3666 3667 /// GetExponent - Get the exponent: 3668 /// 3669 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3670 /// 3671 /// where Op is the hexidecimal representation of floating point value. 3672 static SDValue 3673 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3674 DebugLoc dl) { 3675 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3676 DAG.getConstant(0x7f800000, MVT::i32)); 3677 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3678 DAG.getConstant(23, TLI.getPointerTy())); 3679 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3680 DAG.getConstant(127, MVT::i32)); 3681 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3682 } 3683 3684 /// getF32Constant - Get 32-bit floating point constant. 3685 static SDValue 3686 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3687 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3688 } 3689 3690 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3691 /// limited-precision mode. 3692 static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3693 const TargetLowering &TLI) { 3694 if (Op.getValueType() == MVT::f32 && 3695 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3696 3697 // Put the exponent in the right bit position for later addition to the 3698 // final result: 3699 // 3700 // #define LOG2OFe 1.4426950f 3701 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3702 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3703 getF32Constant(DAG, 0x3fb8aa3b)); 3704 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3705 3706 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3707 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3708 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3709 3710 // IntegerPartOfX <<= 23; 3711 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3712 DAG.getConstant(23, TLI.getPointerTy())); 3713 3714 SDValue TwoToFracPartOfX; 3715 if (LimitFloatPrecision <= 6) { 3716 // For floating-point precision of 6: 3717 // 3718 // TwoToFractionalPartOfX = 3719 // 0.997535578f + 3720 // (0.735607626f + 0.252464424f * x) * x; 3721 // 3722 // error 0.0144103317, which is 6 bits 3723 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3724 getF32Constant(DAG, 0x3e814304)); 3725 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3726 getF32Constant(DAG, 0x3f3c50c8)); 3727 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3728 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3729 getF32Constant(DAG, 0x3f7f5e7e)); 3730 } else if (LimitFloatPrecision <= 12) { 3731 // For floating-point precision of 12: 3732 // 3733 // TwoToFractionalPartOfX = 3734 // 0.999892986f + 3735 // (0.696457318f + 3736 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3737 // 3738 // 0.000107046256 error, which is 13 to 14 bits 3739 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3740 getF32Constant(DAG, 0x3da235e3)); 3741 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3742 getF32Constant(DAG, 0x3e65b8f3)); 3743 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3744 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3745 getF32Constant(DAG, 0x3f324b07)); 3746 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3747 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3748 getF32Constant(DAG, 0x3f7ff8fd)); 3749 } else { // LimitFloatPrecision <= 18 3750 // For floating-point precision of 18: 3751 // 3752 // TwoToFractionalPartOfX = 3753 // 0.999999982f + 3754 // (0.693148872f + 3755 // (0.240227044f + 3756 // (0.554906021e-1f + 3757 // (0.961591928e-2f + 3758 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3759 // 3760 // error 2.47208000*10^(-7), which is better than 18 bits 3761 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3762 getF32Constant(DAG, 0x3924b03e)); 3763 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3764 getF32Constant(DAG, 0x3ab24b87)); 3765 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3766 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3767 getF32Constant(DAG, 0x3c1d8c17)); 3768 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3769 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3770 getF32Constant(DAG, 0x3d634a1d)); 3771 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3772 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3773 getF32Constant(DAG, 0x3e75fe14)); 3774 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3775 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3776 getF32Constant(DAG, 0x3f317234)); 3777 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3778 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3779 getF32Constant(DAG, 0x3f800000)); 3780 } 3781 3782 // Add the exponent into the result in integer domain. 3783 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3784 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3785 DAG.getNode(ISD::ADD, dl, MVT::i32, 3786 t13, IntegerPartOfX)); 3787 } 3788 3789 // No special expansion. 3790 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3791 } 3792 3793 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3794 /// limited-precision mode. 3795 static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3796 const TargetLowering &TLI) { 3797 if (Op.getValueType() == MVT::f32 && 3798 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3799 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3800 3801 // Scale the exponent by log(2) [0.69314718f]. 3802 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3803 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3804 getF32Constant(DAG, 0x3f317218)); 3805 3806 // Get the significand and build it into a floating-point number with 3807 // exponent of 1. 3808 SDValue X = GetSignificand(DAG, Op1, dl); 3809 3810 SDValue LogOfMantissa; 3811 if (LimitFloatPrecision <= 6) { 3812 // For floating-point precision of 6: 3813 // 3814 // LogofMantissa = 3815 // -1.1609546f + 3816 // (1.4034025f - 0.23903021f * x) * x; 3817 // 3818 // error 0.0034276066, which is better than 8 bits 3819 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3820 getF32Constant(DAG, 0xbe74c456)); 3821 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3822 getF32Constant(DAG, 0x3fb3a2b1)); 3823 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3824 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3825 getF32Constant(DAG, 0x3f949a29)); 3826 } else if (LimitFloatPrecision <= 12) { 3827 // For floating-point precision of 12: 3828 // 3829 // LogOfMantissa = 3830 // -1.7417939f + 3831 // (2.8212026f + 3832 // (-1.4699568f + 3833 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3834 // 3835 // error 0.000061011436, which is 14 bits 3836 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3837 getF32Constant(DAG, 0xbd67b6d6)); 3838 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3839 getF32Constant(DAG, 0x3ee4f4b8)); 3840 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3841 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3fbc278b)); 3843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3844 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3845 getF32Constant(DAG, 0x40348e95)); 3846 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3847 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3848 getF32Constant(DAG, 0x3fdef31a)); 3849 } else { // LimitFloatPrecision <= 18 3850 // For floating-point precision of 18: 3851 // 3852 // LogOfMantissa = 3853 // -2.1072184f + 3854 // (4.2372794f + 3855 // (-3.7029485f + 3856 // (2.2781945f + 3857 // (-0.87823314f + 3858 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3859 // 3860 // error 0.0000023660568, which is better than 18 bits 3861 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3862 getF32Constant(DAG, 0xbc91e5ac)); 3863 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3864 getF32Constant(DAG, 0x3e4350aa)); 3865 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3866 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3867 getF32Constant(DAG, 0x3f60d3e3)); 3868 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3869 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3870 getF32Constant(DAG, 0x4011cdf0)); 3871 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3872 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3873 getF32Constant(DAG, 0x406cfd1c)); 3874 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3875 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3876 getF32Constant(DAG, 0x408797cb)); 3877 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3878 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3879 getF32Constant(DAG, 0x4006dcab)); 3880 } 3881 3882 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3883 } 3884 3885 // No special expansion. 3886 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3887 } 3888 3889 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3890 /// limited-precision mode. 3891 static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3892 const TargetLowering &TLI) { 3893 if (Op.getValueType() == MVT::f32 && 3894 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3895 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3896 3897 // Get the exponent. 3898 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3899 3900 // Get the significand and build it into a floating-point number with 3901 // exponent of 1. 3902 SDValue X = GetSignificand(DAG, Op1, dl); 3903 3904 // Different possible minimax approximations of significand in 3905 // floating-point for various degrees of accuracy over [1,2]. 3906 SDValue Log2ofMantissa; 3907 if (LimitFloatPrecision <= 6) { 3908 // For floating-point precision of 6: 3909 // 3910 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3911 // 3912 // error 0.0049451742, which is more than 7 bits 3913 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3914 getF32Constant(DAG, 0xbeb08fe0)); 3915 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3916 getF32Constant(DAG, 0x40019463)); 3917 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3918 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3919 getF32Constant(DAG, 0x3fd6633d)); 3920 } else if (LimitFloatPrecision <= 12) { 3921 // For floating-point precision of 12: 3922 // 3923 // Log2ofMantissa = 3924 // -2.51285454f + 3925 // (4.07009056f + 3926 // (-2.12067489f + 3927 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3928 // 3929 // error 0.0000876136000, which is better than 13 bits 3930 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3931 getF32Constant(DAG, 0xbda7262e)); 3932 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3933 getF32Constant(DAG, 0x3f25280b)); 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3935 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3936 getF32Constant(DAG, 0x4007b923)); 3937 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3938 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3939 getF32Constant(DAG, 0x40823e2f)); 3940 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3941 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3942 getF32Constant(DAG, 0x4020d29c)); 3943 } else { // LimitFloatPrecision <= 18 3944 // For floating-point precision of 18: 3945 // 3946 // Log2ofMantissa = 3947 // -3.0400495f + 3948 // (6.1129976f + 3949 // (-5.3420409f + 3950 // (3.2865683f + 3951 // (-1.2669343f + 3952 // (0.27515199f - 3953 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3954 // 3955 // error 0.0000018516, which is better than 18 bits 3956 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3957 getF32Constant(DAG, 0xbcd2769e)); 3958 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3959 getF32Constant(DAG, 0x3e8ce0b9)); 3960 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3961 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3962 getF32Constant(DAG, 0x3fa22ae7)); 3963 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3964 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3965 getF32Constant(DAG, 0x40525723)); 3966 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3967 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3968 getF32Constant(DAG, 0x40aaf200)); 3969 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3970 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3971 getF32Constant(DAG, 0x40c39dad)); 3972 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3973 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3974 getF32Constant(DAG, 0x4042902c)); 3975 } 3976 3977 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3978 } 3979 3980 // No special expansion. 3981 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3982 } 3983 3984 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3985 /// limited-precision mode. 3986 static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 3987 const TargetLowering &TLI) { 3988 if (Op.getValueType() == MVT::f32 && 3989 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3990 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3991 3992 // Scale the exponent by log10(2) [0.30102999f]. 3993 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3994 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3995 getF32Constant(DAG, 0x3e9a209a)); 3996 3997 // Get the significand and build it into a floating-point number with 3998 // exponent of 1. 3999 SDValue X = GetSignificand(DAG, Op1, dl); 4000 4001 SDValue Log10ofMantissa; 4002 if (LimitFloatPrecision <= 6) { 4003 // For floating-point precision of 6: 4004 // 4005 // Log10ofMantissa = 4006 // -0.50419619f + 4007 // (0.60948995f - 0.10380950f * x) * x; 4008 // 4009 // error 0.0014886165, which is 6 bits 4010 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4011 getF32Constant(DAG, 0xbdd49a13)); 4012 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4013 getF32Constant(DAG, 0x3f1c0789)); 4014 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4015 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4016 getF32Constant(DAG, 0x3f011300)); 4017 } else if (LimitFloatPrecision <= 12) { 4018 // For floating-point precision of 12: 4019 // 4020 // Log10ofMantissa = 4021 // -0.64831180f + 4022 // (0.91751397f + 4023 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4024 // 4025 // error 0.00019228036, which is better than 12 bits 4026 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4027 getF32Constant(DAG, 0x3d431f31)); 4028 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4029 getF32Constant(DAG, 0x3ea21fb2)); 4030 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4031 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4032 getF32Constant(DAG, 0x3f6ae232)); 4033 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4034 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4035 getF32Constant(DAG, 0x3f25f7c3)); 4036 } else { // LimitFloatPrecision <= 18 4037 // For floating-point precision of 18: 4038 // 4039 // Log10ofMantissa = 4040 // -0.84299375f + 4041 // (1.5327582f + 4042 // (-1.0688956f + 4043 // (0.49102474f + 4044 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4045 // 4046 // error 0.0000037995730, which is better than 18 bits 4047 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4048 getF32Constant(DAG, 0x3c5d51ce)); 4049 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4050 getF32Constant(DAG, 0x3e00685a)); 4051 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4052 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4053 getF32Constant(DAG, 0x3efb6798)); 4054 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4055 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4056 getF32Constant(DAG, 0x3f88d192)); 4057 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4058 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4059 getF32Constant(DAG, 0x3fc4316c)); 4060 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4061 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4062 getF32Constant(DAG, 0x3f57ce70)); 4063 } 4064 4065 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4066 } 4067 4068 // No special expansion. 4069 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4070 } 4071 4072 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4073 /// limited-precision mode. 4074 static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG, 4075 const TargetLowering &TLI) { 4076 if (Op.getValueType() == MVT::f32 && 4077 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4078 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4079 4080 // FractionalPartOfX = x - (float)IntegerPartOfX; 4081 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4082 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4083 4084 // IntegerPartOfX <<= 23; 4085 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4086 DAG.getConstant(23, TLI.getPointerTy())); 4087 4088 SDValue TwoToFractionalPartOfX; 4089 if (LimitFloatPrecision <= 6) { 4090 // For floating-point precision of 6: 4091 // 4092 // TwoToFractionalPartOfX = 4093 // 0.997535578f + 4094 // (0.735607626f + 0.252464424f * x) * x; 4095 // 4096 // error 0.0144103317, which is 6 bits 4097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4098 getF32Constant(DAG, 0x3e814304)); 4099 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4100 getF32Constant(DAG, 0x3f3c50c8)); 4101 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4102 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4103 getF32Constant(DAG, 0x3f7f5e7e)); 4104 } else if (LimitFloatPrecision <= 12) { 4105 // For floating-point precision of 12: 4106 // 4107 // TwoToFractionalPartOfX = 4108 // 0.999892986f + 4109 // (0.696457318f + 4110 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4111 // 4112 // error 0.000107046256, which is 13 to 14 bits 4113 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4114 getF32Constant(DAG, 0x3da235e3)); 4115 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4116 getF32Constant(DAG, 0x3e65b8f3)); 4117 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4118 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4119 getF32Constant(DAG, 0x3f324b07)); 4120 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4121 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4122 getF32Constant(DAG, 0x3f7ff8fd)); 4123 } else { // LimitFloatPrecision <= 18 4124 // For floating-point precision of 18: 4125 // 4126 // TwoToFractionalPartOfX = 4127 // 0.999999982f + 4128 // (0.693148872f + 4129 // (0.240227044f + 4130 // (0.554906021e-1f + 4131 // (0.961591928e-2f + 4132 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4133 // error 2.47208000*10^(-7), which is better than 18 bits 4134 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4135 getF32Constant(DAG, 0x3924b03e)); 4136 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4137 getF32Constant(DAG, 0x3ab24b87)); 4138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4139 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4140 getF32Constant(DAG, 0x3c1d8c17)); 4141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4142 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4143 getF32Constant(DAG, 0x3d634a1d)); 4144 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4145 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4146 getF32Constant(DAG, 0x3e75fe14)); 4147 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4148 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4149 getF32Constant(DAG, 0x3f317234)); 4150 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4151 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4152 getF32Constant(DAG, 0x3f800000)); 4153 } 4154 4155 // Add the exponent into the result in integer domain. 4156 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4157 TwoToFractionalPartOfX); 4158 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4159 DAG.getNode(ISD::ADD, dl, MVT::i32, 4160 t13, IntegerPartOfX)); 4161 } 4162 4163 // No special expansion. 4164 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4165 } 4166 4167 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4168 /// limited-precision mode with x == 10.0f. 4169 static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS, 4170 SelectionDAG &DAG, const TargetLowering &TLI) { 4171 bool IsExp10 = false; 4172 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 && 4173 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4174 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4175 APFloat Ten(10.0f); 4176 IsExp10 = LHSC->isExactlyValue(Ten); 4177 } 4178 } 4179 4180 if (IsExp10) { 4181 // Put the exponent in the right bit position for later addition to the 4182 // final result: 4183 // 4184 // #define LOG2OF10 3.3219281f 4185 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4187 getF32Constant(DAG, 0x40549a78)); 4188 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4189 4190 // FractionalPartOfX = x - (float)IntegerPartOfX; 4191 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4192 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4193 4194 // IntegerPartOfX <<= 23; 4195 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4196 DAG.getConstant(23, TLI.getPointerTy())); 4197 4198 SDValue TwoToFractionalPartOfX; 4199 if (LimitFloatPrecision <= 6) { 4200 // For floating-point precision of 6: 4201 // 4202 // twoToFractionalPartOfX = 4203 // 0.997535578f + 4204 // (0.735607626f + 0.252464424f * x) * x; 4205 // 4206 // error 0.0144103317, which is 6 bits 4207 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4208 getF32Constant(DAG, 0x3e814304)); 4209 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4210 getF32Constant(DAG, 0x3f3c50c8)); 4211 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4212 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4213 getF32Constant(DAG, 0x3f7f5e7e)); 4214 } else if (LimitFloatPrecision <= 12) { 4215 // For floating-point precision of 12: 4216 // 4217 // TwoToFractionalPartOfX = 4218 // 0.999892986f + 4219 // (0.696457318f + 4220 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4221 // 4222 // error 0.000107046256, which is 13 to 14 bits 4223 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4224 getF32Constant(DAG, 0x3da235e3)); 4225 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4226 getF32Constant(DAG, 0x3e65b8f3)); 4227 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4228 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4229 getF32Constant(DAG, 0x3f324b07)); 4230 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4231 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4232 getF32Constant(DAG, 0x3f7ff8fd)); 4233 } else { // LimitFloatPrecision <= 18 4234 // For floating-point precision of 18: 4235 // 4236 // TwoToFractionalPartOfX = 4237 // 0.999999982f + 4238 // (0.693148872f + 4239 // (0.240227044f + 4240 // (0.554906021e-1f + 4241 // (0.961591928e-2f + 4242 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4243 // error 2.47208000*10^(-7), which is better than 18 bits 4244 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4245 getF32Constant(DAG, 0x3924b03e)); 4246 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4247 getF32Constant(DAG, 0x3ab24b87)); 4248 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4249 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4250 getF32Constant(DAG, 0x3c1d8c17)); 4251 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4252 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4253 getF32Constant(DAG, 0x3d634a1d)); 4254 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4255 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4256 getF32Constant(DAG, 0x3e75fe14)); 4257 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4258 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4259 getF32Constant(DAG, 0x3f317234)); 4260 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4261 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4262 getF32Constant(DAG, 0x3f800000)); 4263 } 4264 4265 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4266 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4267 DAG.getNode(ISD::ADD, dl, MVT::i32, 4268 t13, IntegerPartOfX)); 4269 } 4270 4271 // No special expansion. 4272 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4273 } 4274 4275 4276 /// ExpandPowI - Expand a llvm.powi intrinsic. 4277 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4278 SelectionDAG &DAG) { 4279 // If RHS is a constant, we can expand this out to a multiplication tree, 4280 // otherwise we end up lowering to a call to __powidf2 (for example). When 4281 // optimizing for size, we only want to do this if the expansion would produce 4282 // a small number of multiplies, otherwise we do the full expansion. 4283 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4284 // Get the exponent as a positive value. 4285 unsigned Val = RHSC->getSExtValue(); 4286 if ((int)Val < 0) Val = -Val; 4287 4288 // powi(x, 0) -> 1.0 4289 if (Val == 0) 4290 return DAG.getConstantFP(1.0, LHS.getValueType()); 4291 4292 const Function *F = DAG.getMachineFunction().getFunction(); 4293 if (!F->getFnAttributes().hasAttribute(Attributes::OptimizeForSize) || 4294 // If optimizing for size, don't insert too many multiplies. This 4295 // inserts up to 5 multiplies. 4296 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4297 // We use the simple binary decomposition method to generate the multiply 4298 // sequence. There are more optimal ways to do this (for example, 4299 // powi(x,15) generates one more multiply than it should), but this has 4300 // the benefit of being both really simple and much better than a libcall. 4301 SDValue Res; // Logically starts equal to 1.0 4302 SDValue CurSquare = LHS; 4303 while (Val) { 4304 if (Val & 1) { 4305 if (Res.getNode()) 4306 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4307 else 4308 Res = CurSquare; // 1.0*CurSquare. 4309 } 4310 4311 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4312 CurSquare, CurSquare); 4313 Val >>= 1; 4314 } 4315 4316 // If the original was negative, invert the result, producing 1/(x*x*x). 4317 if (RHSC->getSExtValue() < 0) 4318 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4319 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4320 return Res; 4321 } 4322 } 4323 4324 // Otherwise, expand to a libcall. 4325 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4326 } 4327 4328 // getTruncatedArgReg - Find underlying register used for an truncated 4329 // argument. 4330 static unsigned getTruncatedArgReg(const SDValue &N) { 4331 if (N.getOpcode() != ISD::TRUNCATE) 4332 return 0; 4333 4334 const SDValue &Ext = N.getOperand(0); 4335 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4336 const SDValue &CFR = Ext.getOperand(0); 4337 if (CFR.getOpcode() == ISD::CopyFromReg) 4338 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4339 if (CFR.getOpcode() == ISD::TRUNCATE) 4340 return getTruncatedArgReg(CFR); 4341 } 4342 return 0; 4343 } 4344 4345 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4346 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4347 /// At the end of instruction selection, they will be inserted to the entry BB. 4348 bool 4349 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4350 int64_t Offset, 4351 const SDValue &N) { 4352 const Argument *Arg = dyn_cast<Argument>(V); 4353 if (!Arg) 4354 return false; 4355 4356 MachineFunction &MF = DAG.getMachineFunction(); 4357 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4358 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4359 4360 // Ignore inlined function arguments here. 4361 DIVariable DV(Variable); 4362 if (DV.isInlinedFnArgument(MF.getFunction())) 4363 return false; 4364 4365 unsigned Reg = 0; 4366 // Some arguments' frame index is recorded during argument lowering. 4367 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4368 if (Offset) 4369 Reg = TRI->getFrameRegister(MF); 4370 4371 if (!Reg && N.getNode()) { 4372 if (N.getOpcode() == ISD::CopyFromReg) 4373 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4374 else 4375 Reg = getTruncatedArgReg(N); 4376 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4377 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4378 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4379 if (PR) 4380 Reg = PR; 4381 } 4382 } 4383 4384 if (!Reg) { 4385 // Check if ValueMap has reg number. 4386 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4387 if (VMI != FuncInfo.ValueMap.end()) 4388 Reg = VMI->second; 4389 } 4390 4391 if (!Reg && N.getNode()) { 4392 // Check if frame index is available. 4393 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4394 if (FrameIndexSDNode *FINode = 4395 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4396 Reg = TRI->getFrameRegister(MF); 4397 Offset = FINode->getIndex(); 4398 } 4399 } 4400 4401 if (!Reg) 4402 return false; 4403 4404 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4405 TII->get(TargetOpcode::DBG_VALUE)) 4406 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4407 FuncInfo.ArgDbgValues.push_back(&*MIB); 4408 return true; 4409 } 4410 4411 // VisualStudio defines setjmp as _setjmp 4412 #if defined(_MSC_VER) && defined(setjmp) && \ 4413 !defined(setjmp_undefined_for_msvc) 4414 # pragma push_macro("setjmp") 4415 # undef setjmp 4416 # define setjmp_undefined_for_msvc 4417 #endif 4418 4419 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4420 /// we want to emit this as a call to a named external function, return the name 4421 /// otherwise lower it and return null. 4422 const char * 4423 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4424 DebugLoc dl = getCurDebugLoc(); 4425 SDValue Res; 4426 4427 switch (Intrinsic) { 4428 default: 4429 // By default, turn this into a target intrinsic node. 4430 visitTargetIntrinsic(I, Intrinsic); 4431 return 0; 4432 case Intrinsic::vastart: visitVAStart(I); return 0; 4433 case Intrinsic::vaend: visitVAEnd(I); return 0; 4434 case Intrinsic::vacopy: visitVACopy(I); return 0; 4435 case Intrinsic::returnaddress: 4436 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4437 getValue(I.getArgOperand(0)))); 4438 return 0; 4439 case Intrinsic::frameaddress: 4440 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4441 getValue(I.getArgOperand(0)))); 4442 return 0; 4443 case Intrinsic::setjmp: 4444 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4445 case Intrinsic::longjmp: 4446 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4447 case Intrinsic::memcpy: { 4448 // Assert for address < 256 since we support only user defined address 4449 // spaces. 4450 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4451 < 256 && 4452 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4453 < 256 && 4454 "Unknown address space"); 4455 SDValue Op1 = getValue(I.getArgOperand(0)); 4456 SDValue Op2 = getValue(I.getArgOperand(1)); 4457 SDValue Op3 = getValue(I.getArgOperand(2)); 4458 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4459 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4460 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4461 MachinePointerInfo(I.getArgOperand(0)), 4462 MachinePointerInfo(I.getArgOperand(1)))); 4463 return 0; 4464 } 4465 case Intrinsic::memset: { 4466 // Assert for address < 256 since we support only user defined address 4467 // spaces. 4468 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4469 < 256 && 4470 "Unknown address space"); 4471 SDValue Op1 = getValue(I.getArgOperand(0)); 4472 SDValue Op2 = getValue(I.getArgOperand(1)); 4473 SDValue Op3 = getValue(I.getArgOperand(2)); 4474 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4475 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4476 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4477 MachinePointerInfo(I.getArgOperand(0)))); 4478 return 0; 4479 } 4480 case Intrinsic::memmove: { 4481 // Assert for address < 256 since we support only user defined address 4482 // spaces. 4483 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4484 < 256 && 4485 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4486 < 256 && 4487 "Unknown address space"); 4488 SDValue Op1 = getValue(I.getArgOperand(0)); 4489 SDValue Op2 = getValue(I.getArgOperand(1)); 4490 SDValue Op3 = getValue(I.getArgOperand(2)); 4491 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4492 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4493 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4494 MachinePointerInfo(I.getArgOperand(0)), 4495 MachinePointerInfo(I.getArgOperand(1)))); 4496 return 0; 4497 } 4498 case Intrinsic::dbg_declare: { 4499 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4500 MDNode *Variable = DI.getVariable(); 4501 const Value *Address = DI.getAddress(); 4502 if (!Address || !DIVariable(Variable).Verify()) { 4503 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4504 return 0; 4505 } 4506 4507 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4508 // but do not always have a corresponding SDNode built. The SDNodeOrder 4509 // absolute, but not relative, values are different depending on whether 4510 // debug info exists. 4511 ++SDNodeOrder; 4512 4513 // Check if address has undef value. 4514 if (isa<UndefValue>(Address) || 4515 (Address->use_empty() && !isa<Argument>(Address))) { 4516 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4517 return 0; 4518 } 4519 4520 SDValue &N = NodeMap[Address]; 4521 if (!N.getNode() && isa<Argument>(Address)) 4522 // Check unused arguments map. 4523 N = UnusedArgNodeMap[Address]; 4524 SDDbgValue *SDV; 4525 if (N.getNode()) { 4526 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4527 Address = BCI->getOperand(0); 4528 // Parameters are handled specially. 4529 bool isParameter = 4530 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4531 isa<Argument>(Address)); 4532 4533 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4534 4535 if (isParameter && !AI) { 4536 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4537 if (FINode) 4538 // Byval parameter. We have a frame index at this point. 4539 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4540 0, dl, SDNodeOrder); 4541 else { 4542 // Address is an argument, so try to emit its dbg value using 4543 // virtual register info from the FuncInfo.ValueMap. 4544 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4545 return 0; 4546 } 4547 } else if (AI) 4548 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4549 0, dl, SDNodeOrder); 4550 else { 4551 // Can't do anything with other non-AI cases yet. 4552 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4553 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4554 DEBUG(Address->dump()); 4555 return 0; 4556 } 4557 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4558 } else { 4559 // If Address is an argument then try to emit its dbg value using 4560 // virtual register info from the FuncInfo.ValueMap. 4561 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4562 // If variable is pinned by a alloca in dominating bb then 4563 // use StaticAllocaMap. 4564 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4565 if (AI->getParent() != DI.getParent()) { 4566 DenseMap<const AllocaInst*, int>::iterator SI = 4567 FuncInfo.StaticAllocaMap.find(AI); 4568 if (SI != FuncInfo.StaticAllocaMap.end()) { 4569 SDV = DAG.getDbgValue(Variable, SI->second, 4570 0, dl, SDNodeOrder); 4571 DAG.AddDbgValue(SDV, 0, false); 4572 return 0; 4573 } 4574 } 4575 } 4576 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4577 } 4578 } 4579 return 0; 4580 } 4581 case Intrinsic::dbg_value: { 4582 const DbgValueInst &DI = cast<DbgValueInst>(I); 4583 if (!DIVariable(DI.getVariable()).Verify()) 4584 return 0; 4585 4586 MDNode *Variable = DI.getVariable(); 4587 uint64_t Offset = DI.getOffset(); 4588 const Value *V = DI.getValue(); 4589 if (!V) 4590 return 0; 4591 4592 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4593 // but do not always have a corresponding SDNode built. The SDNodeOrder 4594 // absolute, but not relative, values are different depending on whether 4595 // debug info exists. 4596 ++SDNodeOrder; 4597 SDDbgValue *SDV; 4598 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4599 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4600 DAG.AddDbgValue(SDV, 0, false); 4601 } else { 4602 // Do not use getValue() in here; we don't want to generate code at 4603 // this point if it hasn't been done yet. 4604 SDValue N = NodeMap[V]; 4605 if (!N.getNode() && isa<Argument>(V)) 4606 // Check unused arguments map. 4607 N = UnusedArgNodeMap[V]; 4608 if (N.getNode()) { 4609 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4610 SDV = DAG.getDbgValue(Variable, N.getNode(), 4611 N.getResNo(), Offset, dl, SDNodeOrder); 4612 DAG.AddDbgValue(SDV, N.getNode(), false); 4613 } 4614 } else if (!V->use_empty() ) { 4615 // Do not call getValue(V) yet, as we don't want to generate code. 4616 // Remember it for later. 4617 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4618 DanglingDebugInfoMap[V] = DDI; 4619 } else { 4620 // We may expand this to cover more cases. One case where we have no 4621 // data available is an unreferenced parameter. 4622 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4623 } 4624 } 4625 4626 // Build a debug info table entry. 4627 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4628 V = BCI->getOperand(0); 4629 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4630 // Don't handle byval struct arguments or VLAs, for example. 4631 if (!AI) { 4632 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4633 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4634 return 0; 4635 } 4636 DenseMap<const AllocaInst*, int>::iterator SI = 4637 FuncInfo.StaticAllocaMap.find(AI); 4638 if (SI == FuncInfo.StaticAllocaMap.end()) 4639 return 0; // VLAs. 4640 int FI = SI->second; 4641 4642 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4643 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4644 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4645 return 0; 4646 } 4647 4648 case Intrinsic::eh_typeid_for: { 4649 // Find the type id for the given typeinfo. 4650 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4651 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4652 Res = DAG.getConstant(TypeID, MVT::i32); 4653 setValue(&I, Res); 4654 return 0; 4655 } 4656 4657 case Intrinsic::eh_return_i32: 4658 case Intrinsic::eh_return_i64: 4659 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4660 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4661 MVT::Other, 4662 getControlRoot(), 4663 getValue(I.getArgOperand(0)), 4664 getValue(I.getArgOperand(1)))); 4665 return 0; 4666 case Intrinsic::eh_unwind_init: 4667 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4668 return 0; 4669 case Intrinsic::eh_dwarf_cfa: { 4670 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4671 TLI.getPointerTy()); 4672 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4673 TLI.getPointerTy(), 4674 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4675 TLI.getPointerTy()), 4676 CfaArg); 4677 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4678 TLI.getPointerTy(), 4679 DAG.getConstant(0, TLI.getPointerTy())); 4680 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4681 FA, Offset)); 4682 return 0; 4683 } 4684 case Intrinsic::eh_sjlj_callsite: { 4685 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4686 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4687 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4688 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4689 4690 MMI.setCurrentCallSite(CI->getZExtValue()); 4691 return 0; 4692 } 4693 case Intrinsic::eh_sjlj_functioncontext: { 4694 // Get and store the index of the function context. 4695 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4696 AllocaInst *FnCtx = 4697 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4698 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4699 MFI->setFunctionContextIndex(FI); 4700 return 0; 4701 } 4702 case Intrinsic::eh_sjlj_setjmp: { 4703 SDValue Ops[2]; 4704 Ops[0] = getRoot(); 4705 Ops[1] = getValue(I.getArgOperand(0)); 4706 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4707 DAG.getVTList(MVT::i32, MVT::Other), 4708 Ops, 2); 4709 setValue(&I, Op.getValue(0)); 4710 DAG.setRoot(Op.getValue(1)); 4711 return 0; 4712 } 4713 case Intrinsic::eh_sjlj_longjmp: { 4714 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4715 getRoot(), getValue(I.getArgOperand(0)))); 4716 return 0; 4717 } 4718 4719 case Intrinsic::x86_mmx_pslli_w: 4720 case Intrinsic::x86_mmx_pslli_d: 4721 case Intrinsic::x86_mmx_pslli_q: 4722 case Intrinsic::x86_mmx_psrli_w: 4723 case Intrinsic::x86_mmx_psrli_d: 4724 case Intrinsic::x86_mmx_psrli_q: 4725 case Intrinsic::x86_mmx_psrai_w: 4726 case Intrinsic::x86_mmx_psrai_d: { 4727 SDValue ShAmt = getValue(I.getArgOperand(1)); 4728 if (isa<ConstantSDNode>(ShAmt)) { 4729 visitTargetIntrinsic(I, Intrinsic); 4730 return 0; 4731 } 4732 unsigned NewIntrinsic = 0; 4733 EVT ShAmtVT = MVT::v2i32; 4734 switch (Intrinsic) { 4735 case Intrinsic::x86_mmx_pslli_w: 4736 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4737 break; 4738 case Intrinsic::x86_mmx_pslli_d: 4739 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4740 break; 4741 case Intrinsic::x86_mmx_pslli_q: 4742 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4743 break; 4744 case Intrinsic::x86_mmx_psrli_w: 4745 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4746 break; 4747 case Intrinsic::x86_mmx_psrli_d: 4748 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4749 break; 4750 case Intrinsic::x86_mmx_psrli_q: 4751 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4752 break; 4753 case Intrinsic::x86_mmx_psrai_w: 4754 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4755 break; 4756 case Intrinsic::x86_mmx_psrai_d: 4757 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4758 break; 4759 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4760 } 4761 4762 // The vector shift intrinsics with scalars uses 32b shift amounts but 4763 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4764 // to be zero. 4765 // We must do this early because v2i32 is not a legal type. 4766 SDValue ShOps[2]; 4767 ShOps[0] = ShAmt; 4768 ShOps[1] = DAG.getConstant(0, MVT::i32); 4769 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4770 EVT DestVT = TLI.getValueType(I.getType()); 4771 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4772 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4773 DAG.getConstant(NewIntrinsic, MVT::i32), 4774 getValue(I.getArgOperand(0)), ShAmt); 4775 setValue(&I, Res); 4776 return 0; 4777 } 4778 case Intrinsic::x86_avx_vinsertf128_pd_256: 4779 case Intrinsic::x86_avx_vinsertf128_ps_256: 4780 case Intrinsic::x86_avx_vinsertf128_si_256: 4781 case Intrinsic::x86_avx2_vinserti128: { 4782 EVT DestVT = TLI.getValueType(I.getType()); 4783 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4784 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4785 ElVT.getVectorNumElements(); 4786 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4787 getValue(I.getArgOperand(0)), 4788 getValue(I.getArgOperand(1)), 4789 DAG.getIntPtrConstant(Idx)); 4790 setValue(&I, Res); 4791 return 0; 4792 } 4793 case Intrinsic::x86_avx_vextractf128_pd_256: 4794 case Intrinsic::x86_avx_vextractf128_ps_256: 4795 case Intrinsic::x86_avx_vextractf128_si_256: 4796 case Intrinsic::x86_avx2_vextracti128: { 4797 EVT DestVT = TLI.getValueType(I.getType()); 4798 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4799 DestVT.getVectorNumElements(); 4800 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 4801 getValue(I.getArgOperand(0)), 4802 DAG.getIntPtrConstant(Idx)); 4803 setValue(&I, Res); 4804 return 0; 4805 } 4806 case Intrinsic::convertff: 4807 case Intrinsic::convertfsi: 4808 case Intrinsic::convertfui: 4809 case Intrinsic::convertsif: 4810 case Intrinsic::convertuif: 4811 case Intrinsic::convertss: 4812 case Intrinsic::convertsu: 4813 case Intrinsic::convertus: 4814 case Intrinsic::convertuu: { 4815 ISD::CvtCode Code = ISD::CVT_INVALID; 4816 switch (Intrinsic) { 4817 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4818 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4819 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4820 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4821 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4822 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4823 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4824 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4825 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4826 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4827 } 4828 EVT DestVT = TLI.getValueType(I.getType()); 4829 const Value *Op1 = I.getArgOperand(0); 4830 Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1), 4831 DAG.getValueType(DestVT), 4832 DAG.getValueType(getValue(Op1).getValueType()), 4833 getValue(I.getArgOperand(1)), 4834 getValue(I.getArgOperand(2)), 4835 Code); 4836 setValue(&I, Res); 4837 return 0; 4838 } 4839 case Intrinsic::powi: 4840 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4841 getValue(I.getArgOperand(1)), DAG)); 4842 return 0; 4843 case Intrinsic::log: 4844 setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4845 return 0; 4846 case Intrinsic::log2: 4847 setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4848 return 0; 4849 case Intrinsic::log10: 4850 setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4851 return 0; 4852 case Intrinsic::exp: 4853 setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4854 return 0; 4855 case Intrinsic::exp2: 4856 setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI)); 4857 return 0; 4858 case Intrinsic::pow: 4859 setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)), 4860 getValue(I.getArgOperand(1)), DAG, TLI)); 4861 return 0; 4862 case Intrinsic::sqrt: 4863 case Intrinsic::fabs: 4864 case Intrinsic::sin: 4865 case Intrinsic::cos: 4866 case Intrinsic::floor: 4867 case Intrinsic::ceil: 4868 case Intrinsic::trunc: 4869 case Intrinsic::rint: 4870 case Intrinsic::nearbyint: { 4871 unsigned Opcode; 4872 switch (Intrinsic) { 4873 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4874 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4875 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4876 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4877 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4878 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4879 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4880 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4881 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4882 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4883 } 4884 4885 setValue(&I, DAG.getNode(Opcode, dl, 4886 getValue(I.getArgOperand(0)).getValueType(), 4887 getValue(I.getArgOperand(0)))); 4888 return 0; 4889 } 4890 case Intrinsic::fma: 4891 setValue(&I, DAG.getNode(ISD::FMA, dl, 4892 getValue(I.getArgOperand(0)).getValueType(), 4893 getValue(I.getArgOperand(0)), 4894 getValue(I.getArgOperand(1)), 4895 getValue(I.getArgOperand(2)))); 4896 return 0; 4897 case Intrinsic::fmuladd: { 4898 EVT VT = TLI.getValueType(I.getType()); 4899 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4900 TLI.isOperationLegalOrCustom(ISD::FMA, VT) && 4901 TLI.isFMAFasterThanMulAndAdd(VT)){ 4902 setValue(&I, DAG.getNode(ISD::FMA, dl, 4903 getValue(I.getArgOperand(0)).getValueType(), 4904 getValue(I.getArgOperand(0)), 4905 getValue(I.getArgOperand(1)), 4906 getValue(I.getArgOperand(2)))); 4907 } else { 4908 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 4909 getValue(I.getArgOperand(0)).getValueType(), 4910 getValue(I.getArgOperand(0)), 4911 getValue(I.getArgOperand(1))); 4912 SDValue Add = DAG.getNode(ISD::FADD, dl, 4913 getValue(I.getArgOperand(0)).getValueType(), 4914 Mul, 4915 getValue(I.getArgOperand(2))); 4916 setValue(&I, Add); 4917 } 4918 return 0; 4919 } 4920 case Intrinsic::convert_to_fp16: 4921 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4922 MVT::i16, getValue(I.getArgOperand(0)))); 4923 return 0; 4924 case Intrinsic::convert_from_fp16: 4925 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4926 MVT::f32, getValue(I.getArgOperand(0)))); 4927 return 0; 4928 case Intrinsic::pcmarker: { 4929 SDValue Tmp = getValue(I.getArgOperand(0)); 4930 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4931 return 0; 4932 } 4933 case Intrinsic::readcyclecounter: { 4934 SDValue Op = getRoot(); 4935 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4936 DAG.getVTList(MVT::i64, MVT::Other), 4937 &Op, 1); 4938 setValue(&I, Res); 4939 DAG.setRoot(Res.getValue(1)); 4940 return 0; 4941 } 4942 case Intrinsic::bswap: 4943 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4944 getValue(I.getArgOperand(0)).getValueType(), 4945 getValue(I.getArgOperand(0)))); 4946 return 0; 4947 case Intrinsic::cttz: { 4948 SDValue Arg = getValue(I.getArgOperand(0)); 4949 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4950 EVT Ty = Arg.getValueType(); 4951 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4952 dl, Ty, Arg)); 4953 return 0; 4954 } 4955 case Intrinsic::ctlz: { 4956 SDValue Arg = getValue(I.getArgOperand(0)); 4957 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4958 EVT Ty = Arg.getValueType(); 4959 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4960 dl, Ty, Arg)); 4961 return 0; 4962 } 4963 case Intrinsic::ctpop: { 4964 SDValue Arg = getValue(I.getArgOperand(0)); 4965 EVT Ty = Arg.getValueType(); 4966 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4967 return 0; 4968 } 4969 case Intrinsic::stacksave: { 4970 SDValue Op = getRoot(); 4971 Res = DAG.getNode(ISD::STACKSAVE, dl, 4972 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4973 setValue(&I, Res); 4974 DAG.setRoot(Res.getValue(1)); 4975 return 0; 4976 } 4977 case Intrinsic::stackrestore: { 4978 Res = getValue(I.getArgOperand(0)); 4979 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4980 return 0; 4981 } 4982 case Intrinsic::stackprotector: { 4983 // Emit code into the DAG to store the stack guard onto the stack. 4984 MachineFunction &MF = DAG.getMachineFunction(); 4985 MachineFrameInfo *MFI = MF.getFrameInfo(); 4986 EVT PtrTy = TLI.getPointerTy(); 4987 4988 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4989 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4990 4991 int FI = FuncInfo.StaticAllocaMap[Slot]; 4992 MFI->setStackProtectorIndex(FI); 4993 4994 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4995 4996 // Store the stack protector onto the stack. 4997 Res = DAG.getStore(getRoot(), dl, Src, FIN, 4998 MachinePointerInfo::getFixedStack(FI), 4999 true, false, 0); 5000 setValue(&I, Res); 5001 DAG.setRoot(Res); 5002 return 0; 5003 } 5004 case Intrinsic::objectsize: { 5005 // If we don't know by now, we're never going to know. 5006 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5007 5008 assert(CI && "Non-constant type in __builtin_object_size?"); 5009 5010 SDValue Arg = getValue(I.getCalledValue()); 5011 EVT Ty = Arg.getValueType(); 5012 5013 if (CI->isZero()) 5014 Res = DAG.getConstant(-1ULL, Ty); 5015 else 5016 Res = DAG.getConstant(0, Ty); 5017 5018 setValue(&I, Res); 5019 return 0; 5020 } 5021 case Intrinsic::var_annotation: 5022 // Discard annotate attributes 5023 return 0; 5024 5025 case Intrinsic::init_trampoline: { 5026 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5027 5028 SDValue Ops[6]; 5029 Ops[0] = getRoot(); 5030 Ops[1] = getValue(I.getArgOperand(0)); 5031 Ops[2] = getValue(I.getArgOperand(1)); 5032 Ops[3] = getValue(I.getArgOperand(2)); 5033 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5034 Ops[5] = DAG.getSrcValue(F); 5035 5036 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5037 5038 DAG.setRoot(Res); 5039 return 0; 5040 } 5041 case Intrinsic::adjust_trampoline: { 5042 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5043 TLI.getPointerTy(), 5044 getValue(I.getArgOperand(0)))); 5045 return 0; 5046 } 5047 case Intrinsic::gcroot: 5048 if (GFI) { 5049 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5050 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5051 5052 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5053 GFI->addStackRoot(FI->getIndex(), TypeMap); 5054 } 5055 return 0; 5056 case Intrinsic::gcread: 5057 case Intrinsic::gcwrite: 5058 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5059 case Intrinsic::flt_rounds: 5060 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5061 return 0; 5062 5063 case Intrinsic::expect: { 5064 // Just replace __builtin_expect(exp, c) with EXP. 5065 setValue(&I, getValue(I.getArgOperand(0))); 5066 return 0; 5067 } 5068 5069 case Intrinsic::debugtrap: 5070 case Intrinsic::trap: { 5071 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5072 if (TrapFuncName.empty()) { 5073 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5074 ISD::TRAP : ISD::DEBUGTRAP; 5075 DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot())); 5076 return 0; 5077 } 5078 TargetLowering::ArgListTy Args; 5079 TargetLowering:: 5080 CallLoweringInfo CLI(getRoot(), I.getType(), 5081 false, false, false, false, 0, CallingConv::C, 5082 /*isTailCall=*/false, 5083 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5084 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5085 Args, DAG, dl); 5086 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5087 DAG.setRoot(Result.second); 5088 return 0; 5089 } 5090 5091 case Intrinsic::uadd_with_overflow: 5092 case Intrinsic::sadd_with_overflow: 5093 case Intrinsic::usub_with_overflow: 5094 case Intrinsic::ssub_with_overflow: 5095 case Intrinsic::umul_with_overflow: 5096 case Intrinsic::smul_with_overflow: { 5097 ISD::NodeType Op; 5098 switch (Intrinsic) { 5099 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5100 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5101 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5102 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5103 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5104 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5105 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5106 } 5107 SDValue Op1 = getValue(I.getArgOperand(0)); 5108 SDValue Op2 = getValue(I.getArgOperand(1)); 5109 5110 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5111 setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2)); 5112 return 0; 5113 } 5114 case Intrinsic::prefetch: { 5115 SDValue Ops[5]; 5116 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5117 Ops[0] = getRoot(); 5118 Ops[1] = getValue(I.getArgOperand(0)); 5119 Ops[2] = getValue(I.getArgOperand(1)); 5120 Ops[3] = getValue(I.getArgOperand(2)); 5121 Ops[4] = getValue(I.getArgOperand(3)); 5122 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5123 DAG.getVTList(MVT::Other), 5124 &Ops[0], 5, 5125 EVT::getIntegerVT(*Context, 8), 5126 MachinePointerInfo(I.getArgOperand(0)), 5127 0, /* align */ 5128 false, /* volatile */ 5129 rw==0, /* read */ 5130 rw==1)); /* write */ 5131 return 0; 5132 } 5133 case Intrinsic::lifetime_start: 5134 case Intrinsic::lifetime_end: { 5135 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5136 // Stack coloring is not enabled in O0, discard region information. 5137 if (TM.getOptLevel() == CodeGenOpt::None) 5138 return 0; 5139 5140 SmallVector<Value *, 4> Allocas; 5141 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5142 5143 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5144 E = Allocas.end(); Object != E; ++Object) { 5145 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5146 5147 // Could not find an Alloca. 5148 if (!LifetimeObject) 5149 continue; 5150 5151 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5152 5153 SDValue Ops[2]; 5154 Ops[0] = getRoot(); 5155 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5156 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5157 5158 Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2); 5159 DAG.setRoot(Res); 5160 } 5161 } 5162 case Intrinsic::invariant_start: 5163 // Discard region information. 5164 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5165 return 0; 5166 case Intrinsic::invariant_end: 5167 // Discard region information. 5168 return 0; 5169 case Intrinsic::donothing: 5170 // ignore 5171 return 0; 5172 } 5173 } 5174 5175 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5176 bool isTailCall, 5177 MachineBasicBlock *LandingPad) { 5178 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5179 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5180 Type *RetTy = FTy->getReturnType(); 5181 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5182 MCSymbol *BeginLabel = 0; 5183 5184 TargetLowering::ArgListTy Args; 5185 TargetLowering::ArgListEntry Entry; 5186 Args.reserve(CS.arg_size()); 5187 5188 // Check whether the function can return without sret-demotion. 5189 SmallVector<ISD::OutputArg, 4> Outs; 5190 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5191 Outs, TLI); 5192 5193 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5194 DAG.getMachineFunction(), 5195 FTy->isVarArg(), Outs, 5196 FTy->getContext()); 5197 5198 SDValue DemoteStackSlot; 5199 int DemoteStackIdx = -100; 5200 5201 if (!CanLowerReturn) { 5202 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize( 5203 FTy->getReturnType()); 5204 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment( 5205 FTy->getReturnType()); 5206 MachineFunction &MF = DAG.getMachineFunction(); 5207 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5208 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5209 5210 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5211 Entry.Node = DemoteStackSlot; 5212 Entry.Ty = StackSlotPtrType; 5213 Entry.isSExt = false; 5214 Entry.isZExt = false; 5215 Entry.isInReg = false; 5216 Entry.isSRet = true; 5217 Entry.isNest = false; 5218 Entry.isByVal = false; 5219 Entry.Alignment = Align; 5220 Args.push_back(Entry); 5221 RetTy = Type::getVoidTy(FTy->getContext()); 5222 } 5223 5224 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5225 i != e; ++i) { 5226 const Value *V = *i; 5227 5228 // Skip empty types 5229 if (V->getType()->isEmptyTy()) 5230 continue; 5231 5232 SDValue ArgNode = getValue(V); 5233 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5234 5235 unsigned attrInd = i - CS.arg_begin() + 1; 5236 Entry.isSExt = CS.paramHasAttr(attrInd, Attributes::SExt); 5237 Entry.isZExt = CS.paramHasAttr(attrInd, Attributes::ZExt); 5238 Entry.isInReg = CS.paramHasAttr(attrInd, Attributes::InReg); 5239 Entry.isSRet = CS.paramHasAttr(attrInd, Attributes::StructRet); 5240 Entry.isNest = CS.paramHasAttr(attrInd, Attributes::Nest); 5241 Entry.isByVal = CS.paramHasAttr(attrInd, Attributes::ByVal); 5242 Entry.Alignment = CS.getParamAlignment(attrInd); 5243 Args.push_back(Entry); 5244 } 5245 5246 if (LandingPad) { 5247 // Insert a label before the invoke call to mark the try range. This can be 5248 // used to detect deletion of the invoke via the MachineModuleInfo. 5249 BeginLabel = MMI.getContext().CreateTempSymbol(); 5250 5251 // For SjLj, keep track of which landing pads go with which invokes 5252 // so as to maintain the ordering of pads in the LSDA. 5253 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5254 if (CallSiteIndex) { 5255 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5256 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5257 5258 // Now that the call site is handled, stop tracking it. 5259 MMI.setCurrentCallSite(0); 5260 } 5261 5262 // Both PendingLoads and PendingExports must be flushed here; 5263 // this call might not return. 5264 (void)getRoot(); 5265 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5266 } 5267 5268 // Check if target-independent constraints permit a tail call here. 5269 // Target-dependent constraints are checked within TLI.LowerCallTo. 5270 if (isTailCall && 5271 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5272 isTailCall = false; 5273 5274 // If there's a possibility that fast-isel has already selected some amount 5275 // of the current basic block, don't emit a tail call. 5276 if (isTailCall && TM.Options.EnableFastISel) 5277 isTailCall = false; 5278 5279 TargetLowering:: 5280 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5281 getCurDebugLoc(), CS); 5282 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5283 assert((isTailCall || Result.second.getNode()) && 5284 "Non-null chain expected with non-tail call!"); 5285 assert((Result.second.getNode() || !Result.first.getNode()) && 5286 "Null value expected with tail call!"); 5287 if (Result.first.getNode()) { 5288 setValue(CS.getInstruction(), Result.first); 5289 } else if (!CanLowerReturn && Result.second.getNode()) { 5290 // The instruction result is the result of loading from the 5291 // hidden sret parameter. 5292 SmallVector<EVT, 1> PVTs; 5293 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5294 5295 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5296 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5297 EVT PtrVT = PVTs[0]; 5298 5299 SmallVector<EVT, 4> RetTys; 5300 SmallVector<uint64_t, 4> Offsets; 5301 RetTy = FTy->getReturnType(); 5302 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5303 5304 unsigned NumValues = RetTys.size(); 5305 SmallVector<SDValue, 4> Values(NumValues); 5306 SmallVector<SDValue, 4> Chains(NumValues); 5307 5308 for (unsigned i = 0; i < NumValues; ++i) { 5309 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5310 DemoteStackSlot, 5311 DAG.getConstant(Offsets[i], PtrVT)); 5312 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5313 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5314 false, false, false, 1); 5315 Values[i] = L; 5316 Chains[i] = L.getValue(1); 5317 } 5318 5319 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5320 MVT::Other, &Chains[0], NumValues); 5321 PendingLoads.push_back(Chain); 5322 5323 setValue(CS.getInstruction(), 5324 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5325 DAG.getVTList(&RetTys[0], RetTys.size()), 5326 &Values[0], Values.size())); 5327 } 5328 5329 // Assign order to nodes here. If the call does not produce a result, it won't 5330 // be mapped to a SDNode and visit() will not assign it an order number. 5331 if (!Result.second.getNode()) { 5332 // As a special case, a null chain means that a tail call has been emitted and 5333 // the DAG root is already updated. 5334 HasTailCall = true; 5335 ++SDNodeOrder; 5336 AssignOrderingToNode(DAG.getRoot().getNode()); 5337 } else { 5338 DAG.setRoot(Result.second); 5339 ++SDNodeOrder; 5340 AssignOrderingToNode(Result.second.getNode()); 5341 } 5342 5343 if (LandingPad) { 5344 // Insert a label at the end of the invoke call to mark the try range. This 5345 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5346 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5347 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5348 5349 // Inform MachineModuleInfo of range. 5350 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5351 } 5352 } 5353 5354 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5355 /// value is equal or not-equal to zero. 5356 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5357 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5358 UI != E; ++UI) { 5359 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5360 if (IC->isEquality()) 5361 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5362 if (C->isNullValue()) 5363 continue; 5364 // Unknown instruction. 5365 return false; 5366 } 5367 return true; 5368 } 5369 5370 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5371 Type *LoadTy, 5372 SelectionDAGBuilder &Builder) { 5373 5374 // Check to see if this load can be trivially constant folded, e.g. if the 5375 // input is from a string literal. 5376 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5377 // Cast pointer to the type we really want to load. 5378 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5379 PointerType::getUnqual(LoadTy)); 5380 5381 if (const Constant *LoadCst = 5382 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5383 Builder.TD)) 5384 return Builder.getValue(LoadCst); 5385 } 5386 5387 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5388 // still constant memory, the input chain can be the entry node. 5389 SDValue Root; 5390 bool ConstantMemory = false; 5391 5392 // Do not serialize (non-volatile) loads of constant memory with anything. 5393 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5394 Root = Builder.DAG.getEntryNode(); 5395 ConstantMemory = true; 5396 } else { 5397 // Do not serialize non-volatile loads against each other. 5398 Root = Builder.DAG.getRoot(); 5399 } 5400 5401 SDValue Ptr = Builder.getValue(PtrVal); 5402 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5403 Ptr, MachinePointerInfo(PtrVal), 5404 false /*volatile*/, 5405 false /*nontemporal*/, 5406 false /*isinvariant*/, 1 /* align=1 */); 5407 5408 if (!ConstantMemory) 5409 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5410 return LoadVal; 5411 } 5412 5413 5414 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5415 /// If so, return true and lower it, otherwise return false and it will be 5416 /// lowered like a normal call. 5417 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5418 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5419 if (I.getNumArgOperands() != 3) 5420 return false; 5421 5422 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5423 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5424 !I.getArgOperand(2)->getType()->isIntegerTy() || 5425 !I.getType()->isIntegerTy()) 5426 return false; 5427 5428 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5429 5430 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5431 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5432 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5433 bool ActuallyDoIt = true; 5434 MVT LoadVT; 5435 Type *LoadTy; 5436 switch (Size->getZExtValue()) { 5437 default: 5438 LoadVT = MVT::Other; 5439 LoadTy = 0; 5440 ActuallyDoIt = false; 5441 break; 5442 case 2: 5443 LoadVT = MVT::i16; 5444 LoadTy = Type::getInt16Ty(Size->getContext()); 5445 break; 5446 case 4: 5447 LoadVT = MVT::i32; 5448 LoadTy = Type::getInt32Ty(Size->getContext()); 5449 break; 5450 case 8: 5451 LoadVT = MVT::i64; 5452 LoadTy = Type::getInt64Ty(Size->getContext()); 5453 break; 5454 /* 5455 case 16: 5456 LoadVT = MVT::v4i32; 5457 LoadTy = Type::getInt32Ty(Size->getContext()); 5458 LoadTy = VectorType::get(LoadTy, 4); 5459 break; 5460 */ 5461 } 5462 5463 // This turns into unaligned loads. We only do this if the target natively 5464 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5465 // we'll only produce a small number of byte loads. 5466 5467 // Require that we can find a legal MVT, and only do this if the target 5468 // supports unaligned loads of that type. Expanding into byte loads would 5469 // bloat the code. 5470 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5471 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5472 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5473 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5474 ActuallyDoIt = false; 5475 } 5476 5477 if (ActuallyDoIt) { 5478 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5479 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5480 5481 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5482 ISD::SETNE); 5483 EVT CallVT = TLI.getValueType(I.getType(), true); 5484 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5485 return true; 5486 } 5487 } 5488 5489 5490 return false; 5491 } 5492 5493 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5494 /// operation (as expected), translate it to an SDNode with the specified opcode 5495 /// and return true. 5496 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5497 unsigned Opcode) { 5498 // Sanity check that it really is a unary floating-point call. 5499 if (I.getNumArgOperands() != 1 || 5500 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5501 I.getType() != I.getArgOperand(0)->getType() || 5502 !I.onlyReadsMemory()) 5503 return false; 5504 5505 SDValue Tmp = getValue(I.getArgOperand(0)); 5506 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5507 return true; 5508 } 5509 5510 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5511 // Handle inline assembly differently. 5512 if (isa<InlineAsm>(I.getCalledValue())) { 5513 visitInlineAsm(&I); 5514 return; 5515 } 5516 5517 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5518 ComputeUsesVAFloatArgument(I, &MMI); 5519 5520 const char *RenameFn = 0; 5521 if (Function *F = I.getCalledFunction()) { 5522 if (F->isDeclaration()) { 5523 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5524 if (unsigned IID = II->getIntrinsicID(F)) { 5525 RenameFn = visitIntrinsicCall(I, IID); 5526 if (!RenameFn) 5527 return; 5528 } 5529 } 5530 if (unsigned IID = F->getIntrinsicID()) { 5531 RenameFn = visitIntrinsicCall(I, IID); 5532 if (!RenameFn) 5533 return; 5534 } 5535 } 5536 5537 // Check for well-known libc/libm calls. If the function is internal, it 5538 // can't be a library call. 5539 LibFunc::Func Func; 5540 if (!F->hasLocalLinkage() && F->hasName() && 5541 LibInfo->getLibFunc(F->getName(), Func) && 5542 LibInfo->hasOptimizedCodeGen(Func)) { 5543 switch (Func) { 5544 default: break; 5545 case LibFunc::copysign: 5546 case LibFunc::copysignf: 5547 case LibFunc::copysignl: 5548 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5549 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5550 I.getType() == I.getArgOperand(0)->getType() && 5551 I.getType() == I.getArgOperand(1)->getType() && 5552 I.onlyReadsMemory()) { 5553 SDValue LHS = getValue(I.getArgOperand(0)); 5554 SDValue RHS = getValue(I.getArgOperand(1)); 5555 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5556 LHS.getValueType(), LHS, RHS)); 5557 return; 5558 } 5559 break; 5560 case LibFunc::fabs: 5561 case LibFunc::fabsf: 5562 case LibFunc::fabsl: 5563 if (visitUnaryFloatCall(I, ISD::FABS)) 5564 return; 5565 break; 5566 case LibFunc::sin: 5567 case LibFunc::sinf: 5568 case LibFunc::sinl: 5569 if (visitUnaryFloatCall(I, ISD::FSIN)) 5570 return; 5571 break; 5572 case LibFunc::cos: 5573 case LibFunc::cosf: 5574 case LibFunc::cosl: 5575 if (visitUnaryFloatCall(I, ISD::FCOS)) 5576 return; 5577 break; 5578 case LibFunc::sqrt: 5579 case LibFunc::sqrtf: 5580 case LibFunc::sqrtl: 5581 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5582 return; 5583 break; 5584 case LibFunc::floor: 5585 case LibFunc::floorf: 5586 case LibFunc::floorl: 5587 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5588 return; 5589 break; 5590 case LibFunc::nearbyint: 5591 case LibFunc::nearbyintf: 5592 case LibFunc::nearbyintl: 5593 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5594 return; 5595 break; 5596 case LibFunc::ceil: 5597 case LibFunc::ceilf: 5598 case LibFunc::ceill: 5599 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5600 return; 5601 break; 5602 case LibFunc::rint: 5603 case LibFunc::rintf: 5604 case LibFunc::rintl: 5605 if (visitUnaryFloatCall(I, ISD::FRINT)) 5606 return; 5607 break; 5608 case LibFunc::trunc: 5609 case LibFunc::truncf: 5610 case LibFunc::truncl: 5611 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5612 return; 5613 break; 5614 case LibFunc::log2: 5615 case LibFunc::log2f: 5616 case LibFunc::log2l: 5617 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5618 return; 5619 break; 5620 case LibFunc::exp2: 5621 case LibFunc::exp2f: 5622 case LibFunc::exp2l: 5623 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5624 return; 5625 break; 5626 case LibFunc::memcmp: 5627 if (visitMemCmpCall(I)) 5628 return; 5629 break; 5630 } 5631 } 5632 } 5633 5634 SDValue Callee; 5635 if (!RenameFn) 5636 Callee = getValue(I.getCalledValue()); 5637 else 5638 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5639 5640 // Check if we can potentially perform a tail call. More detailed checking is 5641 // be done within LowerCallTo, after more information about the call is known. 5642 LowerCallTo(&I, Callee, I.isTailCall()); 5643 } 5644 5645 namespace { 5646 5647 /// AsmOperandInfo - This contains information for each constraint that we are 5648 /// lowering. 5649 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5650 public: 5651 /// CallOperand - If this is the result output operand or a clobber 5652 /// this is null, otherwise it is the incoming operand to the CallInst. 5653 /// This gets modified as the asm is processed. 5654 SDValue CallOperand; 5655 5656 /// AssignedRegs - If this is a register or register class operand, this 5657 /// contains the set of register corresponding to the operand. 5658 RegsForValue AssignedRegs; 5659 5660 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5661 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5662 } 5663 5664 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5665 /// corresponds to. If there is no Value* for this operand, it returns 5666 /// MVT::Other. 5667 EVT getCallOperandValEVT(LLVMContext &Context, 5668 const TargetLowering &TLI, 5669 const DataLayout *TD) const { 5670 if (CallOperandVal == 0) return MVT::Other; 5671 5672 if (isa<BasicBlock>(CallOperandVal)) 5673 return TLI.getPointerTy(); 5674 5675 llvm::Type *OpTy = CallOperandVal->getType(); 5676 5677 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5678 // If this is an indirect operand, the operand is a pointer to the 5679 // accessed type. 5680 if (isIndirect) { 5681 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5682 if (!PtrTy) 5683 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5684 OpTy = PtrTy->getElementType(); 5685 } 5686 5687 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5688 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5689 if (STy->getNumElements() == 1) 5690 OpTy = STy->getElementType(0); 5691 5692 // If OpTy is not a single value, it may be a struct/union that we 5693 // can tile with integers. 5694 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5695 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5696 switch (BitSize) { 5697 default: break; 5698 case 1: 5699 case 8: 5700 case 16: 5701 case 32: 5702 case 64: 5703 case 128: 5704 OpTy = IntegerType::get(Context, BitSize); 5705 break; 5706 } 5707 } 5708 5709 return TLI.getValueType(OpTy, true); 5710 } 5711 }; 5712 5713 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5714 5715 } // end anonymous namespace 5716 5717 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5718 /// specified operand. We prefer to assign virtual registers, to allow the 5719 /// register allocator to handle the assignment process. However, if the asm 5720 /// uses features that we can't model on machineinstrs, we have SDISel do the 5721 /// allocation. This produces generally horrible, but correct, code. 5722 /// 5723 /// OpInfo describes the operand. 5724 /// 5725 static void GetRegistersForValue(SelectionDAG &DAG, 5726 const TargetLowering &TLI, 5727 DebugLoc DL, 5728 SDISelAsmOperandInfo &OpInfo) { 5729 LLVMContext &Context = *DAG.getContext(); 5730 5731 MachineFunction &MF = DAG.getMachineFunction(); 5732 SmallVector<unsigned, 4> Regs; 5733 5734 // If this is a constraint for a single physreg, or a constraint for a 5735 // register class, find it. 5736 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5737 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5738 OpInfo.ConstraintVT); 5739 5740 unsigned NumRegs = 1; 5741 if (OpInfo.ConstraintVT != MVT::Other) { 5742 // If this is a FP input in an integer register (or visa versa) insert a bit 5743 // cast of the input value. More generally, handle any case where the input 5744 // value disagrees with the register class we plan to stick this in. 5745 if (OpInfo.Type == InlineAsm::isInput && 5746 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5747 // Try to convert to the first EVT that the reg class contains. If the 5748 // types are identical size, use a bitcast to convert (e.g. two differing 5749 // vector types). 5750 EVT RegVT = *PhysReg.second->vt_begin(); 5751 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5752 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5753 RegVT, OpInfo.CallOperand); 5754 OpInfo.ConstraintVT = RegVT; 5755 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5756 // If the input is a FP value and we want it in FP registers, do a 5757 // bitcast to the corresponding integer type. This turns an f64 value 5758 // into i64, which can be passed with two i32 values on a 32-bit 5759 // machine. 5760 RegVT = EVT::getIntegerVT(Context, 5761 OpInfo.ConstraintVT.getSizeInBits()); 5762 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5763 RegVT, OpInfo.CallOperand); 5764 OpInfo.ConstraintVT = RegVT; 5765 } 5766 } 5767 5768 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5769 } 5770 5771 EVT RegVT; 5772 EVT ValueVT = OpInfo.ConstraintVT; 5773 5774 // If this is a constraint for a specific physical register, like {r17}, 5775 // assign it now. 5776 if (unsigned AssignedReg = PhysReg.first) { 5777 const TargetRegisterClass *RC = PhysReg.second; 5778 if (OpInfo.ConstraintVT == MVT::Other) 5779 ValueVT = *RC->vt_begin(); 5780 5781 // Get the actual register value type. This is important, because the user 5782 // may have asked for (e.g.) the AX register in i32 type. We need to 5783 // remember that AX is actually i16 to get the right extension. 5784 RegVT = *RC->vt_begin(); 5785 5786 // This is a explicit reference to a physical register. 5787 Regs.push_back(AssignedReg); 5788 5789 // If this is an expanded reference, add the rest of the regs to Regs. 5790 if (NumRegs != 1) { 5791 TargetRegisterClass::iterator I = RC->begin(); 5792 for (; *I != AssignedReg; ++I) 5793 assert(I != RC->end() && "Didn't find reg!"); 5794 5795 // Already added the first reg. 5796 --NumRegs; ++I; 5797 for (; NumRegs; --NumRegs, ++I) { 5798 assert(I != RC->end() && "Ran out of registers to allocate!"); 5799 Regs.push_back(*I); 5800 } 5801 } 5802 5803 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5804 return; 5805 } 5806 5807 // Otherwise, if this was a reference to an LLVM register class, create vregs 5808 // for this reference. 5809 if (const TargetRegisterClass *RC = PhysReg.second) { 5810 RegVT = *RC->vt_begin(); 5811 if (OpInfo.ConstraintVT == MVT::Other) 5812 ValueVT = RegVT; 5813 5814 // Create the appropriate number of virtual registers. 5815 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5816 for (; NumRegs; --NumRegs) 5817 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5818 5819 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5820 return; 5821 } 5822 5823 // Otherwise, we couldn't allocate enough registers for this. 5824 } 5825 5826 /// visitInlineAsm - Handle a call to an InlineAsm object. 5827 /// 5828 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5829 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5830 5831 /// ConstraintOperands - Information about all of the constraints. 5832 SDISelAsmOperandInfoVector ConstraintOperands; 5833 5834 TargetLowering::AsmOperandInfoVector 5835 TargetConstraints = TLI.ParseConstraints(CS); 5836 5837 bool hasMemory = false; 5838 5839 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5840 unsigned ResNo = 0; // ResNo - The result number of the next output. 5841 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5842 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5843 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5844 5845 EVT OpVT = MVT::Other; 5846 5847 // Compute the value type for each operand. 5848 switch (OpInfo.Type) { 5849 case InlineAsm::isOutput: 5850 // Indirect outputs just consume an argument. 5851 if (OpInfo.isIndirect) { 5852 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5853 break; 5854 } 5855 5856 // The return value of the call is this value. As such, there is no 5857 // corresponding argument. 5858 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5859 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5860 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5861 } else { 5862 assert(ResNo == 0 && "Asm only has one result!"); 5863 OpVT = TLI.getValueType(CS.getType()); 5864 } 5865 ++ResNo; 5866 break; 5867 case InlineAsm::isInput: 5868 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5869 break; 5870 case InlineAsm::isClobber: 5871 // Nothing to do. 5872 break; 5873 } 5874 5875 // If this is an input or an indirect output, process the call argument. 5876 // BasicBlocks are labels, currently appearing only in asm's. 5877 if (OpInfo.CallOperandVal) { 5878 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5879 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5880 } else { 5881 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5882 } 5883 5884 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5885 } 5886 5887 OpInfo.ConstraintVT = OpVT; 5888 5889 // Indirect operand accesses access memory. 5890 if (OpInfo.isIndirect) 5891 hasMemory = true; 5892 else { 5893 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5894 TargetLowering::ConstraintType 5895 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5896 if (CType == TargetLowering::C_Memory) { 5897 hasMemory = true; 5898 break; 5899 } 5900 } 5901 } 5902 } 5903 5904 SDValue Chain, Flag; 5905 5906 // We won't need to flush pending loads if this asm doesn't touch 5907 // memory and is nonvolatile. 5908 if (hasMemory || IA->hasSideEffects()) 5909 Chain = getRoot(); 5910 else 5911 Chain = DAG.getRoot(); 5912 5913 // Second pass over the constraints: compute which constraint option to use 5914 // and assign registers to constraints that want a specific physreg. 5915 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5916 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5917 5918 // If this is an output operand with a matching input operand, look up the 5919 // matching input. If their types mismatch, e.g. one is an integer, the 5920 // other is floating point, or their sizes are different, flag it as an 5921 // error. 5922 if (OpInfo.hasMatchingInput()) { 5923 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5924 5925 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5926 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5927 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5928 OpInfo.ConstraintVT); 5929 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5930 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5931 Input.ConstraintVT); 5932 if ((OpInfo.ConstraintVT.isInteger() != 5933 Input.ConstraintVT.isInteger()) || 5934 (MatchRC.second != InputRC.second)) { 5935 report_fatal_error("Unsupported asm: input constraint" 5936 " with a matching output constraint of" 5937 " incompatible type!"); 5938 } 5939 Input.ConstraintVT = OpInfo.ConstraintVT; 5940 } 5941 } 5942 5943 // Compute the constraint code and ConstraintType to use. 5944 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5945 5946 // If this is a memory input, and if the operand is not indirect, do what we 5947 // need to to provide an address for the memory input. 5948 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5949 !OpInfo.isIndirect) { 5950 assert((OpInfo.isMultipleAlternative || 5951 (OpInfo.Type == InlineAsm::isInput)) && 5952 "Can only indirectify direct input operands!"); 5953 5954 // Memory operands really want the address of the value. If we don't have 5955 // an indirect input, put it in the constpool if we can, otherwise spill 5956 // it to a stack slot. 5957 // TODO: This isn't quite right. We need to handle these according to 5958 // the addressing mode that the constraint wants. Also, this may take 5959 // an additional register for the computation and we don't want that 5960 // either. 5961 5962 // If the operand is a float, integer, or vector constant, spill to a 5963 // constant pool entry to get its address. 5964 const Value *OpVal = OpInfo.CallOperandVal; 5965 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5966 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5967 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5968 TLI.getPointerTy()); 5969 } else { 5970 // Otherwise, create a stack slot and emit a store to it before the 5971 // asm. 5972 Type *Ty = OpVal->getType(); 5973 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5974 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5975 MachineFunction &MF = DAG.getMachineFunction(); 5976 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5977 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5978 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5979 OpInfo.CallOperand, StackSlot, 5980 MachinePointerInfo::getFixedStack(SSFI), 5981 false, false, 0); 5982 OpInfo.CallOperand = StackSlot; 5983 } 5984 5985 // There is no longer a Value* corresponding to this operand. 5986 OpInfo.CallOperandVal = 0; 5987 5988 // It is now an indirect operand. 5989 OpInfo.isIndirect = true; 5990 } 5991 5992 // If this constraint is for a specific register, allocate it before 5993 // anything else. 5994 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5995 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 5996 } 5997 5998 // Second pass - Loop over all of the operands, assigning virtual or physregs 5999 // to register class operands. 6000 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6001 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6002 6003 // C_Register operands have already been allocated, Other/Memory don't need 6004 // to be. 6005 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6006 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6007 } 6008 6009 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6010 std::vector<SDValue> AsmNodeOperands; 6011 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6012 AsmNodeOperands.push_back( 6013 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6014 TLI.getPointerTy())); 6015 6016 // If we have a !srcloc metadata node associated with it, we want to attach 6017 // this to the ultimately generated inline asm machineinstr. To do this, we 6018 // pass in the third operand as this (potentially null) inline asm MDNode. 6019 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6020 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6021 6022 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6023 // bits as operand 3. 6024 unsigned ExtraInfo = 0; 6025 if (IA->hasSideEffects()) 6026 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6027 if (IA->isAlignStack()) 6028 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6029 // Set the asm dialect. 6030 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6031 6032 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6033 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6034 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6035 6036 // Compute the constraint code and ConstraintType to use. 6037 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6038 6039 // Ideally, we would only check against memory constraints. However, the 6040 // meaning of an other constraint can be target-specific and we can't easily 6041 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6042 // for other constriants as well. 6043 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6044 OpInfo.ConstraintType == TargetLowering::C_Other) { 6045 if (OpInfo.Type == InlineAsm::isInput) 6046 ExtraInfo |= InlineAsm::Extra_MayLoad; 6047 else if (OpInfo.Type == InlineAsm::isOutput) 6048 ExtraInfo |= InlineAsm::Extra_MayStore; 6049 } 6050 } 6051 6052 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6053 TLI.getPointerTy())); 6054 6055 // Loop over all of the inputs, copying the operand values into the 6056 // appropriate registers and processing the output regs. 6057 RegsForValue RetValRegs; 6058 6059 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6060 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6061 6062 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6063 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6064 6065 switch (OpInfo.Type) { 6066 case InlineAsm::isOutput: { 6067 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6068 OpInfo.ConstraintType != TargetLowering::C_Register) { 6069 // Memory output, or 'other' output (e.g. 'X' constraint). 6070 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6071 6072 // Add information to the INLINEASM node to know about this output. 6073 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6074 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6075 TLI.getPointerTy())); 6076 AsmNodeOperands.push_back(OpInfo.CallOperand); 6077 break; 6078 } 6079 6080 // Otherwise, this is a register or register class output. 6081 6082 // Copy the output from the appropriate register. Find a register that 6083 // we can use. 6084 if (OpInfo.AssignedRegs.Regs.empty()) { 6085 LLVMContext &Ctx = *DAG.getContext(); 6086 Ctx.emitError(CS.getInstruction(), 6087 "couldn't allocate output register for constraint '" + 6088 Twine(OpInfo.ConstraintCode) + "'"); 6089 break; 6090 } 6091 6092 // If this is an indirect operand, store through the pointer after the 6093 // asm. 6094 if (OpInfo.isIndirect) { 6095 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6096 OpInfo.CallOperandVal)); 6097 } else { 6098 // This is the result value of the call. 6099 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6100 // Concatenate this output onto the outputs list. 6101 RetValRegs.append(OpInfo.AssignedRegs); 6102 } 6103 6104 // Add information to the INLINEASM node to know that this register is 6105 // set. 6106 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6107 InlineAsm::Kind_RegDefEarlyClobber : 6108 InlineAsm::Kind_RegDef, 6109 false, 6110 0, 6111 DAG, 6112 AsmNodeOperands); 6113 break; 6114 } 6115 case InlineAsm::isInput: { 6116 SDValue InOperandVal = OpInfo.CallOperand; 6117 6118 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6119 // If this is required to match an output register we have already set, 6120 // just use its register. 6121 unsigned OperandNo = OpInfo.getMatchedOperand(); 6122 6123 // Scan until we find the definition we already emitted of this operand. 6124 // When we find it, create a RegsForValue operand. 6125 unsigned CurOp = InlineAsm::Op_FirstOperand; 6126 for (; OperandNo; --OperandNo) { 6127 // Advance to the next operand. 6128 unsigned OpFlag = 6129 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6130 assert((InlineAsm::isRegDefKind(OpFlag) || 6131 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6132 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6133 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6134 } 6135 6136 unsigned OpFlag = 6137 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6138 if (InlineAsm::isRegDefKind(OpFlag) || 6139 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6140 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6141 if (OpInfo.isIndirect) { 6142 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6143 LLVMContext &Ctx = *DAG.getContext(); 6144 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6145 " don't know how to handle tied " 6146 "indirect register inputs"); 6147 } 6148 6149 RegsForValue MatchedRegs; 6150 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6151 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6152 MatchedRegs.RegVTs.push_back(RegVT); 6153 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6154 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6155 i != e; ++i) 6156 MatchedRegs.Regs.push_back 6157 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6158 6159 // Use the produced MatchedRegs object to 6160 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6161 Chain, &Flag, CS.getInstruction()); 6162 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6163 true, OpInfo.getMatchedOperand(), 6164 DAG, AsmNodeOperands); 6165 break; 6166 } 6167 6168 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6169 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6170 "Unexpected number of operands"); 6171 // Add information to the INLINEASM node to know about this input. 6172 // See InlineAsm.h isUseOperandTiedToDef. 6173 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6174 OpInfo.getMatchedOperand()); 6175 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6176 TLI.getPointerTy())); 6177 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6178 break; 6179 } 6180 6181 // Treat indirect 'X' constraint as memory. 6182 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6183 OpInfo.isIndirect) 6184 OpInfo.ConstraintType = TargetLowering::C_Memory; 6185 6186 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6187 std::vector<SDValue> Ops; 6188 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6189 Ops, DAG); 6190 if (Ops.empty()) { 6191 LLVMContext &Ctx = *DAG.getContext(); 6192 Ctx.emitError(CS.getInstruction(), 6193 "invalid operand for inline asm constraint '" + 6194 Twine(OpInfo.ConstraintCode) + "'"); 6195 break; 6196 } 6197 6198 // Add information to the INLINEASM node to know about this input. 6199 unsigned ResOpType = 6200 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6201 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6202 TLI.getPointerTy())); 6203 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6204 break; 6205 } 6206 6207 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6208 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6209 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6210 "Memory operands expect pointer values"); 6211 6212 // Add information to the INLINEASM node to know about this input. 6213 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6214 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6215 TLI.getPointerTy())); 6216 AsmNodeOperands.push_back(InOperandVal); 6217 break; 6218 } 6219 6220 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6221 OpInfo.ConstraintType == TargetLowering::C_Register) && 6222 "Unknown constraint type!"); 6223 6224 // TODO: Support this. 6225 if (OpInfo.isIndirect) { 6226 LLVMContext &Ctx = *DAG.getContext(); 6227 Ctx.emitError(CS.getInstruction(), 6228 "Don't know how to handle indirect register inputs yet " 6229 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6230 break; 6231 } 6232 6233 // Copy the input into the appropriate registers. 6234 if (OpInfo.AssignedRegs.Regs.empty()) { 6235 LLVMContext &Ctx = *DAG.getContext(); 6236 Ctx.emitError(CS.getInstruction(), 6237 "couldn't allocate input reg for constraint '" + 6238 Twine(OpInfo.ConstraintCode) + "'"); 6239 break; 6240 } 6241 6242 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6243 Chain, &Flag, CS.getInstruction()); 6244 6245 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6246 DAG, AsmNodeOperands); 6247 break; 6248 } 6249 case InlineAsm::isClobber: { 6250 // Add the clobbered value to the operand list, so that the register 6251 // allocator is aware that the physreg got clobbered. 6252 if (!OpInfo.AssignedRegs.Regs.empty()) 6253 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6254 false, 0, DAG, 6255 AsmNodeOperands); 6256 break; 6257 } 6258 } 6259 } 6260 6261 // Finish up input operands. Set the input chain and add the flag last. 6262 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6263 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6264 6265 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6266 DAG.getVTList(MVT::Other, MVT::Glue), 6267 &AsmNodeOperands[0], AsmNodeOperands.size()); 6268 Flag = Chain.getValue(1); 6269 6270 // If this asm returns a register value, copy the result from that register 6271 // and set it as the value of the call. 6272 if (!RetValRegs.Regs.empty()) { 6273 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6274 Chain, &Flag, CS.getInstruction()); 6275 6276 // FIXME: Why don't we do this for inline asms with MRVs? 6277 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6278 EVT ResultType = TLI.getValueType(CS.getType()); 6279 6280 // If any of the results of the inline asm is a vector, it may have the 6281 // wrong width/num elts. This can happen for register classes that can 6282 // contain multiple different value types. The preg or vreg allocated may 6283 // not have the same VT as was expected. Convert it to the right type 6284 // with bit_convert. 6285 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6286 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6287 ResultType, Val); 6288 6289 } else if (ResultType != Val.getValueType() && 6290 ResultType.isInteger() && Val.getValueType().isInteger()) { 6291 // If a result value was tied to an input value, the computed result may 6292 // have a wider width than the expected result. Extract the relevant 6293 // portion. 6294 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6295 } 6296 6297 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6298 } 6299 6300 setValue(CS.getInstruction(), Val); 6301 // Don't need to use this as a chain in this case. 6302 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6303 return; 6304 } 6305 6306 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6307 6308 // Process indirect outputs, first output all of the flagged copies out of 6309 // physregs. 6310 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6311 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6312 const Value *Ptr = IndirectStoresToEmit[i].second; 6313 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6314 Chain, &Flag, IA); 6315 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6316 } 6317 6318 // Emit the non-flagged stores from the physregs. 6319 SmallVector<SDValue, 8> OutChains; 6320 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6321 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6322 StoresToEmit[i].first, 6323 getValue(StoresToEmit[i].second), 6324 MachinePointerInfo(StoresToEmit[i].second), 6325 false, false, 0); 6326 OutChains.push_back(Val); 6327 } 6328 6329 if (!OutChains.empty()) 6330 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6331 &OutChains[0], OutChains.size()); 6332 6333 DAG.setRoot(Chain); 6334 } 6335 6336 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6337 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6338 MVT::Other, getRoot(), 6339 getValue(I.getArgOperand(0)), 6340 DAG.getSrcValue(I.getArgOperand(0)))); 6341 } 6342 6343 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6344 const DataLayout &TD = *TLI.getDataLayout(); 6345 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6346 getRoot(), getValue(I.getOperand(0)), 6347 DAG.getSrcValue(I.getOperand(0)), 6348 TD.getABITypeAlignment(I.getType())); 6349 setValue(&I, V); 6350 DAG.setRoot(V.getValue(1)); 6351 } 6352 6353 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6354 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6355 MVT::Other, getRoot(), 6356 getValue(I.getArgOperand(0)), 6357 DAG.getSrcValue(I.getArgOperand(0)))); 6358 } 6359 6360 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6361 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6362 MVT::Other, getRoot(), 6363 getValue(I.getArgOperand(0)), 6364 getValue(I.getArgOperand(1)), 6365 DAG.getSrcValue(I.getArgOperand(0)), 6366 DAG.getSrcValue(I.getArgOperand(1)))); 6367 } 6368 6369 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6370 /// implementation, which just calls LowerCall. 6371 /// FIXME: When all targets are 6372 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6373 std::pair<SDValue, SDValue> 6374 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6375 // Handle all of the outgoing arguments. 6376 CLI.Outs.clear(); 6377 CLI.OutVals.clear(); 6378 ArgListTy &Args = CLI.Args; 6379 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6380 SmallVector<EVT, 4> ValueVTs; 6381 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6382 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6383 Value != NumValues; ++Value) { 6384 EVT VT = ValueVTs[Value]; 6385 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6386 SDValue Op = SDValue(Args[i].Node.getNode(), 6387 Args[i].Node.getResNo() + Value); 6388 ISD::ArgFlagsTy Flags; 6389 unsigned OriginalAlignment = 6390 getDataLayout()->getABITypeAlignment(ArgTy); 6391 6392 if (Args[i].isZExt) 6393 Flags.setZExt(); 6394 if (Args[i].isSExt) 6395 Flags.setSExt(); 6396 if (Args[i].isInReg) 6397 Flags.setInReg(); 6398 if (Args[i].isSRet) 6399 Flags.setSRet(); 6400 if (Args[i].isByVal) { 6401 Flags.setByVal(); 6402 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6403 Type *ElementTy = Ty->getElementType(); 6404 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6405 // For ByVal, alignment should come from FE. BE will guess if this 6406 // info is not there but there are cases it cannot get right. 6407 unsigned FrameAlign; 6408 if (Args[i].Alignment) 6409 FrameAlign = Args[i].Alignment; 6410 else 6411 FrameAlign = getByValTypeAlignment(ElementTy); 6412 Flags.setByValAlign(FrameAlign); 6413 } 6414 if (Args[i].isNest) 6415 Flags.setNest(); 6416 Flags.setOrigAlign(OriginalAlignment); 6417 6418 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6419 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6420 SmallVector<SDValue, 4> Parts(NumParts); 6421 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6422 6423 if (Args[i].isSExt) 6424 ExtendKind = ISD::SIGN_EXTEND; 6425 else if (Args[i].isZExt) 6426 ExtendKind = ISD::ZERO_EXTEND; 6427 6428 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6429 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind); 6430 6431 for (unsigned j = 0; j != NumParts; ++j) { 6432 // if it isn't first piece, alignment must be 1 6433 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6434 i < CLI.NumFixedArgs, 6435 i, j*Parts[j].getValueType().getStoreSize()); 6436 if (NumParts > 1 && j == 0) 6437 MyFlags.Flags.setSplit(); 6438 else if (j != 0) 6439 MyFlags.Flags.setOrigAlign(1); 6440 6441 CLI.Outs.push_back(MyFlags); 6442 CLI.OutVals.push_back(Parts[j]); 6443 } 6444 } 6445 } 6446 6447 // Handle the incoming return values from the call. 6448 CLI.Ins.clear(); 6449 SmallVector<EVT, 4> RetTys; 6450 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6451 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6452 EVT VT = RetTys[I]; 6453 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6454 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6455 for (unsigned i = 0; i != NumRegs; ++i) { 6456 ISD::InputArg MyFlags; 6457 MyFlags.VT = RegisterVT.getSimpleVT(); 6458 MyFlags.Used = CLI.IsReturnValueUsed; 6459 if (CLI.RetSExt) 6460 MyFlags.Flags.setSExt(); 6461 if (CLI.RetZExt) 6462 MyFlags.Flags.setZExt(); 6463 if (CLI.IsInReg) 6464 MyFlags.Flags.setInReg(); 6465 CLI.Ins.push_back(MyFlags); 6466 } 6467 } 6468 6469 SmallVector<SDValue, 4> InVals; 6470 CLI.Chain = LowerCall(CLI, InVals); 6471 6472 // Verify that the target's LowerCall behaved as expected. 6473 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6474 "LowerCall didn't return a valid chain!"); 6475 assert((!CLI.IsTailCall || InVals.empty()) && 6476 "LowerCall emitted a return value for a tail call!"); 6477 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6478 "LowerCall didn't emit the correct number of values!"); 6479 6480 // For a tail call, the return value is merely live-out and there aren't 6481 // any nodes in the DAG representing it. Return a special value to 6482 // indicate that a tail call has been emitted and no more Instructions 6483 // should be processed in the current block. 6484 if (CLI.IsTailCall) { 6485 CLI.DAG.setRoot(CLI.Chain); 6486 return std::make_pair(SDValue(), SDValue()); 6487 } 6488 6489 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6490 assert(InVals[i].getNode() && 6491 "LowerCall emitted a null value!"); 6492 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6493 "LowerCall emitted a value with the wrong type!"); 6494 }); 6495 6496 // Collect the legal value parts into potentially illegal values 6497 // that correspond to the original function's return values. 6498 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6499 if (CLI.RetSExt) 6500 AssertOp = ISD::AssertSext; 6501 else if (CLI.RetZExt) 6502 AssertOp = ISD::AssertZext; 6503 SmallVector<SDValue, 4> ReturnValues; 6504 unsigned CurReg = 0; 6505 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6506 EVT VT = RetTys[I]; 6507 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6508 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6509 6510 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6511 NumRegs, RegisterVT, VT, NULL, 6512 AssertOp)); 6513 CurReg += NumRegs; 6514 } 6515 6516 // For a function returning void, there is no return value. We can't create 6517 // such a node, so we just return a null return value in that case. In 6518 // that case, nothing will actually look at the value. 6519 if (ReturnValues.empty()) 6520 return std::make_pair(SDValue(), CLI.Chain); 6521 6522 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6523 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6524 &ReturnValues[0], ReturnValues.size()); 6525 return std::make_pair(Res, CLI.Chain); 6526 } 6527 6528 void TargetLowering::LowerOperationWrapper(SDNode *N, 6529 SmallVectorImpl<SDValue> &Results, 6530 SelectionDAG &DAG) const { 6531 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6532 if (Res.getNode()) 6533 Results.push_back(Res); 6534 } 6535 6536 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6537 llvm_unreachable("LowerOperation not implemented for this target!"); 6538 } 6539 6540 void 6541 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6542 SDValue Op = getNonRegisterValue(V); 6543 assert((Op.getOpcode() != ISD::CopyFromReg || 6544 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6545 "Copy from a reg to the same reg!"); 6546 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6547 6548 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6549 SDValue Chain = DAG.getEntryNode(); 6550 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V); 6551 PendingExports.push_back(Chain); 6552 } 6553 6554 #include "llvm/CodeGen/SelectionDAGISel.h" 6555 6556 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6557 /// entry block, return true. This includes arguments used by switches, since 6558 /// the switch may expand into multiple basic blocks. 6559 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6560 // With FastISel active, we may be splitting blocks, so force creation 6561 // of virtual registers for all non-dead arguments. 6562 if (FastISel) 6563 return A->use_empty(); 6564 6565 const BasicBlock *Entry = A->getParent()->begin(); 6566 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6567 UI != E; ++UI) { 6568 const User *U = *UI; 6569 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6570 return false; // Use not in entry block. 6571 } 6572 return true; 6573 } 6574 6575 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6576 // If this is the entry block, emit arguments. 6577 const Function &F = *LLVMBB->getParent(); 6578 SelectionDAG &DAG = SDB->DAG; 6579 DebugLoc dl = SDB->getCurDebugLoc(); 6580 const DataLayout *TD = TLI.getDataLayout(); 6581 SmallVector<ISD::InputArg, 16> Ins; 6582 6583 // Check whether the function can return without sret-demotion. 6584 SmallVector<ISD::OutputArg, 4> Outs; 6585 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6586 Outs, TLI); 6587 6588 if (!FuncInfo->CanLowerReturn) { 6589 // Put in an sret pointer parameter before all the other parameters. 6590 SmallVector<EVT, 1> ValueVTs; 6591 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6592 6593 // NOTE: Assuming that a pointer will never break down to more than one VT 6594 // or one register. 6595 ISD::ArgFlagsTy Flags; 6596 Flags.setSRet(); 6597 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6598 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0); 6599 Ins.push_back(RetArg); 6600 } 6601 6602 // Set up the incoming argument description vector. 6603 unsigned Idx = 1; 6604 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6605 I != E; ++I, ++Idx) { 6606 SmallVector<EVT, 4> ValueVTs; 6607 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6608 bool isArgValueUsed = !I->use_empty(); 6609 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6610 Value != NumValues; ++Value) { 6611 EVT VT = ValueVTs[Value]; 6612 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6613 ISD::ArgFlagsTy Flags; 6614 unsigned OriginalAlignment = 6615 TD->getABITypeAlignment(ArgTy); 6616 6617 if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt)) 6618 Flags.setZExt(); 6619 if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt)) 6620 Flags.setSExt(); 6621 if (F.getParamAttributes(Idx).hasAttribute(Attributes::InReg)) 6622 Flags.setInReg(); 6623 if (F.getParamAttributes(Idx).hasAttribute(Attributes::StructRet)) 6624 Flags.setSRet(); 6625 if (F.getParamAttributes(Idx).hasAttribute(Attributes::ByVal)) { 6626 Flags.setByVal(); 6627 PointerType *Ty = cast<PointerType>(I->getType()); 6628 Type *ElementTy = Ty->getElementType(); 6629 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6630 // For ByVal, alignment should be passed from FE. BE will guess if 6631 // this info is not there but there are cases it cannot get right. 6632 unsigned FrameAlign; 6633 if (F.getParamAlignment(Idx)) 6634 FrameAlign = F.getParamAlignment(Idx); 6635 else 6636 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6637 Flags.setByValAlign(FrameAlign); 6638 } 6639 if (F.getParamAttributes(Idx).hasAttribute(Attributes::Nest)) 6640 Flags.setNest(); 6641 Flags.setOrigAlign(OriginalAlignment); 6642 6643 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6644 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6645 for (unsigned i = 0; i != NumRegs; ++i) { 6646 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed, 6647 Idx-1, i*RegisterVT.getStoreSize()); 6648 if (NumRegs > 1 && i == 0) 6649 MyFlags.Flags.setSplit(); 6650 // if it isn't first piece, alignment must be 1 6651 else if (i > 0) 6652 MyFlags.Flags.setOrigAlign(1); 6653 Ins.push_back(MyFlags); 6654 } 6655 } 6656 } 6657 6658 // Call the target to set up the argument values. 6659 SmallVector<SDValue, 8> InVals; 6660 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6661 F.isVarArg(), Ins, 6662 dl, DAG, InVals); 6663 6664 // Verify that the target's LowerFormalArguments behaved as expected. 6665 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6666 "LowerFormalArguments didn't return a valid chain!"); 6667 assert(InVals.size() == Ins.size() && 6668 "LowerFormalArguments didn't emit the correct number of values!"); 6669 DEBUG({ 6670 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6671 assert(InVals[i].getNode() && 6672 "LowerFormalArguments emitted a null value!"); 6673 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6674 "LowerFormalArguments emitted a value with the wrong type!"); 6675 } 6676 }); 6677 6678 // Update the DAG with the new chain value resulting from argument lowering. 6679 DAG.setRoot(NewRoot); 6680 6681 // Set up the argument values. 6682 unsigned i = 0; 6683 Idx = 1; 6684 if (!FuncInfo->CanLowerReturn) { 6685 // Create a virtual register for the sret pointer, and put in a copy 6686 // from the sret argument into it. 6687 SmallVector<EVT, 1> ValueVTs; 6688 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6689 EVT VT = ValueVTs[0]; 6690 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6691 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6692 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6693 RegVT, VT, NULL, AssertOp); 6694 6695 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6696 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6697 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6698 FuncInfo->DemoteRegister = SRetReg; 6699 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6700 SRetReg, ArgValue); 6701 DAG.setRoot(NewRoot); 6702 6703 // i indexes lowered arguments. Bump it past the hidden sret argument. 6704 // Idx indexes LLVM arguments. Don't touch it. 6705 ++i; 6706 } 6707 6708 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6709 ++I, ++Idx) { 6710 SmallVector<SDValue, 4> ArgValues; 6711 SmallVector<EVT, 4> ValueVTs; 6712 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6713 unsigned NumValues = ValueVTs.size(); 6714 6715 // If this argument is unused then remember its value. It is used to generate 6716 // debugging information. 6717 if (I->use_empty() && NumValues) 6718 SDB->setUnusedArgValue(I, InVals[i]); 6719 6720 for (unsigned Val = 0; Val != NumValues; ++Val) { 6721 EVT VT = ValueVTs[Val]; 6722 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6723 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6724 6725 if (!I->use_empty()) { 6726 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6727 if (F.getParamAttributes(Idx).hasAttribute(Attributes::SExt)) 6728 AssertOp = ISD::AssertSext; 6729 else if (F.getParamAttributes(Idx).hasAttribute(Attributes::ZExt)) 6730 AssertOp = ISD::AssertZext; 6731 6732 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6733 NumParts, PartVT, VT, 6734 NULL, AssertOp)); 6735 } 6736 6737 i += NumParts; 6738 } 6739 6740 // We don't need to do anything else for unused arguments. 6741 if (ArgValues.empty()) 6742 continue; 6743 6744 // Note down frame index. 6745 if (FrameIndexSDNode *FI = 6746 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6747 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6748 6749 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6750 SDB->getCurDebugLoc()); 6751 6752 SDB->setValue(I, Res); 6753 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6754 if (LoadSDNode *LNode = 6755 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6756 if (FrameIndexSDNode *FI = 6757 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6758 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6759 } 6760 6761 // If this argument is live outside of the entry block, insert a copy from 6762 // wherever we got it to the vreg that other BB's will reference it as. 6763 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6764 // If we can, though, try to skip creating an unnecessary vreg. 6765 // FIXME: This isn't very clean... it would be nice to make this more 6766 // general. It's also subtly incompatible with the hacks FastISel 6767 // uses with vregs. 6768 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6769 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6770 FuncInfo->ValueMap[I] = Reg; 6771 continue; 6772 } 6773 } 6774 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6775 FuncInfo->InitializeRegForValue(I); 6776 SDB->CopyToExportRegsIfNeeded(I); 6777 } 6778 } 6779 6780 assert(i == InVals.size() && "Argument register count mismatch!"); 6781 6782 // Finally, if the target has anything special to do, allow it to do so. 6783 // FIXME: this should insert code into the DAG! 6784 EmitFunctionEntryCode(); 6785 } 6786 6787 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6788 /// ensure constants are generated when needed. Remember the virtual registers 6789 /// that need to be added to the Machine PHI nodes as input. We cannot just 6790 /// directly add them, because expansion might result in multiple MBB's for one 6791 /// BB. As such, the start of the BB might correspond to a different MBB than 6792 /// the end. 6793 /// 6794 void 6795 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6796 const TerminatorInst *TI = LLVMBB->getTerminator(); 6797 6798 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6799 6800 // Check successor nodes' PHI nodes that expect a constant to be available 6801 // from this block. 6802 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6803 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6804 if (!isa<PHINode>(SuccBB->begin())) continue; 6805 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6806 6807 // If this terminator has multiple identical successors (common for 6808 // switches), only handle each succ once. 6809 if (!SuccsHandled.insert(SuccMBB)) continue; 6810 6811 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6812 6813 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6814 // nodes and Machine PHI nodes, but the incoming operands have not been 6815 // emitted yet. 6816 for (BasicBlock::const_iterator I = SuccBB->begin(); 6817 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6818 // Ignore dead phi's. 6819 if (PN->use_empty()) continue; 6820 6821 // Skip empty types 6822 if (PN->getType()->isEmptyTy()) 6823 continue; 6824 6825 unsigned Reg; 6826 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6827 6828 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6829 unsigned &RegOut = ConstantsOut[C]; 6830 if (RegOut == 0) { 6831 RegOut = FuncInfo.CreateRegs(C->getType()); 6832 CopyValueToVirtualRegister(C, RegOut); 6833 } 6834 Reg = RegOut; 6835 } else { 6836 DenseMap<const Value *, unsigned>::iterator I = 6837 FuncInfo.ValueMap.find(PHIOp); 6838 if (I != FuncInfo.ValueMap.end()) 6839 Reg = I->second; 6840 else { 6841 assert(isa<AllocaInst>(PHIOp) && 6842 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6843 "Didn't codegen value into a register!??"); 6844 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6845 CopyValueToVirtualRegister(PHIOp, Reg); 6846 } 6847 } 6848 6849 // Remember that this register needs to added to the machine PHI node as 6850 // the input for this MBB. 6851 SmallVector<EVT, 4> ValueVTs; 6852 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6853 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6854 EVT VT = ValueVTs[vti]; 6855 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6856 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6857 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6858 Reg += NumRegisters; 6859 } 6860 } 6861 } 6862 ConstantsOut.clear(); 6863 } 6864