1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1162 report_fatal_error("visitCleanupRet not yet implemented!"); 1163 } 1164 1165 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1166 report_fatal_error("visitCatchEndPad not yet implemented!"); 1167 } 1168 1169 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1170 report_fatal_error("visitCatchRet not yet implemented!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 report_fatal_error("visitCatchPad not yet implemented!"); 1175 } 1176 1177 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1178 report_fatal_error("visitTerminatePad not yet implemented!"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 report_fatal_error("visitCleanupPad not yet implemented!"); 1183 } 1184 1185 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1187 auto &DL = DAG.getDataLayout(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i], 1216 getCurSDLoc())); 1217 Chains[i] = 1218 DAG.getStore(Chain, getCurSDLoc(), 1219 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1220 // FIXME: better loc info would be nice. 1221 Add, MachinePointerInfo(), false, false, 0); 1222 } 1223 1224 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1225 MVT::Other, Chains); 1226 } else if (I.getNumOperands() != 0) { 1227 SmallVector<EVT, 4> ValueVTs; 1228 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1229 unsigned NumValues = ValueVTs.size(); 1230 if (NumValues) { 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 const Function *F = I.getParent()->getParent(); 1234 1235 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1236 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1237 Attribute::SExt)) 1238 ExtendKind = ISD::SIGN_EXTEND; 1239 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::ZExt)) 1241 ExtendKind = ISD::ZERO_EXTEND; 1242 1243 LLVMContext &Context = F->getContext(); 1244 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1245 Attribute::InReg); 1246 1247 for (unsigned j = 0; j != NumValues; ++j) { 1248 EVT VT = ValueVTs[j]; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1254 MVT PartVT = TLI.getRegisterType(Context, VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (RetInReg) 1263 Flags.setInReg(); 1264 1265 // Propagate extension type if any 1266 if (ExtendKind == ISD::SIGN_EXTEND) 1267 Flags.setSExt(); 1268 else if (ExtendKind == ISD::ZERO_EXTEND) 1269 Flags.setZExt(); 1270 1271 for (unsigned i = 0; i < NumParts; ++i) { 1272 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1273 VT, /*isfixed=*/true, 0, 0)); 1274 OutVals.push_back(Parts[i]); 1275 } 1276 } 1277 } 1278 } 1279 1280 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1281 CallingConv::ID CallConv = 1282 DAG.getMachineFunction().getFunction()->getCallingConv(); 1283 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1284 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1285 1286 // Verify that the target's LowerReturn behaved as expected. 1287 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1288 "LowerReturn didn't return a valid chain!"); 1289 1290 // Update the DAG with the new chain value resulting from return lowering. 1291 DAG.setRoot(Chain); 1292 } 1293 1294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1295 /// created for it, emit nodes to copy the value into the virtual 1296 /// registers. 1297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1298 // Skip empty types 1299 if (V->getType()->isEmptyTy()) 1300 return; 1301 1302 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1303 if (VMI != FuncInfo.ValueMap.end()) { 1304 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1305 CopyValueToVirtualRegister(V, VMI->second); 1306 } 1307 } 1308 1309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1310 /// the current basic block, add it to ValueMap now so that we'll get a 1311 /// CopyTo/FromReg. 1312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1313 // No need to export constants. 1314 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1315 1316 // Already exported? 1317 if (FuncInfo.isExportedInst(V)) return; 1318 1319 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1320 CopyValueToVirtualRegister(V, Reg); 1321 } 1322 1323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1324 const BasicBlock *FromBB) { 1325 // The operands of the setcc have to be in this block. We don't know 1326 // how to export them from some other block. 1327 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1328 // Can export from current BB. 1329 if (VI->getParent() == FromBB) 1330 return true; 1331 1332 // Is already exported, noop. 1333 return FuncInfo.isExportedInst(V); 1334 } 1335 1336 // If this is an argument, we can export it if the BB is the entry block or 1337 // if it is already exported. 1338 if (isa<Argument>(V)) { 1339 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1340 return true; 1341 1342 // Otherwise, can only export this if it is already exported. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // Otherwise, constants can always be exported. 1347 return true; 1348 } 1349 1350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1351 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1352 const MachineBasicBlock *Dst) const { 1353 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1354 if (!BPI) 1355 return 0; 1356 const BasicBlock *SrcBB = Src->getBasicBlock(); 1357 const BasicBlock *DstBB = Dst->getBasicBlock(); 1358 return BPI->getEdgeWeight(SrcBB, DstBB); 1359 } 1360 1361 void SelectionDAGBuilder:: 1362 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1363 uint32_t Weight /* = 0 */) { 1364 if (!Weight) 1365 Weight = getEdgeWeight(Src, Dst); 1366 Src->addSuccessor(Dst, Weight); 1367 } 1368 1369 1370 static bool InBlock(const Value *V, const BasicBlock *BB) { 1371 if (const Instruction *I = dyn_cast<Instruction>(V)) 1372 return I->getParent() == BB; 1373 return true; 1374 } 1375 1376 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1377 /// This function emits a branch and is used at the leaves of an OR or an 1378 /// AND operator tree. 1379 /// 1380 void 1381 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1382 MachineBasicBlock *TBB, 1383 MachineBasicBlock *FBB, 1384 MachineBasicBlock *CurBB, 1385 MachineBasicBlock *SwitchBB, 1386 uint32_t TWeight, 1387 uint32_t FWeight) { 1388 const BasicBlock *BB = CurBB->getBasicBlock(); 1389 1390 // If the leaf of the tree is a comparison, merge the condition into 1391 // the caseblock. 1392 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1393 // The operands of the cmp have to be in this block. We don't know 1394 // how to export them from some other block. If this is the first block 1395 // of the sequence, no exporting is needed. 1396 if (CurBB == SwitchBB || 1397 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1398 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1399 ISD::CondCode Condition; 1400 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1401 Condition = getICmpCondCode(IC->getPredicate()); 1402 } else { 1403 const FCmpInst *FC = cast<FCmpInst>(Cond); 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 Instruction::BinaryOps Opc, 1437 uint32_t TWeight, 1438 uint32_t FWeight) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1447 TWeight, FWeight); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // BB1: 1460 // jmp_if_X TBB 1461 // jmp TmpBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 1467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1468 // The requirement is that 1469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1470 // = TrueProb for original BB. 1471 // Assuming the original weights are A and B, one choice is to set BB1's 1472 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1473 // assumes that 1474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1476 // TmpBB, but the math is more complicated. 1477 1478 uint64_t NewTrueWeight = TWeight; 1479 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1480 ScaleWeights(NewTrueWeight, NewFalseWeight); 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1483 NewTrueWeight, NewFalseWeight); 1484 1485 NewTrueWeight = TWeight; 1486 NewFalseWeight = 2 * (uint64_t)FWeight; 1487 ScaleWeights(NewTrueWeight, NewFalseWeight); 1488 // Emit the RHS condition into TmpBB. 1489 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1490 NewTrueWeight, NewFalseWeight); 1491 } else { 1492 assert(Opc == Instruction::And && "Unknown merge op!"); 1493 // Codegen X & Y as: 1494 // BB1: 1495 // jmp_if_X TmpBB 1496 // jmp FBB 1497 // TmpBB: 1498 // jmp_if_Y TBB 1499 // jmp FBB 1500 // 1501 // This requires creation of TmpBB after CurBB. 1502 1503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1504 // The requirement is that 1505 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1506 // = FalseProb for original BB. 1507 // Assuming the original weights are A and B, one choice is to set BB1's 1508 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1509 // assumes that 1510 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1511 1512 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1513 uint64_t NewFalseWeight = FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = 2 * (uint64_t)TWeight; 1520 NewFalseWeight = FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } 1526 } 1527 1528 /// If the set of cases should be emitted as a series of branches, return true. 1529 /// If we should emit this as a bunch of and/or'd together conditions, return 1530 /// false. 1531 bool 1532 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1533 if (Cases.size() != 2) return true; 1534 1535 // If this is two comparisons of the same values or'd or and'd together, they 1536 // will get folded into a single comparison, so don't emit two blocks. 1537 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1538 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1539 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1540 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1541 return false; 1542 } 1543 1544 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1545 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1546 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1547 Cases[0].CC == Cases[1].CC && 1548 isa<Constant>(Cases[0].CmpRHS) && 1549 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1550 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1551 return false; 1552 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1560 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1561 1562 // Update machine-CFG edges. 1563 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1564 1565 if (I.isUnconditional()) { 1566 // Update machine-CFG edges. 1567 BrMBB->addSuccessor(Succ0MBB); 1568 1569 // If this is not a fall-through branch or optimizations are switched off, 1570 // emit the branch. 1571 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1572 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1573 MVT::Other, getControlRoot(), 1574 DAG.getBasicBlock(Succ0MBB))); 1575 1576 return; 1577 } 1578 1579 // If this condition is one of the special cases we handle, do special stuff 1580 // now. 1581 const Value *CondVal = I.getCondition(); 1582 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1583 1584 // If this is a series of conditions that are or'd or and'd together, emit 1585 // this as a sequence of branches instead of setcc's with and/or operations. 1586 // As long as jumps are not expensive, this should improve performance. 1587 // For example, instead of something like: 1588 // cmp A, B 1589 // C = seteq 1590 // cmp D, E 1591 // F = setle 1592 // or C, F 1593 // jnz foo 1594 // Emit: 1595 // cmp A, B 1596 // je foo 1597 // cmp D, E 1598 // jle foo 1599 // 1600 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1601 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1602 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1603 BOp->getOpcode() == Instruction::Or)) { 1604 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1605 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1606 getEdgeWeight(BrMBB, Succ1MBB)); 1607 // If the compares in later blocks need to use values not currently 1608 // exported from this block, export them now. This block should always 1609 // be the first entry. 1610 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1611 1612 // Allow some cases to be rejected. 1613 if (ShouldEmitAsBranches(SwitchCases)) { 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1615 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1616 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1617 } 1618 1619 // Emit the branch for this block. 1620 visitSwitchCase(SwitchCases[0], BrMBB); 1621 SwitchCases.erase(SwitchCases.begin()); 1622 return; 1623 } 1624 1625 // Okay, we decided not to do this, remove any inserted MBB's and clear 1626 // SwitchCases. 1627 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1628 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1629 1630 SwitchCases.clear(); 1631 } 1632 } 1633 1634 // Create a CaseBlock record representing this branch. 1635 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1636 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1637 1638 // Use visitSwitchCase to actually insert the fast branch sequence for this 1639 // cond branch. 1640 visitSwitchCase(CB, BrMBB); 1641 } 1642 1643 /// visitSwitchCase - Emits the necessary code to represent a single node in 1644 /// the binary search tree resulting from lowering a switch instruction. 1645 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1646 MachineBasicBlock *SwitchBB) { 1647 SDValue Cond; 1648 SDValue CondLHS = getValue(CB.CmpLHS); 1649 SDLoc dl = getCurSDLoc(); 1650 1651 // Build the setcc now. 1652 if (!CB.CmpMHS) { 1653 // Fold "(X == true)" to X and "(X == false)" to !X to 1654 // handle common cases produced by branch lowering. 1655 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1656 CB.CC == ISD::SETEQ) 1657 Cond = CondLHS; 1658 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1659 CB.CC == ISD::SETEQ) { 1660 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1662 } else 1663 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1664 } else { 1665 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1666 1667 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1668 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1669 1670 SDValue CmpOp = getValue(CB.CmpMHS); 1671 EVT VT = CmpOp.getValueType(); 1672 1673 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1674 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1675 ISD::SETLE); 1676 } else { 1677 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1678 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1679 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1680 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1681 } 1682 } 1683 1684 // Update successor info 1685 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1686 // TrueBB and FalseBB are always different unless the incoming IR is 1687 // degenerate. This only happens when running llc on weird IR. 1688 if (CB.TrueBB != CB.FalseBB) 1689 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1690 1691 // If the lhs block is the next block, invert the condition so that we can 1692 // fall through to the lhs instead of the rhs block. 1693 if (CB.TrueBB == NextBlock(SwitchBB)) { 1694 std::swap(CB.TrueBB, CB.FalseBB); 1695 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1696 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1697 } 1698 1699 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1700 MVT::Other, getControlRoot(), Cond, 1701 DAG.getBasicBlock(CB.TrueBB)); 1702 1703 // Insert the false branch. Do this even if it's a fall through branch, 1704 // this makes it easier to do DAG optimizations which require inverting 1705 // the branch condition. 1706 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1707 DAG.getBasicBlock(CB.FalseBB)); 1708 1709 DAG.setRoot(BrCond); 1710 } 1711 1712 /// visitJumpTable - Emit JumpTable node in the current MBB 1713 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1714 // Emit the code for the jump table 1715 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1716 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1717 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1718 JT.Reg, PTy); 1719 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1720 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1721 MVT::Other, Index.getValue(1), 1722 Table, Index); 1723 DAG.setRoot(BrJumpTable); 1724 } 1725 1726 /// visitJumpTableHeader - This function emits necessary code to produce index 1727 /// in the JumpTable from switch case. 1728 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1729 JumpTableHeader &JTH, 1730 MachineBasicBlock *SwitchBB) { 1731 SDLoc dl = getCurSDLoc(); 1732 1733 // Subtract the lowest switch case value from the value being switched on and 1734 // conditional branch to default mbb if the result is greater than the 1735 // difference between smallest and largest cases. 1736 SDValue SwitchOp = getValue(JTH.SValue); 1737 EVT VT = SwitchOp.getValueType(); 1738 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1739 DAG.getConstant(JTH.First, dl, VT)); 1740 1741 // The SDNode we just created, which holds the value being switched on minus 1742 // the smallest case value, needs to be copied to a virtual register so it 1743 // can be used as an index into the jump table in a subsequent basic block. 1744 // This value may be smaller or larger than the target's pointer type, and 1745 // therefore require extension or truncating. 1746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1747 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1748 1749 unsigned JumpTableReg = 1750 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1751 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1752 JumpTableReg, SwitchOp); 1753 JT.Reg = JumpTableReg; 1754 1755 // Emit the range check for the jump table, and branch to the default block 1756 // for the switch statement if the value being switched on exceeds the largest 1757 // case in the switch. 1758 SDValue CMP = DAG.getSetCC( 1759 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1760 Sub.getValueType()), 1761 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1762 1763 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1764 MVT::Other, CopyTo, CMP, 1765 DAG.getBasicBlock(JT.Default)); 1766 1767 // Avoid emitting unnecessary branches to the next block. 1768 if (JT.MBB != NextBlock(SwitchBB)) 1769 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1770 DAG.getBasicBlock(JT.MBB)); 1771 1772 DAG.setRoot(BrCond); 1773 } 1774 1775 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1776 /// tail spliced into a stack protector check success bb. 1777 /// 1778 /// For a high level explanation of how this fits into the stack protector 1779 /// generation see the comment on the declaration of class 1780 /// StackProtectorDescriptor. 1781 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1782 MachineBasicBlock *ParentBB) { 1783 1784 // First create the loads to the guard/stack slot for the comparison. 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1787 1788 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1789 int FI = MFI->getStackProtectorIndex(); 1790 1791 const Value *IRGuard = SPD.getGuard(); 1792 SDValue GuardPtr = getValue(IRGuard); 1793 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1794 1795 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1796 1797 SDValue Guard; 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1801 // guard value from the virtual register holding the value. Otherwise, emit a 1802 // volatile load to retrieve the stack guard value. 1803 unsigned GuardReg = SPD.getGuardReg(); 1804 1805 if (GuardReg && TLI.useLoadStackGuardNode()) 1806 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1807 PtrTy); 1808 else 1809 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1810 GuardPtr, MachinePointerInfo(IRGuard, 0), 1811 true, false, false, Align); 1812 1813 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1814 StackSlotPtr, 1815 MachinePointerInfo::getFixedStack(FI), 1816 true, false, false, Align); 1817 1818 // Perform the comparison via a subtract/getsetcc. 1819 EVT VT = Guard.getValueType(); 1820 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1821 1822 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1823 *DAG.getContext(), 1824 Sub.getValueType()), 1825 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1826 1827 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1828 // branch to failure MBB. 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, StackSlot.getOperand(0), 1831 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1832 // Otherwise branch to success MBB. 1833 SDValue Br = DAG.getNode(ISD::BR, dl, 1834 MVT::Other, BrCond, 1835 DAG.getBasicBlock(SPD.getSuccessMBB())); 1836 1837 DAG.setRoot(Br); 1838 } 1839 1840 /// Codegen the failure basic block for a stack protector check. 1841 /// 1842 /// A failure stack protector machine basic block consists simply of a call to 1843 /// __stack_chk_fail(). 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void 1849 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1851 SDValue Chain = 1852 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1853 nullptr, 0, false, getCurSDLoc(), false, false).second; 1854 DAG.setRoot(Chain); 1855 } 1856 1857 /// visitBitTestHeader - This function emits necessary code to produce value 1858 /// suitable for "bit tests" 1859 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1860 MachineBasicBlock *SwitchBB) { 1861 SDLoc dl = getCurSDLoc(); 1862 1863 // Subtract the minimum value 1864 SDValue SwitchOp = getValue(B.SValue); 1865 EVT VT = SwitchOp.getValueType(); 1866 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1867 DAG.getConstant(B.First, dl, VT)); 1868 1869 // Check range 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue RangeCmp = DAG.getSetCC( 1872 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1873 Sub.getValueType()), 1874 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1875 1876 // Determine the type of the test operands. 1877 bool UsePtrType = false; 1878 if (!TLI.isTypeLegal(VT)) 1879 UsePtrType = true; 1880 else { 1881 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1882 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1883 // Switch table case range are encoded into series of masks. 1884 // Just use pointer type, it's guaranteed to fit. 1885 UsePtrType = true; 1886 break; 1887 } 1888 } 1889 if (UsePtrType) { 1890 VT = TLI.getPointerTy(DAG.getDataLayout()); 1891 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1892 } 1893 1894 B.RegVT = VT.getSimpleVT(); 1895 B.Reg = FuncInfo.CreateReg(B.RegVT); 1896 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1897 1898 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1899 1900 addSuccessorWithWeight(SwitchBB, B.Default); 1901 addSuccessorWithWeight(SwitchBB, MBB); 1902 1903 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1904 MVT::Other, CopyTo, RangeCmp, 1905 DAG.getBasicBlock(B.Default)); 1906 1907 // Avoid emitting unnecessary branches to the next block. 1908 if (MBB != NextBlock(SwitchBB)) 1909 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1910 DAG.getBasicBlock(MBB)); 1911 1912 DAG.setRoot(BrRange); 1913 } 1914 1915 /// visitBitTestCase - this function produces one "bit test" 1916 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1917 MachineBasicBlock* NextMBB, 1918 uint32_t BranchWeightToNext, 1919 unsigned Reg, 1920 BitTestCase &B, 1921 MachineBasicBlock *SwitchBB) { 1922 SDLoc dl = getCurSDLoc(); 1923 MVT VT = BB.RegVT; 1924 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1925 SDValue Cmp; 1926 unsigned PopCount = countPopulation(B.Mask); 1927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1928 if (PopCount == 1) { 1929 // Testing for a single bit; just compare the shift count with what it 1930 // would need to be to shift a 1 bit in that position. 1931 Cmp = DAG.getSetCC( 1932 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1933 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1934 ISD::SETEQ); 1935 } else if (PopCount == BB.Range) { 1936 // There is only one zero bit in the range, test for it directly. 1937 Cmp = DAG.getSetCC( 1938 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1939 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1940 ISD::SETNE); 1941 } else { 1942 // Make desired shift 1943 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1944 DAG.getConstant(1, dl, VT), ShiftOp); 1945 1946 // Emit bit tests and jumps 1947 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1948 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1949 Cmp = DAG.getSetCC( 1950 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1951 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1952 } 1953 1954 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1955 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1956 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1957 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1958 1959 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, getControlRoot(), 1961 Cmp, DAG.getBasicBlock(B.TargetBB)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (NextMBB != NextBlock(SwitchBB)) 1965 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1966 DAG.getBasicBlock(NextMBB)); 1967 1968 DAG.setRoot(BrAnd); 1969 } 1970 1971 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1972 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1973 1974 // Retrieve successors. 1975 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1976 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1977 1978 const Value *Callee(I.getCalledValue()); 1979 const Function *Fn = dyn_cast<Function>(Callee); 1980 if (isa<InlineAsm>(Callee)) 1981 visitInlineAsm(&I); 1982 else if (Fn && Fn->isIntrinsic()) { 1983 switch (Fn->getIntrinsicID()) { 1984 default: 1985 llvm_unreachable("Cannot invoke this intrinsic"); 1986 case Intrinsic::donothing: 1987 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1988 break; 1989 case Intrinsic::experimental_patchpoint_void: 1990 case Intrinsic::experimental_patchpoint_i64: 1991 visitPatchpoint(&I, LandingPad); 1992 break; 1993 case Intrinsic::experimental_gc_statepoint: 1994 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1995 break; 1996 } 1997 } else 1998 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1999 2000 // If the value of the invoke is used outside of its defining block, make it 2001 // available as a virtual register. 2002 // We already took care of the exported value for the statepoint instruction 2003 // during call to the LowerStatepoint. 2004 if (!isStatepoint(I)) { 2005 CopyToExportRegsIfNeeded(&I); 2006 } 2007 2008 // Update successor info 2009 addSuccessorWithWeight(InvokeMBB, Return); 2010 addSuccessorWithWeight(InvokeMBB, LandingPad); 2011 2012 // Drop into normal successor. 2013 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2014 MVT::Other, getControlRoot(), 2015 DAG.getBasicBlock(Return))); 2016 } 2017 2018 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2019 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2020 } 2021 2022 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2023 assert(FuncInfo.MBB->isLandingPad() && 2024 "Call to landingpad not in landing pad!"); 2025 2026 MachineBasicBlock *MBB = FuncInfo.MBB; 2027 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2028 AddLandingPadInfo(LP, MMI, MBB); 2029 2030 // If there aren't registers to copy the values into (e.g., during SjLj 2031 // exceptions), then don't bother to create these DAG nodes. 2032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2033 if (TLI.getExceptionPointerRegister() == 0 && 2034 TLI.getExceptionSelectorRegister() == 0) 2035 return; 2036 2037 SmallVector<EVT, 2> ValueVTs; 2038 SDLoc dl = getCurSDLoc(); 2039 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2040 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2041 2042 // Get the two live-in registers as SDValues. The physregs have already been 2043 // copied into virtual registers. 2044 SDValue Ops[2]; 2045 if (FuncInfo.ExceptionPointerVirtReg) { 2046 Ops[0] = DAG.getZExtOrTrunc( 2047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2048 FuncInfo.ExceptionPointerVirtReg, 2049 TLI.getPointerTy(DAG.getDataLayout())), 2050 dl, ValueVTs[0]); 2051 } else { 2052 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2053 } 2054 Ops[1] = DAG.getZExtOrTrunc( 2055 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2056 FuncInfo.ExceptionSelectorVirtReg, 2057 TLI.getPointerTy(DAG.getDataLayout())), 2058 dl, ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2062 DAG.getVTList(ValueVTs), Ops); 2063 setValue(&LP, Res); 2064 } 2065 2066 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2067 #ifndef NDEBUG 2068 for (const CaseCluster &CC : Clusters) 2069 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2070 #endif 2071 2072 std::sort(Clusters.begin(), Clusters.end(), 2073 [](const CaseCluster &a, const CaseCluster &b) { 2074 return a.Low->getValue().slt(b.Low->getValue()); 2075 }); 2076 2077 // Merge adjacent clusters with the same destination. 2078 const unsigned N = Clusters.size(); 2079 unsigned DstIndex = 0; 2080 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2081 CaseCluster &CC = Clusters[SrcIndex]; 2082 const ConstantInt *CaseVal = CC.Low; 2083 MachineBasicBlock *Succ = CC.MBB; 2084 2085 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2086 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2087 // If this case has the same successor and is a neighbour, merge it into 2088 // the previous cluster. 2089 Clusters[DstIndex - 1].High = CaseVal; 2090 Clusters[DstIndex - 1].Weight += CC.Weight; 2091 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2092 } else { 2093 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2094 sizeof(Clusters[SrcIndex])); 2095 } 2096 } 2097 Clusters.resize(DstIndex); 2098 } 2099 2100 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2101 MachineBasicBlock *Last) { 2102 // Update JTCases. 2103 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2104 if (JTCases[i].first.HeaderBB == First) 2105 JTCases[i].first.HeaderBB = Last; 2106 2107 // Update BitTestCases. 2108 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2109 if (BitTestCases[i].Parent == First) 2110 BitTestCases[i].Parent = Last; 2111 } 2112 2113 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2114 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2115 2116 // Update machine-CFG edges with unique successors. 2117 SmallSet<BasicBlock*, 32> Done; 2118 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2119 BasicBlock *BB = I.getSuccessor(i); 2120 bool Inserted = Done.insert(BB).second; 2121 if (!Inserted) 2122 continue; 2123 2124 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2125 addSuccessorWithWeight(IndirectBrMBB, Succ); 2126 } 2127 2128 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2129 MVT::Other, getControlRoot(), 2130 getValue(I.getAddress()))); 2131 } 2132 2133 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2134 if (DAG.getTarget().Options.TrapUnreachable) 2135 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2136 } 2137 2138 void SelectionDAGBuilder::visitFSub(const User &I) { 2139 // -0.0 - X --> fneg 2140 Type *Ty = I.getType(); 2141 if (isa<Constant>(I.getOperand(0)) && 2142 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2143 SDValue Op2 = getValue(I.getOperand(1)); 2144 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2145 Op2.getValueType(), Op2)); 2146 return; 2147 } 2148 2149 visitBinary(I, ISD::FSUB); 2150 } 2151 2152 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2153 SDValue Op1 = getValue(I.getOperand(0)); 2154 SDValue Op2 = getValue(I.getOperand(1)); 2155 2156 bool nuw = false; 2157 bool nsw = false; 2158 bool exact = false; 2159 FastMathFlags FMF; 2160 2161 if (const OverflowingBinaryOperator *OFBinOp = 2162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2163 nuw = OFBinOp->hasNoUnsignedWrap(); 2164 nsw = OFBinOp->hasNoSignedWrap(); 2165 } 2166 if (const PossiblyExactOperator *ExactOp = 2167 dyn_cast<const PossiblyExactOperator>(&I)) 2168 exact = ExactOp->isExact(); 2169 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2170 FMF = FPOp->getFastMathFlags(); 2171 2172 SDNodeFlags Flags; 2173 Flags.setExact(exact); 2174 Flags.setNoSignedWrap(nsw); 2175 Flags.setNoUnsignedWrap(nuw); 2176 if (EnableFMFInDAG) { 2177 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2178 Flags.setNoInfs(FMF.noInfs()); 2179 Flags.setNoNaNs(FMF.noNaNs()); 2180 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2181 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2182 } 2183 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2184 Op1, Op2, &Flags); 2185 setValue(&I, BinNodeValue); 2186 } 2187 2188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2189 SDValue Op1 = getValue(I.getOperand(0)); 2190 SDValue Op2 = getValue(I.getOperand(1)); 2191 2192 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2193 Op2.getValueType(), DAG.getDataLayout()); 2194 2195 // Coerce the shift amount to the right type if we can. 2196 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2197 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2198 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2199 SDLoc DL = getCurSDLoc(); 2200 2201 // If the operand is smaller than the shift count type, promote it. 2202 if (ShiftSize > Op2Size) 2203 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2204 2205 // If the operand is larger than the shift count type but the shift 2206 // count type has enough bits to represent any shift value, truncate 2207 // it now. This is a common case and it exposes the truncate to 2208 // optimization early. 2209 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2210 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2211 // Otherwise we'll need to temporarily settle for some other convenient 2212 // type. Type legalization will make adjustments once the shiftee is split. 2213 else 2214 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2215 } 2216 2217 bool nuw = false; 2218 bool nsw = false; 2219 bool exact = false; 2220 2221 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2222 2223 if (const OverflowingBinaryOperator *OFBinOp = 2224 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2225 nuw = OFBinOp->hasNoUnsignedWrap(); 2226 nsw = OFBinOp->hasNoSignedWrap(); 2227 } 2228 if (const PossiblyExactOperator *ExactOp = 2229 dyn_cast<const PossiblyExactOperator>(&I)) 2230 exact = ExactOp->isExact(); 2231 } 2232 SDNodeFlags Flags; 2233 Flags.setExact(exact); 2234 Flags.setNoSignedWrap(nsw); 2235 Flags.setNoUnsignedWrap(nuw); 2236 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2237 &Flags); 2238 setValue(&I, Res); 2239 } 2240 2241 void SelectionDAGBuilder::visitSDiv(const User &I) { 2242 SDValue Op1 = getValue(I.getOperand(0)); 2243 SDValue Op2 = getValue(I.getOperand(1)); 2244 2245 SDNodeFlags Flags; 2246 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2247 cast<PossiblyExactOperator>(&I)->isExact()); 2248 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2249 Op2, &Flags)); 2250 } 2251 2252 void SelectionDAGBuilder::visitICmp(const User &I) { 2253 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2254 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2255 predicate = IC->getPredicate(); 2256 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2257 predicate = ICmpInst::Predicate(IC->getPredicate()); 2258 SDValue Op1 = getValue(I.getOperand(0)); 2259 SDValue Op2 = getValue(I.getOperand(1)); 2260 ISD::CondCode Opcode = getICmpCondCode(predicate); 2261 2262 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2263 I.getType()); 2264 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2265 } 2266 2267 void SelectionDAGBuilder::visitFCmp(const User &I) { 2268 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2269 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2270 predicate = FC->getPredicate(); 2271 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2272 predicate = FCmpInst::Predicate(FC->getPredicate()); 2273 SDValue Op1 = getValue(I.getOperand(0)); 2274 SDValue Op2 = getValue(I.getOperand(1)); 2275 ISD::CondCode Condition = getFCmpCondCode(predicate); 2276 if (TM.Options.NoNaNsFPMath) 2277 Condition = getFCmpCodeWithoutNaN(Condition); 2278 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2279 I.getType()); 2280 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2281 } 2282 2283 void SelectionDAGBuilder::visitSelect(const User &I) { 2284 SmallVector<EVT, 4> ValueVTs; 2285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2286 ValueVTs); 2287 unsigned NumValues = ValueVTs.size(); 2288 if (NumValues == 0) return; 2289 2290 SmallVector<SDValue, 4> Values(NumValues); 2291 SDValue Cond = getValue(I.getOperand(0)); 2292 SDValue LHSVal = getValue(I.getOperand(1)); 2293 SDValue RHSVal = getValue(I.getOperand(2)); 2294 auto BaseOps = {Cond}; 2295 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2296 ISD::VSELECT : ISD::SELECT; 2297 2298 // Min/max matching is only viable if all output VTs are the same. 2299 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2300 Value *LHS, *RHS; 2301 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2302 ISD::NodeType Opc = ISD::DELETED_NODE; 2303 switch (SPF) { 2304 case SPF_UMAX: Opc = ISD::UMAX; break; 2305 case SPF_UMIN: Opc = ISD::UMIN; break; 2306 case SPF_SMAX: Opc = ISD::SMAX; break; 2307 case SPF_SMIN: Opc = ISD::SMIN; break; 2308 default: break; 2309 } 2310 2311 EVT VT = ValueVTs[0]; 2312 LLVMContext &Ctx = *DAG.getContext(); 2313 auto &TLI = DAG.getTargetLoweringInfo(); 2314 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2315 VT = TLI.getTypeToTransformTo(Ctx, VT); 2316 2317 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2318 // If the underlying comparison instruction is used by any other instruction, 2319 // the consumed instructions won't be destroyed, so it is not profitable 2320 // to convert to a min/max. 2321 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2322 OpCode = Opc; 2323 LHSVal = getValue(LHS); 2324 RHSVal = getValue(RHS); 2325 BaseOps = {}; 2326 } 2327 } 2328 2329 for (unsigned i = 0; i != NumValues; ++i) { 2330 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2331 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2332 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2333 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2334 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2335 Ops); 2336 } 2337 2338 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2339 DAG.getVTList(ValueVTs), Values)); 2340 } 2341 2342 void SelectionDAGBuilder::visitTrunc(const User &I) { 2343 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2344 SDValue N = getValue(I.getOperand(0)); 2345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2346 I.getType()); 2347 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2348 } 2349 2350 void SelectionDAGBuilder::visitZExt(const User &I) { 2351 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2352 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2353 SDValue N = getValue(I.getOperand(0)); 2354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2355 I.getType()); 2356 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2357 } 2358 2359 void SelectionDAGBuilder::visitSExt(const User &I) { 2360 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2361 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2362 SDValue N = getValue(I.getOperand(0)); 2363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2364 I.getType()); 2365 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2366 } 2367 2368 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2369 // FPTrunc is never a no-op cast, no need to check 2370 SDValue N = getValue(I.getOperand(0)); 2371 SDLoc dl = getCurSDLoc(); 2372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2373 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2374 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2375 DAG.getTargetConstant( 2376 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2377 } 2378 2379 void SelectionDAGBuilder::visitFPExt(const User &I) { 2380 // FPExt is never a no-op cast, no need to check 2381 SDValue N = getValue(I.getOperand(0)); 2382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2383 I.getType()); 2384 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2385 } 2386 2387 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2388 // FPToUI is never a no-op cast, no need to check 2389 SDValue N = getValue(I.getOperand(0)); 2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2391 I.getType()); 2392 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2393 } 2394 2395 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2396 // FPToSI is never a no-op cast, no need to check 2397 SDValue N = getValue(I.getOperand(0)); 2398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2399 I.getType()); 2400 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2401 } 2402 2403 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2404 // UIToFP is never a no-op cast, no need to check 2405 SDValue N = getValue(I.getOperand(0)); 2406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2407 I.getType()); 2408 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2409 } 2410 2411 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2412 // SIToFP is never a no-op cast, no need to check 2413 SDValue N = getValue(I.getOperand(0)); 2414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2415 I.getType()); 2416 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2417 } 2418 2419 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2420 // What to do depends on the size of the integer and the size of the pointer. 2421 // We can either truncate, zero extend, or no-op, accordingly. 2422 SDValue N = getValue(I.getOperand(0)); 2423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2424 I.getType()); 2425 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2426 } 2427 2428 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2429 // What to do depends on the size of the integer and the size of the pointer. 2430 // We can either truncate, zero extend, or no-op, accordingly. 2431 SDValue N = getValue(I.getOperand(0)); 2432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2433 I.getType()); 2434 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2435 } 2436 2437 void SelectionDAGBuilder::visitBitCast(const User &I) { 2438 SDValue N = getValue(I.getOperand(0)); 2439 SDLoc dl = getCurSDLoc(); 2440 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2441 I.getType()); 2442 2443 // BitCast assures us that source and destination are the same size so this is 2444 // either a BITCAST or a no-op. 2445 if (DestVT != N.getValueType()) 2446 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2447 DestVT, N)); // convert types. 2448 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2449 // might fold any kind of constant expression to an integer constant and that 2450 // is not what we are looking for. Only regcognize a bitcast of a genuine 2451 // constant integer as an opaque constant. 2452 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2453 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2454 /*isOpaque*/true)); 2455 else 2456 setValue(&I, N); // noop cast. 2457 } 2458 2459 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2461 const Value *SV = I.getOperand(0); 2462 SDValue N = getValue(SV); 2463 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2464 2465 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2466 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2467 2468 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2469 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2470 2471 setValue(&I, N); 2472 } 2473 2474 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2476 SDValue InVec = getValue(I.getOperand(0)); 2477 SDValue InVal = getValue(I.getOperand(1)); 2478 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2479 TLI.getVectorIdxTy(DAG.getDataLayout())); 2480 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2481 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2482 InVec, InVal, InIdx)); 2483 } 2484 2485 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2487 SDValue InVec = getValue(I.getOperand(0)); 2488 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2489 TLI.getVectorIdxTy(DAG.getDataLayout())); 2490 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2491 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2492 InVec, InIdx)); 2493 } 2494 2495 // Utility for visitShuffleVector - Return true if every element in Mask, 2496 // beginning from position Pos and ending in Pos+Size, falls within the 2497 // specified sequential range [L, L+Pos). or is undef. 2498 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2499 unsigned Pos, unsigned Size, int Low) { 2500 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2501 if (Mask[i] >= 0 && Mask[i] != Low) 2502 return false; 2503 return true; 2504 } 2505 2506 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2507 SDValue Src1 = getValue(I.getOperand(0)); 2508 SDValue Src2 = getValue(I.getOperand(1)); 2509 2510 SmallVector<int, 8> Mask; 2511 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2512 unsigned MaskNumElts = Mask.size(); 2513 2514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2515 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2516 EVT SrcVT = Src1.getValueType(); 2517 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2518 2519 if (SrcNumElts == MaskNumElts) { 2520 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2521 &Mask[0])); 2522 return; 2523 } 2524 2525 // Normalize the shuffle vector since mask and vector length don't match. 2526 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2527 // Mask is longer than the source vectors and is a multiple of the source 2528 // vectors. We can use concatenate vector to make the mask and vectors 2529 // lengths match. 2530 if (SrcNumElts*2 == MaskNumElts) { 2531 // First check for Src1 in low and Src2 in high 2532 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2533 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2534 // The shuffle is concatenating two vectors together. 2535 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2536 VT, Src1, Src2)); 2537 return; 2538 } 2539 // Then check for Src2 in low and Src1 in high 2540 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2541 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2542 // The shuffle is concatenating two vectors together. 2543 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2544 VT, Src2, Src1)); 2545 return; 2546 } 2547 } 2548 2549 // Pad both vectors with undefs to make them the same length as the mask. 2550 unsigned NumConcat = MaskNumElts / SrcNumElts; 2551 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2552 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2553 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2554 2555 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2556 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2557 MOps1[0] = Src1; 2558 MOps2[0] = Src2; 2559 2560 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2561 getCurSDLoc(), VT, MOps1); 2562 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2563 getCurSDLoc(), VT, MOps2); 2564 2565 // Readjust mask for new input vector length. 2566 SmallVector<int, 8> MappedOps; 2567 for (unsigned i = 0; i != MaskNumElts; ++i) { 2568 int Idx = Mask[i]; 2569 if (Idx >= (int)SrcNumElts) 2570 Idx -= SrcNumElts - MaskNumElts; 2571 MappedOps.push_back(Idx); 2572 } 2573 2574 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2575 &MappedOps[0])); 2576 return; 2577 } 2578 2579 if (SrcNumElts > MaskNumElts) { 2580 // Analyze the access pattern of the vector to see if we can extract 2581 // two subvectors and do the shuffle. The analysis is done by calculating 2582 // the range of elements the mask access on both vectors. 2583 int MinRange[2] = { static_cast<int>(SrcNumElts), 2584 static_cast<int>(SrcNumElts)}; 2585 int MaxRange[2] = {-1, -1}; 2586 2587 for (unsigned i = 0; i != MaskNumElts; ++i) { 2588 int Idx = Mask[i]; 2589 unsigned Input = 0; 2590 if (Idx < 0) 2591 continue; 2592 2593 if (Idx >= (int)SrcNumElts) { 2594 Input = 1; 2595 Idx -= SrcNumElts; 2596 } 2597 if (Idx > MaxRange[Input]) 2598 MaxRange[Input] = Idx; 2599 if (Idx < MinRange[Input]) 2600 MinRange[Input] = Idx; 2601 } 2602 2603 // Check if the access is smaller than the vector size and can we find 2604 // a reasonable extract index. 2605 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2606 // Extract. 2607 int StartIdx[2]; // StartIdx to extract from 2608 for (unsigned Input = 0; Input < 2; ++Input) { 2609 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2610 RangeUse[Input] = 0; // Unused 2611 StartIdx[Input] = 0; 2612 continue; 2613 } 2614 2615 // Find a good start index that is a multiple of the mask length. Then 2616 // see if the rest of the elements are in range. 2617 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2618 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2619 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2620 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2621 } 2622 2623 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2624 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2625 return; 2626 } 2627 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2628 // Extract appropriate subvector and generate a vector shuffle 2629 for (unsigned Input = 0; Input < 2; ++Input) { 2630 SDValue &Src = Input == 0 ? Src1 : Src2; 2631 if (RangeUse[Input] == 0) 2632 Src = DAG.getUNDEF(VT); 2633 else { 2634 SDLoc dl = getCurSDLoc(); 2635 Src = DAG.getNode( 2636 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2637 DAG.getConstant(StartIdx[Input], dl, 2638 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2639 } 2640 } 2641 2642 // Calculate new mask. 2643 SmallVector<int, 8> MappedOps; 2644 for (unsigned i = 0; i != MaskNumElts; ++i) { 2645 int Idx = Mask[i]; 2646 if (Idx >= 0) { 2647 if (Idx < (int)SrcNumElts) 2648 Idx -= StartIdx[0]; 2649 else 2650 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2651 } 2652 MappedOps.push_back(Idx); 2653 } 2654 2655 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2656 &MappedOps[0])); 2657 return; 2658 } 2659 } 2660 2661 // We can't use either concat vectors or extract subvectors so fall back to 2662 // replacing the shuffle with extract and build vector. 2663 // to insert and build vector. 2664 EVT EltVT = VT.getVectorElementType(); 2665 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2666 SDLoc dl = getCurSDLoc(); 2667 SmallVector<SDValue,8> Ops; 2668 for (unsigned i = 0; i != MaskNumElts; ++i) { 2669 int Idx = Mask[i]; 2670 SDValue Res; 2671 2672 if (Idx < 0) { 2673 Res = DAG.getUNDEF(EltVT); 2674 } else { 2675 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2676 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2677 2678 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2679 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2680 } 2681 2682 Ops.push_back(Res); 2683 } 2684 2685 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2686 } 2687 2688 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2689 const Value *Op0 = I.getOperand(0); 2690 const Value *Op1 = I.getOperand(1); 2691 Type *AggTy = I.getType(); 2692 Type *ValTy = Op1->getType(); 2693 bool IntoUndef = isa<UndefValue>(Op0); 2694 bool FromUndef = isa<UndefValue>(Op1); 2695 2696 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2697 2698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2699 SmallVector<EVT, 4> AggValueVTs; 2700 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2701 SmallVector<EVT, 4> ValValueVTs; 2702 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2703 2704 unsigned NumAggValues = AggValueVTs.size(); 2705 unsigned NumValValues = ValValueVTs.size(); 2706 SmallVector<SDValue, 4> Values(NumAggValues); 2707 2708 // Ignore an insertvalue that produces an empty object 2709 if (!NumAggValues) { 2710 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2711 return; 2712 } 2713 2714 SDValue Agg = getValue(Op0); 2715 unsigned i = 0; 2716 // Copy the beginning value(s) from the original aggregate. 2717 for (; i != LinearIndex; ++i) 2718 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2719 SDValue(Agg.getNode(), Agg.getResNo() + i); 2720 // Copy values from the inserted value(s). 2721 if (NumValValues) { 2722 SDValue Val = getValue(Op1); 2723 for (; i != LinearIndex + NumValValues; ++i) 2724 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2725 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2726 } 2727 // Copy remaining value(s) from the original aggregate. 2728 for (; i != NumAggValues; ++i) 2729 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2730 SDValue(Agg.getNode(), Agg.getResNo() + i); 2731 2732 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2733 DAG.getVTList(AggValueVTs), Values)); 2734 } 2735 2736 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2737 const Value *Op0 = I.getOperand(0); 2738 Type *AggTy = Op0->getType(); 2739 Type *ValTy = I.getType(); 2740 bool OutOfUndef = isa<UndefValue>(Op0); 2741 2742 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2743 2744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2745 SmallVector<EVT, 4> ValValueVTs; 2746 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2747 2748 unsigned NumValValues = ValValueVTs.size(); 2749 2750 // Ignore a extractvalue that produces an empty object 2751 if (!NumValValues) { 2752 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2753 return; 2754 } 2755 2756 SmallVector<SDValue, 4> Values(NumValValues); 2757 2758 SDValue Agg = getValue(Op0); 2759 // Copy out the selected value(s). 2760 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2761 Values[i - LinearIndex] = 2762 OutOfUndef ? 2763 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2764 SDValue(Agg.getNode(), Agg.getResNo() + i); 2765 2766 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2767 DAG.getVTList(ValValueVTs), Values)); 2768 } 2769 2770 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2771 Value *Op0 = I.getOperand(0); 2772 // Note that the pointer operand may be a vector of pointers. Take the scalar 2773 // element which holds a pointer. 2774 Type *Ty = Op0->getType()->getScalarType(); 2775 unsigned AS = Ty->getPointerAddressSpace(); 2776 SDValue N = getValue(Op0); 2777 SDLoc dl = getCurSDLoc(); 2778 2779 // Normalize Vector GEP - all scalar operands should be converted to the 2780 // splat vector. 2781 unsigned VectorWidth = I.getType()->isVectorTy() ? 2782 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2783 2784 if (VectorWidth && !N.getValueType().isVector()) { 2785 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2786 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2787 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2788 } 2789 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2790 OI != E; ++OI) { 2791 const Value *Idx = *OI; 2792 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2793 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2794 if (Field) { 2795 // N = N + Offset 2796 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2797 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2798 DAG.getConstant(Offset, dl, N.getValueType())); 2799 } 2800 2801 Ty = StTy->getElementType(Field); 2802 } else { 2803 Ty = cast<SequentialType>(Ty)->getElementType(); 2804 MVT PtrTy = 2805 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2806 unsigned PtrSize = PtrTy.getSizeInBits(); 2807 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2808 2809 // If this is a scalar constant or a splat vector of constants, 2810 // handle it quickly. 2811 const auto *CI = dyn_cast<ConstantInt>(Idx); 2812 if (!CI && isa<ConstantDataVector>(Idx) && 2813 cast<ConstantDataVector>(Idx)->getSplatValue()) 2814 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2815 2816 if (CI) { 2817 if (CI->isZero()) 2818 continue; 2819 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2820 SDValue OffsVal = VectorWidth ? 2821 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2822 DAG.getConstant(Offs, dl, PtrTy); 2823 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2824 continue; 2825 } 2826 2827 // N = N + Idx * ElementSize; 2828 SDValue IdxN = getValue(Idx); 2829 2830 if (!IdxN.getValueType().isVector() && VectorWidth) { 2831 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2832 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2833 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2834 } 2835 // If the index is smaller or larger than intptr_t, truncate or extend 2836 // it. 2837 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2838 2839 // If this is a multiply by a power of two, turn it into a shl 2840 // immediately. This is a very common case. 2841 if (ElementSize != 1) { 2842 if (ElementSize.isPowerOf2()) { 2843 unsigned Amt = ElementSize.logBase2(); 2844 IdxN = DAG.getNode(ISD::SHL, dl, 2845 N.getValueType(), IdxN, 2846 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2847 } else { 2848 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2849 IdxN = DAG.getNode(ISD::MUL, dl, 2850 N.getValueType(), IdxN, Scale); 2851 } 2852 } 2853 2854 N = DAG.getNode(ISD::ADD, dl, 2855 N.getValueType(), N, IdxN); 2856 } 2857 } 2858 2859 setValue(&I, N); 2860 } 2861 2862 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2863 // If this is a fixed sized alloca in the entry block of the function, 2864 // allocate it statically on the stack. 2865 if (FuncInfo.StaticAllocaMap.count(&I)) 2866 return; // getValue will auto-populate this. 2867 2868 SDLoc dl = getCurSDLoc(); 2869 Type *Ty = I.getAllocatedType(); 2870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2871 auto &DL = DAG.getDataLayout(); 2872 uint64_t TySize = DL.getTypeAllocSize(Ty); 2873 unsigned Align = 2874 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2875 2876 SDValue AllocSize = getValue(I.getArraySize()); 2877 2878 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2879 if (AllocSize.getValueType() != IntPtr) 2880 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2881 2882 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2883 AllocSize, 2884 DAG.getConstant(TySize, dl, IntPtr)); 2885 2886 // Handle alignment. If the requested alignment is less than or equal to 2887 // the stack alignment, ignore it. If the size is greater than or equal to 2888 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2889 unsigned StackAlign = 2890 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2891 if (Align <= StackAlign) 2892 Align = 0; 2893 2894 // Round the size of the allocation up to the stack alignment size 2895 // by add SA-1 to the size. 2896 AllocSize = DAG.getNode(ISD::ADD, dl, 2897 AllocSize.getValueType(), AllocSize, 2898 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2899 2900 // Mask out the low bits for alignment purposes. 2901 AllocSize = DAG.getNode(ISD::AND, dl, 2902 AllocSize.getValueType(), AllocSize, 2903 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2904 dl)); 2905 2906 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2907 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2908 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2909 setValue(&I, DSA); 2910 DAG.setRoot(DSA.getValue(1)); 2911 2912 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2913 } 2914 2915 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2916 if (I.isAtomic()) 2917 return visitAtomicLoad(I); 2918 2919 const Value *SV = I.getOperand(0); 2920 SDValue Ptr = getValue(SV); 2921 2922 Type *Ty = I.getType(); 2923 2924 bool isVolatile = I.isVolatile(); 2925 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2926 2927 // The IR notion of invariant_load only guarantees that all *non-faulting* 2928 // invariant loads result in the same value. The MI notion of invariant load 2929 // guarantees that the load can be legally moved to any location within its 2930 // containing function. The MI notion of invariant_load is stronger than the 2931 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2932 // with a guarantee that the location being loaded from is dereferenceable 2933 // throughout the function's lifetime. 2934 2935 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2936 isDereferenceablePointer(SV, DAG.getDataLayout()); 2937 unsigned Alignment = I.getAlignment(); 2938 2939 AAMDNodes AAInfo; 2940 I.getAAMetadata(AAInfo); 2941 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2942 2943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2944 SmallVector<EVT, 4> ValueVTs; 2945 SmallVector<uint64_t, 4> Offsets; 2946 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2947 unsigned NumValues = ValueVTs.size(); 2948 if (NumValues == 0) 2949 return; 2950 2951 SDValue Root; 2952 bool ConstantMemory = false; 2953 if (isVolatile || NumValues > MaxParallelChains) 2954 // Serialize volatile loads with other side effects. 2955 Root = getRoot(); 2956 else if (AA->pointsToConstantMemory( 2957 MemoryLocation(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2958 // Do not serialize (non-volatile) loads of constant memory with anything. 2959 Root = DAG.getEntryNode(); 2960 ConstantMemory = true; 2961 } else { 2962 // Do not serialize non-volatile loads against each other. 2963 Root = DAG.getRoot(); 2964 } 2965 2966 SDLoc dl = getCurSDLoc(); 2967 2968 if (isVolatile) 2969 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2970 2971 SmallVector<SDValue, 4> Values(NumValues); 2972 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2973 EVT PtrVT = Ptr.getValueType(); 2974 unsigned ChainI = 0; 2975 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2976 // Serializing loads here may result in excessive register pressure, and 2977 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2978 // could recover a bit by hoisting nodes upward in the chain by recognizing 2979 // they are side-effect free or do not alias. The optimizer should really 2980 // avoid this case by converting large object/array copies to llvm.memcpy 2981 // (MaxParallelChains should always remain as failsafe). 2982 if (ChainI == MaxParallelChains) { 2983 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2984 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2985 makeArrayRef(Chains.data(), ChainI)); 2986 Root = Chain; 2987 ChainI = 0; 2988 } 2989 SDValue A = DAG.getNode(ISD::ADD, dl, 2990 PtrVT, Ptr, 2991 DAG.getConstant(Offsets[i], dl, PtrVT)); 2992 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2993 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2994 isNonTemporal, isInvariant, Alignment, AAInfo, 2995 Ranges); 2996 2997 Values[i] = L; 2998 Chains[ChainI] = L.getValue(1); 2999 } 3000 3001 if (!ConstantMemory) { 3002 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3003 makeArrayRef(Chains.data(), ChainI)); 3004 if (isVolatile) 3005 DAG.setRoot(Chain); 3006 else 3007 PendingLoads.push_back(Chain); 3008 } 3009 3010 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3011 DAG.getVTList(ValueVTs), Values)); 3012 } 3013 3014 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3015 if (I.isAtomic()) 3016 return visitAtomicStore(I); 3017 3018 const Value *SrcV = I.getOperand(0); 3019 const Value *PtrV = I.getOperand(1); 3020 3021 SmallVector<EVT, 4> ValueVTs; 3022 SmallVector<uint64_t, 4> Offsets; 3023 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3024 SrcV->getType(), ValueVTs, &Offsets); 3025 unsigned NumValues = ValueVTs.size(); 3026 if (NumValues == 0) 3027 return; 3028 3029 // Get the lowered operands. Note that we do this after 3030 // checking if NumResults is zero, because with zero results 3031 // the operands won't have values in the map. 3032 SDValue Src = getValue(SrcV); 3033 SDValue Ptr = getValue(PtrV); 3034 3035 SDValue Root = getRoot(); 3036 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3037 EVT PtrVT = Ptr.getValueType(); 3038 bool isVolatile = I.isVolatile(); 3039 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3040 unsigned Alignment = I.getAlignment(); 3041 SDLoc dl = getCurSDLoc(); 3042 3043 AAMDNodes AAInfo; 3044 I.getAAMetadata(AAInfo); 3045 3046 unsigned ChainI = 0; 3047 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3048 // See visitLoad comments. 3049 if (ChainI == MaxParallelChains) { 3050 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3051 makeArrayRef(Chains.data(), ChainI)); 3052 Root = Chain; 3053 ChainI = 0; 3054 } 3055 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3056 DAG.getConstant(Offsets[i], dl, PtrVT)); 3057 SDValue St = DAG.getStore(Root, dl, 3058 SDValue(Src.getNode(), Src.getResNo() + i), 3059 Add, MachinePointerInfo(PtrV, Offsets[i]), 3060 isVolatile, isNonTemporal, Alignment, AAInfo); 3061 Chains[ChainI] = St; 3062 } 3063 3064 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3065 makeArrayRef(Chains.data(), ChainI)); 3066 DAG.setRoot(StoreNode); 3067 } 3068 3069 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3070 SDLoc sdl = getCurSDLoc(); 3071 3072 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3073 Value *PtrOperand = I.getArgOperand(1); 3074 SDValue Ptr = getValue(PtrOperand); 3075 SDValue Src0 = getValue(I.getArgOperand(0)); 3076 SDValue Mask = getValue(I.getArgOperand(3)); 3077 EVT VT = Src0.getValueType(); 3078 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3079 if (!Alignment) 3080 Alignment = DAG.getEVTAlignment(VT); 3081 3082 AAMDNodes AAInfo; 3083 I.getAAMetadata(AAInfo); 3084 3085 MachineMemOperand *MMO = 3086 DAG.getMachineFunction(). 3087 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3088 MachineMemOperand::MOStore, VT.getStoreSize(), 3089 Alignment, AAInfo); 3090 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3091 MMO, false); 3092 DAG.setRoot(StoreNode); 3093 setValue(&I, StoreNode); 3094 } 3095 3096 // Gather/scatter receive a vector of pointers. 3097 // This vector of pointers may be represented as a base pointer + vector of 3098 // indices, it depends on GEP and instruction preceeding GEP 3099 // that calculates indices 3100 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3101 SelectionDAGBuilder* SDB) { 3102 3103 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3104 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3105 if (!Gep || Gep->getNumOperands() > 2) 3106 return false; 3107 ShuffleVectorInst *ShuffleInst = 3108 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3109 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3110 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3111 Instruction::InsertElement) 3112 return false; 3113 3114 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3115 3116 SelectionDAG& DAG = SDB->DAG; 3117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3118 // Check is the Ptr is inside current basic block 3119 // If not, look for the shuffle instruction 3120 if (SDB->findValue(Ptr)) 3121 Base = SDB->getValue(Ptr); 3122 else if (SDB->findValue(ShuffleInst)) { 3123 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3124 SDLoc sdl = ShuffleNode; 3125 Base = DAG.getNode( 3126 ISD::EXTRACT_VECTOR_ELT, sdl, 3127 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3128 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3129 SDB->setValue(Ptr, Base); 3130 } 3131 else 3132 return false; 3133 3134 Value *IndexVal = Gep->getOperand(1); 3135 if (SDB->findValue(IndexVal)) { 3136 Index = SDB->getValue(IndexVal); 3137 3138 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3139 IndexVal = Sext->getOperand(0); 3140 if (SDB->findValue(IndexVal)) 3141 Index = SDB->getValue(IndexVal); 3142 } 3143 return true; 3144 } 3145 return false; 3146 } 3147 3148 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3149 SDLoc sdl = getCurSDLoc(); 3150 3151 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3152 Value *Ptr = I.getArgOperand(1); 3153 SDValue Src0 = getValue(I.getArgOperand(0)); 3154 SDValue Mask = getValue(I.getArgOperand(3)); 3155 EVT VT = Src0.getValueType(); 3156 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3157 if (!Alignment) 3158 Alignment = DAG.getEVTAlignment(VT); 3159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3160 3161 AAMDNodes AAInfo; 3162 I.getAAMetadata(AAInfo); 3163 3164 SDValue Base; 3165 SDValue Index; 3166 Value *BasePtr = Ptr; 3167 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3168 3169 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3170 MachineMemOperand *MMO = DAG.getMachineFunction(). 3171 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3172 MachineMemOperand::MOStore, VT.getStoreSize(), 3173 Alignment, AAInfo); 3174 if (!UniformBase) { 3175 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3176 Index = getValue(Ptr); 3177 } 3178 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3179 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3180 Ops, MMO); 3181 DAG.setRoot(Scatter); 3182 setValue(&I, Scatter); 3183 } 3184 3185 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3186 SDLoc sdl = getCurSDLoc(); 3187 3188 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3189 Value *PtrOperand = I.getArgOperand(0); 3190 SDValue Ptr = getValue(PtrOperand); 3191 SDValue Src0 = getValue(I.getArgOperand(3)); 3192 SDValue Mask = getValue(I.getArgOperand(2)); 3193 3194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3195 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3196 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3197 if (!Alignment) 3198 Alignment = DAG.getEVTAlignment(VT); 3199 3200 AAMDNodes AAInfo; 3201 I.getAAMetadata(AAInfo); 3202 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3203 3204 SDValue InChain = DAG.getRoot(); 3205 if (AA->pointsToConstantMemory(MemoryLocation( 3206 PtrOperand, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3207 // Do not serialize (non-volatile) loads of constant memory with anything. 3208 InChain = DAG.getEntryNode(); 3209 } 3210 3211 MachineMemOperand *MMO = 3212 DAG.getMachineFunction(). 3213 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3214 MachineMemOperand::MOLoad, VT.getStoreSize(), 3215 Alignment, AAInfo, Ranges); 3216 3217 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3218 ISD::NON_EXTLOAD); 3219 SDValue OutChain = Load.getValue(1); 3220 DAG.setRoot(OutChain); 3221 setValue(&I, Load); 3222 } 3223 3224 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3225 SDLoc sdl = getCurSDLoc(); 3226 3227 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3228 Value *Ptr = I.getArgOperand(0); 3229 SDValue Src0 = getValue(I.getArgOperand(3)); 3230 SDValue Mask = getValue(I.getArgOperand(2)); 3231 3232 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3233 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3234 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3235 if (!Alignment) 3236 Alignment = DAG.getEVTAlignment(VT); 3237 3238 AAMDNodes AAInfo; 3239 I.getAAMetadata(AAInfo); 3240 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3241 3242 SDValue Root = DAG.getRoot(); 3243 SDValue Base; 3244 SDValue Index; 3245 Value *BasePtr = Ptr; 3246 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3247 bool ConstantMemory = false; 3248 if (UniformBase && 3249 AA->pointsToConstantMemory( 3250 MemoryLocation(BasePtr, AA->getTypeStoreSize(I.getType()), AAInfo))) { 3251 // Do not serialize (non-volatile) loads of constant memory with anything. 3252 Root = DAG.getEntryNode(); 3253 ConstantMemory = true; 3254 } 3255 3256 MachineMemOperand *MMO = 3257 DAG.getMachineFunction(). 3258 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3259 MachineMemOperand::MOLoad, VT.getStoreSize(), 3260 Alignment, AAInfo, Ranges); 3261 3262 if (!UniformBase) { 3263 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3264 Index = getValue(Ptr); 3265 } 3266 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3267 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3268 Ops, MMO); 3269 3270 SDValue OutChain = Gather.getValue(1); 3271 if (!ConstantMemory) 3272 PendingLoads.push_back(OutChain); 3273 setValue(&I, Gather); 3274 } 3275 3276 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3277 SDLoc dl = getCurSDLoc(); 3278 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3279 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3280 SynchronizationScope Scope = I.getSynchScope(); 3281 3282 SDValue InChain = getRoot(); 3283 3284 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3285 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3286 SDValue L = DAG.getAtomicCmpSwap( 3287 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3288 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3289 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3290 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3291 3292 SDValue OutChain = L.getValue(2); 3293 3294 setValue(&I, L); 3295 DAG.setRoot(OutChain); 3296 } 3297 3298 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3299 SDLoc dl = getCurSDLoc(); 3300 ISD::NodeType NT; 3301 switch (I.getOperation()) { 3302 default: llvm_unreachable("Unknown atomicrmw operation"); 3303 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3304 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3305 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3306 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3307 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3308 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3309 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3310 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3311 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3312 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3313 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3314 } 3315 AtomicOrdering Order = I.getOrdering(); 3316 SynchronizationScope Scope = I.getSynchScope(); 3317 3318 SDValue InChain = getRoot(); 3319 3320 SDValue L = 3321 DAG.getAtomic(NT, dl, 3322 getValue(I.getValOperand()).getSimpleValueType(), 3323 InChain, 3324 getValue(I.getPointerOperand()), 3325 getValue(I.getValOperand()), 3326 I.getPointerOperand(), 3327 /* Alignment=*/ 0, Order, Scope); 3328 3329 SDValue OutChain = L.getValue(1); 3330 3331 setValue(&I, L); 3332 DAG.setRoot(OutChain); 3333 } 3334 3335 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3336 SDLoc dl = getCurSDLoc(); 3337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3338 SDValue Ops[3]; 3339 Ops[0] = getRoot(); 3340 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3341 TLI.getPointerTy(DAG.getDataLayout())); 3342 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3343 TLI.getPointerTy(DAG.getDataLayout())); 3344 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3345 } 3346 3347 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3348 SDLoc dl = getCurSDLoc(); 3349 AtomicOrdering Order = I.getOrdering(); 3350 SynchronizationScope Scope = I.getSynchScope(); 3351 3352 SDValue InChain = getRoot(); 3353 3354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3355 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3356 3357 if (I.getAlignment() < VT.getSizeInBits() / 8) 3358 report_fatal_error("Cannot generate unaligned atomic load"); 3359 3360 MachineMemOperand *MMO = 3361 DAG.getMachineFunction(). 3362 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3363 MachineMemOperand::MOVolatile | 3364 MachineMemOperand::MOLoad, 3365 VT.getStoreSize(), 3366 I.getAlignment() ? I.getAlignment() : 3367 DAG.getEVTAlignment(VT)); 3368 3369 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3370 SDValue L = 3371 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3372 getValue(I.getPointerOperand()), MMO, 3373 Order, Scope); 3374 3375 SDValue OutChain = L.getValue(1); 3376 3377 setValue(&I, L); 3378 DAG.setRoot(OutChain); 3379 } 3380 3381 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3382 SDLoc dl = getCurSDLoc(); 3383 3384 AtomicOrdering Order = I.getOrdering(); 3385 SynchronizationScope Scope = I.getSynchScope(); 3386 3387 SDValue InChain = getRoot(); 3388 3389 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3390 EVT VT = 3391 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3392 3393 if (I.getAlignment() < VT.getSizeInBits() / 8) 3394 report_fatal_error("Cannot generate unaligned atomic store"); 3395 3396 SDValue OutChain = 3397 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3398 InChain, 3399 getValue(I.getPointerOperand()), 3400 getValue(I.getValueOperand()), 3401 I.getPointerOperand(), I.getAlignment(), 3402 Order, Scope); 3403 3404 DAG.setRoot(OutChain); 3405 } 3406 3407 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3408 /// node. 3409 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3410 unsigned Intrinsic) { 3411 bool HasChain = !I.doesNotAccessMemory(); 3412 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3413 3414 // Build the operand list. 3415 SmallVector<SDValue, 8> Ops; 3416 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3417 if (OnlyLoad) { 3418 // We don't need to serialize loads against other loads. 3419 Ops.push_back(DAG.getRoot()); 3420 } else { 3421 Ops.push_back(getRoot()); 3422 } 3423 } 3424 3425 // Info is set by getTgtMemInstrinsic 3426 TargetLowering::IntrinsicInfo Info; 3427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3428 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3429 3430 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3431 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3432 Info.opc == ISD::INTRINSIC_W_CHAIN) 3433 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3434 TLI.getPointerTy(DAG.getDataLayout()))); 3435 3436 // Add all operands of the call to the operand list. 3437 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3438 SDValue Op = getValue(I.getArgOperand(i)); 3439 Ops.push_back(Op); 3440 } 3441 3442 SmallVector<EVT, 4> ValueVTs; 3443 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3444 3445 if (HasChain) 3446 ValueVTs.push_back(MVT::Other); 3447 3448 SDVTList VTs = DAG.getVTList(ValueVTs); 3449 3450 // Create the node. 3451 SDValue Result; 3452 if (IsTgtIntrinsic) { 3453 // This is target intrinsic that touches memory 3454 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3455 VTs, Ops, Info.memVT, 3456 MachinePointerInfo(Info.ptrVal, Info.offset), 3457 Info.align, Info.vol, 3458 Info.readMem, Info.writeMem, Info.size); 3459 } else if (!HasChain) { 3460 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3461 } else if (!I.getType()->isVoidTy()) { 3462 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3463 } else { 3464 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3465 } 3466 3467 if (HasChain) { 3468 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3469 if (OnlyLoad) 3470 PendingLoads.push_back(Chain); 3471 else 3472 DAG.setRoot(Chain); 3473 } 3474 3475 if (!I.getType()->isVoidTy()) { 3476 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3477 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3478 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3479 } 3480 3481 setValue(&I, Result); 3482 } 3483 } 3484 3485 /// GetSignificand - Get the significand and build it into a floating-point 3486 /// number with exponent of 1: 3487 /// 3488 /// Op = (Op & 0x007fffff) | 0x3f800000; 3489 /// 3490 /// where Op is the hexadecimal representation of floating point value. 3491 static SDValue 3492 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3493 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3494 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3495 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3496 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3497 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3498 } 3499 3500 /// GetExponent - Get the exponent: 3501 /// 3502 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3503 /// 3504 /// where Op is the hexadecimal representation of floating point value. 3505 static SDValue 3506 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3507 SDLoc dl) { 3508 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3509 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3510 SDValue t1 = DAG.getNode( 3511 ISD::SRL, dl, MVT::i32, t0, 3512 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3513 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3514 DAG.getConstant(127, dl, MVT::i32)); 3515 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3516 } 3517 3518 /// getF32Constant - Get 32-bit floating point constant. 3519 static SDValue 3520 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3521 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3522 MVT::f32); 3523 } 3524 3525 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3526 SelectionDAG &DAG) { 3527 // IntegerPartOfX = ((int32_t)(t0); 3528 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3529 3530 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3531 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3532 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3533 3534 // IntegerPartOfX <<= 23; 3535 IntegerPartOfX = DAG.getNode( 3536 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3537 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3538 DAG.getDataLayout()))); 3539 3540 SDValue TwoToFractionalPartOfX; 3541 if (LimitFloatPrecision <= 6) { 3542 // For floating-point precision of 6: 3543 // 3544 // TwoToFractionalPartOfX = 3545 // 0.997535578f + 3546 // (0.735607626f + 0.252464424f * x) * x; 3547 // 3548 // error 0.0144103317, which is 6 bits 3549 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3550 getF32Constant(DAG, 0x3e814304, dl)); 3551 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3552 getF32Constant(DAG, 0x3f3c50c8, dl)); 3553 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3554 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3555 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3556 } else if (LimitFloatPrecision <= 12) { 3557 // For floating-point precision of 12: 3558 // 3559 // TwoToFractionalPartOfX = 3560 // 0.999892986f + 3561 // (0.696457318f + 3562 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3563 // 3564 // error 0.000107046256, which is 13 to 14 bits 3565 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3566 getF32Constant(DAG, 0x3da235e3, dl)); 3567 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3568 getF32Constant(DAG, 0x3e65b8f3, dl)); 3569 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3570 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3571 getF32Constant(DAG, 0x3f324b07, dl)); 3572 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3573 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3574 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3575 } else { // LimitFloatPrecision <= 18 3576 // For floating-point precision of 18: 3577 // 3578 // TwoToFractionalPartOfX = 3579 // 0.999999982f + 3580 // (0.693148872f + 3581 // (0.240227044f + 3582 // (0.554906021e-1f + 3583 // (0.961591928e-2f + 3584 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3585 // error 2.47208000*10^(-7), which is better than 18 bits 3586 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3587 getF32Constant(DAG, 0x3924b03e, dl)); 3588 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3589 getF32Constant(DAG, 0x3ab24b87, dl)); 3590 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3591 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3592 getF32Constant(DAG, 0x3c1d8c17, dl)); 3593 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3594 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3595 getF32Constant(DAG, 0x3d634a1d, dl)); 3596 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3597 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3598 getF32Constant(DAG, 0x3e75fe14, dl)); 3599 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3600 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3601 getF32Constant(DAG, 0x3f317234, dl)); 3602 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3603 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3604 getF32Constant(DAG, 0x3f800000, dl)); 3605 } 3606 3607 // Add the exponent into the result in integer domain. 3608 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3609 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3610 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3611 } 3612 3613 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3614 /// limited-precision mode. 3615 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3616 const TargetLowering &TLI) { 3617 if (Op.getValueType() == MVT::f32 && 3618 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3619 3620 // Put the exponent in the right bit position for later addition to the 3621 // final result: 3622 // 3623 // #define LOG2OFe 1.4426950f 3624 // t0 = Op * LOG2OFe 3625 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3626 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3627 return getLimitedPrecisionExp2(t0, dl, DAG); 3628 } 3629 3630 // No special expansion. 3631 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3632 } 3633 3634 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3635 /// limited-precision mode. 3636 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3637 const TargetLowering &TLI) { 3638 if (Op.getValueType() == MVT::f32 && 3639 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3640 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3641 3642 // Scale the exponent by log(2) [0.69314718f]. 3643 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3644 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3645 getF32Constant(DAG, 0x3f317218, dl)); 3646 3647 // Get the significand and build it into a floating-point number with 3648 // exponent of 1. 3649 SDValue X = GetSignificand(DAG, Op1, dl); 3650 3651 SDValue LogOfMantissa; 3652 if (LimitFloatPrecision <= 6) { 3653 // For floating-point precision of 6: 3654 // 3655 // LogofMantissa = 3656 // -1.1609546f + 3657 // (1.4034025f - 0.23903021f * x) * x; 3658 // 3659 // error 0.0034276066, which is better than 8 bits 3660 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3661 getF32Constant(DAG, 0xbe74c456, dl)); 3662 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3663 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3664 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3665 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3666 getF32Constant(DAG, 0x3f949a29, dl)); 3667 } else if (LimitFloatPrecision <= 12) { 3668 // For floating-point precision of 12: 3669 // 3670 // LogOfMantissa = 3671 // -1.7417939f + 3672 // (2.8212026f + 3673 // (-1.4699568f + 3674 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3675 // 3676 // error 0.000061011436, which is 14 bits 3677 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3678 getF32Constant(DAG, 0xbd67b6d6, dl)); 3679 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3680 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3681 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3682 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3683 getF32Constant(DAG, 0x3fbc278b, dl)); 3684 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3685 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3686 getF32Constant(DAG, 0x40348e95, dl)); 3687 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3688 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3689 getF32Constant(DAG, 0x3fdef31a, dl)); 3690 } else { // LimitFloatPrecision <= 18 3691 // For floating-point precision of 18: 3692 // 3693 // LogOfMantissa = 3694 // -2.1072184f + 3695 // (4.2372794f + 3696 // (-3.7029485f + 3697 // (2.2781945f + 3698 // (-0.87823314f + 3699 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3700 // 3701 // error 0.0000023660568, which is better than 18 bits 3702 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3703 getF32Constant(DAG, 0xbc91e5ac, dl)); 3704 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3705 getF32Constant(DAG, 0x3e4350aa, dl)); 3706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3707 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3708 getF32Constant(DAG, 0x3f60d3e3, dl)); 3709 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3710 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3711 getF32Constant(DAG, 0x4011cdf0, dl)); 3712 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3713 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3714 getF32Constant(DAG, 0x406cfd1c, dl)); 3715 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3716 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3717 getF32Constant(DAG, 0x408797cb, dl)); 3718 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3719 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3720 getF32Constant(DAG, 0x4006dcab, dl)); 3721 } 3722 3723 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3724 } 3725 3726 // No special expansion. 3727 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3728 } 3729 3730 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3731 /// limited-precision mode. 3732 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3733 const TargetLowering &TLI) { 3734 if (Op.getValueType() == MVT::f32 && 3735 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3736 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3737 3738 // Get the exponent. 3739 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3740 3741 // Get the significand and build it into a floating-point number with 3742 // exponent of 1. 3743 SDValue X = GetSignificand(DAG, Op1, dl); 3744 3745 // Different possible minimax approximations of significand in 3746 // floating-point for various degrees of accuracy over [1,2]. 3747 SDValue Log2ofMantissa; 3748 if (LimitFloatPrecision <= 6) { 3749 // For floating-point precision of 6: 3750 // 3751 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3752 // 3753 // error 0.0049451742, which is more than 7 bits 3754 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3755 getF32Constant(DAG, 0xbeb08fe0, dl)); 3756 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3757 getF32Constant(DAG, 0x40019463, dl)); 3758 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3759 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3760 getF32Constant(DAG, 0x3fd6633d, dl)); 3761 } else if (LimitFloatPrecision <= 12) { 3762 // For floating-point precision of 12: 3763 // 3764 // Log2ofMantissa = 3765 // -2.51285454f + 3766 // (4.07009056f + 3767 // (-2.12067489f + 3768 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3769 // 3770 // error 0.0000876136000, which is better than 13 bits 3771 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3772 getF32Constant(DAG, 0xbda7262e, dl)); 3773 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3774 getF32Constant(DAG, 0x3f25280b, dl)); 3775 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3776 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3777 getF32Constant(DAG, 0x4007b923, dl)); 3778 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3779 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3780 getF32Constant(DAG, 0x40823e2f, dl)); 3781 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3782 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3783 getF32Constant(DAG, 0x4020d29c, dl)); 3784 } else { // LimitFloatPrecision <= 18 3785 // For floating-point precision of 18: 3786 // 3787 // Log2ofMantissa = 3788 // -3.0400495f + 3789 // (6.1129976f + 3790 // (-5.3420409f + 3791 // (3.2865683f + 3792 // (-1.2669343f + 3793 // (0.27515199f - 3794 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3795 // 3796 // error 0.0000018516, which is better than 18 bits 3797 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3798 getF32Constant(DAG, 0xbcd2769e, dl)); 3799 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3800 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3801 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3802 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3803 getF32Constant(DAG, 0x3fa22ae7, dl)); 3804 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3805 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3806 getF32Constant(DAG, 0x40525723, dl)); 3807 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3808 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3809 getF32Constant(DAG, 0x40aaf200, dl)); 3810 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3811 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3812 getF32Constant(DAG, 0x40c39dad, dl)); 3813 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3814 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3815 getF32Constant(DAG, 0x4042902c, dl)); 3816 } 3817 3818 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3819 } 3820 3821 // No special expansion. 3822 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3823 } 3824 3825 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3826 /// limited-precision mode. 3827 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3828 const TargetLowering &TLI) { 3829 if (Op.getValueType() == MVT::f32 && 3830 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3831 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3832 3833 // Scale the exponent by log10(2) [0.30102999f]. 3834 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3835 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3836 getF32Constant(DAG, 0x3e9a209a, dl)); 3837 3838 // Get the significand and build it into a floating-point number with 3839 // exponent of 1. 3840 SDValue X = GetSignificand(DAG, Op1, dl); 3841 3842 SDValue Log10ofMantissa; 3843 if (LimitFloatPrecision <= 6) { 3844 // For floating-point precision of 6: 3845 // 3846 // Log10ofMantissa = 3847 // -0.50419619f + 3848 // (0.60948995f - 0.10380950f * x) * x; 3849 // 3850 // error 0.0014886165, which is 6 bits 3851 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3852 getF32Constant(DAG, 0xbdd49a13, dl)); 3853 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3854 getF32Constant(DAG, 0x3f1c0789, dl)); 3855 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3856 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3857 getF32Constant(DAG, 0x3f011300, dl)); 3858 } else if (LimitFloatPrecision <= 12) { 3859 // For floating-point precision of 12: 3860 // 3861 // Log10ofMantissa = 3862 // -0.64831180f + 3863 // (0.91751397f + 3864 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3865 // 3866 // error 0.00019228036, which is better than 12 bits 3867 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3868 getF32Constant(DAG, 0x3d431f31, dl)); 3869 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3870 getF32Constant(DAG, 0x3ea21fb2, dl)); 3871 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3872 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3873 getF32Constant(DAG, 0x3f6ae232, dl)); 3874 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3875 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3876 getF32Constant(DAG, 0x3f25f7c3, dl)); 3877 } else { // LimitFloatPrecision <= 18 3878 // For floating-point precision of 18: 3879 // 3880 // Log10ofMantissa = 3881 // -0.84299375f + 3882 // (1.5327582f + 3883 // (-1.0688956f + 3884 // (0.49102474f + 3885 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3886 // 3887 // error 0.0000037995730, which is better than 18 bits 3888 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3889 getF32Constant(DAG, 0x3c5d51ce, dl)); 3890 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3891 getF32Constant(DAG, 0x3e00685a, dl)); 3892 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3893 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3894 getF32Constant(DAG, 0x3efb6798, dl)); 3895 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3896 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3897 getF32Constant(DAG, 0x3f88d192, dl)); 3898 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3899 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3900 getF32Constant(DAG, 0x3fc4316c, dl)); 3901 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3902 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3903 getF32Constant(DAG, 0x3f57ce70, dl)); 3904 } 3905 3906 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3907 } 3908 3909 // No special expansion. 3910 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3911 } 3912 3913 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3914 /// limited-precision mode. 3915 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3916 const TargetLowering &TLI) { 3917 if (Op.getValueType() == MVT::f32 && 3918 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3919 return getLimitedPrecisionExp2(Op, dl, DAG); 3920 3921 // No special expansion. 3922 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3923 } 3924 3925 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3926 /// limited-precision mode with x == 10.0f. 3927 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3928 SelectionDAG &DAG, const TargetLowering &TLI) { 3929 bool IsExp10 = false; 3930 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3931 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3932 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3933 APFloat Ten(10.0f); 3934 IsExp10 = LHSC->isExactlyValue(Ten); 3935 } 3936 } 3937 3938 if (IsExp10) { 3939 // Put the exponent in the right bit position for later addition to the 3940 // final result: 3941 // 3942 // #define LOG2OF10 3.3219281f 3943 // t0 = Op * LOG2OF10; 3944 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3945 getF32Constant(DAG, 0x40549a78, dl)); 3946 return getLimitedPrecisionExp2(t0, dl, DAG); 3947 } 3948 3949 // No special expansion. 3950 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3951 } 3952 3953 3954 /// ExpandPowI - Expand a llvm.powi intrinsic. 3955 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3956 SelectionDAG &DAG) { 3957 // If RHS is a constant, we can expand this out to a multiplication tree, 3958 // otherwise we end up lowering to a call to __powidf2 (for example). When 3959 // optimizing for size, we only want to do this if the expansion would produce 3960 // a small number of multiplies, otherwise we do the full expansion. 3961 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3962 // Get the exponent as a positive value. 3963 unsigned Val = RHSC->getSExtValue(); 3964 if ((int)Val < 0) Val = -Val; 3965 3966 // powi(x, 0) -> 1.0 3967 if (Val == 0) 3968 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3969 3970 const Function *F = DAG.getMachineFunction().getFunction(); 3971 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3972 // If optimizing for size, don't insert too many multiplies. This 3973 // inserts up to 5 multiplies. 3974 countPopulation(Val) + Log2_32(Val) < 7) { 3975 // We use the simple binary decomposition method to generate the multiply 3976 // sequence. There are more optimal ways to do this (for example, 3977 // powi(x,15) generates one more multiply than it should), but this has 3978 // the benefit of being both really simple and much better than a libcall. 3979 SDValue Res; // Logically starts equal to 1.0 3980 SDValue CurSquare = LHS; 3981 while (Val) { 3982 if (Val & 1) { 3983 if (Res.getNode()) 3984 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3985 else 3986 Res = CurSquare; // 1.0*CurSquare. 3987 } 3988 3989 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3990 CurSquare, CurSquare); 3991 Val >>= 1; 3992 } 3993 3994 // If the original was negative, invert the result, producing 1/(x*x*x). 3995 if (RHSC->getSExtValue() < 0) 3996 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3997 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3998 return Res; 3999 } 4000 } 4001 4002 // Otherwise, expand to a libcall. 4003 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4004 } 4005 4006 // getTruncatedArgReg - Find underlying register used for an truncated 4007 // argument. 4008 static unsigned getTruncatedArgReg(const SDValue &N) { 4009 if (N.getOpcode() != ISD::TRUNCATE) 4010 return 0; 4011 4012 const SDValue &Ext = N.getOperand(0); 4013 if (Ext.getOpcode() == ISD::AssertZext || 4014 Ext.getOpcode() == ISD::AssertSext) { 4015 const SDValue &CFR = Ext.getOperand(0); 4016 if (CFR.getOpcode() == ISD::CopyFromReg) 4017 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4018 if (CFR.getOpcode() == ISD::TRUNCATE) 4019 return getTruncatedArgReg(CFR); 4020 } 4021 return 0; 4022 } 4023 4024 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4025 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4026 /// At the end of instruction selection, they will be inserted to the entry BB. 4027 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4028 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4029 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4030 const Argument *Arg = dyn_cast<Argument>(V); 4031 if (!Arg) 4032 return false; 4033 4034 MachineFunction &MF = DAG.getMachineFunction(); 4035 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4036 4037 // Ignore inlined function arguments here. 4038 // 4039 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4040 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4041 return false; 4042 4043 Optional<MachineOperand> Op; 4044 // Some arguments' frame index is recorded during argument lowering. 4045 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4046 Op = MachineOperand::CreateFI(FI); 4047 4048 if (!Op && N.getNode()) { 4049 unsigned Reg; 4050 if (N.getOpcode() == ISD::CopyFromReg) 4051 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4052 else 4053 Reg = getTruncatedArgReg(N); 4054 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4055 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4056 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4057 if (PR) 4058 Reg = PR; 4059 } 4060 if (Reg) 4061 Op = MachineOperand::CreateReg(Reg, false); 4062 } 4063 4064 if (!Op) { 4065 // Check if ValueMap has reg number. 4066 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4067 if (VMI != FuncInfo.ValueMap.end()) 4068 Op = MachineOperand::CreateReg(VMI->second, false); 4069 } 4070 4071 if (!Op && N.getNode()) 4072 // Check if frame index is available. 4073 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4074 if (FrameIndexSDNode *FINode = 4075 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4076 Op = MachineOperand::CreateFI(FINode->getIndex()); 4077 4078 if (!Op) 4079 return false; 4080 4081 assert(Variable->isValidLocationForIntrinsic(DL) && 4082 "Expected inlined-at fields to agree"); 4083 if (Op->isReg()) 4084 FuncInfo.ArgDbgValues.push_back( 4085 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4086 Op->getReg(), Offset, Variable, Expr)); 4087 else 4088 FuncInfo.ArgDbgValues.push_back( 4089 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4090 .addOperand(*Op) 4091 .addImm(Offset) 4092 .addMetadata(Variable) 4093 .addMetadata(Expr)); 4094 4095 return true; 4096 } 4097 4098 // VisualStudio defines setjmp as _setjmp 4099 #if defined(_MSC_VER) && defined(setjmp) && \ 4100 !defined(setjmp_undefined_for_msvc) 4101 # pragma push_macro("setjmp") 4102 # undef setjmp 4103 # define setjmp_undefined_for_msvc 4104 #endif 4105 4106 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4107 /// we want to emit this as a call to a named external function, return the name 4108 /// otherwise lower it and return null. 4109 const char * 4110 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4111 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4112 SDLoc sdl = getCurSDLoc(); 4113 DebugLoc dl = getCurDebugLoc(); 4114 SDValue Res; 4115 4116 switch (Intrinsic) { 4117 default: 4118 // By default, turn this into a target intrinsic node. 4119 visitTargetIntrinsic(I, Intrinsic); 4120 return nullptr; 4121 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4122 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4123 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4124 case Intrinsic::returnaddress: 4125 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4126 TLI.getPointerTy(DAG.getDataLayout()), 4127 getValue(I.getArgOperand(0)))); 4128 return nullptr; 4129 case Intrinsic::frameaddress: 4130 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4131 TLI.getPointerTy(DAG.getDataLayout()), 4132 getValue(I.getArgOperand(0)))); 4133 return nullptr; 4134 case Intrinsic::read_register: { 4135 Value *Reg = I.getArgOperand(0); 4136 SDValue Chain = getRoot(); 4137 SDValue RegName = 4138 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4139 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4140 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4141 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4142 setValue(&I, Res); 4143 DAG.setRoot(Res.getValue(1)); 4144 return nullptr; 4145 } 4146 case Intrinsic::write_register: { 4147 Value *Reg = I.getArgOperand(0); 4148 Value *RegValue = I.getArgOperand(1); 4149 SDValue Chain = getRoot(); 4150 SDValue RegName = 4151 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4152 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4153 RegName, getValue(RegValue))); 4154 return nullptr; 4155 } 4156 case Intrinsic::setjmp: 4157 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4158 case Intrinsic::longjmp: 4159 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4160 case Intrinsic::memcpy: { 4161 // FIXME: this definition of "user defined address space" is x86-specific 4162 // Assert for address < 256 since we support only user defined address 4163 // spaces. 4164 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4165 < 256 && 4166 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4167 < 256 && 4168 "Unknown address space"); 4169 SDValue Op1 = getValue(I.getArgOperand(0)); 4170 SDValue Op2 = getValue(I.getArgOperand(1)); 4171 SDValue Op3 = getValue(I.getArgOperand(2)); 4172 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4173 if (!Align) 4174 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4175 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4176 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4177 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4178 false, isTC, 4179 MachinePointerInfo(I.getArgOperand(0)), 4180 MachinePointerInfo(I.getArgOperand(1))); 4181 updateDAGForMaybeTailCall(MC); 4182 return nullptr; 4183 } 4184 case Intrinsic::memset: { 4185 // FIXME: this definition of "user defined address space" is x86-specific 4186 // Assert for address < 256 since we support only user defined address 4187 // spaces. 4188 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4189 < 256 && 4190 "Unknown address space"); 4191 SDValue Op1 = getValue(I.getArgOperand(0)); 4192 SDValue Op2 = getValue(I.getArgOperand(1)); 4193 SDValue Op3 = getValue(I.getArgOperand(2)); 4194 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4195 if (!Align) 4196 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4197 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4198 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4199 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4200 isTC, MachinePointerInfo(I.getArgOperand(0))); 4201 updateDAGForMaybeTailCall(MS); 4202 return nullptr; 4203 } 4204 case Intrinsic::memmove: { 4205 // FIXME: this definition of "user defined address space" is x86-specific 4206 // Assert for address < 256 since we support only user defined address 4207 // spaces. 4208 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4209 < 256 && 4210 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4211 < 256 && 4212 "Unknown address space"); 4213 SDValue Op1 = getValue(I.getArgOperand(0)); 4214 SDValue Op2 = getValue(I.getArgOperand(1)); 4215 SDValue Op3 = getValue(I.getArgOperand(2)); 4216 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4217 if (!Align) 4218 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4219 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4220 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4221 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4222 isTC, MachinePointerInfo(I.getArgOperand(0)), 4223 MachinePointerInfo(I.getArgOperand(1))); 4224 updateDAGForMaybeTailCall(MM); 4225 return nullptr; 4226 } 4227 case Intrinsic::dbg_declare: { 4228 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4229 DILocalVariable *Variable = DI.getVariable(); 4230 DIExpression *Expression = DI.getExpression(); 4231 const Value *Address = DI.getAddress(); 4232 assert(Variable && "Missing variable"); 4233 if (!Address) { 4234 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4235 return nullptr; 4236 } 4237 4238 // Check if address has undef value. 4239 if (isa<UndefValue>(Address) || 4240 (Address->use_empty() && !isa<Argument>(Address))) { 4241 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4242 return nullptr; 4243 } 4244 4245 SDValue &N = NodeMap[Address]; 4246 if (!N.getNode() && isa<Argument>(Address)) 4247 // Check unused arguments map. 4248 N = UnusedArgNodeMap[Address]; 4249 SDDbgValue *SDV; 4250 if (N.getNode()) { 4251 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4252 Address = BCI->getOperand(0); 4253 // Parameters are handled specially. 4254 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4255 4256 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4257 4258 if (isParameter && !AI) { 4259 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4260 if (FINode) 4261 // Byval parameter. We have a frame index at this point. 4262 SDV = DAG.getFrameIndexDbgValue( 4263 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4264 else { 4265 // Address is an argument, so try to emit its dbg value using 4266 // virtual register info from the FuncInfo.ValueMap. 4267 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4268 N); 4269 return nullptr; 4270 } 4271 } else if (AI) 4272 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4273 true, 0, dl, SDNodeOrder); 4274 else { 4275 // Can't do anything with other non-AI cases yet. 4276 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4277 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4278 DEBUG(Address->dump()); 4279 return nullptr; 4280 } 4281 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4282 } else { 4283 // If Address is an argument then try to emit its dbg value using 4284 // virtual register info from the FuncInfo.ValueMap. 4285 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4286 N)) { 4287 // If variable is pinned by a alloca in dominating bb then 4288 // use StaticAllocaMap. 4289 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4290 if (AI->getParent() != DI.getParent()) { 4291 DenseMap<const AllocaInst*, int>::iterator SI = 4292 FuncInfo.StaticAllocaMap.find(AI); 4293 if (SI != FuncInfo.StaticAllocaMap.end()) { 4294 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4295 0, dl, SDNodeOrder); 4296 DAG.AddDbgValue(SDV, nullptr, false); 4297 return nullptr; 4298 } 4299 } 4300 } 4301 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4302 } 4303 } 4304 return nullptr; 4305 } 4306 case Intrinsic::dbg_value: { 4307 const DbgValueInst &DI = cast<DbgValueInst>(I); 4308 assert(DI.getVariable() && "Missing variable"); 4309 4310 DILocalVariable *Variable = DI.getVariable(); 4311 DIExpression *Expression = DI.getExpression(); 4312 uint64_t Offset = DI.getOffset(); 4313 const Value *V = DI.getValue(); 4314 if (!V) 4315 return nullptr; 4316 4317 SDDbgValue *SDV; 4318 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4319 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4320 SDNodeOrder); 4321 DAG.AddDbgValue(SDV, nullptr, false); 4322 } else { 4323 // Do not use getValue() in here; we don't want to generate code at 4324 // this point if it hasn't been done yet. 4325 SDValue N = NodeMap[V]; 4326 if (!N.getNode() && isa<Argument>(V)) 4327 // Check unused arguments map. 4328 N = UnusedArgNodeMap[V]; 4329 if (N.getNode()) { 4330 // A dbg.value for an alloca is always indirect. 4331 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4332 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4333 IsIndirect, N)) { 4334 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4335 IsIndirect, Offset, dl, SDNodeOrder); 4336 DAG.AddDbgValue(SDV, N.getNode(), false); 4337 } 4338 } else if (!V->use_empty() ) { 4339 // Do not call getValue(V) yet, as we don't want to generate code. 4340 // Remember it for later. 4341 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4342 DanglingDebugInfoMap[V] = DDI; 4343 } else { 4344 // We may expand this to cover more cases. One case where we have no 4345 // data available is an unreferenced parameter. 4346 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4347 } 4348 } 4349 4350 // Build a debug info table entry. 4351 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4352 V = BCI->getOperand(0); 4353 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4354 // Don't handle byval struct arguments or VLAs, for example. 4355 if (!AI) { 4356 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4357 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4358 return nullptr; 4359 } 4360 DenseMap<const AllocaInst*, int>::iterator SI = 4361 FuncInfo.StaticAllocaMap.find(AI); 4362 if (SI == FuncInfo.StaticAllocaMap.end()) 4363 return nullptr; // VLAs. 4364 return nullptr; 4365 } 4366 4367 case Intrinsic::eh_typeid_for: { 4368 // Find the type id for the given typeinfo. 4369 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4370 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4371 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4372 setValue(&I, Res); 4373 return nullptr; 4374 } 4375 4376 case Intrinsic::eh_return_i32: 4377 case Intrinsic::eh_return_i64: 4378 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4379 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4380 MVT::Other, 4381 getControlRoot(), 4382 getValue(I.getArgOperand(0)), 4383 getValue(I.getArgOperand(1)))); 4384 return nullptr; 4385 case Intrinsic::eh_unwind_init: 4386 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4387 return nullptr; 4388 case Intrinsic::eh_dwarf_cfa: { 4389 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4390 TLI.getPointerTy(DAG.getDataLayout())); 4391 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4392 CfaArg.getValueType(), 4393 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4394 CfaArg.getValueType()), 4395 CfaArg); 4396 SDValue FA = DAG.getNode( 4397 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4398 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4399 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4400 FA, Offset)); 4401 return nullptr; 4402 } 4403 case Intrinsic::eh_sjlj_callsite: { 4404 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4405 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4406 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4407 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4408 4409 MMI.setCurrentCallSite(CI->getZExtValue()); 4410 return nullptr; 4411 } 4412 case Intrinsic::eh_sjlj_functioncontext: { 4413 // Get and store the index of the function context. 4414 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4415 AllocaInst *FnCtx = 4416 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4417 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4418 MFI->setFunctionContextIndex(FI); 4419 return nullptr; 4420 } 4421 case Intrinsic::eh_sjlj_setjmp: { 4422 SDValue Ops[2]; 4423 Ops[0] = getRoot(); 4424 Ops[1] = getValue(I.getArgOperand(0)); 4425 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4426 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4427 setValue(&I, Op.getValue(0)); 4428 DAG.setRoot(Op.getValue(1)); 4429 return nullptr; 4430 } 4431 case Intrinsic::eh_sjlj_longjmp: { 4432 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4433 getRoot(), getValue(I.getArgOperand(0)))); 4434 return nullptr; 4435 } 4436 case Intrinsic::eh_sjlj_setup_dispatch: { 4437 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4438 getRoot())); 4439 return nullptr; 4440 } 4441 4442 case Intrinsic::masked_gather: 4443 visitMaskedGather(I); 4444 return nullptr; 4445 case Intrinsic::masked_load: 4446 visitMaskedLoad(I); 4447 return nullptr; 4448 case Intrinsic::masked_scatter: 4449 visitMaskedScatter(I); 4450 return nullptr; 4451 case Intrinsic::masked_store: 4452 visitMaskedStore(I); 4453 return nullptr; 4454 case Intrinsic::x86_mmx_pslli_w: 4455 case Intrinsic::x86_mmx_pslli_d: 4456 case Intrinsic::x86_mmx_pslli_q: 4457 case Intrinsic::x86_mmx_psrli_w: 4458 case Intrinsic::x86_mmx_psrli_d: 4459 case Intrinsic::x86_mmx_psrli_q: 4460 case Intrinsic::x86_mmx_psrai_w: 4461 case Intrinsic::x86_mmx_psrai_d: { 4462 SDValue ShAmt = getValue(I.getArgOperand(1)); 4463 if (isa<ConstantSDNode>(ShAmt)) { 4464 visitTargetIntrinsic(I, Intrinsic); 4465 return nullptr; 4466 } 4467 unsigned NewIntrinsic = 0; 4468 EVT ShAmtVT = MVT::v2i32; 4469 switch (Intrinsic) { 4470 case Intrinsic::x86_mmx_pslli_w: 4471 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4472 break; 4473 case Intrinsic::x86_mmx_pslli_d: 4474 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4475 break; 4476 case Intrinsic::x86_mmx_pslli_q: 4477 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4478 break; 4479 case Intrinsic::x86_mmx_psrli_w: 4480 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4481 break; 4482 case Intrinsic::x86_mmx_psrli_d: 4483 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4484 break; 4485 case Intrinsic::x86_mmx_psrli_q: 4486 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4487 break; 4488 case Intrinsic::x86_mmx_psrai_w: 4489 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4490 break; 4491 case Intrinsic::x86_mmx_psrai_d: 4492 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4493 break; 4494 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4495 } 4496 4497 // The vector shift intrinsics with scalars uses 32b shift amounts but 4498 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4499 // to be zero. 4500 // We must do this early because v2i32 is not a legal type. 4501 SDValue ShOps[2]; 4502 ShOps[0] = ShAmt; 4503 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4504 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4505 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4506 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4507 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4508 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4509 getValue(I.getArgOperand(0)), ShAmt); 4510 setValue(&I, Res); 4511 return nullptr; 4512 } 4513 case Intrinsic::convertff: 4514 case Intrinsic::convertfsi: 4515 case Intrinsic::convertfui: 4516 case Intrinsic::convertsif: 4517 case Intrinsic::convertuif: 4518 case Intrinsic::convertss: 4519 case Intrinsic::convertsu: 4520 case Intrinsic::convertus: 4521 case Intrinsic::convertuu: { 4522 ISD::CvtCode Code = ISD::CVT_INVALID; 4523 switch (Intrinsic) { 4524 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4525 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4526 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4527 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4528 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4529 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4530 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4531 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4532 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4533 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4534 } 4535 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4536 const Value *Op1 = I.getArgOperand(0); 4537 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4538 DAG.getValueType(DestVT), 4539 DAG.getValueType(getValue(Op1).getValueType()), 4540 getValue(I.getArgOperand(1)), 4541 getValue(I.getArgOperand(2)), 4542 Code); 4543 setValue(&I, Res); 4544 return nullptr; 4545 } 4546 case Intrinsic::powi: 4547 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4548 getValue(I.getArgOperand(1)), DAG)); 4549 return nullptr; 4550 case Intrinsic::log: 4551 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4552 return nullptr; 4553 case Intrinsic::log2: 4554 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4555 return nullptr; 4556 case Intrinsic::log10: 4557 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4558 return nullptr; 4559 case Intrinsic::exp: 4560 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4561 return nullptr; 4562 case Intrinsic::exp2: 4563 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4564 return nullptr; 4565 case Intrinsic::pow: 4566 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4567 getValue(I.getArgOperand(1)), DAG, TLI)); 4568 return nullptr; 4569 case Intrinsic::sqrt: 4570 case Intrinsic::fabs: 4571 case Intrinsic::sin: 4572 case Intrinsic::cos: 4573 case Intrinsic::floor: 4574 case Intrinsic::ceil: 4575 case Intrinsic::trunc: 4576 case Intrinsic::rint: 4577 case Intrinsic::nearbyint: 4578 case Intrinsic::round: { 4579 unsigned Opcode; 4580 switch (Intrinsic) { 4581 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4582 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4583 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4584 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4585 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4586 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4587 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4588 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4589 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4590 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4591 case Intrinsic::round: Opcode = ISD::FROUND; break; 4592 } 4593 4594 setValue(&I, DAG.getNode(Opcode, sdl, 4595 getValue(I.getArgOperand(0)).getValueType(), 4596 getValue(I.getArgOperand(0)))); 4597 return nullptr; 4598 } 4599 case Intrinsic::minnum: 4600 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4601 getValue(I.getArgOperand(0)).getValueType(), 4602 getValue(I.getArgOperand(0)), 4603 getValue(I.getArgOperand(1)))); 4604 return nullptr; 4605 case Intrinsic::maxnum: 4606 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4607 getValue(I.getArgOperand(0)).getValueType(), 4608 getValue(I.getArgOperand(0)), 4609 getValue(I.getArgOperand(1)))); 4610 return nullptr; 4611 case Intrinsic::copysign: 4612 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4613 getValue(I.getArgOperand(0)).getValueType(), 4614 getValue(I.getArgOperand(0)), 4615 getValue(I.getArgOperand(1)))); 4616 return nullptr; 4617 case Intrinsic::fma: 4618 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4619 getValue(I.getArgOperand(0)).getValueType(), 4620 getValue(I.getArgOperand(0)), 4621 getValue(I.getArgOperand(1)), 4622 getValue(I.getArgOperand(2)))); 4623 return nullptr; 4624 case Intrinsic::fmuladd: { 4625 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4626 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4627 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4628 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4629 getValue(I.getArgOperand(0)).getValueType(), 4630 getValue(I.getArgOperand(0)), 4631 getValue(I.getArgOperand(1)), 4632 getValue(I.getArgOperand(2)))); 4633 } else { 4634 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4635 getValue(I.getArgOperand(0)).getValueType(), 4636 getValue(I.getArgOperand(0)), 4637 getValue(I.getArgOperand(1))); 4638 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4639 getValue(I.getArgOperand(0)).getValueType(), 4640 Mul, 4641 getValue(I.getArgOperand(2))); 4642 setValue(&I, Add); 4643 } 4644 return nullptr; 4645 } 4646 case Intrinsic::convert_to_fp16: 4647 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4648 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4649 getValue(I.getArgOperand(0)), 4650 DAG.getTargetConstant(0, sdl, 4651 MVT::i32)))); 4652 return nullptr; 4653 case Intrinsic::convert_from_fp16: 4654 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4655 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4656 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4657 getValue(I.getArgOperand(0))))); 4658 return nullptr; 4659 case Intrinsic::pcmarker: { 4660 SDValue Tmp = getValue(I.getArgOperand(0)); 4661 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4662 return nullptr; 4663 } 4664 case Intrinsic::readcyclecounter: { 4665 SDValue Op = getRoot(); 4666 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4667 DAG.getVTList(MVT::i64, MVT::Other), Op); 4668 setValue(&I, Res); 4669 DAG.setRoot(Res.getValue(1)); 4670 return nullptr; 4671 } 4672 case Intrinsic::bswap: 4673 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4674 getValue(I.getArgOperand(0)).getValueType(), 4675 getValue(I.getArgOperand(0)))); 4676 return nullptr; 4677 case Intrinsic::uabsdiff: 4678 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4679 getValue(I.getArgOperand(0)).getValueType(), 4680 getValue(I.getArgOperand(0)), 4681 getValue(I.getArgOperand(1)))); 4682 return nullptr; 4683 case Intrinsic::sabsdiff: 4684 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4685 getValue(I.getArgOperand(0)).getValueType(), 4686 getValue(I.getArgOperand(0)), 4687 getValue(I.getArgOperand(1)))); 4688 return nullptr; 4689 case Intrinsic::cttz: { 4690 SDValue Arg = getValue(I.getArgOperand(0)); 4691 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4692 EVT Ty = Arg.getValueType(); 4693 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4694 sdl, Ty, Arg)); 4695 return nullptr; 4696 } 4697 case Intrinsic::ctlz: { 4698 SDValue Arg = getValue(I.getArgOperand(0)); 4699 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4700 EVT Ty = Arg.getValueType(); 4701 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4702 sdl, Ty, Arg)); 4703 return nullptr; 4704 } 4705 case Intrinsic::ctpop: { 4706 SDValue Arg = getValue(I.getArgOperand(0)); 4707 EVT Ty = Arg.getValueType(); 4708 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4709 return nullptr; 4710 } 4711 case Intrinsic::stacksave: { 4712 SDValue Op = getRoot(); 4713 Res = DAG.getNode( 4714 ISD::STACKSAVE, sdl, 4715 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4716 setValue(&I, Res); 4717 DAG.setRoot(Res.getValue(1)); 4718 return nullptr; 4719 } 4720 case Intrinsic::stackrestore: { 4721 Res = getValue(I.getArgOperand(0)); 4722 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4723 return nullptr; 4724 } 4725 case Intrinsic::stackprotector: { 4726 // Emit code into the DAG to store the stack guard onto the stack. 4727 MachineFunction &MF = DAG.getMachineFunction(); 4728 MachineFrameInfo *MFI = MF.getFrameInfo(); 4729 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4730 SDValue Src, Chain = getRoot(); 4731 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4732 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4733 4734 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4735 // global variable __stack_chk_guard. 4736 if (!GV) 4737 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4738 if (BC->getOpcode() == Instruction::BitCast) 4739 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4740 4741 if (GV && TLI.useLoadStackGuardNode()) { 4742 // Emit a LOAD_STACK_GUARD node. 4743 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4744 sdl, PtrTy, Chain); 4745 MachinePointerInfo MPInfo(GV); 4746 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4747 unsigned Flags = MachineMemOperand::MOLoad | 4748 MachineMemOperand::MOInvariant; 4749 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4750 PtrTy.getSizeInBits() / 8, 4751 DAG.getEVTAlignment(PtrTy)); 4752 Node->setMemRefs(MemRefs, MemRefs + 1); 4753 4754 // Copy the guard value to a virtual register so that it can be 4755 // retrieved in the epilogue. 4756 Src = SDValue(Node, 0); 4757 const TargetRegisterClass *RC = 4758 TLI.getRegClassFor(Src.getSimpleValueType()); 4759 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4760 4761 SPDescriptor.setGuardReg(Reg); 4762 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4763 } else { 4764 Src = getValue(I.getArgOperand(0)); // The guard's value. 4765 } 4766 4767 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4768 4769 int FI = FuncInfo.StaticAllocaMap[Slot]; 4770 MFI->setStackProtectorIndex(FI); 4771 4772 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4773 4774 // Store the stack protector onto the stack. 4775 Res = DAG.getStore(Chain, sdl, Src, FIN, 4776 MachinePointerInfo::getFixedStack(FI), 4777 true, false, 0); 4778 setValue(&I, Res); 4779 DAG.setRoot(Res); 4780 return nullptr; 4781 } 4782 case Intrinsic::objectsize: { 4783 // If we don't know by now, we're never going to know. 4784 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4785 4786 assert(CI && "Non-constant type in __builtin_object_size?"); 4787 4788 SDValue Arg = getValue(I.getCalledValue()); 4789 EVT Ty = Arg.getValueType(); 4790 4791 if (CI->isZero()) 4792 Res = DAG.getConstant(-1ULL, sdl, Ty); 4793 else 4794 Res = DAG.getConstant(0, sdl, Ty); 4795 4796 setValue(&I, Res); 4797 return nullptr; 4798 } 4799 case Intrinsic::annotation: 4800 case Intrinsic::ptr_annotation: 4801 // Drop the intrinsic, but forward the value 4802 setValue(&I, getValue(I.getOperand(0))); 4803 return nullptr; 4804 case Intrinsic::assume: 4805 case Intrinsic::var_annotation: 4806 // Discard annotate attributes and assumptions 4807 return nullptr; 4808 4809 case Intrinsic::init_trampoline: { 4810 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4811 4812 SDValue Ops[6]; 4813 Ops[0] = getRoot(); 4814 Ops[1] = getValue(I.getArgOperand(0)); 4815 Ops[2] = getValue(I.getArgOperand(1)); 4816 Ops[3] = getValue(I.getArgOperand(2)); 4817 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4818 Ops[5] = DAG.getSrcValue(F); 4819 4820 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4821 4822 DAG.setRoot(Res); 4823 return nullptr; 4824 } 4825 case Intrinsic::adjust_trampoline: { 4826 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4827 TLI.getPointerTy(DAG.getDataLayout()), 4828 getValue(I.getArgOperand(0)))); 4829 return nullptr; 4830 } 4831 case Intrinsic::gcroot: 4832 if (GFI) { 4833 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4834 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4835 4836 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4837 GFI->addStackRoot(FI->getIndex(), TypeMap); 4838 } 4839 return nullptr; 4840 case Intrinsic::gcread: 4841 case Intrinsic::gcwrite: 4842 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4843 case Intrinsic::flt_rounds: 4844 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4845 return nullptr; 4846 4847 case Intrinsic::expect: { 4848 // Just replace __builtin_expect(exp, c) with EXP. 4849 setValue(&I, getValue(I.getArgOperand(0))); 4850 return nullptr; 4851 } 4852 4853 case Intrinsic::debugtrap: 4854 case Intrinsic::trap: { 4855 StringRef TrapFuncName = 4856 I.getAttributes() 4857 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4858 .getValueAsString(); 4859 if (TrapFuncName.empty()) { 4860 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4861 ISD::TRAP : ISD::DEBUGTRAP; 4862 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4863 return nullptr; 4864 } 4865 TargetLowering::ArgListTy Args; 4866 4867 TargetLowering::CallLoweringInfo CLI(DAG); 4868 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4869 CallingConv::C, I.getType(), 4870 DAG.getExternalSymbol(TrapFuncName.data(), 4871 TLI.getPointerTy(DAG.getDataLayout())), 4872 std::move(Args), 0); 4873 4874 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4875 DAG.setRoot(Result.second); 4876 return nullptr; 4877 } 4878 4879 case Intrinsic::uadd_with_overflow: 4880 case Intrinsic::sadd_with_overflow: 4881 case Intrinsic::usub_with_overflow: 4882 case Intrinsic::ssub_with_overflow: 4883 case Intrinsic::umul_with_overflow: 4884 case Intrinsic::smul_with_overflow: { 4885 ISD::NodeType Op; 4886 switch (Intrinsic) { 4887 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4888 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4889 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4890 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4891 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4892 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4893 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4894 } 4895 SDValue Op1 = getValue(I.getArgOperand(0)); 4896 SDValue Op2 = getValue(I.getArgOperand(1)); 4897 4898 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4899 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4900 return nullptr; 4901 } 4902 case Intrinsic::prefetch: { 4903 SDValue Ops[5]; 4904 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4905 Ops[0] = getRoot(); 4906 Ops[1] = getValue(I.getArgOperand(0)); 4907 Ops[2] = getValue(I.getArgOperand(1)); 4908 Ops[3] = getValue(I.getArgOperand(2)); 4909 Ops[4] = getValue(I.getArgOperand(3)); 4910 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4911 DAG.getVTList(MVT::Other), Ops, 4912 EVT::getIntegerVT(*Context, 8), 4913 MachinePointerInfo(I.getArgOperand(0)), 4914 0, /* align */ 4915 false, /* volatile */ 4916 rw==0, /* read */ 4917 rw==1)); /* write */ 4918 return nullptr; 4919 } 4920 case Intrinsic::lifetime_start: 4921 case Intrinsic::lifetime_end: { 4922 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4923 // Stack coloring is not enabled in O0, discard region information. 4924 if (TM.getOptLevel() == CodeGenOpt::None) 4925 return nullptr; 4926 4927 SmallVector<Value *, 4> Allocas; 4928 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4929 4930 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4931 E = Allocas.end(); Object != E; ++Object) { 4932 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4933 4934 // Could not find an Alloca. 4935 if (!LifetimeObject) 4936 continue; 4937 4938 // First check that the Alloca is static, otherwise it won't have a 4939 // valid frame index. 4940 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4941 if (SI == FuncInfo.StaticAllocaMap.end()) 4942 return nullptr; 4943 4944 int FI = SI->second; 4945 4946 SDValue Ops[2]; 4947 Ops[0] = getRoot(); 4948 Ops[1] = 4949 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4950 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4951 4952 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4953 DAG.setRoot(Res); 4954 } 4955 return nullptr; 4956 } 4957 case Intrinsic::invariant_start: 4958 // Discard region information. 4959 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4960 return nullptr; 4961 case Intrinsic::invariant_end: 4962 // Discard region information. 4963 return nullptr; 4964 case Intrinsic::stackprotectorcheck: { 4965 // Do not actually emit anything for this basic block. Instead we initialize 4966 // the stack protector descriptor and export the guard variable so we can 4967 // access it in FinishBasicBlock. 4968 const BasicBlock *BB = I.getParent(); 4969 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4970 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4971 4972 // Flush our exports since we are going to process a terminator. 4973 (void)getControlRoot(); 4974 return nullptr; 4975 } 4976 case Intrinsic::clear_cache: 4977 return TLI.getClearCacheBuiltinName(); 4978 case Intrinsic::eh_actions: 4979 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4980 return nullptr; 4981 case Intrinsic::donothing: 4982 // ignore 4983 return nullptr; 4984 case Intrinsic::experimental_stackmap: { 4985 visitStackmap(I); 4986 return nullptr; 4987 } 4988 case Intrinsic::experimental_patchpoint_void: 4989 case Intrinsic::experimental_patchpoint_i64: { 4990 visitPatchpoint(&I); 4991 return nullptr; 4992 } 4993 case Intrinsic::experimental_gc_statepoint: { 4994 visitStatepoint(I); 4995 return nullptr; 4996 } 4997 case Intrinsic::experimental_gc_result_int: 4998 case Intrinsic::experimental_gc_result_float: 4999 case Intrinsic::experimental_gc_result_ptr: 5000 case Intrinsic::experimental_gc_result: { 5001 visitGCResult(I); 5002 return nullptr; 5003 } 5004 case Intrinsic::experimental_gc_relocate: { 5005 visitGCRelocate(I); 5006 return nullptr; 5007 } 5008 case Intrinsic::instrprof_increment: 5009 llvm_unreachable("instrprof failed to lower an increment"); 5010 5011 case Intrinsic::localescape: { 5012 MachineFunction &MF = DAG.getMachineFunction(); 5013 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5014 5015 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5016 // is the same on all targets. 5017 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5018 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5019 if (isa<ConstantPointerNull>(Arg)) 5020 continue; // Skip null pointers. They represent a hole in index space. 5021 AllocaInst *Slot = cast<AllocaInst>(Arg); 5022 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5023 "can only escape static allocas"); 5024 int FI = FuncInfo.StaticAllocaMap[Slot]; 5025 MCSymbol *FrameAllocSym = 5026 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5027 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5029 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5030 .addSym(FrameAllocSym) 5031 .addFrameIndex(FI); 5032 } 5033 5034 return nullptr; 5035 } 5036 5037 case Intrinsic::localrecover: { 5038 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5039 MachineFunction &MF = DAG.getMachineFunction(); 5040 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5041 5042 // Get the symbol that defines the frame offset. 5043 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5044 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5045 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5046 MCSymbol *FrameAllocSym = 5047 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5048 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5049 5050 // Create a MCSymbol for the label to avoid any target lowering 5051 // that would make this PC relative. 5052 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5053 SDValue OffsetVal = 5054 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5055 5056 // Add the offset to the FP. 5057 Value *FP = I.getArgOperand(1); 5058 SDValue FPVal = getValue(FP); 5059 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5060 setValue(&I, Add); 5061 5062 return nullptr; 5063 } 5064 case Intrinsic::eh_begincatch: 5065 case Intrinsic::eh_endcatch: 5066 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5067 case Intrinsic::eh_exceptioncode: { 5068 unsigned Reg = TLI.getExceptionPointerRegister(); 5069 assert(Reg && "cannot get exception code on this platform"); 5070 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5071 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5072 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5073 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5074 SDValue N = 5075 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5076 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5077 setValue(&I, N); 5078 return nullptr; 5079 } 5080 } 5081 } 5082 5083 std::pair<SDValue, SDValue> 5084 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5085 MachineBasicBlock *LandingPad) { 5086 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5087 MCSymbol *BeginLabel = nullptr; 5088 5089 if (LandingPad) { 5090 // Insert a label before the invoke call to mark the try range. This can be 5091 // used to detect deletion of the invoke via the MachineModuleInfo. 5092 BeginLabel = MMI.getContext().createTempSymbol(); 5093 5094 // For SjLj, keep track of which landing pads go with which invokes 5095 // so as to maintain the ordering of pads in the LSDA. 5096 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5097 if (CallSiteIndex) { 5098 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5099 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5100 5101 // Now that the call site is handled, stop tracking it. 5102 MMI.setCurrentCallSite(0); 5103 } 5104 5105 // Both PendingLoads and PendingExports must be flushed here; 5106 // this call might not return. 5107 (void)getRoot(); 5108 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5109 5110 CLI.setChain(getRoot()); 5111 } 5112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5113 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5114 5115 assert((CLI.IsTailCall || Result.second.getNode()) && 5116 "Non-null chain expected with non-tail call!"); 5117 assert((Result.second.getNode() || !Result.first.getNode()) && 5118 "Null value expected with tail call!"); 5119 5120 if (!Result.second.getNode()) { 5121 // As a special case, a null chain means that a tail call has been emitted 5122 // and the DAG root is already updated. 5123 HasTailCall = true; 5124 5125 // Since there's no actual continuation from this block, nothing can be 5126 // relying on us setting vregs for them. 5127 PendingExports.clear(); 5128 } else { 5129 DAG.setRoot(Result.second); 5130 } 5131 5132 if (LandingPad) { 5133 // Insert a label at the end of the invoke call to mark the try range. This 5134 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5135 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5136 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5137 5138 // Inform MachineModuleInfo of range. 5139 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5140 } 5141 5142 return Result; 5143 } 5144 5145 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5146 bool isTailCall, 5147 MachineBasicBlock *LandingPad) { 5148 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5149 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5150 Type *RetTy = FTy->getReturnType(); 5151 5152 TargetLowering::ArgListTy Args; 5153 TargetLowering::ArgListEntry Entry; 5154 Args.reserve(CS.arg_size()); 5155 5156 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5157 i != e; ++i) { 5158 const Value *V = *i; 5159 5160 // Skip empty types 5161 if (V->getType()->isEmptyTy()) 5162 continue; 5163 5164 SDValue ArgNode = getValue(V); 5165 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5166 5167 // Skip the first return-type Attribute to get to params. 5168 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5169 Args.push_back(Entry); 5170 5171 // If we have an explicit sret argument that is an Instruction, (i.e., it 5172 // might point to function-local memory), we can't meaningfully tail-call. 5173 if (Entry.isSRet && isa<Instruction>(V)) 5174 isTailCall = false; 5175 } 5176 5177 // Check if target-independent constraints permit a tail call here. 5178 // Target-dependent constraints are checked within TLI->LowerCallTo. 5179 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5180 isTailCall = false; 5181 5182 TargetLowering::CallLoweringInfo CLI(DAG); 5183 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5184 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5185 .setTailCall(isTailCall); 5186 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5187 5188 if (Result.first.getNode()) 5189 setValue(CS.getInstruction(), Result.first); 5190 } 5191 5192 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5193 /// value is equal or not-equal to zero. 5194 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5195 for (const User *U : V->users()) { 5196 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5197 if (IC->isEquality()) 5198 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5199 if (C->isNullValue()) 5200 continue; 5201 // Unknown instruction. 5202 return false; 5203 } 5204 return true; 5205 } 5206 5207 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5208 Type *LoadTy, 5209 SelectionDAGBuilder &Builder) { 5210 5211 // Check to see if this load can be trivially constant folded, e.g. if the 5212 // input is from a string literal. 5213 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5214 // Cast pointer to the type we really want to load. 5215 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5216 PointerType::getUnqual(LoadTy)); 5217 5218 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5219 const_cast<Constant *>(LoadInput), *Builder.DL)) 5220 return Builder.getValue(LoadCst); 5221 } 5222 5223 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5224 // still constant memory, the input chain can be the entry node. 5225 SDValue Root; 5226 bool ConstantMemory = false; 5227 5228 // Do not serialize (non-volatile) loads of constant memory with anything. 5229 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5230 Root = Builder.DAG.getEntryNode(); 5231 ConstantMemory = true; 5232 } else { 5233 // Do not serialize non-volatile loads against each other. 5234 Root = Builder.DAG.getRoot(); 5235 } 5236 5237 SDValue Ptr = Builder.getValue(PtrVal); 5238 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5239 Ptr, MachinePointerInfo(PtrVal), 5240 false /*volatile*/, 5241 false /*nontemporal*/, 5242 false /*isinvariant*/, 1 /* align=1 */); 5243 5244 if (!ConstantMemory) 5245 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5246 return LoadVal; 5247 } 5248 5249 /// processIntegerCallValue - Record the value for an instruction that 5250 /// produces an integer result, converting the type where necessary. 5251 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5252 SDValue Value, 5253 bool IsSigned) { 5254 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5255 I.getType(), true); 5256 if (IsSigned) 5257 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5258 else 5259 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5260 setValue(&I, Value); 5261 } 5262 5263 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5264 /// If so, return true and lower it, otherwise return false and it will be 5265 /// lowered like a normal call. 5266 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5267 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5268 if (I.getNumArgOperands() != 3) 5269 return false; 5270 5271 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5272 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5273 !I.getArgOperand(2)->getType()->isIntegerTy() || 5274 !I.getType()->isIntegerTy()) 5275 return false; 5276 5277 const Value *Size = I.getArgOperand(2); 5278 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5279 if (CSize && CSize->getZExtValue() == 0) { 5280 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5281 I.getType(), true); 5282 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5283 return true; 5284 } 5285 5286 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5287 std::pair<SDValue, SDValue> Res = 5288 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5289 getValue(LHS), getValue(RHS), getValue(Size), 5290 MachinePointerInfo(LHS), 5291 MachinePointerInfo(RHS)); 5292 if (Res.first.getNode()) { 5293 processIntegerCallValue(I, Res.first, true); 5294 PendingLoads.push_back(Res.second); 5295 return true; 5296 } 5297 5298 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5299 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5300 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5301 bool ActuallyDoIt = true; 5302 MVT LoadVT; 5303 Type *LoadTy; 5304 switch (CSize->getZExtValue()) { 5305 default: 5306 LoadVT = MVT::Other; 5307 LoadTy = nullptr; 5308 ActuallyDoIt = false; 5309 break; 5310 case 2: 5311 LoadVT = MVT::i16; 5312 LoadTy = Type::getInt16Ty(CSize->getContext()); 5313 break; 5314 case 4: 5315 LoadVT = MVT::i32; 5316 LoadTy = Type::getInt32Ty(CSize->getContext()); 5317 break; 5318 case 8: 5319 LoadVT = MVT::i64; 5320 LoadTy = Type::getInt64Ty(CSize->getContext()); 5321 break; 5322 /* 5323 case 16: 5324 LoadVT = MVT::v4i32; 5325 LoadTy = Type::getInt32Ty(CSize->getContext()); 5326 LoadTy = VectorType::get(LoadTy, 4); 5327 break; 5328 */ 5329 } 5330 5331 // This turns into unaligned loads. We only do this if the target natively 5332 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5333 // we'll only produce a small number of byte loads. 5334 5335 // Require that we can find a legal MVT, and only do this if the target 5336 // supports unaligned loads of that type. Expanding into byte loads would 5337 // bloat the code. 5338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5339 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5340 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5341 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5342 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5343 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5344 // TODO: Check alignment of src and dest ptrs. 5345 if (!TLI.isTypeLegal(LoadVT) || 5346 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5347 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5348 ActuallyDoIt = false; 5349 } 5350 5351 if (ActuallyDoIt) { 5352 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5353 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5354 5355 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5356 ISD::SETNE); 5357 processIntegerCallValue(I, Res, false); 5358 return true; 5359 } 5360 } 5361 5362 5363 return false; 5364 } 5365 5366 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5367 /// form. If so, return true and lower it, otherwise return false and it 5368 /// will be lowered like a normal call. 5369 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5370 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5371 if (I.getNumArgOperands() != 3) 5372 return false; 5373 5374 const Value *Src = I.getArgOperand(0); 5375 const Value *Char = I.getArgOperand(1); 5376 const Value *Length = I.getArgOperand(2); 5377 if (!Src->getType()->isPointerTy() || 5378 !Char->getType()->isIntegerTy() || 5379 !Length->getType()->isIntegerTy() || 5380 !I.getType()->isPointerTy()) 5381 return false; 5382 5383 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5384 std::pair<SDValue, SDValue> Res = 5385 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5386 getValue(Src), getValue(Char), getValue(Length), 5387 MachinePointerInfo(Src)); 5388 if (Res.first.getNode()) { 5389 setValue(&I, Res.first); 5390 PendingLoads.push_back(Res.second); 5391 return true; 5392 } 5393 5394 return false; 5395 } 5396 5397 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5398 /// optimized form. If so, return true and lower it, otherwise return false 5399 /// and it will be lowered like a normal call. 5400 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5401 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5402 if (I.getNumArgOperands() != 2) 5403 return false; 5404 5405 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5406 if (!Arg0->getType()->isPointerTy() || 5407 !Arg1->getType()->isPointerTy() || 5408 !I.getType()->isPointerTy()) 5409 return false; 5410 5411 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5412 std::pair<SDValue, SDValue> Res = 5413 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5414 getValue(Arg0), getValue(Arg1), 5415 MachinePointerInfo(Arg0), 5416 MachinePointerInfo(Arg1), isStpcpy); 5417 if (Res.first.getNode()) { 5418 setValue(&I, Res.first); 5419 DAG.setRoot(Res.second); 5420 return true; 5421 } 5422 5423 return false; 5424 } 5425 5426 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5427 /// If so, return true and lower it, otherwise return false and it will be 5428 /// lowered like a normal call. 5429 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5430 // Verify that the prototype makes sense. int strcmp(void*,void*) 5431 if (I.getNumArgOperands() != 2) 5432 return false; 5433 5434 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5435 if (!Arg0->getType()->isPointerTy() || 5436 !Arg1->getType()->isPointerTy() || 5437 !I.getType()->isIntegerTy()) 5438 return false; 5439 5440 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5441 std::pair<SDValue, SDValue> Res = 5442 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5443 getValue(Arg0), getValue(Arg1), 5444 MachinePointerInfo(Arg0), 5445 MachinePointerInfo(Arg1)); 5446 if (Res.first.getNode()) { 5447 processIntegerCallValue(I, Res.first, true); 5448 PendingLoads.push_back(Res.second); 5449 return true; 5450 } 5451 5452 return false; 5453 } 5454 5455 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5456 /// form. If so, return true and lower it, otherwise return false and it 5457 /// will be lowered like a normal call. 5458 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5459 // Verify that the prototype makes sense. size_t strlen(char *) 5460 if (I.getNumArgOperands() != 1) 5461 return false; 5462 5463 const Value *Arg0 = I.getArgOperand(0); 5464 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5465 return false; 5466 5467 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5468 std::pair<SDValue, SDValue> Res = 5469 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5470 getValue(Arg0), MachinePointerInfo(Arg0)); 5471 if (Res.first.getNode()) { 5472 processIntegerCallValue(I, Res.first, false); 5473 PendingLoads.push_back(Res.second); 5474 return true; 5475 } 5476 5477 return false; 5478 } 5479 5480 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5481 /// form. If so, return true and lower it, otherwise return false and it 5482 /// will be lowered like a normal call. 5483 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5484 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5485 if (I.getNumArgOperands() != 2) 5486 return false; 5487 5488 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5489 if (!Arg0->getType()->isPointerTy() || 5490 !Arg1->getType()->isIntegerTy() || 5491 !I.getType()->isIntegerTy()) 5492 return false; 5493 5494 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5495 std::pair<SDValue, SDValue> Res = 5496 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5497 getValue(Arg0), getValue(Arg1), 5498 MachinePointerInfo(Arg0)); 5499 if (Res.first.getNode()) { 5500 processIntegerCallValue(I, Res.first, false); 5501 PendingLoads.push_back(Res.second); 5502 return true; 5503 } 5504 5505 return false; 5506 } 5507 5508 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5509 /// operation (as expected), translate it to an SDNode with the specified opcode 5510 /// and return true. 5511 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5512 unsigned Opcode) { 5513 // Sanity check that it really is a unary floating-point call. 5514 if (I.getNumArgOperands() != 1 || 5515 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5516 I.getType() != I.getArgOperand(0)->getType() || 5517 !I.onlyReadsMemory()) 5518 return false; 5519 5520 SDValue Tmp = getValue(I.getArgOperand(0)); 5521 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5522 return true; 5523 } 5524 5525 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5526 /// operation (as expected), translate it to an SDNode with the specified opcode 5527 /// and return true. 5528 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5529 unsigned Opcode) { 5530 // Sanity check that it really is a binary floating-point call. 5531 if (I.getNumArgOperands() != 2 || 5532 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5533 I.getType() != I.getArgOperand(0)->getType() || 5534 I.getType() != I.getArgOperand(1)->getType() || 5535 !I.onlyReadsMemory()) 5536 return false; 5537 5538 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5539 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5540 EVT VT = Tmp0.getValueType(); 5541 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5542 return true; 5543 } 5544 5545 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5546 // Handle inline assembly differently. 5547 if (isa<InlineAsm>(I.getCalledValue())) { 5548 visitInlineAsm(&I); 5549 return; 5550 } 5551 5552 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5553 ComputeUsesVAFloatArgument(I, &MMI); 5554 5555 const char *RenameFn = nullptr; 5556 if (Function *F = I.getCalledFunction()) { 5557 if (F->isDeclaration()) { 5558 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5559 if (unsigned IID = II->getIntrinsicID(F)) { 5560 RenameFn = visitIntrinsicCall(I, IID); 5561 if (!RenameFn) 5562 return; 5563 } 5564 } 5565 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5566 RenameFn = visitIntrinsicCall(I, IID); 5567 if (!RenameFn) 5568 return; 5569 } 5570 } 5571 5572 // Check for well-known libc/libm calls. If the function is internal, it 5573 // can't be a library call. 5574 LibFunc::Func Func; 5575 if (!F->hasLocalLinkage() && F->hasName() && 5576 LibInfo->getLibFunc(F->getName(), Func) && 5577 LibInfo->hasOptimizedCodeGen(Func)) { 5578 switch (Func) { 5579 default: break; 5580 case LibFunc::copysign: 5581 case LibFunc::copysignf: 5582 case LibFunc::copysignl: 5583 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5584 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5585 I.getType() == I.getArgOperand(0)->getType() && 5586 I.getType() == I.getArgOperand(1)->getType() && 5587 I.onlyReadsMemory()) { 5588 SDValue LHS = getValue(I.getArgOperand(0)); 5589 SDValue RHS = getValue(I.getArgOperand(1)); 5590 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5591 LHS.getValueType(), LHS, RHS)); 5592 return; 5593 } 5594 break; 5595 case LibFunc::fabs: 5596 case LibFunc::fabsf: 5597 case LibFunc::fabsl: 5598 if (visitUnaryFloatCall(I, ISD::FABS)) 5599 return; 5600 break; 5601 case LibFunc::fmin: 5602 case LibFunc::fminf: 5603 case LibFunc::fminl: 5604 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5605 return; 5606 break; 5607 case LibFunc::fmax: 5608 case LibFunc::fmaxf: 5609 case LibFunc::fmaxl: 5610 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5611 return; 5612 break; 5613 case LibFunc::sin: 5614 case LibFunc::sinf: 5615 case LibFunc::sinl: 5616 if (visitUnaryFloatCall(I, ISD::FSIN)) 5617 return; 5618 break; 5619 case LibFunc::cos: 5620 case LibFunc::cosf: 5621 case LibFunc::cosl: 5622 if (visitUnaryFloatCall(I, ISD::FCOS)) 5623 return; 5624 break; 5625 case LibFunc::sqrt: 5626 case LibFunc::sqrtf: 5627 case LibFunc::sqrtl: 5628 case LibFunc::sqrt_finite: 5629 case LibFunc::sqrtf_finite: 5630 case LibFunc::sqrtl_finite: 5631 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5632 return; 5633 break; 5634 case LibFunc::floor: 5635 case LibFunc::floorf: 5636 case LibFunc::floorl: 5637 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5638 return; 5639 break; 5640 case LibFunc::nearbyint: 5641 case LibFunc::nearbyintf: 5642 case LibFunc::nearbyintl: 5643 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5644 return; 5645 break; 5646 case LibFunc::ceil: 5647 case LibFunc::ceilf: 5648 case LibFunc::ceill: 5649 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5650 return; 5651 break; 5652 case LibFunc::rint: 5653 case LibFunc::rintf: 5654 case LibFunc::rintl: 5655 if (visitUnaryFloatCall(I, ISD::FRINT)) 5656 return; 5657 break; 5658 case LibFunc::round: 5659 case LibFunc::roundf: 5660 case LibFunc::roundl: 5661 if (visitUnaryFloatCall(I, ISD::FROUND)) 5662 return; 5663 break; 5664 case LibFunc::trunc: 5665 case LibFunc::truncf: 5666 case LibFunc::truncl: 5667 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5668 return; 5669 break; 5670 case LibFunc::log2: 5671 case LibFunc::log2f: 5672 case LibFunc::log2l: 5673 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5674 return; 5675 break; 5676 case LibFunc::exp2: 5677 case LibFunc::exp2f: 5678 case LibFunc::exp2l: 5679 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5680 return; 5681 break; 5682 case LibFunc::memcmp: 5683 if (visitMemCmpCall(I)) 5684 return; 5685 break; 5686 case LibFunc::memchr: 5687 if (visitMemChrCall(I)) 5688 return; 5689 break; 5690 case LibFunc::strcpy: 5691 if (visitStrCpyCall(I, false)) 5692 return; 5693 break; 5694 case LibFunc::stpcpy: 5695 if (visitStrCpyCall(I, true)) 5696 return; 5697 break; 5698 case LibFunc::strcmp: 5699 if (visitStrCmpCall(I)) 5700 return; 5701 break; 5702 case LibFunc::strlen: 5703 if (visitStrLenCall(I)) 5704 return; 5705 break; 5706 case LibFunc::strnlen: 5707 if (visitStrNLenCall(I)) 5708 return; 5709 break; 5710 } 5711 } 5712 } 5713 5714 SDValue Callee; 5715 if (!RenameFn) 5716 Callee = getValue(I.getCalledValue()); 5717 else 5718 Callee = DAG.getExternalSymbol( 5719 RenameFn, 5720 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5721 5722 // Check if we can potentially perform a tail call. More detailed checking is 5723 // be done within LowerCallTo, after more information about the call is known. 5724 LowerCallTo(&I, Callee, I.isTailCall()); 5725 } 5726 5727 namespace { 5728 5729 /// AsmOperandInfo - This contains information for each constraint that we are 5730 /// lowering. 5731 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5732 public: 5733 /// CallOperand - If this is the result output operand or a clobber 5734 /// this is null, otherwise it is the incoming operand to the CallInst. 5735 /// This gets modified as the asm is processed. 5736 SDValue CallOperand; 5737 5738 /// AssignedRegs - If this is a register or register class operand, this 5739 /// contains the set of register corresponding to the operand. 5740 RegsForValue AssignedRegs; 5741 5742 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5743 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5744 } 5745 5746 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5747 /// corresponds to. If there is no Value* for this operand, it returns 5748 /// MVT::Other. 5749 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5750 const DataLayout &DL) const { 5751 if (!CallOperandVal) return MVT::Other; 5752 5753 if (isa<BasicBlock>(CallOperandVal)) 5754 return TLI.getPointerTy(DL); 5755 5756 llvm::Type *OpTy = CallOperandVal->getType(); 5757 5758 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5759 // If this is an indirect operand, the operand is a pointer to the 5760 // accessed type. 5761 if (isIndirect) { 5762 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5763 if (!PtrTy) 5764 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5765 OpTy = PtrTy->getElementType(); 5766 } 5767 5768 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5769 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5770 if (STy->getNumElements() == 1) 5771 OpTy = STy->getElementType(0); 5772 5773 // If OpTy is not a single value, it may be a struct/union that we 5774 // can tile with integers. 5775 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5776 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5777 switch (BitSize) { 5778 default: break; 5779 case 1: 5780 case 8: 5781 case 16: 5782 case 32: 5783 case 64: 5784 case 128: 5785 OpTy = IntegerType::get(Context, BitSize); 5786 break; 5787 } 5788 } 5789 5790 return TLI.getValueType(DL, OpTy, true); 5791 } 5792 }; 5793 5794 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5795 5796 } // end anonymous namespace 5797 5798 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5799 /// specified operand. We prefer to assign virtual registers, to allow the 5800 /// register allocator to handle the assignment process. However, if the asm 5801 /// uses features that we can't model on machineinstrs, we have SDISel do the 5802 /// allocation. This produces generally horrible, but correct, code. 5803 /// 5804 /// OpInfo describes the operand. 5805 /// 5806 static void GetRegistersForValue(SelectionDAG &DAG, 5807 const TargetLowering &TLI, 5808 SDLoc DL, 5809 SDISelAsmOperandInfo &OpInfo) { 5810 LLVMContext &Context = *DAG.getContext(); 5811 5812 MachineFunction &MF = DAG.getMachineFunction(); 5813 SmallVector<unsigned, 4> Regs; 5814 5815 // If this is a constraint for a single physreg, or a constraint for a 5816 // register class, find it. 5817 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5818 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5819 OpInfo.ConstraintCode, 5820 OpInfo.ConstraintVT); 5821 5822 unsigned NumRegs = 1; 5823 if (OpInfo.ConstraintVT != MVT::Other) { 5824 // If this is a FP input in an integer register (or visa versa) insert a bit 5825 // cast of the input value. More generally, handle any case where the input 5826 // value disagrees with the register class we plan to stick this in. 5827 if (OpInfo.Type == InlineAsm::isInput && 5828 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5829 // Try to convert to the first EVT that the reg class contains. If the 5830 // types are identical size, use a bitcast to convert (e.g. two differing 5831 // vector types). 5832 MVT RegVT = *PhysReg.second->vt_begin(); 5833 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5834 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5835 RegVT, OpInfo.CallOperand); 5836 OpInfo.ConstraintVT = RegVT; 5837 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5838 // If the input is a FP value and we want it in FP registers, do a 5839 // bitcast to the corresponding integer type. This turns an f64 value 5840 // into i64, which can be passed with two i32 values on a 32-bit 5841 // machine. 5842 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5843 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5844 RegVT, OpInfo.CallOperand); 5845 OpInfo.ConstraintVT = RegVT; 5846 } 5847 } 5848 5849 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5850 } 5851 5852 MVT RegVT; 5853 EVT ValueVT = OpInfo.ConstraintVT; 5854 5855 // If this is a constraint for a specific physical register, like {r17}, 5856 // assign it now. 5857 if (unsigned AssignedReg = PhysReg.first) { 5858 const TargetRegisterClass *RC = PhysReg.second; 5859 if (OpInfo.ConstraintVT == MVT::Other) 5860 ValueVT = *RC->vt_begin(); 5861 5862 // Get the actual register value type. This is important, because the user 5863 // may have asked for (e.g.) the AX register in i32 type. We need to 5864 // remember that AX is actually i16 to get the right extension. 5865 RegVT = *RC->vt_begin(); 5866 5867 // This is a explicit reference to a physical register. 5868 Regs.push_back(AssignedReg); 5869 5870 // If this is an expanded reference, add the rest of the regs to Regs. 5871 if (NumRegs != 1) { 5872 TargetRegisterClass::iterator I = RC->begin(); 5873 for (; *I != AssignedReg; ++I) 5874 assert(I != RC->end() && "Didn't find reg!"); 5875 5876 // Already added the first reg. 5877 --NumRegs; ++I; 5878 for (; NumRegs; --NumRegs, ++I) { 5879 assert(I != RC->end() && "Ran out of registers to allocate!"); 5880 Regs.push_back(*I); 5881 } 5882 } 5883 5884 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5885 return; 5886 } 5887 5888 // Otherwise, if this was a reference to an LLVM register class, create vregs 5889 // for this reference. 5890 if (const TargetRegisterClass *RC = PhysReg.second) { 5891 RegVT = *RC->vt_begin(); 5892 if (OpInfo.ConstraintVT == MVT::Other) 5893 ValueVT = RegVT; 5894 5895 // Create the appropriate number of virtual registers. 5896 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5897 for (; NumRegs; --NumRegs) 5898 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5899 5900 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5901 return; 5902 } 5903 5904 // Otherwise, we couldn't allocate enough registers for this. 5905 } 5906 5907 /// visitInlineAsm - Handle a call to an InlineAsm object. 5908 /// 5909 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5910 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5911 5912 /// ConstraintOperands - Information about all of the constraints. 5913 SDISelAsmOperandInfoVector ConstraintOperands; 5914 5915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5916 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5917 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5918 5919 bool hasMemory = false; 5920 5921 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5922 unsigned ResNo = 0; // ResNo - The result number of the next output. 5923 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5924 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5925 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5926 5927 MVT OpVT = MVT::Other; 5928 5929 // Compute the value type for each operand. 5930 switch (OpInfo.Type) { 5931 case InlineAsm::isOutput: 5932 // Indirect outputs just consume an argument. 5933 if (OpInfo.isIndirect) { 5934 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5935 break; 5936 } 5937 5938 // The return value of the call is this value. As such, there is no 5939 // corresponding argument. 5940 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5941 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5942 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5943 STy->getElementType(ResNo)); 5944 } else { 5945 assert(ResNo == 0 && "Asm only has one result!"); 5946 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5947 } 5948 ++ResNo; 5949 break; 5950 case InlineAsm::isInput: 5951 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5952 break; 5953 case InlineAsm::isClobber: 5954 // Nothing to do. 5955 break; 5956 } 5957 5958 // If this is an input or an indirect output, process the call argument. 5959 // BasicBlocks are labels, currently appearing only in asm's. 5960 if (OpInfo.CallOperandVal) { 5961 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5962 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5963 } else { 5964 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5965 } 5966 5967 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5968 DAG.getDataLayout()).getSimpleVT(); 5969 } 5970 5971 OpInfo.ConstraintVT = OpVT; 5972 5973 // Indirect operand accesses access memory. 5974 if (OpInfo.isIndirect) 5975 hasMemory = true; 5976 else { 5977 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5978 TargetLowering::ConstraintType 5979 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5980 if (CType == TargetLowering::C_Memory) { 5981 hasMemory = true; 5982 break; 5983 } 5984 } 5985 } 5986 } 5987 5988 SDValue Chain, Flag; 5989 5990 // We won't need to flush pending loads if this asm doesn't touch 5991 // memory and is nonvolatile. 5992 if (hasMemory || IA->hasSideEffects()) 5993 Chain = getRoot(); 5994 else 5995 Chain = DAG.getRoot(); 5996 5997 // Second pass over the constraints: compute which constraint option to use 5998 // and assign registers to constraints that want a specific physreg. 5999 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6000 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6001 6002 // If this is an output operand with a matching input operand, look up the 6003 // matching input. If their types mismatch, e.g. one is an integer, the 6004 // other is floating point, or their sizes are different, flag it as an 6005 // error. 6006 if (OpInfo.hasMatchingInput()) { 6007 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6008 6009 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6010 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6011 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6012 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6013 OpInfo.ConstraintVT); 6014 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6015 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6016 Input.ConstraintVT); 6017 if ((OpInfo.ConstraintVT.isInteger() != 6018 Input.ConstraintVT.isInteger()) || 6019 (MatchRC.second != InputRC.second)) { 6020 report_fatal_error("Unsupported asm: input constraint" 6021 " with a matching output constraint of" 6022 " incompatible type!"); 6023 } 6024 Input.ConstraintVT = OpInfo.ConstraintVT; 6025 } 6026 } 6027 6028 // Compute the constraint code and ConstraintType to use. 6029 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6030 6031 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6032 OpInfo.Type == InlineAsm::isClobber) 6033 continue; 6034 6035 // If this is a memory input, and if the operand is not indirect, do what we 6036 // need to to provide an address for the memory input. 6037 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6038 !OpInfo.isIndirect) { 6039 assert((OpInfo.isMultipleAlternative || 6040 (OpInfo.Type == InlineAsm::isInput)) && 6041 "Can only indirectify direct input operands!"); 6042 6043 // Memory operands really want the address of the value. If we don't have 6044 // an indirect input, put it in the constpool if we can, otherwise spill 6045 // it to a stack slot. 6046 // TODO: This isn't quite right. We need to handle these according to 6047 // the addressing mode that the constraint wants. Also, this may take 6048 // an additional register for the computation and we don't want that 6049 // either. 6050 6051 // If the operand is a float, integer, or vector constant, spill to a 6052 // constant pool entry to get its address. 6053 const Value *OpVal = OpInfo.CallOperandVal; 6054 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6055 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6056 OpInfo.CallOperand = DAG.getConstantPool( 6057 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6058 } else { 6059 // Otherwise, create a stack slot and emit a store to it before the 6060 // asm. 6061 Type *Ty = OpVal->getType(); 6062 auto &DL = DAG.getDataLayout(); 6063 uint64_t TySize = DL.getTypeAllocSize(Ty); 6064 unsigned Align = DL.getPrefTypeAlignment(Ty); 6065 MachineFunction &MF = DAG.getMachineFunction(); 6066 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6067 SDValue StackSlot = 6068 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6069 Chain = DAG.getStore(Chain, getCurSDLoc(), 6070 OpInfo.CallOperand, StackSlot, 6071 MachinePointerInfo::getFixedStack(SSFI), 6072 false, false, 0); 6073 OpInfo.CallOperand = StackSlot; 6074 } 6075 6076 // There is no longer a Value* corresponding to this operand. 6077 OpInfo.CallOperandVal = nullptr; 6078 6079 // It is now an indirect operand. 6080 OpInfo.isIndirect = true; 6081 } 6082 6083 // If this constraint is for a specific register, allocate it before 6084 // anything else. 6085 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6086 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6087 } 6088 6089 // Second pass - Loop over all of the operands, assigning virtual or physregs 6090 // to register class operands. 6091 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6092 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6093 6094 // C_Register operands have already been allocated, Other/Memory don't need 6095 // to be. 6096 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6097 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6098 } 6099 6100 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6101 std::vector<SDValue> AsmNodeOperands; 6102 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6103 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6104 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6105 6106 // If we have a !srcloc metadata node associated with it, we want to attach 6107 // this to the ultimately generated inline asm machineinstr. To do this, we 6108 // pass in the third operand as this (potentially null) inline asm MDNode. 6109 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6110 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6111 6112 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6113 // bits as operand 3. 6114 unsigned ExtraInfo = 0; 6115 if (IA->hasSideEffects()) 6116 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6117 if (IA->isAlignStack()) 6118 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6119 // Set the asm dialect. 6120 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6121 6122 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6123 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6124 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6125 6126 // Compute the constraint code and ConstraintType to use. 6127 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6128 6129 // Ideally, we would only check against memory constraints. However, the 6130 // meaning of an other constraint can be target-specific and we can't easily 6131 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6132 // for other constriants as well. 6133 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6134 OpInfo.ConstraintType == TargetLowering::C_Other) { 6135 if (OpInfo.Type == InlineAsm::isInput) 6136 ExtraInfo |= InlineAsm::Extra_MayLoad; 6137 else if (OpInfo.Type == InlineAsm::isOutput) 6138 ExtraInfo |= InlineAsm::Extra_MayStore; 6139 else if (OpInfo.Type == InlineAsm::isClobber) 6140 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6141 } 6142 } 6143 6144 AsmNodeOperands.push_back(DAG.getTargetConstant( 6145 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6146 6147 // Loop over all of the inputs, copying the operand values into the 6148 // appropriate registers and processing the output regs. 6149 RegsForValue RetValRegs; 6150 6151 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6152 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6153 6154 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6155 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6156 6157 switch (OpInfo.Type) { 6158 case InlineAsm::isOutput: { 6159 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6160 OpInfo.ConstraintType != TargetLowering::C_Register) { 6161 // Memory output, or 'other' output (e.g. 'X' constraint). 6162 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6163 6164 unsigned ConstraintID = 6165 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6166 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6167 "Failed to convert memory constraint code to constraint id."); 6168 6169 // Add information to the INLINEASM node to know about this output. 6170 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6171 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6172 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6173 MVT::i32)); 6174 AsmNodeOperands.push_back(OpInfo.CallOperand); 6175 break; 6176 } 6177 6178 // Otherwise, this is a register or register class output. 6179 6180 // Copy the output from the appropriate register. Find a register that 6181 // we can use. 6182 if (OpInfo.AssignedRegs.Regs.empty()) { 6183 LLVMContext &Ctx = *DAG.getContext(); 6184 Ctx.emitError(CS.getInstruction(), 6185 "couldn't allocate output register for constraint '" + 6186 Twine(OpInfo.ConstraintCode) + "'"); 6187 return; 6188 } 6189 6190 // If this is an indirect operand, store through the pointer after the 6191 // asm. 6192 if (OpInfo.isIndirect) { 6193 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6194 OpInfo.CallOperandVal)); 6195 } else { 6196 // This is the result value of the call. 6197 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6198 // Concatenate this output onto the outputs list. 6199 RetValRegs.append(OpInfo.AssignedRegs); 6200 } 6201 6202 // Add information to the INLINEASM node to know that this register is 6203 // set. 6204 OpInfo.AssignedRegs 6205 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6206 ? InlineAsm::Kind_RegDefEarlyClobber 6207 : InlineAsm::Kind_RegDef, 6208 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6209 break; 6210 } 6211 case InlineAsm::isInput: { 6212 SDValue InOperandVal = OpInfo.CallOperand; 6213 6214 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6215 // If this is required to match an output register we have already set, 6216 // just use its register. 6217 unsigned OperandNo = OpInfo.getMatchedOperand(); 6218 6219 // Scan until we find the definition we already emitted of this operand. 6220 // When we find it, create a RegsForValue operand. 6221 unsigned CurOp = InlineAsm::Op_FirstOperand; 6222 for (; OperandNo; --OperandNo) { 6223 // Advance to the next operand. 6224 unsigned OpFlag = 6225 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6226 assert((InlineAsm::isRegDefKind(OpFlag) || 6227 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6228 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6229 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6230 } 6231 6232 unsigned OpFlag = 6233 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6234 if (InlineAsm::isRegDefKind(OpFlag) || 6235 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6236 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6237 if (OpInfo.isIndirect) { 6238 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6239 LLVMContext &Ctx = *DAG.getContext(); 6240 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6241 " don't know how to handle tied " 6242 "indirect register inputs"); 6243 return; 6244 } 6245 6246 RegsForValue MatchedRegs; 6247 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6248 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6249 MatchedRegs.RegVTs.push_back(RegVT); 6250 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6251 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6252 i != e; ++i) { 6253 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6254 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6255 else { 6256 LLVMContext &Ctx = *DAG.getContext(); 6257 Ctx.emitError(CS.getInstruction(), 6258 "inline asm error: This value" 6259 " type register class is not natively supported!"); 6260 return; 6261 } 6262 } 6263 SDLoc dl = getCurSDLoc(); 6264 // Use the produced MatchedRegs object to 6265 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6266 Chain, &Flag, CS.getInstruction()); 6267 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6268 true, OpInfo.getMatchedOperand(), dl, 6269 DAG, AsmNodeOperands); 6270 break; 6271 } 6272 6273 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6274 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6275 "Unexpected number of operands"); 6276 // Add information to the INLINEASM node to know about this input. 6277 // See InlineAsm.h isUseOperandTiedToDef. 6278 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6279 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6280 OpInfo.getMatchedOperand()); 6281 AsmNodeOperands.push_back(DAG.getTargetConstant( 6282 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6283 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6284 break; 6285 } 6286 6287 // Treat indirect 'X' constraint as memory. 6288 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6289 OpInfo.isIndirect) 6290 OpInfo.ConstraintType = TargetLowering::C_Memory; 6291 6292 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6293 std::vector<SDValue> Ops; 6294 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6295 Ops, DAG); 6296 if (Ops.empty()) { 6297 LLVMContext &Ctx = *DAG.getContext(); 6298 Ctx.emitError(CS.getInstruction(), 6299 "invalid operand for inline asm constraint '" + 6300 Twine(OpInfo.ConstraintCode) + "'"); 6301 return; 6302 } 6303 6304 // Add information to the INLINEASM node to know about this input. 6305 unsigned ResOpType = 6306 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6307 AsmNodeOperands.push_back(DAG.getTargetConstant( 6308 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6309 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6310 break; 6311 } 6312 6313 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6314 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6315 assert(InOperandVal.getValueType() == 6316 TLI.getPointerTy(DAG.getDataLayout()) && 6317 "Memory operands expect pointer values"); 6318 6319 unsigned ConstraintID = 6320 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6321 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6322 "Failed to convert memory constraint code to constraint id."); 6323 6324 // Add information to the INLINEASM node to know about this input. 6325 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6326 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6327 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6328 getCurSDLoc(), 6329 MVT::i32)); 6330 AsmNodeOperands.push_back(InOperandVal); 6331 break; 6332 } 6333 6334 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6335 OpInfo.ConstraintType == TargetLowering::C_Register) && 6336 "Unknown constraint type!"); 6337 6338 // TODO: Support this. 6339 if (OpInfo.isIndirect) { 6340 LLVMContext &Ctx = *DAG.getContext(); 6341 Ctx.emitError(CS.getInstruction(), 6342 "Don't know how to handle indirect register inputs yet " 6343 "for constraint '" + 6344 Twine(OpInfo.ConstraintCode) + "'"); 6345 return; 6346 } 6347 6348 // Copy the input into the appropriate registers. 6349 if (OpInfo.AssignedRegs.Regs.empty()) { 6350 LLVMContext &Ctx = *DAG.getContext(); 6351 Ctx.emitError(CS.getInstruction(), 6352 "couldn't allocate input reg for constraint '" + 6353 Twine(OpInfo.ConstraintCode) + "'"); 6354 return; 6355 } 6356 6357 SDLoc dl = getCurSDLoc(); 6358 6359 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6360 Chain, &Flag, CS.getInstruction()); 6361 6362 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6363 dl, DAG, AsmNodeOperands); 6364 break; 6365 } 6366 case InlineAsm::isClobber: { 6367 // Add the clobbered value to the operand list, so that the register 6368 // allocator is aware that the physreg got clobbered. 6369 if (!OpInfo.AssignedRegs.Regs.empty()) 6370 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6371 false, 0, getCurSDLoc(), DAG, 6372 AsmNodeOperands); 6373 break; 6374 } 6375 } 6376 } 6377 6378 // Finish up input operands. Set the input chain and add the flag last. 6379 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6380 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6381 6382 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6383 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6384 Flag = Chain.getValue(1); 6385 6386 // If this asm returns a register value, copy the result from that register 6387 // and set it as the value of the call. 6388 if (!RetValRegs.Regs.empty()) { 6389 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6390 Chain, &Flag, CS.getInstruction()); 6391 6392 // FIXME: Why don't we do this for inline asms with MRVs? 6393 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6394 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6395 6396 // If any of the results of the inline asm is a vector, it may have the 6397 // wrong width/num elts. This can happen for register classes that can 6398 // contain multiple different value types. The preg or vreg allocated may 6399 // not have the same VT as was expected. Convert it to the right type 6400 // with bit_convert. 6401 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6402 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6403 ResultType, Val); 6404 6405 } else if (ResultType != Val.getValueType() && 6406 ResultType.isInteger() && Val.getValueType().isInteger()) { 6407 // If a result value was tied to an input value, the computed result may 6408 // have a wider width than the expected result. Extract the relevant 6409 // portion. 6410 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6411 } 6412 6413 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6414 } 6415 6416 setValue(CS.getInstruction(), Val); 6417 // Don't need to use this as a chain in this case. 6418 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6419 return; 6420 } 6421 6422 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6423 6424 // Process indirect outputs, first output all of the flagged copies out of 6425 // physregs. 6426 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6427 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6428 const Value *Ptr = IndirectStoresToEmit[i].second; 6429 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6430 Chain, &Flag, IA); 6431 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6432 } 6433 6434 // Emit the non-flagged stores from the physregs. 6435 SmallVector<SDValue, 8> OutChains; 6436 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6437 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6438 StoresToEmit[i].first, 6439 getValue(StoresToEmit[i].second), 6440 MachinePointerInfo(StoresToEmit[i].second), 6441 false, false, 0); 6442 OutChains.push_back(Val); 6443 } 6444 6445 if (!OutChains.empty()) 6446 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6447 6448 DAG.setRoot(Chain); 6449 } 6450 6451 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6452 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6453 MVT::Other, getRoot(), 6454 getValue(I.getArgOperand(0)), 6455 DAG.getSrcValue(I.getArgOperand(0)))); 6456 } 6457 6458 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6460 const DataLayout &DL = DAG.getDataLayout(); 6461 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6462 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6463 DAG.getSrcValue(I.getOperand(0)), 6464 DL.getABITypeAlignment(I.getType())); 6465 setValue(&I, V); 6466 DAG.setRoot(V.getValue(1)); 6467 } 6468 6469 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6470 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6471 MVT::Other, getRoot(), 6472 getValue(I.getArgOperand(0)), 6473 DAG.getSrcValue(I.getArgOperand(0)))); 6474 } 6475 6476 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6477 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6478 MVT::Other, getRoot(), 6479 getValue(I.getArgOperand(0)), 6480 getValue(I.getArgOperand(1)), 6481 DAG.getSrcValue(I.getArgOperand(0)), 6482 DAG.getSrcValue(I.getArgOperand(1)))); 6483 } 6484 6485 /// \brief Lower an argument list according to the target calling convention. 6486 /// 6487 /// \return A tuple of <return-value, token-chain> 6488 /// 6489 /// This is a helper for lowering intrinsics that follow a target calling 6490 /// convention or require stack pointer adjustment. Only a subset of the 6491 /// intrinsic's operands need to participate in the calling convention. 6492 std::pair<SDValue, SDValue> 6493 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6494 unsigned NumArgs, SDValue Callee, 6495 Type *ReturnTy, 6496 MachineBasicBlock *LandingPad, 6497 bool IsPatchPoint) { 6498 TargetLowering::ArgListTy Args; 6499 Args.reserve(NumArgs); 6500 6501 // Populate the argument list. 6502 // Attributes for args start at offset 1, after the return attribute. 6503 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6504 ArgI != ArgE; ++ArgI) { 6505 const Value *V = CS->getOperand(ArgI); 6506 6507 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6508 6509 TargetLowering::ArgListEntry Entry; 6510 Entry.Node = getValue(V); 6511 Entry.Ty = V->getType(); 6512 Entry.setAttributes(&CS, AttrI); 6513 Args.push_back(Entry); 6514 } 6515 6516 TargetLowering::CallLoweringInfo CLI(DAG); 6517 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6518 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6519 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6520 6521 return lowerInvokable(CLI, LandingPad); 6522 } 6523 6524 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6525 /// or patchpoint target node's operand list. 6526 /// 6527 /// Constants are converted to TargetConstants purely as an optimization to 6528 /// avoid constant materialization and register allocation. 6529 /// 6530 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6531 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6532 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6533 /// address materialization and register allocation, but may also be required 6534 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6535 /// alloca in the entry block, then the runtime may assume that the alloca's 6536 /// StackMap location can be read immediately after compilation and that the 6537 /// location is valid at any point during execution (this is similar to the 6538 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6539 /// only available in a register, then the runtime would need to trap when 6540 /// execution reaches the StackMap in order to read the alloca's location. 6541 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6542 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6543 SelectionDAGBuilder &Builder) { 6544 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6545 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6546 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6547 Ops.push_back( 6548 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6549 Ops.push_back( 6550 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6551 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6552 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6553 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6554 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6555 } else 6556 Ops.push_back(OpVal); 6557 } 6558 } 6559 6560 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6561 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6562 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6563 // [live variables...]) 6564 6565 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6566 6567 SDValue Chain, InFlag, Callee, NullPtr; 6568 SmallVector<SDValue, 32> Ops; 6569 6570 SDLoc DL = getCurSDLoc(); 6571 Callee = getValue(CI.getCalledValue()); 6572 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6573 6574 // The stackmap intrinsic only records the live variables (the arguemnts 6575 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6576 // intrinsic, this won't be lowered to a function call. This means we don't 6577 // have to worry about calling conventions and target specific lowering code. 6578 // Instead we perform the call lowering right here. 6579 // 6580 // chain, flag = CALLSEQ_START(chain, 0) 6581 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6582 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6583 // 6584 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6585 InFlag = Chain.getValue(1); 6586 6587 // Add the <id> and <numBytes> constants. 6588 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6589 Ops.push_back(DAG.getTargetConstant( 6590 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6591 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6592 Ops.push_back(DAG.getTargetConstant( 6593 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6594 MVT::i32)); 6595 6596 // Push live variables for the stack map. 6597 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6598 6599 // We are not pushing any register mask info here on the operands list, 6600 // because the stackmap doesn't clobber anything. 6601 6602 // Push the chain and the glue flag. 6603 Ops.push_back(Chain); 6604 Ops.push_back(InFlag); 6605 6606 // Create the STACKMAP node. 6607 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6608 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6609 Chain = SDValue(SM, 0); 6610 InFlag = Chain.getValue(1); 6611 6612 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6613 6614 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6615 6616 // Set the root to the target-lowered call chain. 6617 DAG.setRoot(Chain); 6618 6619 // Inform the Frame Information that we have a stackmap in this function. 6620 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6621 } 6622 6623 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6624 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6625 MachineBasicBlock *LandingPad) { 6626 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6627 // i32 <numBytes>, 6628 // i8* <target>, 6629 // i32 <numArgs>, 6630 // [Args...], 6631 // [live variables...]) 6632 6633 CallingConv::ID CC = CS.getCallingConv(); 6634 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6635 bool HasDef = !CS->getType()->isVoidTy(); 6636 SDLoc dl = getCurSDLoc(); 6637 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6638 6639 // Handle immediate and symbolic callees. 6640 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6641 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6642 /*isTarget=*/true); 6643 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6644 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6645 SDLoc(SymbolicCallee), 6646 SymbolicCallee->getValueType(0)); 6647 6648 // Get the real number of arguments participating in the call <numArgs> 6649 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6650 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6651 6652 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6653 // Intrinsics include all meta-operands up to but not including CC. 6654 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6655 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6656 "Not enough arguments provided to the patchpoint intrinsic"); 6657 6658 // For AnyRegCC the arguments are lowered later on manually. 6659 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6660 Type *ReturnTy = 6661 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6662 std::pair<SDValue, SDValue> Result = 6663 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6664 LandingPad, true); 6665 6666 SDNode *CallEnd = Result.second.getNode(); 6667 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6668 CallEnd = CallEnd->getOperand(0).getNode(); 6669 6670 /// Get a call instruction from the call sequence chain. 6671 /// Tail calls are not allowed. 6672 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6673 "Expected a callseq node."); 6674 SDNode *Call = CallEnd->getOperand(0).getNode(); 6675 bool HasGlue = Call->getGluedNode(); 6676 6677 // Replace the target specific call node with the patchable intrinsic. 6678 SmallVector<SDValue, 8> Ops; 6679 6680 // Add the <id> and <numBytes> constants. 6681 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6682 Ops.push_back(DAG.getTargetConstant( 6683 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6684 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6685 Ops.push_back(DAG.getTargetConstant( 6686 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6687 MVT::i32)); 6688 6689 // Add the callee. 6690 Ops.push_back(Callee); 6691 6692 // Adjust <numArgs> to account for any arguments that have been passed on the 6693 // stack instead. 6694 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6695 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6696 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6697 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6698 6699 // Add the calling convention 6700 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6701 6702 // Add the arguments we omitted previously. The register allocator should 6703 // place these in any free register. 6704 if (IsAnyRegCC) 6705 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6706 Ops.push_back(getValue(CS.getArgument(i))); 6707 6708 // Push the arguments from the call instruction up to the register mask. 6709 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6710 Ops.append(Call->op_begin() + 2, e); 6711 6712 // Push live variables for the stack map. 6713 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6714 6715 // Push the register mask info. 6716 if (HasGlue) 6717 Ops.push_back(*(Call->op_end()-2)); 6718 else 6719 Ops.push_back(*(Call->op_end()-1)); 6720 6721 // Push the chain (this is originally the first operand of the call, but 6722 // becomes now the last or second to last operand). 6723 Ops.push_back(*(Call->op_begin())); 6724 6725 // Push the glue flag (last operand). 6726 if (HasGlue) 6727 Ops.push_back(*(Call->op_end()-1)); 6728 6729 SDVTList NodeTys; 6730 if (IsAnyRegCC && HasDef) { 6731 // Create the return types based on the intrinsic definition 6732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6733 SmallVector<EVT, 3> ValueVTs; 6734 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6735 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6736 6737 // There is always a chain and a glue type at the end 6738 ValueVTs.push_back(MVT::Other); 6739 ValueVTs.push_back(MVT::Glue); 6740 NodeTys = DAG.getVTList(ValueVTs); 6741 } else 6742 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6743 6744 // Replace the target specific call node with a PATCHPOINT node. 6745 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6746 dl, NodeTys, Ops); 6747 6748 // Update the NodeMap. 6749 if (HasDef) { 6750 if (IsAnyRegCC) 6751 setValue(CS.getInstruction(), SDValue(MN, 0)); 6752 else 6753 setValue(CS.getInstruction(), Result.first); 6754 } 6755 6756 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6757 // call sequence. Furthermore the location of the chain and glue can change 6758 // when the AnyReg calling convention is used and the intrinsic returns a 6759 // value. 6760 if (IsAnyRegCC && HasDef) { 6761 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6762 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6763 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6764 } else 6765 DAG.ReplaceAllUsesWith(Call, MN); 6766 DAG.DeleteNode(Call); 6767 6768 // Inform the Frame Information that we have a patchpoint in this function. 6769 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6770 } 6771 6772 /// Returns an AttributeSet representing the attributes applied to the return 6773 /// value of the given call. 6774 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6775 SmallVector<Attribute::AttrKind, 2> Attrs; 6776 if (CLI.RetSExt) 6777 Attrs.push_back(Attribute::SExt); 6778 if (CLI.RetZExt) 6779 Attrs.push_back(Attribute::ZExt); 6780 if (CLI.IsInReg) 6781 Attrs.push_back(Attribute::InReg); 6782 6783 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6784 Attrs); 6785 } 6786 6787 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6788 /// implementation, which just calls LowerCall. 6789 /// FIXME: When all targets are 6790 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6791 std::pair<SDValue, SDValue> 6792 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6793 // Handle the incoming return values from the call. 6794 CLI.Ins.clear(); 6795 Type *OrigRetTy = CLI.RetTy; 6796 SmallVector<EVT, 4> RetTys; 6797 SmallVector<uint64_t, 4> Offsets; 6798 auto &DL = CLI.DAG.getDataLayout(); 6799 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6800 6801 SmallVector<ISD::OutputArg, 4> Outs; 6802 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6803 6804 bool CanLowerReturn = 6805 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6806 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6807 6808 SDValue DemoteStackSlot; 6809 int DemoteStackIdx = -100; 6810 if (!CanLowerReturn) { 6811 // FIXME: equivalent assert? 6812 // assert(!CS.hasInAllocaArgument() && 6813 // "sret demotion is incompatible with inalloca"); 6814 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6815 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6816 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6817 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6818 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6819 6820 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6821 ArgListEntry Entry; 6822 Entry.Node = DemoteStackSlot; 6823 Entry.Ty = StackSlotPtrType; 6824 Entry.isSExt = false; 6825 Entry.isZExt = false; 6826 Entry.isInReg = false; 6827 Entry.isSRet = true; 6828 Entry.isNest = false; 6829 Entry.isByVal = false; 6830 Entry.isReturned = false; 6831 Entry.Alignment = Align; 6832 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6833 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6834 6835 // sret demotion isn't compatible with tail-calls, since the sret argument 6836 // points into the callers stack frame. 6837 CLI.IsTailCall = false; 6838 } else { 6839 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6840 EVT VT = RetTys[I]; 6841 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6842 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6843 for (unsigned i = 0; i != NumRegs; ++i) { 6844 ISD::InputArg MyFlags; 6845 MyFlags.VT = RegisterVT; 6846 MyFlags.ArgVT = VT; 6847 MyFlags.Used = CLI.IsReturnValueUsed; 6848 if (CLI.RetSExt) 6849 MyFlags.Flags.setSExt(); 6850 if (CLI.RetZExt) 6851 MyFlags.Flags.setZExt(); 6852 if (CLI.IsInReg) 6853 MyFlags.Flags.setInReg(); 6854 CLI.Ins.push_back(MyFlags); 6855 } 6856 } 6857 } 6858 6859 // Handle all of the outgoing arguments. 6860 CLI.Outs.clear(); 6861 CLI.OutVals.clear(); 6862 ArgListTy &Args = CLI.getArgs(); 6863 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6864 SmallVector<EVT, 4> ValueVTs; 6865 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6866 Type *FinalType = Args[i].Ty; 6867 if (Args[i].isByVal) 6868 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6869 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6870 FinalType, CLI.CallConv, CLI.IsVarArg); 6871 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6872 ++Value) { 6873 EVT VT = ValueVTs[Value]; 6874 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6875 SDValue Op = SDValue(Args[i].Node.getNode(), 6876 Args[i].Node.getResNo() + Value); 6877 ISD::ArgFlagsTy Flags; 6878 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6879 6880 if (Args[i].isZExt) 6881 Flags.setZExt(); 6882 if (Args[i].isSExt) 6883 Flags.setSExt(); 6884 if (Args[i].isInReg) 6885 Flags.setInReg(); 6886 if (Args[i].isSRet) 6887 Flags.setSRet(); 6888 if (Args[i].isByVal) 6889 Flags.setByVal(); 6890 if (Args[i].isInAlloca) { 6891 Flags.setInAlloca(); 6892 // Set the byval flag for CCAssignFn callbacks that don't know about 6893 // inalloca. This way we can know how many bytes we should've allocated 6894 // and how many bytes a callee cleanup function will pop. If we port 6895 // inalloca to more targets, we'll have to add custom inalloca handling 6896 // in the various CC lowering callbacks. 6897 Flags.setByVal(); 6898 } 6899 if (Args[i].isByVal || Args[i].isInAlloca) { 6900 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6901 Type *ElementTy = Ty->getElementType(); 6902 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6903 // For ByVal, alignment should come from FE. BE will guess if this 6904 // info is not there but there are cases it cannot get right. 6905 unsigned FrameAlign; 6906 if (Args[i].Alignment) 6907 FrameAlign = Args[i].Alignment; 6908 else 6909 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6910 Flags.setByValAlign(FrameAlign); 6911 } 6912 if (Args[i].isNest) 6913 Flags.setNest(); 6914 if (NeedsRegBlock) 6915 Flags.setInConsecutiveRegs(); 6916 Flags.setOrigAlign(OriginalAlignment); 6917 6918 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6919 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6920 SmallVector<SDValue, 4> Parts(NumParts); 6921 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6922 6923 if (Args[i].isSExt) 6924 ExtendKind = ISD::SIGN_EXTEND; 6925 else if (Args[i].isZExt) 6926 ExtendKind = ISD::ZERO_EXTEND; 6927 6928 // Conservatively only handle 'returned' on non-vectors for now 6929 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6930 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6931 "unexpected use of 'returned'"); 6932 // Before passing 'returned' to the target lowering code, ensure that 6933 // either the register MVT and the actual EVT are the same size or that 6934 // the return value and argument are extended in the same way; in these 6935 // cases it's safe to pass the argument register value unchanged as the 6936 // return register value (although it's at the target's option whether 6937 // to do so) 6938 // TODO: allow code generation to take advantage of partially preserved 6939 // registers rather than clobbering the entire register when the 6940 // parameter extension method is not compatible with the return 6941 // extension method 6942 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6943 (ExtendKind != ISD::ANY_EXTEND && 6944 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6945 Flags.setReturned(); 6946 } 6947 6948 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6949 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6950 6951 for (unsigned j = 0; j != NumParts; ++j) { 6952 // if it isn't first piece, alignment must be 1 6953 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6954 i < CLI.NumFixedArgs, 6955 i, j*Parts[j].getValueType().getStoreSize()); 6956 if (NumParts > 1 && j == 0) 6957 MyFlags.Flags.setSplit(); 6958 else if (j != 0) 6959 MyFlags.Flags.setOrigAlign(1); 6960 6961 CLI.Outs.push_back(MyFlags); 6962 CLI.OutVals.push_back(Parts[j]); 6963 } 6964 6965 if (NeedsRegBlock && Value == NumValues - 1) 6966 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6967 } 6968 } 6969 6970 SmallVector<SDValue, 4> InVals; 6971 CLI.Chain = LowerCall(CLI, InVals); 6972 6973 // Verify that the target's LowerCall behaved as expected. 6974 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6975 "LowerCall didn't return a valid chain!"); 6976 assert((!CLI.IsTailCall || InVals.empty()) && 6977 "LowerCall emitted a return value for a tail call!"); 6978 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6979 "LowerCall didn't emit the correct number of values!"); 6980 6981 // For a tail call, the return value is merely live-out and there aren't 6982 // any nodes in the DAG representing it. Return a special value to 6983 // indicate that a tail call has been emitted and no more Instructions 6984 // should be processed in the current block. 6985 if (CLI.IsTailCall) { 6986 CLI.DAG.setRoot(CLI.Chain); 6987 return std::make_pair(SDValue(), SDValue()); 6988 } 6989 6990 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6991 assert(InVals[i].getNode() && 6992 "LowerCall emitted a null value!"); 6993 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6994 "LowerCall emitted a value with the wrong type!"); 6995 }); 6996 6997 SmallVector<SDValue, 4> ReturnValues; 6998 if (!CanLowerReturn) { 6999 // The instruction result is the result of loading from the 7000 // hidden sret parameter. 7001 SmallVector<EVT, 1> PVTs; 7002 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7003 7004 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7005 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7006 EVT PtrVT = PVTs[0]; 7007 7008 unsigned NumValues = RetTys.size(); 7009 ReturnValues.resize(NumValues); 7010 SmallVector<SDValue, 4> Chains(NumValues); 7011 7012 for (unsigned i = 0; i < NumValues; ++i) { 7013 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7014 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7015 PtrVT)); 7016 SDValue L = CLI.DAG.getLoad( 7017 RetTys[i], CLI.DL, CLI.Chain, Add, 7018 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7019 false, false, 1); 7020 ReturnValues[i] = L; 7021 Chains[i] = L.getValue(1); 7022 } 7023 7024 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7025 } else { 7026 // Collect the legal value parts into potentially illegal values 7027 // that correspond to the original function's return values. 7028 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7029 if (CLI.RetSExt) 7030 AssertOp = ISD::AssertSext; 7031 else if (CLI.RetZExt) 7032 AssertOp = ISD::AssertZext; 7033 unsigned CurReg = 0; 7034 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7035 EVT VT = RetTys[I]; 7036 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7037 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7038 7039 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7040 NumRegs, RegisterVT, VT, nullptr, 7041 AssertOp)); 7042 CurReg += NumRegs; 7043 } 7044 7045 // For a function returning void, there is no return value. We can't create 7046 // such a node, so we just return a null return value in that case. In 7047 // that case, nothing will actually look at the value. 7048 if (ReturnValues.empty()) 7049 return std::make_pair(SDValue(), CLI.Chain); 7050 } 7051 7052 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7053 CLI.DAG.getVTList(RetTys), ReturnValues); 7054 return std::make_pair(Res, CLI.Chain); 7055 } 7056 7057 void TargetLowering::LowerOperationWrapper(SDNode *N, 7058 SmallVectorImpl<SDValue> &Results, 7059 SelectionDAG &DAG) const { 7060 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7061 if (Res.getNode()) 7062 Results.push_back(Res); 7063 } 7064 7065 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7066 llvm_unreachable("LowerOperation not implemented for this target!"); 7067 } 7068 7069 void 7070 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7071 SDValue Op = getNonRegisterValue(V); 7072 assert((Op.getOpcode() != ISD::CopyFromReg || 7073 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7074 "Copy from a reg to the same reg!"); 7075 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7076 7077 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7078 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7079 V->getType()); 7080 SDValue Chain = DAG.getEntryNode(); 7081 7082 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7083 FuncInfo.PreferredExtendType.end()) 7084 ? ISD::ANY_EXTEND 7085 : FuncInfo.PreferredExtendType[V]; 7086 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7087 PendingExports.push_back(Chain); 7088 } 7089 7090 #include "llvm/CodeGen/SelectionDAGISel.h" 7091 7092 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7093 /// entry block, return true. This includes arguments used by switches, since 7094 /// the switch may expand into multiple basic blocks. 7095 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7096 // With FastISel active, we may be splitting blocks, so force creation 7097 // of virtual registers for all non-dead arguments. 7098 if (FastISel) 7099 return A->use_empty(); 7100 7101 const BasicBlock *Entry = A->getParent()->begin(); 7102 for (const User *U : A->users()) 7103 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7104 return false; // Use not in entry block. 7105 7106 return true; 7107 } 7108 7109 void SelectionDAGISel::LowerArguments(const Function &F) { 7110 SelectionDAG &DAG = SDB->DAG; 7111 SDLoc dl = SDB->getCurSDLoc(); 7112 const DataLayout &DL = DAG.getDataLayout(); 7113 SmallVector<ISD::InputArg, 16> Ins; 7114 7115 if (!FuncInfo->CanLowerReturn) { 7116 // Put in an sret pointer parameter before all the other parameters. 7117 SmallVector<EVT, 1> ValueVTs; 7118 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7119 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7120 7121 // NOTE: Assuming that a pointer will never break down to more than one VT 7122 // or one register. 7123 ISD::ArgFlagsTy Flags; 7124 Flags.setSRet(); 7125 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7126 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7127 ISD::InputArg::NoArgIndex, 0); 7128 Ins.push_back(RetArg); 7129 } 7130 7131 // Set up the incoming argument description vector. 7132 unsigned Idx = 1; 7133 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7134 I != E; ++I, ++Idx) { 7135 SmallVector<EVT, 4> ValueVTs; 7136 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7137 bool isArgValueUsed = !I->use_empty(); 7138 unsigned PartBase = 0; 7139 Type *FinalType = I->getType(); 7140 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7141 FinalType = cast<PointerType>(FinalType)->getElementType(); 7142 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7143 FinalType, F.getCallingConv(), F.isVarArg()); 7144 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7145 Value != NumValues; ++Value) { 7146 EVT VT = ValueVTs[Value]; 7147 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7148 ISD::ArgFlagsTy Flags; 7149 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7150 7151 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7152 Flags.setZExt(); 7153 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7154 Flags.setSExt(); 7155 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7156 Flags.setInReg(); 7157 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7158 Flags.setSRet(); 7159 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7160 Flags.setByVal(); 7161 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7162 Flags.setInAlloca(); 7163 // Set the byval flag for CCAssignFn callbacks that don't know about 7164 // inalloca. This way we can know how many bytes we should've allocated 7165 // and how many bytes a callee cleanup function will pop. If we port 7166 // inalloca to more targets, we'll have to add custom inalloca handling 7167 // in the various CC lowering callbacks. 7168 Flags.setByVal(); 7169 } 7170 if (Flags.isByVal() || Flags.isInAlloca()) { 7171 PointerType *Ty = cast<PointerType>(I->getType()); 7172 Type *ElementTy = Ty->getElementType(); 7173 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7174 // For ByVal, alignment should be passed from FE. BE will guess if 7175 // this info is not there but there are cases it cannot get right. 7176 unsigned FrameAlign; 7177 if (F.getParamAlignment(Idx)) 7178 FrameAlign = F.getParamAlignment(Idx); 7179 else 7180 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7181 Flags.setByValAlign(FrameAlign); 7182 } 7183 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7184 Flags.setNest(); 7185 if (NeedsRegBlock) 7186 Flags.setInConsecutiveRegs(); 7187 Flags.setOrigAlign(OriginalAlignment); 7188 7189 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7190 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7191 for (unsigned i = 0; i != NumRegs; ++i) { 7192 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7193 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7194 if (NumRegs > 1 && i == 0) 7195 MyFlags.Flags.setSplit(); 7196 // if it isn't first piece, alignment must be 1 7197 else if (i > 0) 7198 MyFlags.Flags.setOrigAlign(1); 7199 Ins.push_back(MyFlags); 7200 } 7201 if (NeedsRegBlock && Value == NumValues - 1) 7202 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7203 PartBase += VT.getStoreSize(); 7204 } 7205 } 7206 7207 // Call the target to set up the argument values. 7208 SmallVector<SDValue, 8> InVals; 7209 SDValue NewRoot = TLI->LowerFormalArguments( 7210 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7211 7212 // Verify that the target's LowerFormalArguments behaved as expected. 7213 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7214 "LowerFormalArguments didn't return a valid chain!"); 7215 assert(InVals.size() == Ins.size() && 7216 "LowerFormalArguments didn't emit the correct number of values!"); 7217 DEBUG({ 7218 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7219 assert(InVals[i].getNode() && 7220 "LowerFormalArguments emitted a null value!"); 7221 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7222 "LowerFormalArguments emitted a value with the wrong type!"); 7223 } 7224 }); 7225 7226 // Update the DAG with the new chain value resulting from argument lowering. 7227 DAG.setRoot(NewRoot); 7228 7229 // Set up the argument values. 7230 unsigned i = 0; 7231 Idx = 1; 7232 if (!FuncInfo->CanLowerReturn) { 7233 // Create a virtual register for the sret pointer, and put in a copy 7234 // from the sret argument into it. 7235 SmallVector<EVT, 1> ValueVTs; 7236 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7237 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7238 MVT VT = ValueVTs[0].getSimpleVT(); 7239 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7240 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7241 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7242 RegVT, VT, nullptr, AssertOp); 7243 7244 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7245 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7246 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7247 FuncInfo->DemoteRegister = SRetReg; 7248 NewRoot = 7249 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7250 DAG.setRoot(NewRoot); 7251 7252 // i indexes lowered arguments. Bump it past the hidden sret argument. 7253 // Idx indexes LLVM arguments. Don't touch it. 7254 ++i; 7255 } 7256 7257 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7258 ++I, ++Idx) { 7259 SmallVector<SDValue, 4> ArgValues; 7260 SmallVector<EVT, 4> ValueVTs; 7261 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7262 unsigned NumValues = ValueVTs.size(); 7263 7264 // If this argument is unused then remember its value. It is used to generate 7265 // debugging information. 7266 if (I->use_empty() && NumValues) { 7267 SDB->setUnusedArgValue(I, InVals[i]); 7268 7269 // Also remember any frame index for use in FastISel. 7270 if (FrameIndexSDNode *FI = 7271 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7272 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7273 } 7274 7275 for (unsigned Val = 0; Val != NumValues; ++Val) { 7276 EVT VT = ValueVTs[Val]; 7277 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7278 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7279 7280 if (!I->use_empty()) { 7281 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7282 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7283 AssertOp = ISD::AssertSext; 7284 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7285 AssertOp = ISD::AssertZext; 7286 7287 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7288 NumParts, PartVT, VT, 7289 nullptr, AssertOp)); 7290 } 7291 7292 i += NumParts; 7293 } 7294 7295 // We don't need to do anything else for unused arguments. 7296 if (ArgValues.empty()) 7297 continue; 7298 7299 // Note down frame index. 7300 if (FrameIndexSDNode *FI = 7301 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7302 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7303 7304 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7305 SDB->getCurSDLoc()); 7306 7307 SDB->setValue(I, Res); 7308 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7309 if (LoadSDNode *LNode = 7310 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7311 if (FrameIndexSDNode *FI = 7312 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7313 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7314 } 7315 7316 // If this argument is live outside of the entry block, insert a copy from 7317 // wherever we got it to the vreg that other BB's will reference it as. 7318 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7319 // If we can, though, try to skip creating an unnecessary vreg. 7320 // FIXME: This isn't very clean... it would be nice to make this more 7321 // general. It's also subtly incompatible with the hacks FastISel 7322 // uses with vregs. 7323 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7324 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7325 FuncInfo->ValueMap[I] = Reg; 7326 continue; 7327 } 7328 } 7329 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7330 FuncInfo->InitializeRegForValue(I); 7331 SDB->CopyToExportRegsIfNeeded(I); 7332 } 7333 } 7334 7335 assert(i == InVals.size() && "Argument register count mismatch!"); 7336 7337 // Finally, if the target has anything special to do, allow it to do so. 7338 EmitFunctionEntryCode(); 7339 } 7340 7341 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7342 /// ensure constants are generated when needed. Remember the virtual registers 7343 /// that need to be added to the Machine PHI nodes as input. We cannot just 7344 /// directly add them, because expansion might result in multiple MBB's for one 7345 /// BB. As such, the start of the BB might correspond to a different MBB than 7346 /// the end. 7347 /// 7348 void 7349 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7350 const TerminatorInst *TI = LLVMBB->getTerminator(); 7351 7352 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7353 7354 // Check PHI nodes in successors that expect a value to be available from this 7355 // block. 7356 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7357 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7358 if (!isa<PHINode>(SuccBB->begin())) continue; 7359 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7360 7361 // If this terminator has multiple identical successors (common for 7362 // switches), only handle each succ once. 7363 if (!SuccsHandled.insert(SuccMBB).second) 7364 continue; 7365 7366 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7367 7368 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7369 // nodes and Machine PHI nodes, but the incoming operands have not been 7370 // emitted yet. 7371 for (BasicBlock::const_iterator I = SuccBB->begin(); 7372 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7373 // Ignore dead phi's. 7374 if (PN->use_empty()) continue; 7375 7376 // Skip empty types 7377 if (PN->getType()->isEmptyTy()) 7378 continue; 7379 7380 unsigned Reg; 7381 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7382 7383 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7384 unsigned &RegOut = ConstantsOut[C]; 7385 if (RegOut == 0) { 7386 RegOut = FuncInfo.CreateRegs(C->getType()); 7387 CopyValueToVirtualRegister(C, RegOut); 7388 } 7389 Reg = RegOut; 7390 } else { 7391 DenseMap<const Value *, unsigned>::iterator I = 7392 FuncInfo.ValueMap.find(PHIOp); 7393 if (I != FuncInfo.ValueMap.end()) 7394 Reg = I->second; 7395 else { 7396 assert(isa<AllocaInst>(PHIOp) && 7397 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7398 "Didn't codegen value into a register!??"); 7399 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7400 CopyValueToVirtualRegister(PHIOp, Reg); 7401 } 7402 } 7403 7404 // Remember that this register needs to added to the machine PHI node as 7405 // the input for this MBB. 7406 SmallVector<EVT, 4> ValueVTs; 7407 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7408 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7409 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7410 EVT VT = ValueVTs[vti]; 7411 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7412 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7413 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7414 Reg += NumRegisters; 7415 } 7416 } 7417 } 7418 7419 ConstantsOut.clear(); 7420 } 7421 7422 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7423 /// is 0. 7424 MachineBasicBlock * 7425 SelectionDAGBuilder::StackProtectorDescriptor:: 7426 AddSuccessorMBB(const BasicBlock *BB, 7427 MachineBasicBlock *ParentMBB, 7428 bool IsLikely, 7429 MachineBasicBlock *SuccMBB) { 7430 // If SuccBB has not been created yet, create it. 7431 if (!SuccMBB) { 7432 MachineFunction *MF = ParentMBB->getParent(); 7433 MachineFunction::iterator BBI = ParentMBB; 7434 SuccMBB = MF->CreateMachineBasicBlock(BB); 7435 MF->insert(++BBI, SuccMBB); 7436 } 7437 // Add it as a successor of ParentMBB. 7438 ParentMBB->addSuccessor( 7439 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7440 return SuccMBB; 7441 } 7442 7443 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7444 MachineFunction::iterator I = MBB; 7445 if (++I == FuncInfo.MF->end()) 7446 return nullptr; 7447 return I; 7448 } 7449 7450 /// During lowering new call nodes can be created (such as memset, etc.). 7451 /// Those will become new roots of the current DAG, but complications arise 7452 /// when they are tail calls. In such cases, the call lowering will update 7453 /// the root, but the builder still needs to know that a tail call has been 7454 /// lowered in order to avoid generating an additional return. 7455 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7456 // If the node is null, we do have a tail call. 7457 if (MaybeTC.getNode() != nullptr) 7458 DAG.setRoot(MaybeTC); 7459 else 7460 HasTailCall = true; 7461 } 7462 7463 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7464 unsigned *TotalCases, unsigned First, 7465 unsigned Last) { 7466 assert(Last >= First); 7467 assert(TotalCases[Last] >= TotalCases[First]); 7468 7469 APInt LowCase = Clusters[First].Low->getValue(); 7470 APInt HighCase = Clusters[Last].High->getValue(); 7471 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7472 7473 // FIXME: A range of consecutive cases has 100% density, but only requires one 7474 // comparison to lower. We should discriminate against such consecutive ranges 7475 // in jump tables. 7476 7477 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7478 uint64_t Range = Diff + 1; 7479 7480 uint64_t NumCases = 7481 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7482 7483 assert(NumCases < UINT64_MAX / 100); 7484 assert(Range >= NumCases); 7485 7486 return NumCases * 100 >= Range * MinJumpTableDensity; 7487 } 7488 7489 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7490 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7491 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7492 } 7493 7494 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7495 unsigned First, unsigned Last, 7496 const SwitchInst *SI, 7497 MachineBasicBlock *DefaultMBB, 7498 CaseCluster &JTCluster) { 7499 assert(First <= Last); 7500 7501 uint32_t Weight = 0; 7502 unsigned NumCmps = 0; 7503 std::vector<MachineBasicBlock*> Table; 7504 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7505 for (unsigned I = First; I <= Last; ++I) { 7506 assert(Clusters[I].Kind == CC_Range); 7507 Weight += Clusters[I].Weight; 7508 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7509 APInt Low = Clusters[I].Low->getValue(); 7510 APInt High = Clusters[I].High->getValue(); 7511 NumCmps += (Low == High) ? 1 : 2; 7512 if (I != First) { 7513 // Fill the gap between this and the previous cluster. 7514 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7515 assert(PreviousHigh.slt(Low)); 7516 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7517 for (uint64_t J = 0; J < Gap; J++) 7518 Table.push_back(DefaultMBB); 7519 } 7520 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7521 for (uint64_t J = 0; J < ClusterSize; ++J) 7522 Table.push_back(Clusters[I].MBB); 7523 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7524 } 7525 7526 unsigned NumDests = JTWeights.size(); 7527 if (isSuitableForBitTests(NumDests, NumCmps, 7528 Clusters[First].Low->getValue(), 7529 Clusters[Last].High->getValue())) { 7530 // Clusters[First..Last] should be lowered as bit tests instead. 7531 return false; 7532 } 7533 7534 // Create the MBB that will load from and jump through the table. 7535 // Note: We create it here, but it's not inserted into the function yet. 7536 MachineFunction *CurMF = FuncInfo.MF; 7537 MachineBasicBlock *JumpTableMBB = 7538 CurMF->CreateMachineBasicBlock(SI->getParent()); 7539 7540 // Add successors. Note: use table order for determinism. 7541 SmallPtrSet<MachineBasicBlock *, 8> Done; 7542 for (MachineBasicBlock *Succ : Table) { 7543 if (Done.count(Succ)) 7544 continue; 7545 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7546 Done.insert(Succ); 7547 } 7548 7549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7550 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7551 ->createJumpTableIndex(Table); 7552 7553 // Set up the jump table info. 7554 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7555 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7556 Clusters[Last].High->getValue(), SI->getCondition(), 7557 nullptr, false); 7558 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7559 7560 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7561 JTCases.size() - 1, Weight); 7562 return true; 7563 } 7564 7565 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7566 const SwitchInst *SI, 7567 MachineBasicBlock *DefaultMBB) { 7568 #ifndef NDEBUG 7569 // Clusters must be non-empty, sorted, and only contain Range clusters. 7570 assert(!Clusters.empty()); 7571 for (CaseCluster &C : Clusters) 7572 assert(C.Kind == CC_Range); 7573 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7574 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7575 #endif 7576 7577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7578 if (!areJTsAllowed(TLI)) 7579 return; 7580 7581 const int64_t N = Clusters.size(); 7582 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7583 7584 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7585 SmallVector<unsigned, 8> TotalCases(N); 7586 7587 for (unsigned i = 0; i < N; ++i) { 7588 APInt Hi = Clusters[i].High->getValue(); 7589 APInt Lo = Clusters[i].Low->getValue(); 7590 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7591 if (i != 0) 7592 TotalCases[i] += TotalCases[i - 1]; 7593 } 7594 7595 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7596 // Cheap case: the whole range might be suitable for jump table. 7597 CaseCluster JTCluster; 7598 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7599 Clusters[0] = JTCluster; 7600 Clusters.resize(1); 7601 return; 7602 } 7603 } 7604 7605 // The algorithm below is not suitable for -O0. 7606 if (TM.getOptLevel() == CodeGenOpt::None) 7607 return; 7608 7609 // Split Clusters into minimum number of dense partitions. The algorithm uses 7610 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7611 // for the Case Statement'" (1994), but builds the MinPartitions array in 7612 // reverse order to make it easier to reconstruct the partitions in ascending 7613 // order. In the choice between two optimal partitionings, it picks the one 7614 // which yields more jump tables. 7615 7616 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7617 SmallVector<unsigned, 8> MinPartitions(N); 7618 // LastElement[i] is the last element of the partition starting at i. 7619 SmallVector<unsigned, 8> LastElement(N); 7620 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7621 SmallVector<unsigned, 8> NumTables(N); 7622 7623 // Base case: There is only one way to partition Clusters[N-1]. 7624 MinPartitions[N - 1] = 1; 7625 LastElement[N - 1] = N - 1; 7626 assert(MinJumpTableSize > 1); 7627 NumTables[N - 1] = 0; 7628 7629 // Note: loop indexes are signed to avoid underflow. 7630 for (int64_t i = N - 2; i >= 0; i--) { 7631 // Find optimal partitioning of Clusters[i..N-1]. 7632 // Baseline: Put Clusters[i] into a partition on its own. 7633 MinPartitions[i] = MinPartitions[i + 1] + 1; 7634 LastElement[i] = i; 7635 NumTables[i] = NumTables[i + 1]; 7636 7637 // Search for a solution that results in fewer partitions. 7638 for (int64_t j = N - 1; j > i; j--) { 7639 // Try building a partition from Clusters[i..j]. 7640 if (isDense(Clusters, &TotalCases[0], i, j)) { 7641 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7642 bool IsTable = j - i + 1 >= MinJumpTableSize; 7643 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7644 7645 // If this j leads to fewer partitions, or same number of partitions 7646 // with more lookup tables, it is a better partitioning. 7647 if (NumPartitions < MinPartitions[i] || 7648 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7649 MinPartitions[i] = NumPartitions; 7650 LastElement[i] = j; 7651 NumTables[i] = Tables; 7652 } 7653 } 7654 } 7655 } 7656 7657 // Iterate over the partitions, replacing some with jump tables in-place. 7658 unsigned DstIndex = 0; 7659 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7660 Last = LastElement[First]; 7661 assert(Last >= First); 7662 assert(DstIndex <= First); 7663 unsigned NumClusters = Last - First + 1; 7664 7665 CaseCluster JTCluster; 7666 if (NumClusters >= MinJumpTableSize && 7667 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7668 Clusters[DstIndex++] = JTCluster; 7669 } else { 7670 for (unsigned I = First; I <= Last; ++I) 7671 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7672 } 7673 } 7674 Clusters.resize(DstIndex); 7675 } 7676 7677 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7678 // FIXME: Using the pointer type doesn't seem ideal. 7679 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7680 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7681 return Range <= BW; 7682 } 7683 7684 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7685 unsigned NumCmps, 7686 const APInt &Low, 7687 const APInt &High) { 7688 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7689 // range of cases both require only one branch to lower. Just looking at the 7690 // number of clusters and destinations should be enough to decide whether to 7691 // build bit tests. 7692 7693 // To lower a range with bit tests, the range must fit the bitwidth of a 7694 // machine word. 7695 if (!rangeFitsInWord(Low, High)) 7696 return false; 7697 7698 // Decide whether it's profitable to lower this range with bit tests. Each 7699 // destination requires a bit test and branch, and there is an overall range 7700 // check branch. For a small number of clusters, separate comparisons might be 7701 // cheaper, and for many destinations, splitting the range might be better. 7702 return (NumDests == 1 && NumCmps >= 3) || 7703 (NumDests == 2 && NumCmps >= 5) || 7704 (NumDests == 3 && NumCmps >= 6); 7705 } 7706 7707 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7708 unsigned First, unsigned Last, 7709 const SwitchInst *SI, 7710 CaseCluster &BTCluster) { 7711 assert(First <= Last); 7712 if (First == Last) 7713 return false; 7714 7715 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7716 unsigned NumCmps = 0; 7717 for (int64_t I = First; I <= Last; ++I) { 7718 assert(Clusters[I].Kind == CC_Range); 7719 Dests.set(Clusters[I].MBB->getNumber()); 7720 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7721 } 7722 unsigned NumDests = Dests.count(); 7723 7724 APInt Low = Clusters[First].Low->getValue(); 7725 APInt High = Clusters[Last].High->getValue(); 7726 assert(Low.slt(High)); 7727 7728 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7729 return false; 7730 7731 APInt LowBound; 7732 APInt CmpRange; 7733 7734 const int BitWidth = DAG.getTargetLoweringInfo() 7735 .getPointerTy(DAG.getDataLayout()) 7736 .getSizeInBits(); 7737 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7738 7739 if (Low.isNonNegative() && High.slt(BitWidth)) { 7740 // Optimize the case where all the case values fit in a 7741 // word without having to subtract minValue. In this case, 7742 // we can optimize away the subtraction. 7743 LowBound = APInt::getNullValue(Low.getBitWidth()); 7744 CmpRange = High; 7745 } else { 7746 LowBound = Low; 7747 CmpRange = High - Low; 7748 } 7749 7750 CaseBitsVector CBV; 7751 uint32_t TotalWeight = 0; 7752 for (unsigned i = First; i <= Last; ++i) { 7753 // Find the CaseBits for this destination. 7754 unsigned j; 7755 for (j = 0; j < CBV.size(); ++j) 7756 if (CBV[j].BB == Clusters[i].MBB) 7757 break; 7758 if (j == CBV.size()) 7759 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7760 CaseBits *CB = &CBV[j]; 7761 7762 // Update Mask, Bits and ExtraWeight. 7763 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7764 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7765 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7766 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7767 CB->Bits += Hi - Lo + 1; 7768 CB->ExtraWeight += Clusters[i].Weight; 7769 TotalWeight += Clusters[i].Weight; 7770 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7771 } 7772 7773 BitTestInfo BTI; 7774 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7775 // Sort by weight first, number of bits second. 7776 if (a.ExtraWeight != b.ExtraWeight) 7777 return a.ExtraWeight > b.ExtraWeight; 7778 return a.Bits > b.Bits; 7779 }); 7780 7781 for (auto &CB : CBV) { 7782 MachineBasicBlock *BitTestBB = 7783 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7784 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7785 } 7786 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7787 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7788 nullptr, std::move(BTI)); 7789 7790 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7791 BitTestCases.size() - 1, TotalWeight); 7792 return true; 7793 } 7794 7795 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7796 const SwitchInst *SI) { 7797 // Partition Clusters into as few subsets as possible, where each subset has a 7798 // range that fits in a machine word and has <= 3 unique destinations. 7799 7800 #ifndef NDEBUG 7801 // Clusters must be sorted and contain Range or JumpTable clusters. 7802 assert(!Clusters.empty()); 7803 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7804 for (const CaseCluster &C : Clusters) 7805 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7806 for (unsigned i = 1; i < Clusters.size(); ++i) 7807 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7808 #endif 7809 7810 // The algorithm below is not suitable for -O0. 7811 if (TM.getOptLevel() == CodeGenOpt::None) 7812 return; 7813 7814 // If target does not have legal shift left, do not emit bit tests at all. 7815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7816 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7817 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7818 return; 7819 7820 int BitWidth = PTy.getSizeInBits(); 7821 const int64_t N = Clusters.size(); 7822 7823 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7824 SmallVector<unsigned, 8> MinPartitions(N); 7825 // LastElement[i] is the last element of the partition starting at i. 7826 SmallVector<unsigned, 8> LastElement(N); 7827 7828 // FIXME: This might not be the best algorithm for finding bit test clusters. 7829 7830 // Base case: There is only one way to partition Clusters[N-1]. 7831 MinPartitions[N - 1] = 1; 7832 LastElement[N - 1] = N - 1; 7833 7834 // Note: loop indexes are signed to avoid underflow. 7835 for (int64_t i = N - 2; i >= 0; --i) { 7836 // Find optimal partitioning of Clusters[i..N-1]. 7837 // Baseline: Put Clusters[i] into a partition on its own. 7838 MinPartitions[i] = MinPartitions[i + 1] + 1; 7839 LastElement[i] = i; 7840 7841 // Search for a solution that results in fewer partitions. 7842 // Note: the search is limited by BitWidth, reducing time complexity. 7843 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7844 // Try building a partition from Clusters[i..j]. 7845 7846 // Check the range. 7847 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7848 Clusters[j].High->getValue())) 7849 continue; 7850 7851 // Check nbr of destinations and cluster types. 7852 // FIXME: This works, but doesn't seem very efficient. 7853 bool RangesOnly = true; 7854 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7855 for (int64_t k = i; k <= j; k++) { 7856 if (Clusters[k].Kind != CC_Range) { 7857 RangesOnly = false; 7858 break; 7859 } 7860 Dests.set(Clusters[k].MBB->getNumber()); 7861 } 7862 if (!RangesOnly || Dests.count() > 3) 7863 break; 7864 7865 // Check if it's a better partition. 7866 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7867 if (NumPartitions < MinPartitions[i]) { 7868 // Found a better partition. 7869 MinPartitions[i] = NumPartitions; 7870 LastElement[i] = j; 7871 } 7872 } 7873 } 7874 7875 // Iterate over the partitions, replacing with bit-test clusters in-place. 7876 unsigned DstIndex = 0; 7877 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7878 Last = LastElement[First]; 7879 assert(First <= Last); 7880 assert(DstIndex <= First); 7881 7882 CaseCluster BitTestCluster; 7883 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7884 Clusters[DstIndex++] = BitTestCluster; 7885 } else { 7886 size_t NumClusters = Last - First + 1; 7887 std::memmove(&Clusters[DstIndex], &Clusters[First], 7888 sizeof(Clusters[0]) * NumClusters); 7889 DstIndex += NumClusters; 7890 } 7891 } 7892 Clusters.resize(DstIndex); 7893 } 7894 7895 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7896 MachineBasicBlock *SwitchMBB, 7897 MachineBasicBlock *DefaultMBB) { 7898 MachineFunction *CurMF = FuncInfo.MF; 7899 MachineBasicBlock *NextMBB = nullptr; 7900 MachineFunction::iterator BBI = W.MBB; 7901 if (++BBI != FuncInfo.MF->end()) 7902 NextMBB = BBI; 7903 7904 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7905 7906 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7907 7908 if (Size == 2 && W.MBB == SwitchMBB) { 7909 // If any two of the cases has the same destination, and if one value 7910 // is the same as the other, but has one bit unset that the other has set, 7911 // use bit manipulation to do two compares at once. For example: 7912 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7913 // TODO: This could be extended to merge any 2 cases in switches with 3 7914 // cases. 7915 // TODO: Handle cases where W.CaseBB != SwitchBB. 7916 CaseCluster &Small = *W.FirstCluster; 7917 CaseCluster &Big = *W.LastCluster; 7918 7919 if (Small.Low == Small.High && Big.Low == Big.High && 7920 Small.MBB == Big.MBB) { 7921 const APInt &SmallValue = Small.Low->getValue(); 7922 const APInt &BigValue = Big.Low->getValue(); 7923 7924 // Check that there is only one bit different. 7925 APInt CommonBit = BigValue ^ SmallValue; 7926 if (CommonBit.isPowerOf2()) { 7927 SDValue CondLHS = getValue(Cond); 7928 EVT VT = CondLHS.getValueType(); 7929 SDLoc DL = getCurSDLoc(); 7930 7931 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7932 DAG.getConstant(CommonBit, DL, VT)); 7933 SDValue Cond = DAG.getSetCC( 7934 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7935 ISD::SETEQ); 7936 7937 // Update successor info. 7938 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7939 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7940 addSuccessorWithWeight( 7941 SwitchMBB, DefaultMBB, 7942 // The default destination is the first successor in IR. 7943 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7944 : 0); 7945 7946 // Insert the true branch. 7947 SDValue BrCond = 7948 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7949 DAG.getBasicBlock(Small.MBB)); 7950 // Insert the false branch. 7951 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7952 DAG.getBasicBlock(DefaultMBB)); 7953 7954 DAG.setRoot(BrCond); 7955 return; 7956 } 7957 } 7958 } 7959 7960 if (TM.getOptLevel() != CodeGenOpt::None) { 7961 // Order cases by weight so the most likely case will be checked first. 7962 std::sort(W.FirstCluster, W.LastCluster + 1, 7963 [](const CaseCluster &a, const CaseCluster &b) { 7964 return a.Weight > b.Weight; 7965 }); 7966 7967 // Rearrange the case blocks so that the last one falls through if possible 7968 // without without changing the order of weights. 7969 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7970 --I; 7971 if (I->Weight > W.LastCluster->Weight) 7972 break; 7973 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7974 std::swap(*I, *W.LastCluster); 7975 break; 7976 } 7977 } 7978 } 7979 7980 // Compute total weight. 7981 uint32_t UnhandledWeights = 0; 7982 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7983 UnhandledWeights += I->Weight; 7984 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7985 } 7986 7987 MachineBasicBlock *CurMBB = W.MBB; 7988 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7989 MachineBasicBlock *Fallthrough; 7990 if (I == W.LastCluster) { 7991 // For the last cluster, fall through to the default destination. 7992 Fallthrough = DefaultMBB; 7993 } else { 7994 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7995 CurMF->insert(BBI, Fallthrough); 7996 // Put Cond in a virtual register to make it available from the new blocks. 7997 ExportFromCurrentBlock(Cond); 7998 } 7999 8000 switch (I->Kind) { 8001 case CC_JumpTable: { 8002 // FIXME: Optimize away range check based on pivot comparisons. 8003 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8004 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8005 8006 // The jump block hasn't been inserted yet; insert it here. 8007 MachineBasicBlock *JumpMBB = JT->MBB; 8008 CurMF->insert(BBI, JumpMBB); 8009 addSuccessorWithWeight(CurMBB, Fallthrough); 8010 addSuccessorWithWeight(CurMBB, JumpMBB); 8011 8012 // The jump table header will be inserted in our current block, do the 8013 // range check, and fall through to our fallthrough block. 8014 JTH->HeaderBB = CurMBB; 8015 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8016 8017 // If we're in the right place, emit the jump table header right now. 8018 if (CurMBB == SwitchMBB) { 8019 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8020 JTH->Emitted = true; 8021 } 8022 break; 8023 } 8024 case CC_BitTests: { 8025 // FIXME: Optimize away range check based on pivot comparisons. 8026 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8027 8028 // The bit test blocks haven't been inserted yet; insert them here. 8029 for (BitTestCase &BTC : BTB->Cases) 8030 CurMF->insert(BBI, BTC.ThisBB); 8031 8032 // Fill in fields of the BitTestBlock. 8033 BTB->Parent = CurMBB; 8034 BTB->Default = Fallthrough; 8035 8036 // If we're in the right place, emit the bit test header header right now. 8037 if (CurMBB ==SwitchMBB) { 8038 visitBitTestHeader(*BTB, SwitchMBB); 8039 BTB->Emitted = true; 8040 } 8041 break; 8042 } 8043 case CC_Range: { 8044 const Value *RHS, *LHS, *MHS; 8045 ISD::CondCode CC; 8046 if (I->Low == I->High) { 8047 // Check Cond == I->Low. 8048 CC = ISD::SETEQ; 8049 LHS = Cond; 8050 RHS=I->Low; 8051 MHS = nullptr; 8052 } else { 8053 // Check I->Low <= Cond <= I->High. 8054 CC = ISD::SETLE; 8055 LHS = I->Low; 8056 MHS = Cond; 8057 RHS = I->High; 8058 } 8059 8060 // The false weight is the sum of all unhandled cases. 8061 UnhandledWeights -= I->Weight; 8062 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8063 UnhandledWeights); 8064 8065 if (CurMBB == SwitchMBB) 8066 visitSwitchCase(CB, SwitchMBB); 8067 else 8068 SwitchCases.push_back(CB); 8069 8070 break; 8071 } 8072 } 8073 CurMBB = Fallthrough; 8074 } 8075 } 8076 8077 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8078 CaseClusterIt First, 8079 CaseClusterIt Last) { 8080 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8081 if (X.Weight != CC.Weight) 8082 return X.Weight > CC.Weight; 8083 8084 // Ties are broken by comparing the case value. 8085 return X.Low->getValue().slt(CC.Low->getValue()); 8086 }); 8087 } 8088 8089 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8090 const SwitchWorkListItem &W, 8091 Value *Cond, 8092 MachineBasicBlock *SwitchMBB) { 8093 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8094 "Clusters not sorted?"); 8095 8096 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8097 8098 // Balance the tree based on branch weights to create a near-optimal (in terms 8099 // of search time given key frequency) binary search tree. See e.g. Kurt 8100 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8101 CaseClusterIt LastLeft = W.FirstCluster; 8102 CaseClusterIt FirstRight = W.LastCluster; 8103 uint32_t LeftWeight = LastLeft->Weight; 8104 uint32_t RightWeight = FirstRight->Weight; 8105 8106 // Move LastLeft and FirstRight towards each other from opposite directions to 8107 // find a partitioning of the clusters which balances the weight on both 8108 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8109 // taken to ensure 0-weight nodes are distributed evenly. 8110 unsigned I = 0; 8111 while (LastLeft + 1 < FirstRight) { 8112 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8113 LeftWeight += (++LastLeft)->Weight; 8114 else 8115 RightWeight += (--FirstRight)->Weight; 8116 I++; 8117 } 8118 8119 for (;;) { 8120 // Our binary search tree differs from a typical BST in that ours can have up 8121 // to three values in each leaf. The pivot selection above doesn't take that 8122 // into account, which means the tree might require more nodes and be less 8123 // efficient. We compensate for this here. 8124 8125 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8126 unsigned NumRight = W.LastCluster - FirstRight + 1; 8127 8128 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8129 // If one side has less than 3 clusters, and the other has more than 3, 8130 // consider taking a cluster from the other side. 8131 8132 if (NumLeft < NumRight) { 8133 // Consider moving the first cluster on the right to the left side. 8134 CaseCluster &CC = *FirstRight; 8135 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8136 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8137 if (LeftSideRank <= RightSideRank) { 8138 // Moving the cluster to the left does not demote it. 8139 ++LastLeft; 8140 ++FirstRight; 8141 continue; 8142 } 8143 } else { 8144 assert(NumRight < NumLeft); 8145 // Consider moving the last element on the left to the right side. 8146 CaseCluster &CC = *LastLeft; 8147 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8148 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8149 if (RightSideRank <= LeftSideRank) { 8150 // Moving the cluster to the right does not demot it. 8151 --LastLeft; 8152 --FirstRight; 8153 continue; 8154 } 8155 } 8156 } 8157 break; 8158 } 8159 8160 assert(LastLeft + 1 == FirstRight); 8161 assert(LastLeft >= W.FirstCluster); 8162 assert(FirstRight <= W.LastCluster); 8163 8164 // Use the first element on the right as pivot since we will make less-than 8165 // comparisons against it. 8166 CaseClusterIt PivotCluster = FirstRight; 8167 assert(PivotCluster > W.FirstCluster); 8168 assert(PivotCluster <= W.LastCluster); 8169 8170 CaseClusterIt FirstLeft = W.FirstCluster; 8171 CaseClusterIt LastRight = W.LastCluster; 8172 8173 const ConstantInt *Pivot = PivotCluster->Low; 8174 8175 // New blocks will be inserted immediately after the current one. 8176 MachineFunction::iterator BBI = W.MBB; 8177 ++BBI; 8178 8179 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8180 // we can branch to its destination directly if it's squeezed exactly in 8181 // between the known lower bound and Pivot - 1. 8182 MachineBasicBlock *LeftMBB; 8183 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8184 FirstLeft->Low == W.GE && 8185 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8186 LeftMBB = FirstLeft->MBB; 8187 } else { 8188 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8189 FuncInfo.MF->insert(BBI, LeftMBB); 8190 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8191 // Put Cond in a virtual register to make it available from the new blocks. 8192 ExportFromCurrentBlock(Cond); 8193 } 8194 8195 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8196 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8197 // directly if RHS.High equals the current upper bound. 8198 MachineBasicBlock *RightMBB; 8199 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8200 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8201 RightMBB = FirstRight->MBB; 8202 } else { 8203 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8204 FuncInfo.MF->insert(BBI, RightMBB); 8205 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8206 // Put Cond in a virtual register to make it available from the new blocks. 8207 ExportFromCurrentBlock(Cond); 8208 } 8209 8210 // Create the CaseBlock record that will be used to lower the branch. 8211 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8212 LeftWeight, RightWeight); 8213 8214 if (W.MBB == SwitchMBB) 8215 visitSwitchCase(CB, SwitchMBB); 8216 else 8217 SwitchCases.push_back(CB); 8218 } 8219 8220 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8221 // Extract cases from the switch. 8222 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8223 CaseClusterVector Clusters; 8224 Clusters.reserve(SI.getNumCases()); 8225 for (auto I : SI.cases()) { 8226 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8227 const ConstantInt *CaseVal = I.getCaseValue(); 8228 uint32_t Weight = 8229 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8230 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8231 } 8232 8233 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8234 8235 // Cluster adjacent cases with the same destination. We do this at all 8236 // optimization levels because it's cheap to do and will make codegen faster 8237 // if there are many clusters. 8238 sortAndRangeify(Clusters); 8239 8240 if (TM.getOptLevel() != CodeGenOpt::None) { 8241 // Replace an unreachable default with the most popular destination. 8242 // FIXME: Exploit unreachable default more aggressively. 8243 bool UnreachableDefault = 8244 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8245 if (UnreachableDefault && !Clusters.empty()) { 8246 DenseMap<const BasicBlock *, unsigned> Popularity; 8247 unsigned MaxPop = 0; 8248 const BasicBlock *MaxBB = nullptr; 8249 for (auto I : SI.cases()) { 8250 const BasicBlock *BB = I.getCaseSuccessor(); 8251 if (++Popularity[BB] > MaxPop) { 8252 MaxPop = Popularity[BB]; 8253 MaxBB = BB; 8254 } 8255 } 8256 // Set new default. 8257 assert(MaxPop > 0 && MaxBB); 8258 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8259 8260 // Remove cases that were pointing to the destination that is now the 8261 // default. 8262 CaseClusterVector New; 8263 New.reserve(Clusters.size()); 8264 for (CaseCluster &CC : Clusters) { 8265 if (CC.MBB != DefaultMBB) 8266 New.push_back(CC); 8267 } 8268 Clusters = std::move(New); 8269 } 8270 } 8271 8272 // If there is only the default destination, jump there directly. 8273 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8274 if (Clusters.empty()) { 8275 SwitchMBB->addSuccessor(DefaultMBB); 8276 if (DefaultMBB != NextBlock(SwitchMBB)) { 8277 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8278 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8279 } 8280 return; 8281 } 8282 8283 findJumpTables(Clusters, &SI, DefaultMBB); 8284 findBitTestClusters(Clusters, &SI); 8285 8286 DEBUG({ 8287 dbgs() << "Case clusters: "; 8288 for (const CaseCluster &C : Clusters) { 8289 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8290 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8291 8292 C.Low->getValue().print(dbgs(), true); 8293 if (C.Low != C.High) { 8294 dbgs() << '-'; 8295 C.High->getValue().print(dbgs(), true); 8296 } 8297 dbgs() << ' '; 8298 } 8299 dbgs() << '\n'; 8300 }); 8301 8302 assert(!Clusters.empty()); 8303 SwitchWorkList WorkList; 8304 CaseClusterIt First = Clusters.begin(); 8305 CaseClusterIt Last = Clusters.end() - 1; 8306 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8307 8308 while (!WorkList.empty()) { 8309 SwitchWorkListItem W = WorkList.back(); 8310 WorkList.pop_back(); 8311 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8312 8313 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8314 // For optimized builds, lower large range as a balanced binary tree. 8315 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8316 continue; 8317 } 8318 8319 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8320 } 8321 } 8322