1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 InlineAsm::Flag Flag(Code, Regs.size()); 999 if (HasMatching) 1000 Flag.setMatchingOp(MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag.setRegClass(RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind::Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 if (VT == MVT::aarch64svcount) { 1742 assert(C->isNullValue() && "Can only zero this target type!"); 1743 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1744 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1745 } 1746 1747 VectorType *VecTy = cast<VectorType>(V->getType()); 1748 1749 // Now that we know the number and type of the elements, get that number of 1750 // elements into the Ops array based on what kind of constant it is. 1751 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1752 SmallVector<SDValue, 16> Ops; 1753 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1754 for (unsigned i = 0; i != NumElements; ++i) 1755 Ops.push_back(getValue(CV->getOperand(i))); 1756 1757 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1758 } 1759 1760 if (isa<ConstantAggregateZero>(C)) { 1761 EVT EltVT = 1762 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1763 1764 SDValue Op; 1765 if (EltVT.isFloatingPoint()) 1766 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1767 else 1768 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1769 1770 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1771 } 1772 1773 llvm_unreachable("Unknown vector constant"); 1774 } 1775 1776 // If this is a static alloca, generate it as the frameindex instead of 1777 // computation. 1778 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1779 DenseMap<const AllocaInst*, int>::iterator SI = 1780 FuncInfo.StaticAllocaMap.find(AI); 1781 if (SI != FuncInfo.StaticAllocaMap.end()) 1782 return DAG.getFrameIndex( 1783 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1784 } 1785 1786 // If this is an instruction which fast-isel has deferred, select it now. 1787 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1788 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1789 1790 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1791 Inst->getType(), std::nullopt); 1792 SDValue Chain = DAG.getEntryNode(); 1793 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1794 } 1795 1796 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1797 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1798 1799 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1800 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1801 1802 llvm_unreachable("Can't get register for value!"); 1803 } 1804 1805 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1806 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1807 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1808 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1809 bool IsSEH = isAsynchronousEHPersonality(Pers); 1810 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1811 if (!IsSEH) 1812 CatchPadMBB->setIsEHScopeEntry(); 1813 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1814 if (IsMSVCCXX || IsCoreCLR) 1815 CatchPadMBB->setIsEHFuncletEntry(); 1816 } 1817 1818 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1819 // Update machine-CFG edge. 1820 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1821 FuncInfo.MBB->addSuccessor(TargetMBB); 1822 TargetMBB->setIsEHCatchretTarget(true); 1823 DAG.getMachineFunction().setHasEHCatchret(true); 1824 1825 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1826 bool IsSEH = isAsynchronousEHPersonality(Pers); 1827 if (IsSEH) { 1828 // If this is not a fall-through branch or optimizations are switched off, 1829 // emit the branch. 1830 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1831 TM.getOptLevel() == CodeGenOptLevel::None) 1832 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1833 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1834 return; 1835 } 1836 1837 // Figure out the funclet membership for the catchret's successor. 1838 // This will be used by the FuncletLayout pass to determine how to order the 1839 // BB's. 1840 // A 'catchret' returns to the outer scope's color. 1841 Value *ParentPad = I.getCatchSwitchParentPad(); 1842 const BasicBlock *SuccessorColor; 1843 if (isa<ConstantTokenNone>(ParentPad)) 1844 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1845 else 1846 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1847 assert(SuccessorColor && "No parent funclet for catchret!"); 1848 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1849 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1850 1851 // Create the terminator node. 1852 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1853 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1854 DAG.getBasicBlock(SuccessorColorMBB)); 1855 DAG.setRoot(Ret); 1856 } 1857 1858 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1859 // Don't emit any special code for the cleanuppad instruction. It just marks 1860 // the start of an EH scope/funclet. 1861 FuncInfo.MBB->setIsEHScopeEntry(); 1862 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1863 if (Pers != EHPersonality::Wasm_CXX) { 1864 FuncInfo.MBB->setIsEHFuncletEntry(); 1865 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1866 } 1867 } 1868 1869 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1870 // not match, it is OK to add only the first unwind destination catchpad to the 1871 // successors, because there will be at least one invoke instruction within the 1872 // catch scope that points to the next unwind destination, if one exists, so 1873 // CFGSort cannot mess up with BB sorting order. 1874 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1875 // call within them, and catchpads only consisting of 'catch (...)' have a 1876 // '__cxa_end_catch' call within them, both of which generate invokes in case 1877 // the next unwind destination exists, i.e., the next unwind destination is not 1878 // the caller.) 1879 // 1880 // Having at most one EH pad successor is also simpler and helps later 1881 // transformations. 1882 // 1883 // For example, 1884 // current: 1885 // invoke void @foo to ... unwind label %catch.dispatch 1886 // catch.dispatch: 1887 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1888 // catch.start: 1889 // ... 1890 // ... in this BB or some other child BB dominated by this BB there will be an 1891 // invoke that points to 'next' BB as an unwind destination 1892 // 1893 // next: ; We don't need to add this to 'current' BB's successor 1894 // ... 1895 static void findWasmUnwindDestinations( 1896 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1897 BranchProbability Prob, 1898 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1899 &UnwindDests) { 1900 while (EHPadBB) { 1901 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1902 if (isa<CleanupPadInst>(Pad)) { 1903 // Stop on cleanup pads. 1904 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1905 UnwindDests.back().first->setIsEHScopeEntry(); 1906 break; 1907 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1908 // Add the catchpad handlers to the possible destinations. We don't 1909 // continue to the unwind destination of the catchswitch for wasm. 1910 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1911 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1912 UnwindDests.back().first->setIsEHScopeEntry(); 1913 } 1914 break; 1915 } else { 1916 continue; 1917 } 1918 } 1919 } 1920 1921 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1922 /// many places it could ultimately go. In the IR, we have a single unwind 1923 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1924 /// This function skips over imaginary basic blocks that hold catchswitch 1925 /// instructions, and finds all the "real" machine 1926 /// basic block destinations. As those destinations may not be successors of 1927 /// EHPadBB, here we also calculate the edge probability to those destinations. 1928 /// The passed-in Prob is the edge probability to EHPadBB. 1929 static void findUnwindDestinations( 1930 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1931 BranchProbability Prob, 1932 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1933 &UnwindDests) { 1934 EHPersonality Personality = 1935 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1936 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1937 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1938 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1939 bool IsSEH = isAsynchronousEHPersonality(Personality); 1940 1941 if (IsWasmCXX) { 1942 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1943 assert(UnwindDests.size() <= 1 && 1944 "There should be at most one unwind destination for wasm"); 1945 return; 1946 } 1947 1948 while (EHPadBB) { 1949 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1950 BasicBlock *NewEHPadBB = nullptr; 1951 if (isa<LandingPadInst>(Pad)) { 1952 // Stop on landingpads. They are not funclets. 1953 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1954 break; 1955 } else if (isa<CleanupPadInst>(Pad)) { 1956 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1957 // personalities. 1958 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1959 UnwindDests.back().first->setIsEHScopeEntry(); 1960 UnwindDests.back().first->setIsEHFuncletEntry(); 1961 break; 1962 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1963 // Add the catchpad handlers to the possible destinations. 1964 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1965 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1966 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1967 if (IsMSVCCXX || IsCoreCLR) 1968 UnwindDests.back().first->setIsEHFuncletEntry(); 1969 if (!IsSEH) 1970 UnwindDests.back().first->setIsEHScopeEntry(); 1971 } 1972 NewEHPadBB = CatchSwitch->getUnwindDest(); 1973 } else { 1974 continue; 1975 } 1976 1977 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1978 if (BPI && NewEHPadBB) 1979 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1980 EHPadBB = NewEHPadBB; 1981 } 1982 } 1983 1984 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1985 // Update successor info. 1986 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1987 auto UnwindDest = I.getUnwindDest(); 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 BranchProbability UnwindDestProb = 1990 (BPI && UnwindDest) 1991 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1992 : BranchProbability::getZero(); 1993 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1994 for (auto &UnwindDest : UnwindDests) { 1995 UnwindDest.first->setIsEHPad(); 1996 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1997 } 1998 FuncInfo.MBB->normalizeSuccProbs(); 1999 2000 // Create the terminator node. 2001 SDValue Ret = 2002 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2003 DAG.setRoot(Ret); 2004 } 2005 2006 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2007 report_fatal_error("visitCatchSwitch not yet implemented!"); 2008 } 2009 2010 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 auto &DL = DAG.getDataLayout(); 2013 SDValue Chain = getControlRoot(); 2014 SmallVector<ISD::OutputArg, 8> Outs; 2015 SmallVector<SDValue, 8> OutVals; 2016 2017 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2018 // lower 2019 // 2020 // %val = call <ty> @llvm.experimental.deoptimize() 2021 // ret <ty> %val 2022 // 2023 // differently. 2024 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2025 LowerDeoptimizingReturn(); 2026 return; 2027 } 2028 2029 if (!FuncInfo.CanLowerReturn) { 2030 unsigned DemoteReg = FuncInfo.DemoteRegister; 2031 const Function *F = I.getParent()->getParent(); 2032 2033 // Emit a store of the return value through the virtual register. 2034 // Leave Outs empty so that LowerReturn won't try to load return 2035 // registers the usual way. 2036 SmallVector<EVT, 1> PtrValueVTs; 2037 ComputeValueVTs(TLI, DL, 2038 PointerType::get(F->getContext(), 2039 DAG.getDataLayout().getAllocaAddrSpace()), 2040 PtrValueVTs); 2041 2042 SDValue RetPtr = 2043 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2044 SDValue RetOp = getValue(I.getOperand(0)); 2045 2046 SmallVector<EVT, 4> ValueVTs, MemVTs; 2047 SmallVector<uint64_t, 4> Offsets; 2048 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2049 &Offsets, 0); 2050 unsigned NumValues = ValueVTs.size(); 2051 2052 SmallVector<SDValue, 4> Chains(NumValues); 2053 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2054 for (unsigned i = 0; i != NumValues; ++i) { 2055 // An aggregate return value cannot wrap around the address space, so 2056 // offsets to its parts don't wrap either. 2057 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2058 TypeSize::Fixed(Offsets[i])); 2059 2060 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2061 if (MemVTs[i] != ValueVTs[i]) 2062 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2063 Chains[i] = DAG.getStore( 2064 Chain, getCurSDLoc(), Val, 2065 // FIXME: better loc info would be nice. 2066 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2067 commonAlignment(BaseAlign, Offsets[i])); 2068 } 2069 2070 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2071 MVT::Other, Chains); 2072 } else if (I.getNumOperands() != 0) { 2073 SmallVector<EVT, 4> ValueVTs; 2074 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2075 unsigned NumValues = ValueVTs.size(); 2076 if (NumValues) { 2077 SDValue RetOp = getValue(I.getOperand(0)); 2078 2079 const Function *F = I.getParent()->getParent(); 2080 2081 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2082 I.getOperand(0)->getType(), F->getCallingConv(), 2083 /*IsVarArg*/ false, DL); 2084 2085 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2086 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2087 ExtendKind = ISD::SIGN_EXTEND; 2088 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2089 ExtendKind = ISD::ZERO_EXTEND; 2090 2091 LLVMContext &Context = F->getContext(); 2092 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2093 2094 for (unsigned j = 0; j != NumValues; ++j) { 2095 EVT VT = ValueVTs[j]; 2096 2097 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2098 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2099 2100 CallingConv::ID CC = F->getCallingConv(); 2101 2102 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2103 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2104 SmallVector<SDValue, 4> Parts(NumParts); 2105 getCopyToParts(DAG, getCurSDLoc(), 2106 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2107 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2108 2109 // 'inreg' on function refers to return value 2110 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2111 if (RetInReg) 2112 Flags.setInReg(); 2113 2114 if (I.getOperand(0)->getType()->isPointerTy()) { 2115 Flags.setPointer(); 2116 Flags.setPointerAddrSpace( 2117 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2118 } 2119 2120 if (NeedsRegBlock) { 2121 Flags.setInConsecutiveRegs(); 2122 if (j == NumValues - 1) 2123 Flags.setInConsecutiveRegsLast(); 2124 } 2125 2126 // Propagate extension type if any 2127 if (ExtendKind == ISD::SIGN_EXTEND) 2128 Flags.setSExt(); 2129 else if (ExtendKind == ISD::ZERO_EXTEND) 2130 Flags.setZExt(); 2131 2132 for (unsigned i = 0; i < NumParts; ++i) { 2133 Outs.push_back(ISD::OutputArg(Flags, 2134 Parts[i].getValueType().getSimpleVT(), 2135 VT, /*isfixed=*/true, 0, 0)); 2136 OutVals.push_back(Parts[i]); 2137 } 2138 } 2139 } 2140 } 2141 2142 // Push in swifterror virtual register as the last element of Outs. This makes 2143 // sure swifterror virtual register will be returned in the swifterror 2144 // physical register. 2145 const Function *F = I.getParent()->getParent(); 2146 if (TLI.supportSwiftError() && 2147 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2148 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2149 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2150 Flags.setSwiftError(); 2151 Outs.push_back(ISD::OutputArg( 2152 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2153 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2154 // Create SDNode for the swifterror virtual register. 2155 OutVals.push_back( 2156 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2157 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2158 EVT(TLI.getPointerTy(DL)))); 2159 } 2160 2161 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2162 CallingConv::ID CallConv = 2163 DAG.getMachineFunction().getFunction().getCallingConv(); 2164 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2165 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2166 2167 // Verify that the target's LowerReturn behaved as expected. 2168 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2169 "LowerReturn didn't return a valid chain!"); 2170 2171 // Update the DAG with the new chain value resulting from return lowering. 2172 DAG.setRoot(Chain); 2173 } 2174 2175 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2176 /// created for it, emit nodes to copy the value into the virtual 2177 /// registers. 2178 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2179 // Skip empty types 2180 if (V->getType()->isEmptyTy()) 2181 return; 2182 2183 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2184 if (VMI != FuncInfo.ValueMap.end()) { 2185 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2186 "Unused value assigned virtual registers!"); 2187 CopyValueToVirtualRegister(V, VMI->second); 2188 } 2189 } 2190 2191 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2192 /// the current basic block, add it to ValueMap now so that we'll get a 2193 /// CopyTo/FromReg. 2194 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2195 // No need to export constants. 2196 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2197 2198 // Already exported? 2199 if (FuncInfo.isExportedInst(V)) return; 2200 2201 Register Reg = FuncInfo.InitializeRegForValue(V); 2202 CopyValueToVirtualRegister(V, Reg); 2203 } 2204 2205 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2206 const BasicBlock *FromBB) { 2207 // The operands of the setcc have to be in this block. We don't know 2208 // how to export them from some other block. 2209 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2210 // Can export from current BB. 2211 if (VI->getParent() == FromBB) 2212 return true; 2213 2214 // Is already exported, noop. 2215 return FuncInfo.isExportedInst(V); 2216 } 2217 2218 // If this is an argument, we can export it if the BB is the entry block or 2219 // if it is already exported. 2220 if (isa<Argument>(V)) { 2221 if (FromBB->isEntryBlock()) 2222 return true; 2223 2224 // Otherwise, can only export this if it is already exported. 2225 return FuncInfo.isExportedInst(V); 2226 } 2227 2228 // Otherwise, constants can always be exported. 2229 return true; 2230 } 2231 2232 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2233 BranchProbability 2234 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2235 const MachineBasicBlock *Dst) const { 2236 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2237 const BasicBlock *SrcBB = Src->getBasicBlock(); 2238 const BasicBlock *DstBB = Dst->getBasicBlock(); 2239 if (!BPI) { 2240 // If BPI is not available, set the default probability as 1 / N, where N is 2241 // the number of successors. 2242 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2243 return BranchProbability(1, SuccSize); 2244 } 2245 return BPI->getEdgeProbability(SrcBB, DstBB); 2246 } 2247 2248 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2249 MachineBasicBlock *Dst, 2250 BranchProbability Prob) { 2251 if (!FuncInfo.BPI) 2252 Src->addSuccessorWithoutProb(Dst); 2253 else { 2254 if (Prob.isUnknown()) 2255 Prob = getEdgeProbability(Src, Dst); 2256 Src->addSuccessor(Dst, Prob); 2257 } 2258 } 2259 2260 static bool InBlock(const Value *V, const BasicBlock *BB) { 2261 if (const Instruction *I = dyn_cast<Instruction>(V)) 2262 return I->getParent() == BB; 2263 return true; 2264 } 2265 2266 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2267 /// This function emits a branch and is used at the leaves of an OR or an 2268 /// AND operator tree. 2269 void 2270 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2271 MachineBasicBlock *TBB, 2272 MachineBasicBlock *FBB, 2273 MachineBasicBlock *CurBB, 2274 MachineBasicBlock *SwitchBB, 2275 BranchProbability TProb, 2276 BranchProbability FProb, 2277 bool InvertCond) { 2278 const BasicBlock *BB = CurBB->getBasicBlock(); 2279 2280 // If the leaf of the tree is a comparison, merge the condition into 2281 // the caseblock. 2282 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2283 // The operands of the cmp have to be in this block. We don't know 2284 // how to export them from some other block. If this is the first block 2285 // of the sequence, no exporting is needed. 2286 if (CurBB == SwitchBB || 2287 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2288 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2289 ISD::CondCode Condition; 2290 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2291 ICmpInst::Predicate Pred = 2292 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2293 Condition = getICmpCondCode(Pred); 2294 } else { 2295 const FCmpInst *FC = cast<FCmpInst>(Cond); 2296 FCmpInst::Predicate Pred = 2297 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2298 Condition = getFCmpCondCode(Pred); 2299 if (TM.Options.NoNaNsFPMath) 2300 Condition = getFCmpCodeWithoutNaN(Condition); 2301 } 2302 2303 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2304 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2305 SL->SwitchCases.push_back(CB); 2306 return; 2307 } 2308 } 2309 2310 // Create a CaseBlock record representing this branch. 2311 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2312 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2313 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2314 SL->SwitchCases.push_back(CB); 2315 } 2316 2317 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2318 MachineBasicBlock *TBB, 2319 MachineBasicBlock *FBB, 2320 MachineBasicBlock *CurBB, 2321 MachineBasicBlock *SwitchBB, 2322 Instruction::BinaryOps Opc, 2323 BranchProbability TProb, 2324 BranchProbability FProb, 2325 bool InvertCond) { 2326 // Skip over not part of the tree and remember to invert op and operands at 2327 // next level. 2328 Value *NotCond; 2329 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2330 InBlock(NotCond, CurBB->getBasicBlock())) { 2331 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2332 !InvertCond); 2333 return; 2334 } 2335 2336 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2337 const Value *BOpOp0, *BOpOp1; 2338 // Compute the effective opcode for Cond, taking into account whether it needs 2339 // to be inverted, e.g. 2340 // and (not (or A, B)), C 2341 // gets lowered as 2342 // and (and (not A, not B), C) 2343 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2344 if (BOp) { 2345 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2346 ? Instruction::And 2347 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2348 ? Instruction::Or 2349 : (Instruction::BinaryOps)0); 2350 if (InvertCond) { 2351 if (BOpc == Instruction::And) 2352 BOpc = Instruction::Or; 2353 else if (BOpc == Instruction::Or) 2354 BOpc = Instruction::And; 2355 } 2356 } 2357 2358 // If this node is not part of the or/and tree, emit it as a branch. 2359 // Note that all nodes in the tree should have same opcode. 2360 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2361 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2362 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2363 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2364 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2365 TProb, FProb, InvertCond); 2366 return; 2367 } 2368 2369 // Create TmpBB after CurBB. 2370 MachineFunction::iterator BBI(CurBB); 2371 MachineFunction &MF = DAG.getMachineFunction(); 2372 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2373 CurBB->getParent()->insert(++BBI, TmpBB); 2374 2375 if (Opc == Instruction::Or) { 2376 // Codegen X | Y as: 2377 // BB1: 2378 // jmp_if_X TBB 2379 // jmp TmpBB 2380 // TmpBB: 2381 // jmp_if_Y TBB 2382 // jmp FBB 2383 // 2384 2385 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2386 // The requirement is that 2387 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2388 // = TrueProb for original BB. 2389 // Assuming the original probabilities are A and B, one choice is to set 2390 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2391 // A/(1+B) and 2B/(1+B). This choice assumes that 2392 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2393 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2394 // TmpBB, but the math is more complicated. 2395 2396 auto NewTrueProb = TProb / 2; 2397 auto NewFalseProb = TProb / 2 + FProb; 2398 // Emit the LHS condition. 2399 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2400 NewFalseProb, InvertCond); 2401 2402 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2403 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2404 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2405 // Emit the RHS condition into TmpBB. 2406 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2407 Probs[1], InvertCond); 2408 } else { 2409 assert(Opc == Instruction::And && "Unknown merge op!"); 2410 // Codegen X & Y as: 2411 // BB1: 2412 // jmp_if_X TmpBB 2413 // jmp FBB 2414 // TmpBB: 2415 // jmp_if_Y TBB 2416 // jmp FBB 2417 // 2418 // This requires creation of TmpBB after CurBB. 2419 2420 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2421 // The requirement is that 2422 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2423 // = FalseProb for original BB. 2424 // Assuming the original probabilities are A and B, one choice is to set 2425 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2426 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2427 // TrueProb for BB1 * FalseProb for TmpBB. 2428 2429 auto NewTrueProb = TProb + FProb / 2; 2430 auto NewFalseProb = FProb / 2; 2431 // Emit the LHS condition. 2432 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2433 NewFalseProb, InvertCond); 2434 2435 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2436 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2437 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2438 // Emit the RHS condition into TmpBB. 2439 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2440 Probs[1], InvertCond); 2441 } 2442 } 2443 2444 /// If the set of cases should be emitted as a series of branches, return true. 2445 /// If we should emit this as a bunch of and/or'd together conditions, return 2446 /// false. 2447 bool 2448 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2449 if (Cases.size() != 2) return true; 2450 2451 // If this is two comparisons of the same values or'd or and'd together, they 2452 // will get folded into a single comparison, so don't emit two blocks. 2453 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2454 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2455 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2456 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2457 return false; 2458 } 2459 2460 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2461 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2462 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2463 Cases[0].CC == Cases[1].CC && 2464 isa<Constant>(Cases[0].CmpRHS) && 2465 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2466 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2467 return false; 2468 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2469 return false; 2470 } 2471 2472 return true; 2473 } 2474 2475 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2476 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2477 2478 // Update machine-CFG edges. 2479 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2480 2481 if (I.isUnconditional()) { 2482 // Update machine-CFG edges. 2483 BrMBB->addSuccessor(Succ0MBB); 2484 2485 // If this is not a fall-through branch or optimizations are switched off, 2486 // emit the branch. 2487 if (Succ0MBB != NextBlock(BrMBB) || 2488 TM.getOptLevel() == CodeGenOptLevel::None) { 2489 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2490 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2491 setValue(&I, Br); 2492 DAG.setRoot(Br); 2493 } 2494 2495 return; 2496 } 2497 2498 // If this condition is one of the special cases we handle, do special stuff 2499 // now. 2500 const Value *CondVal = I.getCondition(); 2501 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2502 2503 // If this is a series of conditions that are or'd or and'd together, emit 2504 // this as a sequence of branches instead of setcc's with and/or operations. 2505 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2506 // unpredictable branches, and vector extracts because those jumps are likely 2507 // expensive for any target), this should improve performance. 2508 // For example, instead of something like: 2509 // cmp A, B 2510 // C = seteq 2511 // cmp D, E 2512 // F = setle 2513 // or C, F 2514 // jnz foo 2515 // Emit: 2516 // cmp A, B 2517 // je foo 2518 // cmp D, E 2519 // jle foo 2520 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2521 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2522 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2523 Value *Vec; 2524 const Value *BOp0, *BOp1; 2525 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2526 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2527 Opcode = Instruction::And; 2528 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2529 Opcode = Instruction::Or; 2530 2531 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2532 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2533 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2534 getEdgeProbability(BrMBB, Succ0MBB), 2535 getEdgeProbability(BrMBB, Succ1MBB), 2536 /*InvertCond=*/false); 2537 // If the compares in later blocks need to use values not currently 2538 // exported from this block, export them now. This block should always 2539 // be the first entry. 2540 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2541 2542 // Allow some cases to be rejected. 2543 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2544 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2545 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2546 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2547 } 2548 2549 // Emit the branch for this block. 2550 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2551 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2552 return; 2553 } 2554 2555 // Okay, we decided not to do this, remove any inserted MBB's and clear 2556 // SwitchCases. 2557 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2558 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2559 2560 SL->SwitchCases.clear(); 2561 } 2562 } 2563 2564 // Create a CaseBlock record representing this branch. 2565 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2566 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2567 2568 // Use visitSwitchCase to actually insert the fast branch sequence for this 2569 // cond branch. 2570 visitSwitchCase(CB, BrMBB); 2571 } 2572 2573 /// visitSwitchCase - Emits the necessary code to represent a single node in 2574 /// the binary search tree resulting from lowering a switch instruction. 2575 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2576 MachineBasicBlock *SwitchBB) { 2577 SDValue Cond; 2578 SDValue CondLHS = getValue(CB.CmpLHS); 2579 SDLoc dl = CB.DL; 2580 2581 if (CB.CC == ISD::SETTRUE) { 2582 // Branch or fall through to TrueBB. 2583 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2584 SwitchBB->normalizeSuccProbs(); 2585 if (CB.TrueBB != NextBlock(SwitchBB)) { 2586 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2587 DAG.getBasicBlock(CB.TrueBB))); 2588 } 2589 return; 2590 } 2591 2592 auto &TLI = DAG.getTargetLoweringInfo(); 2593 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2594 2595 // Build the setcc now. 2596 if (!CB.CmpMHS) { 2597 // Fold "(X == true)" to X and "(X == false)" to !X to 2598 // handle common cases produced by branch lowering. 2599 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2600 CB.CC == ISD::SETEQ) 2601 Cond = CondLHS; 2602 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2603 CB.CC == ISD::SETEQ) { 2604 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2605 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2606 } else { 2607 SDValue CondRHS = getValue(CB.CmpRHS); 2608 2609 // If a pointer's DAG type is larger than its memory type then the DAG 2610 // values are zero-extended. This breaks signed comparisons so truncate 2611 // back to the underlying type before doing the compare. 2612 if (CondLHS.getValueType() != MemVT) { 2613 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2614 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2615 } 2616 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2617 } 2618 } else { 2619 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2620 2621 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2622 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2623 2624 SDValue CmpOp = getValue(CB.CmpMHS); 2625 EVT VT = CmpOp.getValueType(); 2626 2627 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2628 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2629 ISD::SETLE); 2630 } else { 2631 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2632 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2633 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2634 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2635 } 2636 } 2637 2638 // Update successor info 2639 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2640 // TrueBB and FalseBB are always different unless the incoming IR is 2641 // degenerate. This only happens when running llc on weird IR. 2642 if (CB.TrueBB != CB.FalseBB) 2643 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2644 SwitchBB->normalizeSuccProbs(); 2645 2646 // If the lhs block is the next block, invert the condition so that we can 2647 // fall through to the lhs instead of the rhs block. 2648 if (CB.TrueBB == NextBlock(SwitchBB)) { 2649 std::swap(CB.TrueBB, CB.FalseBB); 2650 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2651 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2652 } 2653 2654 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2655 MVT::Other, getControlRoot(), Cond, 2656 DAG.getBasicBlock(CB.TrueBB)); 2657 2658 setValue(CurInst, BrCond); 2659 2660 // Insert the false branch. Do this even if it's a fall through branch, 2661 // this makes it easier to do DAG optimizations which require inverting 2662 // the branch condition. 2663 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2664 DAG.getBasicBlock(CB.FalseBB)); 2665 2666 DAG.setRoot(BrCond); 2667 } 2668 2669 /// visitJumpTable - Emit JumpTable node in the current MBB 2670 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2671 // Emit the code for the jump table 2672 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2673 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2674 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2675 JT.Reg, PTy); 2676 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2677 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2678 MVT::Other, Index.getValue(1), 2679 Table, Index); 2680 DAG.setRoot(BrJumpTable); 2681 } 2682 2683 /// visitJumpTableHeader - This function emits necessary code to produce index 2684 /// in the JumpTable from switch case. 2685 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2686 JumpTableHeader &JTH, 2687 MachineBasicBlock *SwitchBB) { 2688 SDLoc dl = getCurSDLoc(); 2689 2690 // Subtract the lowest switch case value from the value being switched on. 2691 SDValue SwitchOp = getValue(JTH.SValue); 2692 EVT VT = SwitchOp.getValueType(); 2693 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2694 DAG.getConstant(JTH.First, dl, VT)); 2695 2696 // The SDNode we just created, which holds the value being switched on minus 2697 // the smallest case value, needs to be copied to a virtual register so it 2698 // can be used as an index into the jump table in a subsequent basic block. 2699 // This value may be smaller or larger than the target's pointer type, and 2700 // therefore require extension or truncating. 2701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2702 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2703 2704 unsigned JumpTableReg = 2705 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2706 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2707 JumpTableReg, SwitchOp); 2708 JT.Reg = JumpTableReg; 2709 2710 if (!JTH.FallthroughUnreachable) { 2711 // Emit the range check for the jump table, and branch to the default block 2712 // for the switch statement if the value being switched on exceeds the 2713 // largest case in the switch. 2714 SDValue CMP = DAG.getSetCC( 2715 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2716 Sub.getValueType()), 2717 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2718 2719 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, CopyTo, CMP, 2721 DAG.getBasicBlock(JT.Default)); 2722 2723 // Avoid emitting unnecessary branches to the next block. 2724 if (JT.MBB != NextBlock(SwitchBB)) 2725 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2726 DAG.getBasicBlock(JT.MBB)); 2727 2728 DAG.setRoot(BrCond); 2729 } else { 2730 // Avoid emitting unnecessary branches to the next block. 2731 if (JT.MBB != NextBlock(SwitchBB)) 2732 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2733 DAG.getBasicBlock(JT.MBB))); 2734 else 2735 DAG.setRoot(CopyTo); 2736 } 2737 } 2738 2739 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2740 /// variable if there exists one. 2741 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2742 SDValue &Chain) { 2743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2744 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2745 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2746 MachineFunction &MF = DAG.getMachineFunction(); 2747 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2748 MachineSDNode *Node = 2749 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2750 if (Global) { 2751 MachinePointerInfo MPInfo(Global); 2752 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2753 MachineMemOperand::MODereferenceable; 2754 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2755 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2756 DAG.setNodeMemRefs(Node, {MemRef}); 2757 } 2758 if (PtrTy != PtrMemTy) 2759 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2760 return SDValue(Node, 0); 2761 } 2762 2763 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2764 /// tail spliced into a stack protector check success bb. 2765 /// 2766 /// For a high level explanation of how this fits into the stack protector 2767 /// generation see the comment on the declaration of class 2768 /// StackProtectorDescriptor. 2769 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2770 MachineBasicBlock *ParentBB) { 2771 2772 // First create the loads to the guard/stack slot for the comparison. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2775 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2776 2777 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2778 int FI = MFI.getStackProtectorIndex(); 2779 2780 SDValue Guard; 2781 SDLoc dl = getCurSDLoc(); 2782 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2783 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2784 Align Align = 2785 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2786 2787 // Generate code to load the content of the guard slot. 2788 SDValue GuardVal = DAG.getLoad( 2789 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2790 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2791 MachineMemOperand::MOVolatile); 2792 2793 if (TLI.useStackGuardXorFP()) 2794 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2795 2796 // Retrieve guard check function, nullptr if instrumentation is inlined. 2797 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2798 // The target provides a guard check function to validate the guard value. 2799 // Generate a call to that function with the content of the guard slot as 2800 // argument. 2801 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2802 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2803 2804 TargetLowering::ArgListTy Args; 2805 TargetLowering::ArgListEntry Entry; 2806 Entry.Node = GuardVal; 2807 Entry.Ty = FnTy->getParamType(0); 2808 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2809 Entry.IsInReg = true; 2810 Args.push_back(Entry); 2811 2812 TargetLowering::CallLoweringInfo CLI(DAG); 2813 CLI.setDebugLoc(getCurSDLoc()) 2814 .setChain(DAG.getEntryNode()) 2815 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2816 getValue(GuardCheckFn), std::move(Args)); 2817 2818 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2819 DAG.setRoot(Result.second); 2820 return; 2821 } 2822 2823 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2824 // Otherwise, emit a volatile load to retrieve the stack guard value. 2825 SDValue Chain = DAG.getEntryNode(); 2826 if (TLI.useLoadStackGuardNode()) { 2827 Guard = getLoadStackGuard(DAG, dl, Chain); 2828 } else { 2829 const Value *IRGuard = TLI.getSDagStackGuard(M); 2830 SDValue GuardPtr = getValue(IRGuard); 2831 2832 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2833 MachinePointerInfo(IRGuard, 0), Align, 2834 MachineMemOperand::MOVolatile); 2835 } 2836 2837 // Perform the comparison via a getsetcc. 2838 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2839 *DAG.getContext(), 2840 Guard.getValueType()), 2841 Guard, GuardVal, ISD::SETNE); 2842 2843 // If the guard/stackslot do not equal, branch to failure MBB. 2844 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2845 MVT::Other, GuardVal.getOperand(0), 2846 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2847 // Otherwise branch to success MBB. 2848 SDValue Br = DAG.getNode(ISD::BR, dl, 2849 MVT::Other, BrCond, 2850 DAG.getBasicBlock(SPD.getSuccessMBB())); 2851 2852 DAG.setRoot(Br); 2853 } 2854 2855 /// Codegen the failure basic block for a stack protector check. 2856 /// 2857 /// A failure stack protector machine basic block consists simply of a call to 2858 /// __stack_chk_fail(). 2859 /// 2860 /// For a high level explanation of how this fits into the stack protector 2861 /// generation see the comment on the declaration of class 2862 /// StackProtectorDescriptor. 2863 void 2864 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2866 TargetLowering::MakeLibCallOptions CallOptions; 2867 CallOptions.setDiscardResult(true); 2868 SDValue Chain = 2869 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2870 std::nullopt, CallOptions, getCurSDLoc()) 2871 .second; 2872 // On PS4/PS5, the "return address" must still be within the calling 2873 // function, even if it's at the very end, so emit an explicit TRAP here. 2874 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2875 if (TM.getTargetTriple().isPS()) 2876 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2877 // WebAssembly needs an unreachable instruction after a non-returning call, 2878 // because the function return type can be different from __stack_chk_fail's 2879 // return type (void). 2880 if (TM.getTargetTriple().isWasm()) 2881 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2882 2883 DAG.setRoot(Chain); 2884 } 2885 2886 /// visitBitTestHeader - This function emits necessary code to produce value 2887 /// suitable for "bit tests" 2888 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2889 MachineBasicBlock *SwitchBB) { 2890 SDLoc dl = getCurSDLoc(); 2891 2892 // Subtract the minimum value. 2893 SDValue SwitchOp = getValue(B.SValue); 2894 EVT VT = SwitchOp.getValueType(); 2895 SDValue RangeSub = 2896 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2897 2898 // Determine the type of the test operands. 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 bool UsePtrType = false; 2901 if (!TLI.isTypeLegal(VT)) { 2902 UsePtrType = true; 2903 } else { 2904 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2905 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2906 // Switch table case range are encoded into series of masks. 2907 // Just use pointer type, it's guaranteed to fit. 2908 UsePtrType = true; 2909 break; 2910 } 2911 } 2912 SDValue Sub = RangeSub; 2913 if (UsePtrType) { 2914 VT = TLI.getPointerTy(DAG.getDataLayout()); 2915 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2916 } 2917 2918 B.RegVT = VT.getSimpleVT(); 2919 B.Reg = FuncInfo.CreateReg(B.RegVT); 2920 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2921 2922 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2923 2924 if (!B.FallthroughUnreachable) 2925 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2926 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2927 SwitchBB->normalizeSuccProbs(); 2928 2929 SDValue Root = CopyTo; 2930 if (!B.FallthroughUnreachable) { 2931 // Conditional branch to the default block. 2932 SDValue RangeCmp = DAG.getSetCC(dl, 2933 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2934 RangeSub.getValueType()), 2935 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2936 ISD::SETUGT); 2937 2938 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2939 DAG.getBasicBlock(B.Default)); 2940 } 2941 2942 // Avoid emitting unnecessary branches to the next block. 2943 if (MBB != NextBlock(SwitchBB)) 2944 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2945 2946 DAG.setRoot(Root); 2947 } 2948 2949 /// visitBitTestCase - this function produces one "bit test" 2950 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2951 MachineBasicBlock* NextMBB, 2952 BranchProbability BranchProbToNext, 2953 unsigned Reg, 2954 BitTestCase &B, 2955 MachineBasicBlock *SwitchBB) { 2956 SDLoc dl = getCurSDLoc(); 2957 MVT VT = BB.RegVT; 2958 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2959 SDValue Cmp; 2960 unsigned PopCount = llvm::popcount(B.Mask); 2961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2962 if (PopCount == 1) { 2963 // Testing for a single bit; just compare the shift count with what it 2964 // would need to be to shift a 1 bit in that position. 2965 Cmp = DAG.getSetCC( 2966 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2967 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2968 ISD::SETEQ); 2969 } else if (PopCount == BB.Range) { 2970 // There is only one zero bit in the range, test for it directly. 2971 Cmp = DAG.getSetCC( 2972 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2973 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2974 } else { 2975 // Make desired shift 2976 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2977 DAG.getConstant(1, dl, VT), ShiftOp); 2978 2979 // Emit bit tests and jumps 2980 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2981 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2982 Cmp = DAG.getSetCC( 2983 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2984 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2985 } 2986 2987 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2988 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2989 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2990 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2991 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2992 // one as they are relative probabilities (and thus work more like weights), 2993 // and hence we need to normalize them to let the sum of them become one. 2994 SwitchBB->normalizeSuccProbs(); 2995 2996 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2997 MVT::Other, getControlRoot(), 2998 Cmp, DAG.getBasicBlock(B.TargetBB)); 2999 3000 // Avoid emitting unnecessary branches to the next block. 3001 if (NextMBB != NextBlock(SwitchBB)) 3002 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3003 DAG.getBasicBlock(NextMBB)); 3004 3005 DAG.setRoot(BrAnd); 3006 } 3007 3008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3010 3011 // Retrieve successors. Look through artificial IR level blocks like 3012 // catchswitch for successors. 3013 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3014 const BasicBlock *EHPadBB = I.getSuccessor(1); 3015 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3016 3017 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3018 // have to do anything here to lower funclet bundles. 3019 assert(!I.hasOperandBundlesOtherThan( 3020 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3021 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3022 LLVMContext::OB_cfguardtarget, 3023 LLVMContext::OB_clang_arc_attachedcall}) && 3024 "Cannot lower invokes with arbitrary operand bundles yet!"); 3025 3026 const Value *Callee(I.getCalledOperand()); 3027 const Function *Fn = dyn_cast<Function>(Callee); 3028 if (isa<InlineAsm>(Callee)) 3029 visitInlineAsm(I, EHPadBB); 3030 else if (Fn && Fn->isIntrinsic()) { 3031 switch (Fn->getIntrinsicID()) { 3032 default: 3033 llvm_unreachable("Cannot invoke this intrinsic"); 3034 case Intrinsic::donothing: 3035 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3036 case Intrinsic::seh_try_begin: 3037 case Intrinsic::seh_scope_begin: 3038 case Intrinsic::seh_try_end: 3039 case Intrinsic::seh_scope_end: 3040 if (EHPadMBB) 3041 // a block referenced by EH table 3042 // so dtor-funclet not removed by opts 3043 EHPadMBB->setMachineBlockAddressTaken(); 3044 break; 3045 case Intrinsic::experimental_patchpoint_void: 3046 case Intrinsic::experimental_patchpoint_i64: 3047 visitPatchpoint(I, EHPadBB); 3048 break; 3049 case Intrinsic::experimental_gc_statepoint: 3050 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3051 break; 3052 case Intrinsic::wasm_rethrow: { 3053 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3054 // special because it can be invoked, so we manually lower it to a DAG 3055 // node here. 3056 SmallVector<SDValue, 8> Ops; 3057 Ops.push_back(getRoot()); // inchain 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 Ops.push_back( 3060 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3061 TLI.getPointerTy(DAG.getDataLayout()))); 3062 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3063 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3064 break; 3065 } 3066 } 3067 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3068 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3069 // Eventually we will support lowering the @llvm.experimental.deoptimize 3070 // intrinsic, and right now there are no plans to support other intrinsics 3071 // with deopt state. 3072 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3073 } else { 3074 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3075 } 3076 3077 // If the value of the invoke is used outside of its defining block, make it 3078 // available as a virtual register. 3079 // We already took care of the exported value for the statepoint instruction 3080 // during call to the LowerStatepoint. 3081 if (!isa<GCStatepointInst>(I)) { 3082 CopyToExportRegsIfNeeded(&I); 3083 } 3084 3085 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3086 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3087 BranchProbability EHPadBBProb = 3088 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3089 : BranchProbability::getZero(); 3090 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3091 3092 // Update successor info. 3093 addSuccessorWithProb(InvokeMBB, Return); 3094 for (auto &UnwindDest : UnwindDests) { 3095 UnwindDest.first->setIsEHPad(); 3096 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3097 } 3098 InvokeMBB->normalizeSuccProbs(); 3099 3100 // Drop into normal successor. 3101 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3102 DAG.getBasicBlock(Return))); 3103 } 3104 3105 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3106 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3107 3108 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3109 // have to do anything here to lower funclet bundles. 3110 assert(!I.hasOperandBundlesOtherThan( 3111 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3112 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3113 3114 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3115 visitInlineAsm(I); 3116 CopyToExportRegsIfNeeded(&I); 3117 3118 // Retrieve successors. 3119 SmallPtrSet<BasicBlock *, 8> Dests; 3120 Dests.insert(I.getDefaultDest()); 3121 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3122 3123 // Update successor info. 3124 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3125 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3126 BasicBlock *Dest = I.getIndirectDest(i); 3127 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3128 Target->setIsInlineAsmBrIndirectTarget(); 3129 Target->setMachineBlockAddressTaken(); 3130 Target->setLabelMustBeEmitted(); 3131 // Don't add duplicate machine successors. 3132 if (Dests.insert(Dest).second) 3133 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3134 } 3135 CallBrMBB->normalizeSuccProbs(); 3136 3137 // Drop into default successor. 3138 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3139 MVT::Other, getControlRoot(), 3140 DAG.getBasicBlock(Return))); 3141 } 3142 3143 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3144 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3145 } 3146 3147 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3148 assert(FuncInfo.MBB->isEHPad() && 3149 "Call to landingpad not in landing pad!"); 3150 3151 // If there aren't registers to copy the values into (e.g., during SjLj 3152 // exceptions), then don't bother to create these DAG nodes. 3153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3154 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3155 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3156 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3157 return; 3158 3159 // If landingpad's return type is token type, we don't create DAG nodes 3160 // for its exception pointer and selector value. The extraction of exception 3161 // pointer or selector value from token type landingpads is not currently 3162 // supported. 3163 if (LP.getType()->isTokenTy()) 3164 return; 3165 3166 SmallVector<EVT, 2> ValueVTs; 3167 SDLoc dl = getCurSDLoc(); 3168 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3169 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3170 3171 // Get the two live-in registers as SDValues. The physregs have already been 3172 // copied into virtual registers. 3173 SDValue Ops[2]; 3174 if (FuncInfo.ExceptionPointerVirtReg) { 3175 Ops[0] = DAG.getZExtOrTrunc( 3176 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3177 FuncInfo.ExceptionPointerVirtReg, 3178 TLI.getPointerTy(DAG.getDataLayout())), 3179 dl, ValueVTs[0]); 3180 } else { 3181 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3182 } 3183 Ops[1] = DAG.getZExtOrTrunc( 3184 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3185 FuncInfo.ExceptionSelectorVirtReg, 3186 TLI.getPointerTy(DAG.getDataLayout())), 3187 dl, ValueVTs[1]); 3188 3189 // Merge into one. 3190 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3191 DAG.getVTList(ValueVTs), Ops); 3192 setValue(&LP, Res); 3193 } 3194 3195 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3196 MachineBasicBlock *Last) { 3197 // Update JTCases. 3198 for (JumpTableBlock &JTB : SL->JTCases) 3199 if (JTB.first.HeaderBB == First) 3200 JTB.first.HeaderBB = Last; 3201 3202 // Update BitTestCases. 3203 for (BitTestBlock &BTB : SL->BitTestCases) 3204 if (BTB.Parent == First) 3205 BTB.Parent = Last; 3206 } 3207 3208 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3209 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3210 3211 // Update machine-CFG edges with unique successors. 3212 SmallSet<BasicBlock*, 32> Done; 3213 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3214 BasicBlock *BB = I.getSuccessor(i); 3215 bool Inserted = Done.insert(BB).second; 3216 if (!Inserted) 3217 continue; 3218 3219 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3220 addSuccessorWithProb(IndirectBrMBB, Succ); 3221 } 3222 IndirectBrMBB->normalizeSuccProbs(); 3223 3224 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3225 MVT::Other, getControlRoot(), 3226 getValue(I.getAddress()))); 3227 } 3228 3229 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3230 if (!DAG.getTarget().Options.TrapUnreachable) 3231 return; 3232 3233 // We may be able to ignore unreachable behind a noreturn call. 3234 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3235 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3236 if (Call->doesNotReturn()) 3237 return; 3238 } 3239 } 3240 3241 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3242 } 3243 3244 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3245 SDNodeFlags Flags; 3246 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3247 Flags.copyFMF(*FPOp); 3248 3249 SDValue Op = getValue(I.getOperand(0)); 3250 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3251 Op, Flags); 3252 setValue(&I, UnNodeValue); 3253 } 3254 3255 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3256 SDNodeFlags Flags; 3257 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3258 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3259 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3260 } 3261 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3262 Flags.setExact(ExactOp->isExact()); 3263 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3264 Flags.copyFMF(*FPOp); 3265 3266 SDValue Op1 = getValue(I.getOperand(0)); 3267 SDValue Op2 = getValue(I.getOperand(1)); 3268 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3269 Op1, Op2, Flags); 3270 setValue(&I, BinNodeValue); 3271 } 3272 3273 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3274 SDValue Op1 = getValue(I.getOperand(0)); 3275 SDValue Op2 = getValue(I.getOperand(1)); 3276 3277 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3278 Op1.getValueType(), DAG.getDataLayout()); 3279 3280 // Coerce the shift amount to the right type if we can. This exposes the 3281 // truncate or zext to optimization early. 3282 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3283 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3284 "Unexpected shift type"); 3285 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3286 } 3287 3288 bool nuw = false; 3289 bool nsw = false; 3290 bool exact = false; 3291 3292 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3293 3294 if (const OverflowingBinaryOperator *OFBinOp = 3295 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3296 nuw = OFBinOp->hasNoUnsignedWrap(); 3297 nsw = OFBinOp->hasNoSignedWrap(); 3298 } 3299 if (const PossiblyExactOperator *ExactOp = 3300 dyn_cast<const PossiblyExactOperator>(&I)) 3301 exact = ExactOp->isExact(); 3302 } 3303 SDNodeFlags Flags; 3304 Flags.setExact(exact); 3305 Flags.setNoSignedWrap(nsw); 3306 Flags.setNoUnsignedWrap(nuw); 3307 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3308 Flags); 3309 setValue(&I, Res); 3310 } 3311 3312 void SelectionDAGBuilder::visitSDiv(const User &I) { 3313 SDValue Op1 = getValue(I.getOperand(0)); 3314 SDValue Op2 = getValue(I.getOperand(1)); 3315 3316 SDNodeFlags Flags; 3317 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3318 cast<PossiblyExactOperator>(&I)->isExact()); 3319 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3320 Op2, Flags)); 3321 } 3322 3323 void SelectionDAGBuilder::visitICmp(const User &I) { 3324 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3325 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3326 predicate = IC->getPredicate(); 3327 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3328 predicate = ICmpInst::Predicate(IC->getPredicate()); 3329 SDValue Op1 = getValue(I.getOperand(0)); 3330 SDValue Op2 = getValue(I.getOperand(1)); 3331 ISD::CondCode Opcode = getICmpCondCode(predicate); 3332 3333 auto &TLI = DAG.getTargetLoweringInfo(); 3334 EVT MemVT = 3335 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3336 3337 // If a pointer's DAG type is larger than its memory type then the DAG values 3338 // are zero-extended. This breaks signed comparisons so truncate back to the 3339 // underlying type before doing the compare. 3340 if (Op1.getValueType() != MemVT) { 3341 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3342 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3343 } 3344 3345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3346 I.getType()); 3347 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3348 } 3349 3350 void SelectionDAGBuilder::visitFCmp(const User &I) { 3351 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3352 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3353 predicate = FC->getPredicate(); 3354 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3355 predicate = FCmpInst::Predicate(FC->getPredicate()); 3356 SDValue Op1 = getValue(I.getOperand(0)); 3357 SDValue Op2 = getValue(I.getOperand(1)); 3358 3359 ISD::CondCode Condition = getFCmpCondCode(predicate); 3360 auto *FPMO = cast<FPMathOperator>(&I); 3361 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3362 Condition = getFCmpCodeWithoutNaN(Condition); 3363 3364 SDNodeFlags Flags; 3365 Flags.copyFMF(*FPMO); 3366 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3367 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3371 } 3372 3373 // Check if the condition of the select has one use or two users that are both 3374 // selects with the same condition. 3375 static bool hasOnlySelectUsers(const Value *Cond) { 3376 return llvm::all_of(Cond->users(), [](const Value *V) { 3377 return isa<SelectInst>(V); 3378 }); 3379 } 3380 3381 void SelectionDAGBuilder::visitSelect(const User &I) { 3382 SmallVector<EVT, 4> ValueVTs; 3383 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3384 ValueVTs); 3385 unsigned NumValues = ValueVTs.size(); 3386 if (NumValues == 0) return; 3387 3388 SmallVector<SDValue, 4> Values(NumValues); 3389 SDValue Cond = getValue(I.getOperand(0)); 3390 SDValue LHSVal = getValue(I.getOperand(1)); 3391 SDValue RHSVal = getValue(I.getOperand(2)); 3392 SmallVector<SDValue, 1> BaseOps(1, Cond); 3393 ISD::NodeType OpCode = 3394 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3395 3396 bool IsUnaryAbs = false; 3397 bool Negate = false; 3398 3399 SDNodeFlags Flags; 3400 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3401 Flags.copyFMF(*FPOp); 3402 3403 Flags.setUnpredictable( 3404 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3405 3406 // Min/max matching is only viable if all output VTs are the same. 3407 if (all_equal(ValueVTs)) { 3408 EVT VT = ValueVTs[0]; 3409 LLVMContext &Ctx = *DAG.getContext(); 3410 auto &TLI = DAG.getTargetLoweringInfo(); 3411 3412 // We care about the legality of the operation after it has been type 3413 // legalized. 3414 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3415 VT = TLI.getTypeToTransformTo(Ctx, VT); 3416 3417 // If the vselect is legal, assume we want to leave this as a vector setcc + 3418 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3419 // min/max is legal on the scalar type. 3420 bool UseScalarMinMax = VT.isVector() && 3421 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3422 3423 // ValueTracking's select pattern matching does not account for -0.0, 3424 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3425 // -0.0 is less than +0.0. 3426 Value *LHS, *RHS; 3427 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3428 ISD::NodeType Opc = ISD::DELETED_NODE; 3429 switch (SPR.Flavor) { 3430 case SPF_UMAX: Opc = ISD::UMAX; break; 3431 case SPF_UMIN: Opc = ISD::UMIN; break; 3432 case SPF_SMAX: Opc = ISD::SMAX; break; 3433 case SPF_SMIN: Opc = ISD::SMIN; break; 3434 case SPF_FMINNUM: 3435 switch (SPR.NaNBehavior) { 3436 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3437 case SPNB_RETURNS_NAN: break; 3438 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3439 case SPNB_RETURNS_ANY: 3440 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3441 (UseScalarMinMax && 3442 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3443 Opc = ISD::FMINNUM; 3444 break; 3445 } 3446 break; 3447 case SPF_FMAXNUM: 3448 switch (SPR.NaNBehavior) { 3449 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3450 case SPNB_RETURNS_NAN: break; 3451 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3452 case SPNB_RETURNS_ANY: 3453 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3454 (UseScalarMinMax && 3455 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3456 Opc = ISD::FMAXNUM; 3457 break; 3458 } 3459 break; 3460 case SPF_NABS: 3461 Negate = true; 3462 [[fallthrough]]; 3463 case SPF_ABS: 3464 IsUnaryAbs = true; 3465 Opc = ISD::ABS; 3466 break; 3467 default: break; 3468 } 3469 3470 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3471 (TLI.isOperationLegalOrCustom(Opc, VT) || 3472 (UseScalarMinMax && 3473 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3474 // If the underlying comparison instruction is used by any other 3475 // instruction, the consumed instructions won't be destroyed, so it is 3476 // not profitable to convert to a min/max. 3477 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3478 OpCode = Opc; 3479 LHSVal = getValue(LHS); 3480 RHSVal = getValue(RHS); 3481 BaseOps.clear(); 3482 } 3483 3484 if (IsUnaryAbs) { 3485 OpCode = Opc; 3486 LHSVal = getValue(LHS); 3487 BaseOps.clear(); 3488 } 3489 } 3490 3491 if (IsUnaryAbs) { 3492 for (unsigned i = 0; i != NumValues; ++i) { 3493 SDLoc dl = getCurSDLoc(); 3494 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3495 Values[i] = 3496 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3497 if (Negate) 3498 Values[i] = DAG.getNegative(Values[i], dl, VT); 3499 } 3500 } else { 3501 for (unsigned i = 0; i != NumValues; ++i) { 3502 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3503 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3504 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3505 Values[i] = DAG.getNode( 3506 OpCode, getCurSDLoc(), 3507 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3508 } 3509 } 3510 3511 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3512 DAG.getVTList(ValueVTs), Values)); 3513 } 3514 3515 void SelectionDAGBuilder::visitTrunc(const User &I) { 3516 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3517 SDValue N = getValue(I.getOperand(0)); 3518 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3519 I.getType()); 3520 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3521 } 3522 3523 void SelectionDAGBuilder::visitZExt(const User &I) { 3524 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3525 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3526 SDValue N = getValue(I.getOperand(0)); 3527 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3528 I.getType()); 3529 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3530 } 3531 3532 void SelectionDAGBuilder::visitSExt(const User &I) { 3533 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3534 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3535 SDValue N = getValue(I.getOperand(0)); 3536 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3537 I.getType()); 3538 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3539 } 3540 3541 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3542 // FPTrunc is never a no-op cast, no need to check 3543 SDValue N = getValue(I.getOperand(0)); 3544 SDLoc dl = getCurSDLoc(); 3545 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3546 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3547 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3548 DAG.getTargetConstant( 3549 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3550 } 3551 3552 void SelectionDAGBuilder::visitFPExt(const User &I) { 3553 // FPExt is never a no-op cast, no need to check 3554 SDValue N = getValue(I.getOperand(0)); 3555 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3556 I.getType()); 3557 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3558 } 3559 3560 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3561 // FPToUI is never a no-op cast, no need to check 3562 SDValue N = getValue(I.getOperand(0)); 3563 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3564 I.getType()); 3565 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3566 } 3567 3568 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3569 // FPToSI is never a no-op cast, no need to check 3570 SDValue N = getValue(I.getOperand(0)); 3571 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3572 I.getType()); 3573 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3574 } 3575 3576 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3577 // UIToFP is never a no-op cast, no need to check 3578 SDValue N = getValue(I.getOperand(0)); 3579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3580 I.getType()); 3581 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3582 } 3583 3584 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3585 // SIToFP is never a no-op cast, no need to check 3586 SDValue N = getValue(I.getOperand(0)); 3587 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3588 I.getType()); 3589 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3590 } 3591 3592 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3593 // What to do depends on the size of the integer and the size of the pointer. 3594 // We can either truncate, zero extend, or no-op, accordingly. 3595 SDValue N = getValue(I.getOperand(0)); 3596 auto &TLI = DAG.getTargetLoweringInfo(); 3597 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3598 I.getType()); 3599 EVT PtrMemVT = 3600 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3601 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3602 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3603 setValue(&I, N); 3604 } 3605 3606 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3607 // What to do depends on the size of the integer and the size of the pointer. 3608 // We can either truncate, zero extend, or no-op, accordingly. 3609 SDValue N = getValue(I.getOperand(0)); 3610 auto &TLI = DAG.getTargetLoweringInfo(); 3611 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3612 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3613 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3614 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3615 setValue(&I, N); 3616 } 3617 3618 void SelectionDAGBuilder::visitBitCast(const User &I) { 3619 SDValue N = getValue(I.getOperand(0)); 3620 SDLoc dl = getCurSDLoc(); 3621 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3622 I.getType()); 3623 3624 // BitCast assures us that source and destination are the same size so this is 3625 // either a BITCAST or a no-op. 3626 if (DestVT != N.getValueType()) 3627 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3628 DestVT, N)); // convert types. 3629 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3630 // might fold any kind of constant expression to an integer constant and that 3631 // is not what we are looking for. Only recognize a bitcast of a genuine 3632 // constant integer as an opaque constant. 3633 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3634 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3635 /*isOpaque*/true)); 3636 else 3637 setValue(&I, N); // noop cast. 3638 } 3639 3640 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3641 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3642 const Value *SV = I.getOperand(0); 3643 SDValue N = getValue(SV); 3644 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3645 3646 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3647 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3648 3649 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3650 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3651 3652 setValue(&I, N); 3653 } 3654 3655 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3657 SDValue InVec = getValue(I.getOperand(0)); 3658 SDValue InVal = getValue(I.getOperand(1)); 3659 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3660 TLI.getVectorIdxTy(DAG.getDataLayout())); 3661 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3662 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3663 InVec, InVal, InIdx)); 3664 } 3665 3666 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3668 SDValue InVec = getValue(I.getOperand(0)); 3669 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3670 TLI.getVectorIdxTy(DAG.getDataLayout())); 3671 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3672 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3673 InVec, InIdx)); 3674 } 3675 3676 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3677 SDValue Src1 = getValue(I.getOperand(0)); 3678 SDValue Src2 = getValue(I.getOperand(1)); 3679 ArrayRef<int> Mask; 3680 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3681 Mask = SVI->getShuffleMask(); 3682 else 3683 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3684 SDLoc DL = getCurSDLoc(); 3685 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3686 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3687 EVT SrcVT = Src1.getValueType(); 3688 3689 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3690 VT.isScalableVector()) { 3691 // Canonical splat form of first element of first input vector. 3692 SDValue FirstElt = 3693 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3694 DAG.getVectorIdxConstant(0, DL)); 3695 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3696 return; 3697 } 3698 3699 // For now, we only handle splats for scalable vectors. 3700 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3701 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3702 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3703 3704 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3705 unsigned MaskNumElts = Mask.size(); 3706 3707 if (SrcNumElts == MaskNumElts) { 3708 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3709 return; 3710 } 3711 3712 // Normalize the shuffle vector since mask and vector length don't match. 3713 if (SrcNumElts < MaskNumElts) { 3714 // Mask is longer than the source vectors. We can use concatenate vector to 3715 // make the mask and vectors lengths match. 3716 3717 if (MaskNumElts % SrcNumElts == 0) { 3718 // Mask length is a multiple of the source vector length. 3719 // Check if the shuffle is some kind of concatenation of the input 3720 // vectors. 3721 unsigned NumConcat = MaskNumElts / SrcNumElts; 3722 bool IsConcat = true; 3723 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3724 for (unsigned i = 0; i != MaskNumElts; ++i) { 3725 int Idx = Mask[i]; 3726 if (Idx < 0) 3727 continue; 3728 // Ensure the indices in each SrcVT sized piece are sequential and that 3729 // the same source is used for the whole piece. 3730 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3731 (ConcatSrcs[i / SrcNumElts] >= 0 && 3732 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3733 IsConcat = false; 3734 break; 3735 } 3736 // Remember which source this index came from. 3737 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3738 } 3739 3740 // The shuffle is concatenating multiple vectors together. Just emit 3741 // a CONCAT_VECTORS operation. 3742 if (IsConcat) { 3743 SmallVector<SDValue, 8> ConcatOps; 3744 for (auto Src : ConcatSrcs) { 3745 if (Src < 0) 3746 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3747 else if (Src == 0) 3748 ConcatOps.push_back(Src1); 3749 else 3750 ConcatOps.push_back(Src2); 3751 } 3752 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3753 return; 3754 } 3755 } 3756 3757 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3758 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3759 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3760 PaddedMaskNumElts); 3761 3762 // Pad both vectors with undefs to make them the same length as the mask. 3763 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3764 3765 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3766 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3767 MOps1[0] = Src1; 3768 MOps2[0] = Src2; 3769 3770 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3771 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3772 3773 // Readjust mask for new input vector length. 3774 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3775 for (unsigned i = 0; i != MaskNumElts; ++i) { 3776 int Idx = Mask[i]; 3777 if (Idx >= (int)SrcNumElts) 3778 Idx -= SrcNumElts - PaddedMaskNumElts; 3779 MappedOps[i] = Idx; 3780 } 3781 3782 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3783 3784 // If the concatenated vector was padded, extract a subvector with the 3785 // correct number of elements. 3786 if (MaskNumElts != PaddedMaskNumElts) 3787 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3788 DAG.getVectorIdxConstant(0, DL)); 3789 3790 setValue(&I, Result); 3791 return; 3792 } 3793 3794 if (SrcNumElts > MaskNumElts) { 3795 // Analyze the access pattern of the vector to see if we can extract 3796 // two subvectors and do the shuffle. 3797 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3798 bool CanExtract = true; 3799 for (int Idx : Mask) { 3800 unsigned Input = 0; 3801 if (Idx < 0) 3802 continue; 3803 3804 if (Idx >= (int)SrcNumElts) { 3805 Input = 1; 3806 Idx -= SrcNumElts; 3807 } 3808 3809 // If all the indices come from the same MaskNumElts sized portion of 3810 // the sources we can use extract. Also make sure the extract wouldn't 3811 // extract past the end of the source. 3812 int NewStartIdx = alignDown(Idx, MaskNumElts); 3813 if (NewStartIdx + MaskNumElts > SrcNumElts || 3814 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3815 CanExtract = false; 3816 // Make sure we always update StartIdx as we use it to track if all 3817 // elements are undef. 3818 StartIdx[Input] = NewStartIdx; 3819 } 3820 3821 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3822 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3823 return; 3824 } 3825 if (CanExtract) { 3826 // Extract appropriate subvector and generate a vector shuffle 3827 for (unsigned Input = 0; Input < 2; ++Input) { 3828 SDValue &Src = Input == 0 ? Src1 : Src2; 3829 if (StartIdx[Input] < 0) 3830 Src = DAG.getUNDEF(VT); 3831 else { 3832 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3833 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3834 } 3835 } 3836 3837 // Calculate new mask. 3838 SmallVector<int, 8> MappedOps(Mask); 3839 for (int &Idx : MappedOps) { 3840 if (Idx >= (int)SrcNumElts) 3841 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3842 else if (Idx >= 0) 3843 Idx -= StartIdx[0]; 3844 } 3845 3846 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3847 return; 3848 } 3849 } 3850 3851 // We can't use either concat vectors or extract subvectors so fall back to 3852 // replacing the shuffle with extract and build vector. 3853 // to insert and build vector. 3854 EVT EltVT = VT.getVectorElementType(); 3855 SmallVector<SDValue,8> Ops; 3856 for (int Idx : Mask) { 3857 SDValue Res; 3858 3859 if (Idx < 0) { 3860 Res = DAG.getUNDEF(EltVT); 3861 } else { 3862 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3863 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3864 3865 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3866 DAG.getVectorIdxConstant(Idx, DL)); 3867 } 3868 3869 Ops.push_back(Res); 3870 } 3871 3872 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3873 } 3874 3875 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3876 ArrayRef<unsigned> Indices = I.getIndices(); 3877 const Value *Op0 = I.getOperand(0); 3878 const Value *Op1 = I.getOperand(1); 3879 Type *AggTy = I.getType(); 3880 Type *ValTy = Op1->getType(); 3881 bool IntoUndef = isa<UndefValue>(Op0); 3882 bool FromUndef = isa<UndefValue>(Op1); 3883 3884 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3885 3886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3887 SmallVector<EVT, 4> AggValueVTs; 3888 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3889 SmallVector<EVT, 4> ValValueVTs; 3890 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3891 3892 unsigned NumAggValues = AggValueVTs.size(); 3893 unsigned NumValValues = ValValueVTs.size(); 3894 SmallVector<SDValue, 4> Values(NumAggValues); 3895 3896 // Ignore an insertvalue that produces an empty object 3897 if (!NumAggValues) { 3898 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3899 return; 3900 } 3901 3902 SDValue Agg = getValue(Op0); 3903 unsigned i = 0; 3904 // Copy the beginning value(s) from the original aggregate. 3905 for (; i != LinearIndex; ++i) 3906 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3907 SDValue(Agg.getNode(), Agg.getResNo() + i); 3908 // Copy values from the inserted value(s). 3909 if (NumValValues) { 3910 SDValue Val = getValue(Op1); 3911 for (; i != LinearIndex + NumValValues; ++i) 3912 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3913 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3914 } 3915 // Copy remaining value(s) from the original aggregate. 3916 for (; i != NumAggValues; ++i) 3917 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3918 SDValue(Agg.getNode(), Agg.getResNo() + i); 3919 3920 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3921 DAG.getVTList(AggValueVTs), Values)); 3922 } 3923 3924 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3925 ArrayRef<unsigned> Indices = I.getIndices(); 3926 const Value *Op0 = I.getOperand(0); 3927 Type *AggTy = Op0->getType(); 3928 Type *ValTy = I.getType(); 3929 bool OutOfUndef = isa<UndefValue>(Op0); 3930 3931 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3932 3933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3934 SmallVector<EVT, 4> ValValueVTs; 3935 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3936 3937 unsigned NumValValues = ValValueVTs.size(); 3938 3939 // Ignore a extractvalue that produces an empty object 3940 if (!NumValValues) { 3941 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3942 return; 3943 } 3944 3945 SmallVector<SDValue, 4> Values(NumValValues); 3946 3947 SDValue Agg = getValue(Op0); 3948 // Copy out the selected value(s). 3949 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3950 Values[i - LinearIndex] = 3951 OutOfUndef ? 3952 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3953 SDValue(Agg.getNode(), Agg.getResNo() + i); 3954 3955 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3956 DAG.getVTList(ValValueVTs), Values)); 3957 } 3958 3959 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3960 Value *Op0 = I.getOperand(0); 3961 // Note that the pointer operand may be a vector of pointers. Take the scalar 3962 // element which holds a pointer. 3963 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3964 SDValue N = getValue(Op0); 3965 SDLoc dl = getCurSDLoc(); 3966 auto &TLI = DAG.getTargetLoweringInfo(); 3967 3968 // Normalize Vector GEP - all scalar operands should be converted to the 3969 // splat vector. 3970 bool IsVectorGEP = I.getType()->isVectorTy(); 3971 ElementCount VectorElementCount = 3972 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3973 : ElementCount::getFixed(0); 3974 3975 if (IsVectorGEP && !N.getValueType().isVector()) { 3976 LLVMContext &Context = *DAG.getContext(); 3977 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3978 N = DAG.getSplat(VT, dl, N); 3979 } 3980 3981 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3982 GTI != E; ++GTI) { 3983 const Value *Idx = GTI.getOperand(); 3984 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3985 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3986 if (Field) { 3987 // N = N + Offset 3988 uint64_t Offset = 3989 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3990 3991 // In an inbounds GEP with an offset that is nonnegative even when 3992 // interpreted as signed, assume there is no unsigned overflow. 3993 SDNodeFlags Flags; 3994 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3995 Flags.setNoUnsignedWrap(true); 3996 3997 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3998 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3999 } 4000 } else { 4001 // IdxSize is the width of the arithmetic according to IR semantics. 4002 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4003 // (and fix up the result later). 4004 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4005 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4006 TypeSize ElementSize = 4007 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4008 // We intentionally mask away the high bits here; ElementSize may not 4009 // fit in IdxTy. 4010 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4011 bool ElementScalable = ElementSize.isScalable(); 4012 4013 // If this is a scalar constant or a splat vector of constants, 4014 // handle it quickly. 4015 const auto *C = dyn_cast<Constant>(Idx); 4016 if (C && isa<VectorType>(C->getType())) 4017 C = C->getSplatValue(); 4018 4019 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4020 if (CI && CI->isZero()) 4021 continue; 4022 if (CI && !ElementScalable) { 4023 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4024 LLVMContext &Context = *DAG.getContext(); 4025 SDValue OffsVal; 4026 if (IsVectorGEP) 4027 OffsVal = DAG.getConstant( 4028 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4029 else 4030 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4031 4032 // In an inbounds GEP with an offset that is nonnegative even when 4033 // interpreted as signed, assume there is no unsigned overflow. 4034 SDNodeFlags Flags; 4035 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4036 Flags.setNoUnsignedWrap(true); 4037 4038 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4039 4040 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4041 continue; 4042 } 4043 4044 // N = N + Idx * ElementMul; 4045 SDValue IdxN = getValue(Idx); 4046 4047 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4048 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4049 VectorElementCount); 4050 IdxN = DAG.getSplat(VT, dl, IdxN); 4051 } 4052 4053 // If the index is smaller or larger than intptr_t, truncate or extend 4054 // it. 4055 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4056 4057 if (ElementScalable) { 4058 EVT VScaleTy = N.getValueType().getScalarType(); 4059 SDValue VScale = DAG.getNode( 4060 ISD::VSCALE, dl, VScaleTy, 4061 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4062 if (IsVectorGEP) 4063 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4064 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4065 } else { 4066 // If this is a multiply by a power of two, turn it into a shl 4067 // immediately. This is a very common case. 4068 if (ElementMul != 1) { 4069 if (ElementMul.isPowerOf2()) { 4070 unsigned Amt = ElementMul.logBase2(); 4071 IdxN = DAG.getNode(ISD::SHL, dl, 4072 N.getValueType(), IdxN, 4073 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4074 } else { 4075 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4076 IdxN.getValueType()); 4077 IdxN = DAG.getNode(ISD::MUL, dl, 4078 N.getValueType(), IdxN, Scale); 4079 } 4080 } 4081 } 4082 4083 N = DAG.getNode(ISD::ADD, dl, 4084 N.getValueType(), N, IdxN); 4085 } 4086 } 4087 4088 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4089 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4090 if (IsVectorGEP) { 4091 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4092 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4093 } 4094 4095 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4096 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4097 4098 setValue(&I, N); 4099 } 4100 4101 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4102 // If this is a fixed sized alloca in the entry block of the function, 4103 // allocate it statically on the stack. 4104 if (FuncInfo.StaticAllocaMap.count(&I)) 4105 return; // getValue will auto-populate this. 4106 4107 SDLoc dl = getCurSDLoc(); 4108 Type *Ty = I.getAllocatedType(); 4109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4110 auto &DL = DAG.getDataLayout(); 4111 TypeSize TySize = DL.getTypeAllocSize(Ty); 4112 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4113 4114 SDValue AllocSize = getValue(I.getArraySize()); 4115 4116 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4117 if (AllocSize.getValueType() != IntPtr) 4118 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4119 4120 if (TySize.isScalable()) 4121 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4122 DAG.getVScale(dl, IntPtr, 4123 APInt(IntPtr.getScalarSizeInBits(), 4124 TySize.getKnownMinValue()))); 4125 else 4126 AllocSize = 4127 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4128 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4129 4130 // Handle alignment. If the requested alignment is less than or equal to 4131 // the stack alignment, ignore it. If the size is greater than or equal to 4132 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4133 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4134 if (*Alignment <= StackAlign) 4135 Alignment = std::nullopt; 4136 4137 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4138 // Round the size of the allocation up to the stack alignment size 4139 // by add SA-1 to the size. This doesn't overflow because we're computing 4140 // an address inside an alloca. 4141 SDNodeFlags Flags; 4142 Flags.setNoUnsignedWrap(true); 4143 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4144 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4145 4146 // Mask out the low bits for alignment purposes. 4147 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4148 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4149 4150 SDValue Ops[] = { 4151 getRoot(), AllocSize, 4152 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4153 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4154 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4155 setValue(&I, DSA); 4156 DAG.setRoot(DSA.getValue(1)); 4157 4158 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4159 } 4160 4161 static const MDNode *getRangeMetadata(const Instruction &I) { 4162 // If !noundef is not present, then !range violation results in a poison 4163 // value rather than immediate undefined behavior. In theory, transferring 4164 // these annotations to SDAG is fine, but in practice there are key SDAG 4165 // transforms that are known not to be poison-safe, such as folding logical 4166 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4167 // also present. 4168 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4169 return nullptr; 4170 return I.getMetadata(LLVMContext::MD_range); 4171 } 4172 4173 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4174 if (I.isAtomic()) 4175 return visitAtomicLoad(I); 4176 4177 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4178 const Value *SV = I.getOperand(0); 4179 if (TLI.supportSwiftError()) { 4180 // Swifterror values can come from either a function parameter with 4181 // swifterror attribute or an alloca with swifterror attribute. 4182 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4183 if (Arg->hasSwiftErrorAttr()) 4184 return visitLoadFromSwiftError(I); 4185 } 4186 4187 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4188 if (Alloca->isSwiftError()) 4189 return visitLoadFromSwiftError(I); 4190 } 4191 } 4192 4193 SDValue Ptr = getValue(SV); 4194 4195 Type *Ty = I.getType(); 4196 SmallVector<EVT, 4> ValueVTs, MemVTs; 4197 SmallVector<TypeSize, 4> Offsets; 4198 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4199 unsigned NumValues = ValueVTs.size(); 4200 if (NumValues == 0) 4201 return; 4202 4203 Align Alignment = I.getAlign(); 4204 AAMDNodes AAInfo = I.getAAMetadata(); 4205 const MDNode *Ranges = getRangeMetadata(I); 4206 bool isVolatile = I.isVolatile(); 4207 MachineMemOperand::Flags MMOFlags = 4208 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4209 4210 SDValue Root; 4211 bool ConstantMemory = false; 4212 if (isVolatile) 4213 // Serialize volatile loads with other side effects. 4214 Root = getRoot(); 4215 else if (NumValues > MaxParallelChains) 4216 Root = getMemoryRoot(); 4217 else if (AA && 4218 AA->pointsToConstantMemory(MemoryLocation( 4219 SV, 4220 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4221 AAInfo))) { 4222 // Do not serialize (non-volatile) loads of constant memory with anything. 4223 Root = DAG.getEntryNode(); 4224 ConstantMemory = true; 4225 MMOFlags |= MachineMemOperand::MOInvariant; 4226 } else { 4227 // Do not serialize non-volatile loads against each other. 4228 Root = DAG.getRoot(); 4229 } 4230 4231 SDLoc dl = getCurSDLoc(); 4232 4233 if (isVolatile) 4234 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4235 4236 SmallVector<SDValue, 4> Values(NumValues); 4237 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4238 4239 unsigned ChainI = 0; 4240 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4241 // Serializing loads here may result in excessive register pressure, and 4242 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4243 // could recover a bit by hoisting nodes upward in the chain by recognizing 4244 // they are side-effect free or do not alias. The optimizer should really 4245 // avoid this case by converting large object/array copies to llvm.memcpy 4246 // (MaxParallelChains should always remain as failsafe). 4247 if (ChainI == MaxParallelChains) { 4248 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4249 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4250 ArrayRef(Chains.data(), ChainI)); 4251 Root = Chain; 4252 ChainI = 0; 4253 } 4254 4255 // TODO: MachinePointerInfo only supports a fixed length offset. 4256 MachinePointerInfo PtrInfo = 4257 !Offsets[i].isScalable() || Offsets[i].isZero() 4258 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4259 : MachinePointerInfo(); 4260 4261 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4262 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4263 MMOFlags, AAInfo, Ranges); 4264 Chains[ChainI] = L.getValue(1); 4265 4266 if (MemVTs[i] != ValueVTs[i]) 4267 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4268 4269 Values[i] = L; 4270 } 4271 4272 if (!ConstantMemory) { 4273 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4274 ArrayRef(Chains.data(), ChainI)); 4275 if (isVolatile) 4276 DAG.setRoot(Chain); 4277 else 4278 PendingLoads.push_back(Chain); 4279 } 4280 4281 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4282 DAG.getVTList(ValueVTs), Values)); 4283 } 4284 4285 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4286 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4287 "call visitStoreToSwiftError when backend supports swifterror"); 4288 4289 SmallVector<EVT, 4> ValueVTs; 4290 SmallVector<uint64_t, 4> Offsets; 4291 const Value *SrcV = I.getOperand(0); 4292 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4293 SrcV->getType(), ValueVTs, &Offsets, 0); 4294 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4295 "expect a single EVT for swifterror"); 4296 4297 SDValue Src = getValue(SrcV); 4298 // Create a virtual register, then update the virtual register. 4299 Register VReg = 4300 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4301 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4302 // Chain can be getRoot or getControlRoot. 4303 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4304 SDValue(Src.getNode(), Src.getResNo())); 4305 DAG.setRoot(CopyNode); 4306 } 4307 4308 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4309 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4310 "call visitLoadFromSwiftError when backend supports swifterror"); 4311 4312 assert(!I.isVolatile() && 4313 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4314 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4315 "Support volatile, non temporal, invariant for load_from_swift_error"); 4316 4317 const Value *SV = I.getOperand(0); 4318 Type *Ty = I.getType(); 4319 assert( 4320 (!AA || 4321 !AA->pointsToConstantMemory(MemoryLocation( 4322 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4323 I.getAAMetadata()))) && 4324 "load_from_swift_error should not be constant memory"); 4325 4326 SmallVector<EVT, 4> ValueVTs; 4327 SmallVector<uint64_t, 4> Offsets; 4328 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4329 ValueVTs, &Offsets, 0); 4330 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4331 "expect a single EVT for swifterror"); 4332 4333 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4334 SDValue L = DAG.getCopyFromReg( 4335 getRoot(), getCurSDLoc(), 4336 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4337 4338 setValue(&I, L); 4339 } 4340 4341 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4342 if (I.isAtomic()) 4343 return visitAtomicStore(I); 4344 4345 const Value *SrcV = I.getOperand(0); 4346 const Value *PtrV = I.getOperand(1); 4347 4348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4349 if (TLI.supportSwiftError()) { 4350 // Swifterror values can come from either a function parameter with 4351 // swifterror attribute or an alloca with swifterror attribute. 4352 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4353 if (Arg->hasSwiftErrorAttr()) 4354 return visitStoreToSwiftError(I); 4355 } 4356 4357 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4358 if (Alloca->isSwiftError()) 4359 return visitStoreToSwiftError(I); 4360 } 4361 } 4362 4363 SmallVector<EVT, 4> ValueVTs, MemVTs; 4364 SmallVector<TypeSize, 4> Offsets; 4365 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4366 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4367 unsigned NumValues = ValueVTs.size(); 4368 if (NumValues == 0) 4369 return; 4370 4371 // Get the lowered operands. Note that we do this after 4372 // checking if NumResults is zero, because with zero results 4373 // the operands won't have values in the map. 4374 SDValue Src = getValue(SrcV); 4375 SDValue Ptr = getValue(PtrV); 4376 4377 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4378 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4379 SDLoc dl = getCurSDLoc(); 4380 Align Alignment = I.getAlign(); 4381 AAMDNodes AAInfo = I.getAAMetadata(); 4382 4383 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4384 4385 unsigned ChainI = 0; 4386 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4387 // See visitLoad comments. 4388 if (ChainI == MaxParallelChains) { 4389 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4390 ArrayRef(Chains.data(), ChainI)); 4391 Root = Chain; 4392 ChainI = 0; 4393 } 4394 4395 // TODO: MachinePointerInfo only supports a fixed length offset. 4396 MachinePointerInfo PtrInfo = 4397 !Offsets[i].isScalable() || Offsets[i].isZero() 4398 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4399 : MachinePointerInfo(); 4400 4401 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4402 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4403 if (MemVTs[i] != ValueVTs[i]) 4404 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4405 SDValue St = 4406 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4407 Chains[ChainI] = St; 4408 } 4409 4410 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4411 ArrayRef(Chains.data(), ChainI)); 4412 setValue(&I, StoreNode); 4413 DAG.setRoot(StoreNode); 4414 } 4415 4416 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4417 bool IsCompressing) { 4418 SDLoc sdl = getCurSDLoc(); 4419 4420 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4421 MaybeAlign &Alignment) { 4422 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4423 Src0 = I.getArgOperand(0); 4424 Ptr = I.getArgOperand(1); 4425 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4426 Mask = I.getArgOperand(3); 4427 }; 4428 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4429 MaybeAlign &Alignment) { 4430 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4431 Src0 = I.getArgOperand(0); 4432 Ptr = I.getArgOperand(1); 4433 Mask = I.getArgOperand(2); 4434 Alignment = std::nullopt; 4435 }; 4436 4437 Value *PtrOperand, *MaskOperand, *Src0Operand; 4438 MaybeAlign Alignment; 4439 if (IsCompressing) 4440 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4441 else 4442 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4443 4444 SDValue Ptr = getValue(PtrOperand); 4445 SDValue Src0 = getValue(Src0Operand); 4446 SDValue Mask = getValue(MaskOperand); 4447 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4448 4449 EVT VT = Src0.getValueType(); 4450 if (!Alignment) 4451 Alignment = DAG.getEVTAlign(VT); 4452 4453 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4454 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4455 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4456 SDValue StoreNode = 4457 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4458 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4459 DAG.setRoot(StoreNode); 4460 setValue(&I, StoreNode); 4461 } 4462 4463 // Get a uniform base for the Gather/Scatter intrinsic. 4464 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4465 // We try to represent it as a base pointer + vector of indices. 4466 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4467 // The first operand of the GEP may be a single pointer or a vector of pointers 4468 // Example: 4469 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4470 // or 4471 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4472 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4473 // 4474 // When the first GEP operand is a single pointer - it is the uniform base we 4475 // are looking for. If first operand of the GEP is a splat vector - we 4476 // extract the splat value and use it as a uniform base. 4477 // In all other cases the function returns 'false'. 4478 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4479 ISD::MemIndexType &IndexType, SDValue &Scale, 4480 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4481 uint64_t ElemSize) { 4482 SelectionDAG& DAG = SDB->DAG; 4483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4484 const DataLayout &DL = DAG.getDataLayout(); 4485 4486 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4487 4488 // Handle splat constant pointer. 4489 if (auto *C = dyn_cast<Constant>(Ptr)) { 4490 C = C->getSplatValue(); 4491 if (!C) 4492 return false; 4493 4494 Base = SDB->getValue(C); 4495 4496 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4497 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4498 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4499 IndexType = ISD::SIGNED_SCALED; 4500 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4501 return true; 4502 } 4503 4504 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4505 if (!GEP || GEP->getParent() != CurBB) 4506 return false; 4507 4508 if (GEP->getNumOperands() != 2) 4509 return false; 4510 4511 const Value *BasePtr = GEP->getPointerOperand(); 4512 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4513 4514 // Make sure the base is scalar and the index is a vector. 4515 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4516 return false; 4517 4518 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4519 if (ScaleVal.isScalable()) 4520 return false; 4521 4522 // Target may not support the required addressing mode. 4523 if (ScaleVal != 1 && 4524 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4525 return false; 4526 4527 Base = SDB->getValue(BasePtr); 4528 Index = SDB->getValue(IndexVal); 4529 IndexType = ISD::SIGNED_SCALED; 4530 4531 Scale = 4532 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4533 return true; 4534 } 4535 4536 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4537 SDLoc sdl = getCurSDLoc(); 4538 4539 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4540 const Value *Ptr = I.getArgOperand(1); 4541 SDValue Src0 = getValue(I.getArgOperand(0)); 4542 SDValue Mask = getValue(I.getArgOperand(3)); 4543 EVT VT = Src0.getValueType(); 4544 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4545 ->getMaybeAlignValue() 4546 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4548 4549 SDValue Base; 4550 SDValue Index; 4551 ISD::MemIndexType IndexType; 4552 SDValue Scale; 4553 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4554 I.getParent(), VT.getScalarStoreSize()); 4555 4556 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4557 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4558 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4559 // TODO: Make MachineMemOperands aware of scalable 4560 // vectors. 4561 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4562 if (!UniformBase) { 4563 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4564 Index = getValue(Ptr); 4565 IndexType = ISD::SIGNED_SCALED; 4566 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4567 } 4568 4569 EVT IdxVT = Index.getValueType(); 4570 EVT EltTy = IdxVT.getVectorElementType(); 4571 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4572 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4573 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4574 } 4575 4576 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4577 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4578 Ops, MMO, IndexType, false); 4579 DAG.setRoot(Scatter); 4580 setValue(&I, Scatter); 4581 } 4582 4583 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4584 SDLoc sdl = getCurSDLoc(); 4585 4586 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4587 MaybeAlign &Alignment) { 4588 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4589 Ptr = I.getArgOperand(0); 4590 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4591 Mask = I.getArgOperand(2); 4592 Src0 = I.getArgOperand(3); 4593 }; 4594 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4595 MaybeAlign &Alignment) { 4596 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4597 Ptr = I.getArgOperand(0); 4598 Alignment = std::nullopt; 4599 Mask = I.getArgOperand(1); 4600 Src0 = I.getArgOperand(2); 4601 }; 4602 4603 Value *PtrOperand, *MaskOperand, *Src0Operand; 4604 MaybeAlign Alignment; 4605 if (IsExpanding) 4606 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4607 else 4608 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4609 4610 SDValue Ptr = getValue(PtrOperand); 4611 SDValue Src0 = getValue(Src0Operand); 4612 SDValue Mask = getValue(MaskOperand); 4613 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4614 4615 EVT VT = Src0.getValueType(); 4616 if (!Alignment) 4617 Alignment = DAG.getEVTAlign(VT); 4618 4619 AAMDNodes AAInfo = I.getAAMetadata(); 4620 const MDNode *Ranges = getRangeMetadata(I); 4621 4622 // Do not serialize masked loads of constant memory with anything. 4623 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4624 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4625 4626 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4627 4628 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4629 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4630 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4631 4632 SDValue Load = 4633 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4634 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4635 if (AddToChain) 4636 PendingLoads.push_back(Load.getValue(1)); 4637 setValue(&I, Load); 4638 } 4639 4640 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4641 SDLoc sdl = getCurSDLoc(); 4642 4643 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4644 const Value *Ptr = I.getArgOperand(0); 4645 SDValue Src0 = getValue(I.getArgOperand(3)); 4646 SDValue Mask = getValue(I.getArgOperand(2)); 4647 4648 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4649 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4650 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4651 ->getMaybeAlignValue() 4652 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4653 4654 const MDNode *Ranges = getRangeMetadata(I); 4655 4656 SDValue Root = DAG.getRoot(); 4657 SDValue Base; 4658 SDValue Index; 4659 ISD::MemIndexType IndexType; 4660 SDValue Scale; 4661 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4662 I.getParent(), VT.getScalarStoreSize()); 4663 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4664 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4665 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4666 // TODO: Make MachineMemOperands aware of scalable 4667 // vectors. 4668 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4669 4670 if (!UniformBase) { 4671 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4672 Index = getValue(Ptr); 4673 IndexType = ISD::SIGNED_SCALED; 4674 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4675 } 4676 4677 EVT IdxVT = Index.getValueType(); 4678 EVT EltTy = IdxVT.getVectorElementType(); 4679 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4680 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4681 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4682 } 4683 4684 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4685 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4686 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4687 4688 PendingLoads.push_back(Gather.getValue(1)); 4689 setValue(&I, Gather); 4690 } 4691 4692 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4693 SDLoc dl = getCurSDLoc(); 4694 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4695 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4696 SyncScope::ID SSID = I.getSyncScopeID(); 4697 4698 SDValue InChain = getRoot(); 4699 4700 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4701 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4702 4703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4704 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4705 4706 MachineFunction &MF = DAG.getMachineFunction(); 4707 MachineMemOperand *MMO = MF.getMachineMemOperand( 4708 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4709 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4710 FailureOrdering); 4711 4712 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4713 dl, MemVT, VTs, InChain, 4714 getValue(I.getPointerOperand()), 4715 getValue(I.getCompareOperand()), 4716 getValue(I.getNewValOperand()), MMO); 4717 4718 SDValue OutChain = L.getValue(2); 4719 4720 setValue(&I, L); 4721 DAG.setRoot(OutChain); 4722 } 4723 4724 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4725 SDLoc dl = getCurSDLoc(); 4726 ISD::NodeType NT; 4727 switch (I.getOperation()) { 4728 default: llvm_unreachable("Unknown atomicrmw operation"); 4729 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4730 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4731 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4732 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4733 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4734 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4735 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4736 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4737 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4738 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4739 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4740 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4741 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4742 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4743 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4744 case AtomicRMWInst::UIncWrap: 4745 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4746 break; 4747 case AtomicRMWInst::UDecWrap: 4748 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4749 break; 4750 } 4751 AtomicOrdering Ordering = I.getOrdering(); 4752 SyncScope::ID SSID = I.getSyncScopeID(); 4753 4754 SDValue InChain = getRoot(); 4755 4756 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4758 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4759 4760 MachineFunction &MF = DAG.getMachineFunction(); 4761 MachineMemOperand *MMO = MF.getMachineMemOperand( 4762 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4763 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4764 4765 SDValue L = 4766 DAG.getAtomic(NT, dl, MemVT, InChain, 4767 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4768 MMO); 4769 4770 SDValue OutChain = L.getValue(1); 4771 4772 setValue(&I, L); 4773 DAG.setRoot(OutChain); 4774 } 4775 4776 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4777 SDLoc dl = getCurSDLoc(); 4778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4779 SDValue Ops[3]; 4780 Ops[0] = getRoot(); 4781 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4782 TLI.getFenceOperandTy(DAG.getDataLayout())); 4783 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4784 TLI.getFenceOperandTy(DAG.getDataLayout())); 4785 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4786 setValue(&I, N); 4787 DAG.setRoot(N); 4788 } 4789 4790 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4791 SDLoc dl = getCurSDLoc(); 4792 AtomicOrdering Order = I.getOrdering(); 4793 SyncScope::ID SSID = I.getSyncScopeID(); 4794 4795 SDValue InChain = getRoot(); 4796 4797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4798 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4799 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4800 4801 if (!TLI.supportsUnalignedAtomics() && 4802 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4803 report_fatal_error("Cannot generate unaligned atomic load"); 4804 4805 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4806 4807 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4808 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4809 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4810 4811 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4812 4813 SDValue Ptr = getValue(I.getPointerOperand()); 4814 4815 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4816 // TODO: Once this is better exercised by tests, it should be merged with 4817 // the normal path for loads to prevent future divergence. 4818 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4819 if (MemVT != VT) 4820 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4821 4822 setValue(&I, L); 4823 SDValue OutChain = L.getValue(1); 4824 if (!I.isUnordered()) 4825 DAG.setRoot(OutChain); 4826 else 4827 PendingLoads.push_back(OutChain); 4828 return; 4829 } 4830 4831 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4832 Ptr, MMO); 4833 4834 SDValue OutChain = L.getValue(1); 4835 if (MemVT != VT) 4836 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4837 4838 setValue(&I, L); 4839 DAG.setRoot(OutChain); 4840 } 4841 4842 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4843 SDLoc dl = getCurSDLoc(); 4844 4845 AtomicOrdering Ordering = I.getOrdering(); 4846 SyncScope::ID SSID = I.getSyncScopeID(); 4847 4848 SDValue InChain = getRoot(); 4849 4850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4851 EVT MemVT = 4852 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4853 4854 if (!TLI.supportsUnalignedAtomics() && 4855 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4856 report_fatal_error("Cannot generate unaligned atomic store"); 4857 4858 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4859 4860 MachineFunction &MF = DAG.getMachineFunction(); 4861 MachineMemOperand *MMO = MF.getMachineMemOperand( 4862 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4863 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4864 4865 SDValue Val = getValue(I.getValueOperand()); 4866 if (Val.getValueType() != MemVT) 4867 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4868 SDValue Ptr = getValue(I.getPointerOperand()); 4869 4870 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4871 // TODO: Once this is better exercised by tests, it should be merged with 4872 // the normal path for stores to prevent future divergence. 4873 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4874 setValue(&I, S); 4875 DAG.setRoot(S); 4876 return; 4877 } 4878 SDValue OutChain = 4879 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4880 4881 setValue(&I, OutChain); 4882 DAG.setRoot(OutChain); 4883 } 4884 4885 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4886 /// node. 4887 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4888 unsigned Intrinsic) { 4889 // Ignore the callsite's attributes. A specific call site may be marked with 4890 // readnone, but the lowering code will expect the chain based on the 4891 // definition. 4892 const Function *F = I.getCalledFunction(); 4893 bool HasChain = !F->doesNotAccessMemory(); 4894 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4895 4896 // Build the operand list. 4897 SmallVector<SDValue, 8> Ops; 4898 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4899 if (OnlyLoad) { 4900 // We don't need to serialize loads against other loads. 4901 Ops.push_back(DAG.getRoot()); 4902 } else { 4903 Ops.push_back(getRoot()); 4904 } 4905 } 4906 4907 // Info is set by getTgtMemIntrinsic 4908 TargetLowering::IntrinsicInfo Info; 4909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4910 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4911 DAG.getMachineFunction(), 4912 Intrinsic); 4913 4914 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4915 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4916 Info.opc == ISD::INTRINSIC_W_CHAIN) 4917 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4918 TLI.getPointerTy(DAG.getDataLayout()))); 4919 4920 // Add all operands of the call to the operand list. 4921 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4922 const Value *Arg = I.getArgOperand(i); 4923 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4924 Ops.push_back(getValue(Arg)); 4925 continue; 4926 } 4927 4928 // Use TargetConstant instead of a regular constant for immarg. 4929 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4930 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4931 assert(CI->getBitWidth() <= 64 && 4932 "large intrinsic immediates not handled"); 4933 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4934 } else { 4935 Ops.push_back( 4936 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4937 } 4938 } 4939 4940 SmallVector<EVT, 4> ValueVTs; 4941 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4942 4943 if (HasChain) 4944 ValueVTs.push_back(MVT::Other); 4945 4946 SDVTList VTs = DAG.getVTList(ValueVTs); 4947 4948 // Propagate fast-math-flags from IR to node(s). 4949 SDNodeFlags Flags; 4950 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4951 Flags.copyFMF(*FPMO); 4952 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4953 4954 // Create the node. 4955 SDValue Result; 4956 // In some cases, custom collection of operands from CallInst I may be needed. 4957 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4958 if (IsTgtIntrinsic) { 4959 // This is target intrinsic that touches memory 4960 // 4961 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4962 // didn't yield anything useful. 4963 MachinePointerInfo MPI; 4964 if (Info.ptrVal) 4965 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4966 else if (Info.fallbackAddressSpace) 4967 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4968 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4969 Info.memVT, MPI, Info.align, Info.flags, 4970 Info.size, I.getAAMetadata()); 4971 } else if (!HasChain) { 4972 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4973 } else if (!I.getType()->isVoidTy()) { 4974 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4975 } else { 4976 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4977 } 4978 4979 if (HasChain) { 4980 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4981 if (OnlyLoad) 4982 PendingLoads.push_back(Chain); 4983 else 4984 DAG.setRoot(Chain); 4985 } 4986 4987 if (!I.getType()->isVoidTy()) { 4988 if (!isa<VectorType>(I.getType())) 4989 Result = lowerRangeToAssertZExt(DAG, I, Result); 4990 4991 MaybeAlign Alignment = I.getRetAlign(); 4992 4993 // Insert `assertalign` node if there's an alignment. 4994 if (InsertAssertAlign && Alignment) { 4995 Result = 4996 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4997 } 4998 4999 setValue(&I, Result); 5000 } 5001 } 5002 5003 /// GetSignificand - Get the significand and build it into a floating-point 5004 /// number with exponent of 1: 5005 /// 5006 /// Op = (Op & 0x007fffff) | 0x3f800000; 5007 /// 5008 /// where Op is the hexadecimal representation of floating point value. 5009 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5010 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5011 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5012 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5013 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5014 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5015 } 5016 5017 /// GetExponent - Get the exponent: 5018 /// 5019 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5020 /// 5021 /// where Op is the hexadecimal representation of floating point value. 5022 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5023 const TargetLowering &TLI, const SDLoc &dl) { 5024 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5025 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5026 SDValue t1 = DAG.getNode( 5027 ISD::SRL, dl, MVT::i32, t0, 5028 DAG.getConstant(23, dl, 5029 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5030 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5031 DAG.getConstant(127, dl, MVT::i32)); 5032 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5033 } 5034 5035 /// getF32Constant - Get 32-bit floating point constant. 5036 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5037 const SDLoc &dl) { 5038 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5039 MVT::f32); 5040 } 5041 5042 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5043 SelectionDAG &DAG) { 5044 // TODO: What fast-math-flags should be set on the floating-point nodes? 5045 5046 // IntegerPartOfX = ((int32_t)(t0); 5047 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5048 5049 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5050 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5051 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5052 5053 // IntegerPartOfX <<= 23; 5054 IntegerPartOfX = 5055 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5056 DAG.getConstant(23, dl, 5057 DAG.getTargetLoweringInfo().getShiftAmountTy( 5058 MVT::i32, DAG.getDataLayout()))); 5059 5060 SDValue TwoToFractionalPartOfX; 5061 if (LimitFloatPrecision <= 6) { 5062 // For floating-point precision of 6: 5063 // 5064 // TwoToFractionalPartOfX = 5065 // 0.997535578f + 5066 // (0.735607626f + 0.252464424f * x) * x; 5067 // 5068 // error 0.0144103317, which is 6 bits 5069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5070 getF32Constant(DAG, 0x3e814304, dl)); 5071 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5072 getF32Constant(DAG, 0x3f3c50c8, dl)); 5073 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5074 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5075 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5076 } else if (LimitFloatPrecision <= 12) { 5077 // For floating-point precision of 12: 5078 // 5079 // TwoToFractionalPartOfX = 5080 // 0.999892986f + 5081 // (0.696457318f + 5082 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5083 // 5084 // error 0.000107046256, which is 13 to 14 bits 5085 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5086 getF32Constant(DAG, 0x3da235e3, dl)); 5087 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5088 getF32Constant(DAG, 0x3e65b8f3, dl)); 5089 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5090 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5091 getF32Constant(DAG, 0x3f324b07, dl)); 5092 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5093 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5094 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5095 } else { // LimitFloatPrecision <= 18 5096 // For floating-point precision of 18: 5097 // 5098 // TwoToFractionalPartOfX = 5099 // 0.999999982f + 5100 // (0.693148872f + 5101 // (0.240227044f + 5102 // (0.554906021e-1f + 5103 // (0.961591928e-2f + 5104 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5105 // error 2.47208000*10^(-7), which is better than 18 bits 5106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5107 getF32Constant(DAG, 0x3924b03e, dl)); 5108 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5109 getF32Constant(DAG, 0x3ab24b87, dl)); 5110 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5111 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5112 getF32Constant(DAG, 0x3c1d8c17, dl)); 5113 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5114 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5115 getF32Constant(DAG, 0x3d634a1d, dl)); 5116 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5117 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5118 getF32Constant(DAG, 0x3e75fe14, dl)); 5119 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5120 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5121 getF32Constant(DAG, 0x3f317234, dl)); 5122 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5123 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5124 getF32Constant(DAG, 0x3f800000, dl)); 5125 } 5126 5127 // Add the exponent into the result in integer domain. 5128 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5129 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5130 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5131 } 5132 5133 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5134 /// limited-precision mode. 5135 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5136 const TargetLowering &TLI, SDNodeFlags Flags) { 5137 if (Op.getValueType() == MVT::f32 && 5138 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5139 5140 // Put the exponent in the right bit position for later addition to the 5141 // final result: 5142 // 5143 // t0 = Op * log2(e) 5144 5145 // TODO: What fast-math-flags should be set here? 5146 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5147 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5148 return getLimitedPrecisionExp2(t0, dl, DAG); 5149 } 5150 5151 // No special expansion. 5152 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5153 } 5154 5155 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5156 /// limited-precision mode. 5157 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5158 const TargetLowering &TLI, SDNodeFlags Flags) { 5159 // TODO: What fast-math-flags should be set on the floating-point nodes? 5160 5161 if (Op.getValueType() == MVT::f32 && 5162 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5163 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5164 5165 // Scale the exponent by log(2). 5166 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5167 SDValue LogOfExponent = 5168 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5169 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5170 5171 // Get the significand and build it into a floating-point number with 5172 // exponent of 1. 5173 SDValue X = GetSignificand(DAG, Op1, dl); 5174 5175 SDValue LogOfMantissa; 5176 if (LimitFloatPrecision <= 6) { 5177 // For floating-point precision of 6: 5178 // 5179 // LogofMantissa = 5180 // -1.1609546f + 5181 // (1.4034025f - 0.23903021f * x) * x; 5182 // 5183 // error 0.0034276066, which is better than 8 bits 5184 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5185 getF32Constant(DAG, 0xbe74c456, dl)); 5186 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5187 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5188 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5189 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5190 getF32Constant(DAG, 0x3f949a29, dl)); 5191 } else if (LimitFloatPrecision <= 12) { 5192 // For floating-point precision of 12: 5193 // 5194 // LogOfMantissa = 5195 // -1.7417939f + 5196 // (2.8212026f + 5197 // (-1.4699568f + 5198 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5199 // 5200 // error 0.000061011436, which is 14 bits 5201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5202 getF32Constant(DAG, 0xbd67b6d6, dl)); 5203 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5204 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5206 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5207 getF32Constant(DAG, 0x3fbc278b, dl)); 5208 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5209 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5210 getF32Constant(DAG, 0x40348e95, dl)); 5211 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5212 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5213 getF32Constant(DAG, 0x3fdef31a, dl)); 5214 } else { // LimitFloatPrecision <= 18 5215 // For floating-point precision of 18: 5216 // 5217 // LogOfMantissa = 5218 // -2.1072184f + 5219 // (4.2372794f + 5220 // (-3.7029485f + 5221 // (2.2781945f + 5222 // (-0.87823314f + 5223 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5224 // 5225 // error 0.0000023660568, which is better than 18 bits 5226 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5227 getF32Constant(DAG, 0xbc91e5ac, dl)); 5228 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5229 getF32Constant(DAG, 0x3e4350aa, dl)); 5230 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5231 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5232 getF32Constant(DAG, 0x3f60d3e3, dl)); 5233 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5234 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5235 getF32Constant(DAG, 0x4011cdf0, dl)); 5236 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5237 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5238 getF32Constant(DAG, 0x406cfd1c, dl)); 5239 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5240 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5241 getF32Constant(DAG, 0x408797cb, dl)); 5242 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5243 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5244 getF32Constant(DAG, 0x4006dcab, dl)); 5245 } 5246 5247 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5248 } 5249 5250 // No special expansion. 5251 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5252 } 5253 5254 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5255 /// limited-precision mode. 5256 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5257 const TargetLowering &TLI, SDNodeFlags Flags) { 5258 // TODO: What fast-math-flags should be set on the floating-point nodes? 5259 5260 if (Op.getValueType() == MVT::f32 && 5261 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5262 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5263 5264 // Get the exponent. 5265 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5266 5267 // Get the significand and build it into a floating-point number with 5268 // exponent of 1. 5269 SDValue X = GetSignificand(DAG, Op1, dl); 5270 5271 // Different possible minimax approximations of significand in 5272 // floating-point for various degrees of accuracy over [1,2]. 5273 SDValue Log2ofMantissa; 5274 if (LimitFloatPrecision <= 6) { 5275 // For floating-point precision of 6: 5276 // 5277 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5278 // 5279 // error 0.0049451742, which is more than 7 bits 5280 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5281 getF32Constant(DAG, 0xbeb08fe0, dl)); 5282 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5283 getF32Constant(DAG, 0x40019463, dl)); 5284 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5285 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5286 getF32Constant(DAG, 0x3fd6633d, dl)); 5287 } else if (LimitFloatPrecision <= 12) { 5288 // For floating-point precision of 12: 5289 // 5290 // Log2ofMantissa = 5291 // -2.51285454f + 5292 // (4.07009056f + 5293 // (-2.12067489f + 5294 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5295 // 5296 // error 0.0000876136000, which is better than 13 bits 5297 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5298 getF32Constant(DAG, 0xbda7262e, dl)); 5299 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5300 getF32Constant(DAG, 0x3f25280b, dl)); 5301 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5302 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5303 getF32Constant(DAG, 0x4007b923, dl)); 5304 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5305 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5306 getF32Constant(DAG, 0x40823e2f, dl)); 5307 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5308 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5309 getF32Constant(DAG, 0x4020d29c, dl)); 5310 } else { // LimitFloatPrecision <= 18 5311 // For floating-point precision of 18: 5312 // 5313 // Log2ofMantissa = 5314 // -3.0400495f + 5315 // (6.1129976f + 5316 // (-5.3420409f + 5317 // (3.2865683f + 5318 // (-1.2669343f + 5319 // (0.27515199f - 5320 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5321 // 5322 // error 0.0000018516, which is better than 18 bits 5323 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5324 getF32Constant(DAG, 0xbcd2769e, dl)); 5325 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5326 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5327 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5328 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5329 getF32Constant(DAG, 0x3fa22ae7, dl)); 5330 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5331 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5332 getF32Constant(DAG, 0x40525723, dl)); 5333 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5334 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5335 getF32Constant(DAG, 0x40aaf200, dl)); 5336 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5337 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5338 getF32Constant(DAG, 0x40c39dad, dl)); 5339 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5340 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5341 getF32Constant(DAG, 0x4042902c, dl)); 5342 } 5343 5344 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5345 } 5346 5347 // No special expansion. 5348 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5349 } 5350 5351 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5352 /// limited-precision mode. 5353 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5354 const TargetLowering &TLI, SDNodeFlags Flags) { 5355 // TODO: What fast-math-flags should be set on the floating-point nodes? 5356 5357 if (Op.getValueType() == MVT::f32 && 5358 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5359 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5360 5361 // Scale the exponent by log10(2) [0.30102999f]. 5362 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5363 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5364 getF32Constant(DAG, 0x3e9a209a, dl)); 5365 5366 // Get the significand and build it into a floating-point number with 5367 // exponent of 1. 5368 SDValue X = GetSignificand(DAG, Op1, dl); 5369 5370 SDValue Log10ofMantissa; 5371 if (LimitFloatPrecision <= 6) { 5372 // For floating-point precision of 6: 5373 // 5374 // Log10ofMantissa = 5375 // -0.50419619f + 5376 // (0.60948995f - 0.10380950f * x) * x; 5377 // 5378 // error 0.0014886165, which is 6 bits 5379 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5380 getF32Constant(DAG, 0xbdd49a13, dl)); 5381 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5382 getF32Constant(DAG, 0x3f1c0789, dl)); 5383 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5384 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5385 getF32Constant(DAG, 0x3f011300, dl)); 5386 } else if (LimitFloatPrecision <= 12) { 5387 // For floating-point precision of 12: 5388 // 5389 // Log10ofMantissa = 5390 // -0.64831180f + 5391 // (0.91751397f + 5392 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5393 // 5394 // error 0.00019228036, which is better than 12 bits 5395 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5396 getF32Constant(DAG, 0x3d431f31, dl)); 5397 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5398 getF32Constant(DAG, 0x3ea21fb2, dl)); 5399 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5400 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5401 getF32Constant(DAG, 0x3f6ae232, dl)); 5402 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5403 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5404 getF32Constant(DAG, 0x3f25f7c3, dl)); 5405 } else { // LimitFloatPrecision <= 18 5406 // For floating-point precision of 18: 5407 // 5408 // Log10ofMantissa = 5409 // -0.84299375f + 5410 // (1.5327582f + 5411 // (-1.0688956f + 5412 // (0.49102474f + 5413 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5414 // 5415 // error 0.0000037995730, which is better than 18 bits 5416 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5417 getF32Constant(DAG, 0x3c5d51ce, dl)); 5418 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5419 getF32Constant(DAG, 0x3e00685a, dl)); 5420 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5421 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5422 getF32Constant(DAG, 0x3efb6798, dl)); 5423 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5424 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5425 getF32Constant(DAG, 0x3f88d192, dl)); 5426 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5427 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5428 getF32Constant(DAG, 0x3fc4316c, dl)); 5429 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5430 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5431 getF32Constant(DAG, 0x3f57ce70, dl)); 5432 } 5433 5434 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5435 } 5436 5437 // No special expansion. 5438 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5439 } 5440 5441 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5442 /// limited-precision mode. 5443 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5444 const TargetLowering &TLI, SDNodeFlags Flags) { 5445 if (Op.getValueType() == MVT::f32 && 5446 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5447 return getLimitedPrecisionExp2(Op, dl, DAG); 5448 5449 // No special expansion. 5450 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5451 } 5452 5453 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5454 /// limited-precision mode with x == 10.0f. 5455 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5456 SelectionDAG &DAG, const TargetLowering &TLI, 5457 SDNodeFlags Flags) { 5458 bool IsExp10 = false; 5459 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5460 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5461 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5462 APFloat Ten(10.0f); 5463 IsExp10 = LHSC->isExactlyValue(Ten); 5464 } 5465 } 5466 5467 // TODO: What fast-math-flags should be set on the FMUL node? 5468 if (IsExp10) { 5469 // Put the exponent in the right bit position for later addition to the 5470 // final result: 5471 // 5472 // #define LOG2OF10 3.3219281f 5473 // t0 = Op * LOG2OF10; 5474 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5475 getF32Constant(DAG, 0x40549a78, dl)); 5476 return getLimitedPrecisionExp2(t0, dl, DAG); 5477 } 5478 5479 // No special expansion. 5480 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5481 } 5482 5483 /// ExpandPowI - Expand a llvm.powi intrinsic. 5484 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5485 SelectionDAG &DAG) { 5486 // If RHS is a constant, we can expand this out to a multiplication tree if 5487 // it's beneficial on the target, otherwise we end up lowering to a call to 5488 // __powidf2 (for example). 5489 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5490 unsigned Val = RHSC->getSExtValue(); 5491 5492 // powi(x, 0) -> 1.0 5493 if (Val == 0) 5494 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5495 5496 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5497 Val, DAG.shouldOptForSize())) { 5498 // Get the exponent as a positive value. 5499 if ((int)Val < 0) 5500 Val = -Val; 5501 // We use the simple binary decomposition method to generate the multiply 5502 // sequence. There are more optimal ways to do this (for example, 5503 // powi(x,15) generates one more multiply than it should), but this has 5504 // the benefit of being both really simple and much better than a libcall. 5505 SDValue Res; // Logically starts equal to 1.0 5506 SDValue CurSquare = LHS; 5507 // TODO: Intrinsics should have fast-math-flags that propagate to these 5508 // nodes. 5509 while (Val) { 5510 if (Val & 1) { 5511 if (Res.getNode()) 5512 Res = 5513 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5514 else 5515 Res = CurSquare; // 1.0*CurSquare. 5516 } 5517 5518 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5519 CurSquare, CurSquare); 5520 Val >>= 1; 5521 } 5522 5523 // If the original was negative, invert the result, producing 1/(x*x*x). 5524 if (RHSC->getSExtValue() < 0) 5525 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5526 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5527 return Res; 5528 } 5529 } 5530 5531 // Otherwise, expand to a libcall. 5532 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5533 } 5534 5535 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5536 SDValue LHS, SDValue RHS, SDValue Scale, 5537 SelectionDAG &DAG, const TargetLowering &TLI) { 5538 EVT VT = LHS.getValueType(); 5539 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5540 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5541 LLVMContext &Ctx = *DAG.getContext(); 5542 5543 // If the type is legal but the operation isn't, this node might survive all 5544 // the way to operation legalization. If we end up there and we do not have 5545 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5546 // node. 5547 5548 // Coax the legalizer into expanding the node during type legalization instead 5549 // by bumping the size by one bit. This will force it to Promote, enabling the 5550 // early expansion and avoiding the need to expand later. 5551 5552 // We don't have to do this if Scale is 0; that can always be expanded, unless 5553 // it's a saturating signed operation. Those can experience true integer 5554 // division overflow, a case which we must avoid. 5555 5556 // FIXME: We wouldn't have to do this (or any of the early 5557 // expansion/promotion) if it was possible to expand a libcall of an 5558 // illegal type during operation legalization. But it's not, so things 5559 // get a bit hacky. 5560 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5561 if ((ScaleInt > 0 || (Saturating && Signed)) && 5562 (TLI.isTypeLegal(VT) || 5563 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5564 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5565 Opcode, VT, ScaleInt); 5566 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5567 EVT PromVT; 5568 if (VT.isScalarInteger()) 5569 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5570 else if (VT.isVector()) { 5571 PromVT = VT.getVectorElementType(); 5572 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5573 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5574 } else 5575 llvm_unreachable("Wrong VT for DIVFIX?"); 5576 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5577 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5578 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5579 // For saturating operations, we need to shift up the LHS to get the 5580 // proper saturation width, and then shift down again afterwards. 5581 if (Saturating) 5582 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5583 DAG.getConstant(1, DL, ShiftTy)); 5584 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5585 if (Saturating) 5586 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5587 DAG.getConstant(1, DL, ShiftTy)); 5588 return DAG.getZExtOrTrunc(Res, DL, VT); 5589 } 5590 } 5591 5592 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5593 } 5594 5595 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5596 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5597 static void 5598 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5599 const SDValue &N) { 5600 switch (N.getOpcode()) { 5601 case ISD::CopyFromReg: { 5602 SDValue Op = N.getOperand(1); 5603 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5604 Op.getValueType().getSizeInBits()); 5605 return; 5606 } 5607 case ISD::BITCAST: 5608 case ISD::AssertZext: 5609 case ISD::AssertSext: 5610 case ISD::TRUNCATE: 5611 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5612 return; 5613 case ISD::BUILD_PAIR: 5614 case ISD::BUILD_VECTOR: 5615 case ISD::CONCAT_VECTORS: 5616 for (SDValue Op : N->op_values()) 5617 getUnderlyingArgRegs(Regs, Op); 5618 return; 5619 default: 5620 return; 5621 } 5622 } 5623 5624 /// If the DbgValueInst is a dbg_value of a function argument, create the 5625 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5626 /// instruction selection, they will be inserted to the entry BB. 5627 /// We don't currently support this for variadic dbg_values, as they shouldn't 5628 /// appear for function arguments or in the prologue. 5629 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5630 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5631 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5632 const Argument *Arg = dyn_cast<Argument>(V); 5633 if (!Arg) 5634 return false; 5635 5636 MachineFunction &MF = DAG.getMachineFunction(); 5637 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5638 5639 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5640 // we've been asked to pursue. 5641 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5642 bool Indirect) { 5643 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5644 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5645 // pointing at the VReg, which will be patched up later. 5646 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5647 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5648 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5649 /* isKill */ false, /* isDead */ false, 5650 /* isUndef */ false, /* isEarlyClobber */ false, 5651 /* SubReg */ 0, /* isDebug */ true)}); 5652 5653 auto *NewDIExpr = FragExpr; 5654 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5655 // the DIExpression. 5656 if (Indirect) 5657 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5658 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5659 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5660 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5661 } else { 5662 // Create a completely standard DBG_VALUE. 5663 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5664 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5665 } 5666 }; 5667 5668 if (Kind == FuncArgumentDbgValueKind::Value) { 5669 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5670 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5671 // the entry block. 5672 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5673 if (!IsInEntryBlock) 5674 return false; 5675 5676 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5677 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5678 // variable that also is a param. 5679 // 5680 // Although, if we are at the top of the entry block already, we can still 5681 // emit using ArgDbgValue. This might catch some situations when the 5682 // dbg.value refers to an argument that isn't used in the entry block, so 5683 // any CopyToReg node would be optimized out and the only way to express 5684 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5685 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5686 // we should only emit as ArgDbgValue if the Variable is an argument to the 5687 // current function, and the dbg.value intrinsic is found in the entry 5688 // block. 5689 bool VariableIsFunctionInputArg = Variable->isParameter() && 5690 !DL->getInlinedAt(); 5691 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5692 if (!IsInPrologue && !VariableIsFunctionInputArg) 5693 return false; 5694 5695 // Here we assume that a function argument on IR level only can be used to 5696 // describe one input parameter on source level. If we for example have 5697 // source code like this 5698 // 5699 // struct A { long x, y; }; 5700 // void foo(struct A a, long b) { 5701 // ... 5702 // b = a.x; 5703 // ... 5704 // } 5705 // 5706 // and IR like this 5707 // 5708 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5709 // entry: 5710 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5711 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5712 // call void @llvm.dbg.value(metadata i32 %b, "b", 5713 // ... 5714 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5715 // ... 5716 // 5717 // then the last dbg.value is describing a parameter "b" using a value that 5718 // is an argument. But since we already has used %a1 to describe a parameter 5719 // we should not handle that last dbg.value here (that would result in an 5720 // incorrect hoisting of the DBG_VALUE to the function entry). 5721 // Notice that we allow one dbg.value per IR level argument, to accommodate 5722 // for the situation with fragments above. 5723 if (VariableIsFunctionInputArg) { 5724 unsigned ArgNo = Arg->getArgNo(); 5725 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5726 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5727 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5728 return false; 5729 FuncInfo.DescribedArgs.set(ArgNo); 5730 } 5731 } 5732 5733 bool IsIndirect = false; 5734 std::optional<MachineOperand> Op; 5735 // Some arguments' frame index is recorded during argument lowering. 5736 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5737 if (FI != std::numeric_limits<int>::max()) 5738 Op = MachineOperand::CreateFI(FI); 5739 5740 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5741 if (!Op && N.getNode()) { 5742 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5743 Register Reg; 5744 if (ArgRegsAndSizes.size() == 1) 5745 Reg = ArgRegsAndSizes.front().first; 5746 5747 if (Reg && Reg.isVirtual()) { 5748 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5749 Register PR = RegInfo.getLiveInPhysReg(Reg); 5750 if (PR) 5751 Reg = PR; 5752 } 5753 if (Reg) { 5754 Op = MachineOperand::CreateReg(Reg, false); 5755 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5756 } 5757 } 5758 5759 if (!Op && N.getNode()) { 5760 // Check if frame index is available. 5761 SDValue LCandidate = peekThroughBitcasts(N); 5762 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5763 if (FrameIndexSDNode *FINode = 5764 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5765 Op = MachineOperand::CreateFI(FINode->getIndex()); 5766 } 5767 5768 if (!Op) { 5769 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5770 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5771 SplitRegs) { 5772 unsigned Offset = 0; 5773 for (const auto &RegAndSize : SplitRegs) { 5774 // If the expression is already a fragment, the current register 5775 // offset+size might extend beyond the fragment. In this case, only 5776 // the register bits that are inside the fragment are relevant. 5777 int RegFragmentSizeInBits = RegAndSize.second; 5778 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5779 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5780 // The register is entirely outside the expression fragment, 5781 // so is irrelevant for debug info. 5782 if (Offset >= ExprFragmentSizeInBits) 5783 break; 5784 // The register is partially outside the expression fragment, only 5785 // the low bits within the fragment are relevant for debug info. 5786 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5787 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5788 } 5789 } 5790 5791 auto FragmentExpr = DIExpression::createFragmentExpression( 5792 Expr, Offset, RegFragmentSizeInBits); 5793 Offset += RegAndSize.second; 5794 // If a valid fragment expression cannot be created, the variable's 5795 // correct value cannot be determined and so it is set as Undef. 5796 if (!FragmentExpr) { 5797 SDDbgValue *SDV = DAG.getConstantDbgValue( 5798 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5799 DAG.AddDbgValue(SDV, false); 5800 continue; 5801 } 5802 MachineInstr *NewMI = 5803 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5804 Kind != FuncArgumentDbgValueKind::Value); 5805 FuncInfo.ArgDbgValues.push_back(NewMI); 5806 } 5807 }; 5808 5809 // Check if ValueMap has reg number. 5810 DenseMap<const Value *, Register>::const_iterator 5811 VMI = FuncInfo.ValueMap.find(V); 5812 if (VMI != FuncInfo.ValueMap.end()) { 5813 const auto &TLI = DAG.getTargetLoweringInfo(); 5814 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5815 V->getType(), std::nullopt); 5816 if (RFV.occupiesMultipleRegs()) { 5817 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5818 return true; 5819 } 5820 5821 Op = MachineOperand::CreateReg(VMI->second, false); 5822 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5823 } else if (ArgRegsAndSizes.size() > 1) { 5824 // This was split due to the calling convention, and no virtual register 5825 // mapping exists for the value. 5826 splitMultiRegDbgValue(ArgRegsAndSizes); 5827 return true; 5828 } 5829 } 5830 5831 if (!Op) 5832 return false; 5833 5834 assert(Variable->isValidLocationForIntrinsic(DL) && 5835 "Expected inlined-at fields to agree"); 5836 MachineInstr *NewMI = nullptr; 5837 5838 if (Op->isReg()) 5839 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5840 else 5841 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5842 Variable, Expr); 5843 5844 // Otherwise, use ArgDbgValues. 5845 FuncInfo.ArgDbgValues.push_back(NewMI); 5846 return true; 5847 } 5848 5849 /// Return the appropriate SDDbgValue based on N. 5850 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5851 DILocalVariable *Variable, 5852 DIExpression *Expr, 5853 const DebugLoc &dl, 5854 unsigned DbgSDNodeOrder) { 5855 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5856 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5857 // stack slot locations. 5858 // 5859 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5860 // debug values here after optimization: 5861 // 5862 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5863 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5864 // 5865 // Both describe the direct values of their associated variables. 5866 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5867 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5868 } 5869 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5870 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5871 } 5872 5873 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5874 switch (Intrinsic) { 5875 case Intrinsic::smul_fix: 5876 return ISD::SMULFIX; 5877 case Intrinsic::umul_fix: 5878 return ISD::UMULFIX; 5879 case Intrinsic::smul_fix_sat: 5880 return ISD::SMULFIXSAT; 5881 case Intrinsic::umul_fix_sat: 5882 return ISD::UMULFIXSAT; 5883 case Intrinsic::sdiv_fix: 5884 return ISD::SDIVFIX; 5885 case Intrinsic::udiv_fix: 5886 return ISD::UDIVFIX; 5887 case Intrinsic::sdiv_fix_sat: 5888 return ISD::SDIVFIXSAT; 5889 case Intrinsic::udiv_fix_sat: 5890 return ISD::UDIVFIXSAT; 5891 default: 5892 llvm_unreachable("Unhandled fixed point intrinsic"); 5893 } 5894 } 5895 5896 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5897 const char *FunctionName) { 5898 assert(FunctionName && "FunctionName must not be nullptr"); 5899 SDValue Callee = DAG.getExternalSymbol( 5900 FunctionName, 5901 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5902 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5903 } 5904 5905 /// Given a @llvm.call.preallocated.setup, return the corresponding 5906 /// preallocated call. 5907 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5908 assert(cast<CallBase>(PreallocatedSetup) 5909 ->getCalledFunction() 5910 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5911 "expected call_preallocated_setup Value"); 5912 for (const auto *U : PreallocatedSetup->users()) { 5913 auto *UseCall = cast<CallBase>(U); 5914 const Function *Fn = UseCall->getCalledFunction(); 5915 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5916 return UseCall; 5917 } 5918 } 5919 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5920 } 5921 5922 /// If DI is a debug value with an EntryValue expression, lower it using the 5923 /// corresponding physical register of the associated Argument value 5924 /// (guaranteed to exist by the verifier). 5925 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5926 DILocalVariable *Variable = DI.getVariable(); 5927 DIExpression *Expr = DI.getExpression(); 5928 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5929 return false; 5930 5931 // These properties are guaranteed by the verifier. 5932 Argument *Arg = cast<Argument>(DI.getValue(0)); 5933 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5934 5935 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5936 if (ArgIt == FuncInfo.ValueMap.end()) { 5937 LLVM_DEBUG( 5938 dbgs() << "Dropping dbg.value: expression is entry_value but " 5939 "couldn't find an associated register for the Argument\n"); 5940 return true; 5941 } 5942 Register ArgVReg = ArgIt->getSecond(); 5943 5944 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5945 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5946 SDDbgValue *SDV = 5947 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5948 DI.getDebugLoc(), SDNodeOrder); 5949 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5950 return true; 5951 } 5952 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5953 "couldn't find a physical register\n"); 5954 return true; 5955 } 5956 5957 /// Lower the call to the specified intrinsic function. 5958 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5959 unsigned Intrinsic) { 5960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5961 SDLoc sdl = getCurSDLoc(); 5962 DebugLoc dl = getCurDebugLoc(); 5963 SDValue Res; 5964 5965 SDNodeFlags Flags; 5966 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5967 Flags.copyFMF(*FPOp); 5968 5969 switch (Intrinsic) { 5970 default: 5971 // By default, turn this into a target intrinsic node. 5972 visitTargetIntrinsic(I, Intrinsic); 5973 return; 5974 case Intrinsic::vscale: { 5975 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5976 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5977 return; 5978 } 5979 case Intrinsic::vastart: visitVAStart(I); return; 5980 case Intrinsic::vaend: visitVAEnd(I); return; 5981 case Intrinsic::vacopy: visitVACopy(I); return; 5982 case Intrinsic::returnaddress: 5983 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5984 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5985 getValue(I.getArgOperand(0)))); 5986 return; 5987 case Intrinsic::addressofreturnaddress: 5988 setValue(&I, 5989 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5990 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5991 return; 5992 case Intrinsic::sponentry: 5993 setValue(&I, 5994 DAG.getNode(ISD::SPONENTRY, sdl, 5995 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 5996 return; 5997 case Intrinsic::frameaddress: 5998 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5999 TLI.getFrameIndexTy(DAG.getDataLayout()), 6000 getValue(I.getArgOperand(0)))); 6001 return; 6002 case Intrinsic::read_volatile_register: 6003 case Intrinsic::read_register: { 6004 Value *Reg = I.getArgOperand(0); 6005 SDValue Chain = getRoot(); 6006 SDValue RegName = 6007 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6008 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6009 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6010 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6011 setValue(&I, Res); 6012 DAG.setRoot(Res.getValue(1)); 6013 return; 6014 } 6015 case Intrinsic::write_register: { 6016 Value *Reg = I.getArgOperand(0); 6017 Value *RegValue = I.getArgOperand(1); 6018 SDValue Chain = getRoot(); 6019 SDValue RegName = 6020 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6021 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6022 RegName, getValue(RegValue))); 6023 return; 6024 } 6025 case Intrinsic::memcpy: { 6026 const auto &MCI = cast<MemCpyInst>(I); 6027 SDValue Op1 = getValue(I.getArgOperand(0)); 6028 SDValue Op2 = getValue(I.getArgOperand(1)); 6029 SDValue Op3 = getValue(I.getArgOperand(2)); 6030 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6031 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6032 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6033 Align Alignment = std::min(DstAlign, SrcAlign); 6034 bool isVol = MCI.isVolatile(); 6035 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6036 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6037 // node. 6038 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6039 SDValue MC = DAG.getMemcpy( 6040 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6041 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6042 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6043 updateDAGForMaybeTailCall(MC); 6044 return; 6045 } 6046 case Intrinsic::memcpy_inline: { 6047 const auto &MCI = cast<MemCpyInlineInst>(I); 6048 SDValue Dst = getValue(I.getArgOperand(0)); 6049 SDValue Src = getValue(I.getArgOperand(1)); 6050 SDValue Size = getValue(I.getArgOperand(2)); 6051 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6052 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6053 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6054 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6055 Align Alignment = std::min(DstAlign, SrcAlign); 6056 bool isVol = MCI.isVolatile(); 6057 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6058 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6059 // node. 6060 SDValue MC = DAG.getMemcpy( 6061 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6062 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6063 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6064 updateDAGForMaybeTailCall(MC); 6065 return; 6066 } 6067 case Intrinsic::memset: { 6068 const auto &MSI = cast<MemSetInst>(I); 6069 SDValue Op1 = getValue(I.getArgOperand(0)); 6070 SDValue Op2 = getValue(I.getArgOperand(1)); 6071 SDValue Op3 = getValue(I.getArgOperand(2)); 6072 // @llvm.memset defines 0 and 1 to both mean no alignment. 6073 Align Alignment = MSI.getDestAlign().valueOrOne(); 6074 bool isVol = MSI.isVolatile(); 6075 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6076 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6077 SDValue MS = DAG.getMemset( 6078 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6079 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6080 updateDAGForMaybeTailCall(MS); 6081 return; 6082 } 6083 case Intrinsic::memset_inline: { 6084 const auto &MSII = cast<MemSetInlineInst>(I); 6085 SDValue Dst = getValue(I.getArgOperand(0)); 6086 SDValue Value = getValue(I.getArgOperand(1)); 6087 SDValue Size = getValue(I.getArgOperand(2)); 6088 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6089 // @llvm.memset defines 0 and 1 to both mean no alignment. 6090 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6091 bool isVol = MSII.isVolatile(); 6092 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6093 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6094 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6095 /* AlwaysInline */ true, isTC, 6096 MachinePointerInfo(I.getArgOperand(0)), 6097 I.getAAMetadata()); 6098 updateDAGForMaybeTailCall(MC); 6099 return; 6100 } 6101 case Intrinsic::memmove: { 6102 const auto &MMI = cast<MemMoveInst>(I); 6103 SDValue Op1 = getValue(I.getArgOperand(0)); 6104 SDValue Op2 = getValue(I.getArgOperand(1)); 6105 SDValue Op3 = getValue(I.getArgOperand(2)); 6106 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6107 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6108 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6109 Align Alignment = std::min(DstAlign, SrcAlign); 6110 bool isVol = MMI.isVolatile(); 6111 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6112 // FIXME: Support passing different dest/src alignments to the memmove DAG 6113 // node. 6114 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6115 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6116 isTC, MachinePointerInfo(I.getArgOperand(0)), 6117 MachinePointerInfo(I.getArgOperand(1)), 6118 I.getAAMetadata(), AA); 6119 updateDAGForMaybeTailCall(MM); 6120 return; 6121 } 6122 case Intrinsic::memcpy_element_unordered_atomic: { 6123 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6124 SDValue Dst = getValue(MI.getRawDest()); 6125 SDValue Src = getValue(MI.getRawSource()); 6126 SDValue Length = getValue(MI.getLength()); 6127 6128 Type *LengthTy = MI.getLength()->getType(); 6129 unsigned ElemSz = MI.getElementSizeInBytes(); 6130 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6131 SDValue MC = 6132 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6133 isTC, MachinePointerInfo(MI.getRawDest()), 6134 MachinePointerInfo(MI.getRawSource())); 6135 updateDAGForMaybeTailCall(MC); 6136 return; 6137 } 6138 case Intrinsic::memmove_element_unordered_atomic: { 6139 auto &MI = cast<AtomicMemMoveInst>(I); 6140 SDValue Dst = getValue(MI.getRawDest()); 6141 SDValue Src = getValue(MI.getRawSource()); 6142 SDValue Length = getValue(MI.getLength()); 6143 6144 Type *LengthTy = MI.getLength()->getType(); 6145 unsigned ElemSz = MI.getElementSizeInBytes(); 6146 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6147 SDValue MC = 6148 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6149 isTC, MachinePointerInfo(MI.getRawDest()), 6150 MachinePointerInfo(MI.getRawSource())); 6151 updateDAGForMaybeTailCall(MC); 6152 return; 6153 } 6154 case Intrinsic::memset_element_unordered_atomic: { 6155 auto &MI = cast<AtomicMemSetInst>(I); 6156 SDValue Dst = getValue(MI.getRawDest()); 6157 SDValue Val = getValue(MI.getValue()); 6158 SDValue Length = getValue(MI.getLength()); 6159 6160 Type *LengthTy = MI.getLength()->getType(); 6161 unsigned ElemSz = MI.getElementSizeInBytes(); 6162 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6163 SDValue MC = 6164 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6165 isTC, MachinePointerInfo(MI.getRawDest())); 6166 updateDAGForMaybeTailCall(MC); 6167 return; 6168 } 6169 case Intrinsic::call_preallocated_setup: { 6170 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6171 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6172 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6173 getRoot(), SrcValue); 6174 setValue(&I, Res); 6175 DAG.setRoot(Res); 6176 return; 6177 } 6178 case Intrinsic::call_preallocated_arg: { 6179 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6180 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6181 SDValue Ops[3]; 6182 Ops[0] = getRoot(); 6183 Ops[1] = SrcValue; 6184 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6185 MVT::i32); // arg index 6186 SDValue Res = DAG.getNode( 6187 ISD::PREALLOCATED_ARG, sdl, 6188 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6189 setValue(&I, Res); 6190 DAG.setRoot(Res.getValue(1)); 6191 return; 6192 } 6193 case Intrinsic::dbg_declare: { 6194 const auto &DI = cast<DbgDeclareInst>(I); 6195 // Debug intrinsics are handled separately in assignment tracking mode. 6196 // Some intrinsics are handled right after Argument lowering. 6197 if (AssignmentTrackingEnabled || 6198 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6199 return; 6200 // Assume dbg.declare can not currently use DIArgList, i.e. 6201 // it is non-variadic. 6202 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6203 DILocalVariable *Variable = DI.getVariable(); 6204 DIExpression *Expression = DI.getExpression(); 6205 dropDanglingDebugInfo(Variable, Expression); 6206 assert(Variable && "Missing variable"); 6207 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6208 << "\n"); 6209 // Check if address has undef value. 6210 const Value *Address = DI.getVariableLocationOp(0); 6211 if (!Address || isa<UndefValue>(Address) || 6212 (Address->use_empty() && !isa<Argument>(Address))) { 6213 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6214 << " (bad/undef/unused-arg address)\n"); 6215 return; 6216 } 6217 6218 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6219 6220 SDValue &N = NodeMap[Address]; 6221 if (!N.getNode() && isa<Argument>(Address)) 6222 // Check unused arguments map. 6223 N = UnusedArgNodeMap[Address]; 6224 SDDbgValue *SDV; 6225 if (N.getNode()) { 6226 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6227 Address = BCI->getOperand(0); 6228 // Parameters are handled specially. 6229 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6230 if (isParameter && FINode) { 6231 // Byval parameter. We have a frame index at this point. 6232 SDV = 6233 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6234 /*IsIndirect*/ true, dl, SDNodeOrder); 6235 } else if (isa<Argument>(Address)) { 6236 // Address is an argument, so try to emit its dbg value using 6237 // virtual register info from the FuncInfo.ValueMap. 6238 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6239 FuncArgumentDbgValueKind::Declare, N); 6240 return; 6241 } else { 6242 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6243 true, dl, SDNodeOrder); 6244 } 6245 DAG.AddDbgValue(SDV, isParameter); 6246 } else { 6247 // If Address is an argument then try to emit its dbg value using 6248 // virtual register info from the FuncInfo.ValueMap. 6249 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6250 FuncArgumentDbgValueKind::Declare, N)) { 6251 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6252 << " (could not emit func-arg dbg_value)\n"); 6253 } 6254 } 6255 return; 6256 } 6257 case Intrinsic::dbg_label: { 6258 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6259 DILabel *Label = DI.getLabel(); 6260 assert(Label && "Missing label"); 6261 6262 SDDbgLabel *SDV; 6263 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6264 DAG.AddDbgLabel(SDV); 6265 return; 6266 } 6267 case Intrinsic::dbg_assign: { 6268 // Debug intrinsics are handled seperately in assignment tracking mode. 6269 if (AssignmentTrackingEnabled) 6270 return; 6271 // If assignment tracking hasn't been enabled then fall through and treat 6272 // the dbg.assign as a dbg.value. 6273 [[fallthrough]]; 6274 } 6275 case Intrinsic::dbg_value: { 6276 // Debug intrinsics are handled seperately in assignment tracking mode. 6277 if (AssignmentTrackingEnabled) 6278 return; 6279 const DbgValueInst &DI = cast<DbgValueInst>(I); 6280 assert(DI.getVariable() && "Missing variable"); 6281 6282 DILocalVariable *Variable = DI.getVariable(); 6283 DIExpression *Expression = DI.getExpression(); 6284 dropDanglingDebugInfo(Variable, Expression); 6285 6286 if (visitEntryValueDbgValue(DI)) 6287 return; 6288 6289 if (DI.isKillLocation()) { 6290 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6291 return; 6292 } 6293 6294 SmallVector<Value *, 4> Values(DI.getValues()); 6295 if (Values.empty()) 6296 return; 6297 6298 bool IsVariadic = DI.hasArgList(); 6299 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6300 SDNodeOrder, IsVariadic)) 6301 addDanglingDebugInfo(&DI, SDNodeOrder); 6302 return; 6303 } 6304 6305 case Intrinsic::eh_typeid_for: { 6306 // Find the type id for the given typeinfo. 6307 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6308 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6309 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6310 setValue(&I, Res); 6311 return; 6312 } 6313 6314 case Intrinsic::eh_return_i32: 6315 case Intrinsic::eh_return_i64: 6316 DAG.getMachineFunction().setCallsEHReturn(true); 6317 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6318 MVT::Other, 6319 getControlRoot(), 6320 getValue(I.getArgOperand(0)), 6321 getValue(I.getArgOperand(1)))); 6322 return; 6323 case Intrinsic::eh_unwind_init: 6324 DAG.getMachineFunction().setCallsUnwindInit(true); 6325 return; 6326 case Intrinsic::eh_dwarf_cfa: 6327 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6328 TLI.getPointerTy(DAG.getDataLayout()), 6329 getValue(I.getArgOperand(0)))); 6330 return; 6331 case Intrinsic::eh_sjlj_callsite: { 6332 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6333 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6334 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6335 6336 MMI.setCurrentCallSite(CI->getZExtValue()); 6337 return; 6338 } 6339 case Intrinsic::eh_sjlj_functioncontext: { 6340 // Get and store the index of the function context. 6341 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6342 AllocaInst *FnCtx = 6343 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6344 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6345 MFI.setFunctionContextIndex(FI); 6346 return; 6347 } 6348 case Intrinsic::eh_sjlj_setjmp: { 6349 SDValue Ops[2]; 6350 Ops[0] = getRoot(); 6351 Ops[1] = getValue(I.getArgOperand(0)); 6352 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6353 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6354 setValue(&I, Op.getValue(0)); 6355 DAG.setRoot(Op.getValue(1)); 6356 return; 6357 } 6358 case Intrinsic::eh_sjlj_longjmp: 6359 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6360 getRoot(), getValue(I.getArgOperand(0)))); 6361 return; 6362 case Intrinsic::eh_sjlj_setup_dispatch: 6363 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6364 getRoot())); 6365 return; 6366 case Intrinsic::masked_gather: 6367 visitMaskedGather(I); 6368 return; 6369 case Intrinsic::masked_load: 6370 visitMaskedLoad(I); 6371 return; 6372 case Intrinsic::masked_scatter: 6373 visitMaskedScatter(I); 6374 return; 6375 case Intrinsic::masked_store: 6376 visitMaskedStore(I); 6377 return; 6378 case Intrinsic::masked_expandload: 6379 visitMaskedLoad(I, true /* IsExpanding */); 6380 return; 6381 case Intrinsic::masked_compressstore: 6382 visitMaskedStore(I, true /* IsCompressing */); 6383 return; 6384 case Intrinsic::powi: 6385 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6386 getValue(I.getArgOperand(1)), DAG)); 6387 return; 6388 case Intrinsic::log: 6389 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6390 return; 6391 case Intrinsic::log2: 6392 setValue(&I, 6393 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6394 return; 6395 case Intrinsic::log10: 6396 setValue(&I, 6397 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6398 return; 6399 case Intrinsic::exp: 6400 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6401 return; 6402 case Intrinsic::exp2: 6403 setValue(&I, 6404 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6405 return; 6406 case Intrinsic::pow: 6407 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6408 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6409 return; 6410 case Intrinsic::sqrt: 6411 case Intrinsic::fabs: 6412 case Intrinsic::sin: 6413 case Intrinsic::cos: 6414 case Intrinsic::exp10: 6415 case Intrinsic::floor: 6416 case Intrinsic::ceil: 6417 case Intrinsic::trunc: 6418 case Intrinsic::rint: 6419 case Intrinsic::nearbyint: 6420 case Intrinsic::round: 6421 case Intrinsic::roundeven: 6422 case Intrinsic::canonicalize: { 6423 unsigned Opcode; 6424 switch (Intrinsic) { 6425 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6426 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6427 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6428 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6429 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6430 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6431 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6432 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6433 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6434 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6435 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6436 case Intrinsic::round: Opcode = ISD::FROUND; break; 6437 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6438 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6439 } 6440 6441 setValue(&I, DAG.getNode(Opcode, sdl, 6442 getValue(I.getArgOperand(0)).getValueType(), 6443 getValue(I.getArgOperand(0)), Flags)); 6444 return; 6445 } 6446 case Intrinsic::lround: 6447 case Intrinsic::llround: 6448 case Intrinsic::lrint: 6449 case Intrinsic::llrint: { 6450 unsigned Opcode; 6451 switch (Intrinsic) { 6452 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6453 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6454 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6455 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6456 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6457 } 6458 6459 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6460 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6461 getValue(I.getArgOperand(0)))); 6462 return; 6463 } 6464 case Intrinsic::minnum: 6465 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6466 getValue(I.getArgOperand(0)).getValueType(), 6467 getValue(I.getArgOperand(0)), 6468 getValue(I.getArgOperand(1)), Flags)); 6469 return; 6470 case Intrinsic::maxnum: 6471 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6472 getValue(I.getArgOperand(0)).getValueType(), 6473 getValue(I.getArgOperand(0)), 6474 getValue(I.getArgOperand(1)), Flags)); 6475 return; 6476 case Intrinsic::minimum: 6477 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6478 getValue(I.getArgOperand(0)).getValueType(), 6479 getValue(I.getArgOperand(0)), 6480 getValue(I.getArgOperand(1)), Flags)); 6481 return; 6482 case Intrinsic::maximum: 6483 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6484 getValue(I.getArgOperand(0)).getValueType(), 6485 getValue(I.getArgOperand(0)), 6486 getValue(I.getArgOperand(1)), Flags)); 6487 return; 6488 case Intrinsic::copysign: 6489 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6490 getValue(I.getArgOperand(0)).getValueType(), 6491 getValue(I.getArgOperand(0)), 6492 getValue(I.getArgOperand(1)), Flags)); 6493 return; 6494 case Intrinsic::ldexp: 6495 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6496 getValue(I.getArgOperand(0)).getValueType(), 6497 getValue(I.getArgOperand(0)), 6498 getValue(I.getArgOperand(1)), Flags)); 6499 return; 6500 case Intrinsic::frexp: { 6501 SmallVector<EVT, 2> ValueVTs; 6502 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6503 SDVTList VTs = DAG.getVTList(ValueVTs); 6504 setValue(&I, 6505 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6506 return; 6507 } 6508 case Intrinsic::arithmetic_fence: { 6509 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6510 getValue(I.getArgOperand(0)).getValueType(), 6511 getValue(I.getArgOperand(0)), Flags)); 6512 return; 6513 } 6514 case Intrinsic::fma: 6515 setValue(&I, DAG.getNode( 6516 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6517 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6518 getValue(I.getArgOperand(2)), Flags)); 6519 return; 6520 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6521 case Intrinsic::INTRINSIC: 6522 #include "llvm/IR/ConstrainedOps.def" 6523 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6524 return; 6525 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6526 #include "llvm/IR/VPIntrinsics.def" 6527 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6528 return; 6529 case Intrinsic::fptrunc_round: { 6530 // Get the last argument, the metadata and convert it to an integer in the 6531 // call 6532 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6533 std::optional<RoundingMode> RoundMode = 6534 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6535 6536 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6537 6538 // Propagate fast-math-flags from IR to node(s). 6539 SDNodeFlags Flags; 6540 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6541 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6542 6543 SDValue Result; 6544 Result = DAG.getNode( 6545 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6546 DAG.getTargetConstant((int)*RoundMode, sdl, 6547 TLI.getPointerTy(DAG.getDataLayout()))); 6548 setValue(&I, Result); 6549 6550 return; 6551 } 6552 case Intrinsic::fmuladd: { 6553 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6554 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6555 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6556 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6557 getValue(I.getArgOperand(0)).getValueType(), 6558 getValue(I.getArgOperand(0)), 6559 getValue(I.getArgOperand(1)), 6560 getValue(I.getArgOperand(2)), Flags)); 6561 } else { 6562 // TODO: Intrinsic calls should have fast-math-flags. 6563 SDValue Mul = DAG.getNode( 6564 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6565 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6566 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6567 getValue(I.getArgOperand(0)).getValueType(), 6568 Mul, getValue(I.getArgOperand(2)), Flags); 6569 setValue(&I, Add); 6570 } 6571 return; 6572 } 6573 case Intrinsic::convert_to_fp16: 6574 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6575 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6576 getValue(I.getArgOperand(0)), 6577 DAG.getTargetConstant(0, sdl, 6578 MVT::i32)))); 6579 return; 6580 case Intrinsic::convert_from_fp16: 6581 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6582 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6583 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6584 getValue(I.getArgOperand(0))))); 6585 return; 6586 case Intrinsic::fptosi_sat: { 6587 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6588 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6589 getValue(I.getArgOperand(0)), 6590 DAG.getValueType(VT.getScalarType()))); 6591 return; 6592 } 6593 case Intrinsic::fptoui_sat: { 6594 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6595 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6596 getValue(I.getArgOperand(0)), 6597 DAG.getValueType(VT.getScalarType()))); 6598 return; 6599 } 6600 case Intrinsic::set_rounding: 6601 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6602 {getRoot(), getValue(I.getArgOperand(0))}); 6603 setValue(&I, Res); 6604 DAG.setRoot(Res.getValue(0)); 6605 return; 6606 case Intrinsic::is_fpclass: { 6607 const DataLayout DLayout = DAG.getDataLayout(); 6608 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6609 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6610 FPClassTest Test = static_cast<FPClassTest>( 6611 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6612 MachineFunction &MF = DAG.getMachineFunction(); 6613 const Function &F = MF.getFunction(); 6614 SDValue Op = getValue(I.getArgOperand(0)); 6615 SDNodeFlags Flags; 6616 Flags.setNoFPExcept( 6617 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6618 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6619 // expansion can use illegal types. Making expansion early allows 6620 // legalizing these types prior to selection. 6621 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6622 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6623 setValue(&I, Result); 6624 return; 6625 } 6626 6627 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6628 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6629 setValue(&I, V); 6630 return; 6631 } 6632 case Intrinsic::get_fpenv: { 6633 const DataLayout DLayout = DAG.getDataLayout(); 6634 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6635 Align TempAlign = DAG.getEVTAlign(EnvVT); 6636 SDValue Chain = getRoot(); 6637 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6638 // and temporary storage in stack. 6639 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6640 Res = DAG.getNode( 6641 ISD::GET_FPENV, sdl, 6642 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6643 MVT::Other), 6644 Chain); 6645 } else { 6646 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6647 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6648 auto MPI = 6649 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6650 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6651 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6652 TempAlign); 6653 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6654 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6655 } 6656 setValue(&I, Res); 6657 DAG.setRoot(Res.getValue(1)); 6658 return; 6659 } 6660 case Intrinsic::set_fpenv: { 6661 const DataLayout DLayout = DAG.getDataLayout(); 6662 SDValue Env = getValue(I.getArgOperand(0)); 6663 EVT EnvVT = Env.getValueType(); 6664 Align TempAlign = DAG.getEVTAlign(EnvVT); 6665 SDValue Chain = getRoot(); 6666 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6667 // environment from memory. 6668 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6669 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6670 } else { 6671 // Allocate space in stack, copy environment bits into it and use this 6672 // memory in SET_FPENV_MEM. 6673 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6674 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6675 auto MPI = 6676 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6677 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6678 MachineMemOperand::MOStore); 6679 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6680 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6681 TempAlign); 6682 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6683 } 6684 DAG.setRoot(Chain); 6685 return; 6686 } 6687 case Intrinsic::reset_fpenv: 6688 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6689 return; 6690 case Intrinsic::get_fpmode: 6691 Res = DAG.getNode( 6692 ISD::GET_FPMODE, sdl, 6693 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6694 MVT::Other), 6695 DAG.getRoot()); 6696 setValue(&I, Res); 6697 DAG.setRoot(Res.getValue(1)); 6698 return; 6699 case Intrinsic::set_fpmode: 6700 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6701 getValue(I.getArgOperand(0))); 6702 DAG.setRoot(Res); 6703 return; 6704 case Intrinsic::reset_fpmode: { 6705 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6706 DAG.setRoot(Res); 6707 return; 6708 } 6709 case Intrinsic::pcmarker: { 6710 SDValue Tmp = getValue(I.getArgOperand(0)); 6711 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6712 return; 6713 } 6714 case Intrinsic::readcyclecounter: { 6715 SDValue Op = getRoot(); 6716 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6717 DAG.getVTList(MVT::i64, MVT::Other), Op); 6718 setValue(&I, Res); 6719 DAG.setRoot(Res.getValue(1)); 6720 return; 6721 } 6722 case Intrinsic::bitreverse: 6723 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6724 getValue(I.getArgOperand(0)).getValueType(), 6725 getValue(I.getArgOperand(0)))); 6726 return; 6727 case Intrinsic::bswap: 6728 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6729 getValue(I.getArgOperand(0)).getValueType(), 6730 getValue(I.getArgOperand(0)))); 6731 return; 6732 case Intrinsic::cttz: { 6733 SDValue Arg = getValue(I.getArgOperand(0)); 6734 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6735 EVT Ty = Arg.getValueType(); 6736 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6737 sdl, Ty, Arg)); 6738 return; 6739 } 6740 case Intrinsic::ctlz: { 6741 SDValue Arg = getValue(I.getArgOperand(0)); 6742 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6743 EVT Ty = Arg.getValueType(); 6744 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6745 sdl, Ty, Arg)); 6746 return; 6747 } 6748 case Intrinsic::ctpop: { 6749 SDValue Arg = getValue(I.getArgOperand(0)); 6750 EVT Ty = Arg.getValueType(); 6751 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6752 return; 6753 } 6754 case Intrinsic::fshl: 6755 case Intrinsic::fshr: { 6756 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6757 SDValue X = getValue(I.getArgOperand(0)); 6758 SDValue Y = getValue(I.getArgOperand(1)); 6759 SDValue Z = getValue(I.getArgOperand(2)); 6760 EVT VT = X.getValueType(); 6761 6762 if (X == Y) { 6763 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6764 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6765 } else { 6766 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6767 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6768 } 6769 return; 6770 } 6771 case Intrinsic::sadd_sat: { 6772 SDValue Op1 = getValue(I.getArgOperand(0)); 6773 SDValue Op2 = getValue(I.getArgOperand(1)); 6774 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6775 return; 6776 } 6777 case Intrinsic::uadd_sat: { 6778 SDValue Op1 = getValue(I.getArgOperand(0)); 6779 SDValue Op2 = getValue(I.getArgOperand(1)); 6780 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6781 return; 6782 } 6783 case Intrinsic::ssub_sat: { 6784 SDValue Op1 = getValue(I.getArgOperand(0)); 6785 SDValue Op2 = getValue(I.getArgOperand(1)); 6786 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6787 return; 6788 } 6789 case Intrinsic::usub_sat: { 6790 SDValue Op1 = getValue(I.getArgOperand(0)); 6791 SDValue Op2 = getValue(I.getArgOperand(1)); 6792 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6793 return; 6794 } 6795 case Intrinsic::sshl_sat: { 6796 SDValue Op1 = getValue(I.getArgOperand(0)); 6797 SDValue Op2 = getValue(I.getArgOperand(1)); 6798 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6799 return; 6800 } 6801 case Intrinsic::ushl_sat: { 6802 SDValue Op1 = getValue(I.getArgOperand(0)); 6803 SDValue Op2 = getValue(I.getArgOperand(1)); 6804 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6805 return; 6806 } 6807 case Intrinsic::smul_fix: 6808 case Intrinsic::umul_fix: 6809 case Intrinsic::smul_fix_sat: 6810 case Intrinsic::umul_fix_sat: { 6811 SDValue Op1 = getValue(I.getArgOperand(0)); 6812 SDValue Op2 = getValue(I.getArgOperand(1)); 6813 SDValue Op3 = getValue(I.getArgOperand(2)); 6814 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6815 Op1.getValueType(), Op1, Op2, Op3)); 6816 return; 6817 } 6818 case Intrinsic::sdiv_fix: 6819 case Intrinsic::udiv_fix: 6820 case Intrinsic::sdiv_fix_sat: 6821 case Intrinsic::udiv_fix_sat: { 6822 SDValue Op1 = getValue(I.getArgOperand(0)); 6823 SDValue Op2 = getValue(I.getArgOperand(1)); 6824 SDValue Op3 = getValue(I.getArgOperand(2)); 6825 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6826 Op1, Op2, Op3, DAG, TLI)); 6827 return; 6828 } 6829 case Intrinsic::smax: { 6830 SDValue Op1 = getValue(I.getArgOperand(0)); 6831 SDValue Op2 = getValue(I.getArgOperand(1)); 6832 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6833 return; 6834 } 6835 case Intrinsic::smin: { 6836 SDValue Op1 = getValue(I.getArgOperand(0)); 6837 SDValue Op2 = getValue(I.getArgOperand(1)); 6838 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6839 return; 6840 } 6841 case Intrinsic::umax: { 6842 SDValue Op1 = getValue(I.getArgOperand(0)); 6843 SDValue Op2 = getValue(I.getArgOperand(1)); 6844 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6845 return; 6846 } 6847 case Intrinsic::umin: { 6848 SDValue Op1 = getValue(I.getArgOperand(0)); 6849 SDValue Op2 = getValue(I.getArgOperand(1)); 6850 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6851 return; 6852 } 6853 case Intrinsic::abs: { 6854 // TODO: Preserve "int min is poison" arg in SDAG? 6855 SDValue Op1 = getValue(I.getArgOperand(0)); 6856 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6857 return; 6858 } 6859 case Intrinsic::stacksave: { 6860 SDValue Op = getRoot(); 6861 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6862 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6863 setValue(&I, Res); 6864 DAG.setRoot(Res.getValue(1)); 6865 return; 6866 } 6867 case Intrinsic::stackrestore: 6868 Res = getValue(I.getArgOperand(0)); 6869 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6870 return; 6871 case Intrinsic::get_dynamic_area_offset: { 6872 SDValue Op = getRoot(); 6873 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6874 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6875 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6876 // target. 6877 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6878 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6879 " intrinsic!"); 6880 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6881 Op); 6882 DAG.setRoot(Op); 6883 setValue(&I, Res); 6884 return; 6885 } 6886 case Intrinsic::stackguard: { 6887 MachineFunction &MF = DAG.getMachineFunction(); 6888 const Module &M = *MF.getFunction().getParent(); 6889 SDValue Chain = getRoot(); 6890 if (TLI.useLoadStackGuardNode()) { 6891 Res = getLoadStackGuard(DAG, sdl, Chain); 6892 } else { 6893 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6894 const Value *Global = TLI.getSDagStackGuard(M); 6895 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6896 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6897 MachinePointerInfo(Global, 0), Align, 6898 MachineMemOperand::MOVolatile); 6899 } 6900 if (TLI.useStackGuardXorFP()) 6901 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6902 DAG.setRoot(Chain); 6903 setValue(&I, Res); 6904 return; 6905 } 6906 case Intrinsic::stackprotector: { 6907 // Emit code into the DAG to store the stack guard onto the stack. 6908 MachineFunction &MF = DAG.getMachineFunction(); 6909 MachineFrameInfo &MFI = MF.getFrameInfo(); 6910 SDValue Src, Chain = getRoot(); 6911 6912 if (TLI.useLoadStackGuardNode()) 6913 Src = getLoadStackGuard(DAG, sdl, Chain); 6914 else 6915 Src = getValue(I.getArgOperand(0)); // The guard's value. 6916 6917 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6918 6919 int FI = FuncInfo.StaticAllocaMap[Slot]; 6920 MFI.setStackProtectorIndex(FI); 6921 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6922 6923 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6924 6925 // Store the stack protector onto the stack. 6926 Res = DAG.getStore( 6927 Chain, sdl, Src, FIN, 6928 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6929 MaybeAlign(), MachineMemOperand::MOVolatile); 6930 setValue(&I, Res); 6931 DAG.setRoot(Res); 6932 return; 6933 } 6934 case Intrinsic::objectsize: 6935 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6936 6937 case Intrinsic::is_constant: 6938 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6939 6940 case Intrinsic::annotation: 6941 case Intrinsic::ptr_annotation: 6942 case Intrinsic::launder_invariant_group: 6943 case Intrinsic::strip_invariant_group: 6944 // Drop the intrinsic, but forward the value 6945 setValue(&I, getValue(I.getOperand(0))); 6946 return; 6947 6948 case Intrinsic::assume: 6949 case Intrinsic::experimental_noalias_scope_decl: 6950 case Intrinsic::var_annotation: 6951 case Intrinsic::sideeffect: 6952 // Discard annotate attributes, noalias scope declarations, assumptions, and 6953 // artificial side-effects. 6954 return; 6955 6956 case Intrinsic::codeview_annotation: { 6957 // Emit a label associated with this metadata. 6958 MachineFunction &MF = DAG.getMachineFunction(); 6959 MCSymbol *Label = 6960 MF.getMMI().getContext().createTempSymbol("annotation", true); 6961 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6962 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6963 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6964 DAG.setRoot(Res); 6965 return; 6966 } 6967 6968 case Intrinsic::init_trampoline: { 6969 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6970 6971 SDValue Ops[6]; 6972 Ops[0] = getRoot(); 6973 Ops[1] = getValue(I.getArgOperand(0)); 6974 Ops[2] = getValue(I.getArgOperand(1)); 6975 Ops[3] = getValue(I.getArgOperand(2)); 6976 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6977 Ops[5] = DAG.getSrcValue(F); 6978 6979 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6980 6981 DAG.setRoot(Res); 6982 return; 6983 } 6984 case Intrinsic::adjust_trampoline: 6985 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6986 TLI.getPointerTy(DAG.getDataLayout()), 6987 getValue(I.getArgOperand(0)))); 6988 return; 6989 case Intrinsic::gcroot: { 6990 assert(DAG.getMachineFunction().getFunction().hasGC() && 6991 "only valid in functions with gc specified, enforced by Verifier"); 6992 assert(GFI && "implied by previous"); 6993 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6994 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6995 6996 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6997 GFI->addStackRoot(FI->getIndex(), TypeMap); 6998 return; 6999 } 7000 case Intrinsic::gcread: 7001 case Intrinsic::gcwrite: 7002 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7003 case Intrinsic::get_rounding: 7004 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7005 setValue(&I, Res); 7006 DAG.setRoot(Res.getValue(1)); 7007 return; 7008 7009 case Intrinsic::expect: 7010 // Just replace __builtin_expect(exp, c) with EXP. 7011 setValue(&I, getValue(I.getArgOperand(0))); 7012 return; 7013 7014 case Intrinsic::ubsantrap: 7015 case Intrinsic::debugtrap: 7016 case Intrinsic::trap: { 7017 StringRef TrapFuncName = 7018 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7019 if (TrapFuncName.empty()) { 7020 switch (Intrinsic) { 7021 case Intrinsic::trap: 7022 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7023 break; 7024 case Intrinsic::debugtrap: 7025 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7026 break; 7027 case Intrinsic::ubsantrap: 7028 DAG.setRoot(DAG.getNode( 7029 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7030 DAG.getTargetConstant( 7031 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7032 MVT::i32))); 7033 break; 7034 default: llvm_unreachable("unknown trap intrinsic"); 7035 } 7036 return; 7037 } 7038 TargetLowering::ArgListTy Args; 7039 if (Intrinsic == Intrinsic::ubsantrap) { 7040 Args.push_back(TargetLoweringBase::ArgListEntry()); 7041 Args[0].Val = I.getArgOperand(0); 7042 Args[0].Node = getValue(Args[0].Val); 7043 Args[0].Ty = Args[0].Val->getType(); 7044 } 7045 7046 TargetLowering::CallLoweringInfo CLI(DAG); 7047 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7048 CallingConv::C, I.getType(), 7049 DAG.getExternalSymbol(TrapFuncName.data(), 7050 TLI.getPointerTy(DAG.getDataLayout())), 7051 std::move(Args)); 7052 7053 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7054 DAG.setRoot(Result.second); 7055 return; 7056 } 7057 7058 case Intrinsic::uadd_with_overflow: 7059 case Intrinsic::sadd_with_overflow: 7060 case Intrinsic::usub_with_overflow: 7061 case Intrinsic::ssub_with_overflow: 7062 case Intrinsic::umul_with_overflow: 7063 case Intrinsic::smul_with_overflow: { 7064 ISD::NodeType Op; 7065 switch (Intrinsic) { 7066 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7067 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7068 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7069 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7070 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7071 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7072 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7073 } 7074 SDValue Op1 = getValue(I.getArgOperand(0)); 7075 SDValue Op2 = getValue(I.getArgOperand(1)); 7076 7077 EVT ResultVT = Op1.getValueType(); 7078 EVT OverflowVT = MVT::i1; 7079 if (ResultVT.isVector()) 7080 OverflowVT = EVT::getVectorVT( 7081 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7082 7083 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7084 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7085 return; 7086 } 7087 case Intrinsic::prefetch: { 7088 SDValue Ops[5]; 7089 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7090 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7091 Ops[0] = DAG.getRoot(); 7092 Ops[1] = getValue(I.getArgOperand(0)); 7093 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7094 MVT::i32); 7095 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7096 MVT::i32); 7097 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7098 MVT::i32); 7099 SDValue Result = DAG.getMemIntrinsicNode( 7100 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7101 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7102 /* align */ std::nullopt, Flags); 7103 7104 // Chain the prefetch in parallell with any pending loads, to stay out of 7105 // the way of later optimizations. 7106 PendingLoads.push_back(Result); 7107 Result = getRoot(); 7108 DAG.setRoot(Result); 7109 return; 7110 } 7111 case Intrinsic::lifetime_start: 7112 case Intrinsic::lifetime_end: { 7113 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7114 // Stack coloring is not enabled in O0, discard region information. 7115 if (TM.getOptLevel() == CodeGenOptLevel::None) 7116 return; 7117 7118 const int64_t ObjectSize = 7119 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7120 Value *const ObjectPtr = I.getArgOperand(1); 7121 SmallVector<const Value *, 4> Allocas; 7122 getUnderlyingObjects(ObjectPtr, Allocas); 7123 7124 for (const Value *Alloca : Allocas) { 7125 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7126 7127 // Could not find an Alloca. 7128 if (!LifetimeObject) 7129 continue; 7130 7131 // First check that the Alloca is static, otherwise it won't have a 7132 // valid frame index. 7133 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7134 if (SI == FuncInfo.StaticAllocaMap.end()) 7135 return; 7136 7137 const int FrameIndex = SI->second; 7138 int64_t Offset; 7139 if (GetPointerBaseWithConstantOffset( 7140 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7141 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7142 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7143 Offset); 7144 DAG.setRoot(Res); 7145 } 7146 return; 7147 } 7148 case Intrinsic::pseudoprobe: { 7149 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7150 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7151 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7152 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7153 DAG.setRoot(Res); 7154 return; 7155 } 7156 case Intrinsic::invariant_start: 7157 // Discard region information. 7158 setValue(&I, 7159 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7160 return; 7161 case Intrinsic::invariant_end: 7162 // Discard region information. 7163 return; 7164 case Intrinsic::clear_cache: 7165 /// FunctionName may be null. 7166 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7167 lowerCallToExternalSymbol(I, FunctionName); 7168 return; 7169 case Intrinsic::donothing: 7170 case Intrinsic::seh_try_begin: 7171 case Intrinsic::seh_scope_begin: 7172 case Intrinsic::seh_try_end: 7173 case Intrinsic::seh_scope_end: 7174 // ignore 7175 return; 7176 case Intrinsic::experimental_stackmap: 7177 visitStackmap(I); 7178 return; 7179 case Intrinsic::experimental_patchpoint_void: 7180 case Intrinsic::experimental_patchpoint_i64: 7181 visitPatchpoint(I); 7182 return; 7183 case Intrinsic::experimental_gc_statepoint: 7184 LowerStatepoint(cast<GCStatepointInst>(I)); 7185 return; 7186 case Intrinsic::experimental_gc_result: 7187 visitGCResult(cast<GCResultInst>(I)); 7188 return; 7189 case Intrinsic::experimental_gc_relocate: 7190 visitGCRelocate(cast<GCRelocateInst>(I)); 7191 return; 7192 case Intrinsic::instrprof_cover: 7193 llvm_unreachable("instrprof failed to lower a cover"); 7194 case Intrinsic::instrprof_increment: 7195 llvm_unreachable("instrprof failed to lower an increment"); 7196 case Intrinsic::instrprof_timestamp: 7197 llvm_unreachable("instrprof failed to lower a timestamp"); 7198 case Intrinsic::instrprof_value_profile: 7199 llvm_unreachable("instrprof failed to lower a value profiling call"); 7200 case Intrinsic::localescape: { 7201 MachineFunction &MF = DAG.getMachineFunction(); 7202 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7203 7204 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7205 // is the same on all targets. 7206 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7207 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7208 if (isa<ConstantPointerNull>(Arg)) 7209 continue; // Skip null pointers. They represent a hole in index space. 7210 AllocaInst *Slot = cast<AllocaInst>(Arg); 7211 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7212 "can only escape static allocas"); 7213 int FI = FuncInfo.StaticAllocaMap[Slot]; 7214 MCSymbol *FrameAllocSym = 7215 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7216 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7217 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7218 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7219 .addSym(FrameAllocSym) 7220 .addFrameIndex(FI); 7221 } 7222 7223 return; 7224 } 7225 7226 case Intrinsic::localrecover: { 7227 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7228 MachineFunction &MF = DAG.getMachineFunction(); 7229 7230 // Get the symbol that defines the frame offset. 7231 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7232 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7233 unsigned IdxVal = 7234 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7235 MCSymbol *FrameAllocSym = 7236 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7237 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7238 7239 Value *FP = I.getArgOperand(1); 7240 SDValue FPVal = getValue(FP); 7241 EVT PtrVT = FPVal.getValueType(); 7242 7243 // Create a MCSymbol for the label to avoid any target lowering 7244 // that would make this PC relative. 7245 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7246 SDValue OffsetVal = 7247 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7248 7249 // Add the offset to the FP. 7250 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7251 setValue(&I, Add); 7252 7253 return; 7254 } 7255 7256 case Intrinsic::eh_exceptionpointer: 7257 case Intrinsic::eh_exceptioncode: { 7258 // Get the exception pointer vreg, copy from it, and resize it to fit. 7259 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7260 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7261 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7262 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7263 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7264 if (Intrinsic == Intrinsic::eh_exceptioncode) 7265 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7266 setValue(&I, N); 7267 return; 7268 } 7269 case Intrinsic::xray_customevent: { 7270 // Here we want to make sure that the intrinsic behaves as if it has a 7271 // specific calling convention. 7272 const auto &Triple = DAG.getTarget().getTargetTriple(); 7273 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7274 return; 7275 7276 SmallVector<SDValue, 8> Ops; 7277 7278 // We want to say that we always want the arguments in registers. 7279 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7280 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7281 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7282 SDValue Chain = getRoot(); 7283 Ops.push_back(LogEntryVal); 7284 Ops.push_back(StrSizeVal); 7285 Ops.push_back(Chain); 7286 7287 // We need to enforce the calling convention for the callsite, so that 7288 // argument ordering is enforced correctly, and that register allocation can 7289 // see that some registers may be assumed clobbered and have to preserve 7290 // them across calls to the intrinsic. 7291 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7292 sdl, NodeTys, Ops); 7293 SDValue patchableNode = SDValue(MN, 0); 7294 DAG.setRoot(patchableNode); 7295 setValue(&I, patchableNode); 7296 return; 7297 } 7298 case Intrinsic::xray_typedevent: { 7299 // Here we want to make sure that the intrinsic behaves as if it has a 7300 // specific calling convention. 7301 const auto &Triple = DAG.getTarget().getTargetTriple(); 7302 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7303 return; 7304 7305 SmallVector<SDValue, 8> Ops; 7306 7307 // We want to say that we always want the arguments in registers. 7308 // It's unclear to me how manipulating the selection DAG here forces callers 7309 // to provide arguments in registers instead of on the stack. 7310 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7311 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7312 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7313 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7314 SDValue Chain = getRoot(); 7315 Ops.push_back(LogTypeId); 7316 Ops.push_back(LogEntryVal); 7317 Ops.push_back(StrSizeVal); 7318 Ops.push_back(Chain); 7319 7320 // We need to enforce the calling convention for the callsite, so that 7321 // argument ordering is enforced correctly, and that register allocation can 7322 // see that some registers may be assumed clobbered and have to preserve 7323 // them across calls to the intrinsic. 7324 MachineSDNode *MN = DAG.getMachineNode( 7325 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7326 SDValue patchableNode = SDValue(MN, 0); 7327 DAG.setRoot(patchableNode); 7328 setValue(&I, patchableNode); 7329 return; 7330 } 7331 case Intrinsic::experimental_deoptimize: 7332 LowerDeoptimizeCall(&I); 7333 return; 7334 case Intrinsic::experimental_stepvector: 7335 visitStepVector(I); 7336 return; 7337 case Intrinsic::vector_reduce_fadd: 7338 case Intrinsic::vector_reduce_fmul: 7339 case Intrinsic::vector_reduce_add: 7340 case Intrinsic::vector_reduce_mul: 7341 case Intrinsic::vector_reduce_and: 7342 case Intrinsic::vector_reduce_or: 7343 case Intrinsic::vector_reduce_xor: 7344 case Intrinsic::vector_reduce_smax: 7345 case Intrinsic::vector_reduce_smin: 7346 case Intrinsic::vector_reduce_umax: 7347 case Intrinsic::vector_reduce_umin: 7348 case Intrinsic::vector_reduce_fmax: 7349 case Intrinsic::vector_reduce_fmin: 7350 case Intrinsic::vector_reduce_fmaximum: 7351 case Intrinsic::vector_reduce_fminimum: 7352 visitVectorReduce(I, Intrinsic); 7353 return; 7354 7355 case Intrinsic::icall_branch_funnel: { 7356 SmallVector<SDValue, 16> Ops; 7357 Ops.push_back(getValue(I.getArgOperand(0))); 7358 7359 int64_t Offset; 7360 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7361 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7362 if (!Base) 7363 report_fatal_error( 7364 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7365 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7366 7367 struct BranchFunnelTarget { 7368 int64_t Offset; 7369 SDValue Target; 7370 }; 7371 SmallVector<BranchFunnelTarget, 8> Targets; 7372 7373 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7374 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7375 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7376 if (ElemBase != Base) 7377 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7378 "to the same GlobalValue"); 7379 7380 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7381 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7382 if (!GA) 7383 report_fatal_error( 7384 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7385 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7386 GA->getGlobal(), sdl, Val.getValueType(), 7387 GA->getOffset())}); 7388 } 7389 llvm::sort(Targets, 7390 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7391 return T1.Offset < T2.Offset; 7392 }); 7393 7394 for (auto &T : Targets) { 7395 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7396 Ops.push_back(T.Target); 7397 } 7398 7399 Ops.push_back(DAG.getRoot()); // Chain 7400 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7401 MVT::Other, Ops), 7402 0); 7403 DAG.setRoot(N); 7404 setValue(&I, N); 7405 HasTailCall = true; 7406 return; 7407 } 7408 7409 case Intrinsic::wasm_landingpad_index: 7410 // Information this intrinsic contained has been transferred to 7411 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7412 // delete it now. 7413 return; 7414 7415 case Intrinsic::aarch64_settag: 7416 case Intrinsic::aarch64_settag_zero: { 7417 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7418 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7419 SDValue Val = TSI.EmitTargetCodeForSetTag( 7420 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7421 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7422 ZeroMemory); 7423 DAG.setRoot(Val); 7424 setValue(&I, Val); 7425 return; 7426 } 7427 case Intrinsic::ptrmask: { 7428 SDValue Ptr = getValue(I.getOperand(0)); 7429 SDValue Mask = getValue(I.getOperand(1)); 7430 7431 EVT PtrVT = Ptr.getValueType(); 7432 assert(PtrVT == Mask.getValueType() && 7433 "Pointers with different index type are not supported by SDAG"); 7434 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7435 return; 7436 } 7437 case Intrinsic::threadlocal_address: { 7438 setValue(&I, getValue(I.getOperand(0))); 7439 return; 7440 } 7441 case Intrinsic::get_active_lane_mask: { 7442 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7443 SDValue Index = getValue(I.getOperand(0)); 7444 EVT ElementVT = Index.getValueType(); 7445 7446 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7447 visitTargetIntrinsic(I, Intrinsic); 7448 return; 7449 } 7450 7451 SDValue TripCount = getValue(I.getOperand(1)); 7452 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7453 CCVT.getVectorElementCount()); 7454 7455 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7456 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7457 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7458 SDValue VectorInduction = DAG.getNode( 7459 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7460 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7461 VectorTripCount, ISD::CondCode::SETULT); 7462 setValue(&I, SetCC); 7463 return; 7464 } 7465 case Intrinsic::experimental_get_vector_length: { 7466 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7467 "Expected positive VF"); 7468 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7469 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7470 7471 SDValue Count = getValue(I.getOperand(0)); 7472 EVT CountVT = Count.getValueType(); 7473 7474 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7475 visitTargetIntrinsic(I, Intrinsic); 7476 return; 7477 } 7478 7479 // Expand to a umin between the trip count and the maximum elements the type 7480 // can hold. 7481 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7482 7483 // Extend the trip count to at least the result VT. 7484 if (CountVT.bitsLT(VT)) { 7485 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7486 CountVT = VT; 7487 } 7488 7489 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7490 ElementCount::get(VF, IsScalable)); 7491 7492 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7493 // Clip to the result type if needed. 7494 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7495 7496 setValue(&I, Trunc); 7497 return; 7498 } 7499 case Intrinsic::vector_insert: { 7500 SDValue Vec = getValue(I.getOperand(0)); 7501 SDValue SubVec = getValue(I.getOperand(1)); 7502 SDValue Index = getValue(I.getOperand(2)); 7503 7504 // The intrinsic's index type is i64, but the SDNode requires an index type 7505 // suitable for the target. Convert the index as required. 7506 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7507 if (Index.getValueType() != VectorIdxTy) 7508 Index = DAG.getVectorIdxConstant( 7509 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7510 7511 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7512 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7513 Index)); 7514 return; 7515 } 7516 case Intrinsic::vector_extract: { 7517 SDValue Vec = getValue(I.getOperand(0)); 7518 SDValue Index = getValue(I.getOperand(1)); 7519 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7520 7521 // The intrinsic's index type is i64, but the SDNode requires an index type 7522 // suitable for the target. Convert the index as required. 7523 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7524 if (Index.getValueType() != VectorIdxTy) 7525 Index = DAG.getVectorIdxConstant( 7526 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7527 7528 setValue(&I, 7529 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7530 return; 7531 } 7532 case Intrinsic::experimental_vector_reverse: 7533 visitVectorReverse(I); 7534 return; 7535 case Intrinsic::experimental_vector_splice: 7536 visitVectorSplice(I); 7537 return; 7538 case Intrinsic::callbr_landingpad: 7539 visitCallBrLandingPad(I); 7540 return; 7541 case Intrinsic::experimental_vector_interleave2: 7542 visitVectorInterleave(I); 7543 return; 7544 case Intrinsic::experimental_vector_deinterleave2: 7545 visitVectorDeinterleave(I); 7546 return; 7547 } 7548 } 7549 7550 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7551 const ConstrainedFPIntrinsic &FPI) { 7552 SDLoc sdl = getCurSDLoc(); 7553 7554 // We do not need to serialize constrained FP intrinsics against 7555 // each other or against (nonvolatile) loads, so they can be 7556 // chained like loads. 7557 SDValue Chain = DAG.getRoot(); 7558 SmallVector<SDValue, 4> Opers; 7559 Opers.push_back(Chain); 7560 if (FPI.isUnaryOp()) { 7561 Opers.push_back(getValue(FPI.getArgOperand(0))); 7562 } else if (FPI.isTernaryOp()) { 7563 Opers.push_back(getValue(FPI.getArgOperand(0))); 7564 Opers.push_back(getValue(FPI.getArgOperand(1))); 7565 Opers.push_back(getValue(FPI.getArgOperand(2))); 7566 } else { 7567 Opers.push_back(getValue(FPI.getArgOperand(0))); 7568 Opers.push_back(getValue(FPI.getArgOperand(1))); 7569 } 7570 7571 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7572 assert(Result.getNode()->getNumValues() == 2); 7573 7574 // Push node to the appropriate list so that future instructions can be 7575 // chained up correctly. 7576 SDValue OutChain = Result.getValue(1); 7577 switch (EB) { 7578 case fp::ExceptionBehavior::ebIgnore: 7579 // The only reason why ebIgnore nodes still need to be chained is that 7580 // they might depend on the current rounding mode, and therefore must 7581 // not be moved across instruction that may change that mode. 7582 [[fallthrough]]; 7583 case fp::ExceptionBehavior::ebMayTrap: 7584 // These must not be moved across calls or instructions that may change 7585 // floating-point exception masks. 7586 PendingConstrainedFP.push_back(OutChain); 7587 break; 7588 case fp::ExceptionBehavior::ebStrict: 7589 // These must not be moved across calls or instructions that may change 7590 // floating-point exception masks or read floating-point exception flags. 7591 // In addition, they cannot be optimized out even if unused. 7592 PendingConstrainedFPStrict.push_back(OutChain); 7593 break; 7594 } 7595 }; 7596 7597 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7598 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7599 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7600 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7601 7602 SDNodeFlags Flags; 7603 if (EB == fp::ExceptionBehavior::ebIgnore) 7604 Flags.setNoFPExcept(true); 7605 7606 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7607 Flags.copyFMF(*FPOp); 7608 7609 unsigned Opcode; 7610 switch (FPI.getIntrinsicID()) { 7611 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7612 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7613 case Intrinsic::INTRINSIC: \ 7614 Opcode = ISD::STRICT_##DAGN; \ 7615 break; 7616 #include "llvm/IR/ConstrainedOps.def" 7617 case Intrinsic::experimental_constrained_fmuladd: { 7618 Opcode = ISD::STRICT_FMA; 7619 // Break fmuladd into fmul and fadd. 7620 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7621 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7622 Opers.pop_back(); 7623 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7624 pushOutChain(Mul, EB); 7625 Opcode = ISD::STRICT_FADD; 7626 Opers.clear(); 7627 Opers.push_back(Mul.getValue(1)); 7628 Opers.push_back(Mul.getValue(0)); 7629 Opers.push_back(getValue(FPI.getArgOperand(2))); 7630 } 7631 break; 7632 } 7633 } 7634 7635 // A few strict DAG nodes carry additional operands that are not 7636 // set up by the default code above. 7637 switch (Opcode) { 7638 default: break; 7639 case ISD::STRICT_FP_ROUND: 7640 Opers.push_back( 7641 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7642 break; 7643 case ISD::STRICT_FSETCC: 7644 case ISD::STRICT_FSETCCS: { 7645 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7646 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7647 if (TM.Options.NoNaNsFPMath) 7648 Condition = getFCmpCodeWithoutNaN(Condition); 7649 Opers.push_back(DAG.getCondCode(Condition)); 7650 break; 7651 } 7652 } 7653 7654 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7655 pushOutChain(Result, EB); 7656 7657 SDValue FPResult = Result.getValue(0); 7658 setValue(&FPI, FPResult); 7659 } 7660 7661 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7662 std::optional<unsigned> ResOPC; 7663 switch (VPIntrin.getIntrinsicID()) { 7664 case Intrinsic::vp_ctlz: { 7665 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7666 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7667 break; 7668 } 7669 case Intrinsic::vp_cttz: { 7670 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7671 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7672 break; 7673 } 7674 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7675 case Intrinsic::VPID: \ 7676 ResOPC = ISD::VPSD; \ 7677 break; 7678 #include "llvm/IR/VPIntrinsics.def" 7679 } 7680 7681 if (!ResOPC) 7682 llvm_unreachable( 7683 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7684 7685 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7686 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7687 if (VPIntrin.getFastMathFlags().allowReassoc()) 7688 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7689 : ISD::VP_REDUCE_FMUL; 7690 } 7691 7692 return *ResOPC; 7693 } 7694 7695 void SelectionDAGBuilder::visitVPLoad( 7696 const VPIntrinsic &VPIntrin, EVT VT, 7697 const SmallVectorImpl<SDValue> &OpValues) { 7698 SDLoc DL = getCurSDLoc(); 7699 Value *PtrOperand = VPIntrin.getArgOperand(0); 7700 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7701 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7702 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7703 SDValue LD; 7704 // Do not serialize variable-length loads of constant memory with 7705 // anything. 7706 if (!Alignment) 7707 Alignment = DAG.getEVTAlign(VT); 7708 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7709 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7710 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7711 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7712 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7713 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7714 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7715 MMO, false /*IsExpanding */); 7716 if (AddToChain) 7717 PendingLoads.push_back(LD.getValue(1)); 7718 setValue(&VPIntrin, LD); 7719 } 7720 7721 void SelectionDAGBuilder::visitVPGather( 7722 const VPIntrinsic &VPIntrin, EVT VT, 7723 const SmallVectorImpl<SDValue> &OpValues) { 7724 SDLoc DL = getCurSDLoc(); 7725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7726 Value *PtrOperand = VPIntrin.getArgOperand(0); 7727 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7728 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7729 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7730 SDValue LD; 7731 if (!Alignment) 7732 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7733 unsigned AS = 7734 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7735 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7736 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7737 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7738 SDValue Base, Index, Scale; 7739 ISD::MemIndexType IndexType; 7740 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7741 this, VPIntrin.getParent(), 7742 VT.getScalarStoreSize()); 7743 if (!UniformBase) { 7744 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7745 Index = getValue(PtrOperand); 7746 IndexType = ISD::SIGNED_SCALED; 7747 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7748 } 7749 EVT IdxVT = Index.getValueType(); 7750 EVT EltTy = IdxVT.getVectorElementType(); 7751 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7752 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7753 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7754 } 7755 LD = DAG.getGatherVP( 7756 DAG.getVTList(VT, MVT::Other), VT, DL, 7757 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7758 IndexType); 7759 PendingLoads.push_back(LD.getValue(1)); 7760 setValue(&VPIntrin, LD); 7761 } 7762 7763 void SelectionDAGBuilder::visitVPStore( 7764 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7765 SDLoc DL = getCurSDLoc(); 7766 Value *PtrOperand = VPIntrin.getArgOperand(1); 7767 EVT VT = OpValues[0].getValueType(); 7768 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7769 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7770 SDValue ST; 7771 if (!Alignment) 7772 Alignment = DAG.getEVTAlign(VT); 7773 SDValue Ptr = OpValues[1]; 7774 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7775 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7776 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7777 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7778 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7779 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7780 /* IsTruncating */ false, /*IsCompressing*/ false); 7781 DAG.setRoot(ST); 7782 setValue(&VPIntrin, ST); 7783 } 7784 7785 void SelectionDAGBuilder::visitVPScatter( 7786 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7787 SDLoc DL = getCurSDLoc(); 7788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7789 Value *PtrOperand = VPIntrin.getArgOperand(1); 7790 EVT VT = OpValues[0].getValueType(); 7791 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7792 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7793 SDValue ST; 7794 if (!Alignment) 7795 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7796 unsigned AS = 7797 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7798 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7799 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7800 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7801 SDValue Base, Index, Scale; 7802 ISD::MemIndexType IndexType; 7803 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7804 this, VPIntrin.getParent(), 7805 VT.getScalarStoreSize()); 7806 if (!UniformBase) { 7807 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7808 Index = getValue(PtrOperand); 7809 IndexType = ISD::SIGNED_SCALED; 7810 Scale = 7811 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7812 } 7813 EVT IdxVT = Index.getValueType(); 7814 EVT EltTy = IdxVT.getVectorElementType(); 7815 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7816 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7817 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7818 } 7819 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7820 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7821 OpValues[2], OpValues[3]}, 7822 MMO, IndexType); 7823 DAG.setRoot(ST); 7824 setValue(&VPIntrin, ST); 7825 } 7826 7827 void SelectionDAGBuilder::visitVPStridedLoad( 7828 const VPIntrinsic &VPIntrin, EVT VT, 7829 const SmallVectorImpl<SDValue> &OpValues) { 7830 SDLoc DL = getCurSDLoc(); 7831 Value *PtrOperand = VPIntrin.getArgOperand(0); 7832 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7833 if (!Alignment) 7834 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7835 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7836 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7837 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7838 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7839 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7840 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7841 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7842 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7843 7844 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7845 OpValues[2], OpValues[3], MMO, 7846 false /*IsExpanding*/); 7847 7848 if (AddToChain) 7849 PendingLoads.push_back(LD.getValue(1)); 7850 setValue(&VPIntrin, LD); 7851 } 7852 7853 void SelectionDAGBuilder::visitVPStridedStore( 7854 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7855 SDLoc DL = getCurSDLoc(); 7856 Value *PtrOperand = VPIntrin.getArgOperand(1); 7857 EVT VT = OpValues[0].getValueType(); 7858 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7859 if (!Alignment) 7860 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7861 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7862 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7863 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7864 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7865 7866 SDValue ST = DAG.getStridedStoreVP( 7867 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7868 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7869 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7870 /*IsCompressing*/ false); 7871 7872 DAG.setRoot(ST); 7873 setValue(&VPIntrin, ST); 7874 } 7875 7876 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7877 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7878 SDLoc DL = getCurSDLoc(); 7879 7880 ISD::CondCode Condition; 7881 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7882 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7883 if (IsFP) { 7884 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7885 // flags, but calls that don't return floating-point types can't be 7886 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7887 Condition = getFCmpCondCode(CondCode); 7888 if (TM.Options.NoNaNsFPMath) 7889 Condition = getFCmpCodeWithoutNaN(Condition); 7890 } else { 7891 Condition = getICmpCondCode(CondCode); 7892 } 7893 7894 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7895 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7896 // #2 is the condition code 7897 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7898 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7899 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7900 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7901 "Unexpected target EVL type"); 7902 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7903 7904 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7905 VPIntrin.getType()); 7906 setValue(&VPIntrin, 7907 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7908 } 7909 7910 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7911 const VPIntrinsic &VPIntrin) { 7912 SDLoc DL = getCurSDLoc(); 7913 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7914 7915 auto IID = VPIntrin.getIntrinsicID(); 7916 7917 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7918 return visitVPCmp(*CmpI); 7919 7920 SmallVector<EVT, 4> ValueVTs; 7921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7922 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7923 SDVTList VTs = DAG.getVTList(ValueVTs); 7924 7925 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 7926 7927 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7928 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7929 "Unexpected target EVL type"); 7930 7931 // Request operands. 7932 SmallVector<SDValue, 7> OpValues; 7933 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7934 auto Op = getValue(VPIntrin.getArgOperand(I)); 7935 if (I == EVLParamPos) 7936 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7937 OpValues.push_back(Op); 7938 } 7939 7940 switch (Opcode) { 7941 default: { 7942 SDNodeFlags SDFlags; 7943 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7944 SDFlags.copyFMF(*FPMO); 7945 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 7946 setValue(&VPIntrin, Result); 7947 break; 7948 } 7949 case ISD::VP_LOAD: 7950 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 7951 break; 7952 case ISD::VP_GATHER: 7953 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 7954 break; 7955 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 7956 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 7957 break; 7958 case ISD::VP_STORE: 7959 visitVPStore(VPIntrin, OpValues); 7960 break; 7961 case ISD::VP_SCATTER: 7962 visitVPScatter(VPIntrin, OpValues); 7963 break; 7964 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 7965 visitVPStridedStore(VPIntrin, OpValues); 7966 break; 7967 case ISD::VP_FMULADD: { 7968 assert(OpValues.size() == 5 && "Unexpected number of operands"); 7969 SDNodeFlags SDFlags; 7970 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 7971 SDFlags.copyFMF(*FPMO); 7972 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 7973 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 7974 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 7975 } else { 7976 SDValue Mul = DAG.getNode( 7977 ISD::VP_FMUL, DL, VTs, 7978 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 7979 SDValue Add = 7980 DAG.getNode(ISD::VP_FADD, DL, VTs, 7981 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 7982 setValue(&VPIntrin, Add); 7983 } 7984 break; 7985 } 7986 case ISD::VP_IS_FPCLASS: { 7987 const DataLayout DLayout = DAG.getDataLayout(); 7988 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 7989 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 7990 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 7991 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 7992 {OpValues[0], Check, OpValues[2], OpValues[3]}); 7993 setValue(&VPIntrin, V); 7994 return; 7995 } 7996 case ISD::VP_INTTOPTR: { 7997 SDValue N = OpValues[0]; 7998 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 7999 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8000 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8001 OpValues[2]); 8002 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8003 OpValues[2]); 8004 setValue(&VPIntrin, N); 8005 break; 8006 } 8007 case ISD::VP_PTRTOINT: { 8008 SDValue N = OpValues[0]; 8009 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8010 VPIntrin.getType()); 8011 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8012 VPIntrin.getOperand(0)->getType()); 8013 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8014 OpValues[2]); 8015 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8016 OpValues[2]); 8017 setValue(&VPIntrin, N); 8018 break; 8019 } 8020 case ISD::VP_ABS: 8021 case ISD::VP_CTLZ: 8022 case ISD::VP_CTLZ_ZERO_UNDEF: 8023 case ISD::VP_CTTZ: 8024 case ISD::VP_CTTZ_ZERO_UNDEF: { 8025 SDValue Result = 8026 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8027 setValue(&VPIntrin, Result); 8028 break; 8029 } 8030 } 8031 } 8032 8033 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8034 const BasicBlock *EHPadBB, 8035 MCSymbol *&BeginLabel) { 8036 MachineFunction &MF = DAG.getMachineFunction(); 8037 MachineModuleInfo &MMI = MF.getMMI(); 8038 8039 // Insert a label before the invoke call to mark the try range. This can be 8040 // used to detect deletion of the invoke via the MachineModuleInfo. 8041 BeginLabel = MMI.getContext().createTempSymbol(); 8042 8043 // For SjLj, keep track of which landing pads go with which invokes 8044 // so as to maintain the ordering of pads in the LSDA. 8045 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8046 if (CallSiteIndex) { 8047 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8048 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8049 8050 // Now that the call site is handled, stop tracking it. 8051 MMI.setCurrentCallSite(0); 8052 } 8053 8054 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8055 } 8056 8057 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8058 const BasicBlock *EHPadBB, 8059 MCSymbol *BeginLabel) { 8060 assert(BeginLabel && "BeginLabel should've been set"); 8061 8062 MachineFunction &MF = DAG.getMachineFunction(); 8063 MachineModuleInfo &MMI = MF.getMMI(); 8064 8065 // Insert a label at the end of the invoke call to mark the try range. This 8066 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8067 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8068 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8069 8070 // Inform MachineModuleInfo of range. 8071 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8072 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8073 // actually use outlined funclets and their LSDA info style. 8074 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8075 assert(II && "II should've been set"); 8076 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8077 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8078 } else if (!isScopedEHPersonality(Pers)) { 8079 assert(EHPadBB); 8080 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8081 } 8082 8083 return Chain; 8084 } 8085 8086 std::pair<SDValue, SDValue> 8087 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8088 const BasicBlock *EHPadBB) { 8089 MCSymbol *BeginLabel = nullptr; 8090 8091 if (EHPadBB) { 8092 // Both PendingLoads and PendingExports must be flushed here; 8093 // this call might not return. 8094 (void)getRoot(); 8095 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8096 CLI.setChain(getRoot()); 8097 } 8098 8099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8100 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8101 8102 assert((CLI.IsTailCall || Result.second.getNode()) && 8103 "Non-null chain expected with non-tail call!"); 8104 assert((Result.second.getNode() || !Result.first.getNode()) && 8105 "Null value expected with tail call!"); 8106 8107 if (!Result.second.getNode()) { 8108 // As a special case, a null chain means that a tail call has been emitted 8109 // and the DAG root is already updated. 8110 HasTailCall = true; 8111 8112 // Since there's no actual continuation from this block, nothing can be 8113 // relying on us setting vregs for them. 8114 PendingExports.clear(); 8115 } else { 8116 DAG.setRoot(Result.second); 8117 } 8118 8119 if (EHPadBB) { 8120 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8121 BeginLabel)); 8122 } 8123 8124 return Result; 8125 } 8126 8127 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8128 bool isTailCall, 8129 bool isMustTailCall, 8130 const BasicBlock *EHPadBB) { 8131 auto &DL = DAG.getDataLayout(); 8132 FunctionType *FTy = CB.getFunctionType(); 8133 Type *RetTy = CB.getType(); 8134 8135 TargetLowering::ArgListTy Args; 8136 Args.reserve(CB.arg_size()); 8137 8138 const Value *SwiftErrorVal = nullptr; 8139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8140 8141 if (isTailCall) { 8142 // Avoid emitting tail calls in functions with the disable-tail-calls 8143 // attribute. 8144 auto *Caller = CB.getParent()->getParent(); 8145 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8146 "true" && !isMustTailCall) 8147 isTailCall = false; 8148 8149 // We can't tail call inside a function with a swifterror argument. Lowering 8150 // does not support this yet. It would have to move into the swifterror 8151 // register before the call. 8152 if (TLI.supportSwiftError() && 8153 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8154 isTailCall = false; 8155 } 8156 8157 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8158 TargetLowering::ArgListEntry Entry; 8159 const Value *V = *I; 8160 8161 // Skip empty types 8162 if (V->getType()->isEmptyTy()) 8163 continue; 8164 8165 SDValue ArgNode = getValue(V); 8166 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8167 8168 Entry.setAttributes(&CB, I - CB.arg_begin()); 8169 8170 // Use swifterror virtual register as input to the call. 8171 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8172 SwiftErrorVal = V; 8173 // We find the virtual register for the actual swifterror argument. 8174 // Instead of using the Value, we use the virtual register instead. 8175 Entry.Node = 8176 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8177 EVT(TLI.getPointerTy(DL))); 8178 } 8179 8180 Args.push_back(Entry); 8181 8182 // If we have an explicit sret argument that is an Instruction, (i.e., it 8183 // might point to function-local memory), we can't meaningfully tail-call. 8184 if (Entry.IsSRet && isa<Instruction>(V)) 8185 isTailCall = false; 8186 } 8187 8188 // If call site has a cfguardtarget operand bundle, create and add an 8189 // additional ArgListEntry. 8190 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8191 TargetLowering::ArgListEntry Entry; 8192 Value *V = Bundle->Inputs[0]; 8193 SDValue ArgNode = getValue(V); 8194 Entry.Node = ArgNode; 8195 Entry.Ty = V->getType(); 8196 Entry.IsCFGuardTarget = true; 8197 Args.push_back(Entry); 8198 } 8199 8200 // Check if target-independent constraints permit a tail call here. 8201 // Target-dependent constraints are checked within TLI->LowerCallTo. 8202 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8203 isTailCall = false; 8204 8205 // Disable tail calls if there is an swifterror argument. Targets have not 8206 // been updated to support tail calls. 8207 if (TLI.supportSwiftError() && SwiftErrorVal) 8208 isTailCall = false; 8209 8210 ConstantInt *CFIType = nullptr; 8211 if (CB.isIndirectCall()) { 8212 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8213 if (!TLI.supportKCFIBundles()) 8214 report_fatal_error( 8215 "Target doesn't support calls with kcfi operand bundles."); 8216 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8217 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8218 } 8219 } 8220 8221 TargetLowering::CallLoweringInfo CLI(DAG); 8222 CLI.setDebugLoc(getCurSDLoc()) 8223 .setChain(getRoot()) 8224 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8225 .setTailCall(isTailCall) 8226 .setConvergent(CB.isConvergent()) 8227 .setIsPreallocated( 8228 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8229 .setCFIType(CFIType); 8230 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8231 8232 if (Result.first.getNode()) { 8233 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8234 setValue(&CB, Result.first); 8235 } 8236 8237 // The last element of CLI.InVals has the SDValue for swifterror return. 8238 // Here we copy it to a virtual register and update SwiftErrorMap for 8239 // book-keeping. 8240 if (SwiftErrorVal && TLI.supportSwiftError()) { 8241 // Get the last element of InVals. 8242 SDValue Src = CLI.InVals.back(); 8243 Register VReg = 8244 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8245 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8246 DAG.setRoot(CopyNode); 8247 } 8248 } 8249 8250 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8251 SelectionDAGBuilder &Builder) { 8252 // Check to see if this load can be trivially constant folded, e.g. if the 8253 // input is from a string literal. 8254 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8255 // Cast pointer to the type we really want to load. 8256 Type *LoadTy = 8257 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8258 if (LoadVT.isVector()) 8259 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8260 8261 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8262 PointerType::getUnqual(LoadTy)); 8263 8264 if (const Constant *LoadCst = 8265 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8266 LoadTy, Builder.DAG.getDataLayout())) 8267 return Builder.getValue(LoadCst); 8268 } 8269 8270 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8271 // still constant memory, the input chain can be the entry node. 8272 SDValue Root; 8273 bool ConstantMemory = false; 8274 8275 // Do not serialize (non-volatile) loads of constant memory with anything. 8276 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8277 Root = Builder.DAG.getEntryNode(); 8278 ConstantMemory = true; 8279 } else { 8280 // Do not serialize non-volatile loads against each other. 8281 Root = Builder.DAG.getRoot(); 8282 } 8283 8284 SDValue Ptr = Builder.getValue(PtrVal); 8285 SDValue LoadVal = 8286 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8287 MachinePointerInfo(PtrVal), Align(1)); 8288 8289 if (!ConstantMemory) 8290 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8291 return LoadVal; 8292 } 8293 8294 /// Record the value for an instruction that produces an integer result, 8295 /// converting the type where necessary. 8296 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8297 SDValue Value, 8298 bool IsSigned) { 8299 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8300 I.getType(), true); 8301 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8302 setValue(&I, Value); 8303 } 8304 8305 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8306 /// true and lower it. Otherwise return false, and it will be lowered like a 8307 /// normal call. 8308 /// The caller already checked that \p I calls the appropriate LibFunc with a 8309 /// correct prototype. 8310 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8311 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8312 const Value *Size = I.getArgOperand(2); 8313 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8314 if (CSize && CSize->getZExtValue() == 0) { 8315 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8316 I.getType(), true); 8317 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8318 return true; 8319 } 8320 8321 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8322 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8323 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8324 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8325 if (Res.first.getNode()) { 8326 processIntegerCallValue(I, Res.first, true); 8327 PendingLoads.push_back(Res.second); 8328 return true; 8329 } 8330 8331 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8332 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8333 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8334 return false; 8335 8336 // If the target has a fast compare for the given size, it will return a 8337 // preferred load type for that size. Require that the load VT is legal and 8338 // that the target supports unaligned loads of that type. Otherwise, return 8339 // INVALID. 8340 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8342 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8343 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8344 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8345 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8346 // TODO: Check alignment of src and dest ptrs. 8347 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8348 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8349 if (!TLI.isTypeLegal(LVT) || 8350 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8351 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8352 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8353 } 8354 8355 return LVT; 8356 }; 8357 8358 // This turns into unaligned loads. We only do this if the target natively 8359 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8360 // we'll only produce a small number of byte loads. 8361 MVT LoadVT; 8362 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8363 switch (NumBitsToCompare) { 8364 default: 8365 return false; 8366 case 16: 8367 LoadVT = MVT::i16; 8368 break; 8369 case 32: 8370 LoadVT = MVT::i32; 8371 break; 8372 case 64: 8373 case 128: 8374 case 256: 8375 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8376 break; 8377 } 8378 8379 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8380 return false; 8381 8382 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8383 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8384 8385 // Bitcast to a wide integer type if the loads are vectors. 8386 if (LoadVT.isVector()) { 8387 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8388 LoadL = DAG.getBitcast(CmpVT, LoadL); 8389 LoadR = DAG.getBitcast(CmpVT, LoadR); 8390 } 8391 8392 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8393 processIntegerCallValue(I, Cmp, false); 8394 return true; 8395 } 8396 8397 /// See if we can lower a memchr call into an optimized form. If so, return 8398 /// true and lower it. Otherwise return false, and it will be lowered like a 8399 /// normal call. 8400 /// The caller already checked that \p I calls the appropriate LibFunc with a 8401 /// correct prototype. 8402 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8403 const Value *Src = I.getArgOperand(0); 8404 const Value *Char = I.getArgOperand(1); 8405 const Value *Length = I.getArgOperand(2); 8406 8407 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8408 std::pair<SDValue, SDValue> Res = 8409 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8410 getValue(Src), getValue(Char), getValue(Length), 8411 MachinePointerInfo(Src)); 8412 if (Res.first.getNode()) { 8413 setValue(&I, Res.first); 8414 PendingLoads.push_back(Res.second); 8415 return true; 8416 } 8417 8418 return false; 8419 } 8420 8421 /// See if we can lower a mempcpy call into an optimized form. If so, return 8422 /// true and lower it. Otherwise return false, and it will be lowered like a 8423 /// normal call. 8424 /// The caller already checked that \p I calls the appropriate LibFunc with a 8425 /// correct prototype. 8426 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8427 SDValue Dst = getValue(I.getArgOperand(0)); 8428 SDValue Src = getValue(I.getArgOperand(1)); 8429 SDValue Size = getValue(I.getArgOperand(2)); 8430 8431 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8432 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8433 // DAG::getMemcpy needs Alignment to be defined. 8434 Align Alignment = std::min(DstAlign, SrcAlign); 8435 8436 SDLoc sdl = getCurSDLoc(); 8437 8438 // In the mempcpy context we need to pass in a false value for isTailCall 8439 // because the return pointer needs to be adjusted by the size of 8440 // the copied memory. 8441 SDValue Root = getMemoryRoot(); 8442 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8443 /*isTailCall=*/false, 8444 MachinePointerInfo(I.getArgOperand(0)), 8445 MachinePointerInfo(I.getArgOperand(1)), 8446 I.getAAMetadata()); 8447 assert(MC.getNode() != nullptr && 8448 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8449 DAG.setRoot(MC); 8450 8451 // Check if Size needs to be truncated or extended. 8452 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8453 8454 // Adjust return pointer to point just past the last dst byte. 8455 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8456 Dst, Size); 8457 setValue(&I, DstPlusSize); 8458 return true; 8459 } 8460 8461 /// See if we can lower a strcpy call into an optimized form. If so, return 8462 /// true and lower it, otherwise return false and it will be lowered like a 8463 /// normal call. 8464 /// The caller already checked that \p I calls the appropriate LibFunc with a 8465 /// correct prototype. 8466 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8467 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8468 8469 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8470 std::pair<SDValue, SDValue> Res = 8471 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8472 getValue(Arg0), getValue(Arg1), 8473 MachinePointerInfo(Arg0), 8474 MachinePointerInfo(Arg1), isStpcpy); 8475 if (Res.first.getNode()) { 8476 setValue(&I, Res.first); 8477 DAG.setRoot(Res.second); 8478 return true; 8479 } 8480 8481 return false; 8482 } 8483 8484 /// See if we can lower a strcmp call into an optimized form. If so, return 8485 /// true and lower it, otherwise return false and it will be lowered like a 8486 /// normal call. 8487 /// The caller already checked that \p I calls the appropriate LibFunc with a 8488 /// correct prototype. 8489 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8490 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8491 8492 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8493 std::pair<SDValue, SDValue> Res = 8494 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8495 getValue(Arg0), getValue(Arg1), 8496 MachinePointerInfo(Arg0), 8497 MachinePointerInfo(Arg1)); 8498 if (Res.first.getNode()) { 8499 processIntegerCallValue(I, Res.first, true); 8500 PendingLoads.push_back(Res.second); 8501 return true; 8502 } 8503 8504 return false; 8505 } 8506 8507 /// See if we can lower a strlen call into an optimized form. If so, return 8508 /// true and lower it, otherwise return false and it will be lowered like a 8509 /// normal call. 8510 /// The caller already checked that \p I calls the appropriate LibFunc with a 8511 /// correct prototype. 8512 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8513 const Value *Arg0 = I.getArgOperand(0); 8514 8515 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8516 std::pair<SDValue, SDValue> Res = 8517 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8518 getValue(Arg0), MachinePointerInfo(Arg0)); 8519 if (Res.first.getNode()) { 8520 processIntegerCallValue(I, Res.first, false); 8521 PendingLoads.push_back(Res.second); 8522 return true; 8523 } 8524 8525 return false; 8526 } 8527 8528 /// See if we can lower a strnlen call into an optimized form. If so, return 8529 /// true and lower it, otherwise return false and it will be lowered like a 8530 /// normal call. 8531 /// The caller already checked that \p I calls the appropriate LibFunc with a 8532 /// correct prototype. 8533 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8534 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8535 8536 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8537 std::pair<SDValue, SDValue> Res = 8538 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8539 getValue(Arg0), getValue(Arg1), 8540 MachinePointerInfo(Arg0)); 8541 if (Res.first.getNode()) { 8542 processIntegerCallValue(I, Res.first, false); 8543 PendingLoads.push_back(Res.second); 8544 return true; 8545 } 8546 8547 return false; 8548 } 8549 8550 /// See if we can lower a unary floating-point operation into an SDNode with 8551 /// the specified Opcode. If so, return true and lower it, otherwise return 8552 /// false and it will be lowered like a normal call. 8553 /// The caller already checked that \p I calls the appropriate LibFunc with a 8554 /// correct prototype. 8555 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8556 unsigned Opcode) { 8557 // We already checked this call's prototype; verify it doesn't modify errno. 8558 if (!I.onlyReadsMemory()) 8559 return false; 8560 8561 SDNodeFlags Flags; 8562 Flags.copyFMF(cast<FPMathOperator>(I)); 8563 8564 SDValue Tmp = getValue(I.getArgOperand(0)); 8565 setValue(&I, 8566 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8567 return true; 8568 } 8569 8570 /// See if we can lower a binary floating-point operation into an SDNode with 8571 /// the specified Opcode. If so, return true and lower it. Otherwise return 8572 /// false, and it will be lowered like a normal call. 8573 /// The caller already checked that \p I calls the appropriate LibFunc with a 8574 /// correct prototype. 8575 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8576 unsigned Opcode) { 8577 // We already checked this call's prototype; verify it doesn't modify errno. 8578 if (!I.onlyReadsMemory()) 8579 return false; 8580 8581 SDNodeFlags Flags; 8582 Flags.copyFMF(cast<FPMathOperator>(I)); 8583 8584 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8585 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8586 EVT VT = Tmp0.getValueType(); 8587 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8588 return true; 8589 } 8590 8591 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8592 // Handle inline assembly differently. 8593 if (I.isInlineAsm()) { 8594 visitInlineAsm(I); 8595 return; 8596 } 8597 8598 diagnoseDontCall(I); 8599 8600 if (Function *F = I.getCalledFunction()) { 8601 if (F->isDeclaration()) { 8602 // Is this an LLVM intrinsic or a target-specific intrinsic? 8603 unsigned IID = F->getIntrinsicID(); 8604 if (!IID) 8605 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8606 IID = II->getIntrinsicID(F); 8607 8608 if (IID) { 8609 visitIntrinsicCall(I, IID); 8610 return; 8611 } 8612 } 8613 8614 // Check for well-known libc/libm calls. If the function is internal, it 8615 // can't be a library call. Don't do the check if marked as nobuiltin for 8616 // some reason or the call site requires strict floating point semantics. 8617 LibFunc Func; 8618 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8619 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8620 LibInfo->hasOptimizedCodeGen(Func)) { 8621 switch (Func) { 8622 default: break; 8623 case LibFunc_bcmp: 8624 if (visitMemCmpBCmpCall(I)) 8625 return; 8626 break; 8627 case LibFunc_copysign: 8628 case LibFunc_copysignf: 8629 case LibFunc_copysignl: 8630 // We already checked this call's prototype; verify it doesn't modify 8631 // errno. 8632 if (I.onlyReadsMemory()) { 8633 SDValue LHS = getValue(I.getArgOperand(0)); 8634 SDValue RHS = getValue(I.getArgOperand(1)); 8635 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8636 LHS.getValueType(), LHS, RHS)); 8637 return; 8638 } 8639 break; 8640 case LibFunc_fabs: 8641 case LibFunc_fabsf: 8642 case LibFunc_fabsl: 8643 if (visitUnaryFloatCall(I, ISD::FABS)) 8644 return; 8645 break; 8646 case LibFunc_fmin: 8647 case LibFunc_fminf: 8648 case LibFunc_fminl: 8649 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8650 return; 8651 break; 8652 case LibFunc_fmax: 8653 case LibFunc_fmaxf: 8654 case LibFunc_fmaxl: 8655 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8656 return; 8657 break; 8658 case LibFunc_sin: 8659 case LibFunc_sinf: 8660 case LibFunc_sinl: 8661 if (visitUnaryFloatCall(I, ISD::FSIN)) 8662 return; 8663 break; 8664 case LibFunc_cos: 8665 case LibFunc_cosf: 8666 case LibFunc_cosl: 8667 if (visitUnaryFloatCall(I, ISD::FCOS)) 8668 return; 8669 break; 8670 case LibFunc_sqrt: 8671 case LibFunc_sqrtf: 8672 case LibFunc_sqrtl: 8673 case LibFunc_sqrt_finite: 8674 case LibFunc_sqrtf_finite: 8675 case LibFunc_sqrtl_finite: 8676 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8677 return; 8678 break; 8679 case LibFunc_floor: 8680 case LibFunc_floorf: 8681 case LibFunc_floorl: 8682 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8683 return; 8684 break; 8685 case LibFunc_nearbyint: 8686 case LibFunc_nearbyintf: 8687 case LibFunc_nearbyintl: 8688 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8689 return; 8690 break; 8691 case LibFunc_ceil: 8692 case LibFunc_ceilf: 8693 case LibFunc_ceill: 8694 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8695 return; 8696 break; 8697 case LibFunc_rint: 8698 case LibFunc_rintf: 8699 case LibFunc_rintl: 8700 if (visitUnaryFloatCall(I, ISD::FRINT)) 8701 return; 8702 break; 8703 case LibFunc_round: 8704 case LibFunc_roundf: 8705 case LibFunc_roundl: 8706 if (visitUnaryFloatCall(I, ISD::FROUND)) 8707 return; 8708 break; 8709 case LibFunc_trunc: 8710 case LibFunc_truncf: 8711 case LibFunc_truncl: 8712 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8713 return; 8714 break; 8715 case LibFunc_log2: 8716 case LibFunc_log2f: 8717 case LibFunc_log2l: 8718 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8719 return; 8720 break; 8721 case LibFunc_exp2: 8722 case LibFunc_exp2f: 8723 case LibFunc_exp2l: 8724 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8725 return; 8726 break; 8727 case LibFunc_exp10: 8728 case LibFunc_exp10f: 8729 case LibFunc_exp10l: 8730 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8731 return; 8732 break; 8733 case LibFunc_ldexp: 8734 case LibFunc_ldexpf: 8735 case LibFunc_ldexpl: 8736 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8737 return; 8738 break; 8739 case LibFunc_memcmp: 8740 if (visitMemCmpBCmpCall(I)) 8741 return; 8742 break; 8743 case LibFunc_mempcpy: 8744 if (visitMemPCpyCall(I)) 8745 return; 8746 break; 8747 case LibFunc_memchr: 8748 if (visitMemChrCall(I)) 8749 return; 8750 break; 8751 case LibFunc_strcpy: 8752 if (visitStrCpyCall(I, false)) 8753 return; 8754 break; 8755 case LibFunc_stpcpy: 8756 if (visitStrCpyCall(I, true)) 8757 return; 8758 break; 8759 case LibFunc_strcmp: 8760 if (visitStrCmpCall(I)) 8761 return; 8762 break; 8763 case LibFunc_strlen: 8764 if (visitStrLenCall(I)) 8765 return; 8766 break; 8767 case LibFunc_strnlen: 8768 if (visitStrNLenCall(I)) 8769 return; 8770 break; 8771 } 8772 } 8773 } 8774 8775 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8776 // have to do anything here to lower funclet bundles. 8777 // CFGuardTarget bundles are lowered in LowerCallTo. 8778 assert(!I.hasOperandBundlesOtherThan( 8779 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8780 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8781 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8782 "Cannot lower calls with arbitrary operand bundles!"); 8783 8784 SDValue Callee = getValue(I.getCalledOperand()); 8785 8786 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8787 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8788 else 8789 // Check if we can potentially perform a tail call. More detailed checking 8790 // is be done within LowerCallTo, after more information about the call is 8791 // known. 8792 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8793 } 8794 8795 namespace { 8796 8797 /// AsmOperandInfo - This contains information for each constraint that we are 8798 /// lowering. 8799 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8800 public: 8801 /// CallOperand - If this is the result output operand or a clobber 8802 /// this is null, otherwise it is the incoming operand to the CallInst. 8803 /// This gets modified as the asm is processed. 8804 SDValue CallOperand; 8805 8806 /// AssignedRegs - If this is a register or register class operand, this 8807 /// contains the set of register corresponding to the operand. 8808 RegsForValue AssignedRegs; 8809 8810 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8811 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8812 } 8813 8814 /// Whether or not this operand accesses memory 8815 bool hasMemory(const TargetLowering &TLI) const { 8816 // Indirect operand accesses access memory. 8817 if (isIndirect) 8818 return true; 8819 8820 for (const auto &Code : Codes) 8821 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8822 return true; 8823 8824 return false; 8825 } 8826 }; 8827 8828 8829 } // end anonymous namespace 8830 8831 /// Make sure that the output operand \p OpInfo and its corresponding input 8832 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8833 /// out). 8834 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8835 SDISelAsmOperandInfo &MatchingOpInfo, 8836 SelectionDAG &DAG) { 8837 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8838 return; 8839 8840 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8841 const auto &TLI = DAG.getTargetLoweringInfo(); 8842 8843 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8844 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8845 OpInfo.ConstraintVT); 8846 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8847 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8848 MatchingOpInfo.ConstraintVT); 8849 if ((OpInfo.ConstraintVT.isInteger() != 8850 MatchingOpInfo.ConstraintVT.isInteger()) || 8851 (MatchRC.second != InputRC.second)) { 8852 // FIXME: error out in a more elegant fashion 8853 report_fatal_error("Unsupported asm: input constraint" 8854 " with a matching output constraint of" 8855 " incompatible type!"); 8856 } 8857 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8858 } 8859 8860 /// Get a direct memory input to behave well as an indirect operand. 8861 /// This may introduce stores, hence the need for a \p Chain. 8862 /// \return The (possibly updated) chain. 8863 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8864 SDISelAsmOperandInfo &OpInfo, 8865 SelectionDAG &DAG) { 8866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8867 8868 // If we don't have an indirect input, put it in the constpool if we can, 8869 // otherwise spill it to a stack slot. 8870 // TODO: This isn't quite right. We need to handle these according to 8871 // the addressing mode that the constraint wants. Also, this may take 8872 // an additional register for the computation and we don't want that 8873 // either. 8874 8875 // If the operand is a float, integer, or vector constant, spill to a 8876 // constant pool entry to get its address. 8877 const Value *OpVal = OpInfo.CallOperandVal; 8878 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8879 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8880 OpInfo.CallOperand = DAG.getConstantPool( 8881 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8882 return Chain; 8883 } 8884 8885 // Otherwise, create a stack slot and emit a store to it before the asm. 8886 Type *Ty = OpVal->getType(); 8887 auto &DL = DAG.getDataLayout(); 8888 uint64_t TySize = DL.getTypeAllocSize(Ty); 8889 MachineFunction &MF = DAG.getMachineFunction(); 8890 int SSFI = MF.getFrameInfo().CreateStackObject( 8891 TySize, DL.getPrefTypeAlign(Ty), false); 8892 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8893 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8894 MachinePointerInfo::getFixedStack(MF, SSFI), 8895 TLI.getMemValueType(DL, Ty)); 8896 OpInfo.CallOperand = StackSlot; 8897 8898 return Chain; 8899 } 8900 8901 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8902 /// specified operand. We prefer to assign virtual registers, to allow the 8903 /// register allocator to handle the assignment process. However, if the asm 8904 /// uses features that we can't model on machineinstrs, we have SDISel do the 8905 /// allocation. This produces generally horrible, but correct, code. 8906 /// 8907 /// OpInfo describes the operand 8908 /// RefOpInfo describes the matching operand if any, the operand otherwise 8909 static std::optional<unsigned> 8910 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8911 SDISelAsmOperandInfo &OpInfo, 8912 SDISelAsmOperandInfo &RefOpInfo) { 8913 LLVMContext &Context = *DAG.getContext(); 8914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8915 8916 MachineFunction &MF = DAG.getMachineFunction(); 8917 SmallVector<unsigned, 4> Regs; 8918 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8919 8920 // No work to do for memory/address operands. 8921 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8922 OpInfo.ConstraintType == TargetLowering::C_Address) 8923 return std::nullopt; 8924 8925 // If this is a constraint for a single physreg, or a constraint for a 8926 // register class, find it. 8927 unsigned AssignedReg; 8928 const TargetRegisterClass *RC; 8929 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8930 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8931 // RC is unset only on failure. Return immediately. 8932 if (!RC) 8933 return std::nullopt; 8934 8935 // Get the actual register value type. This is important, because the user 8936 // may have asked for (e.g.) the AX register in i32 type. We need to 8937 // remember that AX is actually i16 to get the right extension. 8938 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8939 8940 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8941 // If this is an FP operand in an integer register (or visa versa), or more 8942 // generally if the operand value disagrees with the register class we plan 8943 // to stick it in, fix the operand type. 8944 // 8945 // If this is an input value, the bitcast to the new type is done now. 8946 // Bitcast for output value is done at the end of visitInlineAsm(). 8947 if ((OpInfo.Type == InlineAsm::isOutput || 8948 OpInfo.Type == InlineAsm::isInput) && 8949 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8950 // Try to convert to the first EVT that the reg class contains. If the 8951 // types are identical size, use a bitcast to convert (e.g. two differing 8952 // vector types). Note: output bitcast is done at the end of 8953 // visitInlineAsm(). 8954 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8955 // Exclude indirect inputs while they are unsupported because the code 8956 // to perform the load is missing and thus OpInfo.CallOperand still 8957 // refers to the input address rather than the pointed-to value. 8958 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8959 OpInfo.CallOperand = 8960 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8961 OpInfo.ConstraintVT = RegVT; 8962 // If the operand is an FP value and we want it in integer registers, 8963 // use the corresponding integer type. This turns an f64 value into 8964 // i64, which can be passed with two i32 values on a 32-bit machine. 8965 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8966 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8967 if (OpInfo.Type == InlineAsm::isInput) 8968 OpInfo.CallOperand = 8969 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8970 OpInfo.ConstraintVT = VT; 8971 } 8972 } 8973 } 8974 8975 // No need to allocate a matching input constraint since the constraint it's 8976 // matching to has already been allocated. 8977 if (OpInfo.isMatchingInputConstraint()) 8978 return std::nullopt; 8979 8980 EVT ValueVT = OpInfo.ConstraintVT; 8981 if (OpInfo.ConstraintVT == MVT::Other) 8982 ValueVT = RegVT; 8983 8984 // Initialize NumRegs. 8985 unsigned NumRegs = 1; 8986 if (OpInfo.ConstraintVT != MVT::Other) 8987 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8988 8989 // If this is a constraint for a specific physical register, like {r17}, 8990 // assign it now. 8991 8992 // If this associated to a specific register, initialize iterator to correct 8993 // place. If virtual, make sure we have enough registers 8994 8995 // Initialize iterator if necessary 8996 TargetRegisterClass::iterator I = RC->begin(); 8997 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8998 8999 // Do not check for single registers. 9000 if (AssignedReg) { 9001 I = std::find(I, RC->end(), AssignedReg); 9002 if (I == RC->end()) { 9003 // RC does not contain the selected register, which indicates a 9004 // mismatch between the register and the required type/bitwidth. 9005 return {AssignedReg}; 9006 } 9007 } 9008 9009 for (; NumRegs; --NumRegs, ++I) { 9010 assert(I != RC->end() && "Ran out of registers to allocate!"); 9011 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9012 Regs.push_back(R); 9013 } 9014 9015 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9016 return std::nullopt; 9017 } 9018 9019 static unsigned 9020 findMatchingInlineAsmOperand(unsigned OperandNo, 9021 const std::vector<SDValue> &AsmNodeOperands) { 9022 // Scan until we find the definition we already emitted of this operand. 9023 unsigned CurOp = InlineAsm::Op_FirstOperand; 9024 for (; OperandNo; --OperandNo) { 9025 // Advance to the next operand. 9026 unsigned OpFlag = 9027 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9028 const InlineAsm::Flag F(OpFlag); 9029 assert( 9030 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9031 "Skipped past definitions?"); 9032 CurOp += F.getNumOperandRegisters() + 1; 9033 } 9034 return CurOp; 9035 } 9036 9037 namespace { 9038 9039 class ExtraFlags { 9040 unsigned Flags = 0; 9041 9042 public: 9043 explicit ExtraFlags(const CallBase &Call) { 9044 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9045 if (IA->hasSideEffects()) 9046 Flags |= InlineAsm::Extra_HasSideEffects; 9047 if (IA->isAlignStack()) 9048 Flags |= InlineAsm::Extra_IsAlignStack; 9049 if (Call.isConvergent()) 9050 Flags |= InlineAsm::Extra_IsConvergent; 9051 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9052 } 9053 9054 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9055 // Ideally, we would only check against memory constraints. However, the 9056 // meaning of an Other constraint can be target-specific and we can't easily 9057 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9058 // for Other constraints as well. 9059 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9060 OpInfo.ConstraintType == TargetLowering::C_Other) { 9061 if (OpInfo.Type == InlineAsm::isInput) 9062 Flags |= InlineAsm::Extra_MayLoad; 9063 else if (OpInfo.Type == InlineAsm::isOutput) 9064 Flags |= InlineAsm::Extra_MayStore; 9065 else if (OpInfo.Type == InlineAsm::isClobber) 9066 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9067 } 9068 } 9069 9070 unsigned get() const { return Flags; } 9071 }; 9072 9073 } // end anonymous namespace 9074 9075 static bool isFunction(SDValue Op) { 9076 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9077 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9078 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9079 9080 // In normal "call dllimport func" instruction (non-inlineasm) it force 9081 // indirect access by specifing call opcode. And usually specially print 9082 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9083 // not do in this way now. (In fact, this is similar with "Data Access" 9084 // action). So here we ignore dllimport function. 9085 if (Fn && !Fn->hasDLLImportStorageClass()) 9086 return true; 9087 } 9088 } 9089 return false; 9090 } 9091 9092 /// visitInlineAsm - Handle a call to an InlineAsm object. 9093 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9094 const BasicBlock *EHPadBB) { 9095 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9096 9097 /// ConstraintOperands - Information about all of the constraints. 9098 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9099 9100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9101 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9102 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9103 9104 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9105 // AsmDialect, MayLoad, MayStore). 9106 bool HasSideEffect = IA->hasSideEffects(); 9107 ExtraFlags ExtraInfo(Call); 9108 9109 for (auto &T : TargetConstraints) { 9110 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9111 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9112 9113 if (OpInfo.CallOperandVal) 9114 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9115 9116 if (!HasSideEffect) 9117 HasSideEffect = OpInfo.hasMemory(TLI); 9118 9119 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9120 // FIXME: Could we compute this on OpInfo rather than T? 9121 9122 // Compute the constraint code and ConstraintType to use. 9123 TLI.ComputeConstraintToUse(T, SDValue()); 9124 9125 if (T.ConstraintType == TargetLowering::C_Immediate && 9126 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9127 // We've delayed emitting a diagnostic like the "n" constraint because 9128 // inlining could cause an integer showing up. 9129 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9130 "' expects an integer constant " 9131 "expression"); 9132 9133 ExtraInfo.update(T); 9134 } 9135 9136 // We won't need to flush pending loads if this asm doesn't touch 9137 // memory and is nonvolatile. 9138 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9139 9140 bool EmitEHLabels = isa<InvokeInst>(Call); 9141 if (EmitEHLabels) { 9142 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9143 } 9144 bool IsCallBr = isa<CallBrInst>(Call); 9145 9146 if (IsCallBr || EmitEHLabels) { 9147 // If this is a callbr or invoke we need to flush pending exports since 9148 // inlineasm_br and invoke are terminators. 9149 // We need to do this before nodes are glued to the inlineasm_br node. 9150 Chain = getControlRoot(); 9151 } 9152 9153 MCSymbol *BeginLabel = nullptr; 9154 if (EmitEHLabels) { 9155 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9156 } 9157 9158 int OpNo = -1; 9159 SmallVector<StringRef> AsmStrs; 9160 IA->collectAsmStrs(AsmStrs); 9161 9162 // Second pass over the constraints: compute which constraint option to use. 9163 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9164 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9165 OpNo++; 9166 9167 // If this is an output operand with a matching input operand, look up the 9168 // matching input. If their types mismatch, e.g. one is an integer, the 9169 // other is floating point, or their sizes are different, flag it as an 9170 // error. 9171 if (OpInfo.hasMatchingInput()) { 9172 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9173 patchMatchingInput(OpInfo, Input, DAG); 9174 } 9175 9176 // Compute the constraint code and ConstraintType to use. 9177 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9178 9179 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9180 OpInfo.Type == InlineAsm::isClobber) || 9181 OpInfo.ConstraintType == TargetLowering::C_Address) 9182 continue; 9183 9184 // In Linux PIC model, there are 4 cases about value/label addressing: 9185 // 9186 // 1: Function call or Label jmp inside the module. 9187 // 2: Data access (such as global variable, static variable) inside module. 9188 // 3: Function call or Label jmp outside the module. 9189 // 4: Data access (such as global variable) outside the module. 9190 // 9191 // Due to current llvm inline asm architecture designed to not "recognize" 9192 // the asm code, there are quite troubles for us to treat mem addressing 9193 // differently for same value/adress used in different instuctions. 9194 // For example, in pic model, call a func may in plt way or direclty 9195 // pc-related, but lea/mov a function adress may use got. 9196 // 9197 // Here we try to "recognize" function call for the case 1 and case 3 in 9198 // inline asm. And try to adjust the constraint for them. 9199 // 9200 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9201 // label, so here we don't handle jmp function label now, but we need to 9202 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9203 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9204 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9205 TM.getCodeModel() != CodeModel::Large) { 9206 OpInfo.isIndirect = false; 9207 OpInfo.ConstraintType = TargetLowering::C_Address; 9208 } 9209 9210 // If this is a memory input, and if the operand is not indirect, do what we 9211 // need to provide an address for the memory input. 9212 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9213 !OpInfo.isIndirect) { 9214 assert((OpInfo.isMultipleAlternative || 9215 (OpInfo.Type == InlineAsm::isInput)) && 9216 "Can only indirectify direct input operands!"); 9217 9218 // Memory operands really want the address of the value. 9219 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9220 9221 // There is no longer a Value* corresponding to this operand. 9222 OpInfo.CallOperandVal = nullptr; 9223 9224 // It is now an indirect operand. 9225 OpInfo.isIndirect = true; 9226 } 9227 9228 } 9229 9230 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9231 std::vector<SDValue> AsmNodeOperands; 9232 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9233 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9234 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9235 9236 // If we have a !srcloc metadata node associated with it, we want to attach 9237 // this to the ultimately generated inline asm machineinstr. To do this, we 9238 // pass in the third operand as this (potentially null) inline asm MDNode. 9239 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9240 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9241 9242 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9243 // bits as operand 3. 9244 AsmNodeOperands.push_back(DAG.getTargetConstant( 9245 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9246 9247 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9248 // this, assign virtual and physical registers for inputs and otput. 9249 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9250 // Assign Registers. 9251 SDISelAsmOperandInfo &RefOpInfo = 9252 OpInfo.isMatchingInputConstraint() 9253 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9254 : OpInfo; 9255 const auto RegError = 9256 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9257 if (RegError) { 9258 const MachineFunction &MF = DAG.getMachineFunction(); 9259 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9260 const char *RegName = TRI.getName(*RegError); 9261 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9262 "' allocated for constraint '" + 9263 Twine(OpInfo.ConstraintCode) + 9264 "' does not match required type"); 9265 return; 9266 } 9267 9268 auto DetectWriteToReservedRegister = [&]() { 9269 const MachineFunction &MF = DAG.getMachineFunction(); 9270 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9271 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9272 if (Register::isPhysicalRegister(Reg) && 9273 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9274 const char *RegName = TRI.getName(Reg); 9275 emitInlineAsmError(Call, "write to reserved register '" + 9276 Twine(RegName) + "'"); 9277 return true; 9278 } 9279 } 9280 return false; 9281 }; 9282 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9283 (OpInfo.Type == InlineAsm::isInput && 9284 !OpInfo.isMatchingInputConstraint())) && 9285 "Only address as input operand is allowed."); 9286 9287 switch (OpInfo.Type) { 9288 case InlineAsm::isOutput: 9289 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9290 const InlineAsm::ConstraintCode ConstraintID = 9291 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9292 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9293 "Failed to convert memory constraint code to constraint id."); 9294 9295 // Add information to the INLINEASM node to know about this output. 9296 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9297 OpFlags.setMemConstraint(ConstraintID); 9298 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9299 MVT::i32)); 9300 AsmNodeOperands.push_back(OpInfo.CallOperand); 9301 } else { 9302 // Otherwise, this outputs to a register (directly for C_Register / 9303 // C_RegisterClass, and a target-defined fashion for 9304 // C_Immediate/C_Other). Find a register that we can use. 9305 if (OpInfo.AssignedRegs.Regs.empty()) { 9306 emitInlineAsmError( 9307 Call, "couldn't allocate output register for constraint '" + 9308 Twine(OpInfo.ConstraintCode) + "'"); 9309 return; 9310 } 9311 9312 if (DetectWriteToReservedRegister()) 9313 return; 9314 9315 // Add information to the INLINEASM node to know that this register is 9316 // set. 9317 OpInfo.AssignedRegs.AddInlineAsmOperands( 9318 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9319 : InlineAsm::Kind::RegDef, 9320 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9321 } 9322 break; 9323 9324 case InlineAsm::isInput: 9325 case InlineAsm::isLabel: { 9326 SDValue InOperandVal = OpInfo.CallOperand; 9327 9328 if (OpInfo.isMatchingInputConstraint()) { 9329 // If this is required to match an output register we have already set, 9330 // just use its register. 9331 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9332 AsmNodeOperands); 9333 InlineAsm::Flag Flag( 9334 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9335 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9336 if (OpInfo.isIndirect) { 9337 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9338 emitInlineAsmError(Call, "inline asm not supported yet: " 9339 "don't know how to handle tied " 9340 "indirect register inputs"); 9341 return; 9342 } 9343 9344 SmallVector<unsigned, 4> Regs; 9345 MachineFunction &MF = DAG.getMachineFunction(); 9346 MachineRegisterInfo &MRI = MF.getRegInfo(); 9347 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9348 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9349 Register TiedReg = R->getReg(); 9350 MVT RegVT = R->getSimpleValueType(0); 9351 const TargetRegisterClass *RC = 9352 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9353 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9354 : TRI.getMinimalPhysRegClass(TiedReg); 9355 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9356 Regs.push_back(MRI.createVirtualRegister(RC)); 9357 9358 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9359 9360 SDLoc dl = getCurSDLoc(); 9361 // Use the produced MatchedRegs object to 9362 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9363 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9364 OpInfo.getMatchedOperand(), dl, DAG, 9365 AsmNodeOperands); 9366 break; 9367 } 9368 9369 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9370 assert(Flag.getNumOperandRegisters() == 1 && 9371 "Unexpected number of operands"); 9372 // Add information to the INLINEASM node to know about this input. 9373 // See InlineAsm.h isUseOperandTiedToDef. 9374 Flag.clearMemConstraint(); 9375 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9376 AsmNodeOperands.push_back(DAG.getTargetConstant( 9377 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9378 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9379 break; 9380 } 9381 9382 // Treat indirect 'X' constraint as memory. 9383 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9384 OpInfo.isIndirect) 9385 OpInfo.ConstraintType = TargetLowering::C_Memory; 9386 9387 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9388 OpInfo.ConstraintType == TargetLowering::C_Other) { 9389 std::vector<SDValue> Ops; 9390 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9391 Ops, DAG); 9392 if (Ops.empty()) { 9393 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9394 if (isa<ConstantSDNode>(InOperandVal)) { 9395 emitInlineAsmError(Call, "value out of range for constraint '" + 9396 Twine(OpInfo.ConstraintCode) + "'"); 9397 return; 9398 } 9399 9400 emitInlineAsmError(Call, 9401 "invalid operand for inline asm constraint '" + 9402 Twine(OpInfo.ConstraintCode) + "'"); 9403 return; 9404 } 9405 9406 // Add information to the INLINEASM node to know about this input. 9407 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9408 AsmNodeOperands.push_back(DAG.getTargetConstant( 9409 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9410 llvm::append_range(AsmNodeOperands, Ops); 9411 break; 9412 } 9413 9414 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9415 assert((OpInfo.isIndirect || 9416 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9417 "Operand must be indirect to be a mem!"); 9418 assert(InOperandVal.getValueType() == 9419 TLI.getPointerTy(DAG.getDataLayout()) && 9420 "Memory operands expect pointer values"); 9421 9422 const InlineAsm::ConstraintCode ConstraintID = 9423 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9424 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9425 "Failed to convert memory constraint code to constraint id."); 9426 9427 // Add information to the INLINEASM node to know about this input. 9428 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9429 ResOpType.setMemConstraint(ConstraintID); 9430 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9431 getCurSDLoc(), 9432 MVT::i32)); 9433 AsmNodeOperands.push_back(InOperandVal); 9434 break; 9435 } 9436 9437 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9438 const InlineAsm::ConstraintCode ConstraintID = 9439 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9440 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9441 "Failed to convert memory constraint code to constraint id."); 9442 9443 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9444 9445 SDValue AsmOp = InOperandVal; 9446 if (isFunction(InOperandVal)) { 9447 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9448 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9449 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9450 InOperandVal.getValueType(), 9451 GA->getOffset()); 9452 } 9453 9454 // Add information to the INLINEASM node to know about this input. 9455 ResOpType.setMemConstraint(ConstraintID); 9456 9457 AsmNodeOperands.push_back( 9458 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9459 9460 AsmNodeOperands.push_back(AsmOp); 9461 break; 9462 } 9463 9464 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9465 OpInfo.ConstraintType == TargetLowering::C_Register) && 9466 "Unknown constraint type!"); 9467 9468 // TODO: Support this. 9469 if (OpInfo.isIndirect) { 9470 emitInlineAsmError( 9471 Call, "Don't know how to handle indirect register inputs yet " 9472 "for constraint '" + 9473 Twine(OpInfo.ConstraintCode) + "'"); 9474 return; 9475 } 9476 9477 // Copy the input into the appropriate registers. 9478 if (OpInfo.AssignedRegs.Regs.empty()) { 9479 emitInlineAsmError(Call, 9480 "couldn't allocate input reg for constraint '" + 9481 Twine(OpInfo.ConstraintCode) + "'"); 9482 return; 9483 } 9484 9485 if (DetectWriteToReservedRegister()) 9486 return; 9487 9488 SDLoc dl = getCurSDLoc(); 9489 9490 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9491 &Call); 9492 9493 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9494 0, dl, DAG, AsmNodeOperands); 9495 break; 9496 } 9497 case InlineAsm::isClobber: 9498 // Add the clobbered value to the operand list, so that the register 9499 // allocator is aware that the physreg got clobbered. 9500 if (!OpInfo.AssignedRegs.Regs.empty()) 9501 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9502 false, 0, getCurSDLoc(), DAG, 9503 AsmNodeOperands); 9504 break; 9505 } 9506 } 9507 9508 // Finish up input operands. Set the input chain and add the flag last. 9509 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9510 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9511 9512 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9513 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9514 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9515 Glue = Chain.getValue(1); 9516 9517 // Do additional work to generate outputs. 9518 9519 SmallVector<EVT, 1> ResultVTs; 9520 SmallVector<SDValue, 1> ResultValues; 9521 SmallVector<SDValue, 8> OutChains; 9522 9523 llvm::Type *CallResultType = Call.getType(); 9524 ArrayRef<Type *> ResultTypes; 9525 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9526 ResultTypes = StructResult->elements(); 9527 else if (!CallResultType->isVoidTy()) 9528 ResultTypes = ArrayRef(CallResultType); 9529 9530 auto CurResultType = ResultTypes.begin(); 9531 auto handleRegAssign = [&](SDValue V) { 9532 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9533 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9534 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9535 ++CurResultType; 9536 // If the type of the inline asm call site return value is different but has 9537 // same size as the type of the asm output bitcast it. One example of this 9538 // is for vectors with different width / number of elements. This can 9539 // happen for register classes that can contain multiple different value 9540 // types. The preg or vreg allocated may not have the same VT as was 9541 // expected. 9542 // 9543 // This can also happen for a return value that disagrees with the register 9544 // class it is put in, eg. a double in a general-purpose register on a 9545 // 32-bit machine. 9546 if (ResultVT != V.getValueType() && 9547 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9548 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9549 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9550 V.getValueType().isInteger()) { 9551 // If a result value was tied to an input value, the computed result 9552 // may have a wider width than the expected result. Extract the 9553 // relevant portion. 9554 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9555 } 9556 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9557 ResultVTs.push_back(ResultVT); 9558 ResultValues.push_back(V); 9559 }; 9560 9561 // Deal with output operands. 9562 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9563 if (OpInfo.Type == InlineAsm::isOutput) { 9564 SDValue Val; 9565 // Skip trivial output operands. 9566 if (OpInfo.AssignedRegs.Regs.empty()) 9567 continue; 9568 9569 switch (OpInfo.ConstraintType) { 9570 case TargetLowering::C_Register: 9571 case TargetLowering::C_RegisterClass: 9572 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9573 Chain, &Glue, &Call); 9574 break; 9575 case TargetLowering::C_Immediate: 9576 case TargetLowering::C_Other: 9577 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9578 OpInfo, DAG); 9579 break; 9580 case TargetLowering::C_Memory: 9581 break; // Already handled. 9582 case TargetLowering::C_Address: 9583 break; // Silence warning. 9584 case TargetLowering::C_Unknown: 9585 assert(false && "Unexpected unknown constraint"); 9586 } 9587 9588 // Indirect output manifest as stores. Record output chains. 9589 if (OpInfo.isIndirect) { 9590 const Value *Ptr = OpInfo.CallOperandVal; 9591 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9592 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9593 MachinePointerInfo(Ptr)); 9594 OutChains.push_back(Store); 9595 } else { 9596 // generate CopyFromRegs to associated registers. 9597 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9598 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9599 for (const SDValue &V : Val->op_values()) 9600 handleRegAssign(V); 9601 } else 9602 handleRegAssign(Val); 9603 } 9604 } 9605 } 9606 9607 // Set results. 9608 if (!ResultValues.empty()) { 9609 assert(CurResultType == ResultTypes.end() && 9610 "Mismatch in number of ResultTypes"); 9611 assert(ResultValues.size() == ResultTypes.size() && 9612 "Mismatch in number of output operands in asm result"); 9613 9614 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9615 DAG.getVTList(ResultVTs), ResultValues); 9616 setValue(&Call, V); 9617 } 9618 9619 // Collect store chains. 9620 if (!OutChains.empty()) 9621 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9622 9623 if (EmitEHLabels) { 9624 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9625 } 9626 9627 // Only Update Root if inline assembly has a memory effect. 9628 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9629 EmitEHLabels) 9630 DAG.setRoot(Chain); 9631 } 9632 9633 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9634 const Twine &Message) { 9635 LLVMContext &Ctx = *DAG.getContext(); 9636 Ctx.emitError(&Call, Message); 9637 9638 // Make sure we leave the DAG in a valid state 9639 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9640 SmallVector<EVT, 1> ValueVTs; 9641 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9642 9643 if (ValueVTs.empty()) 9644 return; 9645 9646 SmallVector<SDValue, 1> Ops; 9647 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9648 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9649 9650 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9651 } 9652 9653 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9654 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9655 MVT::Other, getRoot(), 9656 getValue(I.getArgOperand(0)), 9657 DAG.getSrcValue(I.getArgOperand(0)))); 9658 } 9659 9660 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9661 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9662 const DataLayout &DL = DAG.getDataLayout(); 9663 SDValue V = DAG.getVAArg( 9664 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9665 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9666 DL.getABITypeAlign(I.getType()).value()); 9667 DAG.setRoot(V.getValue(1)); 9668 9669 if (I.getType()->isPointerTy()) 9670 V = DAG.getPtrExtOrTrunc( 9671 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9672 setValue(&I, V); 9673 } 9674 9675 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9676 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9677 MVT::Other, getRoot(), 9678 getValue(I.getArgOperand(0)), 9679 DAG.getSrcValue(I.getArgOperand(0)))); 9680 } 9681 9682 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9683 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9684 MVT::Other, getRoot(), 9685 getValue(I.getArgOperand(0)), 9686 getValue(I.getArgOperand(1)), 9687 DAG.getSrcValue(I.getArgOperand(0)), 9688 DAG.getSrcValue(I.getArgOperand(1)))); 9689 } 9690 9691 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9692 const Instruction &I, 9693 SDValue Op) { 9694 const MDNode *Range = getRangeMetadata(I); 9695 if (!Range) 9696 return Op; 9697 9698 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9699 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9700 return Op; 9701 9702 APInt Lo = CR.getUnsignedMin(); 9703 if (!Lo.isMinValue()) 9704 return Op; 9705 9706 APInt Hi = CR.getUnsignedMax(); 9707 unsigned Bits = std::max(Hi.getActiveBits(), 9708 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9709 9710 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9711 9712 SDLoc SL = getCurSDLoc(); 9713 9714 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9715 DAG.getValueType(SmallVT)); 9716 unsigned NumVals = Op.getNode()->getNumValues(); 9717 if (NumVals == 1) 9718 return ZExt; 9719 9720 SmallVector<SDValue, 4> Ops; 9721 9722 Ops.push_back(ZExt); 9723 for (unsigned I = 1; I != NumVals; ++I) 9724 Ops.push_back(Op.getValue(I)); 9725 9726 return DAG.getMergeValues(Ops, SL); 9727 } 9728 9729 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9730 /// the call being lowered. 9731 /// 9732 /// This is a helper for lowering intrinsics that follow a target calling 9733 /// convention or require stack pointer adjustment. Only a subset of the 9734 /// intrinsic's operands need to participate in the calling convention. 9735 void SelectionDAGBuilder::populateCallLoweringInfo( 9736 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9737 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9738 AttributeSet RetAttrs, bool IsPatchPoint) { 9739 TargetLowering::ArgListTy Args; 9740 Args.reserve(NumArgs); 9741 9742 // Populate the argument list. 9743 // Attributes for args start at offset 1, after the return attribute. 9744 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9745 ArgI != ArgE; ++ArgI) { 9746 const Value *V = Call->getOperand(ArgI); 9747 9748 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9749 9750 TargetLowering::ArgListEntry Entry; 9751 Entry.Node = getValue(V); 9752 Entry.Ty = V->getType(); 9753 Entry.setAttributes(Call, ArgI); 9754 Args.push_back(Entry); 9755 } 9756 9757 CLI.setDebugLoc(getCurSDLoc()) 9758 .setChain(getRoot()) 9759 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9760 RetAttrs) 9761 .setDiscardResult(Call->use_empty()) 9762 .setIsPatchPoint(IsPatchPoint) 9763 .setIsPreallocated( 9764 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9765 } 9766 9767 /// Add a stack map intrinsic call's live variable operands to a stackmap 9768 /// or patchpoint target node's operand list. 9769 /// 9770 /// Constants are converted to TargetConstants purely as an optimization to 9771 /// avoid constant materialization and register allocation. 9772 /// 9773 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9774 /// generate addess computation nodes, and so FinalizeISel can convert the 9775 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9776 /// address materialization and register allocation, but may also be required 9777 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9778 /// alloca in the entry block, then the runtime may assume that the alloca's 9779 /// StackMap location can be read immediately after compilation and that the 9780 /// location is valid at any point during execution (this is similar to the 9781 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9782 /// only available in a register, then the runtime would need to trap when 9783 /// execution reaches the StackMap in order to read the alloca's location. 9784 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9785 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9786 SelectionDAGBuilder &Builder) { 9787 SelectionDAG &DAG = Builder.DAG; 9788 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9789 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9790 9791 // Things on the stack are pointer-typed, meaning that they are already 9792 // legal and can be emitted directly to target nodes. 9793 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9794 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9795 } else { 9796 // Otherwise emit a target independent node to be legalised. 9797 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9798 } 9799 } 9800 } 9801 9802 /// Lower llvm.experimental.stackmap. 9803 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9804 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9805 // [live variables...]) 9806 9807 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9808 9809 SDValue Chain, InGlue, Callee; 9810 SmallVector<SDValue, 32> Ops; 9811 9812 SDLoc DL = getCurSDLoc(); 9813 Callee = getValue(CI.getCalledOperand()); 9814 9815 // The stackmap intrinsic only records the live variables (the arguments 9816 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9817 // intrinsic, this won't be lowered to a function call. This means we don't 9818 // have to worry about calling conventions and target specific lowering code. 9819 // Instead we perform the call lowering right here. 9820 // 9821 // chain, flag = CALLSEQ_START(chain, 0, 0) 9822 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9823 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9824 // 9825 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9826 InGlue = Chain.getValue(1); 9827 9828 // Add the STACKMAP operands, starting with DAG house-keeping. 9829 Ops.push_back(Chain); 9830 Ops.push_back(InGlue); 9831 9832 // Add the <id>, <numShadowBytes> operands. 9833 // 9834 // These do not require legalisation, and can be emitted directly to target 9835 // constant nodes. 9836 SDValue ID = getValue(CI.getArgOperand(0)); 9837 assert(ID.getValueType() == MVT::i64); 9838 SDValue IDConst = DAG.getTargetConstant( 9839 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9840 Ops.push_back(IDConst); 9841 9842 SDValue Shad = getValue(CI.getArgOperand(1)); 9843 assert(Shad.getValueType() == MVT::i32); 9844 SDValue ShadConst = DAG.getTargetConstant( 9845 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9846 Ops.push_back(ShadConst); 9847 9848 // Add the live variables. 9849 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9850 9851 // Create the STACKMAP node. 9852 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9853 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9854 InGlue = Chain.getValue(1); 9855 9856 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9857 9858 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9859 9860 // Set the root to the target-lowered call chain. 9861 DAG.setRoot(Chain); 9862 9863 // Inform the Frame Information that we have a stackmap in this function. 9864 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9865 } 9866 9867 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9868 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9869 const BasicBlock *EHPadBB) { 9870 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9871 // i32 <numBytes>, 9872 // i8* <target>, 9873 // i32 <numArgs>, 9874 // [Args...], 9875 // [live variables...]) 9876 9877 CallingConv::ID CC = CB.getCallingConv(); 9878 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9879 bool HasDef = !CB.getType()->isVoidTy(); 9880 SDLoc dl = getCurSDLoc(); 9881 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9882 9883 // Handle immediate and symbolic callees. 9884 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9885 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9886 /*isTarget=*/true); 9887 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9888 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9889 SDLoc(SymbolicCallee), 9890 SymbolicCallee->getValueType(0)); 9891 9892 // Get the real number of arguments participating in the call <numArgs> 9893 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9894 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9895 9896 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9897 // Intrinsics include all meta-operands up to but not including CC. 9898 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9899 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9900 "Not enough arguments provided to the patchpoint intrinsic"); 9901 9902 // For AnyRegCC the arguments are lowered later on manually. 9903 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9904 Type *ReturnTy = 9905 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9906 9907 TargetLowering::CallLoweringInfo CLI(DAG); 9908 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9909 ReturnTy, CB.getAttributes().getRetAttrs(), true); 9910 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9911 9912 SDNode *CallEnd = Result.second.getNode(); 9913 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9914 CallEnd = CallEnd->getOperand(0).getNode(); 9915 9916 /// Get a call instruction from the call sequence chain. 9917 /// Tail calls are not allowed. 9918 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9919 "Expected a callseq node."); 9920 SDNode *Call = CallEnd->getOperand(0).getNode(); 9921 bool HasGlue = Call->getGluedNode(); 9922 9923 // Replace the target specific call node with the patchable intrinsic. 9924 SmallVector<SDValue, 8> Ops; 9925 9926 // Push the chain. 9927 Ops.push_back(*(Call->op_begin())); 9928 9929 // Optionally, push the glue (if any). 9930 if (HasGlue) 9931 Ops.push_back(*(Call->op_end() - 1)); 9932 9933 // Push the register mask info. 9934 if (HasGlue) 9935 Ops.push_back(*(Call->op_end() - 2)); 9936 else 9937 Ops.push_back(*(Call->op_end() - 1)); 9938 9939 // Add the <id> and <numBytes> constants. 9940 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9941 Ops.push_back(DAG.getTargetConstant( 9942 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9943 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9944 Ops.push_back(DAG.getTargetConstant( 9945 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9946 MVT::i32)); 9947 9948 // Add the callee. 9949 Ops.push_back(Callee); 9950 9951 // Adjust <numArgs> to account for any arguments that have been passed on the 9952 // stack instead. 9953 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9954 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9955 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9956 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9957 9958 // Add the calling convention 9959 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9960 9961 // Add the arguments we omitted previously. The register allocator should 9962 // place these in any free register. 9963 if (IsAnyRegCC) 9964 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9965 Ops.push_back(getValue(CB.getArgOperand(i))); 9966 9967 // Push the arguments from the call instruction. 9968 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9969 Ops.append(Call->op_begin() + 2, e); 9970 9971 // Push live variables for the stack map. 9972 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9973 9974 SDVTList NodeTys; 9975 if (IsAnyRegCC && HasDef) { 9976 // Create the return types based on the intrinsic definition 9977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9978 SmallVector<EVT, 3> ValueVTs; 9979 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9980 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9981 9982 // There is always a chain and a glue type at the end 9983 ValueVTs.push_back(MVT::Other); 9984 ValueVTs.push_back(MVT::Glue); 9985 NodeTys = DAG.getVTList(ValueVTs); 9986 } else 9987 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9988 9989 // Replace the target specific call node with a PATCHPOINT node. 9990 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 9991 9992 // Update the NodeMap. 9993 if (HasDef) { 9994 if (IsAnyRegCC) 9995 setValue(&CB, SDValue(PPV.getNode(), 0)); 9996 else 9997 setValue(&CB, Result.first); 9998 } 9999 10000 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10001 // call sequence. Furthermore the location of the chain and glue can change 10002 // when the AnyReg calling convention is used and the intrinsic returns a 10003 // value. 10004 if (IsAnyRegCC && HasDef) { 10005 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10006 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10007 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10008 } else 10009 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10010 DAG.DeleteNode(Call); 10011 10012 // Inform the Frame Information that we have a patchpoint in this function. 10013 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10014 } 10015 10016 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10017 unsigned Intrinsic) { 10018 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10019 SDValue Op1 = getValue(I.getArgOperand(0)); 10020 SDValue Op2; 10021 if (I.arg_size() > 1) 10022 Op2 = getValue(I.getArgOperand(1)); 10023 SDLoc dl = getCurSDLoc(); 10024 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10025 SDValue Res; 10026 SDNodeFlags SDFlags; 10027 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10028 SDFlags.copyFMF(*FPMO); 10029 10030 switch (Intrinsic) { 10031 case Intrinsic::vector_reduce_fadd: 10032 if (SDFlags.hasAllowReassociation()) 10033 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10034 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10035 SDFlags); 10036 else 10037 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10038 break; 10039 case Intrinsic::vector_reduce_fmul: 10040 if (SDFlags.hasAllowReassociation()) 10041 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10042 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10043 SDFlags); 10044 else 10045 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10046 break; 10047 case Intrinsic::vector_reduce_add: 10048 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10049 break; 10050 case Intrinsic::vector_reduce_mul: 10051 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10052 break; 10053 case Intrinsic::vector_reduce_and: 10054 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10055 break; 10056 case Intrinsic::vector_reduce_or: 10057 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10058 break; 10059 case Intrinsic::vector_reduce_xor: 10060 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10061 break; 10062 case Intrinsic::vector_reduce_smax: 10063 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10064 break; 10065 case Intrinsic::vector_reduce_smin: 10066 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10067 break; 10068 case Intrinsic::vector_reduce_umax: 10069 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10070 break; 10071 case Intrinsic::vector_reduce_umin: 10072 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10073 break; 10074 case Intrinsic::vector_reduce_fmax: 10075 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10076 break; 10077 case Intrinsic::vector_reduce_fmin: 10078 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10079 break; 10080 case Intrinsic::vector_reduce_fmaximum: 10081 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10082 break; 10083 case Intrinsic::vector_reduce_fminimum: 10084 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10085 break; 10086 default: 10087 llvm_unreachable("Unhandled vector reduce intrinsic"); 10088 } 10089 setValue(&I, Res); 10090 } 10091 10092 /// Returns an AttributeList representing the attributes applied to the return 10093 /// value of the given call. 10094 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10095 SmallVector<Attribute::AttrKind, 2> Attrs; 10096 if (CLI.RetSExt) 10097 Attrs.push_back(Attribute::SExt); 10098 if (CLI.RetZExt) 10099 Attrs.push_back(Attribute::ZExt); 10100 if (CLI.IsInReg) 10101 Attrs.push_back(Attribute::InReg); 10102 10103 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10104 Attrs); 10105 } 10106 10107 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10108 /// implementation, which just calls LowerCall. 10109 /// FIXME: When all targets are 10110 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10111 std::pair<SDValue, SDValue> 10112 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10113 // Handle the incoming return values from the call. 10114 CLI.Ins.clear(); 10115 Type *OrigRetTy = CLI.RetTy; 10116 SmallVector<EVT, 4> RetTys; 10117 SmallVector<uint64_t, 4> Offsets; 10118 auto &DL = CLI.DAG.getDataLayout(); 10119 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10120 10121 if (CLI.IsPostTypeLegalization) { 10122 // If we are lowering a libcall after legalization, split the return type. 10123 SmallVector<EVT, 4> OldRetTys; 10124 SmallVector<uint64_t, 4> OldOffsets; 10125 RetTys.swap(OldRetTys); 10126 Offsets.swap(OldOffsets); 10127 10128 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10129 EVT RetVT = OldRetTys[i]; 10130 uint64_t Offset = OldOffsets[i]; 10131 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10132 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10133 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10134 RetTys.append(NumRegs, RegisterVT); 10135 for (unsigned j = 0; j != NumRegs; ++j) 10136 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10137 } 10138 } 10139 10140 SmallVector<ISD::OutputArg, 4> Outs; 10141 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10142 10143 bool CanLowerReturn = 10144 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10145 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10146 10147 SDValue DemoteStackSlot; 10148 int DemoteStackIdx = -100; 10149 if (!CanLowerReturn) { 10150 // FIXME: equivalent assert? 10151 // assert(!CS.hasInAllocaArgument() && 10152 // "sret demotion is incompatible with inalloca"); 10153 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10154 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10155 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10156 DemoteStackIdx = 10157 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10158 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10159 DL.getAllocaAddrSpace()); 10160 10161 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10162 ArgListEntry Entry; 10163 Entry.Node = DemoteStackSlot; 10164 Entry.Ty = StackSlotPtrType; 10165 Entry.IsSExt = false; 10166 Entry.IsZExt = false; 10167 Entry.IsInReg = false; 10168 Entry.IsSRet = true; 10169 Entry.IsNest = false; 10170 Entry.IsByVal = false; 10171 Entry.IsByRef = false; 10172 Entry.IsReturned = false; 10173 Entry.IsSwiftSelf = false; 10174 Entry.IsSwiftAsync = false; 10175 Entry.IsSwiftError = false; 10176 Entry.IsCFGuardTarget = false; 10177 Entry.Alignment = Alignment; 10178 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10179 CLI.NumFixedArgs += 1; 10180 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10181 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10182 10183 // sret demotion isn't compatible with tail-calls, since the sret argument 10184 // points into the callers stack frame. 10185 CLI.IsTailCall = false; 10186 } else { 10187 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10188 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10189 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10190 ISD::ArgFlagsTy Flags; 10191 if (NeedsRegBlock) { 10192 Flags.setInConsecutiveRegs(); 10193 if (I == RetTys.size() - 1) 10194 Flags.setInConsecutiveRegsLast(); 10195 } 10196 EVT VT = RetTys[I]; 10197 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10198 CLI.CallConv, VT); 10199 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10200 CLI.CallConv, VT); 10201 for (unsigned i = 0; i != NumRegs; ++i) { 10202 ISD::InputArg MyFlags; 10203 MyFlags.Flags = Flags; 10204 MyFlags.VT = RegisterVT; 10205 MyFlags.ArgVT = VT; 10206 MyFlags.Used = CLI.IsReturnValueUsed; 10207 if (CLI.RetTy->isPointerTy()) { 10208 MyFlags.Flags.setPointer(); 10209 MyFlags.Flags.setPointerAddrSpace( 10210 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10211 } 10212 if (CLI.RetSExt) 10213 MyFlags.Flags.setSExt(); 10214 if (CLI.RetZExt) 10215 MyFlags.Flags.setZExt(); 10216 if (CLI.IsInReg) 10217 MyFlags.Flags.setInReg(); 10218 CLI.Ins.push_back(MyFlags); 10219 } 10220 } 10221 } 10222 10223 // We push in swifterror return as the last element of CLI.Ins. 10224 ArgListTy &Args = CLI.getArgs(); 10225 if (supportSwiftError()) { 10226 for (const ArgListEntry &Arg : Args) { 10227 if (Arg.IsSwiftError) { 10228 ISD::InputArg MyFlags; 10229 MyFlags.VT = getPointerTy(DL); 10230 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10231 MyFlags.Flags.setSwiftError(); 10232 CLI.Ins.push_back(MyFlags); 10233 } 10234 } 10235 } 10236 10237 // Handle all of the outgoing arguments. 10238 CLI.Outs.clear(); 10239 CLI.OutVals.clear(); 10240 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10241 SmallVector<EVT, 4> ValueVTs; 10242 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10243 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10244 Type *FinalType = Args[i].Ty; 10245 if (Args[i].IsByVal) 10246 FinalType = Args[i].IndirectType; 10247 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10248 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10249 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10250 ++Value) { 10251 EVT VT = ValueVTs[Value]; 10252 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10253 SDValue Op = SDValue(Args[i].Node.getNode(), 10254 Args[i].Node.getResNo() + Value); 10255 ISD::ArgFlagsTy Flags; 10256 10257 // Certain targets (such as MIPS), may have a different ABI alignment 10258 // for a type depending on the context. Give the target a chance to 10259 // specify the alignment it wants. 10260 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10261 Flags.setOrigAlign(OriginalAlignment); 10262 10263 if (Args[i].Ty->isPointerTy()) { 10264 Flags.setPointer(); 10265 Flags.setPointerAddrSpace( 10266 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10267 } 10268 if (Args[i].IsZExt) 10269 Flags.setZExt(); 10270 if (Args[i].IsSExt) 10271 Flags.setSExt(); 10272 if (Args[i].IsInReg) { 10273 // If we are using vectorcall calling convention, a structure that is 10274 // passed InReg - is surely an HVA 10275 if (CLI.CallConv == CallingConv::X86_VectorCall && 10276 isa<StructType>(FinalType)) { 10277 // The first value of a structure is marked 10278 if (0 == Value) 10279 Flags.setHvaStart(); 10280 Flags.setHva(); 10281 } 10282 // Set InReg Flag 10283 Flags.setInReg(); 10284 } 10285 if (Args[i].IsSRet) 10286 Flags.setSRet(); 10287 if (Args[i].IsSwiftSelf) 10288 Flags.setSwiftSelf(); 10289 if (Args[i].IsSwiftAsync) 10290 Flags.setSwiftAsync(); 10291 if (Args[i].IsSwiftError) 10292 Flags.setSwiftError(); 10293 if (Args[i].IsCFGuardTarget) 10294 Flags.setCFGuardTarget(); 10295 if (Args[i].IsByVal) 10296 Flags.setByVal(); 10297 if (Args[i].IsByRef) 10298 Flags.setByRef(); 10299 if (Args[i].IsPreallocated) { 10300 Flags.setPreallocated(); 10301 // Set the byval flag for CCAssignFn callbacks that don't know about 10302 // preallocated. This way we can know how many bytes we should've 10303 // allocated and how many bytes a callee cleanup function will pop. If 10304 // we port preallocated to more targets, we'll have to add custom 10305 // preallocated handling in the various CC lowering callbacks. 10306 Flags.setByVal(); 10307 } 10308 if (Args[i].IsInAlloca) { 10309 Flags.setInAlloca(); 10310 // Set the byval flag for CCAssignFn callbacks that don't know about 10311 // inalloca. This way we can know how many bytes we should've allocated 10312 // and how many bytes a callee cleanup function will pop. If we port 10313 // inalloca to more targets, we'll have to add custom inalloca handling 10314 // in the various CC lowering callbacks. 10315 Flags.setByVal(); 10316 } 10317 Align MemAlign; 10318 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10319 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10320 Flags.setByValSize(FrameSize); 10321 10322 // info is not there but there are cases it cannot get right. 10323 if (auto MA = Args[i].Alignment) 10324 MemAlign = *MA; 10325 else 10326 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10327 } else if (auto MA = Args[i].Alignment) { 10328 MemAlign = *MA; 10329 } else { 10330 MemAlign = OriginalAlignment; 10331 } 10332 Flags.setMemAlign(MemAlign); 10333 if (Args[i].IsNest) 10334 Flags.setNest(); 10335 if (NeedsRegBlock) 10336 Flags.setInConsecutiveRegs(); 10337 10338 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10339 CLI.CallConv, VT); 10340 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10341 CLI.CallConv, VT); 10342 SmallVector<SDValue, 4> Parts(NumParts); 10343 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10344 10345 if (Args[i].IsSExt) 10346 ExtendKind = ISD::SIGN_EXTEND; 10347 else if (Args[i].IsZExt) 10348 ExtendKind = ISD::ZERO_EXTEND; 10349 10350 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10351 // for now. 10352 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10353 CanLowerReturn) { 10354 assert((CLI.RetTy == Args[i].Ty || 10355 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10356 CLI.RetTy->getPointerAddressSpace() == 10357 Args[i].Ty->getPointerAddressSpace())) && 10358 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10359 // Before passing 'returned' to the target lowering code, ensure that 10360 // either the register MVT and the actual EVT are the same size or that 10361 // the return value and argument are extended in the same way; in these 10362 // cases it's safe to pass the argument register value unchanged as the 10363 // return register value (although it's at the target's option whether 10364 // to do so) 10365 // TODO: allow code generation to take advantage of partially preserved 10366 // registers rather than clobbering the entire register when the 10367 // parameter extension method is not compatible with the return 10368 // extension method 10369 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10370 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10371 CLI.RetZExt == Args[i].IsZExt)) 10372 Flags.setReturned(); 10373 } 10374 10375 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10376 CLI.CallConv, ExtendKind); 10377 10378 for (unsigned j = 0; j != NumParts; ++j) { 10379 // if it isn't first piece, alignment must be 1 10380 // For scalable vectors the scalable part is currently handled 10381 // by individual targets, so we just use the known minimum size here. 10382 ISD::OutputArg MyFlags( 10383 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10384 i < CLI.NumFixedArgs, i, 10385 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10386 if (NumParts > 1 && j == 0) 10387 MyFlags.Flags.setSplit(); 10388 else if (j != 0) { 10389 MyFlags.Flags.setOrigAlign(Align(1)); 10390 if (j == NumParts - 1) 10391 MyFlags.Flags.setSplitEnd(); 10392 } 10393 10394 CLI.Outs.push_back(MyFlags); 10395 CLI.OutVals.push_back(Parts[j]); 10396 } 10397 10398 if (NeedsRegBlock && Value == NumValues - 1) 10399 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10400 } 10401 } 10402 10403 SmallVector<SDValue, 4> InVals; 10404 CLI.Chain = LowerCall(CLI, InVals); 10405 10406 // Update CLI.InVals to use outside of this function. 10407 CLI.InVals = InVals; 10408 10409 // Verify that the target's LowerCall behaved as expected. 10410 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10411 "LowerCall didn't return a valid chain!"); 10412 assert((!CLI.IsTailCall || InVals.empty()) && 10413 "LowerCall emitted a return value for a tail call!"); 10414 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10415 "LowerCall didn't emit the correct number of values!"); 10416 10417 // For a tail call, the return value is merely live-out and there aren't 10418 // any nodes in the DAG representing it. Return a special value to 10419 // indicate that a tail call has been emitted and no more Instructions 10420 // should be processed in the current block. 10421 if (CLI.IsTailCall) { 10422 CLI.DAG.setRoot(CLI.Chain); 10423 return std::make_pair(SDValue(), SDValue()); 10424 } 10425 10426 #ifndef NDEBUG 10427 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10428 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10429 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10430 "LowerCall emitted a value with the wrong type!"); 10431 } 10432 #endif 10433 10434 SmallVector<SDValue, 4> ReturnValues; 10435 if (!CanLowerReturn) { 10436 // The instruction result is the result of loading from the 10437 // hidden sret parameter. 10438 SmallVector<EVT, 1> PVTs; 10439 Type *PtrRetTy = 10440 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10441 10442 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10443 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10444 EVT PtrVT = PVTs[0]; 10445 10446 unsigned NumValues = RetTys.size(); 10447 ReturnValues.resize(NumValues); 10448 SmallVector<SDValue, 4> Chains(NumValues); 10449 10450 // An aggregate return value cannot wrap around the address space, so 10451 // offsets to its parts don't wrap either. 10452 SDNodeFlags Flags; 10453 Flags.setNoUnsignedWrap(true); 10454 10455 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10456 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10457 for (unsigned i = 0; i < NumValues; ++i) { 10458 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10459 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10460 PtrVT), Flags); 10461 SDValue L = CLI.DAG.getLoad( 10462 RetTys[i], CLI.DL, CLI.Chain, Add, 10463 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10464 DemoteStackIdx, Offsets[i]), 10465 HiddenSRetAlign); 10466 ReturnValues[i] = L; 10467 Chains[i] = L.getValue(1); 10468 } 10469 10470 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10471 } else { 10472 // Collect the legal value parts into potentially illegal values 10473 // that correspond to the original function's return values. 10474 std::optional<ISD::NodeType> AssertOp; 10475 if (CLI.RetSExt) 10476 AssertOp = ISD::AssertSext; 10477 else if (CLI.RetZExt) 10478 AssertOp = ISD::AssertZext; 10479 unsigned CurReg = 0; 10480 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10481 EVT VT = RetTys[I]; 10482 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10483 CLI.CallConv, VT); 10484 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10485 CLI.CallConv, VT); 10486 10487 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10488 NumRegs, RegisterVT, VT, nullptr, 10489 CLI.CallConv, AssertOp)); 10490 CurReg += NumRegs; 10491 } 10492 10493 // For a function returning void, there is no return value. We can't create 10494 // such a node, so we just return a null return value in that case. In 10495 // that case, nothing will actually look at the value. 10496 if (ReturnValues.empty()) 10497 return std::make_pair(SDValue(), CLI.Chain); 10498 } 10499 10500 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10501 CLI.DAG.getVTList(RetTys), ReturnValues); 10502 return std::make_pair(Res, CLI.Chain); 10503 } 10504 10505 /// Places new result values for the node in Results (their number 10506 /// and types must exactly match those of the original return values of 10507 /// the node), or leaves Results empty, which indicates that the node is not 10508 /// to be custom lowered after all. 10509 void TargetLowering::LowerOperationWrapper(SDNode *N, 10510 SmallVectorImpl<SDValue> &Results, 10511 SelectionDAG &DAG) const { 10512 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10513 10514 if (!Res.getNode()) 10515 return; 10516 10517 // If the original node has one result, take the return value from 10518 // LowerOperation as is. It might not be result number 0. 10519 if (N->getNumValues() == 1) { 10520 Results.push_back(Res); 10521 return; 10522 } 10523 10524 // If the original node has multiple results, then the return node should 10525 // have the same number of results. 10526 assert((N->getNumValues() == Res->getNumValues()) && 10527 "Lowering returned the wrong number of results!"); 10528 10529 // Places new result values base on N result number. 10530 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10531 Results.push_back(Res.getValue(I)); 10532 } 10533 10534 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10535 llvm_unreachable("LowerOperation not implemented for this target!"); 10536 } 10537 10538 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10539 unsigned Reg, 10540 ISD::NodeType ExtendType) { 10541 SDValue Op = getNonRegisterValue(V); 10542 assert((Op.getOpcode() != ISD::CopyFromReg || 10543 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10544 "Copy from a reg to the same reg!"); 10545 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10546 10547 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10548 // If this is an InlineAsm we have to match the registers required, not the 10549 // notional registers required by the type. 10550 10551 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10552 std::nullopt); // This is not an ABI copy. 10553 SDValue Chain = DAG.getEntryNode(); 10554 10555 if (ExtendType == ISD::ANY_EXTEND) { 10556 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10557 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10558 ExtendType = PreferredExtendIt->second; 10559 } 10560 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10561 PendingExports.push_back(Chain); 10562 } 10563 10564 #include "llvm/CodeGen/SelectionDAGISel.h" 10565 10566 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10567 /// entry block, return true. This includes arguments used by switches, since 10568 /// the switch may expand into multiple basic blocks. 10569 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10570 // With FastISel active, we may be splitting blocks, so force creation 10571 // of virtual registers for all non-dead arguments. 10572 if (FastISel) 10573 return A->use_empty(); 10574 10575 const BasicBlock &Entry = A->getParent()->front(); 10576 for (const User *U : A->users()) 10577 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10578 return false; // Use not in entry block. 10579 10580 return true; 10581 } 10582 10583 using ArgCopyElisionMapTy = 10584 DenseMap<const Argument *, 10585 std::pair<const AllocaInst *, const StoreInst *>>; 10586 10587 /// Scan the entry block of the function in FuncInfo for arguments that look 10588 /// like copies into a local alloca. Record any copied arguments in 10589 /// ArgCopyElisionCandidates. 10590 static void 10591 findArgumentCopyElisionCandidates(const DataLayout &DL, 10592 FunctionLoweringInfo *FuncInfo, 10593 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10594 // Record the state of every static alloca used in the entry block. Argument 10595 // allocas are all used in the entry block, so we need approximately as many 10596 // entries as we have arguments. 10597 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10598 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10599 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10600 StaticAllocas.reserve(NumArgs * 2); 10601 10602 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10603 if (!V) 10604 return nullptr; 10605 V = V->stripPointerCasts(); 10606 const auto *AI = dyn_cast<AllocaInst>(V); 10607 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10608 return nullptr; 10609 auto Iter = StaticAllocas.insert({AI, Unknown}); 10610 return &Iter.first->second; 10611 }; 10612 10613 // Look for stores of arguments to static allocas. Look through bitcasts and 10614 // GEPs to handle type coercions, as long as the alloca is fully initialized 10615 // by the store. Any non-store use of an alloca escapes it and any subsequent 10616 // unanalyzed store might write it. 10617 // FIXME: Handle structs initialized with multiple stores. 10618 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10619 // Look for stores, and handle non-store uses conservatively. 10620 const auto *SI = dyn_cast<StoreInst>(&I); 10621 if (!SI) { 10622 // We will look through cast uses, so ignore them completely. 10623 if (I.isCast()) 10624 continue; 10625 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10626 // to allocas. 10627 if (I.isDebugOrPseudoInst()) 10628 continue; 10629 // This is an unknown instruction. Assume it escapes or writes to all 10630 // static alloca operands. 10631 for (const Use &U : I.operands()) { 10632 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10633 *Info = StaticAllocaInfo::Clobbered; 10634 } 10635 continue; 10636 } 10637 10638 // If the stored value is a static alloca, mark it as escaped. 10639 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10640 *Info = StaticAllocaInfo::Clobbered; 10641 10642 // Check if the destination is a static alloca. 10643 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10644 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10645 if (!Info) 10646 continue; 10647 const AllocaInst *AI = cast<AllocaInst>(Dst); 10648 10649 // Skip allocas that have been initialized or clobbered. 10650 if (*Info != StaticAllocaInfo::Unknown) 10651 continue; 10652 10653 // Check if the stored value is an argument, and that this store fully 10654 // initializes the alloca. 10655 // If the argument type has padding bits we can't directly forward a pointer 10656 // as the upper bits may contain garbage. 10657 // Don't elide copies from the same argument twice. 10658 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10659 const auto *Arg = dyn_cast<Argument>(Val); 10660 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10661 Arg->getType()->isEmptyTy() || 10662 DL.getTypeStoreSize(Arg->getType()) != 10663 DL.getTypeAllocSize(AI->getAllocatedType()) || 10664 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10665 ArgCopyElisionCandidates.count(Arg)) { 10666 *Info = StaticAllocaInfo::Clobbered; 10667 continue; 10668 } 10669 10670 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10671 << '\n'); 10672 10673 // Mark this alloca and store for argument copy elision. 10674 *Info = StaticAllocaInfo::Elidable; 10675 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10676 10677 // Stop scanning if we've seen all arguments. This will happen early in -O0 10678 // builds, which is useful, because -O0 builds have large entry blocks and 10679 // many allocas. 10680 if (ArgCopyElisionCandidates.size() == NumArgs) 10681 break; 10682 } 10683 } 10684 10685 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10686 /// ArgVal is a load from a suitable fixed stack object. 10687 static void tryToElideArgumentCopy( 10688 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10689 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10690 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10691 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10692 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10693 // Check if this is a load from a fixed stack object. 10694 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10695 if (!LNode) 10696 return; 10697 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10698 if (!FINode) 10699 return; 10700 10701 // Check that the fixed stack object is the right size and alignment. 10702 // Look at the alignment that the user wrote on the alloca instead of looking 10703 // at the stack object. 10704 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10705 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10706 const AllocaInst *AI = ArgCopyIter->second.first; 10707 int FixedIndex = FINode->getIndex(); 10708 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10709 int OldIndex = AllocaIndex; 10710 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10711 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10712 LLVM_DEBUG( 10713 dbgs() << " argument copy elision failed due to bad fixed stack " 10714 "object size\n"); 10715 return; 10716 } 10717 Align RequiredAlignment = AI->getAlign(); 10718 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10719 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10720 "greater than stack argument alignment (" 10721 << DebugStr(RequiredAlignment) << " vs " 10722 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10723 return; 10724 } 10725 10726 // Perform the elision. Delete the old stack object and replace its only use 10727 // in the variable info map. Mark the stack object as mutable. 10728 LLVM_DEBUG({ 10729 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10730 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10731 << '\n'; 10732 }); 10733 MFI.RemoveStackObject(OldIndex); 10734 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10735 AllocaIndex = FixedIndex; 10736 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10737 for (SDValue ArgVal : ArgVals) 10738 Chains.push_back(ArgVal.getValue(1)); 10739 10740 // Avoid emitting code for the store implementing the copy. 10741 const StoreInst *SI = ArgCopyIter->second.second; 10742 ElidedArgCopyInstrs.insert(SI); 10743 10744 // Check for uses of the argument again so that we can avoid exporting ArgVal 10745 // if it is't used by anything other than the store. 10746 for (const Value *U : Arg.users()) { 10747 if (U != SI) { 10748 ArgHasUses = true; 10749 break; 10750 } 10751 } 10752 } 10753 10754 void SelectionDAGISel::LowerArguments(const Function &F) { 10755 SelectionDAG &DAG = SDB->DAG; 10756 SDLoc dl = SDB->getCurSDLoc(); 10757 const DataLayout &DL = DAG.getDataLayout(); 10758 SmallVector<ISD::InputArg, 16> Ins; 10759 10760 // In Naked functions we aren't going to save any registers. 10761 if (F.hasFnAttribute(Attribute::Naked)) 10762 return; 10763 10764 if (!FuncInfo->CanLowerReturn) { 10765 // Put in an sret pointer parameter before all the other parameters. 10766 SmallVector<EVT, 1> ValueVTs; 10767 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10768 PointerType::get(F.getContext(), 10769 DAG.getDataLayout().getAllocaAddrSpace()), 10770 ValueVTs); 10771 10772 // NOTE: Assuming that a pointer will never break down to more than one VT 10773 // or one register. 10774 ISD::ArgFlagsTy Flags; 10775 Flags.setSRet(); 10776 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10777 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10778 ISD::InputArg::NoArgIndex, 0); 10779 Ins.push_back(RetArg); 10780 } 10781 10782 // Look for stores of arguments to static allocas. Mark such arguments with a 10783 // flag to ask the target to give us the memory location of that argument if 10784 // available. 10785 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10786 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10787 ArgCopyElisionCandidates); 10788 10789 // Set up the incoming argument description vector. 10790 for (const Argument &Arg : F.args()) { 10791 unsigned ArgNo = Arg.getArgNo(); 10792 SmallVector<EVT, 4> ValueVTs; 10793 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10794 bool isArgValueUsed = !Arg.use_empty(); 10795 unsigned PartBase = 0; 10796 Type *FinalType = Arg.getType(); 10797 if (Arg.hasAttribute(Attribute::ByVal)) 10798 FinalType = Arg.getParamByValType(); 10799 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10800 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10801 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10802 Value != NumValues; ++Value) { 10803 EVT VT = ValueVTs[Value]; 10804 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10805 ISD::ArgFlagsTy Flags; 10806 10807 10808 if (Arg.getType()->isPointerTy()) { 10809 Flags.setPointer(); 10810 Flags.setPointerAddrSpace( 10811 cast<PointerType>(Arg.getType())->getAddressSpace()); 10812 } 10813 if (Arg.hasAttribute(Attribute::ZExt)) 10814 Flags.setZExt(); 10815 if (Arg.hasAttribute(Attribute::SExt)) 10816 Flags.setSExt(); 10817 if (Arg.hasAttribute(Attribute::InReg)) { 10818 // If we are using vectorcall calling convention, a structure that is 10819 // passed InReg - is surely an HVA 10820 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10821 isa<StructType>(Arg.getType())) { 10822 // The first value of a structure is marked 10823 if (0 == Value) 10824 Flags.setHvaStart(); 10825 Flags.setHva(); 10826 } 10827 // Set InReg Flag 10828 Flags.setInReg(); 10829 } 10830 if (Arg.hasAttribute(Attribute::StructRet)) 10831 Flags.setSRet(); 10832 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10833 Flags.setSwiftSelf(); 10834 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10835 Flags.setSwiftAsync(); 10836 if (Arg.hasAttribute(Attribute::SwiftError)) 10837 Flags.setSwiftError(); 10838 if (Arg.hasAttribute(Attribute::ByVal)) 10839 Flags.setByVal(); 10840 if (Arg.hasAttribute(Attribute::ByRef)) 10841 Flags.setByRef(); 10842 if (Arg.hasAttribute(Attribute::InAlloca)) { 10843 Flags.setInAlloca(); 10844 // Set the byval flag for CCAssignFn callbacks that don't know about 10845 // inalloca. This way we can know how many bytes we should've allocated 10846 // and how many bytes a callee cleanup function will pop. If we port 10847 // inalloca to more targets, we'll have to add custom inalloca handling 10848 // in the various CC lowering callbacks. 10849 Flags.setByVal(); 10850 } 10851 if (Arg.hasAttribute(Attribute::Preallocated)) { 10852 Flags.setPreallocated(); 10853 // Set the byval flag for CCAssignFn callbacks that don't know about 10854 // preallocated. This way we can know how many bytes we should've 10855 // allocated and how many bytes a callee cleanup function will pop. If 10856 // we port preallocated to more targets, we'll have to add custom 10857 // preallocated handling in the various CC lowering callbacks. 10858 Flags.setByVal(); 10859 } 10860 10861 // Certain targets (such as MIPS), may have a different ABI alignment 10862 // for a type depending on the context. Give the target a chance to 10863 // specify the alignment it wants. 10864 const Align OriginalAlignment( 10865 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10866 Flags.setOrigAlign(OriginalAlignment); 10867 10868 Align MemAlign; 10869 Type *ArgMemTy = nullptr; 10870 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10871 Flags.isByRef()) { 10872 if (!ArgMemTy) 10873 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10874 10875 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10876 10877 // For in-memory arguments, size and alignment should be passed from FE. 10878 // BE will guess if this info is not there but there are cases it cannot 10879 // get right. 10880 if (auto ParamAlign = Arg.getParamStackAlign()) 10881 MemAlign = *ParamAlign; 10882 else if ((ParamAlign = Arg.getParamAlign())) 10883 MemAlign = *ParamAlign; 10884 else 10885 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10886 if (Flags.isByRef()) 10887 Flags.setByRefSize(MemSize); 10888 else 10889 Flags.setByValSize(MemSize); 10890 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10891 MemAlign = *ParamAlign; 10892 } else { 10893 MemAlign = OriginalAlignment; 10894 } 10895 Flags.setMemAlign(MemAlign); 10896 10897 if (Arg.hasAttribute(Attribute::Nest)) 10898 Flags.setNest(); 10899 if (NeedsRegBlock) 10900 Flags.setInConsecutiveRegs(); 10901 if (ArgCopyElisionCandidates.count(&Arg)) 10902 Flags.setCopyElisionCandidate(); 10903 if (Arg.hasAttribute(Attribute::Returned)) 10904 Flags.setReturned(); 10905 10906 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10907 *CurDAG->getContext(), F.getCallingConv(), VT); 10908 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10909 *CurDAG->getContext(), F.getCallingConv(), VT); 10910 for (unsigned i = 0; i != NumRegs; ++i) { 10911 // For scalable vectors, use the minimum size; individual targets 10912 // are responsible for handling scalable vector arguments and 10913 // return values. 10914 ISD::InputArg MyFlags( 10915 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10916 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10917 if (NumRegs > 1 && i == 0) 10918 MyFlags.Flags.setSplit(); 10919 // if it isn't first piece, alignment must be 1 10920 else if (i > 0) { 10921 MyFlags.Flags.setOrigAlign(Align(1)); 10922 if (i == NumRegs - 1) 10923 MyFlags.Flags.setSplitEnd(); 10924 } 10925 Ins.push_back(MyFlags); 10926 } 10927 if (NeedsRegBlock && Value == NumValues - 1) 10928 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10929 PartBase += VT.getStoreSize().getKnownMinValue(); 10930 } 10931 } 10932 10933 // Call the target to set up the argument values. 10934 SmallVector<SDValue, 8> InVals; 10935 SDValue NewRoot = TLI->LowerFormalArguments( 10936 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10937 10938 // Verify that the target's LowerFormalArguments behaved as expected. 10939 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10940 "LowerFormalArguments didn't return a valid chain!"); 10941 assert(InVals.size() == Ins.size() && 10942 "LowerFormalArguments didn't emit the correct number of values!"); 10943 LLVM_DEBUG({ 10944 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10945 assert(InVals[i].getNode() && 10946 "LowerFormalArguments emitted a null value!"); 10947 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10948 "LowerFormalArguments emitted a value with the wrong type!"); 10949 } 10950 }); 10951 10952 // Update the DAG with the new chain value resulting from argument lowering. 10953 DAG.setRoot(NewRoot); 10954 10955 // Set up the argument values. 10956 unsigned i = 0; 10957 if (!FuncInfo->CanLowerReturn) { 10958 // Create a virtual register for the sret pointer, and put in a copy 10959 // from the sret argument into it. 10960 SmallVector<EVT, 1> ValueVTs; 10961 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10962 PointerType::get(F.getContext(), 10963 DAG.getDataLayout().getAllocaAddrSpace()), 10964 ValueVTs); 10965 MVT VT = ValueVTs[0].getSimpleVT(); 10966 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10967 std::optional<ISD::NodeType> AssertOp; 10968 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10969 nullptr, F.getCallingConv(), AssertOp); 10970 10971 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10972 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10973 Register SRetReg = 10974 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10975 FuncInfo->DemoteRegister = SRetReg; 10976 NewRoot = 10977 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10978 DAG.setRoot(NewRoot); 10979 10980 // i indexes lowered arguments. Bump it past the hidden sret argument. 10981 ++i; 10982 } 10983 10984 SmallVector<SDValue, 4> Chains; 10985 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10986 for (const Argument &Arg : F.args()) { 10987 SmallVector<SDValue, 4> ArgValues; 10988 SmallVector<EVT, 4> ValueVTs; 10989 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10990 unsigned NumValues = ValueVTs.size(); 10991 if (NumValues == 0) 10992 continue; 10993 10994 bool ArgHasUses = !Arg.use_empty(); 10995 10996 // Elide the copying store if the target loaded this argument from a 10997 // suitable fixed stack object. 10998 if (Ins[i].Flags.isCopyElisionCandidate()) { 10999 unsigned NumParts = 0; 11000 for (EVT VT : ValueVTs) 11001 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11002 F.getCallingConv(), VT); 11003 11004 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11005 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11006 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11007 } 11008 11009 // If this argument is unused then remember its value. It is used to generate 11010 // debugging information. 11011 bool isSwiftErrorArg = 11012 TLI->supportSwiftError() && 11013 Arg.hasAttribute(Attribute::SwiftError); 11014 if (!ArgHasUses && !isSwiftErrorArg) { 11015 SDB->setUnusedArgValue(&Arg, InVals[i]); 11016 11017 // Also remember any frame index for use in FastISel. 11018 if (FrameIndexSDNode *FI = 11019 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11020 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11021 } 11022 11023 for (unsigned Val = 0; Val != NumValues; ++Val) { 11024 EVT VT = ValueVTs[Val]; 11025 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11026 F.getCallingConv(), VT); 11027 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11028 *CurDAG->getContext(), F.getCallingConv(), VT); 11029 11030 // Even an apparent 'unused' swifterror argument needs to be returned. So 11031 // we do generate a copy for it that can be used on return from the 11032 // function. 11033 if (ArgHasUses || isSwiftErrorArg) { 11034 std::optional<ISD::NodeType> AssertOp; 11035 if (Arg.hasAttribute(Attribute::SExt)) 11036 AssertOp = ISD::AssertSext; 11037 else if (Arg.hasAttribute(Attribute::ZExt)) 11038 AssertOp = ISD::AssertZext; 11039 11040 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11041 PartVT, VT, nullptr, 11042 F.getCallingConv(), AssertOp)); 11043 } 11044 11045 i += NumParts; 11046 } 11047 11048 // We don't need to do anything else for unused arguments. 11049 if (ArgValues.empty()) 11050 continue; 11051 11052 // Note down frame index. 11053 if (FrameIndexSDNode *FI = 11054 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11055 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11056 11057 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11058 SDB->getCurSDLoc()); 11059 11060 SDB->setValue(&Arg, Res); 11061 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11062 // We want to associate the argument with the frame index, among 11063 // involved operands, that correspond to the lowest address. The 11064 // getCopyFromParts function, called earlier, is swapping the order of 11065 // the operands to BUILD_PAIR depending on endianness. The result of 11066 // that swapping is that the least significant bits of the argument will 11067 // be in the first operand of the BUILD_PAIR node, and the most 11068 // significant bits will be in the second operand. 11069 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11070 if (LoadSDNode *LNode = 11071 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11072 if (FrameIndexSDNode *FI = 11073 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11074 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11075 } 11076 11077 // Analyses past this point are naive and don't expect an assertion. 11078 if (Res.getOpcode() == ISD::AssertZext) 11079 Res = Res.getOperand(0); 11080 11081 // Update the SwiftErrorVRegDefMap. 11082 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11083 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11084 if (Register::isVirtualRegister(Reg)) 11085 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11086 Reg); 11087 } 11088 11089 // If this argument is live outside of the entry block, insert a copy from 11090 // wherever we got it to the vreg that other BB's will reference it as. 11091 if (Res.getOpcode() == ISD::CopyFromReg) { 11092 // If we can, though, try to skip creating an unnecessary vreg. 11093 // FIXME: This isn't very clean... it would be nice to make this more 11094 // general. 11095 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11096 if (Register::isVirtualRegister(Reg)) { 11097 FuncInfo->ValueMap[&Arg] = Reg; 11098 continue; 11099 } 11100 } 11101 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11102 FuncInfo->InitializeRegForValue(&Arg); 11103 SDB->CopyToExportRegsIfNeeded(&Arg); 11104 } 11105 } 11106 11107 if (!Chains.empty()) { 11108 Chains.push_back(NewRoot); 11109 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11110 } 11111 11112 DAG.setRoot(NewRoot); 11113 11114 assert(i == InVals.size() && "Argument register count mismatch!"); 11115 11116 // If any argument copy elisions occurred and we have debug info, update the 11117 // stale frame indices used in the dbg.declare variable info table. 11118 if (!ArgCopyElisionFrameIndexMap.empty()) { 11119 for (MachineFunction::VariableDbgInfo &VI : 11120 MF->getInStackSlotVariableDbgInfo()) { 11121 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11122 if (I != ArgCopyElisionFrameIndexMap.end()) 11123 VI.updateStackSlot(I->second); 11124 } 11125 } 11126 11127 // Finally, if the target has anything special to do, allow it to do so. 11128 emitFunctionEntryCode(); 11129 } 11130 11131 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11132 /// ensure constants are generated when needed. Remember the virtual registers 11133 /// that need to be added to the Machine PHI nodes as input. We cannot just 11134 /// directly add them, because expansion might result in multiple MBB's for one 11135 /// BB. As such, the start of the BB might correspond to a different MBB than 11136 /// the end. 11137 void 11138 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11139 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11140 11141 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11142 11143 // Check PHI nodes in successors that expect a value to be available from this 11144 // block. 11145 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11146 if (!isa<PHINode>(SuccBB->begin())) continue; 11147 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11148 11149 // If this terminator has multiple identical successors (common for 11150 // switches), only handle each succ once. 11151 if (!SuccsHandled.insert(SuccMBB).second) 11152 continue; 11153 11154 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11155 11156 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11157 // nodes and Machine PHI nodes, but the incoming operands have not been 11158 // emitted yet. 11159 for (const PHINode &PN : SuccBB->phis()) { 11160 // Ignore dead phi's. 11161 if (PN.use_empty()) 11162 continue; 11163 11164 // Skip empty types 11165 if (PN.getType()->isEmptyTy()) 11166 continue; 11167 11168 unsigned Reg; 11169 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11170 11171 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11172 unsigned &RegOut = ConstantsOut[C]; 11173 if (RegOut == 0) { 11174 RegOut = FuncInfo.CreateRegs(C); 11175 // We need to zero/sign extend ConstantInt phi operands to match 11176 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11177 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11178 if (auto *CI = dyn_cast<ConstantInt>(C)) 11179 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11180 : ISD::ZERO_EXTEND; 11181 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11182 } 11183 Reg = RegOut; 11184 } else { 11185 DenseMap<const Value *, Register>::iterator I = 11186 FuncInfo.ValueMap.find(PHIOp); 11187 if (I != FuncInfo.ValueMap.end()) 11188 Reg = I->second; 11189 else { 11190 assert(isa<AllocaInst>(PHIOp) && 11191 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11192 "Didn't codegen value into a register!??"); 11193 Reg = FuncInfo.CreateRegs(PHIOp); 11194 CopyValueToVirtualRegister(PHIOp, Reg); 11195 } 11196 } 11197 11198 // Remember that this register needs to added to the machine PHI node as 11199 // the input for this MBB. 11200 SmallVector<EVT, 4> ValueVTs; 11201 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11202 for (EVT VT : ValueVTs) { 11203 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11204 for (unsigned i = 0; i != NumRegisters; ++i) 11205 FuncInfo.PHINodesToUpdate.push_back( 11206 std::make_pair(&*MBBI++, Reg + i)); 11207 Reg += NumRegisters; 11208 } 11209 } 11210 } 11211 11212 ConstantsOut.clear(); 11213 } 11214 11215 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11216 MachineFunction::iterator I(MBB); 11217 if (++I == FuncInfo.MF->end()) 11218 return nullptr; 11219 return &*I; 11220 } 11221 11222 /// During lowering new call nodes can be created (such as memset, etc.). 11223 /// Those will become new roots of the current DAG, but complications arise 11224 /// when they are tail calls. In such cases, the call lowering will update 11225 /// the root, but the builder still needs to know that a tail call has been 11226 /// lowered in order to avoid generating an additional return. 11227 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11228 // If the node is null, we do have a tail call. 11229 if (MaybeTC.getNode() != nullptr) 11230 DAG.setRoot(MaybeTC); 11231 else 11232 HasTailCall = true; 11233 } 11234 11235 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11236 MachineBasicBlock *SwitchMBB, 11237 MachineBasicBlock *DefaultMBB) { 11238 MachineFunction *CurMF = FuncInfo.MF; 11239 MachineBasicBlock *NextMBB = nullptr; 11240 MachineFunction::iterator BBI(W.MBB); 11241 if (++BBI != FuncInfo.MF->end()) 11242 NextMBB = &*BBI; 11243 11244 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11245 11246 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11247 11248 if (Size == 2 && W.MBB == SwitchMBB) { 11249 // If any two of the cases has the same destination, and if one value 11250 // is the same as the other, but has one bit unset that the other has set, 11251 // use bit manipulation to do two compares at once. For example: 11252 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11253 // TODO: This could be extended to merge any 2 cases in switches with 3 11254 // cases. 11255 // TODO: Handle cases where W.CaseBB != SwitchBB. 11256 CaseCluster &Small = *W.FirstCluster; 11257 CaseCluster &Big = *W.LastCluster; 11258 11259 if (Small.Low == Small.High && Big.Low == Big.High && 11260 Small.MBB == Big.MBB) { 11261 const APInt &SmallValue = Small.Low->getValue(); 11262 const APInt &BigValue = Big.Low->getValue(); 11263 11264 // Check that there is only one bit different. 11265 APInt CommonBit = BigValue ^ SmallValue; 11266 if (CommonBit.isPowerOf2()) { 11267 SDValue CondLHS = getValue(Cond); 11268 EVT VT = CondLHS.getValueType(); 11269 SDLoc DL = getCurSDLoc(); 11270 11271 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11272 DAG.getConstant(CommonBit, DL, VT)); 11273 SDValue Cond = DAG.getSetCC( 11274 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11275 ISD::SETEQ); 11276 11277 // Update successor info. 11278 // Both Small and Big will jump to Small.BB, so we sum up the 11279 // probabilities. 11280 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11281 if (BPI) 11282 addSuccessorWithProb( 11283 SwitchMBB, DefaultMBB, 11284 // The default destination is the first successor in IR. 11285 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11286 else 11287 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11288 11289 // Insert the true branch. 11290 SDValue BrCond = 11291 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11292 DAG.getBasicBlock(Small.MBB)); 11293 // Insert the false branch. 11294 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11295 DAG.getBasicBlock(DefaultMBB)); 11296 11297 DAG.setRoot(BrCond); 11298 return; 11299 } 11300 } 11301 } 11302 11303 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11304 // Here, we order cases by probability so the most likely case will be 11305 // checked first. However, two clusters can have the same probability in 11306 // which case their relative ordering is non-deterministic. So we use Low 11307 // as a tie-breaker as clusters are guaranteed to never overlap. 11308 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11309 [](const CaseCluster &a, const CaseCluster &b) { 11310 return a.Prob != b.Prob ? 11311 a.Prob > b.Prob : 11312 a.Low->getValue().slt(b.Low->getValue()); 11313 }); 11314 11315 // Rearrange the case blocks so that the last one falls through if possible 11316 // without changing the order of probabilities. 11317 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11318 --I; 11319 if (I->Prob > W.LastCluster->Prob) 11320 break; 11321 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11322 std::swap(*I, *W.LastCluster); 11323 break; 11324 } 11325 } 11326 } 11327 11328 // Compute total probability. 11329 BranchProbability DefaultProb = W.DefaultProb; 11330 BranchProbability UnhandledProbs = DefaultProb; 11331 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11332 UnhandledProbs += I->Prob; 11333 11334 MachineBasicBlock *CurMBB = W.MBB; 11335 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11336 bool FallthroughUnreachable = false; 11337 MachineBasicBlock *Fallthrough; 11338 if (I == W.LastCluster) { 11339 // For the last cluster, fall through to the default destination. 11340 Fallthrough = DefaultMBB; 11341 FallthroughUnreachable = isa<UnreachableInst>( 11342 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11343 } else { 11344 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11345 CurMF->insert(BBI, Fallthrough); 11346 // Put Cond in a virtual register to make it available from the new blocks. 11347 ExportFromCurrentBlock(Cond); 11348 } 11349 UnhandledProbs -= I->Prob; 11350 11351 switch (I->Kind) { 11352 case CC_JumpTable: { 11353 // FIXME: Optimize away range check based on pivot comparisons. 11354 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11355 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11356 11357 // The jump block hasn't been inserted yet; insert it here. 11358 MachineBasicBlock *JumpMBB = JT->MBB; 11359 CurMF->insert(BBI, JumpMBB); 11360 11361 auto JumpProb = I->Prob; 11362 auto FallthroughProb = UnhandledProbs; 11363 11364 // If the default statement is a target of the jump table, we evenly 11365 // distribute the default probability to successors of CurMBB. Also 11366 // update the probability on the edge from JumpMBB to Fallthrough. 11367 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11368 SE = JumpMBB->succ_end(); 11369 SI != SE; ++SI) { 11370 if (*SI == DefaultMBB) { 11371 JumpProb += DefaultProb / 2; 11372 FallthroughProb -= DefaultProb / 2; 11373 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11374 JumpMBB->normalizeSuccProbs(); 11375 break; 11376 } 11377 } 11378 11379 // If the default clause is unreachable, propagate that knowledge into 11380 // JTH->FallthroughUnreachable which will use it to suppress the range 11381 // check. 11382 // 11383 // However, don't do this if we're doing branch target enforcement, 11384 // because a table branch _without_ a range check can be a tempting JOP 11385 // gadget - out-of-bounds inputs that are impossible in correct 11386 // execution become possible again if an attacker can influence the 11387 // control flow. So if an attacker doesn't already have a BTI bypass 11388 // available, we don't want them to be able to get one out of this 11389 // table branch. 11390 if (FallthroughUnreachable) { 11391 Function &CurFunc = CurMF->getFunction(); 11392 bool HasBranchTargetEnforcement = false; 11393 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11394 HasBranchTargetEnforcement = 11395 CurFunc.getFnAttribute("branch-target-enforcement") 11396 .getValueAsBool(); 11397 } else { 11398 HasBranchTargetEnforcement = 11399 CurMF->getMMI().getModule()->getModuleFlag( 11400 "branch-target-enforcement"); 11401 } 11402 if (!HasBranchTargetEnforcement) 11403 JTH->FallthroughUnreachable = true; 11404 } 11405 11406 if (!JTH->FallthroughUnreachable) 11407 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11408 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11409 CurMBB->normalizeSuccProbs(); 11410 11411 // The jump table header will be inserted in our current block, do the 11412 // range check, and fall through to our fallthrough block. 11413 JTH->HeaderBB = CurMBB; 11414 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11415 11416 // If we're in the right place, emit the jump table header right now. 11417 if (CurMBB == SwitchMBB) { 11418 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11419 JTH->Emitted = true; 11420 } 11421 break; 11422 } 11423 case CC_BitTests: { 11424 // FIXME: Optimize away range check based on pivot comparisons. 11425 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11426 11427 // The bit test blocks haven't been inserted yet; insert them here. 11428 for (BitTestCase &BTC : BTB->Cases) 11429 CurMF->insert(BBI, BTC.ThisBB); 11430 11431 // Fill in fields of the BitTestBlock. 11432 BTB->Parent = CurMBB; 11433 BTB->Default = Fallthrough; 11434 11435 BTB->DefaultProb = UnhandledProbs; 11436 // If the cases in bit test don't form a contiguous range, we evenly 11437 // distribute the probability on the edge to Fallthrough to two 11438 // successors of CurMBB. 11439 if (!BTB->ContiguousRange) { 11440 BTB->Prob += DefaultProb / 2; 11441 BTB->DefaultProb -= DefaultProb / 2; 11442 } 11443 11444 if (FallthroughUnreachable) 11445 BTB->FallthroughUnreachable = true; 11446 11447 // If we're in the right place, emit the bit test header right now. 11448 if (CurMBB == SwitchMBB) { 11449 visitBitTestHeader(*BTB, SwitchMBB); 11450 BTB->Emitted = true; 11451 } 11452 break; 11453 } 11454 case CC_Range: { 11455 const Value *RHS, *LHS, *MHS; 11456 ISD::CondCode CC; 11457 if (I->Low == I->High) { 11458 // Check Cond == I->Low. 11459 CC = ISD::SETEQ; 11460 LHS = Cond; 11461 RHS=I->Low; 11462 MHS = nullptr; 11463 } else { 11464 // Check I->Low <= Cond <= I->High. 11465 CC = ISD::SETLE; 11466 LHS = I->Low; 11467 MHS = Cond; 11468 RHS = I->High; 11469 } 11470 11471 // If Fallthrough is unreachable, fold away the comparison. 11472 if (FallthroughUnreachable) 11473 CC = ISD::SETTRUE; 11474 11475 // The false probability is the sum of all unhandled cases. 11476 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11477 getCurSDLoc(), I->Prob, UnhandledProbs); 11478 11479 if (CurMBB == SwitchMBB) 11480 visitSwitchCase(CB, SwitchMBB); 11481 else 11482 SL->SwitchCases.push_back(CB); 11483 11484 break; 11485 } 11486 } 11487 CurMBB = Fallthrough; 11488 } 11489 } 11490 11491 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11492 CaseClusterIt First, 11493 CaseClusterIt Last) { 11494 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11495 if (X.Prob != CC.Prob) 11496 return X.Prob > CC.Prob; 11497 11498 // Ties are broken by comparing the case value. 11499 return X.Low->getValue().slt(CC.Low->getValue()); 11500 }); 11501 } 11502 11503 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11504 const SwitchWorkListItem &W, 11505 Value *Cond, 11506 MachineBasicBlock *SwitchMBB) { 11507 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11508 "Clusters not sorted?"); 11509 11510 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11511 11512 // Balance the tree based on branch probabilities to create a near-optimal (in 11513 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11514 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11515 CaseClusterIt LastLeft = W.FirstCluster; 11516 CaseClusterIt FirstRight = W.LastCluster; 11517 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11518 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11519 11520 // Move LastLeft and FirstRight towards each other from opposite directions to 11521 // find a partitioning of the clusters which balances the probability on both 11522 // sides. If LeftProb and RightProb are equal, alternate which side is 11523 // taken to ensure 0-probability nodes are distributed evenly. 11524 unsigned I = 0; 11525 while (LastLeft + 1 < FirstRight) { 11526 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11527 LeftProb += (++LastLeft)->Prob; 11528 else 11529 RightProb += (--FirstRight)->Prob; 11530 I++; 11531 } 11532 11533 while (true) { 11534 // Our binary search tree differs from a typical BST in that ours can have up 11535 // to three values in each leaf. The pivot selection above doesn't take that 11536 // into account, which means the tree might require more nodes and be less 11537 // efficient. We compensate for this here. 11538 11539 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11540 unsigned NumRight = W.LastCluster - FirstRight + 1; 11541 11542 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11543 // If one side has less than 3 clusters, and the other has more than 3, 11544 // consider taking a cluster from the other side. 11545 11546 if (NumLeft < NumRight) { 11547 // Consider moving the first cluster on the right to the left side. 11548 CaseCluster &CC = *FirstRight; 11549 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11550 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11551 if (LeftSideRank <= RightSideRank) { 11552 // Moving the cluster to the left does not demote it. 11553 ++LastLeft; 11554 ++FirstRight; 11555 continue; 11556 } 11557 } else { 11558 assert(NumRight < NumLeft); 11559 // Consider moving the last element on the left to the right side. 11560 CaseCluster &CC = *LastLeft; 11561 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11562 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11563 if (RightSideRank <= LeftSideRank) { 11564 // Moving the cluster to the right does not demot it. 11565 --LastLeft; 11566 --FirstRight; 11567 continue; 11568 } 11569 } 11570 } 11571 break; 11572 } 11573 11574 assert(LastLeft + 1 == FirstRight); 11575 assert(LastLeft >= W.FirstCluster); 11576 assert(FirstRight <= W.LastCluster); 11577 11578 // Use the first element on the right as pivot since we will make less-than 11579 // comparisons against it. 11580 CaseClusterIt PivotCluster = FirstRight; 11581 assert(PivotCluster > W.FirstCluster); 11582 assert(PivotCluster <= W.LastCluster); 11583 11584 CaseClusterIt FirstLeft = W.FirstCluster; 11585 CaseClusterIt LastRight = W.LastCluster; 11586 11587 const ConstantInt *Pivot = PivotCluster->Low; 11588 11589 // New blocks will be inserted immediately after the current one. 11590 MachineFunction::iterator BBI(W.MBB); 11591 ++BBI; 11592 11593 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11594 // we can branch to its destination directly if it's squeezed exactly in 11595 // between the known lower bound and Pivot - 1. 11596 MachineBasicBlock *LeftMBB; 11597 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11598 FirstLeft->Low == W.GE && 11599 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11600 LeftMBB = FirstLeft->MBB; 11601 } else { 11602 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11603 FuncInfo.MF->insert(BBI, LeftMBB); 11604 WorkList.push_back( 11605 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11606 // Put Cond in a virtual register to make it available from the new blocks. 11607 ExportFromCurrentBlock(Cond); 11608 } 11609 11610 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11611 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11612 // directly if RHS.High equals the current upper bound. 11613 MachineBasicBlock *RightMBB; 11614 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11615 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11616 RightMBB = FirstRight->MBB; 11617 } else { 11618 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11619 FuncInfo.MF->insert(BBI, RightMBB); 11620 WorkList.push_back( 11621 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11622 // Put Cond in a virtual register to make it available from the new blocks. 11623 ExportFromCurrentBlock(Cond); 11624 } 11625 11626 // Create the CaseBlock record that will be used to lower the branch. 11627 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11628 getCurSDLoc(), LeftProb, RightProb); 11629 11630 if (W.MBB == SwitchMBB) 11631 visitSwitchCase(CB, SwitchMBB); 11632 else 11633 SL->SwitchCases.push_back(CB); 11634 } 11635 11636 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11637 // from the swith statement. 11638 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11639 BranchProbability PeeledCaseProb) { 11640 if (PeeledCaseProb == BranchProbability::getOne()) 11641 return BranchProbability::getZero(); 11642 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11643 11644 uint32_t Numerator = CaseProb.getNumerator(); 11645 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11646 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11647 } 11648 11649 // Try to peel the top probability case if it exceeds the threshold. 11650 // Return current MachineBasicBlock for the switch statement if the peeling 11651 // does not occur. 11652 // If the peeling is performed, return the newly created MachineBasicBlock 11653 // for the peeled switch statement. Also update Clusters to remove the peeled 11654 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11655 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11656 const SwitchInst &SI, CaseClusterVector &Clusters, 11657 BranchProbability &PeeledCaseProb) { 11658 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11659 // Don't perform if there is only one cluster or optimizing for size. 11660 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11661 TM.getOptLevel() == CodeGenOptLevel::None || 11662 SwitchMBB->getParent()->getFunction().hasMinSize()) 11663 return SwitchMBB; 11664 11665 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11666 unsigned PeeledCaseIndex = 0; 11667 bool SwitchPeeled = false; 11668 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11669 CaseCluster &CC = Clusters[Index]; 11670 if (CC.Prob < TopCaseProb) 11671 continue; 11672 TopCaseProb = CC.Prob; 11673 PeeledCaseIndex = Index; 11674 SwitchPeeled = true; 11675 } 11676 if (!SwitchPeeled) 11677 return SwitchMBB; 11678 11679 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11680 << TopCaseProb << "\n"); 11681 11682 // Record the MBB for the peeled switch statement. 11683 MachineFunction::iterator BBI(SwitchMBB); 11684 ++BBI; 11685 MachineBasicBlock *PeeledSwitchMBB = 11686 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11687 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11688 11689 ExportFromCurrentBlock(SI.getCondition()); 11690 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11691 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11692 nullptr, nullptr, TopCaseProb.getCompl()}; 11693 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11694 11695 Clusters.erase(PeeledCaseIt); 11696 for (CaseCluster &CC : Clusters) { 11697 LLVM_DEBUG( 11698 dbgs() << "Scale the probablity for one cluster, before scaling: " 11699 << CC.Prob << "\n"); 11700 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11701 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11702 } 11703 PeeledCaseProb = TopCaseProb; 11704 return PeeledSwitchMBB; 11705 } 11706 11707 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11708 // Extract cases from the switch. 11709 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11710 CaseClusterVector Clusters; 11711 Clusters.reserve(SI.getNumCases()); 11712 for (auto I : SI.cases()) { 11713 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11714 const ConstantInt *CaseVal = I.getCaseValue(); 11715 BranchProbability Prob = 11716 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11717 : BranchProbability(1, SI.getNumCases() + 1); 11718 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11719 } 11720 11721 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11722 11723 // Cluster adjacent cases with the same destination. We do this at all 11724 // optimization levels because it's cheap to do and will make codegen faster 11725 // if there are many clusters. 11726 sortAndRangeify(Clusters); 11727 11728 // The branch probablity of the peeled case. 11729 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11730 MachineBasicBlock *PeeledSwitchMBB = 11731 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11732 11733 // If there is only the default destination, jump there directly. 11734 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11735 if (Clusters.empty()) { 11736 assert(PeeledSwitchMBB == SwitchMBB); 11737 SwitchMBB->addSuccessor(DefaultMBB); 11738 if (DefaultMBB != NextBlock(SwitchMBB)) { 11739 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11740 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11741 } 11742 return; 11743 } 11744 11745 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11746 SL->findBitTestClusters(Clusters, &SI); 11747 11748 LLVM_DEBUG({ 11749 dbgs() << "Case clusters: "; 11750 for (const CaseCluster &C : Clusters) { 11751 if (C.Kind == CC_JumpTable) 11752 dbgs() << "JT:"; 11753 if (C.Kind == CC_BitTests) 11754 dbgs() << "BT:"; 11755 11756 C.Low->getValue().print(dbgs(), true); 11757 if (C.Low != C.High) { 11758 dbgs() << '-'; 11759 C.High->getValue().print(dbgs(), true); 11760 } 11761 dbgs() << ' '; 11762 } 11763 dbgs() << '\n'; 11764 }); 11765 11766 assert(!Clusters.empty()); 11767 SwitchWorkList WorkList; 11768 CaseClusterIt First = Clusters.begin(); 11769 CaseClusterIt Last = Clusters.end() - 1; 11770 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11771 // Scale the branchprobability for DefaultMBB if the peel occurs and 11772 // DefaultMBB is not replaced. 11773 if (PeeledCaseProb != BranchProbability::getZero() && 11774 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11775 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11776 WorkList.push_back( 11777 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11778 11779 while (!WorkList.empty()) { 11780 SwitchWorkListItem W = WorkList.pop_back_val(); 11781 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11782 11783 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11784 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11785 // For optimized builds, lower large range as a balanced binary tree. 11786 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11787 continue; 11788 } 11789 11790 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11791 } 11792 } 11793 11794 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11795 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11796 auto DL = getCurSDLoc(); 11797 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11798 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11799 } 11800 11801 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11803 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11804 11805 SDLoc DL = getCurSDLoc(); 11806 SDValue V = getValue(I.getOperand(0)); 11807 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11808 11809 if (VT.isScalableVector()) { 11810 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11811 return; 11812 } 11813 11814 // Use VECTOR_SHUFFLE for the fixed-length vector 11815 // to maintain existing behavior. 11816 SmallVector<int, 8> Mask; 11817 unsigned NumElts = VT.getVectorMinNumElements(); 11818 for (unsigned i = 0; i != NumElts; ++i) 11819 Mask.push_back(NumElts - 1 - i); 11820 11821 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11822 } 11823 11824 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11825 auto DL = getCurSDLoc(); 11826 SDValue InVec = getValue(I.getOperand(0)); 11827 EVT OutVT = 11828 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11829 11830 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11831 11832 // ISD Node needs the input vectors split into two equal parts 11833 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11834 DAG.getVectorIdxConstant(0, DL)); 11835 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11836 DAG.getVectorIdxConstant(OutNumElts, DL)); 11837 11838 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11839 // legalisation and combines. 11840 if (OutVT.isFixedLengthVector()) { 11841 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11842 createStrideMask(0, 2, OutNumElts)); 11843 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11844 createStrideMask(1, 2, OutNumElts)); 11845 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11846 setValue(&I, Res); 11847 return; 11848 } 11849 11850 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11851 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11852 setValue(&I, Res); 11853 } 11854 11855 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11856 auto DL = getCurSDLoc(); 11857 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11858 SDValue InVec0 = getValue(I.getOperand(0)); 11859 SDValue InVec1 = getValue(I.getOperand(1)); 11860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11861 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11862 11863 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11864 // legalisation and combines. 11865 if (OutVT.isFixedLengthVector()) { 11866 unsigned NumElts = InVT.getVectorMinNumElements(); 11867 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11868 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11869 createInterleaveMask(NumElts, 2))); 11870 return; 11871 } 11872 11873 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11874 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11875 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11876 Res.getValue(1)); 11877 setValue(&I, Res); 11878 } 11879 11880 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11881 SmallVector<EVT, 4> ValueVTs; 11882 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11883 ValueVTs); 11884 unsigned NumValues = ValueVTs.size(); 11885 if (NumValues == 0) return; 11886 11887 SmallVector<SDValue, 4> Values(NumValues); 11888 SDValue Op = getValue(I.getOperand(0)); 11889 11890 for (unsigned i = 0; i != NumValues; ++i) 11891 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11892 SDValue(Op.getNode(), Op.getResNo() + i)); 11893 11894 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11895 DAG.getVTList(ValueVTs), Values)); 11896 } 11897 11898 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11900 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11901 11902 SDLoc DL = getCurSDLoc(); 11903 SDValue V1 = getValue(I.getOperand(0)); 11904 SDValue V2 = getValue(I.getOperand(1)); 11905 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11906 11907 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11908 if (VT.isScalableVector()) { 11909 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11910 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11911 DAG.getConstant(Imm, DL, IdxVT))); 11912 return; 11913 } 11914 11915 unsigned NumElts = VT.getVectorNumElements(); 11916 11917 uint64_t Idx = (NumElts + Imm) % NumElts; 11918 11919 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11920 SmallVector<int, 8> Mask; 11921 for (unsigned i = 0; i < NumElts; ++i) 11922 Mask.push_back(Idx + i); 11923 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11924 } 11925 11926 // Consider the following MIR after SelectionDAG, which produces output in 11927 // phyregs in the first case or virtregs in the second case. 11928 // 11929 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 11930 // %5:gr32 = COPY $ebx 11931 // %6:gr32 = COPY $edx 11932 // %1:gr32 = COPY %6:gr32 11933 // %0:gr32 = COPY %5:gr32 11934 // 11935 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 11936 // %1:gr32 = COPY %6:gr32 11937 // %0:gr32 = COPY %5:gr32 11938 // 11939 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 11940 // Given %1, we'd like to return $edx in the first case and %6 in the second. 11941 // 11942 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 11943 // to a single virtreg (such as %0). The remaining outputs monotonically 11944 // increase in virtreg number from there. If a callbr has no outputs, then it 11945 // should not have a corresponding callbr landingpad; in fact, the callbr 11946 // landingpad would not even be able to refer to such a callbr. 11947 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 11948 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 11949 // There is definitely at least one copy. 11950 assert(MI->getOpcode() == TargetOpcode::COPY && 11951 "start of copy chain MUST be COPY"); 11952 Reg = MI->getOperand(1).getReg(); 11953 MI = MRI.def_begin(Reg)->getParent(); 11954 // There may be an optional second copy. 11955 if (MI->getOpcode() == TargetOpcode::COPY) { 11956 assert(Reg.isVirtual() && "expected COPY of virtual register"); 11957 Reg = MI->getOperand(1).getReg(); 11958 assert(Reg.isPhysical() && "expected COPY of physical register"); 11959 MI = MRI.def_begin(Reg)->getParent(); 11960 } 11961 // The start of the chain must be an INLINEASM_BR. 11962 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 11963 "end of copy chain MUST be INLINEASM_BR"); 11964 return Reg; 11965 } 11966 11967 // We must do this walk rather than the simpler 11968 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 11969 // otherwise we will end up with copies of virtregs only valid along direct 11970 // edges. 11971 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 11972 SmallVector<EVT, 8> ResultVTs; 11973 SmallVector<SDValue, 8> ResultValues; 11974 const auto *CBR = 11975 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 11976 11977 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11978 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 11979 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 11980 11981 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 11982 SDValue Chain = DAG.getRoot(); 11983 11984 // Re-parse the asm constraints string. 11985 TargetLowering::AsmOperandInfoVector TargetConstraints = 11986 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 11987 for (auto &T : TargetConstraints) { 11988 SDISelAsmOperandInfo OpInfo(T); 11989 if (OpInfo.Type != InlineAsm::isOutput) 11990 continue; 11991 11992 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 11993 // individual constraint. 11994 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 11995 11996 switch (OpInfo.ConstraintType) { 11997 case TargetLowering::C_Register: 11998 case TargetLowering::C_RegisterClass: { 11999 // Fill in OpInfo.AssignedRegs.Regs. 12000 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12001 12002 // getRegistersForValue may produce 1 to many registers based on whether 12003 // the OpInfo.ConstraintVT is legal on the target or not. 12004 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12005 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12006 if (Register::isPhysicalRegister(OriginalDef)) 12007 FuncInfo.MBB->addLiveIn(OriginalDef); 12008 // Update the assigned registers to use the original defs. 12009 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12010 } 12011 12012 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12013 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12014 ResultValues.push_back(V); 12015 ResultVTs.push_back(OpInfo.ConstraintVT); 12016 break; 12017 } 12018 case TargetLowering::C_Other: { 12019 SDValue Flag; 12020 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12021 OpInfo, DAG); 12022 ++InitialDef; 12023 ResultValues.push_back(V); 12024 ResultVTs.push_back(OpInfo.ConstraintVT); 12025 break; 12026 } 12027 default: 12028 break; 12029 } 12030 } 12031 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12032 DAG.getVTList(ResultVTs), ResultValues); 12033 setValue(&I, V); 12034 } 12035