xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision eaba06cffad032ee1a7076c468fd0ff70b95f6d9)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfo.h"
46 #include "llvm/IR/DerivedTypes.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GetElementPtrTypeIterator.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InlineAsm.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Statepoint.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetFrameLowering.h"
64 #include "llvm/Target/TargetInstrInfo.h"
65 #include "llvm/Target/TargetIntrinsicInfo.h"
66 #include "llvm/Target/TargetLowering.h"
67 #include "llvm/Target/TargetOptions.h"
68 #include "llvm/Target/TargetSubtargetInfo.h"
69 #include <algorithm>
70 #include <utility>
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "isel"
74 
75 /// LimitFloatPrecision - Generate low-precision inline sequences for
76 /// some float libcalls (6, 8 or 12 bits).
77 static unsigned LimitFloatPrecision;
78 
79 static cl::opt<unsigned, true>
80 LimitFPPrecision("limit-float-precision",
81                  cl::desc("Generate low-precision inline sequences "
82                           "for some float libcalls"),
83                  cl::location(LimitFloatPrecision),
84                  cl::init(0));
85 
86 static cl::opt<bool>
87 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
88                 cl::desc("Enable fast-math-flags for DAG nodes"));
89 
90 /// Minimum jump table density for normal functions.
91 static cl::opt<unsigned>
92 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
93                  cl::desc("Minimum density for building a jump table in "
94                           "a normal function"));
95 
96 /// Minimum jump table density for -Os or -Oz functions.
97 static cl::opt<unsigned>
98 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
99                         cl::desc("Minimum density for building a jump table in "
100                                  "an optsize function"));
101 
102 
103 // Limit the width of DAG chains. This is important in general to prevent
104 // DAG-based analysis from blowing up. For example, alias analysis and
105 // load clustering may not complete in reasonable time. It is difficult to
106 // recognize and avoid this situation within each individual analysis, and
107 // future analyses are likely to have the same behavior. Limiting DAG width is
108 // the safe approach and will be especially important with global DAGs.
109 //
110 // MaxParallelChains default is arbitrarily high to avoid affecting
111 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
112 // sequence over this should have been converted to llvm.memcpy by the
113 // frontend. It is easy to induce this behavior with .ll code such as:
114 // %buffer = alloca [4096 x i8]
115 // %data = load [4096 x i8]* %argPtr
116 // store [4096 x i8] %data, [4096 x i8]* %buffer
117 static const unsigned MaxParallelChains = 64;
118 
119 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
120                                       const SDValue *Parts, unsigned NumParts,
121                                       MVT PartVT, EVT ValueVT, const Value *V);
122 
123 /// getCopyFromParts - Create a value that contains the specified legal parts
124 /// combined into the value they represent.  If the parts combine to a type
125 /// larger than ValueVT then AssertOp can be used to specify whether the extra
126 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
127 /// (ISD::AssertSext).
128 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
129                                 const SDValue *Parts, unsigned NumParts,
130                                 MVT PartVT, EVT ValueVT, const Value *V,
131                                 Optional<ISD::NodeType> AssertOp = None) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp.hasValue())
237         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger than ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
383                            SDValue *Parts, unsigned NumParts, MVT PartVT,
384                            const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT) {
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
453     }
454 
455     Parts[0] = Val;
456     return;
457   }
458 
459   // Expand the value into multiple parts.
460   if (NumParts & (NumParts - 1)) {
461     // The number of parts is not a power of 2.  Split off and copy the tail.
462     assert(PartVT.isInteger() && ValueVT.isInteger() &&
463            "Do not know what to expand to!");
464     unsigned RoundParts = 1 << Log2_32(NumParts);
465     unsigned RoundBits = RoundParts * PartBits;
466     unsigned OddParts = NumParts - RoundParts;
467     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
468                                  DAG.getIntPtrConstant(RoundBits, DL));
469     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
470 
471     if (DAG.getDataLayout().isBigEndian())
472       // The odd parts were reversed by getCopyToParts - unreverse them.
473       std::reverse(Parts + RoundParts, Parts + NumParts);
474 
475     NumParts = RoundParts;
476     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
477     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
478   }
479 
480   // The number of parts is a power of 2.  Repeatedly bisect the value using
481   // EXTRACT_ELEMENT.
482   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
483                          EVT::getIntegerVT(*DAG.getContext(),
484                                            ValueVT.getSizeInBits()),
485                          Val);
486 
487   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
488     for (unsigned i = 0; i < NumParts; i += StepSize) {
489       unsigned ThisBits = StepSize * PartBits / 2;
490       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
491       SDValue &Part0 = Parts[i];
492       SDValue &Part1 = Parts[i+StepSize/2];
493 
494       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
496       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
497                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
498 
499       if (ThisBits == PartBits && ThisVT != PartVT) {
500         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
501         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
502       }
503     }
504   }
505 
506   if (DAG.getDataLayout().isBigEndian())
507     std::reverse(Parts, Parts + OrigNumParts);
508 }
509 
510 
511 /// getCopyToPartsVector - Create a series of nodes that contain the specified
512 /// value split into legal parts.
513 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
514                                  SDValue Val, SDValue *Parts, unsigned NumParts,
515                                  MVT PartVT, const Value *V) {
516   EVT ValueVT = Val.getValueType();
517   assert(ValueVT.isVector() && "Not a vector");
518   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
519 
520   if (NumParts == 1) {
521     EVT PartEVT = PartVT;
522     if (PartEVT == ValueVT) {
523       // Nothing to do.
524     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
525       // Bitconvert vector->vector case.
526       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
527     } else if (PartVT.isVector() &&
528                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
529                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
530       EVT ElementVT = PartVT.getVectorElementType();
531       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
532       // undef elements.
533       SmallVector<SDValue, 16> Ops;
534       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
535         Ops.push_back(DAG.getNode(
536             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
537             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
538 
539       for (unsigned i = ValueVT.getVectorNumElements(),
540            e = PartVT.getVectorNumElements(); i != e; ++i)
541         Ops.push_back(DAG.getUNDEF(ElementVT));
542 
543       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
544 
545       // FIXME: Use CONCAT for 2x -> 4x.
546 
547       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
548       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
549     } else if (PartVT.isVector() &&
550                PartEVT.getVectorElementType().bitsGE(
551                  ValueVT.getVectorElementType()) &&
552                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
553 
554       // Promoted vector extract
555       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
556     } else{
557       // Vector -> scalar conversion.
558       assert(ValueVT.getVectorNumElements() == 1 &&
559              "Only trivial vector-to-scalar conversions should get here!");
560       Val = DAG.getNode(
561           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
562           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
563 
564       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Handle a multi-element vector.
572   EVT IntermediateVT;
573   MVT RegisterVT;
574   unsigned NumIntermediates;
575   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
576                                                 IntermediateVT,
577                                                 NumIntermediates, RegisterVT);
578   unsigned NumElements = ValueVT.getVectorNumElements();
579 
580   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
581   NumParts = NumRegs; // Silence a compiler warning.
582   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
583 
584   // Split the vector into intermediate operands.
585   SmallVector<SDValue, 8> Ops(NumIntermediates);
586   for (unsigned i = 0; i != NumIntermediates; ++i) {
587     if (IntermediateVT.isVector())
588       Ops[i] =
589           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
590                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
591                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
592     else
593       Ops[i] = DAG.getNode(
594           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
595           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
596   }
597 
598   // Split the intermediate operands into legal parts.
599   if (NumParts == NumIntermediates) {
600     // If the register was not expanded, promote or copy the value,
601     // as appropriate.
602     for (unsigned i = 0; i != NumParts; ++i)
603       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
604   } else if (NumParts > 0) {
605     // If the intermediate type was expanded, split each the value into
606     // legal parts.
607     assert(NumIntermediates != 0 && "division by zero");
608     assert(NumParts % NumIntermediates == 0 &&
609            "Must expand into a divisible number of parts!");
610     unsigned Factor = NumParts / NumIntermediates;
611     for (unsigned i = 0; i != NumIntermediates; ++i)
612       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
613   }
614 }
615 
616 RegsForValue::RegsForValue() {}
617 
618 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
619                            EVT valuevt)
620     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
621 
622 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
623                            const DataLayout &DL, unsigned Reg, Type *Ty) {
624   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
625 
626   for (EVT ValueVT : ValueVTs) {
627     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
628     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
629     for (unsigned i = 0; i != NumRegs; ++i)
630       Regs.push_back(Reg + i);
631     RegVTs.push_back(RegisterVT);
632     Reg += NumRegs;
633   }
634 }
635 
636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
637 /// this value and returns the result as a ValueVT value.  This uses
638 /// Chain/Flag as the input and updates them for the output Chain/Flag.
639 /// If the Flag pointer is NULL, no flag is used.
640 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
641                                       FunctionLoweringInfo &FuncInfo,
642                                       const SDLoc &dl, SDValue &Chain,
643                                       SDValue *Flag, const Value *V) const {
644   // A Value with type {} or [0 x %t] needs no registers.
645   if (ValueVTs.empty())
646     return SDValue();
647 
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649 
650   // Assemble the legal parts into the final values.
651   SmallVector<SDValue, 4> Values(ValueVTs.size());
652   SmallVector<SDValue, 8> Parts;
653   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
654     // Copy the legal parts from the registers.
655     EVT ValueVT = ValueVTs[Value];
656     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
657     MVT RegisterVT = RegVTs[Value];
658 
659     Parts.resize(NumRegs);
660     for (unsigned i = 0; i != NumRegs; ++i) {
661       SDValue P;
662       if (!Flag) {
663         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
664       } else {
665         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
666         *Flag = P.getValue(2);
667       }
668 
669       Chain = P.getValue(1);
670       Parts[i] = P;
671 
672       // If the source register was virtual and if we know something about it,
673       // add an assert node.
674       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
675           !RegisterVT.isInteger() || RegisterVT.isVector())
676         continue;
677 
678       const FunctionLoweringInfo::LiveOutInfo *LOI =
679         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
680       if (!LOI)
681         continue;
682 
683       unsigned RegSize = RegisterVT.getSizeInBits();
684       unsigned NumSignBits = LOI->NumSignBits;
685       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
686 
687       if (NumZeroBits == RegSize) {
688         // The current value is a zero.
689         // Explicitly express that as it would be easier for
690         // optimizations to kick in.
691         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
692         continue;
693       }
694 
695       // FIXME: We capture more information than the dag can represent.  For
696       // now, just use the tightest assertzext/assertsext possible.
697       bool isSExt = true;
698       EVT FromVT(MVT::Other);
699       if (NumSignBits == RegSize) {
700         isSExt = true;   // ASSERT SEXT 1
701         FromVT = MVT::i1;
702       } else if (NumZeroBits >= RegSize - 1) {
703         isSExt = false;  // ASSERT ZEXT 1
704         FromVT = MVT::i1;
705       } else if (NumSignBits > RegSize - 8) {
706         isSExt = true;   // ASSERT SEXT 8
707         FromVT = MVT::i8;
708       } else if (NumZeroBits >= RegSize - 8) {
709         isSExt = false;  // ASSERT ZEXT 8
710         FromVT = MVT::i8;
711       } else if (NumSignBits > RegSize - 16) {
712         isSExt = true;   // ASSERT SEXT 16
713         FromVT = MVT::i16;
714       } else if (NumZeroBits >= RegSize - 16) {
715         isSExt = false;  // ASSERT ZEXT 16
716         FromVT = MVT::i16;
717       } else if (NumSignBits > RegSize - 32) {
718         isSExt = true;   // ASSERT SEXT 32
719         FromVT = MVT::i32;
720       } else if (NumZeroBits >= RegSize - 32) {
721         isSExt = false;  // ASSERT ZEXT 32
722         FromVT = MVT::i32;
723       } else {
724         continue;
725       }
726       // Add an assertion node.
727       assert(FromVT != MVT::Other);
728       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
729                              RegisterVT, P, DAG.getValueType(FromVT));
730     }
731 
732     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
733                                      NumRegs, RegisterVT, ValueVT, V);
734     Part += NumRegs;
735     Parts.clear();
736   }
737 
738   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
739 }
740 
741 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
742 /// specified value into the registers specified by this object.  This uses
743 /// Chain/Flag as the input and updates them for the output Chain/Flag.
744 /// If the Flag pointer is NULL, no flag is used.
745 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
746                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
747                                  const Value *V,
748                                  ISD::NodeType PreferredExtendType) const {
749   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
750   ISD::NodeType ExtendKind = PreferredExtendType;
751 
752   // Get the list of the values's legal parts.
753   unsigned NumRegs = Regs.size();
754   SmallVector<SDValue, 8> Parts(NumRegs);
755   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
756     EVT ValueVT = ValueVTs[Value];
757     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
758     MVT RegisterVT = RegVTs[Value];
759 
760     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
761       ExtendKind = ISD::ZERO_EXTEND;
762 
763     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
764                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
765     Part += NumParts;
766   }
767 
768   // Copy the parts into the registers.
769   SmallVector<SDValue, 8> Chains(NumRegs);
770   for (unsigned i = 0; i != NumRegs; ++i) {
771     SDValue Part;
772     if (!Flag) {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
774     } else {
775       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
776       *Flag = Part.getValue(1);
777     }
778 
779     Chains[i] = Part.getValue(0);
780   }
781 
782   if (NumRegs == 1 || Flag)
783     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
784     // flagged to it. That is the CopyToReg nodes and the user are considered
785     // a single scheduling unit. If we create a TokenFactor and return it as
786     // chain, then the TokenFactor is both a predecessor (operand) of the
787     // user as well as a successor (the TF operands are flagged to the user).
788     // c1, f1 = CopyToReg
789     // c2, f2 = CopyToReg
790     // c3     = TokenFactor c1, c2
791     // ...
792     //        = op c3, ..., f2
793     Chain = Chains[NumRegs-1];
794   else
795     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
796 }
797 
798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
799 /// operand list.  This adds the code marker and includes the number of
800 /// values added into it.
801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
802                                         unsigned MatchingIdx, const SDLoc &dl,
803                                         SelectionDAG &DAG,
804                                         std::vector<SDValue> &Ops) const {
805   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
806 
807   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
808   if (HasMatching)
809     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
810   else if (!Regs.empty() &&
811            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
812     // Put the register class of the virtual registers in the flag word.  That
813     // way, later passes can recompute register class constraints for inline
814     // assembly as well as normal instructions.
815     // Don't do this for tied operands that can use the regclass information
816     // from the def.
817     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
818     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
819     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
820   }
821 
822   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
823   Ops.push_back(Res);
824 
825   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
826   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
827     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
828     MVT RegisterVT = RegVTs[Value];
829     for (unsigned i = 0; i != NumRegs; ++i) {
830       assert(Reg < Regs.size() && "Mismatch in # registers expected");
831       unsigned TheReg = Regs[Reg++];
832       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
833 
834       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
835         // If we clobbered the stack pointer, MFI should know about it.
836         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
837       }
838     }
839   }
840 }
841 
842 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
843                                const TargetLibraryInfo *li) {
844   AA = &aa;
845   GFI = gfi;
846   LibInfo = li;
847   DL = &DAG.getDataLayout();
848   Context = DAG.getContext();
849   LPadToCallSiteMap.clear();
850 }
851 
852 /// clear - Clear out the current SelectionDAG and the associated
853 /// state and prepare this SelectionDAGBuilder object to be used
854 /// for a new block. This doesn't clear out information about
855 /// additional blocks that are needed to complete switch lowering
856 /// or PHI node updating; that information is cleared out as it is
857 /// consumed.
858 void SelectionDAGBuilder::clear() {
859   NodeMap.clear();
860   UnusedArgNodeMap.clear();
861   PendingLoads.clear();
862   PendingExports.clear();
863   CurInst = nullptr;
864   HasTailCall = false;
865   SDNodeOrder = LowestSDNodeOrder;
866   StatepointLowering.clear();
867 }
868 
869 /// clearDanglingDebugInfo - Clear the dangling debug information
870 /// map. This function is separated from the clear so that debug
871 /// information that is dangling in a basic block can be properly
872 /// resolved in a different basic block. This allows the
873 /// SelectionDAG to resolve dangling debug information attached
874 /// to PHI nodes.
875 void SelectionDAGBuilder::clearDanglingDebugInfo() {
876   DanglingDebugInfoMap.clear();
877 }
878 
879 /// getRoot - Return the current virtual root of the Selection DAG,
880 /// flushing any PendingLoad items. This must be done before emitting
881 /// a store or any other node that may need to be ordered after any
882 /// prior load instructions.
883 ///
884 SDValue SelectionDAGBuilder::getRoot() {
885   if (PendingLoads.empty())
886     return DAG.getRoot();
887 
888   if (PendingLoads.size() == 1) {
889     SDValue Root = PendingLoads[0];
890     DAG.setRoot(Root);
891     PendingLoads.clear();
892     return Root;
893   }
894 
895   // Otherwise, we have to make a token factor node.
896   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
897                              PendingLoads);
898   PendingLoads.clear();
899   DAG.setRoot(Root);
900   return Root;
901 }
902 
903 /// getControlRoot - Similar to getRoot, but instead of flushing all the
904 /// PendingLoad items, flush all the PendingExports items. It is necessary
905 /// to do this before emitting a terminator instruction.
906 ///
907 SDValue SelectionDAGBuilder::getControlRoot() {
908   SDValue Root = DAG.getRoot();
909 
910   if (PendingExports.empty())
911     return Root;
912 
913   // Turn all of the CopyToReg chains into one factored node.
914   if (Root.getOpcode() != ISD::EntryToken) {
915     unsigned i = 0, e = PendingExports.size();
916     for (; i != e; ++i) {
917       assert(PendingExports[i].getNode()->getNumOperands() > 1);
918       if (PendingExports[i].getNode()->getOperand(0) == Root)
919         break;  // Don't add the root if we already indirectly depend on it.
920     }
921 
922     if (i == e)
923       PendingExports.push_back(Root);
924   }
925 
926   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
927                      PendingExports);
928   PendingExports.clear();
929   DAG.setRoot(Root);
930   return Root;
931 }
932 
933 void SelectionDAGBuilder::visit(const Instruction &I) {
934   // Set up outgoing PHI node register values before emitting the terminator.
935   if (isa<TerminatorInst>(&I)) {
936     HandlePHINodesInSuccessorBlocks(I.getParent());
937   }
938 
939   ++SDNodeOrder;
940 
941   CurInst = &I;
942 
943   visit(I.getOpcode(), I);
944 
945   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
946       !isStatepoint(&I)) // statepoints handle their exports internally
947     CopyToExportRegsIfNeeded(&I);
948 
949   CurInst = nullptr;
950 }
951 
952 void SelectionDAGBuilder::visitPHI(const PHINode &) {
953   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
954 }
955 
956 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
957   // Note: this doesn't use InstVisitor, because it has to work with
958   // ConstantExpr's in addition to instructions.
959   switch (Opcode) {
960   default: llvm_unreachable("Unknown instruction type encountered!");
961     // Build the switch statement using the Instruction.def file.
962 #define HANDLE_INST(NUM, OPCODE, CLASS) \
963     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
964 #include "llvm/IR/Instruction.def"
965   }
966 }
967 
968 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
969 // generate the debug data structures now that we've seen its definition.
970 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
971                                                    SDValue Val) {
972   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
973   if (DDI.getDI()) {
974     const DbgValueInst *DI = DDI.getDI();
975     DebugLoc dl = DDI.getdl();
976     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
977     DILocalVariable *Variable = DI->getVariable();
978     DIExpression *Expr = DI->getExpression();
979     assert(Variable->isValidLocationForIntrinsic(dl) &&
980            "Expected inlined-at fields to agree");
981     uint64_t Offset = DI->getOffset();
982     SDDbgValue *SDV;
983     if (Val.getNode()) {
984       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
985                                     Val)) {
986         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
987         DAG.AddDbgValue(SDV, Val.getNode(), false);
988       }
989     } else
990       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
991     DanglingDebugInfoMap[V] = DanglingDebugInfo();
992   }
993 }
994 
995 /// getCopyFromRegs - If there was virtual register allocated for the value V
996 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
997 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
998   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
999   SDValue Result;
1000 
1001   if (It != FuncInfo.ValueMap.end()) {
1002     unsigned InReg = It->second;
1003     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1004                      DAG.getDataLayout(), InReg, Ty);
1005     SDValue Chain = DAG.getEntryNode();
1006     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1007     resolveDanglingDebugInfo(V, Result);
1008   }
1009 
1010   return Result;
1011 }
1012 
1013 /// getValue - Return an SDValue for the given Value.
1014 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1015   // If we already have an SDValue for this value, use it. It's important
1016   // to do this first, so that we don't create a CopyFromReg if we already
1017   // have a regular SDValue.
1018   SDValue &N = NodeMap[V];
1019   if (N.getNode()) return N;
1020 
1021   // If there's a virtual register allocated and initialized for this
1022   // value, use it.
1023   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1024     return copyFromReg;
1025 
1026   // Otherwise create a new SDValue and remember it.
1027   SDValue Val = getValueImpl(V);
1028   NodeMap[V] = Val;
1029   resolveDanglingDebugInfo(V, Val);
1030   return Val;
1031 }
1032 
1033 // Return true if SDValue exists for the given Value
1034 bool SelectionDAGBuilder::findValue(const Value *V) const {
1035   return (NodeMap.find(V) != NodeMap.end()) ||
1036     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1037 }
1038 
1039 /// getNonRegisterValue - Return an SDValue for the given Value, but
1040 /// don't look in FuncInfo.ValueMap for a virtual register.
1041 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1042   // If we already have an SDValue for this value, use it.
1043   SDValue &N = NodeMap[V];
1044   if (N.getNode()) {
1045     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1046       // Remove the debug location from the node as the node is about to be used
1047       // in a location which may differ from the original debug location.  This
1048       // is relevant to Constant and ConstantFP nodes because they can appear
1049       // as constant expressions inside PHI nodes.
1050       N->setDebugLoc(DebugLoc());
1051     }
1052     return N;
1053   }
1054 
1055   // Otherwise create a new SDValue and remember it.
1056   SDValue Val = getValueImpl(V);
1057   NodeMap[V] = Val;
1058   resolveDanglingDebugInfo(V, Val);
1059   return Val;
1060 }
1061 
1062 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1063 /// Create an SDValue for the given value.
1064 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1066 
1067   if (const Constant *C = dyn_cast<Constant>(V)) {
1068     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1069 
1070     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1071       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1072 
1073     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1074       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1075 
1076     if (isa<ConstantPointerNull>(C)) {
1077       unsigned AS = V->getType()->getPointerAddressSpace();
1078       return DAG.getConstant(0, getCurSDLoc(),
1079                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1080     }
1081 
1082     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1083       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1084 
1085     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1086       return DAG.getUNDEF(VT);
1087 
1088     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1089       visit(CE->getOpcode(), *CE);
1090       SDValue N1 = NodeMap[V];
1091       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1092       return N1;
1093     }
1094 
1095     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1096       SmallVector<SDValue, 4> Constants;
1097       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1098            OI != OE; ++OI) {
1099         SDNode *Val = getValue(*OI).getNode();
1100         // If the operand is an empty aggregate, there are no values.
1101         if (!Val) continue;
1102         // Add each leaf value from the operand to the Constants list
1103         // to form a flattened list of all the values.
1104         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1105           Constants.push_back(SDValue(Val, i));
1106       }
1107 
1108       return DAG.getMergeValues(Constants, getCurSDLoc());
1109     }
1110 
1111     if (const ConstantDataSequential *CDS =
1112           dyn_cast<ConstantDataSequential>(C)) {
1113       SmallVector<SDValue, 4> Ops;
1114       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1115         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1116         // Add each leaf value from the operand to the Constants list
1117         // to form a flattened list of all the values.
1118         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1119           Ops.push_back(SDValue(Val, i));
1120       }
1121 
1122       if (isa<ArrayType>(CDS->getType()))
1123         return DAG.getMergeValues(Ops, getCurSDLoc());
1124       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1125                                       VT, Ops);
1126     }
1127 
1128     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1129       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1130              "Unknown struct or array constant!");
1131 
1132       SmallVector<EVT, 4> ValueVTs;
1133       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1134       unsigned NumElts = ValueVTs.size();
1135       if (NumElts == 0)
1136         return SDValue(); // empty struct
1137       SmallVector<SDValue, 4> Constants(NumElts);
1138       for (unsigned i = 0; i != NumElts; ++i) {
1139         EVT EltVT = ValueVTs[i];
1140         if (isa<UndefValue>(C))
1141           Constants[i] = DAG.getUNDEF(EltVT);
1142         else if (EltVT.isFloatingPoint())
1143           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1144         else
1145           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1146       }
1147 
1148       return DAG.getMergeValues(Constants, getCurSDLoc());
1149     }
1150 
1151     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1152       return DAG.getBlockAddress(BA, VT);
1153 
1154     VectorType *VecTy = cast<VectorType>(V->getType());
1155     unsigned NumElements = VecTy->getNumElements();
1156 
1157     // Now that we know the number and type of the elements, get that number of
1158     // elements into the Ops array based on what kind of constant it is.
1159     SmallVector<SDValue, 16> Ops;
1160     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1161       for (unsigned i = 0; i != NumElements; ++i)
1162         Ops.push_back(getValue(CV->getOperand(i)));
1163     } else {
1164       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1165       EVT EltVT =
1166           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1167 
1168       SDValue Op;
1169       if (EltVT.isFloatingPoint())
1170         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1171       else
1172         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1173       Ops.assign(NumElements, Op);
1174     }
1175 
1176     // Create a BUILD_VECTOR node.
1177     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1178   }
1179 
1180   // If this is a static alloca, generate it as the frameindex instead of
1181   // computation.
1182   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1183     DenseMap<const AllocaInst*, int>::iterator SI =
1184       FuncInfo.StaticAllocaMap.find(AI);
1185     if (SI != FuncInfo.StaticAllocaMap.end())
1186       return DAG.getFrameIndex(SI->second,
1187                                TLI.getPointerTy(DAG.getDataLayout()));
1188   }
1189 
1190   // If this is an instruction which fast-isel has deferred, select it now.
1191   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1192     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1193     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1194                      Inst->getType());
1195     SDValue Chain = DAG.getEntryNode();
1196     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1197   }
1198 
1199   llvm_unreachable("Can't get register for value!");
1200 }
1201 
1202 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1203   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1204   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1205   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1206   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1207   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1208   if (IsMSVCCXX || IsCoreCLR)
1209     CatchPadMBB->setIsEHFuncletEntry();
1210 
1211   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1212 }
1213 
1214 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1215   // Update machine-CFG edge.
1216   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1217   FuncInfo.MBB->addSuccessor(TargetMBB);
1218 
1219   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1220   bool IsSEH = isAsynchronousEHPersonality(Pers);
1221   if (IsSEH) {
1222     // If this is not a fall-through branch or optimizations are switched off,
1223     // emit the branch.
1224     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1225         TM.getOptLevel() == CodeGenOpt::None)
1226       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1227                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1228     return;
1229   }
1230 
1231   // Figure out the funclet membership for the catchret's successor.
1232   // This will be used by the FuncletLayout pass to determine how to order the
1233   // BB's.
1234   // A 'catchret' returns to the outer scope's color.
1235   Value *ParentPad = I.getCatchSwitchParentPad();
1236   const BasicBlock *SuccessorColor;
1237   if (isa<ConstantTokenNone>(ParentPad))
1238     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1239   else
1240     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1241   assert(SuccessorColor && "No parent funclet for catchret!");
1242   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1243   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1244 
1245   // Create the terminator node.
1246   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1247                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1248                             DAG.getBasicBlock(SuccessorColorMBB));
1249   DAG.setRoot(Ret);
1250 }
1251 
1252 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1253   // Don't emit any special code for the cleanuppad instruction. It just marks
1254   // the start of a funclet.
1255   FuncInfo.MBB->setIsEHFuncletEntry();
1256   FuncInfo.MBB->setIsCleanupFuncletEntry();
1257 }
1258 
1259 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1260 /// many places it could ultimately go. In the IR, we have a single unwind
1261 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1262 /// This function skips over imaginary basic blocks that hold catchswitch
1263 /// instructions, and finds all the "real" machine
1264 /// basic block destinations. As those destinations may not be successors of
1265 /// EHPadBB, here we also calculate the edge probability to those destinations.
1266 /// The passed-in Prob is the edge probability to EHPadBB.
1267 static void findUnwindDestinations(
1268     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1269     BranchProbability Prob,
1270     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1271         &UnwindDests) {
1272   EHPersonality Personality =
1273     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1274   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1275   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1276 
1277   while (EHPadBB) {
1278     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1279     BasicBlock *NewEHPadBB = nullptr;
1280     if (isa<LandingPadInst>(Pad)) {
1281       // Stop on landingpads. They are not funclets.
1282       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1283       break;
1284     } else if (isa<CleanupPadInst>(Pad)) {
1285       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1286       // personalities.
1287       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1288       UnwindDests.back().first->setIsEHFuncletEntry();
1289       break;
1290     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1291       // Add the catchpad handlers to the possible destinations.
1292       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1293         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1294         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1295         if (IsMSVCCXX || IsCoreCLR)
1296           UnwindDests.back().first->setIsEHFuncletEntry();
1297       }
1298       NewEHPadBB = CatchSwitch->getUnwindDest();
1299     } else {
1300       continue;
1301     }
1302 
1303     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1304     if (BPI && NewEHPadBB)
1305       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1306     EHPadBB = NewEHPadBB;
1307   }
1308 }
1309 
1310 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1311   // Update successor info.
1312   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1313   auto UnwindDest = I.getUnwindDest();
1314   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1315   BranchProbability UnwindDestProb =
1316       (BPI && UnwindDest)
1317           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1318           : BranchProbability::getZero();
1319   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1320   for (auto &UnwindDest : UnwindDests) {
1321     UnwindDest.first->setIsEHPad();
1322     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1323   }
1324   FuncInfo.MBB->normalizeSuccProbs();
1325 
1326   // Create the terminator node.
1327   SDValue Ret =
1328       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1329   DAG.setRoot(Ret);
1330 }
1331 
1332 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1333   report_fatal_error("visitCatchSwitch not yet implemented!");
1334 }
1335 
1336 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1337   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1338   auto &DL = DAG.getDataLayout();
1339   SDValue Chain = getControlRoot();
1340   SmallVector<ISD::OutputArg, 8> Outs;
1341   SmallVector<SDValue, 8> OutVals;
1342 
1343   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1344   // lower
1345   //
1346   //   %val = call <ty> @llvm.experimental.deoptimize()
1347   //   ret <ty> %val
1348   //
1349   // differently.
1350   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1351     LowerDeoptimizingReturn();
1352     return;
1353   }
1354 
1355   if (!FuncInfo.CanLowerReturn) {
1356     unsigned DemoteReg = FuncInfo.DemoteRegister;
1357     const Function *F = I.getParent()->getParent();
1358 
1359     // Emit a store of the return value through the virtual register.
1360     // Leave Outs empty so that LowerReturn won't try to load return
1361     // registers the usual way.
1362     SmallVector<EVT, 1> PtrValueVTs;
1363     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1364                     PtrValueVTs);
1365 
1366     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1367                                         DemoteReg, PtrValueVTs[0]);
1368     SDValue RetOp = getValue(I.getOperand(0));
1369 
1370     SmallVector<EVT, 4> ValueVTs;
1371     SmallVector<uint64_t, 4> Offsets;
1372     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1373     unsigned NumValues = ValueVTs.size();
1374 
1375     // An aggregate return value cannot wrap around the address space, so
1376     // offsets to its parts don't wrap either.
1377     SDNodeFlags Flags;
1378     Flags.setNoUnsignedWrap(true);
1379 
1380     SmallVector<SDValue, 4> Chains(NumValues);
1381     for (unsigned i = 0; i != NumValues; ++i) {
1382       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1383                                 RetPtr.getValueType(), RetPtr,
1384                                 DAG.getIntPtrConstant(Offsets[i],
1385                                                       getCurSDLoc()),
1386                                 &Flags);
1387       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1388                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1389                                // FIXME: better loc info would be nice.
1390                                Add, MachinePointerInfo());
1391     }
1392 
1393     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1394                         MVT::Other, Chains);
1395   } else if (I.getNumOperands() != 0) {
1396     SmallVector<EVT, 4> ValueVTs;
1397     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1398     unsigned NumValues = ValueVTs.size();
1399     if (NumValues) {
1400       SDValue RetOp = getValue(I.getOperand(0));
1401 
1402       const Function *F = I.getParent()->getParent();
1403 
1404       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1405       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1406                                           Attribute::SExt))
1407         ExtendKind = ISD::SIGN_EXTEND;
1408       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1409                                                Attribute::ZExt))
1410         ExtendKind = ISD::ZERO_EXTEND;
1411 
1412       LLVMContext &Context = F->getContext();
1413       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1414                                                       Attribute::InReg);
1415 
1416       for (unsigned j = 0; j != NumValues; ++j) {
1417         EVT VT = ValueVTs[j];
1418 
1419         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1420           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1421 
1422         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1423         MVT PartVT = TLI.getRegisterType(Context, VT);
1424         SmallVector<SDValue, 4> Parts(NumParts);
1425         getCopyToParts(DAG, getCurSDLoc(),
1426                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1427                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1428 
1429         // 'inreg' on function refers to return value
1430         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1431         if (RetInReg)
1432           Flags.setInReg();
1433 
1434         // Propagate extension type if any
1435         if (ExtendKind == ISD::SIGN_EXTEND)
1436           Flags.setSExt();
1437         else if (ExtendKind == ISD::ZERO_EXTEND)
1438           Flags.setZExt();
1439 
1440         for (unsigned i = 0; i < NumParts; ++i) {
1441           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1442                                         VT, /*isfixed=*/true, 0, 0));
1443           OutVals.push_back(Parts[i]);
1444         }
1445       }
1446     }
1447   }
1448 
1449   // Push in swifterror virtual register as the last element of Outs. This makes
1450   // sure swifterror virtual register will be returned in the swifterror
1451   // physical register.
1452   const Function *F = I.getParent()->getParent();
1453   if (TLI.supportSwiftError() &&
1454       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1455     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1456     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1457     Flags.setSwiftError();
1458     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1459                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1460                                   true /*isfixed*/, 1 /*origidx*/,
1461                                   0 /*partOffs*/));
1462     // Create SDNode for the swifterror virtual register.
1463     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1464                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1465                                       EVT(TLI.getPointerTy(DL))));
1466   }
1467 
1468   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1469   CallingConv::ID CallConv =
1470     DAG.getMachineFunction().getFunction()->getCallingConv();
1471   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1472       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1473 
1474   // Verify that the target's LowerReturn behaved as expected.
1475   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1476          "LowerReturn didn't return a valid chain!");
1477 
1478   // Update the DAG with the new chain value resulting from return lowering.
1479   DAG.setRoot(Chain);
1480 }
1481 
1482 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1483 /// created for it, emit nodes to copy the value into the virtual
1484 /// registers.
1485 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1486   // Skip empty types
1487   if (V->getType()->isEmptyTy())
1488     return;
1489 
1490   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1491   if (VMI != FuncInfo.ValueMap.end()) {
1492     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1493     CopyValueToVirtualRegister(V, VMI->second);
1494   }
1495 }
1496 
1497 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1498 /// the current basic block, add it to ValueMap now so that we'll get a
1499 /// CopyTo/FromReg.
1500 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1501   // No need to export constants.
1502   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1503 
1504   // Already exported?
1505   if (FuncInfo.isExportedInst(V)) return;
1506 
1507   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1508   CopyValueToVirtualRegister(V, Reg);
1509 }
1510 
1511 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1512                                                      const BasicBlock *FromBB) {
1513   // The operands of the setcc have to be in this block.  We don't know
1514   // how to export them from some other block.
1515   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1516     // Can export from current BB.
1517     if (VI->getParent() == FromBB)
1518       return true;
1519 
1520     // Is already exported, noop.
1521     return FuncInfo.isExportedInst(V);
1522   }
1523 
1524   // If this is an argument, we can export it if the BB is the entry block or
1525   // if it is already exported.
1526   if (isa<Argument>(V)) {
1527     if (FromBB == &FromBB->getParent()->getEntryBlock())
1528       return true;
1529 
1530     // Otherwise, can only export this if it is already exported.
1531     return FuncInfo.isExportedInst(V);
1532   }
1533 
1534   // Otherwise, constants can always be exported.
1535   return true;
1536 }
1537 
1538 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1539 BranchProbability
1540 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1541                                         const MachineBasicBlock *Dst) const {
1542   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1543   const BasicBlock *SrcBB = Src->getBasicBlock();
1544   const BasicBlock *DstBB = Dst->getBasicBlock();
1545   if (!BPI) {
1546     // If BPI is not available, set the default probability as 1 / N, where N is
1547     // the number of successors.
1548     auto SuccSize = std::max<uint32_t>(
1549         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1550     return BranchProbability(1, SuccSize);
1551   }
1552   return BPI->getEdgeProbability(SrcBB, DstBB);
1553 }
1554 
1555 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1556                                                MachineBasicBlock *Dst,
1557                                                BranchProbability Prob) {
1558   if (!FuncInfo.BPI)
1559     Src->addSuccessorWithoutProb(Dst);
1560   else {
1561     if (Prob.isUnknown())
1562       Prob = getEdgeProbability(Src, Dst);
1563     Src->addSuccessor(Dst, Prob);
1564   }
1565 }
1566 
1567 static bool InBlock(const Value *V, const BasicBlock *BB) {
1568   if (const Instruction *I = dyn_cast<Instruction>(V))
1569     return I->getParent() == BB;
1570   return true;
1571 }
1572 
1573 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1574 /// This function emits a branch and is used at the leaves of an OR or an
1575 /// AND operator tree.
1576 ///
1577 void
1578 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1579                                                   MachineBasicBlock *TBB,
1580                                                   MachineBasicBlock *FBB,
1581                                                   MachineBasicBlock *CurBB,
1582                                                   MachineBasicBlock *SwitchBB,
1583                                                   BranchProbability TProb,
1584                                                   BranchProbability FProb) {
1585   const BasicBlock *BB = CurBB->getBasicBlock();
1586 
1587   // If the leaf of the tree is a comparison, merge the condition into
1588   // the caseblock.
1589   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1590     // The operands of the cmp have to be in this block.  We don't know
1591     // how to export them from some other block.  If this is the first block
1592     // of the sequence, no exporting is needed.
1593     if (CurBB == SwitchBB ||
1594         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1595          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1596       ISD::CondCode Condition;
1597       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1598         Condition = getICmpCondCode(IC->getPredicate());
1599       } else {
1600         const FCmpInst *FC = cast<FCmpInst>(Cond);
1601         Condition = getFCmpCondCode(FC->getPredicate());
1602         if (TM.Options.NoNaNsFPMath)
1603           Condition = getFCmpCodeWithoutNaN(Condition);
1604       }
1605 
1606       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1607                    TBB, FBB, CurBB, TProb, FProb);
1608       SwitchCases.push_back(CB);
1609       return;
1610     }
1611   }
1612 
1613   // Create a CaseBlock record representing this branch.
1614   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1615                nullptr, TBB, FBB, CurBB, TProb, FProb);
1616   SwitchCases.push_back(CB);
1617 }
1618 
1619 /// FindMergedConditions - If Cond is an expression like
1620 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1621                                                MachineBasicBlock *TBB,
1622                                                MachineBasicBlock *FBB,
1623                                                MachineBasicBlock *CurBB,
1624                                                MachineBasicBlock *SwitchBB,
1625                                                Instruction::BinaryOps Opc,
1626                                                BranchProbability TProb,
1627                                                BranchProbability FProb) {
1628   // If this node is not part of the or/and tree, emit it as a branch.
1629   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1630   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1631       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1632       BOp->getParent() != CurBB->getBasicBlock() ||
1633       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1634       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1635     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1636                                  TProb, FProb);
1637     return;
1638   }
1639 
1640   //  Create TmpBB after CurBB.
1641   MachineFunction::iterator BBI(CurBB);
1642   MachineFunction &MF = DAG.getMachineFunction();
1643   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1644   CurBB->getParent()->insert(++BBI, TmpBB);
1645 
1646   if (Opc == Instruction::Or) {
1647     // Codegen X | Y as:
1648     // BB1:
1649     //   jmp_if_X TBB
1650     //   jmp TmpBB
1651     // TmpBB:
1652     //   jmp_if_Y TBB
1653     //   jmp FBB
1654     //
1655 
1656     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1657     // The requirement is that
1658     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1659     //     = TrueProb for original BB.
1660     // Assuming the original probabilities are A and B, one choice is to set
1661     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1662     // A/(1+B) and 2B/(1+B). This choice assumes that
1663     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1664     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1665     // TmpBB, but the math is more complicated.
1666 
1667     auto NewTrueProb = TProb / 2;
1668     auto NewFalseProb = TProb / 2 + FProb;
1669     // Emit the LHS condition.
1670     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1671                          NewTrueProb, NewFalseProb);
1672 
1673     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1674     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1675     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1676     // Emit the RHS condition into TmpBB.
1677     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1678                          Probs[0], Probs[1]);
1679   } else {
1680     assert(Opc == Instruction::And && "Unknown merge op!");
1681     // Codegen X & Y as:
1682     // BB1:
1683     //   jmp_if_X TmpBB
1684     //   jmp FBB
1685     // TmpBB:
1686     //   jmp_if_Y TBB
1687     //   jmp FBB
1688     //
1689     //  This requires creation of TmpBB after CurBB.
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1694     //     = FalseProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1697     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1698     // TrueProb for BB1 * FalseProb for TmpBB.
1699 
1700     auto NewTrueProb = TProb + FProb / 2;
1701     auto NewFalseProb = FProb / 2;
1702     // Emit the LHS condition.
1703     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1704                          NewTrueProb, NewFalseProb);
1705 
1706     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1707     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1708     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1709     // Emit the RHS condition into TmpBB.
1710     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1711                          Probs[0], Probs[1]);
1712   }
1713 }
1714 
1715 /// If the set of cases should be emitted as a series of branches, return true.
1716 /// If we should emit this as a bunch of and/or'd together conditions, return
1717 /// false.
1718 bool
1719 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1720   if (Cases.size() != 2) return true;
1721 
1722   // If this is two comparisons of the same values or'd or and'd together, they
1723   // will get folded into a single comparison, so don't emit two blocks.
1724   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1725        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1726       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1727        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1728     return false;
1729   }
1730 
1731   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1732   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1733   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1734       Cases[0].CC == Cases[1].CC &&
1735       isa<Constant>(Cases[0].CmpRHS) &&
1736       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1737     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1738       return false;
1739     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1740       return false;
1741   }
1742 
1743   return true;
1744 }
1745 
1746 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1747   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1748 
1749   // Update machine-CFG edges.
1750   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1751 
1752   if (I.isUnconditional()) {
1753     // Update machine-CFG edges.
1754     BrMBB->addSuccessor(Succ0MBB);
1755 
1756     // If this is not a fall-through branch or optimizations are switched off,
1757     // emit the branch.
1758     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1759       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1760                               MVT::Other, getControlRoot(),
1761                               DAG.getBasicBlock(Succ0MBB)));
1762 
1763     return;
1764   }
1765 
1766   // If this condition is one of the special cases we handle, do special stuff
1767   // now.
1768   const Value *CondVal = I.getCondition();
1769   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1770 
1771   // If this is a series of conditions that are or'd or and'd together, emit
1772   // this as a sequence of branches instead of setcc's with and/or operations.
1773   // As long as jumps are not expensive, this should improve performance.
1774   // For example, instead of something like:
1775   //     cmp A, B
1776   //     C = seteq
1777   //     cmp D, E
1778   //     F = setle
1779   //     or C, F
1780   //     jnz foo
1781   // Emit:
1782   //     cmp A, B
1783   //     je foo
1784   //     cmp D, E
1785   //     jle foo
1786   //
1787   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1788     Instruction::BinaryOps Opcode = BOp->getOpcode();
1789     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1790         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1791         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1792       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1793                            Opcode,
1794                            getEdgeProbability(BrMBB, Succ0MBB),
1795                            getEdgeProbability(BrMBB, Succ1MBB));
1796       // If the compares in later blocks need to use values not currently
1797       // exported from this block, export them now.  This block should always
1798       // be the first entry.
1799       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1800 
1801       // Allow some cases to be rejected.
1802       if (ShouldEmitAsBranches(SwitchCases)) {
1803         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1804           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1805           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1806         }
1807 
1808         // Emit the branch for this block.
1809         visitSwitchCase(SwitchCases[0], BrMBB);
1810         SwitchCases.erase(SwitchCases.begin());
1811         return;
1812       }
1813 
1814       // Okay, we decided not to do this, remove any inserted MBB's and clear
1815       // SwitchCases.
1816       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1817         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1818 
1819       SwitchCases.clear();
1820     }
1821   }
1822 
1823   // Create a CaseBlock record representing this branch.
1824   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1825                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1826 
1827   // Use visitSwitchCase to actually insert the fast branch sequence for this
1828   // cond branch.
1829   visitSwitchCase(CB, BrMBB);
1830 }
1831 
1832 /// visitSwitchCase - Emits the necessary code to represent a single node in
1833 /// the binary search tree resulting from lowering a switch instruction.
1834 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1835                                           MachineBasicBlock *SwitchBB) {
1836   SDValue Cond;
1837   SDValue CondLHS = getValue(CB.CmpLHS);
1838   SDLoc dl = getCurSDLoc();
1839 
1840   // Build the setcc now.
1841   if (!CB.CmpMHS) {
1842     // Fold "(X == true)" to X and "(X == false)" to !X to
1843     // handle common cases produced by branch lowering.
1844     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1845         CB.CC == ISD::SETEQ)
1846       Cond = CondLHS;
1847     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1848              CB.CC == ISD::SETEQ) {
1849       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1850       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1851     } else
1852       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1853   } else {
1854     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1855 
1856     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1857     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1858 
1859     SDValue CmpOp = getValue(CB.CmpMHS);
1860     EVT VT = CmpOp.getValueType();
1861 
1862     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1863       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1864                           ISD::SETLE);
1865     } else {
1866       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1867                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1868       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1869                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1870     }
1871   }
1872 
1873   // Update successor info
1874   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1875   // TrueBB and FalseBB are always different unless the incoming IR is
1876   // degenerate. This only happens when running llc on weird IR.
1877   if (CB.TrueBB != CB.FalseBB)
1878     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1879   SwitchBB->normalizeSuccProbs();
1880 
1881   // If the lhs block is the next block, invert the condition so that we can
1882   // fall through to the lhs instead of the rhs block.
1883   if (CB.TrueBB == NextBlock(SwitchBB)) {
1884     std::swap(CB.TrueBB, CB.FalseBB);
1885     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1886     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1887   }
1888 
1889   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1890                                MVT::Other, getControlRoot(), Cond,
1891                                DAG.getBasicBlock(CB.TrueBB));
1892 
1893   // Insert the false branch. Do this even if it's a fall through branch,
1894   // this makes it easier to do DAG optimizations which require inverting
1895   // the branch condition.
1896   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1897                        DAG.getBasicBlock(CB.FalseBB));
1898 
1899   DAG.setRoot(BrCond);
1900 }
1901 
1902 /// visitJumpTable - Emit JumpTable node in the current MBB
1903 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1904   // Emit the code for the jump table
1905   assert(JT.Reg != -1U && "Should lower JT Header first!");
1906   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1907   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1908                                      JT.Reg, PTy);
1909   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1910   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1911                                     MVT::Other, Index.getValue(1),
1912                                     Table, Index);
1913   DAG.setRoot(BrJumpTable);
1914 }
1915 
1916 /// visitJumpTableHeader - This function emits necessary code to produce index
1917 /// in the JumpTable from switch case.
1918 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1919                                                JumpTableHeader &JTH,
1920                                                MachineBasicBlock *SwitchBB) {
1921   SDLoc dl = getCurSDLoc();
1922 
1923   // Subtract the lowest switch case value from the value being switched on and
1924   // conditional branch to default mbb if the result is greater than the
1925   // difference between smallest and largest cases.
1926   SDValue SwitchOp = getValue(JTH.SValue);
1927   EVT VT = SwitchOp.getValueType();
1928   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1929                             DAG.getConstant(JTH.First, dl, VT));
1930 
1931   // The SDNode we just created, which holds the value being switched on minus
1932   // the smallest case value, needs to be copied to a virtual register so it
1933   // can be used as an index into the jump table in a subsequent basic block.
1934   // This value may be smaller or larger than the target's pointer type, and
1935   // therefore require extension or truncating.
1936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1937   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1938 
1939   unsigned JumpTableReg =
1940       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1941   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1942                                     JumpTableReg, SwitchOp);
1943   JT.Reg = JumpTableReg;
1944 
1945   // Emit the range check for the jump table, and branch to the default block
1946   // for the switch statement if the value being switched on exceeds the largest
1947   // case in the switch.
1948   SDValue CMP = DAG.getSetCC(
1949       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1950                                  Sub.getValueType()),
1951       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1952 
1953   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1954                                MVT::Other, CopyTo, CMP,
1955                                DAG.getBasicBlock(JT.Default));
1956 
1957   // Avoid emitting unnecessary branches to the next block.
1958   if (JT.MBB != NextBlock(SwitchBB))
1959     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1960                          DAG.getBasicBlock(JT.MBB));
1961 
1962   DAG.setRoot(BrCond);
1963 }
1964 
1965 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
1966 /// variable if there exists one.
1967 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
1968                                  SDValue &Chain) {
1969   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1970   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1971   MachineFunction &MF = DAG.getMachineFunction();
1972   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
1973   MachineSDNode *Node =
1974       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
1975   if (Global) {
1976     MachinePointerInfo MPInfo(Global);
1977     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
1978     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1979                  MachineMemOperand::MODereferenceable;
1980     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
1981                                        DAG.getEVTAlignment(PtrTy));
1982     Node->setMemRefs(MemRefs, MemRefs + 1);
1983   }
1984   return SDValue(Node, 0);
1985 }
1986 
1987 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1988 /// tail spliced into a stack protector check success bb.
1989 ///
1990 /// For a high level explanation of how this fits into the stack protector
1991 /// generation see the comment on the declaration of class
1992 /// StackProtectorDescriptor.
1993 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1994                                                   MachineBasicBlock *ParentBB) {
1995 
1996   // First create the loads to the guard/stack slot for the comparison.
1997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1998   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1999 
2000   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2001   int FI = MFI.getStackProtectorIndex();
2002 
2003   SDValue Guard;
2004   SDLoc dl = getCurSDLoc();
2005   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2006   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2007   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2008 
2009   // Generate code to load the content of the guard slot.
2010   SDValue StackSlot = DAG.getLoad(
2011       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2012       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2013       MachineMemOperand::MOVolatile);
2014 
2015   // Retrieve guard check function, nullptr if instrumentation is inlined.
2016   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2017     // The target provides a guard check function to validate the guard value.
2018     // Generate a call to that function with the content of the guard slot as
2019     // argument.
2020     auto *Fn = cast<Function>(GuardCheck);
2021     FunctionType *FnTy = Fn->getFunctionType();
2022     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2023 
2024     TargetLowering::ArgListTy Args;
2025     TargetLowering::ArgListEntry Entry;
2026     Entry.Node = StackSlot;
2027     Entry.Ty = FnTy->getParamType(0);
2028     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2029       Entry.isInReg = true;
2030     Args.push_back(Entry);
2031 
2032     TargetLowering::CallLoweringInfo CLI(DAG);
2033     CLI.setDebugLoc(getCurSDLoc())
2034       .setChain(DAG.getEntryNode())
2035       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2036                  getValue(GuardCheck), std::move(Args));
2037 
2038     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2039     DAG.setRoot(Result.second);
2040     return;
2041   }
2042 
2043   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2044   // Otherwise, emit a volatile load to retrieve the stack guard value.
2045   SDValue Chain = DAG.getEntryNode();
2046   if (TLI.useLoadStackGuardNode()) {
2047     Guard = getLoadStackGuard(DAG, dl, Chain);
2048   } else {
2049     const Value *IRGuard = TLI.getSDagStackGuard(M);
2050     SDValue GuardPtr = getValue(IRGuard);
2051 
2052     Guard =
2053         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2054                     Align, MachineMemOperand::MOVolatile);
2055   }
2056 
2057   // Perform the comparison via a subtract/getsetcc.
2058   EVT VT = Guard.getValueType();
2059   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2060 
2061   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2062                                                         *DAG.getContext(),
2063                                                         Sub.getValueType()),
2064                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2065 
2066   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2067   // branch to failure MBB.
2068   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2069                                MVT::Other, StackSlot.getOperand(0),
2070                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2071   // Otherwise branch to success MBB.
2072   SDValue Br = DAG.getNode(ISD::BR, dl,
2073                            MVT::Other, BrCond,
2074                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2075 
2076   DAG.setRoot(Br);
2077 }
2078 
2079 /// Codegen the failure basic block for a stack protector check.
2080 ///
2081 /// A failure stack protector machine basic block consists simply of a call to
2082 /// __stack_chk_fail().
2083 ///
2084 /// For a high level explanation of how this fits into the stack protector
2085 /// generation see the comment on the declaration of class
2086 /// StackProtectorDescriptor.
2087 void
2088 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2089   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2090   SDValue Chain =
2091       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2092                       None, false, getCurSDLoc(), false, false).second;
2093   DAG.setRoot(Chain);
2094 }
2095 
2096 /// visitBitTestHeader - This function emits necessary code to produce value
2097 /// suitable for "bit tests"
2098 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2099                                              MachineBasicBlock *SwitchBB) {
2100   SDLoc dl = getCurSDLoc();
2101 
2102   // Subtract the minimum value
2103   SDValue SwitchOp = getValue(B.SValue);
2104   EVT VT = SwitchOp.getValueType();
2105   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2106                             DAG.getConstant(B.First, dl, VT));
2107 
2108   // Check range
2109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2110   SDValue RangeCmp = DAG.getSetCC(
2111       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2112                                  Sub.getValueType()),
2113       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2114 
2115   // Determine the type of the test operands.
2116   bool UsePtrType = false;
2117   if (!TLI.isTypeLegal(VT))
2118     UsePtrType = true;
2119   else {
2120     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2121       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2122         // Switch table case range are encoded into series of masks.
2123         // Just use pointer type, it's guaranteed to fit.
2124         UsePtrType = true;
2125         break;
2126       }
2127   }
2128   if (UsePtrType) {
2129     VT = TLI.getPointerTy(DAG.getDataLayout());
2130     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2131   }
2132 
2133   B.RegVT = VT.getSimpleVT();
2134   B.Reg = FuncInfo.CreateReg(B.RegVT);
2135   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2136 
2137   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2138 
2139   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2140   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2141   SwitchBB->normalizeSuccProbs();
2142 
2143   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2144                                 MVT::Other, CopyTo, RangeCmp,
2145                                 DAG.getBasicBlock(B.Default));
2146 
2147   // Avoid emitting unnecessary branches to the next block.
2148   if (MBB != NextBlock(SwitchBB))
2149     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2150                           DAG.getBasicBlock(MBB));
2151 
2152   DAG.setRoot(BrRange);
2153 }
2154 
2155 /// visitBitTestCase - this function produces one "bit test"
2156 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2157                                            MachineBasicBlock* NextMBB,
2158                                            BranchProbability BranchProbToNext,
2159                                            unsigned Reg,
2160                                            BitTestCase &B,
2161                                            MachineBasicBlock *SwitchBB) {
2162   SDLoc dl = getCurSDLoc();
2163   MVT VT = BB.RegVT;
2164   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2165   SDValue Cmp;
2166   unsigned PopCount = countPopulation(B.Mask);
2167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2168   if (PopCount == 1) {
2169     // Testing for a single bit; just compare the shift count with what it
2170     // would need to be to shift a 1 bit in that position.
2171     Cmp = DAG.getSetCC(
2172         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2173         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2174         ISD::SETEQ);
2175   } else if (PopCount == BB.Range) {
2176     // There is only one zero bit in the range, test for it directly.
2177     Cmp = DAG.getSetCC(
2178         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2179         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2180         ISD::SETNE);
2181   } else {
2182     // Make desired shift
2183     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2184                                     DAG.getConstant(1, dl, VT), ShiftOp);
2185 
2186     // Emit bit tests and jumps
2187     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2188                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2189     Cmp = DAG.getSetCC(
2190         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2191         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2192   }
2193 
2194   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2195   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2196   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2197   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2198   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2199   // one as they are relative probabilities (and thus work more like weights),
2200   // and hence we need to normalize them to let the sum of them become one.
2201   SwitchBB->normalizeSuccProbs();
2202 
2203   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2204                               MVT::Other, getControlRoot(),
2205                               Cmp, DAG.getBasicBlock(B.TargetBB));
2206 
2207   // Avoid emitting unnecessary branches to the next block.
2208   if (NextMBB != NextBlock(SwitchBB))
2209     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2210                         DAG.getBasicBlock(NextMBB));
2211 
2212   DAG.setRoot(BrAnd);
2213 }
2214 
2215 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2216   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2217 
2218   // Retrieve successors. Look through artificial IR level blocks like
2219   // catchswitch for successors.
2220   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2221   const BasicBlock *EHPadBB = I.getSuccessor(1);
2222 
2223   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2224   // have to do anything here to lower funclet bundles.
2225   assert(!I.hasOperandBundlesOtherThan(
2226              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2227          "Cannot lower invokes with arbitrary operand bundles yet!");
2228 
2229   const Value *Callee(I.getCalledValue());
2230   const Function *Fn = dyn_cast<Function>(Callee);
2231   if (isa<InlineAsm>(Callee))
2232     visitInlineAsm(&I);
2233   else if (Fn && Fn->isIntrinsic()) {
2234     switch (Fn->getIntrinsicID()) {
2235     default:
2236       llvm_unreachable("Cannot invoke this intrinsic");
2237     case Intrinsic::donothing:
2238       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2239       break;
2240     case Intrinsic::experimental_patchpoint_void:
2241     case Intrinsic::experimental_patchpoint_i64:
2242       visitPatchpoint(&I, EHPadBB);
2243       break;
2244     case Intrinsic::experimental_gc_statepoint:
2245       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2246       break;
2247     }
2248   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2249     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2250     // Eventually we will support lowering the @llvm.experimental.deoptimize
2251     // intrinsic, and right now there are no plans to support other intrinsics
2252     // with deopt state.
2253     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2254   } else {
2255     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2256   }
2257 
2258   // If the value of the invoke is used outside of its defining block, make it
2259   // available as a virtual register.
2260   // We already took care of the exported value for the statepoint instruction
2261   // during call to the LowerStatepoint.
2262   if (!isStatepoint(I)) {
2263     CopyToExportRegsIfNeeded(&I);
2264   }
2265 
2266   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2267   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2268   BranchProbability EHPadBBProb =
2269       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2270           : BranchProbability::getZero();
2271   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2272 
2273   // Update successor info.
2274   addSuccessorWithProb(InvokeMBB, Return);
2275   for (auto &UnwindDest : UnwindDests) {
2276     UnwindDest.first->setIsEHPad();
2277     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2278   }
2279   InvokeMBB->normalizeSuccProbs();
2280 
2281   // Drop into normal successor.
2282   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2283                           MVT::Other, getControlRoot(),
2284                           DAG.getBasicBlock(Return)));
2285 }
2286 
2287 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2288   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2289 }
2290 
2291 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2292   assert(FuncInfo.MBB->isEHPad() &&
2293          "Call to landingpad not in landing pad!");
2294 
2295   MachineBasicBlock *MBB = FuncInfo.MBB;
2296   addLandingPadInfo(LP, *MBB);
2297 
2298   // If there aren't registers to copy the values into (e.g., during SjLj
2299   // exceptions), then don't bother to create these DAG nodes.
2300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2301   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2302   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2303       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2304     return;
2305 
2306   // If landingpad's return type is token type, we don't create DAG nodes
2307   // for its exception pointer and selector value. The extraction of exception
2308   // pointer or selector value from token type landingpads is not currently
2309   // supported.
2310   if (LP.getType()->isTokenTy())
2311     return;
2312 
2313   SmallVector<EVT, 2> ValueVTs;
2314   SDLoc dl = getCurSDLoc();
2315   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2316   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2317 
2318   // Get the two live-in registers as SDValues. The physregs have already been
2319   // copied into virtual registers.
2320   SDValue Ops[2];
2321   if (FuncInfo.ExceptionPointerVirtReg) {
2322     Ops[0] = DAG.getZExtOrTrunc(
2323         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2324                            FuncInfo.ExceptionPointerVirtReg,
2325                            TLI.getPointerTy(DAG.getDataLayout())),
2326         dl, ValueVTs[0]);
2327   } else {
2328     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2329   }
2330   Ops[1] = DAG.getZExtOrTrunc(
2331       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2332                          FuncInfo.ExceptionSelectorVirtReg,
2333                          TLI.getPointerTy(DAG.getDataLayout())),
2334       dl, ValueVTs[1]);
2335 
2336   // Merge into one.
2337   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2338                             DAG.getVTList(ValueVTs), Ops);
2339   setValue(&LP, Res);
2340 }
2341 
2342 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2343 #ifndef NDEBUG
2344   for (const CaseCluster &CC : Clusters)
2345     assert(CC.Low == CC.High && "Input clusters must be single-case");
2346 #endif
2347 
2348   std::sort(Clusters.begin(), Clusters.end(),
2349             [](const CaseCluster &a, const CaseCluster &b) {
2350     return a.Low->getValue().slt(b.Low->getValue());
2351   });
2352 
2353   // Merge adjacent clusters with the same destination.
2354   const unsigned N = Clusters.size();
2355   unsigned DstIndex = 0;
2356   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2357     CaseCluster &CC = Clusters[SrcIndex];
2358     const ConstantInt *CaseVal = CC.Low;
2359     MachineBasicBlock *Succ = CC.MBB;
2360 
2361     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2362         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2363       // If this case has the same successor and is a neighbour, merge it into
2364       // the previous cluster.
2365       Clusters[DstIndex - 1].High = CaseVal;
2366       Clusters[DstIndex - 1].Prob += CC.Prob;
2367     } else {
2368       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2369                    sizeof(Clusters[SrcIndex]));
2370     }
2371   }
2372   Clusters.resize(DstIndex);
2373 }
2374 
2375 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2376                                            MachineBasicBlock *Last) {
2377   // Update JTCases.
2378   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2379     if (JTCases[i].first.HeaderBB == First)
2380       JTCases[i].first.HeaderBB = Last;
2381 
2382   // Update BitTestCases.
2383   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2384     if (BitTestCases[i].Parent == First)
2385       BitTestCases[i].Parent = Last;
2386 }
2387 
2388 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2389   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2390 
2391   // Update machine-CFG edges with unique successors.
2392   SmallSet<BasicBlock*, 32> Done;
2393   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2394     BasicBlock *BB = I.getSuccessor(i);
2395     bool Inserted = Done.insert(BB).second;
2396     if (!Inserted)
2397         continue;
2398 
2399     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2400     addSuccessorWithProb(IndirectBrMBB, Succ);
2401   }
2402   IndirectBrMBB->normalizeSuccProbs();
2403 
2404   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2405                           MVT::Other, getControlRoot(),
2406                           getValue(I.getAddress())));
2407 }
2408 
2409 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2410   if (DAG.getTarget().Options.TrapUnreachable)
2411     DAG.setRoot(
2412         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2413 }
2414 
2415 void SelectionDAGBuilder::visitFSub(const User &I) {
2416   // -0.0 - X --> fneg
2417   Type *Ty = I.getType();
2418   if (isa<Constant>(I.getOperand(0)) &&
2419       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2420     SDValue Op2 = getValue(I.getOperand(1));
2421     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2422                              Op2.getValueType(), Op2));
2423     return;
2424   }
2425 
2426   visitBinary(I, ISD::FSUB);
2427 }
2428 
2429 /// Checks if the given instruction performs a vector reduction, in which case
2430 /// we have the freedom to alter the elements in the result as long as the
2431 /// reduction of them stays unchanged.
2432 static bool isVectorReductionOp(const User *I) {
2433   const Instruction *Inst = dyn_cast<Instruction>(I);
2434   if (!Inst || !Inst->getType()->isVectorTy())
2435     return false;
2436 
2437   auto OpCode = Inst->getOpcode();
2438   switch (OpCode) {
2439   case Instruction::Add:
2440   case Instruction::Mul:
2441   case Instruction::And:
2442   case Instruction::Or:
2443   case Instruction::Xor:
2444     break;
2445   case Instruction::FAdd:
2446   case Instruction::FMul:
2447     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2448       if (FPOp->getFastMathFlags().unsafeAlgebra())
2449         break;
2450     LLVM_FALLTHROUGH;
2451   default:
2452     return false;
2453   }
2454 
2455   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2456   unsigned ElemNumToReduce = ElemNum;
2457 
2458   // Do DFS search on the def-use chain from the given instruction. We only
2459   // allow four kinds of operations during the search until we reach the
2460   // instruction that extracts the first element from the vector:
2461   //
2462   //   1. The reduction operation of the same opcode as the given instruction.
2463   //
2464   //   2. PHI node.
2465   //
2466   //   3. ShuffleVector instruction together with a reduction operation that
2467   //      does a partial reduction.
2468   //
2469   //   4. ExtractElement that extracts the first element from the vector, and we
2470   //      stop searching the def-use chain here.
2471   //
2472   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2473   // from 1-3 to the stack to continue the DFS. The given instruction is not
2474   // a reduction operation if we meet any other instructions other than those
2475   // listed above.
2476 
2477   SmallVector<const User *, 16> UsersToVisit{Inst};
2478   SmallPtrSet<const User *, 16> Visited;
2479   bool ReduxExtracted = false;
2480 
2481   while (!UsersToVisit.empty()) {
2482     auto User = UsersToVisit.back();
2483     UsersToVisit.pop_back();
2484     if (!Visited.insert(User).second)
2485       continue;
2486 
2487     for (const auto &U : User->users()) {
2488       auto Inst = dyn_cast<Instruction>(U);
2489       if (!Inst)
2490         return false;
2491 
2492       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2493         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2494           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2495             return false;
2496         UsersToVisit.push_back(U);
2497       } else if (const ShuffleVectorInst *ShufInst =
2498                      dyn_cast<ShuffleVectorInst>(U)) {
2499         // Detect the following pattern: A ShuffleVector instruction together
2500         // with a reduction that do partial reduction on the first and second
2501         // ElemNumToReduce / 2 elements, and store the result in
2502         // ElemNumToReduce / 2 elements in another vector.
2503 
2504         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2505         if (ResultElements < ElemNum)
2506           return false;
2507 
2508         if (ElemNumToReduce == 1)
2509           return false;
2510         if (!isa<UndefValue>(U->getOperand(1)))
2511           return false;
2512         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2513           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2514             return false;
2515         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2516           if (ShufInst->getMaskValue(i) != -1)
2517             return false;
2518 
2519         // There is only one user of this ShuffleVector instruction, which
2520         // must be a reduction operation.
2521         if (!U->hasOneUse())
2522           return false;
2523 
2524         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2525         if (!U2 || U2->getOpcode() != OpCode)
2526           return false;
2527 
2528         // Check operands of the reduction operation.
2529         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2530             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2531           UsersToVisit.push_back(U2);
2532           ElemNumToReduce /= 2;
2533         } else
2534           return false;
2535       } else if (isa<ExtractElementInst>(U)) {
2536         // At this moment we should have reduced all elements in the vector.
2537         if (ElemNumToReduce != 1)
2538           return false;
2539 
2540         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2541         if (!Val || Val->getZExtValue() != 0)
2542           return false;
2543 
2544         ReduxExtracted = true;
2545       } else
2546         return false;
2547     }
2548   }
2549   return ReduxExtracted;
2550 }
2551 
2552 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2553   SDValue Op1 = getValue(I.getOperand(0));
2554   SDValue Op2 = getValue(I.getOperand(1));
2555 
2556   bool nuw = false;
2557   bool nsw = false;
2558   bool exact = false;
2559   bool vec_redux = false;
2560   FastMathFlags FMF;
2561 
2562   if (const OverflowingBinaryOperator *OFBinOp =
2563           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2564     nuw = OFBinOp->hasNoUnsignedWrap();
2565     nsw = OFBinOp->hasNoSignedWrap();
2566   }
2567   if (const PossiblyExactOperator *ExactOp =
2568           dyn_cast<const PossiblyExactOperator>(&I))
2569     exact = ExactOp->isExact();
2570   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2571     FMF = FPOp->getFastMathFlags();
2572 
2573   if (isVectorReductionOp(&I)) {
2574     vec_redux = true;
2575     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2576   }
2577 
2578   SDNodeFlags Flags;
2579   Flags.setExact(exact);
2580   Flags.setNoSignedWrap(nsw);
2581   Flags.setNoUnsignedWrap(nuw);
2582   Flags.setVectorReduction(vec_redux);
2583   if (EnableFMFInDAG) {
2584     Flags.setAllowReciprocal(FMF.allowReciprocal());
2585     Flags.setNoInfs(FMF.noInfs());
2586     Flags.setNoNaNs(FMF.noNaNs());
2587     Flags.setNoSignedZeros(FMF.noSignedZeros());
2588     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2589   }
2590   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2591                                      Op1, Op2, &Flags);
2592   setValue(&I, BinNodeValue);
2593 }
2594 
2595 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2596   SDValue Op1 = getValue(I.getOperand(0));
2597   SDValue Op2 = getValue(I.getOperand(1));
2598 
2599   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2600       Op2.getValueType(), DAG.getDataLayout());
2601 
2602   // Coerce the shift amount to the right type if we can.
2603   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2604     unsigned ShiftSize = ShiftTy.getSizeInBits();
2605     unsigned Op2Size = Op2.getValueSizeInBits();
2606     SDLoc DL = getCurSDLoc();
2607 
2608     // If the operand is smaller than the shift count type, promote it.
2609     if (ShiftSize > Op2Size)
2610       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2611 
2612     // If the operand is larger than the shift count type but the shift
2613     // count type has enough bits to represent any shift value, truncate
2614     // it now. This is a common case and it exposes the truncate to
2615     // optimization early.
2616     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2617       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2618     // Otherwise we'll need to temporarily settle for some other convenient
2619     // type.  Type legalization will make adjustments once the shiftee is split.
2620     else
2621       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2622   }
2623 
2624   bool nuw = false;
2625   bool nsw = false;
2626   bool exact = false;
2627 
2628   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2629 
2630     if (const OverflowingBinaryOperator *OFBinOp =
2631             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2632       nuw = OFBinOp->hasNoUnsignedWrap();
2633       nsw = OFBinOp->hasNoSignedWrap();
2634     }
2635     if (const PossiblyExactOperator *ExactOp =
2636             dyn_cast<const PossiblyExactOperator>(&I))
2637       exact = ExactOp->isExact();
2638   }
2639   SDNodeFlags Flags;
2640   Flags.setExact(exact);
2641   Flags.setNoSignedWrap(nsw);
2642   Flags.setNoUnsignedWrap(nuw);
2643   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2644                             &Flags);
2645   setValue(&I, Res);
2646 }
2647 
2648 void SelectionDAGBuilder::visitSDiv(const User &I) {
2649   SDValue Op1 = getValue(I.getOperand(0));
2650   SDValue Op2 = getValue(I.getOperand(1));
2651 
2652   SDNodeFlags Flags;
2653   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2654                  cast<PossiblyExactOperator>(&I)->isExact());
2655   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2656                            Op2, &Flags));
2657 }
2658 
2659 void SelectionDAGBuilder::visitICmp(const User &I) {
2660   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2661   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2662     predicate = IC->getPredicate();
2663   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2664     predicate = ICmpInst::Predicate(IC->getPredicate());
2665   SDValue Op1 = getValue(I.getOperand(0));
2666   SDValue Op2 = getValue(I.getOperand(1));
2667   ISD::CondCode Opcode = getICmpCondCode(predicate);
2668 
2669   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2670                                                         I.getType());
2671   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2672 }
2673 
2674 void SelectionDAGBuilder::visitFCmp(const User &I) {
2675   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2676   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2677     predicate = FC->getPredicate();
2678   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2679     predicate = FCmpInst::Predicate(FC->getPredicate());
2680   SDValue Op1 = getValue(I.getOperand(0));
2681   SDValue Op2 = getValue(I.getOperand(1));
2682   ISD::CondCode Condition = getFCmpCondCode(predicate);
2683 
2684   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2685   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2686   // further optimization, but currently FMF is only applicable to binary nodes.
2687   if (TM.Options.NoNaNsFPMath)
2688     Condition = getFCmpCodeWithoutNaN(Condition);
2689   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2690                                                         I.getType());
2691   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2692 }
2693 
2694 // Check if the condition of the select has one use or two users that are both
2695 // selects with the same condition.
2696 static bool hasOnlySelectUsers(const Value *Cond) {
2697   return all_of(Cond->users(), [](const Value *V) {
2698     return isa<SelectInst>(V);
2699   });
2700 }
2701 
2702 void SelectionDAGBuilder::visitSelect(const User &I) {
2703   SmallVector<EVT, 4> ValueVTs;
2704   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2705                   ValueVTs);
2706   unsigned NumValues = ValueVTs.size();
2707   if (NumValues == 0) return;
2708 
2709   SmallVector<SDValue, 4> Values(NumValues);
2710   SDValue Cond     = getValue(I.getOperand(0));
2711   SDValue LHSVal   = getValue(I.getOperand(1));
2712   SDValue RHSVal   = getValue(I.getOperand(2));
2713   auto BaseOps = {Cond};
2714   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2715     ISD::VSELECT : ISD::SELECT;
2716 
2717   // Min/max matching is only viable if all output VTs are the same.
2718   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2719     EVT VT = ValueVTs[0];
2720     LLVMContext &Ctx = *DAG.getContext();
2721     auto &TLI = DAG.getTargetLoweringInfo();
2722 
2723     // We care about the legality of the operation after it has been type
2724     // legalized.
2725     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2726            VT != TLI.getTypeToTransformTo(Ctx, VT))
2727       VT = TLI.getTypeToTransformTo(Ctx, VT);
2728 
2729     // If the vselect is legal, assume we want to leave this as a vector setcc +
2730     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2731     // min/max is legal on the scalar type.
2732     bool UseScalarMinMax = VT.isVector() &&
2733       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2734 
2735     Value *LHS, *RHS;
2736     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2737     ISD::NodeType Opc = ISD::DELETED_NODE;
2738     switch (SPR.Flavor) {
2739     case SPF_UMAX:    Opc = ISD::UMAX; break;
2740     case SPF_UMIN:    Opc = ISD::UMIN; break;
2741     case SPF_SMAX:    Opc = ISD::SMAX; break;
2742     case SPF_SMIN:    Opc = ISD::SMIN; break;
2743     case SPF_FMINNUM:
2744       switch (SPR.NaNBehavior) {
2745       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2746       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2747       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2748       case SPNB_RETURNS_ANY: {
2749         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2750           Opc = ISD::FMINNUM;
2751         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2752           Opc = ISD::FMINNAN;
2753         else if (UseScalarMinMax)
2754           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2755             ISD::FMINNUM : ISD::FMINNAN;
2756         break;
2757       }
2758       }
2759       break;
2760     case SPF_FMAXNUM:
2761       switch (SPR.NaNBehavior) {
2762       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2763       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2764       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2765       case SPNB_RETURNS_ANY:
2766 
2767         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2768           Opc = ISD::FMAXNUM;
2769         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2770           Opc = ISD::FMAXNAN;
2771         else if (UseScalarMinMax)
2772           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2773             ISD::FMAXNUM : ISD::FMAXNAN;
2774         break;
2775       }
2776       break;
2777     default: break;
2778     }
2779 
2780     if (Opc != ISD::DELETED_NODE &&
2781         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2782          (UseScalarMinMax &&
2783           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2784         // If the underlying comparison instruction is used by any other
2785         // instruction, the consumed instructions won't be destroyed, so it is
2786         // not profitable to convert to a min/max.
2787         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2788       OpCode = Opc;
2789       LHSVal = getValue(LHS);
2790       RHSVal = getValue(RHS);
2791       BaseOps = {};
2792     }
2793   }
2794 
2795   for (unsigned i = 0; i != NumValues; ++i) {
2796     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2797     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2798     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2799     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2800                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2801                             Ops);
2802   }
2803 
2804   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2805                            DAG.getVTList(ValueVTs), Values));
2806 }
2807 
2808 void SelectionDAGBuilder::visitTrunc(const User &I) {
2809   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2810   SDValue N = getValue(I.getOperand(0));
2811   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2812                                                         I.getType());
2813   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2814 }
2815 
2816 void SelectionDAGBuilder::visitZExt(const User &I) {
2817   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2818   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2819   SDValue N = getValue(I.getOperand(0));
2820   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2821                                                         I.getType());
2822   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2823 }
2824 
2825 void SelectionDAGBuilder::visitSExt(const User &I) {
2826   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2827   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2828   SDValue N = getValue(I.getOperand(0));
2829   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2830                                                         I.getType());
2831   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2832 }
2833 
2834 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2835   // FPTrunc is never a no-op cast, no need to check
2836   SDValue N = getValue(I.getOperand(0));
2837   SDLoc dl = getCurSDLoc();
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2840   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2841                            DAG.getTargetConstant(
2842                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2843 }
2844 
2845 void SelectionDAGBuilder::visitFPExt(const User &I) {
2846   // FPExt is never a no-op cast, no need to check
2847   SDValue N = getValue(I.getOperand(0));
2848   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2849                                                         I.getType());
2850   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2851 }
2852 
2853 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2854   // FPToUI is never a no-op cast, no need to check
2855   SDValue N = getValue(I.getOperand(0));
2856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2857                                                         I.getType());
2858   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2859 }
2860 
2861 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2862   // FPToSI is never a no-op cast, no need to check
2863   SDValue N = getValue(I.getOperand(0));
2864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2865                                                         I.getType());
2866   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2867 }
2868 
2869 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2870   // UIToFP is never a no-op cast, no need to check
2871   SDValue N = getValue(I.getOperand(0));
2872   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2873                                                         I.getType());
2874   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2875 }
2876 
2877 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2878   // SIToFP is never a no-op cast, no need to check
2879   SDValue N = getValue(I.getOperand(0));
2880   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2881                                                         I.getType());
2882   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2883 }
2884 
2885 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2886   // What to do depends on the size of the integer and the size of the pointer.
2887   // We can either truncate, zero extend, or no-op, accordingly.
2888   SDValue N = getValue(I.getOperand(0));
2889   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2890                                                         I.getType());
2891   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2892 }
2893 
2894 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2895   // What to do depends on the size of the integer and the size of the pointer.
2896   // We can either truncate, zero extend, or no-op, accordingly.
2897   SDValue N = getValue(I.getOperand(0));
2898   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2899                                                         I.getType());
2900   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2901 }
2902 
2903 void SelectionDAGBuilder::visitBitCast(const User &I) {
2904   SDValue N = getValue(I.getOperand(0));
2905   SDLoc dl = getCurSDLoc();
2906   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2907                                                         I.getType());
2908 
2909   // BitCast assures us that source and destination are the same size so this is
2910   // either a BITCAST or a no-op.
2911   if (DestVT != N.getValueType())
2912     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2913                              DestVT, N)); // convert types.
2914   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2915   // might fold any kind of constant expression to an integer constant and that
2916   // is not what we are looking for. Only regcognize a bitcast of a genuine
2917   // constant integer as an opaque constant.
2918   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2919     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2920                                  /*isOpaque*/true));
2921   else
2922     setValue(&I, N);            // noop cast.
2923 }
2924 
2925 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2926   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2927   const Value *SV = I.getOperand(0);
2928   SDValue N = getValue(SV);
2929   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2930 
2931   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2932   unsigned DestAS = I.getType()->getPointerAddressSpace();
2933 
2934   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2935     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2936 
2937   setValue(&I, N);
2938 }
2939 
2940 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2942   SDValue InVec = getValue(I.getOperand(0));
2943   SDValue InVal = getValue(I.getOperand(1));
2944   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2945                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2946   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2947                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2948                            InVec, InVal, InIdx));
2949 }
2950 
2951 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2953   SDValue InVec = getValue(I.getOperand(0));
2954   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2955                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2956   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2957                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2958                            InVec, InIdx));
2959 }
2960 
2961 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2962   SDValue Src1 = getValue(I.getOperand(0));
2963   SDValue Src2 = getValue(I.getOperand(1));
2964   SDLoc DL = getCurSDLoc();
2965 
2966   SmallVector<int, 8> Mask;
2967   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2968   unsigned MaskNumElts = Mask.size();
2969 
2970   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2971   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2972   EVT SrcVT = Src1.getValueType();
2973   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2974 
2975   if (SrcNumElts == MaskNumElts) {
2976     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
2977     return;
2978   }
2979 
2980   // Normalize the shuffle vector since mask and vector length don't match.
2981   if (SrcNumElts < MaskNumElts) {
2982     // Mask is longer than the source vectors. We can use concatenate vector to
2983     // make the mask and vectors lengths match.
2984 
2985     if (MaskNumElts % SrcNumElts == 0) {
2986       // Mask length is a multiple of the source vector length.
2987       // Check if the shuffle is some kind of concatenation of the input
2988       // vectors.
2989       unsigned NumConcat = MaskNumElts / SrcNumElts;
2990       bool IsConcat = true;
2991       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
2992       for (unsigned i = 0; i != MaskNumElts; ++i) {
2993         int Idx = Mask[i];
2994         if (Idx < 0)
2995           continue;
2996         // Ensure the indices in each SrcVT sized piece are sequential and that
2997         // the same source is used for the whole piece.
2998         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
2999             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3000              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3001           IsConcat = false;
3002           break;
3003         }
3004         // Remember which source this index came from.
3005         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3006       }
3007 
3008       // The shuffle is concatenating multiple vectors together. Just emit
3009       // a CONCAT_VECTORS operation.
3010       if (IsConcat) {
3011         SmallVector<SDValue, 8> ConcatOps;
3012         for (auto Src : ConcatSrcs) {
3013           if (Src < 0)
3014             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3015           else if (Src == 0)
3016             ConcatOps.push_back(Src1);
3017           else
3018             ConcatOps.push_back(Src2);
3019         }
3020         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3021         return;
3022       }
3023     }
3024 
3025     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3026     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3027     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3028                                     PaddedMaskNumElts);
3029 
3030     // Pad both vectors with undefs to make them the same length as the mask.
3031     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3032 
3033     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3034     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3035     MOps1[0] = Src1;
3036     MOps2[0] = Src2;
3037 
3038     Src1 = Src1.isUndef()
3039                ? DAG.getUNDEF(PaddedVT)
3040                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3041     Src2 = Src2.isUndef()
3042                ? DAG.getUNDEF(PaddedVT)
3043                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3044 
3045     // Readjust mask for new input vector length.
3046     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3047     for (unsigned i = 0; i != MaskNumElts; ++i) {
3048       int Idx = Mask[i];
3049       if (Idx >= (int)SrcNumElts)
3050         Idx -= SrcNumElts - PaddedMaskNumElts;
3051       MappedOps[i] = Idx;
3052     }
3053 
3054     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3055 
3056     // If the concatenated vector was padded, extract a subvector with the
3057     // correct number of elements.
3058     if (MaskNumElts != PaddedMaskNumElts)
3059       Result = DAG.getNode(
3060           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3061           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3062 
3063     setValue(&I, Result);
3064     return;
3065   }
3066 
3067   if (SrcNumElts > MaskNumElts) {
3068     // Analyze the access pattern of the vector to see if we can extract
3069     // two subvectors and do the shuffle. The analysis is done by calculating
3070     // the range of elements the mask access on both vectors.
3071     int MinRange[2] = { static_cast<int>(SrcNumElts),
3072                         static_cast<int>(SrcNumElts)};
3073     int MaxRange[2] = {-1, -1};
3074 
3075     for (unsigned i = 0; i != MaskNumElts; ++i) {
3076       int Idx = Mask[i];
3077       unsigned Input = 0;
3078       if (Idx < 0)
3079         continue;
3080 
3081       if (Idx >= (int)SrcNumElts) {
3082         Input = 1;
3083         Idx -= SrcNumElts;
3084       }
3085       if (Idx > MaxRange[Input])
3086         MaxRange[Input] = Idx;
3087       if (Idx < MinRange[Input])
3088         MinRange[Input] = Idx;
3089     }
3090 
3091     // Check if the access is smaller than the vector size and can we find
3092     // a reasonable extract index.
3093     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3094                                    // Extract.
3095     int StartIdx[2];  // StartIdx to extract from
3096     for (unsigned Input = 0; Input < 2; ++Input) {
3097       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3098         RangeUse[Input] = 0; // Unused
3099         StartIdx[Input] = 0;
3100         continue;
3101       }
3102 
3103       // Find a good start index that is a multiple of the mask length. Then
3104       // see if the rest of the elements are in range.
3105       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3106       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3107           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3108         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3109     }
3110 
3111     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3112       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3113       return;
3114     }
3115     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3116       // Extract appropriate subvector and generate a vector shuffle
3117       for (unsigned Input = 0; Input < 2; ++Input) {
3118         SDValue &Src = Input == 0 ? Src1 : Src2;
3119         if (RangeUse[Input] == 0)
3120           Src = DAG.getUNDEF(VT);
3121         else {
3122           Src = DAG.getNode(
3123               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3124               DAG.getConstant(StartIdx[Input], DL,
3125                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3126         }
3127       }
3128 
3129       // Calculate new mask.
3130       SmallVector<int, 8> MappedOps;
3131       for (unsigned i = 0; i != MaskNumElts; ++i) {
3132         int Idx = Mask[i];
3133         if (Idx >= 0) {
3134           if (Idx < (int)SrcNumElts)
3135             Idx -= StartIdx[0];
3136           else
3137             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3138         }
3139         MappedOps.push_back(Idx);
3140       }
3141 
3142       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3143       return;
3144     }
3145   }
3146 
3147   // We can't use either concat vectors or extract subvectors so fall back to
3148   // replacing the shuffle with extract and build vector.
3149   // to insert and build vector.
3150   EVT EltVT = VT.getVectorElementType();
3151   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3152   SmallVector<SDValue,8> Ops;
3153   for (unsigned i = 0; i != MaskNumElts; ++i) {
3154     int Idx = Mask[i];
3155     SDValue Res;
3156 
3157     if (Idx < 0) {
3158       Res = DAG.getUNDEF(EltVT);
3159     } else {
3160       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3161       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3162 
3163       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3164                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3165     }
3166 
3167     Ops.push_back(Res);
3168   }
3169 
3170   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3171 }
3172 
3173 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3174   const Value *Op0 = I.getOperand(0);
3175   const Value *Op1 = I.getOperand(1);
3176   Type *AggTy = I.getType();
3177   Type *ValTy = Op1->getType();
3178   bool IntoUndef = isa<UndefValue>(Op0);
3179   bool FromUndef = isa<UndefValue>(Op1);
3180 
3181   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3182 
3183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3184   SmallVector<EVT, 4> AggValueVTs;
3185   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3186   SmallVector<EVT, 4> ValValueVTs;
3187   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3188 
3189   unsigned NumAggValues = AggValueVTs.size();
3190   unsigned NumValValues = ValValueVTs.size();
3191   SmallVector<SDValue, 4> Values(NumAggValues);
3192 
3193   // Ignore an insertvalue that produces an empty object
3194   if (!NumAggValues) {
3195     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3196     return;
3197   }
3198 
3199   SDValue Agg = getValue(Op0);
3200   unsigned i = 0;
3201   // Copy the beginning value(s) from the original aggregate.
3202   for (; i != LinearIndex; ++i)
3203     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3204                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3205   // Copy values from the inserted value(s).
3206   if (NumValValues) {
3207     SDValue Val = getValue(Op1);
3208     for (; i != LinearIndex + NumValValues; ++i)
3209       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3210                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3211   }
3212   // Copy remaining value(s) from the original aggregate.
3213   for (; i != NumAggValues; ++i)
3214     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3215                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3216 
3217   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3218                            DAG.getVTList(AggValueVTs), Values));
3219 }
3220 
3221 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3222   const Value *Op0 = I.getOperand(0);
3223   Type *AggTy = Op0->getType();
3224   Type *ValTy = I.getType();
3225   bool OutOfUndef = isa<UndefValue>(Op0);
3226 
3227   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3228 
3229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3230   SmallVector<EVT, 4> ValValueVTs;
3231   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3232 
3233   unsigned NumValValues = ValValueVTs.size();
3234 
3235   // Ignore a extractvalue that produces an empty object
3236   if (!NumValValues) {
3237     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3238     return;
3239   }
3240 
3241   SmallVector<SDValue, 4> Values(NumValValues);
3242 
3243   SDValue Agg = getValue(Op0);
3244   // Copy out the selected value(s).
3245   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3246     Values[i - LinearIndex] =
3247       OutOfUndef ?
3248         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3249         SDValue(Agg.getNode(), Agg.getResNo() + i);
3250 
3251   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3252                            DAG.getVTList(ValValueVTs), Values));
3253 }
3254 
3255 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3256   Value *Op0 = I.getOperand(0);
3257   // Note that the pointer operand may be a vector of pointers. Take the scalar
3258   // element which holds a pointer.
3259   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3260   SDValue N = getValue(Op0);
3261   SDLoc dl = getCurSDLoc();
3262 
3263   // Normalize Vector GEP - all scalar operands should be converted to the
3264   // splat vector.
3265   unsigned VectorWidth = I.getType()->isVectorTy() ?
3266     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3267 
3268   if (VectorWidth && !N.getValueType().isVector()) {
3269     LLVMContext &Context = *DAG.getContext();
3270     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3271     N = DAG.getSplatBuildVector(VT, dl, N);
3272   }
3273 
3274   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3275        GTI != E; ++GTI) {
3276     const Value *Idx = GTI.getOperand();
3277     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3278       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3279       if (Field) {
3280         // N = N + Offset
3281         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3282 
3283         // In an inbouds GEP with an offset that is nonnegative even when
3284         // interpreted as signed, assume there is no unsigned overflow.
3285         SDNodeFlags Flags;
3286         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3287           Flags.setNoUnsignedWrap(true);
3288 
3289         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3290                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3291       }
3292     } else {
3293       MVT PtrTy =
3294           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3295       unsigned PtrSize = PtrTy.getSizeInBits();
3296       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3297 
3298       // If this is a scalar constant or a splat vector of constants,
3299       // handle it quickly.
3300       const auto *CI = dyn_cast<ConstantInt>(Idx);
3301       if (!CI && isa<ConstantDataVector>(Idx) &&
3302           cast<ConstantDataVector>(Idx)->getSplatValue())
3303         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3304 
3305       if (CI) {
3306         if (CI->isZero())
3307           continue;
3308         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3309         LLVMContext &Context = *DAG.getContext();
3310         SDValue OffsVal = VectorWidth ?
3311           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3312           DAG.getConstant(Offs, dl, PtrTy);
3313 
3314         // In an inbouds GEP with an offset that is nonnegative even when
3315         // interpreted as signed, assume there is no unsigned overflow.
3316         SDNodeFlags Flags;
3317         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3318           Flags.setNoUnsignedWrap(true);
3319 
3320         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3321         continue;
3322       }
3323 
3324       // N = N + Idx * ElementSize;
3325       SDValue IdxN = getValue(Idx);
3326 
3327       if (!IdxN.getValueType().isVector() && VectorWidth) {
3328         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3329         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3330       }
3331 
3332       // If the index is smaller or larger than intptr_t, truncate or extend
3333       // it.
3334       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3335 
3336       // If this is a multiply by a power of two, turn it into a shl
3337       // immediately.  This is a very common case.
3338       if (ElementSize != 1) {
3339         if (ElementSize.isPowerOf2()) {
3340           unsigned Amt = ElementSize.logBase2();
3341           IdxN = DAG.getNode(ISD::SHL, dl,
3342                              N.getValueType(), IdxN,
3343                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3344         } else {
3345           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3346           IdxN = DAG.getNode(ISD::MUL, dl,
3347                              N.getValueType(), IdxN, Scale);
3348         }
3349       }
3350 
3351       N = DAG.getNode(ISD::ADD, dl,
3352                       N.getValueType(), N, IdxN);
3353     }
3354   }
3355 
3356   setValue(&I, N);
3357 }
3358 
3359 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3360   // If this is a fixed sized alloca in the entry block of the function,
3361   // allocate it statically on the stack.
3362   if (FuncInfo.StaticAllocaMap.count(&I))
3363     return;   // getValue will auto-populate this.
3364 
3365   SDLoc dl = getCurSDLoc();
3366   Type *Ty = I.getAllocatedType();
3367   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3368   auto &DL = DAG.getDataLayout();
3369   uint64_t TySize = DL.getTypeAllocSize(Ty);
3370   unsigned Align =
3371       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3372 
3373   SDValue AllocSize = getValue(I.getArraySize());
3374 
3375   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3376   if (AllocSize.getValueType() != IntPtr)
3377     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3378 
3379   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3380                           AllocSize,
3381                           DAG.getConstant(TySize, dl, IntPtr));
3382 
3383   // Handle alignment.  If the requested alignment is less than or equal to
3384   // the stack alignment, ignore it.  If the size is greater than or equal to
3385   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3386   unsigned StackAlign =
3387       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3388   if (Align <= StackAlign)
3389     Align = 0;
3390 
3391   // Round the size of the allocation up to the stack alignment size
3392   // by add SA-1 to the size. This doesn't overflow because we're computing
3393   // an address inside an alloca.
3394   SDNodeFlags Flags;
3395   Flags.setNoUnsignedWrap(true);
3396   AllocSize = DAG.getNode(ISD::ADD, dl,
3397                           AllocSize.getValueType(), AllocSize,
3398                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3399 
3400   // Mask out the low bits for alignment purposes.
3401   AllocSize = DAG.getNode(ISD::AND, dl,
3402                           AllocSize.getValueType(), AllocSize,
3403                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3404                                                 dl));
3405 
3406   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3407   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3408   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3409   setValue(&I, DSA);
3410   DAG.setRoot(DSA.getValue(1));
3411 
3412   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3413 }
3414 
3415 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3416   if (I.isAtomic())
3417     return visitAtomicLoad(I);
3418 
3419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420   const Value *SV = I.getOperand(0);
3421   if (TLI.supportSwiftError()) {
3422     // Swifterror values can come from either a function parameter with
3423     // swifterror attribute or an alloca with swifterror attribute.
3424     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3425       if (Arg->hasSwiftErrorAttr())
3426         return visitLoadFromSwiftError(I);
3427     }
3428 
3429     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3430       if (Alloca->isSwiftError())
3431         return visitLoadFromSwiftError(I);
3432     }
3433   }
3434 
3435   SDValue Ptr = getValue(SV);
3436 
3437   Type *Ty = I.getType();
3438 
3439   bool isVolatile = I.isVolatile();
3440   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3441   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3442   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3443   unsigned Alignment = I.getAlignment();
3444 
3445   AAMDNodes AAInfo;
3446   I.getAAMetadata(AAInfo);
3447   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3448 
3449   SmallVector<EVT, 4> ValueVTs;
3450   SmallVector<uint64_t, 4> Offsets;
3451   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3452   unsigned NumValues = ValueVTs.size();
3453   if (NumValues == 0)
3454     return;
3455 
3456   SDValue Root;
3457   bool ConstantMemory = false;
3458   if (isVolatile || NumValues > MaxParallelChains)
3459     // Serialize volatile loads with other side effects.
3460     Root = getRoot();
3461   else if (AA->pointsToConstantMemory(MemoryLocation(
3462                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3463     // Do not serialize (non-volatile) loads of constant memory with anything.
3464     Root = DAG.getEntryNode();
3465     ConstantMemory = true;
3466   } else {
3467     // Do not serialize non-volatile loads against each other.
3468     Root = DAG.getRoot();
3469   }
3470 
3471   SDLoc dl = getCurSDLoc();
3472 
3473   if (isVolatile)
3474     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3475 
3476   // An aggregate load cannot wrap around the address space, so offsets to its
3477   // parts don't wrap either.
3478   SDNodeFlags Flags;
3479   Flags.setNoUnsignedWrap(true);
3480 
3481   SmallVector<SDValue, 4> Values(NumValues);
3482   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3483   EVT PtrVT = Ptr.getValueType();
3484   unsigned ChainI = 0;
3485   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3486     // Serializing loads here may result in excessive register pressure, and
3487     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3488     // could recover a bit by hoisting nodes upward in the chain by recognizing
3489     // they are side-effect free or do not alias. The optimizer should really
3490     // avoid this case by converting large object/array copies to llvm.memcpy
3491     // (MaxParallelChains should always remain as failsafe).
3492     if (ChainI == MaxParallelChains) {
3493       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3494       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3495                                   makeArrayRef(Chains.data(), ChainI));
3496       Root = Chain;
3497       ChainI = 0;
3498     }
3499     SDValue A = DAG.getNode(ISD::ADD, dl,
3500                             PtrVT, Ptr,
3501                             DAG.getConstant(Offsets[i], dl, PtrVT),
3502                             &Flags);
3503     auto MMOFlags = MachineMemOperand::MONone;
3504     if (isVolatile)
3505       MMOFlags |= MachineMemOperand::MOVolatile;
3506     if (isNonTemporal)
3507       MMOFlags |= MachineMemOperand::MONonTemporal;
3508     if (isInvariant)
3509       MMOFlags |= MachineMemOperand::MOInvariant;
3510     if (isDereferenceable)
3511       MMOFlags |= MachineMemOperand::MODereferenceable;
3512 
3513     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3514                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3515                             MMOFlags, AAInfo, Ranges);
3516 
3517     Values[i] = L;
3518     Chains[ChainI] = L.getValue(1);
3519   }
3520 
3521   if (!ConstantMemory) {
3522     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3523                                 makeArrayRef(Chains.data(), ChainI));
3524     if (isVolatile)
3525       DAG.setRoot(Chain);
3526     else
3527       PendingLoads.push_back(Chain);
3528   }
3529 
3530   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3531                            DAG.getVTList(ValueVTs), Values));
3532 }
3533 
3534 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3536   assert(TLI.supportSwiftError() &&
3537          "call visitStoreToSwiftError when backend supports swifterror");
3538 
3539   SmallVector<EVT, 4> ValueVTs;
3540   SmallVector<uint64_t, 4> Offsets;
3541   const Value *SrcV = I.getOperand(0);
3542   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3543                   SrcV->getType(), ValueVTs, &Offsets);
3544   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3545          "expect a single EVT for swifterror");
3546 
3547   SDValue Src = getValue(SrcV);
3548   // Create a virtual register, then update the virtual register.
3549   auto &DL = DAG.getDataLayout();
3550   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3551   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3552   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3553   // Chain can be getRoot or getControlRoot.
3554   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3555                                       SDValue(Src.getNode(), Src.getResNo()));
3556   DAG.setRoot(CopyNode);
3557   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3558 }
3559 
3560 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3561   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3562          "call visitLoadFromSwiftError when backend supports swifterror");
3563 
3564   assert(!I.isVolatile() &&
3565          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3566          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3567          "Support volatile, non temporal, invariant for load_from_swift_error");
3568 
3569   const Value *SV = I.getOperand(0);
3570   Type *Ty = I.getType();
3571   AAMDNodes AAInfo;
3572   I.getAAMetadata(AAInfo);
3573   assert(!AA->pointsToConstantMemory(MemoryLocation(
3574              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3575          "load_from_swift_error should not be constant memory");
3576 
3577   SmallVector<EVT, 4> ValueVTs;
3578   SmallVector<uint64_t, 4> Offsets;
3579   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3580                   ValueVTs, &Offsets);
3581   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3582          "expect a single EVT for swifterror");
3583 
3584   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3585   SDValue L = DAG.getCopyFromReg(
3586       getRoot(), getCurSDLoc(),
3587       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3588 
3589   setValue(&I, L);
3590 }
3591 
3592 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3593   if (I.isAtomic())
3594     return visitAtomicStore(I);
3595 
3596   const Value *SrcV = I.getOperand(0);
3597   const Value *PtrV = I.getOperand(1);
3598 
3599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3600   if (TLI.supportSwiftError()) {
3601     // Swifterror values can come from either a function parameter with
3602     // swifterror attribute or an alloca with swifterror attribute.
3603     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3604       if (Arg->hasSwiftErrorAttr())
3605         return visitStoreToSwiftError(I);
3606     }
3607 
3608     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3609       if (Alloca->isSwiftError())
3610         return visitStoreToSwiftError(I);
3611     }
3612   }
3613 
3614   SmallVector<EVT, 4> ValueVTs;
3615   SmallVector<uint64_t, 4> Offsets;
3616   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3617                   SrcV->getType(), ValueVTs, &Offsets);
3618   unsigned NumValues = ValueVTs.size();
3619   if (NumValues == 0)
3620     return;
3621 
3622   // Get the lowered operands. Note that we do this after
3623   // checking if NumResults is zero, because with zero results
3624   // the operands won't have values in the map.
3625   SDValue Src = getValue(SrcV);
3626   SDValue Ptr = getValue(PtrV);
3627 
3628   SDValue Root = getRoot();
3629   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3630   SDLoc dl = getCurSDLoc();
3631   EVT PtrVT = Ptr.getValueType();
3632   unsigned Alignment = I.getAlignment();
3633   AAMDNodes AAInfo;
3634   I.getAAMetadata(AAInfo);
3635 
3636   auto MMOFlags = MachineMemOperand::MONone;
3637   if (I.isVolatile())
3638     MMOFlags |= MachineMemOperand::MOVolatile;
3639   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3640     MMOFlags |= MachineMemOperand::MONonTemporal;
3641 
3642   // An aggregate load cannot wrap around the address space, so offsets to its
3643   // parts don't wrap either.
3644   SDNodeFlags Flags;
3645   Flags.setNoUnsignedWrap(true);
3646 
3647   unsigned ChainI = 0;
3648   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3649     // See visitLoad comments.
3650     if (ChainI == MaxParallelChains) {
3651       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3652                                   makeArrayRef(Chains.data(), ChainI));
3653       Root = Chain;
3654       ChainI = 0;
3655     }
3656     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3657                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3658     SDValue St = DAG.getStore(
3659         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3660         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3661     Chains[ChainI] = St;
3662   }
3663 
3664   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3665                                   makeArrayRef(Chains.data(), ChainI));
3666   DAG.setRoot(StoreNode);
3667 }
3668 
3669 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3670                                            bool IsCompressing) {
3671   SDLoc sdl = getCurSDLoc();
3672 
3673   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3674                            unsigned& Alignment) {
3675     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3676     Src0 = I.getArgOperand(0);
3677     Ptr = I.getArgOperand(1);
3678     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3679     Mask = I.getArgOperand(3);
3680   };
3681   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3682                            unsigned& Alignment) {
3683     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3684     Src0 = I.getArgOperand(0);
3685     Ptr = I.getArgOperand(1);
3686     Mask = I.getArgOperand(2);
3687     Alignment = 0;
3688   };
3689 
3690   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3691   unsigned Alignment;
3692   if (IsCompressing)
3693     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3694   else
3695     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3696 
3697   SDValue Ptr = getValue(PtrOperand);
3698   SDValue Src0 = getValue(Src0Operand);
3699   SDValue Mask = getValue(MaskOperand);
3700 
3701   EVT VT = Src0.getValueType();
3702   if (!Alignment)
3703     Alignment = DAG.getEVTAlignment(VT);
3704 
3705   AAMDNodes AAInfo;
3706   I.getAAMetadata(AAInfo);
3707 
3708   MachineMemOperand *MMO =
3709     DAG.getMachineFunction().
3710     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3711                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3712                           Alignment, AAInfo);
3713   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3714                                          MMO, false /* Truncating */,
3715                                          IsCompressing);
3716   DAG.setRoot(StoreNode);
3717   setValue(&I, StoreNode);
3718 }
3719 
3720 // Get a uniform base for the Gather/Scatter intrinsic.
3721 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3722 // We try to represent it as a base pointer + vector of indices.
3723 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3724 // The first operand of the GEP may be a single pointer or a vector of pointers
3725 // Example:
3726 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3727 //  or
3728 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3729 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3730 //
3731 // When the first GEP operand is a single pointer - it is the uniform base we
3732 // are looking for. If first operand of the GEP is a splat vector - we
3733 // extract the spalt value and use it as a uniform base.
3734 // In all other cases the function returns 'false'.
3735 //
3736 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3737                            SelectionDAGBuilder* SDB) {
3738 
3739   SelectionDAG& DAG = SDB->DAG;
3740   LLVMContext &Context = *DAG.getContext();
3741 
3742   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3743   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3744   if (!GEP || GEP->getNumOperands() > 2)
3745     return false;
3746 
3747   const Value *GEPPtr = GEP->getPointerOperand();
3748   if (!GEPPtr->getType()->isVectorTy())
3749     Ptr = GEPPtr;
3750   else if (!(Ptr = getSplatValue(GEPPtr)))
3751     return false;
3752 
3753   Value *IndexVal = GEP->getOperand(1);
3754 
3755   // The operands of the GEP may be defined in another basic block.
3756   // In this case we'll not find nodes for the operands.
3757   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3758     return false;
3759 
3760   Base = SDB->getValue(Ptr);
3761   Index = SDB->getValue(IndexVal);
3762 
3763   // Suppress sign extension.
3764   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3765     if (SDB->findValue(Sext->getOperand(0))) {
3766       IndexVal = Sext->getOperand(0);
3767       Index = SDB->getValue(IndexVal);
3768     }
3769   }
3770   if (!Index.getValueType().isVector()) {
3771     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3772     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3773     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3774   }
3775   return true;
3776 }
3777 
3778 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3779   SDLoc sdl = getCurSDLoc();
3780 
3781   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3782   const Value *Ptr = I.getArgOperand(1);
3783   SDValue Src0 = getValue(I.getArgOperand(0));
3784   SDValue Mask = getValue(I.getArgOperand(3));
3785   EVT VT = Src0.getValueType();
3786   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3787   if (!Alignment)
3788     Alignment = DAG.getEVTAlignment(VT);
3789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3790 
3791   AAMDNodes AAInfo;
3792   I.getAAMetadata(AAInfo);
3793 
3794   SDValue Base;
3795   SDValue Index;
3796   const Value *BasePtr = Ptr;
3797   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3798 
3799   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3800   MachineMemOperand *MMO = DAG.getMachineFunction().
3801     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3802                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3803                          Alignment, AAInfo);
3804   if (!UniformBase) {
3805     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3806     Index = getValue(Ptr);
3807   }
3808   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3809   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3810                                          Ops, MMO);
3811   DAG.setRoot(Scatter);
3812   setValue(&I, Scatter);
3813 }
3814 
3815 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3816   SDLoc sdl = getCurSDLoc();
3817 
3818   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3819                            unsigned& Alignment) {
3820     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3821     Ptr = I.getArgOperand(0);
3822     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3823     Mask = I.getArgOperand(2);
3824     Src0 = I.getArgOperand(3);
3825   };
3826   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3827                            unsigned& Alignment) {
3828     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3829     Ptr = I.getArgOperand(0);
3830     Alignment = 0;
3831     Mask = I.getArgOperand(1);
3832     Src0 = I.getArgOperand(2);
3833   };
3834 
3835   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3836   unsigned Alignment;
3837   if (IsExpanding)
3838     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3839   else
3840     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3841 
3842   SDValue Ptr = getValue(PtrOperand);
3843   SDValue Src0 = getValue(Src0Operand);
3844   SDValue Mask = getValue(MaskOperand);
3845 
3846   EVT VT = Src0.getValueType();
3847   if (!Alignment)
3848     Alignment = DAG.getEVTAlignment(VT);
3849 
3850   AAMDNodes AAInfo;
3851   I.getAAMetadata(AAInfo);
3852   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3853 
3854   // Do not serialize masked loads of constant memory with anything.
3855   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3856       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3857   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3858 
3859   MachineMemOperand *MMO =
3860     DAG.getMachineFunction().
3861     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3862                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3863                           Alignment, AAInfo, Ranges);
3864 
3865   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3866                                    ISD::NON_EXTLOAD, IsExpanding);
3867   if (AddToChain) {
3868     SDValue OutChain = Load.getValue(1);
3869     DAG.setRoot(OutChain);
3870   }
3871   setValue(&I, Load);
3872 }
3873 
3874 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3875   SDLoc sdl = getCurSDLoc();
3876 
3877   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3878   const Value *Ptr = I.getArgOperand(0);
3879   SDValue Src0 = getValue(I.getArgOperand(3));
3880   SDValue Mask = getValue(I.getArgOperand(2));
3881 
3882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3883   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3884   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3885   if (!Alignment)
3886     Alignment = DAG.getEVTAlignment(VT);
3887 
3888   AAMDNodes AAInfo;
3889   I.getAAMetadata(AAInfo);
3890   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3891 
3892   SDValue Root = DAG.getRoot();
3893   SDValue Base;
3894   SDValue Index;
3895   const Value *BasePtr = Ptr;
3896   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3897   bool ConstantMemory = false;
3898   if (UniformBase &&
3899       AA->pointsToConstantMemory(MemoryLocation(
3900           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3901           AAInfo))) {
3902     // Do not serialize (non-volatile) loads of constant memory with anything.
3903     Root = DAG.getEntryNode();
3904     ConstantMemory = true;
3905   }
3906 
3907   MachineMemOperand *MMO =
3908     DAG.getMachineFunction().
3909     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3910                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3911                          Alignment, AAInfo, Ranges);
3912 
3913   if (!UniformBase) {
3914     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3915     Index = getValue(Ptr);
3916   }
3917   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3918   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3919                                        Ops, MMO);
3920 
3921   SDValue OutChain = Gather.getValue(1);
3922   if (!ConstantMemory)
3923     PendingLoads.push_back(OutChain);
3924   setValue(&I, Gather);
3925 }
3926 
3927 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3928   SDLoc dl = getCurSDLoc();
3929   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3930   AtomicOrdering FailureOrder = I.getFailureOrdering();
3931   SynchronizationScope Scope = I.getSynchScope();
3932 
3933   SDValue InChain = getRoot();
3934 
3935   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3936   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3937   SDValue L = DAG.getAtomicCmpSwap(
3938       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3939       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3940       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3941       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3942 
3943   SDValue OutChain = L.getValue(2);
3944 
3945   setValue(&I, L);
3946   DAG.setRoot(OutChain);
3947 }
3948 
3949 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3950   SDLoc dl = getCurSDLoc();
3951   ISD::NodeType NT;
3952   switch (I.getOperation()) {
3953   default: llvm_unreachable("Unknown atomicrmw operation");
3954   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3955   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3956   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3957   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3958   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3959   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3960   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3961   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3962   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3963   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3964   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3965   }
3966   AtomicOrdering Order = I.getOrdering();
3967   SynchronizationScope Scope = I.getSynchScope();
3968 
3969   SDValue InChain = getRoot();
3970 
3971   SDValue L =
3972     DAG.getAtomic(NT, dl,
3973                   getValue(I.getValOperand()).getSimpleValueType(),
3974                   InChain,
3975                   getValue(I.getPointerOperand()),
3976                   getValue(I.getValOperand()),
3977                   I.getPointerOperand(),
3978                   /* Alignment=*/ 0, Order, Scope);
3979 
3980   SDValue OutChain = L.getValue(1);
3981 
3982   setValue(&I, L);
3983   DAG.setRoot(OutChain);
3984 }
3985 
3986 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3987   SDLoc dl = getCurSDLoc();
3988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3989   SDValue Ops[3];
3990   Ops[0] = getRoot();
3991   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3992                            TLI.getPointerTy(DAG.getDataLayout()));
3993   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3994                            TLI.getPointerTy(DAG.getDataLayout()));
3995   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3996 }
3997 
3998 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3999   SDLoc dl = getCurSDLoc();
4000   AtomicOrdering Order = I.getOrdering();
4001   SynchronizationScope Scope = I.getSynchScope();
4002 
4003   SDValue InChain = getRoot();
4004 
4005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4006   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4007 
4008   if (I.getAlignment() < VT.getSizeInBits() / 8)
4009     report_fatal_error("Cannot generate unaligned atomic load");
4010 
4011   MachineMemOperand *MMO =
4012       DAG.getMachineFunction().
4013       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4014                            MachineMemOperand::MOVolatile |
4015                            MachineMemOperand::MOLoad,
4016                            VT.getStoreSize(),
4017                            I.getAlignment() ? I.getAlignment() :
4018                                               DAG.getEVTAlignment(VT),
4019                            AAMDNodes(), nullptr, Scope, Order);
4020 
4021   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4022   SDValue L =
4023       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4024                     getValue(I.getPointerOperand()), MMO);
4025 
4026   SDValue OutChain = L.getValue(1);
4027 
4028   setValue(&I, L);
4029   DAG.setRoot(OutChain);
4030 }
4031 
4032 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4033   SDLoc dl = getCurSDLoc();
4034 
4035   AtomicOrdering Order = I.getOrdering();
4036   SynchronizationScope Scope = I.getSynchScope();
4037 
4038   SDValue InChain = getRoot();
4039 
4040   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4041   EVT VT =
4042       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4043 
4044   if (I.getAlignment() < VT.getSizeInBits() / 8)
4045     report_fatal_error("Cannot generate unaligned atomic store");
4046 
4047   SDValue OutChain =
4048     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4049                   InChain,
4050                   getValue(I.getPointerOperand()),
4051                   getValue(I.getValueOperand()),
4052                   I.getPointerOperand(), I.getAlignment(),
4053                   Order, Scope);
4054 
4055   DAG.setRoot(OutChain);
4056 }
4057 
4058 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4059 /// node.
4060 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4061                                                unsigned Intrinsic) {
4062   // Ignore the callsite's attributes. A specific call site may be marked with
4063   // readnone, but the lowering code will expect the chain based on the
4064   // definition.
4065   const Function *F = I.getCalledFunction();
4066   bool HasChain = !F->doesNotAccessMemory();
4067   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4068 
4069   // Build the operand list.
4070   SmallVector<SDValue, 8> Ops;
4071   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4072     if (OnlyLoad) {
4073       // We don't need to serialize loads against other loads.
4074       Ops.push_back(DAG.getRoot());
4075     } else {
4076       Ops.push_back(getRoot());
4077     }
4078   }
4079 
4080   // Info is set by getTgtMemInstrinsic
4081   TargetLowering::IntrinsicInfo Info;
4082   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4083   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4084 
4085   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4086   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4087       Info.opc == ISD::INTRINSIC_W_CHAIN)
4088     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4089                                         TLI.getPointerTy(DAG.getDataLayout())));
4090 
4091   // Add all operands of the call to the operand list.
4092   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4093     SDValue Op = getValue(I.getArgOperand(i));
4094     Ops.push_back(Op);
4095   }
4096 
4097   SmallVector<EVT, 4> ValueVTs;
4098   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4099 
4100   if (HasChain)
4101     ValueVTs.push_back(MVT::Other);
4102 
4103   SDVTList VTs = DAG.getVTList(ValueVTs);
4104 
4105   // Create the node.
4106   SDValue Result;
4107   if (IsTgtIntrinsic) {
4108     // This is target intrinsic that touches memory
4109     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4110                                      VTs, Ops, Info.memVT,
4111                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4112                                      Info.align, Info.vol,
4113                                      Info.readMem, Info.writeMem, Info.size);
4114   } else if (!HasChain) {
4115     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4116   } else if (!I.getType()->isVoidTy()) {
4117     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4118   } else {
4119     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4120   }
4121 
4122   if (HasChain) {
4123     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4124     if (OnlyLoad)
4125       PendingLoads.push_back(Chain);
4126     else
4127       DAG.setRoot(Chain);
4128   }
4129 
4130   if (!I.getType()->isVoidTy()) {
4131     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4132       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4133       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4134     } else
4135       Result = lowerRangeToAssertZExt(DAG, I, Result);
4136 
4137     setValue(&I, Result);
4138   }
4139 }
4140 
4141 /// GetSignificand - Get the significand and build it into a floating-point
4142 /// number with exponent of 1:
4143 ///
4144 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4145 ///
4146 /// where Op is the hexadecimal representation of floating point value.
4147 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4148   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4149                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4150   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4151                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4152   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4153 }
4154 
4155 /// GetExponent - Get the exponent:
4156 ///
4157 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4158 ///
4159 /// where Op is the hexadecimal representation of floating point value.
4160 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4161                            const TargetLowering &TLI, const SDLoc &dl) {
4162   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4163                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4164   SDValue t1 = DAG.getNode(
4165       ISD::SRL, dl, MVT::i32, t0,
4166       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4167   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4168                            DAG.getConstant(127, dl, MVT::i32));
4169   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4170 }
4171 
4172 /// getF32Constant - Get 32-bit floating point constant.
4173 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4174                               const SDLoc &dl) {
4175   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4176                            MVT::f32);
4177 }
4178 
4179 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4180                                        SelectionDAG &DAG) {
4181   // TODO: What fast-math-flags should be set on the floating-point nodes?
4182 
4183   //   IntegerPartOfX = ((int32_t)(t0);
4184   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4185 
4186   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4187   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4188   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4189 
4190   //   IntegerPartOfX <<= 23;
4191   IntegerPartOfX = DAG.getNode(
4192       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4193       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4194                                   DAG.getDataLayout())));
4195 
4196   SDValue TwoToFractionalPartOfX;
4197   if (LimitFloatPrecision <= 6) {
4198     // For floating-point precision of 6:
4199     //
4200     //   TwoToFractionalPartOfX =
4201     //     0.997535578f +
4202     //       (0.735607626f + 0.252464424f * x) * x;
4203     //
4204     // error 0.0144103317, which is 6 bits
4205     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4206                              getF32Constant(DAG, 0x3e814304, dl));
4207     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4208                              getF32Constant(DAG, 0x3f3c50c8, dl));
4209     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4210     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4211                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4212   } else if (LimitFloatPrecision <= 12) {
4213     // For floating-point precision of 12:
4214     //
4215     //   TwoToFractionalPartOfX =
4216     //     0.999892986f +
4217     //       (0.696457318f +
4218     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4219     //
4220     // error 0.000107046256, which is 13 to 14 bits
4221     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4222                              getF32Constant(DAG, 0x3da235e3, dl));
4223     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4224                              getF32Constant(DAG, 0x3e65b8f3, dl));
4225     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4226     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4227                              getF32Constant(DAG, 0x3f324b07, dl));
4228     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4229     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4230                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4231   } else { // LimitFloatPrecision <= 18
4232     // For floating-point precision of 18:
4233     //
4234     //   TwoToFractionalPartOfX =
4235     //     0.999999982f +
4236     //       (0.693148872f +
4237     //         (0.240227044f +
4238     //           (0.554906021e-1f +
4239     //             (0.961591928e-2f +
4240     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4241     // error 2.47208000*10^(-7), which is better than 18 bits
4242     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4243                              getF32Constant(DAG, 0x3924b03e, dl));
4244     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4245                              getF32Constant(DAG, 0x3ab24b87, dl));
4246     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4247     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4248                              getF32Constant(DAG, 0x3c1d8c17, dl));
4249     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4250     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4251                              getF32Constant(DAG, 0x3d634a1d, dl));
4252     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4253     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4254                              getF32Constant(DAG, 0x3e75fe14, dl));
4255     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4256     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4257                               getF32Constant(DAG, 0x3f317234, dl));
4258     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4259     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4260                                          getF32Constant(DAG, 0x3f800000, dl));
4261   }
4262 
4263   // Add the exponent into the result in integer domain.
4264   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4265   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4266                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4267 }
4268 
4269 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4270 /// limited-precision mode.
4271 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4272                          const TargetLowering &TLI) {
4273   if (Op.getValueType() == MVT::f32 &&
4274       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4275 
4276     // Put the exponent in the right bit position for later addition to the
4277     // final result:
4278     //
4279     //   #define LOG2OFe 1.4426950f
4280     //   t0 = Op * LOG2OFe
4281 
4282     // TODO: What fast-math-flags should be set here?
4283     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4284                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4285     return getLimitedPrecisionExp2(t0, dl, DAG);
4286   }
4287 
4288   // No special expansion.
4289   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4290 }
4291 
4292 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4293 /// limited-precision mode.
4294 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4295                          const TargetLowering &TLI) {
4296 
4297   // TODO: What fast-math-flags should be set on the floating-point nodes?
4298 
4299   if (Op.getValueType() == MVT::f32 &&
4300       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4301     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4302 
4303     // Scale the exponent by log(2) [0.69314718f].
4304     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4305     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4306                                         getF32Constant(DAG, 0x3f317218, dl));
4307 
4308     // Get the significand and build it into a floating-point number with
4309     // exponent of 1.
4310     SDValue X = GetSignificand(DAG, Op1, dl);
4311 
4312     SDValue LogOfMantissa;
4313     if (LimitFloatPrecision <= 6) {
4314       // For floating-point precision of 6:
4315       //
4316       //   LogofMantissa =
4317       //     -1.1609546f +
4318       //       (1.4034025f - 0.23903021f * x) * x;
4319       //
4320       // error 0.0034276066, which is better than 8 bits
4321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4322                                getF32Constant(DAG, 0xbe74c456, dl));
4323       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4324                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4326       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4327                                   getF32Constant(DAG, 0x3f949a29, dl));
4328     } else if (LimitFloatPrecision <= 12) {
4329       // For floating-point precision of 12:
4330       //
4331       //   LogOfMantissa =
4332       //     -1.7417939f +
4333       //       (2.8212026f +
4334       //         (-1.4699568f +
4335       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4336       //
4337       // error 0.000061011436, which is 14 bits
4338       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4339                                getF32Constant(DAG, 0xbd67b6d6, dl));
4340       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4341                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4342       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4343       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4344                                getF32Constant(DAG, 0x3fbc278b, dl));
4345       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4346       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4347                                getF32Constant(DAG, 0x40348e95, dl));
4348       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4349       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4350                                   getF32Constant(DAG, 0x3fdef31a, dl));
4351     } else { // LimitFloatPrecision <= 18
4352       // For floating-point precision of 18:
4353       //
4354       //   LogOfMantissa =
4355       //     -2.1072184f +
4356       //       (4.2372794f +
4357       //         (-3.7029485f +
4358       //           (2.2781945f +
4359       //             (-0.87823314f +
4360       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4361       //
4362       // error 0.0000023660568, which is better than 18 bits
4363       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4364                                getF32Constant(DAG, 0xbc91e5ac, dl));
4365       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4366                                getF32Constant(DAG, 0x3e4350aa, dl));
4367       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4368       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4369                                getF32Constant(DAG, 0x3f60d3e3, dl));
4370       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4371       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4372                                getF32Constant(DAG, 0x4011cdf0, dl));
4373       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4374       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4375                                getF32Constant(DAG, 0x406cfd1c, dl));
4376       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4377       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4378                                getF32Constant(DAG, 0x408797cb, dl));
4379       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4380       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4381                                   getF32Constant(DAG, 0x4006dcab, dl));
4382     }
4383 
4384     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4385   }
4386 
4387   // No special expansion.
4388   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4389 }
4390 
4391 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4392 /// limited-precision mode.
4393 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4394                           const TargetLowering &TLI) {
4395 
4396   // TODO: What fast-math-flags should be set on the floating-point nodes?
4397 
4398   if (Op.getValueType() == MVT::f32 &&
4399       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4400     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4401 
4402     // Get the exponent.
4403     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4404 
4405     // Get the significand and build it into a floating-point number with
4406     // exponent of 1.
4407     SDValue X = GetSignificand(DAG, Op1, dl);
4408 
4409     // Different possible minimax approximations of significand in
4410     // floating-point for various degrees of accuracy over [1,2].
4411     SDValue Log2ofMantissa;
4412     if (LimitFloatPrecision <= 6) {
4413       // For floating-point precision of 6:
4414       //
4415       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4416       //
4417       // error 0.0049451742, which is more than 7 bits
4418       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4419                                getF32Constant(DAG, 0xbeb08fe0, dl));
4420       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4421                                getF32Constant(DAG, 0x40019463, dl));
4422       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4423       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4424                                    getF32Constant(DAG, 0x3fd6633d, dl));
4425     } else if (LimitFloatPrecision <= 12) {
4426       // For floating-point precision of 12:
4427       //
4428       //   Log2ofMantissa =
4429       //     -2.51285454f +
4430       //       (4.07009056f +
4431       //         (-2.12067489f +
4432       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4433       //
4434       // error 0.0000876136000, which is better than 13 bits
4435       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4436                                getF32Constant(DAG, 0xbda7262e, dl));
4437       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4438                                getF32Constant(DAG, 0x3f25280b, dl));
4439       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4440       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4441                                getF32Constant(DAG, 0x4007b923, dl));
4442       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4443       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4444                                getF32Constant(DAG, 0x40823e2f, dl));
4445       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4446       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4447                                    getF32Constant(DAG, 0x4020d29c, dl));
4448     } else { // LimitFloatPrecision <= 18
4449       // For floating-point precision of 18:
4450       //
4451       //   Log2ofMantissa =
4452       //     -3.0400495f +
4453       //       (6.1129976f +
4454       //         (-5.3420409f +
4455       //           (3.2865683f +
4456       //             (-1.2669343f +
4457       //               (0.27515199f -
4458       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4459       //
4460       // error 0.0000018516, which is better than 18 bits
4461       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4462                                getF32Constant(DAG, 0xbcd2769e, dl));
4463       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4464                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4465       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4466       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4467                                getF32Constant(DAG, 0x3fa22ae7, dl));
4468       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4469       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4470                                getF32Constant(DAG, 0x40525723, dl));
4471       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4472       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4473                                getF32Constant(DAG, 0x40aaf200, dl));
4474       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4475       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4476                                getF32Constant(DAG, 0x40c39dad, dl));
4477       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4478       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4479                                    getF32Constant(DAG, 0x4042902c, dl));
4480     }
4481 
4482     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4483   }
4484 
4485   // No special expansion.
4486   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4487 }
4488 
4489 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4490 /// limited-precision mode.
4491 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4492                            const TargetLowering &TLI) {
4493 
4494   // TODO: What fast-math-flags should be set on the floating-point nodes?
4495 
4496   if (Op.getValueType() == MVT::f32 &&
4497       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4498     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4499 
4500     // Scale the exponent by log10(2) [0.30102999f].
4501     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4502     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4503                                         getF32Constant(DAG, 0x3e9a209a, dl));
4504 
4505     // Get the significand and build it into a floating-point number with
4506     // exponent of 1.
4507     SDValue X = GetSignificand(DAG, Op1, dl);
4508 
4509     SDValue Log10ofMantissa;
4510     if (LimitFloatPrecision <= 6) {
4511       // For floating-point precision of 6:
4512       //
4513       //   Log10ofMantissa =
4514       //     -0.50419619f +
4515       //       (0.60948995f - 0.10380950f * x) * x;
4516       //
4517       // error 0.0014886165, which is 6 bits
4518       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4519                                getF32Constant(DAG, 0xbdd49a13, dl));
4520       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4521                                getF32Constant(DAG, 0x3f1c0789, dl));
4522       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4523       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4524                                     getF32Constant(DAG, 0x3f011300, dl));
4525     } else if (LimitFloatPrecision <= 12) {
4526       // For floating-point precision of 12:
4527       //
4528       //   Log10ofMantissa =
4529       //     -0.64831180f +
4530       //       (0.91751397f +
4531       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4532       //
4533       // error 0.00019228036, which is better than 12 bits
4534       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4535                                getF32Constant(DAG, 0x3d431f31, dl));
4536       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4537                                getF32Constant(DAG, 0x3ea21fb2, dl));
4538       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4539       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4540                                getF32Constant(DAG, 0x3f6ae232, dl));
4541       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4542       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4543                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4544     } else { // LimitFloatPrecision <= 18
4545       // For floating-point precision of 18:
4546       //
4547       //   Log10ofMantissa =
4548       //     -0.84299375f +
4549       //       (1.5327582f +
4550       //         (-1.0688956f +
4551       //           (0.49102474f +
4552       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4553       //
4554       // error 0.0000037995730, which is better than 18 bits
4555       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4556                                getF32Constant(DAG, 0x3c5d51ce, dl));
4557       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4558                                getF32Constant(DAG, 0x3e00685a, dl));
4559       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4560       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4561                                getF32Constant(DAG, 0x3efb6798, dl));
4562       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4563       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4564                                getF32Constant(DAG, 0x3f88d192, dl));
4565       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4566       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4567                                getF32Constant(DAG, 0x3fc4316c, dl));
4568       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4569       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4570                                     getF32Constant(DAG, 0x3f57ce70, dl));
4571     }
4572 
4573     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4574   }
4575 
4576   // No special expansion.
4577   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4578 }
4579 
4580 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4581 /// limited-precision mode.
4582 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4583                           const TargetLowering &TLI) {
4584   if (Op.getValueType() == MVT::f32 &&
4585       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4586     return getLimitedPrecisionExp2(Op, dl, DAG);
4587 
4588   // No special expansion.
4589   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4590 }
4591 
4592 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4593 /// limited-precision mode with x == 10.0f.
4594 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4595                          SelectionDAG &DAG, const TargetLowering &TLI) {
4596   bool IsExp10 = false;
4597   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4598       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4599     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4600       APFloat Ten(10.0f);
4601       IsExp10 = LHSC->isExactlyValue(Ten);
4602     }
4603   }
4604 
4605   // TODO: What fast-math-flags should be set on the FMUL node?
4606   if (IsExp10) {
4607     // Put the exponent in the right bit position for later addition to the
4608     // final result:
4609     //
4610     //   #define LOG2OF10 3.3219281f
4611     //   t0 = Op * LOG2OF10;
4612     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4613                              getF32Constant(DAG, 0x40549a78, dl));
4614     return getLimitedPrecisionExp2(t0, dl, DAG);
4615   }
4616 
4617   // No special expansion.
4618   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4619 }
4620 
4621 
4622 /// ExpandPowI - Expand a llvm.powi intrinsic.
4623 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4624                           SelectionDAG &DAG) {
4625   // If RHS is a constant, we can expand this out to a multiplication tree,
4626   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4627   // optimizing for size, we only want to do this if the expansion would produce
4628   // a small number of multiplies, otherwise we do the full expansion.
4629   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4630     // Get the exponent as a positive value.
4631     unsigned Val = RHSC->getSExtValue();
4632     if ((int)Val < 0) Val = -Val;
4633 
4634     // powi(x, 0) -> 1.0
4635     if (Val == 0)
4636       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4637 
4638     const Function *F = DAG.getMachineFunction().getFunction();
4639     if (!F->optForSize() ||
4640         // If optimizing for size, don't insert too many multiplies.
4641         // This inserts up to 5 multiplies.
4642         countPopulation(Val) + Log2_32(Val) < 7) {
4643       // We use the simple binary decomposition method to generate the multiply
4644       // sequence.  There are more optimal ways to do this (for example,
4645       // powi(x,15) generates one more multiply than it should), but this has
4646       // the benefit of being both really simple and much better than a libcall.
4647       SDValue Res;  // Logically starts equal to 1.0
4648       SDValue CurSquare = LHS;
4649       // TODO: Intrinsics should have fast-math-flags that propagate to these
4650       // nodes.
4651       while (Val) {
4652         if (Val & 1) {
4653           if (Res.getNode())
4654             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4655           else
4656             Res = CurSquare;  // 1.0*CurSquare.
4657         }
4658 
4659         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4660                                 CurSquare, CurSquare);
4661         Val >>= 1;
4662       }
4663 
4664       // If the original was negative, invert the result, producing 1/(x*x*x).
4665       if (RHSC->getSExtValue() < 0)
4666         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4667                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4668       return Res;
4669     }
4670   }
4671 
4672   // Otherwise, expand to a libcall.
4673   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4674 }
4675 
4676 // getUnderlyingArgReg - Find underlying register used for a truncated or
4677 // bitcasted argument.
4678 static unsigned getUnderlyingArgReg(const SDValue &N) {
4679   switch (N.getOpcode()) {
4680   case ISD::CopyFromReg:
4681     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4682   case ISD::BITCAST:
4683   case ISD::AssertZext:
4684   case ISD::AssertSext:
4685   case ISD::TRUNCATE:
4686     return getUnderlyingArgReg(N.getOperand(0));
4687   default:
4688     return 0;
4689   }
4690 }
4691 
4692 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4693 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4694 /// At the end of instruction selection, they will be inserted to the entry BB.
4695 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4696     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4697     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4698   const Argument *Arg = dyn_cast<Argument>(V);
4699   if (!Arg)
4700     return false;
4701 
4702   MachineFunction &MF = DAG.getMachineFunction();
4703   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4704 
4705   // Ignore inlined function arguments here.
4706   //
4707   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4708   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4709     return false;
4710 
4711   Optional<MachineOperand> Op;
4712   // Some arguments' frame index is recorded during argument lowering.
4713   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4714     Op = MachineOperand::CreateFI(FI);
4715 
4716   if (!Op && N.getNode()) {
4717     unsigned Reg = getUnderlyingArgReg(N);
4718     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4719       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4720       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4721       if (PR)
4722         Reg = PR;
4723     }
4724     if (Reg)
4725       Op = MachineOperand::CreateReg(Reg, false);
4726   }
4727 
4728   if (!Op) {
4729     // Check if ValueMap has reg number.
4730     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4731     if (VMI != FuncInfo.ValueMap.end())
4732       Op = MachineOperand::CreateReg(VMI->second, false);
4733   }
4734 
4735   if (!Op && N.getNode())
4736     // Check if frame index is available.
4737     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4738       if (FrameIndexSDNode *FINode =
4739           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4740         Op = MachineOperand::CreateFI(FINode->getIndex());
4741 
4742   if (!Op)
4743     return false;
4744 
4745   assert(Variable->isValidLocationForIntrinsic(DL) &&
4746          "Expected inlined-at fields to agree");
4747   if (Op->isReg())
4748     FuncInfo.ArgDbgValues.push_back(
4749         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4750                 Op->getReg(), Offset, Variable, Expr));
4751   else
4752     FuncInfo.ArgDbgValues.push_back(
4753         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4754             .addOperand(*Op)
4755             .addImm(Offset)
4756             .addMetadata(Variable)
4757             .addMetadata(Expr));
4758 
4759   return true;
4760 }
4761 
4762 /// Return the appropriate SDDbgValue based on N.
4763 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4764                                              DILocalVariable *Variable,
4765                                              DIExpression *Expr, int64_t Offset,
4766                                              DebugLoc dl,
4767                                              unsigned DbgSDNodeOrder) {
4768   SDDbgValue *SDV;
4769   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4770   if (FISDN && Expr->startsWithDeref()) {
4771     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4772     // stack slot locations as such instead of as indirectly addressed
4773     // locations.
4774     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4775                                         Expr->elements_end());
4776     DIExpression *DerefedDIExpr =
4777         DIExpression::get(*DAG.getContext(), TrailingElements);
4778     int FI = FISDN->getIndex();
4779     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4780                                     DbgSDNodeOrder);
4781   } else {
4782     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4783                           Offset, dl, DbgSDNodeOrder);
4784   }
4785   return SDV;
4786 }
4787 
4788 // VisualStudio defines setjmp as _setjmp
4789 #if defined(_MSC_VER) && defined(setjmp) && \
4790                          !defined(setjmp_undefined_for_msvc)
4791 #  pragma push_macro("setjmp")
4792 #  undef setjmp
4793 #  define setjmp_undefined_for_msvc
4794 #endif
4795 
4796 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4797 /// we want to emit this as a call to a named external function, return the name
4798 /// otherwise lower it and return null.
4799 const char *
4800 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4801   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4802   SDLoc sdl = getCurSDLoc();
4803   DebugLoc dl = getCurDebugLoc();
4804   SDValue Res;
4805 
4806   switch (Intrinsic) {
4807   default:
4808     // By default, turn this into a target intrinsic node.
4809     visitTargetIntrinsic(I, Intrinsic);
4810     return nullptr;
4811   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4812   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4813   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4814   case Intrinsic::returnaddress:
4815     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4816                              TLI.getPointerTy(DAG.getDataLayout()),
4817                              getValue(I.getArgOperand(0))));
4818     return nullptr;
4819   case Intrinsic::addressofreturnaddress:
4820     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4821                              TLI.getPointerTy(DAG.getDataLayout())));
4822     return nullptr;
4823   case Intrinsic::frameaddress:
4824     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4825                              TLI.getPointerTy(DAG.getDataLayout()),
4826                              getValue(I.getArgOperand(0))));
4827     return nullptr;
4828   case Intrinsic::read_register: {
4829     Value *Reg = I.getArgOperand(0);
4830     SDValue Chain = getRoot();
4831     SDValue RegName =
4832         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4833     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4834     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4835       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4836     setValue(&I, Res);
4837     DAG.setRoot(Res.getValue(1));
4838     return nullptr;
4839   }
4840   case Intrinsic::write_register: {
4841     Value *Reg = I.getArgOperand(0);
4842     Value *RegValue = I.getArgOperand(1);
4843     SDValue Chain = getRoot();
4844     SDValue RegName =
4845         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4846     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4847                             RegName, getValue(RegValue)));
4848     return nullptr;
4849   }
4850   case Intrinsic::setjmp:
4851     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4852   case Intrinsic::longjmp:
4853     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4854   case Intrinsic::memcpy: {
4855     SDValue Op1 = getValue(I.getArgOperand(0));
4856     SDValue Op2 = getValue(I.getArgOperand(1));
4857     SDValue Op3 = getValue(I.getArgOperand(2));
4858     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4859     if (!Align)
4860       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4861     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4862     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4863     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4864                                false, isTC,
4865                                MachinePointerInfo(I.getArgOperand(0)),
4866                                MachinePointerInfo(I.getArgOperand(1)));
4867     updateDAGForMaybeTailCall(MC);
4868     return nullptr;
4869   }
4870   case Intrinsic::memset: {
4871     SDValue Op1 = getValue(I.getArgOperand(0));
4872     SDValue Op2 = getValue(I.getArgOperand(1));
4873     SDValue Op3 = getValue(I.getArgOperand(2));
4874     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4875     if (!Align)
4876       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4877     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4878     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4879     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4880                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4881     updateDAGForMaybeTailCall(MS);
4882     return nullptr;
4883   }
4884   case Intrinsic::memmove: {
4885     SDValue Op1 = getValue(I.getArgOperand(0));
4886     SDValue Op2 = getValue(I.getArgOperand(1));
4887     SDValue Op3 = getValue(I.getArgOperand(2));
4888     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4889     if (!Align)
4890       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4891     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4892     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4893     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4894                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4895                                 MachinePointerInfo(I.getArgOperand(1)));
4896     updateDAGForMaybeTailCall(MM);
4897     return nullptr;
4898   }
4899   case Intrinsic::memcpy_element_atomic: {
4900     SDValue Dst = getValue(I.getArgOperand(0));
4901     SDValue Src = getValue(I.getArgOperand(1));
4902     SDValue NumElements = getValue(I.getArgOperand(2));
4903     SDValue ElementSize = getValue(I.getArgOperand(3));
4904 
4905     // Emit a library call.
4906     TargetLowering::ArgListTy Args;
4907     TargetLowering::ArgListEntry Entry;
4908     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
4909     Entry.Node = Dst;
4910     Args.push_back(Entry);
4911 
4912     Entry.Node = Src;
4913     Args.push_back(Entry);
4914 
4915     Entry.Ty = I.getArgOperand(2)->getType();
4916     Entry.Node = NumElements;
4917     Args.push_back(Entry);
4918 
4919     Entry.Ty = Type::getInt32Ty(*DAG.getContext());
4920     Entry.Node = ElementSize;
4921     Args.push_back(Entry);
4922 
4923     uint64_t ElementSizeConstant =
4924         cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4925     RTLIB::Libcall LibraryCall =
4926         RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant);
4927     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
4928       report_fatal_error("Unsupported element size");
4929 
4930     TargetLowering::CallLoweringInfo CLI(DAG);
4931     CLI.setDebugLoc(sdl)
4932         .setChain(getRoot())
4933         .setCallee(TLI.getLibcallCallingConv(LibraryCall),
4934                    Type::getVoidTy(*DAG.getContext()),
4935                    DAG.getExternalSymbol(
4936                        TLI.getLibcallName(LibraryCall),
4937                        TLI.getPointerTy(DAG.getDataLayout())),
4938                    std::move(Args));
4939 
4940     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4941     DAG.setRoot(CallResult.second);
4942     return nullptr;
4943   }
4944   case Intrinsic::dbg_declare: {
4945     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4946     DILocalVariable *Variable = DI.getVariable();
4947     DIExpression *Expression = DI.getExpression();
4948     const Value *Address = DI.getAddress();
4949     assert(Variable && "Missing variable");
4950     if (!Address) {
4951       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4952       return nullptr;
4953     }
4954 
4955     // Check if address has undef value.
4956     if (isa<UndefValue>(Address) ||
4957         (Address->use_empty() && !isa<Argument>(Address))) {
4958       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4959       return nullptr;
4960     }
4961 
4962     SDValue &N = NodeMap[Address];
4963     if (!N.getNode() && isa<Argument>(Address))
4964       // Check unused arguments map.
4965       N = UnusedArgNodeMap[Address];
4966     SDDbgValue *SDV;
4967     if (N.getNode()) {
4968       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4969         Address = BCI->getOperand(0);
4970       // Parameters are handled specially.
4971       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4972       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4973       if (isParameter && FINode) {
4974         // Byval parameter. We have a frame index at this point.
4975         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4976                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4977       } else if (isa<Argument>(Address)) {
4978         // Address is an argument, so try to emit its dbg value using
4979         // virtual register info from the FuncInfo.ValueMap.
4980         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4981                                  N);
4982         return nullptr;
4983       } else {
4984         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4985                               true, 0, dl, SDNodeOrder);
4986       }
4987       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4988     } else {
4989       // If Address is an argument then try to emit its dbg value using
4990       // virtual register info from the FuncInfo.ValueMap.
4991       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4992                                     N)) {
4993         // If variable is pinned by a alloca in dominating bb then
4994         // use StaticAllocaMap.
4995         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4996           if (AI->getParent() != DI.getParent()) {
4997             DenseMap<const AllocaInst*, int>::iterator SI =
4998               FuncInfo.StaticAllocaMap.find(AI);
4999             if (SI != FuncInfo.StaticAllocaMap.end()) {
5000               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
5001                                               0, dl, SDNodeOrder);
5002               DAG.AddDbgValue(SDV, nullptr, false);
5003               return nullptr;
5004             }
5005           }
5006         }
5007         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5008       }
5009     }
5010     return nullptr;
5011   }
5012   case Intrinsic::dbg_value: {
5013     const DbgValueInst &DI = cast<DbgValueInst>(I);
5014     assert(DI.getVariable() && "Missing variable");
5015 
5016     DILocalVariable *Variable = DI.getVariable();
5017     DIExpression *Expression = DI.getExpression();
5018     uint64_t Offset = DI.getOffset();
5019     const Value *V = DI.getValue();
5020     if (!V)
5021       return nullptr;
5022 
5023     SDDbgValue *SDV;
5024     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5025       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
5026                                     SDNodeOrder);
5027       DAG.AddDbgValue(SDV, nullptr, false);
5028     } else {
5029       // Do not use getValue() in here; we don't want to generate code at
5030       // this point if it hasn't been done yet.
5031       SDValue N = NodeMap[V];
5032       if (!N.getNode() && isa<Argument>(V))
5033         // Check unused arguments map.
5034         N = UnusedArgNodeMap[V];
5035       if (N.getNode()) {
5036         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
5037                                       false, N)) {
5038           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
5039           DAG.AddDbgValue(SDV, N.getNode(), false);
5040         }
5041       } else if (!V->use_empty() ) {
5042         // Do not call getValue(V) yet, as we don't want to generate code.
5043         // Remember it for later.
5044         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5045         DanglingDebugInfoMap[V] = DDI;
5046       } else {
5047         // We may expand this to cover more cases.  One case where we have no
5048         // data available is an unreferenced parameter.
5049         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5050       }
5051     }
5052 
5053     // Build a debug info table entry.
5054     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
5055       V = BCI->getOperand(0);
5056     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
5057     // Don't handle byval struct arguments or VLAs, for example.
5058     if (!AI) {
5059       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5060       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5061       return nullptr;
5062     }
5063     DenseMap<const AllocaInst*, int>::iterator SI =
5064       FuncInfo.StaticAllocaMap.find(AI);
5065     if (SI == FuncInfo.StaticAllocaMap.end())
5066       return nullptr; // VLAs.
5067     return nullptr;
5068   }
5069 
5070   case Intrinsic::eh_typeid_for: {
5071     // Find the type id for the given typeinfo.
5072     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5073     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5074     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5075     setValue(&I, Res);
5076     return nullptr;
5077   }
5078 
5079   case Intrinsic::eh_return_i32:
5080   case Intrinsic::eh_return_i64:
5081     DAG.getMachineFunction().setCallsEHReturn(true);
5082     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5083                             MVT::Other,
5084                             getControlRoot(),
5085                             getValue(I.getArgOperand(0)),
5086                             getValue(I.getArgOperand(1))));
5087     return nullptr;
5088   case Intrinsic::eh_unwind_init:
5089     DAG.getMachineFunction().setCallsUnwindInit(true);
5090     return nullptr;
5091   case Intrinsic::eh_dwarf_cfa: {
5092     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5093                              TLI.getPointerTy(DAG.getDataLayout()),
5094                              getValue(I.getArgOperand(0))));
5095     return nullptr;
5096   }
5097   case Intrinsic::eh_sjlj_callsite: {
5098     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5099     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5100     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5101     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5102 
5103     MMI.setCurrentCallSite(CI->getZExtValue());
5104     return nullptr;
5105   }
5106   case Intrinsic::eh_sjlj_functioncontext: {
5107     // Get and store the index of the function context.
5108     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5109     AllocaInst *FnCtx =
5110       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5111     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5112     MFI.setFunctionContextIndex(FI);
5113     return nullptr;
5114   }
5115   case Intrinsic::eh_sjlj_setjmp: {
5116     SDValue Ops[2];
5117     Ops[0] = getRoot();
5118     Ops[1] = getValue(I.getArgOperand(0));
5119     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5120                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5121     setValue(&I, Op.getValue(0));
5122     DAG.setRoot(Op.getValue(1));
5123     return nullptr;
5124   }
5125   case Intrinsic::eh_sjlj_longjmp: {
5126     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5127                             getRoot(), getValue(I.getArgOperand(0))));
5128     return nullptr;
5129   }
5130   case Intrinsic::eh_sjlj_setup_dispatch: {
5131     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5132                             getRoot()));
5133     return nullptr;
5134   }
5135 
5136   case Intrinsic::masked_gather:
5137     visitMaskedGather(I);
5138     return nullptr;
5139   case Intrinsic::masked_load:
5140     visitMaskedLoad(I);
5141     return nullptr;
5142   case Intrinsic::masked_scatter:
5143     visitMaskedScatter(I);
5144     return nullptr;
5145   case Intrinsic::masked_store:
5146     visitMaskedStore(I);
5147     return nullptr;
5148   case Intrinsic::masked_expandload:
5149     visitMaskedLoad(I, true /* IsExpanding */);
5150     return nullptr;
5151   case Intrinsic::masked_compressstore:
5152     visitMaskedStore(I, true /* IsCompressing */);
5153     return nullptr;
5154   case Intrinsic::x86_mmx_pslli_w:
5155   case Intrinsic::x86_mmx_pslli_d:
5156   case Intrinsic::x86_mmx_pslli_q:
5157   case Intrinsic::x86_mmx_psrli_w:
5158   case Intrinsic::x86_mmx_psrli_d:
5159   case Intrinsic::x86_mmx_psrli_q:
5160   case Intrinsic::x86_mmx_psrai_w:
5161   case Intrinsic::x86_mmx_psrai_d: {
5162     SDValue ShAmt = getValue(I.getArgOperand(1));
5163     if (isa<ConstantSDNode>(ShAmt)) {
5164       visitTargetIntrinsic(I, Intrinsic);
5165       return nullptr;
5166     }
5167     unsigned NewIntrinsic = 0;
5168     EVT ShAmtVT = MVT::v2i32;
5169     switch (Intrinsic) {
5170     case Intrinsic::x86_mmx_pslli_w:
5171       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5172       break;
5173     case Intrinsic::x86_mmx_pslli_d:
5174       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5175       break;
5176     case Intrinsic::x86_mmx_pslli_q:
5177       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5178       break;
5179     case Intrinsic::x86_mmx_psrli_w:
5180       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5181       break;
5182     case Intrinsic::x86_mmx_psrli_d:
5183       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5184       break;
5185     case Intrinsic::x86_mmx_psrli_q:
5186       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5187       break;
5188     case Intrinsic::x86_mmx_psrai_w:
5189       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5190       break;
5191     case Intrinsic::x86_mmx_psrai_d:
5192       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5193       break;
5194     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5195     }
5196 
5197     // The vector shift intrinsics with scalars uses 32b shift amounts but
5198     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5199     // to be zero.
5200     // We must do this early because v2i32 is not a legal type.
5201     SDValue ShOps[2];
5202     ShOps[0] = ShAmt;
5203     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5204     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5205     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5206     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5207     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5208                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5209                        getValue(I.getArgOperand(0)), ShAmt);
5210     setValue(&I, Res);
5211     return nullptr;
5212   }
5213   case Intrinsic::convertff:
5214   case Intrinsic::convertfsi:
5215   case Intrinsic::convertfui:
5216   case Intrinsic::convertsif:
5217   case Intrinsic::convertuif:
5218   case Intrinsic::convertss:
5219   case Intrinsic::convertsu:
5220   case Intrinsic::convertus:
5221   case Intrinsic::convertuu: {
5222     ISD::CvtCode Code = ISD::CVT_INVALID;
5223     switch (Intrinsic) {
5224     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5225     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5226     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5227     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5228     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5229     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5230     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5231     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5232     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5233     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5234     }
5235     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5236     const Value *Op1 = I.getArgOperand(0);
5237     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5238                                DAG.getValueType(DestVT),
5239                                DAG.getValueType(getValue(Op1).getValueType()),
5240                                getValue(I.getArgOperand(1)),
5241                                getValue(I.getArgOperand(2)),
5242                                Code);
5243     setValue(&I, Res);
5244     return nullptr;
5245   }
5246   case Intrinsic::powi:
5247     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5248                             getValue(I.getArgOperand(1)), DAG));
5249     return nullptr;
5250   case Intrinsic::log:
5251     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5252     return nullptr;
5253   case Intrinsic::log2:
5254     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5255     return nullptr;
5256   case Intrinsic::log10:
5257     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5258     return nullptr;
5259   case Intrinsic::exp:
5260     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5261     return nullptr;
5262   case Intrinsic::exp2:
5263     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5264     return nullptr;
5265   case Intrinsic::pow:
5266     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5267                            getValue(I.getArgOperand(1)), DAG, TLI));
5268     return nullptr;
5269   case Intrinsic::sqrt:
5270   case Intrinsic::fabs:
5271   case Intrinsic::sin:
5272   case Intrinsic::cos:
5273   case Intrinsic::floor:
5274   case Intrinsic::ceil:
5275   case Intrinsic::trunc:
5276   case Intrinsic::rint:
5277   case Intrinsic::nearbyint:
5278   case Intrinsic::round:
5279   case Intrinsic::canonicalize: {
5280     unsigned Opcode;
5281     switch (Intrinsic) {
5282     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5283     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5284     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5285     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5286     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5287     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5288     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5289     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5290     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5291     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5292     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5293     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5294     }
5295 
5296     setValue(&I, DAG.getNode(Opcode, sdl,
5297                              getValue(I.getArgOperand(0)).getValueType(),
5298                              getValue(I.getArgOperand(0))));
5299     return nullptr;
5300   }
5301   case Intrinsic::minnum: {
5302     auto VT = getValue(I.getArgOperand(0)).getValueType();
5303     unsigned Opc =
5304         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5305             ? ISD::FMINNAN
5306             : ISD::FMINNUM;
5307     setValue(&I, DAG.getNode(Opc, sdl, VT,
5308                              getValue(I.getArgOperand(0)),
5309                              getValue(I.getArgOperand(1))));
5310     return nullptr;
5311   }
5312   case Intrinsic::maxnum: {
5313     auto VT = getValue(I.getArgOperand(0)).getValueType();
5314     unsigned Opc =
5315         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5316             ? ISD::FMAXNAN
5317             : ISD::FMAXNUM;
5318     setValue(&I, DAG.getNode(Opc, sdl, VT,
5319                              getValue(I.getArgOperand(0)),
5320                              getValue(I.getArgOperand(1))));
5321     return nullptr;
5322   }
5323   case Intrinsic::copysign:
5324     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5325                              getValue(I.getArgOperand(0)).getValueType(),
5326                              getValue(I.getArgOperand(0)),
5327                              getValue(I.getArgOperand(1))));
5328     return nullptr;
5329   case Intrinsic::fma:
5330     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5331                              getValue(I.getArgOperand(0)).getValueType(),
5332                              getValue(I.getArgOperand(0)),
5333                              getValue(I.getArgOperand(1)),
5334                              getValue(I.getArgOperand(2))));
5335     return nullptr;
5336   case Intrinsic::fmuladd: {
5337     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5338     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5339         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5340       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5341                                getValue(I.getArgOperand(0)).getValueType(),
5342                                getValue(I.getArgOperand(0)),
5343                                getValue(I.getArgOperand(1)),
5344                                getValue(I.getArgOperand(2))));
5345     } else {
5346       // TODO: Intrinsic calls should have fast-math-flags.
5347       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5348                                 getValue(I.getArgOperand(0)).getValueType(),
5349                                 getValue(I.getArgOperand(0)),
5350                                 getValue(I.getArgOperand(1)));
5351       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5352                                 getValue(I.getArgOperand(0)).getValueType(),
5353                                 Mul,
5354                                 getValue(I.getArgOperand(2)));
5355       setValue(&I, Add);
5356     }
5357     return nullptr;
5358   }
5359   case Intrinsic::convert_to_fp16:
5360     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5361                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5362                                          getValue(I.getArgOperand(0)),
5363                                          DAG.getTargetConstant(0, sdl,
5364                                                                MVT::i32))));
5365     return nullptr;
5366   case Intrinsic::convert_from_fp16:
5367     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5368                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5369                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5370                                          getValue(I.getArgOperand(0)))));
5371     return nullptr;
5372   case Intrinsic::pcmarker: {
5373     SDValue Tmp = getValue(I.getArgOperand(0));
5374     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5375     return nullptr;
5376   }
5377   case Intrinsic::readcyclecounter: {
5378     SDValue Op = getRoot();
5379     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5380                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5381     setValue(&I, Res);
5382     DAG.setRoot(Res.getValue(1));
5383     return nullptr;
5384   }
5385   case Intrinsic::bitreverse:
5386     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5387                              getValue(I.getArgOperand(0)).getValueType(),
5388                              getValue(I.getArgOperand(0))));
5389     return nullptr;
5390   case Intrinsic::bswap:
5391     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5392                              getValue(I.getArgOperand(0)).getValueType(),
5393                              getValue(I.getArgOperand(0))));
5394     return nullptr;
5395   case Intrinsic::cttz: {
5396     SDValue Arg = getValue(I.getArgOperand(0));
5397     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5398     EVT Ty = Arg.getValueType();
5399     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5400                              sdl, Ty, Arg));
5401     return nullptr;
5402   }
5403   case Intrinsic::ctlz: {
5404     SDValue Arg = getValue(I.getArgOperand(0));
5405     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5406     EVT Ty = Arg.getValueType();
5407     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5408                              sdl, Ty, Arg));
5409     return nullptr;
5410   }
5411   case Intrinsic::ctpop: {
5412     SDValue Arg = getValue(I.getArgOperand(0));
5413     EVT Ty = Arg.getValueType();
5414     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5415     return nullptr;
5416   }
5417   case Intrinsic::stacksave: {
5418     SDValue Op = getRoot();
5419     Res = DAG.getNode(
5420         ISD::STACKSAVE, sdl,
5421         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5422     setValue(&I, Res);
5423     DAG.setRoot(Res.getValue(1));
5424     return nullptr;
5425   }
5426   case Intrinsic::stackrestore: {
5427     Res = getValue(I.getArgOperand(0));
5428     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5429     return nullptr;
5430   }
5431   case Intrinsic::get_dynamic_area_offset: {
5432     SDValue Op = getRoot();
5433     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5434     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5435     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5436     // target.
5437     if (PtrTy != ResTy)
5438       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5439                          " intrinsic!");
5440     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5441                       Op);
5442     DAG.setRoot(Op);
5443     setValue(&I, Res);
5444     return nullptr;
5445   }
5446   case Intrinsic::stackguard: {
5447     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5448     MachineFunction &MF = DAG.getMachineFunction();
5449     const Module &M = *MF.getFunction()->getParent();
5450     SDValue Chain = getRoot();
5451     if (TLI.useLoadStackGuardNode()) {
5452       Res = getLoadStackGuard(DAG, sdl, Chain);
5453     } else {
5454       const Value *Global = TLI.getSDagStackGuard(M);
5455       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5456       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5457                         MachinePointerInfo(Global, 0), Align,
5458                         MachineMemOperand::MOVolatile);
5459     }
5460     DAG.setRoot(Chain);
5461     setValue(&I, Res);
5462     return nullptr;
5463   }
5464   case Intrinsic::stackprotector: {
5465     // Emit code into the DAG to store the stack guard onto the stack.
5466     MachineFunction &MF = DAG.getMachineFunction();
5467     MachineFrameInfo &MFI = MF.getFrameInfo();
5468     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5469     SDValue Src, Chain = getRoot();
5470 
5471     if (TLI.useLoadStackGuardNode())
5472       Src = getLoadStackGuard(DAG, sdl, Chain);
5473     else
5474       Src = getValue(I.getArgOperand(0));   // The guard's value.
5475 
5476     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5477 
5478     int FI = FuncInfo.StaticAllocaMap[Slot];
5479     MFI.setStackProtectorIndex(FI);
5480 
5481     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5482 
5483     // Store the stack protector onto the stack.
5484     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5485                                                  DAG.getMachineFunction(), FI),
5486                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5487     setValue(&I, Res);
5488     DAG.setRoot(Res);
5489     return nullptr;
5490   }
5491   case Intrinsic::objectsize: {
5492     // If we don't know by now, we're never going to know.
5493     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5494 
5495     assert(CI && "Non-constant type in __builtin_object_size?");
5496 
5497     SDValue Arg = getValue(I.getCalledValue());
5498     EVT Ty = Arg.getValueType();
5499 
5500     if (CI->isZero())
5501       Res = DAG.getConstant(-1ULL, sdl, Ty);
5502     else
5503       Res = DAG.getConstant(0, sdl, Ty);
5504 
5505     setValue(&I, Res);
5506     return nullptr;
5507   }
5508   case Intrinsic::annotation:
5509   case Intrinsic::ptr_annotation:
5510   case Intrinsic::invariant_group_barrier:
5511     // Drop the intrinsic, but forward the value
5512     setValue(&I, getValue(I.getOperand(0)));
5513     return nullptr;
5514   case Intrinsic::assume:
5515   case Intrinsic::var_annotation:
5516     // Discard annotate attributes and assumptions
5517     return nullptr;
5518 
5519   case Intrinsic::init_trampoline: {
5520     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5521 
5522     SDValue Ops[6];
5523     Ops[0] = getRoot();
5524     Ops[1] = getValue(I.getArgOperand(0));
5525     Ops[2] = getValue(I.getArgOperand(1));
5526     Ops[3] = getValue(I.getArgOperand(2));
5527     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5528     Ops[5] = DAG.getSrcValue(F);
5529 
5530     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5531 
5532     DAG.setRoot(Res);
5533     return nullptr;
5534   }
5535   case Intrinsic::adjust_trampoline: {
5536     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5537                              TLI.getPointerTy(DAG.getDataLayout()),
5538                              getValue(I.getArgOperand(0))));
5539     return nullptr;
5540   }
5541   case Intrinsic::gcroot: {
5542     MachineFunction &MF = DAG.getMachineFunction();
5543     const Function *F = MF.getFunction();
5544     (void)F;
5545     assert(F->hasGC() &&
5546            "only valid in functions with gc specified, enforced by Verifier");
5547     assert(GFI && "implied by previous");
5548     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5549     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5550 
5551     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5552     GFI->addStackRoot(FI->getIndex(), TypeMap);
5553     return nullptr;
5554   }
5555   case Intrinsic::gcread:
5556   case Intrinsic::gcwrite:
5557     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5558   case Intrinsic::flt_rounds:
5559     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5560     return nullptr;
5561 
5562   case Intrinsic::expect: {
5563     // Just replace __builtin_expect(exp, c) with EXP.
5564     setValue(&I, getValue(I.getArgOperand(0)));
5565     return nullptr;
5566   }
5567 
5568   case Intrinsic::debugtrap:
5569   case Intrinsic::trap: {
5570     StringRef TrapFuncName =
5571         I.getAttributes()
5572             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5573             .getValueAsString();
5574     if (TrapFuncName.empty()) {
5575       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5576         ISD::TRAP : ISD::DEBUGTRAP;
5577       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5578       return nullptr;
5579     }
5580     TargetLowering::ArgListTy Args;
5581 
5582     TargetLowering::CallLoweringInfo CLI(DAG);
5583     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5584         CallingConv::C, I.getType(),
5585         DAG.getExternalSymbol(TrapFuncName.data(),
5586                               TLI.getPointerTy(DAG.getDataLayout())),
5587         std::move(Args));
5588 
5589     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5590     DAG.setRoot(Result.second);
5591     return nullptr;
5592   }
5593 
5594   case Intrinsic::uadd_with_overflow:
5595   case Intrinsic::sadd_with_overflow:
5596   case Intrinsic::usub_with_overflow:
5597   case Intrinsic::ssub_with_overflow:
5598   case Intrinsic::umul_with_overflow:
5599   case Intrinsic::smul_with_overflow: {
5600     ISD::NodeType Op;
5601     switch (Intrinsic) {
5602     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5603     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5604     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5605     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5606     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5607     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5608     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5609     }
5610     SDValue Op1 = getValue(I.getArgOperand(0));
5611     SDValue Op2 = getValue(I.getArgOperand(1));
5612 
5613     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5614     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5615     return nullptr;
5616   }
5617   case Intrinsic::prefetch: {
5618     SDValue Ops[5];
5619     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5620     Ops[0] = getRoot();
5621     Ops[1] = getValue(I.getArgOperand(0));
5622     Ops[2] = getValue(I.getArgOperand(1));
5623     Ops[3] = getValue(I.getArgOperand(2));
5624     Ops[4] = getValue(I.getArgOperand(3));
5625     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5626                                         DAG.getVTList(MVT::Other), Ops,
5627                                         EVT::getIntegerVT(*Context, 8),
5628                                         MachinePointerInfo(I.getArgOperand(0)),
5629                                         0, /* align */
5630                                         false, /* volatile */
5631                                         rw==0, /* read */
5632                                         rw==1)); /* write */
5633     return nullptr;
5634   }
5635   case Intrinsic::lifetime_start:
5636   case Intrinsic::lifetime_end: {
5637     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5638     // Stack coloring is not enabled in O0, discard region information.
5639     if (TM.getOptLevel() == CodeGenOpt::None)
5640       return nullptr;
5641 
5642     SmallVector<Value *, 4> Allocas;
5643     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5644 
5645     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5646            E = Allocas.end(); Object != E; ++Object) {
5647       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5648 
5649       // Could not find an Alloca.
5650       if (!LifetimeObject)
5651         continue;
5652 
5653       // First check that the Alloca is static, otherwise it won't have a
5654       // valid frame index.
5655       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5656       if (SI == FuncInfo.StaticAllocaMap.end())
5657         return nullptr;
5658 
5659       int FI = SI->second;
5660 
5661       SDValue Ops[2];
5662       Ops[0] = getRoot();
5663       Ops[1] =
5664           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5665       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5666 
5667       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5668       DAG.setRoot(Res);
5669     }
5670     return nullptr;
5671   }
5672   case Intrinsic::invariant_start:
5673     // Discard region information.
5674     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5675     return nullptr;
5676   case Intrinsic::invariant_end:
5677     // Discard region information.
5678     return nullptr;
5679   case Intrinsic::clear_cache:
5680     return TLI.getClearCacheBuiltinName();
5681   case Intrinsic::donothing:
5682     // ignore
5683     return nullptr;
5684   case Intrinsic::experimental_stackmap: {
5685     visitStackmap(I);
5686     return nullptr;
5687   }
5688   case Intrinsic::experimental_patchpoint_void:
5689   case Intrinsic::experimental_patchpoint_i64: {
5690     visitPatchpoint(&I);
5691     return nullptr;
5692   }
5693   case Intrinsic::experimental_gc_statepoint: {
5694     LowerStatepoint(ImmutableStatepoint(&I));
5695     return nullptr;
5696   }
5697   case Intrinsic::experimental_gc_result: {
5698     visitGCResult(cast<GCResultInst>(I));
5699     return nullptr;
5700   }
5701   case Intrinsic::experimental_gc_relocate: {
5702     visitGCRelocate(cast<GCRelocateInst>(I));
5703     return nullptr;
5704   }
5705   case Intrinsic::instrprof_increment:
5706     llvm_unreachable("instrprof failed to lower an increment");
5707   case Intrinsic::instrprof_value_profile:
5708     llvm_unreachable("instrprof failed to lower a value profiling call");
5709   case Intrinsic::localescape: {
5710     MachineFunction &MF = DAG.getMachineFunction();
5711     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5712 
5713     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5714     // is the same on all targets.
5715     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5716       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5717       if (isa<ConstantPointerNull>(Arg))
5718         continue; // Skip null pointers. They represent a hole in index space.
5719       AllocaInst *Slot = cast<AllocaInst>(Arg);
5720       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5721              "can only escape static allocas");
5722       int FI = FuncInfo.StaticAllocaMap[Slot];
5723       MCSymbol *FrameAllocSym =
5724           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5725               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5726       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5727               TII->get(TargetOpcode::LOCAL_ESCAPE))
5728           .addSym(FrameAllocSym)
5729           .addFrameIndex(FI);
5730     }
5731 
5732     return nullptr;
5733   }
5734 
5735   case Intrinsic::localrecover: {
5736     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5737     MachineFunction &MF = DAG.getMachineFunction();
5738     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5739 
5740     // Get the symbol that defines the frame offset.
5741     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5742     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5743     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5744     MCSymbol *FrameAllocSym =
5745         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5746             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5747 
5748     // Create a MCSymbol for the label to avoid any target lowering
5749     // that would make this PC relative.
5750     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5751     SDValue OffsetVal =
5752         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5753 
5754     // Add the offset to the FP.
5755     Value *FP = I.getArgOperand(1);
5756     SDValue FPVal = getValue(FP);
5757     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5758     setValue(&I, Add);
5759 
5760     return nullptr;
5761   }
5762 
5763   case Intrinsic::eh_exceptionpointer:
5764   case Intrinsic::eh_exceptioncode: {
5765     // Get the exception pointer vreg, copy from it, and resize it to fit.
5766     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5767     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5768     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5769     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5770     SDValue N =
5771         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5772     if (Intrinsic == Intrinsic::eh_exceptioncode)
5773       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5774     setValue(&I, N);
5775     return nullptr;
5776   }
5777 
5778   case Intrinsic::experimental_deoptimize:
5779     LowerDeoptimizeCall(&I);
5780     return nullptr;
5781   }
5782 }
5783 
5784 std::pair<SDValue, SDValue>
5785 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5786                                     const BasicBlock *EHPadBB) {
5787   MachineFunction &MF = DAG.getMachineFunction();
5788   MachineModuleInfo &MMI = MF.getMMI();
5789   MCSymbol *BeginLabel = nullptr;
5790 
5791   if (EHPadBB) {
5792     // Insert a label before the invoke call to mark the try range.  This can be
5793     // used to detect deletion of the invoke via the MachineModuleInfo.
5794     BeginLabel = MMI.getContext().createTempSymbol();
5795 
5796     // For SjLj, keep track of which landing pads go with which invokes
5797     // so as to maintain the ordering of pads in the LSDA.
5798     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5799     if (CallSiteIndex) {
5800       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5801       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5802 
5803       // Now that the call site is handled, stop tracking it.
5804       MMI.setCurrentCallSite(0);
5805     }
5806 
5807     // Both PendingLoads and PendingExports must be flushed here;
5808     // this call might not return.
5809     (void)getRoot();
5810     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5811 
5812     CLI.setChain(getRoot());
5813   }
5814   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5815   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5816 
5817   assert((CLI.IsTailCall || Result.second.getNode()) &&
5818          "Non-null chain expected with non-tail call!");
5819   assert((Result.second.getNode() || !Result.first.getNode()) &&
5820          "Null value expected with tail call!");
5821 
5822   if (!Result.second.getNode()) {
5823     // As a special case, a null chain means that a tail call has been emitted
5824     // and the DAG root is already updated.
5825     HasTailCall = true;
5826 
5827     // Since there's no actual continuation from this block, nothing can be
5828     // relying on us setting vregs for them.
5829     PendingExports.clear();
5830   } else {
5831     DAG.setRoot(Result.second);
5832   }
5833 
5834   if (EHPadBB) {
5835     // Insert a label at the end of the invoke call to mark the try range.  This
5836     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5837     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5838     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5839 
5840     // Inform MachineModuleInfo of range.
5841     if (MF.hasEHFunclets()) {
5842       assert(CLI.CS);
5843       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5844       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5845                                 BeginLabel, EndLabel);
5846     } else {
5847       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5848     }
5849   }
5850 
5851   return Result;
5852 }
5853 
5854 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5855                                       bool isTailCall,
5856                                       const BasicBlock *EHPadBB) {
5857   auto &DL = DAG.getDataLayout();
5858   FunctionType *FTy = CS.getFunctionType();
5859   Type *RetTy = CS.getType();
5860 
5861   TargetLowering::ArgListTy Args;
5862   TargetLowering::ArgListEntry Entry;
5863   Args.reserve(CS.arg_size());
5864 
5865   const Value *SwiftErrorVal = nullptr;
5866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5867   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5868        i != e; ++i) {
5869     const Value *V = *i;
5870 
5871     // Skip empty types
5872     if (V->getType()->isEmptyTy())
5873       continue;
5874 
5875     SDValue ArgNode = getValue(V);
5876     Entry.Node = ArgNode; Entry.Ty = V->getType();
5877 
5878     // Skip the first return-type Attribute to get to params.
5879     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5880 
5881     // Use swifterror virtual register as input to the call.
5882     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5883       SwiftErrorVal = V;
5884       // We find the virtual register for the actual swifterror argument.
5885       // Instead of using the Value, we use the virtual register instead.
5886       Entry.Node =
5887           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5888                           EVT(TLI.getPointerTy(DL)));
5889     }
5890 
5891     Args.push_back(Entry);
5892 
5893     // If we have an explicit sret argument that is an Instruction, (i.e., it
5894     // might point to function-local memory), we can't meaningfully tail-call.
5895     if (Entry.isSRet && isa<Instruction>(V))
5896       isTailCall = false;
5897   }
5898 
5899   // Check if target-independent constraints permit a tail call here.
5900   // Target-dependent constraints are checked within TLI->LowerCallTo.
5901   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5902     isTailCall = false;
5903 
5904   // Disable tail calls if there is an swifterror argument. Targets have not
5905   // been updated to support tail calls.
5906   if (TLI.supportSwiftError() && SwiftErrorVal)
5907     isTailCall = false;
5908 
5909   TargetLowering::CallLoweringInfo CLI(DAG);
5910   CLI.setDebugLoc(getCurSDLoc())
5911       .setChain(getRoot())
5912       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5913       .setTailCall(isTailCall)
5914       .setConvergent(CS.isConvergent());
5915   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5916 
5917   if (Result.first.getNode()) {
5918     const Instruction *Inst = CS.getInstruction();
5919     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5920     setValue(Inst, Result.first);
5921   }
5922 
5923   // The last element of CLI.InVals has the SDValue for swifterror return.
5924   // Here we copy it to a virtual register and update SwiftErrorMap for
5925   // book-keeping.
5926   if (SwiftErrorVal && TLI.supportSwiftError()) {
5927     // Get the last element of InVals.
5928     SDValue Src = CLI.InVals.back();
5929     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5930     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5931     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5932     // We update the virtual register for the actual swifterror argument.
5933     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5934     DAG.setRoot(CopyNode);
5935   }
5936 }
5937 
5938 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5939 /// value is equal or not-equal to zero.
5940 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5941   for (const User *U : V->users()) {
5942     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5943       if (IC->isEquality())
5944         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5945           if (C->isNullValue())
5946             continue;
5947     // Unknown instruction.
5948     return false;
5949   }
5950   return true;
5951 }
5952 
5953 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5954                              Type *LoadTy,
5955                              SelectionDAGBuilder &Builder) {
5956 
5957   // Check to see if this load can be trivially constant folded, e.g. if the
5958   // input is from a string literal.
5959   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5960     // Cast pointer to the type we really want to load.
5961     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5962                                          PointerType::getUnqual(LoadTy));
5963 
5964     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5965             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5966       return Builder.getValue(LoadCst);
5967   }
5968 
5969   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5970   // still constant memory, the input chain can be the entry node.
5971   SDValue Root;
5972   bool ConstantMemory = false;
5973 
5974   // Do not serialize (non-volatile) loads of constant memory with anything.
5975   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5976     Root = Builder.DAG.getEntryNode();
5977     ConstantMemory = true;
5978   } else {
5979     // Do not serialize non-volatile loads against each other.
5980     Root = Builder.DAG.getRoot();
5981   }
5982 
5983   SDValue Ptr = Builder.getValue(PtrVal);
5984   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5985                                         Ptr, MachinePointerInfo(PtrVal),
5986                                         /* Alignment = */ 1);
5987 
5988   if (!ConstantMemory)
5989     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5990   return LoadVal;
5991 }
5992 
5993 /// processIntegerCallValue - Record the value for an instruction that
5994 /// produces an integer result, converting the type where necessary.
5995 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5996                                                   SDValue Value,
5997                                                   bool IsSigned) {
5998   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5999                                                     I.getType(), true);
6000   if (IsSigned)
6001     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6002   else
6003     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6004   setValue(&I, Value);
6005 }
6006 
6007 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
6008 /// If so, return true and lower it, otherwise return false and it will be
6009 /// lowered like a normal call.
6010 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6011   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
6012   if (I.getNumArgOperands() != 3)
6013     return false;
6014 
6015   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6016   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
6017       !I.getArgOperand(2)->getType()->isIntegerTy() ||
6018       !I.getType()->isIntegerTy())
6019     return false;
6020 
6021   const Value *Size = I.getArgOperand(2);
6022   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6023   if (CSize && CSize->getZExtValue() == 0) {
6024     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6025                                                           I.getType(), true);
6026     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6027     return true;
6028   }
6029 
6030   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6031   std::pair<SDValue, SDValue> Res =
6032     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6033                                 getValue(LHS), getValue(RHS), getValue(Size),
6034                                 MachinePointerInfo(LHS),
6035                                 MachinePointerInfo(RHS));
6036   if (Res.first.getNode()) {
6037     processIntegerCallValue(I, Res.first, true);
6038     PendingLoads.push_back(Res.second);
6039     return true;
6040   }
6041 
6042   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6043   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6044   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
6045     bool ActuallyDoIt = true;
6046     MVT LoadVT;
6047     Type *LoadTy;
6048     switch (CSize->getZExtValue()) {
6049     default:
6050       LoadVT = MVT::Other;
6051       LoadTy = nullptr;
6052       ActuallyDoIt = false;
6053       break;
6054     case 2:
6055       LoadVT = MVT::i16;
6056       LoadTy = Type::getInt16Ty(CSize->getContext());
6057       break;
6058     case 4:
6059       LoadVT = MVT::i32;
6060       LoadTy = Type::getInt32Ty(CSize->getContext());
6061       break;
6062     case 8:
6063       LoadVT = MVT::i64;
6064       LoadTy = Type::getInt64Ty(CSize->getContext());
6065       break;
6066         /*
6067     case 16:
6068       LoadVT = MVT::v4i32;
6069       LoadTy = Type::getInt32Ty(CSize->getContext());
6070       LoadTy = VectorType::get(LoadTy, 4);
6071       break;
6072          */
6073     }
6074 
6075     // This turns into unaligned loads.  We only do this if the target natively
6076     // supports the MVT we'll be loading or if it is small enough (<= 4) that
6077     // we'll only produce a small number of byte loads.
6078 
6079     // Require that we can find a legal MVT, and only do this if the target
6080     // supports unaligned loads of that type.  Expanding into byte loads would
6081     // bloat the code.
6082     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6083     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
6084       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6085       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6086       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6087       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6088       // TODO: Check alignment of src and dest ptrs.
6089       if (!TLI.isTypeLegal(LoadVT) ||
6090           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6091           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6092         ActuallyDoIt = false;
6093     }
6094 
6095     if (ActuallyDoIt) {
6096       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6097       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6098 
6099       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6100                                  ISD::SETNE);
6101       processIntegerCallValue(I, Res, false);
6102       return true;
6103     }
6104   }
6105 
6106 
6107   return false;
6108 }
6109 
6110 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6111 /// form.  If so, return true and lower it, otherwise return false and it
6112 /// will be lowered like a normal call.
6113 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6114   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6115   if (I.getNumArgOperands() != 3)
6116     return false;
6117 
6118   const Value *Src = I.getArgOperand(0);
6119   const Value *Char = I.getArgOperand(1);
6120   const Value *Length = I.getArgOperand(2);
6121   if (!Src->getType()->isPointerTy() ||
6122       !Char->getType()->isIntegerTy() ||
6123       !Length->getType()->isIntegerTy() ||
6124       !I.getType()->isPointerTy())
6125     return false;
6126 
6127   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6128   std::pair<SDValue, SDValue> Res =
6129     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6130                                 getValue(Src), getValue(Char), getValue(Length),
6131                                 MachinePointerInfo(Src));
6132   if (Res.first.getNode()) {
6133     setValue(&I, Res.first);
6134     PendingLoads.push_back(Res.second);
6135     return true;
6136   }
6137 
6138   return false;
6139 }
6140 
6141 ///
6142 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6143 /// to adjust the dst pointer by the size of the copied memory.
6144 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6145 
6146   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6147   if (I.getNumArgOperands() != 3)
6148     return false;
6149 
6150   SDValue Dst = getValue(I.getArgOperand(0));
6151   SDValue Src = getValue(I.getArgOperand(1));
6152   SDValue Size = getValue(I.getArgOperand(2));
6153 
6154   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6155   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6156   unsigned Align = std::min(DstAlign, SrcAlign);
6157   if (Align == 0) // Alignment of one or both could not be inferred.
6158     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6159 
6160   bool isVol = false;
6161   SDLoc sdl = getCurSDLoc();
6162 
6163   // In the mempcpy context we need to pass in a false value for isTailCall
6164   // because the return pointer needs to be adjusted by the size of
6165   // the copied memory.
6166   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6167                              false, /*isTailCall=*/false,
6168                              MachinePointerInfo(I.getArgOperand(0)),
6169                              MachinePointerInfo(I.getArgOperand(1)));
6170   assert(MC.getNode() != nullptr &&
6171          "** memcpy should not be lowered as TailCall in mempcpy context **");
6172   DAG.setRoot(MC);
6173 
6174   // Check if Size needs to be truncated or extended.
6175   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6176 
6177   // Adjust return pointer to point just past the last dst byte.
6178   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6179                                     Dst, Size);
6180   setValue(&I, DstPlusSize);
6181   return true;
6182 }
6183 
6184 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6185 /// optimized form.  If so, return true and lower it, otherwise return false
6186 /// and it will be lowered like a normal call.
6187 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6188   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6189   if (I.getNumArgOperands() != 2)
6190     return false;
6191 
6192   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6193   if (!Arg0->getType()->isPointerTy() ||
6194       !Arg1->getType()->isPointerTy() ||
6195       !I.getType()->isPointerTy())
6196     return false;
6197 
6198   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6199   std::pair<SDValue, SDValue> Res =
6200     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6201                                 getValue(Arg0), getValue(Arg1),
6202                                 MachinePointerInfo(Arg0),
6203                                 MachinePointerInfo(Arg1), isStpcpy);
6204   if (Res.first.getNode()) {
6205     setValue(&I, Res.first);
6206     DAG.setRoot(Res.second);
6207     return true;
6208   }
6209 
6210   return false;
6211 }
6212 
6213 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6214 /// If so, return true and lower it, otherwise return false and it will be
6215 /// lowered like a normal call.
6216 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6217   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6218   if (I.getNumArgOperands() != 2)
6219     return false;
6220 
6221   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6222   if (!Arg0->getType()->isPointerTy() ||
6223       !Arg1->getType()->isPointerTy() ||
6224       !I.getType()->isIntegerTy())
6225     return false;
6226 
6227   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6228   std::pair<SDValue, SDValue> Res =
6229     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6230                                 getValue(Arg0), getValue(Arg1),
6231                                 MachinePointerInfo(Arg0),
6232                                 MachinePointerInfo(Arg1));
6233   if (Res.first.getNode()) {
6234     processIntegerCallValue(I, Res.first, true);
6235     PendingLoads.push_back(Res.second);
6236     return true;
6237   }
6238 
6239   return false;
6240 }
6241 
6242 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6243 /// form.  If so, return true and lower it, otherwise return false and it
6244 /// will be lowered like a normal call.
6245 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6246   // Verify that the prototype makes sense.  size_t strlen(char *)
6247   if (I.getNumArgOperands() != 1)
6248     return false;
6249 
6250   const Value *Arg0 = I.getArgOperand(0);
6251   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6252     return false;
6253 
6254   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6255   std::pair<SDValue, SDValue> Res =
6256     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6257                                 getValue(Arg0), MachinePointerInfo(Arg0));
6258   if (Res.first.getNode()) {
6259     processIntegerCallValue(I, Res.first, false);
6260     PendingLoads.push_back(Res.second);
6261     return true;
6262   }
6263 
6264   return false;
6265 }
6266 
6267 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6268 /// form.  If so, return true and lower it, otherwise return false and it
6269 /// will be lowered like a normal call.
6270 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6271   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6272   if (I.getNumArgOperands() != 2)
6273     return false;
6274 
6275   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6276   if (!Arg0->getType()->isPointerTy() ||
6277       !Arg1->getType()->isIntegerTy() ||
6278       !I.getType()->isIntegerTy())
6279     return false;
6280 
6281   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6282   std::pair<SDValue, SDValue> Res =
6283     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6284                                  getValue(Arg0), getValue(Arg1),
6285                                  MachinePointerInfo(Arg0));
6286   if (Res.first.getNode()) {
6287     processIntegerCallValue(I, Res.first, false);
6288     PendingLoads.push_back(Res.second);
6289     return true;
6290   }
6291 
6292   return false;
6293 }
6294 
6295 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6296 /// operation (as expected), translate it to an SDNode with the specified opcode
6297 /// and return true.
6298 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6299                                               unsigned Opcode) {
6300   // Sanity check that it really is a unary floating-point call.
6301   if (I.getNumArgOperands() != 1 ||
6302       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6303       I.getType() != I.getArgOperand(0)->getType() ||
6304       !I.onlyReadsMemory())
6305     return false;
6306 
6307   SDValue Tmp = getValue(I.getArgOperand(0));
6308   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6309   return true;
6310 }
6311 
6312 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6313 /// operation (as expected), translate it to an SDNode with the specified opcode
6314 /// and return true.
6315 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6316                                                unsigned Opcode) {
6317   // Sanity check that it really is a binary floating-point call.
6318   if (I.getNumArgOperands() != 2 ||
6319       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6320       I.getType() != I.getArgOperand(0)->getType() ||
6321       I.getType() != I.getArgOperand(1)->getType() ||
6322       !I.onlyReadsMemory())
6323     return false;
6324 
6325   SDValue Tmp0 = getValue(I.getArgOperand(0));
6326   SDValue Tmp1 = getValue(I.getArgOperand(1));
6327   EVT VT = Tmp0.getValueType();
6328   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6329   return true;
6330 }
6331 
6332 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6333   // Handle inline assembly differently.
6334   if (isa<InlineAsm>(I.getCalledValue())) {
6335     visitInlineAsm(&I);
6336     return;
6337   }
6338 
6339   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6340   computeUsesVAFloatArgument(I, MMI);
6341 
6342   const char *RenameFn = nullptr;
6343   if (Function *F = I.getCalledFunction()) {
6344     if (F->isDeclaration()) {
6345       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6346         if (unsigned IID = II->getIntrinsicID(F)) {
6347           RenameFn = visitIntrinsicCall(I, IID);
6348           if (!RenameFn)
6349             return;
6350         }
6351       }
6352       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6353         RenameFn = visitIntrinsicCall(I, IID);
6354         if (!RenameFn)
6355           return;
6356       }
6357     }
6358 
6359     // Check for well-known libc/libm calls.  If the function is internal, it
6360     // can't be a library call.  Don't do the check if marked as nobuiltin for
6361     // some reason.
6362     LibFunc::Func Func;
6363     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6364         LibInfo->getLibFunc(F->getName(), Func) &&
6365         LibInfo->hasOptimizedCodeGen(Func)) {
6366       switch (Func) {
6367       default: break;
6368       case LibFunc::copysign:
6369       case LibFunc::copysignf:
6370       case LibFunc::copysignl:
6371         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6372             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6373             I.getType() == I.getArgOperand(0)->getType() &&
6374             I.getType() == I.getArgOperand(1)->getType() &&
6375             I.onlyReadsMemory()) {
6376           SDValue LHS = getValue(I.getArgOperand(0));
6377           SDValue RHS = getValue(I.getArgOperand(1));
6378           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6379                                    LHS.getValueType(), LHS, RHS));
6380           return;
6381         }
6382         break;
6383       case LibFunc::fabs:
6384       case LibFunc::fabsf:
6385       case LibFunc::fabsl:
6386         if (visitUnaryFloatCall(I, ISD::FABS))
6387           return;
6388         break;
6389       case LibFunc::fmin:
6390       case LibFunc::fminf:
6391       case LibFunc::fminl:
6392         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6393           return;
6394         break;
6395       case LibFunc::fmax:
6396       case LibFunc::fmaxf:
6397       case LibFunc::fmaxl:
6398         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6399           return;
6400         break;
6401       case LibFunc::sin:
6402       case LibFunc::sinf:
6403       case LibFunc::sinl:
6404         if (visitUnaryFloatCall(I, ISD::FSIN))
6405           return;
6406         break;
6407       case LibFunc::cos:
6408       case LibFunc::cosf:
6409       case LibFunc::cosl:
6410         if (visitUnaryFloatCall(I, ISD::FCOS))
6411           return;
6412         break;
6413       case LibFunc::sqrt:
6414       case LibFunc::sqrtf:
6415       case LibFunc::sqrtl:
6416       case LibFunc::sqrt_finite:
6417       case LibFunc::sqrtf_finite:
6418       case LibFunc::sqrtl_finite:
6419         if (visitUnaryFloatCall(I, ISD::FSQRT))
6420           return;
6421         break;
6422       case LibFunc::floor:
6423       case LibFunc::floorf:
6424       case LibFunc::floorl:
6425         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6426           return;
6427         break;
6428       case LibFunc::nearbyint:
6429       case LibFunc::nearbyintf:
6430       case LibFunc::nearbyintl:
6431         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6432           return;
6433         break;
6434       case LibFunc::ceil:
6435       case LibFunc::ceilf:
6436       case LibFunc::ceill:
6437         if (visitUnaryFloatCall(I, ISD::FCEIL))
6438           return;
6439         break;
6440       case LibFunc::rint:
6441       case LibFunc::rintf:
6442       case LibFunc::rintl:
6443         if (visitUnaryFloatCall(I, ISD::FRINT))
6444           return;
6445         break;
6446       case LibFunc::round:
6447       case LibFunc::roundf:
6448       case LibFunc::roundl:
6449         if (visitUnaryFloatCall(I, ISD::FROUND))
6450           return;
6451         break;
6452       case LibFunc::trunc:
6453       case LibFunc::truncf:
6454       case LibFunc::truncl:
6455         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6456           return;
6457         break;
6458       case LibFunc::log2:
6459       case LibFunc::log2f:
6460       case LibFunc::log2l:
6461         if (visitUnaryFloatCall(I, ISD::FLOG2))
6462           return;
6463         break;
6464       case LibFunc::exp2:
6465       case LibFunc::exp2f:
6466       case LibFunc::exp2l:
6467         if (visitUnaryFloatCall(I, ISD::FEXP2))
6468           return;
6469         break;
6470       case LibFunc::memcmp:
6471         if (visitMemCmpCall(I))
6472           return;
6473         break;
6474       case LibFunc::mempcpy:
6475         if (visitMemPCpyCall(I))
6476           return;
6477         break;
6478       case LibFunc::memchr:
6479         if (visitMemChrCall(I))
6480           return;
6481         break;
6482       case LibFunc::strcpy:
6483         if (visitStrCpyCall(I, false))
6484           return;
6485         break;
6486       case LibFunc::stpcpy:
6487         if (visitStrCpyCall(I, true))
6488           return;
6489         break;
6490       case LibFunc::strcmp:
6491         if (visitStrCmpCall(I))
6492           return;
6493         break;
6494       case LibFunc::strlen:
6495         if (visitStrLenCall(I))
6496           return;
6497         break;
6498       case LibFunc::strnlen:
6499         if (visitStrNLenCall(I))
6500           return;
6501         break;
6502       }
6503     }
6504   }
6505 
6506   SDValue Callee;
6507   if (!RenameFn)
6508     Callee = getValue(I.getCalledValue());
6509   else
6510     Callee = DAG.getExternalSymbol(
6511         RenameFn,
6512         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6513 
6514   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6515   // have to do anything here to lower funclet bundles.
6516   assert(!I.hasOperandBundlesOtherThan(
6517              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6518          "Cannot lower calls with arbitrary operand bundles!");
6519 
6520   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6521     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6522   else
6523     // Check if we can potentially perform a tail call. More detailed checking
6524     // is be done within LowerCallTo, after more information about the call is
6525     // known.
6526     LowerCallTo(&I, Callee, I.isTailCall());
6527 }
6528 
6529 namespace {
6530 
6531 /// AsmOperandInfo - This contains information for each constraint that we are
6532 /// lowering.
6533 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6534 public:
6535   /// CallOperand - If this is the result output operand or a clobber
6536   /// this is null, otherwise it is the incoming operand to the CallInst.
6537   /// This gets modified as the asm is processed.
6538   SDValue CallOperand;
6539 
6540   /// AssignedRegs - If this is a register or register class operand, this
6541   /// contains the set of register corresponding to the operand.
6542   RegsForValue AssignedRegs;
6543 
6544   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6545     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6546   }
6547 
6548   /// Whether or not this operand accesses memory
6549   bool hasMemory(const TargetLowering &TLI) const {
6550     // Indirect operand accesses access memory.
6551     if (isIndirect)
6552       return true;
6553 
6554     for (const auto &Code : Codes)
6555       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6556         return true;
6557 
6558     return false;
6559   }
6560 
6561   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6562   /// corresponds to.  If there is no Value* for this operand, it returns
6563   /// MVT::Other.
6564   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6565                            const DataLayout &DL) const {
6566     if (!CallOperandVal) return MVT::Other;
6567 
6568     if (isa<BasicBlock>(CallOperandVal))
6569       return TLI.getPointerTy(DL);
6570 
6571     llvm::Type *OpTy = CallOperandVal->getType();
6572 
6573     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6574     // If this is an indirect operand, the operand is a pointer to the
6575     // accessed type.
6576     if (isIndirect) {
6577       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6578       if (!PtrTy)
6579         report_fatal_error("Indirect operand for inline asm not a pointer!");
6580       OpTy = PtrTy->getElementType();
6581     }
6582 
6583     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6584     if (StructType *STy = dyn_cast<StructType>(OpTy))
6585       if (STy->getNumElements() == 1)
6586         OpTy = STy->getElementType(0);
6587 
6588     // If OpTy is not a single value, it may be a struct/union that we
6589     // can tile with integers.
6590     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6591       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6592       switch (BitSize) {
6593       default: break;
6594       case 1:
6595       case 8:
6596       case 16:
6597       case 32:
6598       case 64:
6599       case 128:
6600         OpTy = IntegerType::get(Context, BitSize);
6601         break;
6602       }
6603     }
6604 
6605     return TLI.getValueType(DL, OpTy, true);
6606   }
6607 };
6608 
6609 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6610 
6611 } // end anonymous namespace
6612 
6613 /// Make sure that the output operand \p OpInfo and its corresponding input
6614 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6615 /// out).
6616 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6617                                SDISelAsmOperandInfo &MatchingOpInfo,
6618                                SelectionDAG &DAG) {
6619   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6620     return;
6621 
6622   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6623   const auto &TLI = DAG.getTargetLoweringInfo();
6624 
6625   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6626       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6627                                        OpInfo.ConstraintVT);
6628   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6629       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6630                                        MatchingOpInfo.ConstraintVT);
6631   if ((OpInfo.ConstraintVT.isInteger() !=
6632        MatchingOpInfo.ConstraintVT.isInteger()) ||
6633       (MatchRC.second != InputRC.second)) {
6634     // FIXME: error out in a more elegant fashion
6635     report_fatal_error("Unsupported asm: input constraint"
6636                        " with a matching output constraint of"
6637                        " incompatible type!");
6638   }
6639   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6640 }
6641 
6642 /// Get a direct memory input to behave well as an indirect operand.
6643 /// This may introduce stores, hence the need for a \p Chain.
6644 /// \return The (possibly updated) chain.
6645 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6646                                         SDISelAsmOperandInfo &OpInfo,
6647                                         SelectionDAG &DAG) {
6648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6649 
6650   // If we don't have an indirect input, put it in the constpool if we can,
6651   // otherwise spill it to a stack slot.
6652   // TODO: This isn't quite right. We need to handle these according to
6653   // the addressing mode that the constraint wants. Also, this may take
6654   // an additional register for the computation and we don't want that
6655   // either.
6656 
6657   // If the operand is a float, integer, or vector constant, spill to a
6658   // constant pool entry to get its address.
6659   const Value *OpVal = OpInfo.CallOperandVal;
6660   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6661       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6662     OpInfo.CallOperand = DAG.getConstantPool(
6663         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6664     return Chain;
6665   }
6666 
6667   // Otherwise, create a stack slot and emit a store to it before the asm.
6668   Type *Ty = OpVal->getType();
6669   auto &DL = DAG.getDataLayout();
6670   uint64_t TySize = DL.getTypeAllocSize(Ty);
6671   unsigned Align = DL.getPrefTypeAlignment(Ty);
6672   MachineFunction &MF = DAG.getMachineFunction();
6673   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6674   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6675   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6676                        MachinePointerInfo::getFixedStack(MF, SSFI));
6677   OpInfo.CallOperand = StackSlot;
6678 
6679   return Chain;
6680 }
6681 
6682 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6683 /// specified operand.  We prefer to assign virtual registers, to allow the
6684 /// register allocator to handle the assignment process.  However, if the asm
6685 /// uses features that we can't model on machineinstrs, we have SDISel do the
6686 /// allocation.  This produces generally horrible, but correct, code.
6687 ///
6688 ///   OpInfo describes the operand.
6689 ///
6690 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6691                                  const SDLoc &DL,
6692                                  SDISelAsmOperandInfo &OpInfo) {
6693   LLVMContext &Context = *DAG.getContext();
6694 
6695   MachineFunction &MF = DAG.getMachineFunction();
6696   SmallVector<unsigned, 4> Regs;
6697 
6698   // If this is a constraint for a single physreg, or a constraint for a
6699   // register class, find it.
6700   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6701       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6702                                        OpInfo.ConstraintCode,
6703                                        OpInfo.ConstraintVT);
6704 
6705   unsigned NumRegs = 1;
6706   if (OpInfo.ConstraintVT != MVT::Other) {
6707     // If this is a FP input in an integer register (or visa versa) insert a bit
6708     // cast of the input value.  More generally, handle any case where the input
6709     // value disagrees with the register class we plan to stick this in.
6710     if (OpInfo.Type == InlineAsm::isInput &&
6711         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6712       // Try to convert to the first EVT that the reg class contains.  If the
6713       // types are identical size, use a bitcast to convert (e.g. two differing
6714       // vector types).
6715       MVT RegVT = *PhysReg.second->vt_begin();
6716       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6717         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6718                                          RegVT, OpInfo.CallOperand);
6719         OpInfo.ConstraintVT = RegVT;
6720       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6721         // If the input is a FP value and we want it in FP registers, do a
6722         // bitcast to the corresponding integer type.  This turns an f64 value
6723         // into i64, which can be passed with two i32 values on a 32-bit
6724         // machine.
6725         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6726         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6727                                          RegVT, OpInfo.CallOperand);
6728         OpInfo.ConstraintVT = RegVT;
6729       }
6730     }
6731 
6732     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6733   }
6734 
6735   MVT RegVT;
6736   EVT ValueVT = OpInfo.ConstraintVT;
6737 
6738   // If this is a constraint for a specific physical register, like {r17},
6739   // assign it now.
6740   if (unsigned AssignedReg = PhysReg.first) {
6741     const TargetRegisterClass *RC = PhysReg.second;
6742     if (OpInfo.ConstraintVT == MVT::Other)
6743       ValueVT = *RC->vt_begin();
6744 
6745     // Get the actual register value type.  This is important, because the user
6746     // may have asked for (e.g.) the AX register in i32 type.  We need to
6747     // remember that AX is actually i16 to get the right extension.
6748     RegVT = *RC->vt_begin();
6749 
6750     // This is a explicit reference to a physical register.
6751     Regs.push_back(AssignedReg);
6752 
6753     // If this is an expanded reference, add the rest of the regs to Regs.
6754     if (NumRegs != 1) {
6755       TargetRegisterClass::iterator I = RC->begin();
6756       for (; *I != AssignedReg; ++I)
6757         assert(I != RC->end() && "Didn't find reg!");
6758 
6759       // Already added the first reg.
6760       --NumRegs; ++I;
6761       for (; NumRegs; --NumRegs, ++I) {
6762         assert(I != RC->end() && "Ran out of registers to allocate!");
6763         Regs.push_back(*I);
6764       }
6765     }
6766 
6767     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6768     return;
6769   }
6770 
6771   // Otherwise, if this was a reference to an LLVM register class, create vregs
6772   // for this reference.
6773   if (const TargetRegisterClass *RC = PhysReg.second) {
6774     RegVT = *RC->vt_begin();
6775     if (OpInfo.ConstraintVT == MVT::Other)
6776       ValueVT = RegVT;
6777 
6778     // Create the appropriate number of virtual registers.
6779     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6780     for (; NumRegs; --NumRegs)
6781       Regs.push_back(RegInfo.createVirtualRegister(RC));
6782 
6783     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6784     return;
6785   }
6786 
6787   // Otherwise, we couldn't allocate enough registers for this.
6788 }
6789 
6790 static unsigned
6791 findMatchingInlineAsmOperand(unsigned OperandNo,
6792                              const std::vector<SDValue> &AsmNodeOperands) {
6793   // Scan until we find the definition we already emitted of this operand.
6794   unsigned CurOp = InlineAsm::Op_FirstOperand;
6795   for (; OperandNo; --OperandNo) {
6796     // Advance to the next operand.
6797     unsigned OpFlag =
6798         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6799     assert((InlineAsm::isRegDefKind(OpFlag) ||
6800             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6801             InlineAsm::isMemKind(OpFlag)) &&
6802            "Skipped past definitions?");
6803     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6804   }
6805   return CurOp;
6806 }
6807 
6808 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6809 /// \return true if it has succeeded, false otherwise
6810 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6811                               MVT RegVT, SelectionDAG &DAG) {
6812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6813   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6814   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6815     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6816       Regs.push_back(RegInfo.createVirtualRegister(RC));
6817     else
6818       return false;
6819   }
6820   return true;
6821 }
6822 
6823 class ExtraFlags {
6824   unsigned Flags = 0;
6825 
6826 public:
6827   explicit ExtraFlags(ImmutableCallSite CS) {
6828     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6829     if (IA->hasSideEffects())
6830       Flags |= InlineAsm::Extra_HasSideEffects;
6831     if (IA->isAlignStack())
6832       Flags |= InlineAsm::Extra_IsAlignStack;
6833     if (CS.isConvergent())
6834       Flags |= InlineAsm::Extra_IsConvergent;
6835     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6836   }
6837 
6838   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6839     // Ideally, we would only check against memory constraints.  However, the
6840     // meaning of an Other constraint can be target-specific and we can't easily
6841     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6842     // for Other constraints as well.
6843     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6844         OpInfo.ConstraintType == TargetLowering::C_Other) {
6845       if (OpInfo.Type == InlineAsm::isInput)
6846         Flags |= InlineAsm::Extra_MayLoad;
6847       else if (OpInfo.Type == InlineAsm::isOutput)
6848         Flags |= InlineAsm::Extra_MayStore;
6849       else if (OpInfo.Type == InlineAsm::isClobber)
6850         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6851     }
6852   }
6853 
6854   unsigned get() const { return Flags; }
6855 };
6856 
6857 /// visitInlineAsm - Handle a call to an InlineAsm object.
6858 ///
6859 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6860   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6861 
6862   /// ConstraintOperands - Information about all of the constraints.
6863   SDISelAsmOperandInfoVector ConstraintOperands;
6864 
6865   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6866   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6867       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6868 
6869   bool hasMemory = false;
6870 
6871   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6872   ExtraFlags ExtraInfo(CS);
6873 
6874   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6875   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6876   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6877     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6878     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6879 
6880     MVT OpVT = MVT::Other;
6881 
6882     // Compute the value type for each operand.
6883     if (OpInfo.Type == InlineAsm::isInput ||
6884         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6885       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6886 
6887       // Process the call argument. BasicBlocks are labels, currently appearing
6888       // only in asm's.
6889       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6890         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6891       } else {
6892         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6893       }
6894 
6895       OpVT =
6896           OpInfo
6897               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6898               .getSimpleVT();
6899     }
6900 
6901     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6902       // The return value of the call is this value.  As such, there is no
6903       // corresponding argument.
6904       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6905       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6906         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6907                                       STy->getElementType(ResNo));
6908       } else {
6909         assert(ResNo == 0 && "Asm only has one result!");
6910         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6911       }
6912       ++ResNo;
6913     }
6914 
6915     OpInfo.ConstraintVT = OpVT;
6916 
6917     if (!hasMemory)
6918       hasMemory = OpInfo.hasMemory(TLI);
6919 
6920     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6921     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6922     auto TargetConstraint = TargetConstraints[i];
6923 
6924     // Compute the constraint code and ConstraintType to use.
6925     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6926 
6927     ExtraInfo.update(TargetConstraint);
6928   }
6929 
6930   SDValue Chain, Flag;
6931 
6932   // We won't need to flush pending loads if this asm doesn't touch
6933   // memory and is nonvolatile.
6934   if (hasMemory || IA->hasSideEffects())
6935     Chain = getRoot();
6936   else
6937     Chain = DAG.getRoot();
6938 
6939   // Second pass over the constraints: compute which constraint option to use
6940   // and assign registers to constraints that want a specific physreg.
6941   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6942     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6943 
6944     // If this is an output operand with a matching input operand, look up the
6945     // matching input. If their types mismatch, e.g. one is an integer, the
6946     // other is floating point, or their sizes are different, flag it as an
6947     // error.
6948     if (OpInfo.hasMatchingInput()) {
6949       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6950       patchMatchingInput(OpInfo, Input, DAG);
6951     }
6952 
6953     // Compute the constraint code and ConstraintType to use.
6954     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6955 
6956     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6957         OpInfo.Type == InlineAsm::isClobber)
6958       continue;
6959 
6960     // If this is a memory input, and if the operand is not indirect, do what we
6961     // need to to provide an address for the memory input.
6962     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6963         !OpInfo.isIndirect) {
6964       assert((OpInfo.isMultipleAlternative ||
6965               (OpInfo.Type == InlineAsm::isInput)) &&
6966              "Can only indirectify direct input operands!");
6967 
6968       // Memory operands really want the address of the value.
6969       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6970 
6971       // There is no longer a Value* corresponding to this operand.
6972       OpInfo.CallOperandVal = nullptr;
6973 
6974       // It is now an indirect operand.
6975       OpInfo.isIndirect = true;
6976     }
6977 
6978     // If this constraint is for a specific register, allocate it before
6979     // anything else.
6980     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6981       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6982   }
6983 
6984   // Third pass - Loop over all of the operands, assigning virtual or physregs
6985   // to register class operands.
6986   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6987     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6988 
6989     // C_Register operands have already been allocated, Other/Memory don't need
6990     // to be.
6991     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6992       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6993   }
6994 
6995   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6996   std::vector<SDValue> AsmNodeOperands;
6997   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6998   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6999       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7000 
7001   // If we have a !srcloc metadata node associated with it, we want to attach
7002   // this to the ultimately generated inline asm machineinstr.  To do this, we
7003   // pass in the third operand as this (potentially null) inline asm MDNode.
7004   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7005   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7006 
7007   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7008   // bits as operand 3.
7009   AsmNodeOperands.push_back(DAG.getTargetConstant(
7010       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7011 
7012   // Loop over all of the inputs, copying the operand values into the
7013   // appropriate registers and processing the output regs.
7014   RegsForValue RetValRegs;
7015 
7016   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7017   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
7018 
7019   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7020     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7021 
7022     switch (OpInfo.Type) {
7023     case InlineAsm::isOutput: {
7024       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7025           OpInfo.ConstraintType != TargetLowering::C_Register) {
7026         // Memory output, or 'other' output (e.g. 'X' constraint).
7027         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7028 
7029         unsigned ConstraintID =
7030             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7031         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7032                "Failed to convert memory constraint code to constraint id.");
7033 
7034         // Add information to the INLINEASM node to know about this output.
7035         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7036         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7037         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7038                                                         MVT::i32));
7039         AsmNodeOperands.push_back(OpInfo.CallOperand);
7040         break;
7041       }
7042 
7043       // Otherwise, this is a register or register class output.
7044 
7045       // Copy the output from the appropriate register.  Find a register that
7046       // we can use.
7047       if (OpInfo.AssignedRegs.Regs.empty()) {
7048         emitInlineAsmError(
7049             CS, "couldn't allocate output register for constraint '" +
7050                     Twine(OpInfo.ConstraintCode) + "'");
7051         return;
7052       }
7053 
7054       // If this is an indirect operand, store through the pointer after the
7055       // asm.
7056       if (OpInfo.isIndirect) {
7057         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7058                                                       OpInfo.CallOperandVal));
7059       } else {
7060         // This is the result value of the call.
7061         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7062         // Concatenate this output onto the outputs list.
7063         RetValRegs.append(OpInfo.AssignedRegs);
7064       }
7065 
7066       // Add information to the INLINEASM node to know that this register is
7067       // set.
7068       OpInfo.AssignedRegs
7069           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7070                                     ? InlineAsm::Kind_RegDefEarlyClobber
7071                                     : InlineAsm::Kind_RegDef,
7072                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7073       break;
7074     }
7075     case InlineAsm::isInput: {
7076       SDValue InOperandVal = OpInfo.CallOperand;
7077 
7078       if (OpInfo.isMatchingInputConstraint()) {
7079         // If this is required to match an output register we have already set,
7080         // just use its register.
7081         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7082                                                   AsmNodeOperands);
7083         unsigned OpFlag =
7084           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7085         if (InlineAsm::isRegDefKind(OpFlag) ||
7086             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7087           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7088           if (OpInfo.isIndirect) {
7089             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7090             emitInlineAsmError(CS, "inline asm not supported yet:"
7091                                    " don't know how to handle tied "
7092                                    "indirect register inputs");
7093             return;
7094           }
7095 
7096           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7097           SmallVector<unsigned, 4> Regs;
7098 
7099           if (!createVirtualRegs(Regs,
7100                                  InlineAsm::getNumOperandRegisters(OpFlag),
7101                                  RegVT, DAG)) {
7102             emitInlineAsmError(CS, "inline asm error: This value type register "
7103                                    "class is not natively supported!");
7104             return;
7105           }
7106 
7107           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7108 
7109           SDLoc dl = getCurSDLoc();
7110           // Use the produced MatchedRegs object to
7111           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7112                                     Chain, &Flag, CS.getInstruction());
7113           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7114                                            true, OpInfo.getMatchedOperand(), dl,
7115                                            DAG, AsmNodeOperands);
7116           break;
7117         }
7118 
7119         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7120         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7121                "Unexpected number of operands");
7122         // Add information to the INLINEASM node to know about this input.
7123         // See InlineAsm.h isUseOperandTiedToDef.
7124         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7125         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7126                                                     OpInfo.getMatchedOperand());
7127         AsmNodeOperands.push_back(DAG.getTargetConstant(
7128             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7129         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7130         break;
7131       }
7132 
7133       // Treat indirect 'X' constraint as memory.
7134       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7135           OpInfo.isIndirect)
7136         OpInfo.ConstraintType = TargetLowering::C_Memory;
7137 
7138       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7139         std::vector<SDValue> Ops;
7140         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7141                                           Ops, DAG);
7142         if (Ops.empty()) {
7143           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7144                                      Twine(OpInfo.ConstraintCode) + "'");
7145           return;
7146         }
7147 
7148         // Add information to the INLINEASM node to know about this input.
7149         unsigned ResOpType =
7150           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7151         AsmNodeOperands.push_back(DAG.getTargetConstant(
7152             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7153         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7154         break;
7155       }
7156 
7157       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7158         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7159         assert(InOperandVal.getValueType() ==
7160                    TLI.getPointerTy(DAG.getDataLayout()) &&
7161                "Memory operands expect pointer values");
7162 
7163         unsigned ConstraintID =
7164             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7165         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7166                "Failed to convert memory constraint code to constraint id.");
7167 
7168         // Add information to the INLINEASM node to know about this input.
7169         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7170         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7171         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7172                                                         getCurSDLoc(),
7173                                                         MVT::i32));
7174         AsmNodeOperands.push_back(InOperandVal);
7175         break;
7176       }
7177 
7178       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7179               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7180              "Unknown constraint type!");
7181 
7182       // TODO: Support this.
7183       if (OpInfo.isIndirect) {
7184         emitInlineAsmError(
7185             CS, "Don't know how to handle indirect register inputs yet "
7186                 "for constraint '" +
7187                     Twine(OpInfo.ConstraintCode) + "'");
7188         return;
7189       }
7190 
7191       // Copy the input into the appropriate registers.
7192       if (OpInfo.AssignedRegs.Regs.empty()) {
7193         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7194                                    Twine(OpInfo.ConstraintCode) + "'");
7195         return;
7196       }
7197 
7198       SDLoc dl = getCurSDLoc();
7199 
7200       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7201                                         Chain, &Flag, CS.getInstruction());
7202 
7203       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7204                                                dl, DAG, AsmNodeOperands);
7205       break;
7206     }
7207     case InlineAsm::isClobber: {
7208       // Add the clobbered value to the operand list, so that the register
7209       // allocator is aware that the physreg got clobbered.
7210       if (!OpInfo.AssignedRegs.Regs.empty())
7211         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7212                                                  false, 0, getCurSDLoc(), DAG,
7213                                                  AsmNodeOperands);
7214       break;
7215     }
7216     }
7217   }
7218 
7219   // Finish up input operands.  Set the input chain and add the flag last.
7220   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7221   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7222 
7223   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7224                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7225   Flag = Chain.getValue(1);
7226 
7227   // If this asm returns a register value, copy the result from that register
7228   // and set it as the value of the call.
7229   if (!RetValRegs.Regs.empty()) {
7230     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7231                                              Chain, &Flag, CS.getInstruction());
7232 
7233     // FIXME: Why don't we do this for inline asms with MRVs?
7234     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7235       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7236 
7237       // If any of the results of the inline asm is a vector, it may have the
7238       // wrong width/num elts.  This can happen for register classes that can
7239       // contain multiple different value types.  The preg or vreg allocated may
7240       // not have the same VT as was expected.  Convert it to the right type
7241       // with bit_convert.
7242       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7243         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7244                           ResultType, Val);
7245 
7246       } else if (ResultType != Val.getValueType() &&
7247                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7248         // If a result value was tied to an input value, the computed result may
7249         // have a wider width than the expected result.  Extract the relevant
7250         // portion.
7251         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7252       }
7253 
7254       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7255     }
7256 
7257     setValue(CS.getInstruction(), Val);
7258     // Don't need to use this as a chain in this case.
7259     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7260       return;
7261   }
7262 
7263   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7264 
7265   // Process indirect outputs, first output all of the flagged copies out of
7266   // physregs.
7267   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7268     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7269     const Value *Ptr = IndirectStoresToEmit[i].second;
7270     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7271                                              Chain, &Flag, IA);
7272     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7273   }
7274 
7275   // Emit the non-flagged stores from the physregs.
7276   SmallVector<SDValue, 8> OutChains;
7277   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7278     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7279                                getValue(StoresToEmit[i].second),
7280                                MachinePointerInfo(StoresToEmit[i].second));
7281     OutChains.push_back(Val);
7282   }
7283 
7284   if (!OutChains.empty())
7285     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7286 
7287   DAG.setRoot(Chain);
7288 }
7289 
7290 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7291                                              const Twine &Message) {
7292   LLVMContext &Ctx = *DAG.getContext();
7293   Ctx.emitError(CS.getInstruction(), Message);
7294 
7295   // Make sure we leave the DAG in a valid state
7296   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7297   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7298   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7299 }
7300 
7301 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7302   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7303                           MVT::Other, getRoot(),
7304                           getValue(I.getArgOperand(0)),
7305                           DAG.getSrcValue(I.getArgOperand(0))));
7306 }
7307 
7308 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7309   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7310   const DataLayout &DL = DAG.getDataLayout();
7311   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7312                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7313                            DAG.getSrcValue(I.getOperand(0)),
7314                            DL.getABITypeAlignment(I.getType()));
7315   setValue(&I, V);
7316   DAG.setRoot(V.getValue(1));
7317 }
7318 
7319 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7320   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7321                           MVT::Other, getRoot(),
7322                           getValue(I.getArgOperand(0)),
7323                           DAG.getSrcValue(I.getArgOperand(0))));
7324 }
7325 
7326 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7327   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7328                           MVT::Other, getRoot(),
7329                           getValue(I.getArgOperand(0)),
7330                           getValue(I.getArgOperand(1)),
7331                           DAG.getSrcValue(I.getArgOperand(0)),
7332                           DAG.getSrcValue(I.getArgOperand(1))));
7333 }
7334 
7335 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7336                                                     const Instruction &I,
7337                                                     SDValue Op) {
7338   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7339   if (!Range)
7340     return Op;
7341 
7342   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7343   if (!Lo->isNullValue())
7344     return Op;
7345 
7346   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7347   unsigned Bits = cast<ConstantInt>(Hi)->getValue().ceilLogBase2();
7348 
7349   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7350 
7351   SDLoc SL = getCurSDLoc();
7352 
7353   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7354                              Op, DAG.getValueType(SmallVT));
7355   unsigned NumVals = Op.getNode()->getNumValues();
7356   if (NumVals == 1)
7357     return ZExt;
7358 
7359   SmallVector<SDValue, 4> Ops;
7360 
7361   Ops.push_back(ZExt);
7362   for (unsigned I = 1; I != NumVals; ++I)
7363     Ops.push_back(Op.getValue(I));
7364 
7365   return DAG.getMergeValues(Ops, SL);
7366 }
7367 
7368 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7369 /// the call being lowered.
7370 ///
7371 /// This is a helper for lowering intrinsics that follow a target calling
7372 /// convention or require stack pointer adjustment. Only a subset of the
7373 /// intrinsic's operands need to participate in the calling convention.
7374 void SelectionDAGBuilder::populateCallLoweringInfo(
7375     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7376     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7377     bool IsPatchPoint) {
7378   TargetLowering::ArgListTy Args;
7379   Args.reserve(NumArgs);
7380 
7381   // Populate the argument list.
7382   // Attributes for args start at offset 1, after the return attribute.
7383   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7384        ArgI != ArgE; ++ArgI) {
7385     const Value *V = CS->getOperand(ArgI);
7386 
7387     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7388 
7389     TargetLowering::ArgListEntry Entry;
7390     Entry.Node = getValue(V);
7391     Entry.Ty = V->getType();
7392     Entry.setAttributes(&CS, AttrI);
7393     Args.push_back(Entry);
7394   }
7395 
7396   CLI.setDebugLoc(getCurSDLoc())
7397       .setChain(getRoot())
7398       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7399       .setDiscardResult(CS->use_empty())
7400       .setIsPatchPoint(IsPatchPoint);
7401 }
7402 
7403 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7404 /// or patchpoint target node's operand list.
7405 ///
7406 /// Constants are converted to TargetConstants purely as an optimization to
7407 /// avoid constant materialization and register allocation.
7408 ///
7409 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7410 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7411 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7412 /// address materialization and register allocation, but may also be required
7413 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7414 /// alloca in the entry block, then the runtime may assume that the alloca's
7415 /// StackMap location can be read immediately after compilation and that the
7416 /// location is valid at any point during execution (this is similar to the
7417 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7418 /// only available in a register, then the runtime would need to trap when
7419 /// execution reaches the StackMap in order to read the alloca's location.
7420 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7421                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7422                                 SelectionDAGBuilder &Builder) {
7423   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7424     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7425     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7426       Ops.push_back(
7427         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7428       Ops.push_back(
7429         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7430     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7431       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7432       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7433           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7434     } else
7435       Ops.push_back(OpVal);
7436   }
7437 }
7438 
7439 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7440 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7441   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7442   //                                  [live variables...])
7443 
7444   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7445 
7446   SDValue Chain, InFlag, Callee, NullPtr;
7447   SmallVector<SDValue, 32> Ops;
7448 
7449   SDLoc DL = getCurSDLoc();
7450   Callee = getValue(CI.getCalledValue());
7451   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7452 
7453   // The stackmap intrinsic only records the live variables (the arguemnts
7454   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7455   // intrinsic, this won't be lowered to a function call. This means we don't
7456   // have to worry about calling conventions and target specific lowering code.
7457   // Instead we perform the call lowering right here.
7458   //
7459   // chain, flag = CALLSEQ_START(chain, 0)
7460   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7461   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7462   //
7463   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7464   InFlag = Chain.getValue(1);
7465 
7466   // Add the <id> and <numBytes> constants.
7467   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7468   Ops.push_back(DAG.getTargetConstant(
7469                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7470   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7471   Ops.push_back(DAG.getTargetConstant(
7472                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7473                   MVT::i32));
7474 
7475   // Push live variables for the stack map.
7476   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7477 
7478   // We are not pushing any register mask info here on the operands list,
7479   // because the stackmap doesn't clobber anything.
7480 
7481   // Push the chain and the glue flag.
7482   Ops.push_back(Chain);
7483   Ops.push_back(InFlag);
7484 
7485   // Create the STACKMAP node.
7486   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7487   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7488   Chain = SDValue(SM, 0);
7489   InFlag = Chain.getValue(1);
7490 
7491   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7492 
7493   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7494 
7495   // Set the root to the target-lowered call chain.
7496   DAG.setRoot(Chain);
7497 
7498   // Inform the Frame Information that we have a stackmap in this function.
7499   FuncInfo.MF->getFrameInfo().setHasStackMap();
7500 }
7501 
7502 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7503 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7504                                           const BasicBlock *EHPadBB) {
7505   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7506   //                                                 i32 <numBytes>,
7507   //                                                 i8* <target>,
7508   //                                                 i32 <numArgs>,
7509   //                                                 [Args...],
7510   //                                                 [live variables...])
7511 
7512   CallingConv::ID CC = CS.getCallingConv();
7513   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7514   bool HasDef = !CS->getType()->isVoidTy();
7515   SDLoc dl = getCurSDLoc();
7516   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7517 
7518   // Handle immediate and symbolic callees.
7519   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7520     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7521                                    /*isTarget=*/true);
7522   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7523     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7524                                          SDLoc(SymbolicCallee),
7525                                          SymbolicCallee->getValueType(0));
7526 
7527   // Get the real number of arguments participating in the call <numArgs>
7528   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7529   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7530 
7531   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7532   // Intrinsics include all meta-operands up to but not including CC.
7533   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7534   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7535          "Not enough arguments provided to the patchpoint intrinsic");
7536 
7537   // For AnyRegCC the arguments are lowered later on manually.
7538   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7539   Type *ReturnTy =
7540     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7541 
7542   TargetLowering::CallLoweringInfo CLI(DAG);
7543   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7544                            true);
7545   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7546 
7547   SDNode *CallEnd = Result.second.getNode();
7548   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7549     CallEnd = CallEnd->getOperand(0).getNode();
7550 
7551   /// Get a call instruction from the call sequence chain.
7552   /// Tail calls are not allowed.
7553   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7554          "Expected a callseq node.");
7555   SDNode *Call = CallEnd->getOperand(0).getNode();
7556   bool HasGlue = Call->getGluedNode();
7557 
7558   // Replace the target specific call node with the patchable intrinsic.
7559   SmallVector<SDValue, 8> Ops;
7560 
7561   // Add the <id> and <numBytes> constants.
7562   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7563   Ops.push_back(DAG.getTargetConstant(
7564                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7565   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7566   Ops.push_back(DAG.getTargetConstant(
7567                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7568                   MVT::i32));
7569 
7570   // Add the callee.
7571   Ops.push_back(Callee);
7572 
7573   // Adjust <numArgs> to account for any arguments that have been passed on the
7574   // stack instead.
7575   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7576   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7577   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7578   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7579 
7580   // Add the calling convention
7581   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7582 
7583   // Add the arguments we omitted previously. The register allocator should
7584   // place these in any free register.
7585   if (IsAnyRegCC)
7586     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7587       Ops.push_back(getValue(CS.getArgument(i)));
7588 
7589   // Push the arguments from the call instruction up to the register mask.
7590   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7591   Ops.append(Call->op_begin() + 2, e);
7592 
7593   // Push live variables for the stack map.
7594   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7595 
7596   // Push the register mask info.
7597   if (HasGlue)
7598     Ops.push_back(*(Call->op_end()-2));
7599   else
7600     Ops.push_back(*(Call->op_end()-1));
7601 
7602   // Push the chain (this is originally the first operand of the call, but
7603   // becomes now the last or second to last operand).
7604   Ops.push_back(*(Call->op_begin()));
7605 
7606   // Push the glue flag (last operand).
7607   if (HasGlue)
7608     Ops.push_back(*(Call->op_end()-1));
7609 
7610   SDVTList NodeTys;
7611   if (IsAnyRegCC && HasDef) {
7612     // Create the return types based on the intrinsic definition
7613     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7614     SmallVector<EVT, 3> ValueVTs;
7615     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7616     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7617 
7618     // There is always a chain and a glue type at the end
7619     ValueVTs.push_back(MVT::Other);
7620     ValueVTs.push_back(MVT::Glue);
7621     NodeTys = DAG.getVTList(ValueVTs);
7622   } else
7623     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7624 
7625   // Replace the target specific call node with a PATCHPOINT node.
7626   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7627                                          dl, NodeTys, Ops);
7628 
7629   // Update the NodeMap.
7630   if (HasDef) {
7631     if (IsAnyRegCC)
7632       setValue(CS.getInstruction(), SDValue(MN, 0));
7633     else
7634       setValue(CS.getInstruction(), Result.first);
7635   }
7636 
7637   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7638   // call sequence. Furthermore the location of the chain and glue can change
7639   // when the AnyReg calling convention is used and the intrinsic returns a
7640   // value.
7641   if (IsAnyRegCC && HasDef) {
7642     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7643     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7644     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7645   } else
7646     DAG.ReplaceAllUsesWith(Call, MN);
7647   DAG.DeleteNode(Call);
7648 
7649   // Inform the Frame Information that we have a patchpoint in this function.
7650   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7651 }
7652 
7653 /// Returns an AttributeSet representing the attributes applied to the return
7654 /// value of the given call.
7655 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7656   SmallVector<Attribute::AttrKind, 2> Attrs;
7657   if (CLI.RetSExt)
7658     Attrs.push_back(Attribute::SExt);
7659   if (CLI.RetZExt)
7660     Attrs.push_back(Attribute::ZExt);
7661   if (CLI.IsInReg)
7662     Attrs.push_back(Attribute::InReg);
7663 
7664   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7665                            Attrs);
7666 }
7667 
7668 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7669 /// implementation, which just calls LowerCall.
7670 /// FIXME: When all targets are
7671 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7672 std::pair<SDValue, SDValue>
7673 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7674   // Handle the incoming return values from the call.
7675   CLI.Ins.clear();
7676   Type *OrigRetTy = CLI.RetTy;
7677   SmallVector<EVT, 4> RetTys;
7678   SmallVector<uint64_t, 4> Offsets;
7679   auto &DL = CLI.DAG.getDataLayout();
7680   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7681 
7682   SmallVector<ISD::OutputArg, 4> Outs;
7683   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7684 
7685   bool CanLowerReturn =
7686       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7687                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7688 
7689   SDValue DemoteStackSlot;
7690   int DemoteStackIdx = -100;
7691   if (!CanLowerReturn) {
7692     // FIXME: equivalent assert?
7693     // assert(!CS.hasInAllocaArgument() &&
7694     //        "sret demotion is incompatible with inalloca");
7695     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7696     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7697     MachineFunction &MF = CLI.DAG.getMachineFunction();
7698     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7699     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7700 
7701     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7702     ArgListEntry Entry;
7703     Entry.Node = DemoteStackSlot;
7704     Entry.Ty = StackSlotPtrType;
7705     Entry.isSExt = false;
7706     Entry.isZExt = false;
7707     Entry.isInReg = false;
7708     Entry.isSRet = true;
7709     Entry.isNest = false;
7710     Entry.isByVal = false;
7711     Entry.isReturned = false;
7712     Entry.isSwiftSelf = false;
7713     Entry.isSwiftError = false;
7714     Entry.Alignment = Align;
7715     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7716     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7717 
7718     // sret demotion isn't compatible with tail-calls, since the sret argument
7719     // points into the callers stack frame.
7720     CLI.IsTailCall = false;
7721   } else {
7722     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7723       EVT VT = RetTys[I];
7724       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7725       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7726       for (unsigned i = 0; i != NumRegs; ++i) {
7727         ISD::InputArg MyFlags;
7728         MyFlags.VT = RegisterVT;
7729         MyFlags.ArgVT = VT;
7730         MyFlags.Used = CLI.IsReturnValueUsed;
7731         if (CLI.RetSExt)
7732           MyFlags.Flags.setSExt();
7733         if (CLI.RetZExt)
7734           MyFlags.Flags.setZExt();
7735         if (CLI.IsInReg)
7736           MyFlags.Flags.setInReg();
7737         CLI.Ins.push_back(MyFlags);
7738       }
7739     }
7740   }
7741 
7742   // We push in swifterror return as the last element of CLI.Ins.
7743   ArgListTy &Args = CLI.getArgs();
7744   if (supportSwiftError()) {
7745     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7746       if (Args[i].isSwiftError) {
7747         ISD::InputArg MyFlags;
7748         MyFlags.VT = getPointerTy(DL);
7749         MyFlags.ArgVT = EVT(getPointerTy(DL));
7750         MyFlags.Flags.setSwiftError();
7751         CLI.Ins.push_back(MyFlags);
7752       }
7753     }
7754   }
7755 
7756   // Handle all of the outgoing arguments.
7757   CLI.Outs.clear();
7758   CLI.OutVals.clear();
7759   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7760     SmallVector<EVT, 4> ValueVTs;
7761     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7762     Type *FinalType = Args[i].Ty;
7763     if (Args[i].isByVal)
7764       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7765     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7766         FinalType, CLI.CallConv, CLI.IsVarArg);
7767     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7768          ++Value) {
7769       EVT VT = ValueVTs[Value];
7770       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7771       SDValue Op = SDValue(Args[i].Node.getNode(),
7772                            Args[i].Node.getResNo() + Value);
7773       ISD::ArgFlagsTy Flags;
7774       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7775 
7776       if (Args[i].isZExt)
7777         Flags.setZExt();
7778       if (Args[i].isSExt)
7779         Flags.setSExt();
7780       if (Args[i].isInReg) {
7781         // If we are using vectorcall calling convention, a structure that is
7782         // passed InReg - is surely an HVA
7783         if (CLI.CallConv == CallingConv::X86_VectorCall &&
7784             isa<StructType>(FinalType)) {
7785           // The first value of a structure is marked
7786           if (0 == Value)
7787             Flags.setHvaStart();
7788           Flags.setHva();
7789         }
7790         // Set InReg Flag
7791         Flags.setInReg();
7792       }
7793       if (Args[i].isSRet)
7794         Flags.setSRet();
7795       if (Args[i].isSwiftSelf)
7796         Flags.setSwiftSelf();
7797       if (Args[i].isSwiftError)
7798         Flags.setSwiftError();
7799       if (Args[i].isByVal)
7800         Flags.setByVal();
7801       if (Args[i].isInAlloca) {
7802         Flags.setInAlloca();
7803         // Set the byval flag for CCAssignFn callbacks that don't know about
7804         // inalloca.  This way we can know how many bytes we should've allocated
7805         // and how many bytes a callee cleanup function will pop.  If we port
7806         // inalloca to more targets, we'll have to add custom inalloca handling
7807         // in the various CC lowering callbacks.
7808         Flags.setByVal();
7809       }
7810       if (Args[i].isByVal || Args[i].isInAlloca) {
7811         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7812         Type *ElementTy = Ty->getElementType();
7813         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7814         // For ByVal, alignment should come from FE.  BE will guess if this
7815         // info is not there but there are cases it cannot get right.
7816         unsigned FrameAlign;
7817         if (Args[i].Alignment)
7818           FrameAlign = Args[i].Alignment;
7819         else
7820           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7821         Flags.setByValAlign(FrameAlign);
7822       }
7823       if (Args[i].isNest)
7824         Flags.setNest();
7825       if (NeedsRegBlock)
7826         Flags.setInConsecutiveRegs();
7827       Flags.setOrigAlign(OriginalAlignment);
7828 
7829       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7830       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7831       SmallVector<SDValue, 4> Parts(NumParts);
7832       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7833 
7834       if (Args[i].isSExt)
7835         ExtendKind = ISD::SIGN_EXTEND;
7836       else if (Args[i].isZExt)
7837         ExtendKind = ISD::ZERO_EXTEND;
7838 
7839       // Conservatively only handle 'returned' on non-vectors for now
7840       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7841         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7842                "unexpected use of 'returned'");
7843         // Before passing 'returned' to the target lowering code, ensure that
7844         // either the register MVT and the actual EVT are the same size or that
7845         // the return value and argument are extended in the same way; in these
7846         // cases it's safe to pass the argument register value unchanged as the
7847         // return register value (although it's at the target's option whether
7848         // to do so)
7849         // TODO: allow code generation to take advantage of partially preserved
7850         // registers rather than clobbering the entire register when the
7851         // parameter extension method is not compatible with the return
7852         // extension method
7853         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7854             (ExtendKind != ISD::ANY_EXTEND &&
7855              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7856         Flags.setReturned();
7857       }
7858 
7859       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7860                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7861 
7862       for (unsigned j = 0; j != NumParts; ++j) {
7863         // if it isn't first piece, alignment must be 1
7864         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7865                                i < CLI.NumFixedArgs,
7866                                i, j*Parts[j].getValueType().getStoreSize());
7867         if (NumParts > 1 && j == 0)
7868           MyFlags.Flags.setSplit();
7869         else if (j != 0) {
7870           MyFlags.Flags.setOrigAlign(1);
7871           if (j == NumParts - 1)
7872             MyFlags.Flags.setSplitEnd();
7873         }
7874 
7875         CLI.Outs.push_back(MyFlags);
7876         CLI.OutVals.push_back(Parts[j]);
7877       }
7878 
7879       if (NeedsRegBlock && Value == NumValues - 1)
7880         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7881     }
7882   }
7883 
7884   SmallVector<SDValue, 4> InVals;
7885   CLI.Chain = LowerCall(CLI, InVals);
7886 
7887   // Update CLI.InVals to use outside of this function.
7888   CLI.InVals = InVals;
7889 
7890   // Verify that the target's LowerCall behaved as expected.
7891   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7892          "LowerCall didn't return a valid chain!");
7893   assert((!CLI.IsTailCall || InVals.empty()) &&
7894          "LowerCall emitted a return value for a tail call!");
7895   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7896          "LowerCall didn't emit the correct number of values!");
7897 
7898   // For a tail call, the return value is merely live-out and there aren't
7899   // any nodes in the DAG representing it. Return a special value to
7900   // indicate that a tail call has been emitted and no more Instructions
7901   // should be processed in the current block.
7902   if (CLI.IsTailCall) {
7903     CLI.DAG.setRoot(CLI.Chain);
7904     return std::make_pair(SDValue(), SDValue());
7905   }
7906 
7907 #ifndef NDEBUG
7908   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7909     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7910     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7911            "LowerCall emitted a value with the wrong type!");
7912   }
7913 #endif
7914 
7915   SmallVector<SDValue, 4> ReturnValues;
7916   if (!CanLowerReturn) {
7917     // The instruction result is the result of loading from the
7918     // hidden sret parameter.
7919     SmallVector<EVT, 1> PVTs;
7920     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7921 
7922     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7923     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7924     EVT PtrVT = PVTs[0];
7925 
7926     unsigned NumValues = RetTys.size();
7927     ReturnValues.resize(NumValues);
7928     SmallVector<SDValue, 4> Chains(NumValues);
7929 
7930     // An aggregate return value cannot wrap around the address space, so
7931     // offsets to its parts don't wrap either.
7932     SDNodeFlags Flags;
7933     Flags.setNoUnsignedWrap(true);
7934 
7935     for (unsigned i = 0; i < NumValues; ++i) {
7936       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7937                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7938                                                         PtrVT), &Flags);
7939       SDValue L = CLI.DAG.getLoad(
7940           RetTys[i], CLI.DL, CLI.Chain, Add,
7941           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7942                                             DemoteStackIdx, Offsets[i]),
7943           /* Alignment = */ 1);
7944       ReturnValues[i] = L;
7945       Chains[i] = L.getValue(1);
7946     }
7947 
7948     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7949   } else {
7950     // Collect the legal value parts into potentially illegal values
7951     // that correspond to the original function's return values.
7952     Optional<ISD::NodeType> AssertOp;
7953     if (CLI.RetSExt)
7954       AssertOp = ISD::AssertSext;
7955     else if (CLI.RetZExt)
7956       AssertOp = ISD::AssertZext;
7957     unsigned CurReg = 0;
7958     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7959       EVT VT = RetTys[I];
7960       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7961       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7962 
7963       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7964                                               NumRegs, RegisterVT, VT, nullptr,
7965                                               AssertOp));
7966       CurReg += NumRegs;
7967     }
7968 
7969     // For a function returning void, there is no return value. We can't create
7970     // such a node, so we just return a null return value in that case. In
7971     // that case, nothing will actually look at the value.
7972     if (ReturnValues.empty())
7973       return std::make_pair(SDValue(), CLI.Chain);
7974   }
7975 
7976   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7977                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7978   return std::make_pair(Res, CLI.Chain);
7979 }
7980 
7981 void TargetLowering::LowerOperationWrapper(SDNode *N,
7982                                            SmallVectorImpl<SDValue> &Results,
7983                                            SelectionDAG &DAG) const {
7984   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7985     Results.push_back(Res);
7986 }
7987 
7988 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7989   llvm_unreachable("LowerOperation not implemented for this target!");
7990 }
7991 
7992 void
7993 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7994   SDValue Op = getNonRegisterValue(V);
7995   assert((Op.getOpcode() != ISD::CopyFromReg ||
7996           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7997          "Copy from a reg to the same reg!");
7998   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7999 
8000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8001   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8002                    V->getType());
8003   SDValue Chain = DAG.getEntryNode();
8004 
8005   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8006                               FuncInfo.PreferredExtendType.end())
8007                                  ? ISD::ANY_EXTEND
8008                                  : FuncInfo.PreferredExtendType[V];
8009   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8010   PendingExports.push_back(Chain);
8011 }
8012 
8013 #include "llvm/CodeGen/SelectionDAGISel.h"
8014 
8015 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8016 /// entry block, return true.  This includes arguments used by switches, since
8017 /// the switch may expand into multiple basic blocks.
8018 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8019   // With FastISel active, we may be splitting blocks, so force creation
8020   // of virtual registers for all non-dead arguments.
8021   if (FastISel)
8022     return A->use_empty();
8023 
8024   const BasicBlock &Entry = A->getParent()->front();
8025   for (const User *U : A->users())
8026     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8027       return false;  // Use not in entry block.
8028 
8029   return true;
8030 }
8031 
8032 void SelectionDAGISel::LowerArguments(const Function &F) {
8033   SelectionDAG &DAG = SDB->DAG;
8034   SDLoc dl = SDB->getCurSDLoc();
8035   const DataLayout &DL = DAG.getDataLayout();
8036   SmallVector<ISD::InputArg, 16> Ins;
8037 
8038   if (!FuncInfo->CanLowerReturn) {
8039     // Put in an sret pointer parameter before all the other parameters.
8040     SmallVector<EVT, 1> ValueVTs;
8041     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8042                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8043 
8044     // NOTE: Assuming that a pointer will never break down to more than one VT
8045     // or one register.
8046     ISD::ArgFlagsTy Flags;
8047     Flags.setSRet();
8048     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8049     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8050                          ISD::InputArg::NoArgIndex, 0);
8051     Ins.push_back(RetArg);
8052   }
8053 
8054   // Set up the incoming argument description vector.
8055   unsigned Idx = 1;
8056   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
8057        I != E; ++I, ++Idx) {
8058     SmallVector<EVT, 4> ValueVTs;
8059     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8060     bool isArgValueUsed = !I->use_empty();
8061     unsigned PartBase = 0;
8062     Type *FinalType = I->getType();
8063     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8064       FinalType = cast<PointerType>(FinalType)->getElementType();
8065     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8066         FinalType, F.getCallingConv(), F.isVarArg());
8067     for (unsigned Value = 0, NumValues = ValueVTs.size();
8068          Value != NumValues; ++Value) {
8069       EVT VT = ValueVTs[Value];
8070       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8071       ISD::ArgFlagsTy Flags;
8072       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
8073 
8074       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8075         Flags.setZExt();
8076       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8077         Flags.setSExt();
8078       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) {
8079         // If we are using vectorcall calling convention, a structure that is
8080         // passed InReg - is surely an HVA
8081         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8082             isa<StructType>(I->getType())) {
8083           // The first value of a structure is marked
8084           if (0 == Value)
8085             Flags.setHvaStart();
8086           Flags.setHva();
8087         }
8088         // Set InReg Flag
8089         Flags.setInReg();
8090       }
8091       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
8092         Flags.setSRet();
8093       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
8094         Flags.setSwiftSelf();
8095       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
8096         Flags.setSwiftError();
8097       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8098         Flags.setByVal();
8099       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
8100         Flags.setInAlloca();
8101         // Set the byval flag for CCAssignFn callbacks that don't know about
8102         // inalloca.  This way we can know how many bytes we should've allocated
8103         // and how many bytes a callee cleanup function will pop.  If we port
8104         // inalloca to more targets, we'll have to add custom inalloca handling
8105         // in the various CC lowering callbacks.
8106         Flags.setByVal();
8107       }
8108       if (F.getCallingConv() == CallingConv::X86_INTR) {
8109         // IA Interrupt passes frame (1st parameter) by value in the stack.
8110         if (Idx == 1)
8111           Flags.setByVal();
8112       }
8113       if (Flags.isByVal() || Flags.isInAlloca()) {
8114         PointerType *Ty = cast<PointerType>(I->getType());
8115         Type *ElementTy = Ty->getElementType();
8116         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8117         // For ByVal, alignment should be passed from FE.  BE will guess if
8118         // this info is not there but there are cases it cannot get right.
8119         unsigned FrameAlign;
8120         if (F.getParamAlignment(Idx))
8121           FrameAlign = F.getParamAlignment(Idx);
8122         else
8123           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8124         Flags.setByValAlign(FrameAlign);
8125       }
8126       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8127         Flags.setNest();
8128       if (NeedsRegBlock)
8129         Flags.setInConsecutiveRegs();
8130       Flags.setOrigAlign(OriginalAlignment);
8131 
8132       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8133       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8134       for (unsigned i = 0; i != NumRegs; ++i) {
8135         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8136                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8137         if (NumRegs > 1 && i == 0)
8138           MyFlags.Flags.setSplit();
8139         // if it isn't first piece, alignment must be 1
8140         else if (i > 0) {
8141           MyFlags.Flags.setOrigAlign(1);
8142           if (i == NumRegs - 1)
8143             MyFlags.Flags.setSplitEnd();
8144         }
8145         Ins.push_back(MyFlags);
8146       }
8147       if (NeedsRegBlock && Value == NumValues - 1)
8148         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8149       PartBase += VT.getStoreSize();
8150     }
8151   }
8152 
8153   // Call the target to set up the argument values.
8154   SmallVector<SDValue, 8> InVals;
8155   SDValue NewRoot = TLI->LowerFormalArguments(
8156       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8157 
8158   // Verify that the target's LowerFormalArguments behaved as expected.
8159   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8160          "LowerFormalArguments didn't return a valid chain!");
8161   assert(InVals.size() == Ins.size() &&
8162          "LowerFormalArguments didn't emit the correct number of values!");
8163   DEBUG({
8164       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8165         assert(InVals[i].getNode() &&
8166                "LowerFormalArguments emitted a null value!");
8167         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8168                "LowerFormalArguments emitted a value with the wrong type!");
8169       }
8170     });
8171 
8172   // Update the DAG with the new chain value resulting from argument lowering.
8173   DAG.setRoot(NewRoot);
8174 
8175   // Set up the argument values.
8176   unsigned i = 0;
8177   Idx = 1;
8178   if (!FuncInfo->CanLowerReturn) {
8179     // Create a virtual register for the sret pointer, and put in a copy
8180     // from the sret argument into it.
8181     SmallVector<EVT, 1> ValueVTs;
8182     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8183                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8184     MVT VT = ValueVTs[0].getSimpleVT();
8185     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8186     Optional<ISD::NodeType> AssertOp = None;
8187     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8188                                         RegVT, VT, nullptr, AssertOp);
8189 
8190     MachineFunction& MF = SDB->DAG.getMachineFunction();
8191     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8192     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8193     FuncInfo->DemoteRegister = SRetReg;
8194     NewRoot =
8195         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8196     DAG.setRoot(NewRoot);
8197 
8198     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8199     // Idx indexes LLVM arguments.  Don't touch it.
8200     ++i;
8201   }
8202 
8203   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8204       ++I, ++Idx) {
8205     SmallVector<SDValue, 4> ArgValues;
8206     SmallVector<EVT, 4> ValueVTs;
8207     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8208     unsigned NumValues = ValueVTs.size();
8209 
8210     // If this argument is unused then remember its value. It is used to generate
8211     // debugging information.
8212     bool isSwiftErrorArg =
8213         TLI->supportSwiftError() &&
8214         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
8215     if (I->use_empty() && NumValues && !isSwiftErrorArg) {
8216       SDB->setUnusedArgValue(&*I, InVals[i]);
8217 
8218       // Also remember any frame index for use in FastISel.
8219       if (FrameIndexSDNode *FI =
8220           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8221         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8222     }
8223 
8224     for (unsigned Val = 0; Val != NumValues; ++Val) {
8225       EVT VT = ValueVTs[Val];
8226       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8227       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8228 
8229       // Even an apparant 'unused' swifterror argument needs to be returned. So
8230       // we do generate a copy for it that can be used on return from the
8231       // function.
8232       if (!I->use_empty() || isSwiftErrorArg) {
8233         Optional<ISD::NodeType> AssertOp;
8234         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8235           AssertOp = ISD::AssertSext;
8236         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8237           AssertOp = ISD::AssertZext;
8238 
8239         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8240                                              NumParts, PartVT, VT,
8241                                              nullptr, AssertOp));
8242       }
8243 
8244       i += NumParts;
8245     }
8246 
8247     // We don't need to do anything else for unused arguments.
8248     if (ArgValues.empty())
8249       continue;
8250 
8251     // Note down frame index.
8252     if (FrameIndexSDNode *FI =
8253         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8254       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8255 
8256     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8257                                      SDB->getCurSDLoc());
8258 
8259     SDB->setValue(&*I, Res);
8260     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8261       if (LoadSDNode *LNode =
8262           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8263         if (FrameIndexSDNode *FI =
8264             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8265         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8266     }
8267 
8268     // Update the SwiftErrorVRegDefMap.
8269     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8270       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8271       if (TargetRegisterInfo::isVirtualRegister(Reg))
8272         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8273                                            FuncInfo->SwiftErrorArg, Reg);
8274     }
8275 
8276     // If this argument is live outside of the entry block, insert a copy from
8277     // wherever we got it to the vreg that other BB's will reference it as.
8278     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8279       // If we can, though, try to skip creating an unnecessary vreg.
8280       // FIXME: This isn't very clean... it would be nice to make this more
8281       // general.  It's also subtly incompatible with the hacks FastISel
8282       // uses with vregs.
8283       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8284       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8285         FuncInfo->ValueMap[&*I] = Reg;
8286         continue;
8287       }
8288     }
8289     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8290       FuncInfo->InitializeRegForValue(&*I);
8291       SDB->CopyToExportRegsIfNeeded(&*I);
8292     }
8293   }
8294 
8295   assert(i == InVals.size() && "Argument register count mismatch!");
8296 
8297   // Finally, if the target has anything special to do, allow it to do so.
8298   EmitFunctionEntryCode();
8299 }
8300 
8301 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8302 /// ensure constants are generated when needed.  Remember the virtual registers
8303 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8304 /// directly add them, because expansion might result in multiple MBB's for one
8305 /// BB.  As such, the start of the BB might correspond to a different MBB than
8306 /// the end.
8307 ///
8308 void
8309 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8310   const TerminatorInst *TI = LLVMBB->getTerminator();
8311 
8312   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8313 
8314   // Check PHI nodes in successors that expect a value to be available from this
8315   // block.
8316   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8317     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8318     if (!isa<PHINode>(SuccBB->begin())) continue;
8319     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8320 
8321     // If this terminator has multiple identical successors (common for
8322     // switches), only handle each succ once.
8323     if (!SuccsHandled.insert(SuccMBB).second)
8324       continue;
8325 
8326     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8327 
8328     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8329     // nodes and Machine PHI nodes, but the incoming operands have not been
8330     // emitted yet.
8331     for (BasicBlock::const_iterator I = SuccBB->begin();
8332          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8333       // Ignore dead phi's.
8334       if (PN->use_empty()) continue;
8335 
8336       // Skip empty types
8337       if (PN->getType()->isEmptyTy())
8338         continue;
8339 
8340       unsigned Reg;
8341       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8342 
8343       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8344         unsigned &RegOut = ConstantsOut[C];
8345         if (RegOut == 0) {
8346           RegOut = FuncInfo.CreateRegs(C->getType());
8347           CopyValueToVirtualRegister(C, RegOut);
8348         }
8349         Reg = RegOut;
8350       } else {
8351         DenseMap<const Value *, unsigned>::iterator I =
8352           FuncInfo.ValueMap.find(PHIOp);
8353         if (I != FuncInfo.ValueMap.end())
8354           Reg = I->second;
8355         else {
8356           assert(isa<AllocaInst>(PHIOp) &&
8357                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8358                  "Didn't codegen value into a register!??");
8359           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8360           CopyValueToVirtualRegister(PHIOp, Reg);
8361         }
8362       }
8363 
8364       // Remember that this register needs to added to the machine PHI node as
8365       // the input for this MBB.
8366       SmallVector<EVT, 4> ValueVTs;
8367       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8368       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8369       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8370         EVT VT = ValueVTs[vti];
8371         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8372         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8373           FuncInfo.PHINodesToUpdate.push_back(
8374               std::make_pair(&*MBBI++, Reg + i));
8375         Reg += NumRegisters;
8376       }
8377     }
8378   }
8379 
8380   ConstantsOut.clear();
8381 }
8382 
8383 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8384 /// is 0.
8385 MachineBasicBlock *
8386 SelectionDAGBuilder::StackProtectorDescriptor::
8387 AddSuccessorMBB(const BasicBlock *BB,
8388                 MachineBasicBlock *ParentMBB,
8389                 bool IsLikely,
8390                 MachineBasicBlock *SuccMBB) {
8391   // If SuccBB has not been created yet, create it.
8392   if (!SuccMBB) {
8393     MachineFunction *MF = ParentMBB->getParent();
8394     MachineFunction::iterator BBI(ParentMBB);
8395     SuccMBB = MF->CreateMachineBasicBlock(BB);
8396     MF->insert(++BBI, SuccMBB);
8397   }
8398   // Add it as a successor of ParentMBB.
8399   ParentMBB->addSuccessor(
8400       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8401   return SuccMBB;
8402 }
8403 
8404 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8405   MachineFunction::iterator I(MBB);
8406   if (++I == FuncInfo.MF->end())
8407     return nullptr;
8408   return &*I;
8409 }
8410 
8411 /// During lowering new call nodes can be created (such as memset, etc.).
8412 /// Those will become new roots of the current DAG, but complications arise
8413 /// when they are tail calls. In such cases, the call lowering will update
8414 /// the root, but the builder still needs to know that a tail call has been
8415 /// lowered in order to avoid generating an additional return.
8416 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8417   // If the node is null, we do have a tail call.
8418   if (MaybeTC.getNode() != nullptr)
8419     DAG.setRoot(MaybeTC);
8420   else
8421     HasTailCall = true;
8422 }
8423 
8424 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8425                                   const SmallVectorImpl<unsigned> &TotalCases,
8426                                   unsigned First, unsigned Last,
8427                                   unsigned Density) const {
8428   assert(Last >= First);
8429   assert(TotalCases[Last] >= TotalCases[First]);
8430 
8431   const APInt &LowCase = Clusters[First].Low->getValue();
8432   const APInt &HighCase = Clusters[Last].High->getValue();
8433   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8434 
8435   // FIXME: A range of consecutive cases has 100% density, but only requires one
8436   // comparison to lower. We should discriminate against such consecutive ranges
8437   // in jump tables.
8438 
8439   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8440   uint64_t Range = Diff + 1;
8441 
8442   uint64_t NumCases =
8443       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8444 
8445   assert(NumCases < UINT64_MAX / 100);
8446   assert(Range >= NumCases);
8447 
8448   return NumCases * 100 >= Range * Density;
8449 }
8450 
8451 static inline bool areJTsAllowed(const TargetLowering &TLI,
8452                                  const SwitchInst *SI) {
8453   const Function *Fn = SI->getParent()->getParent();
8454   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8455     return false;
8456 
8457   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8458          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8459 }
8460 
8461 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8462                                          unsigned First, unsigned Last,
8463                                          const SwitchInst *SI,
8464                                          MachineBasicBlock *DefaultMBB,
8465                                          CaseCluster &JTCluster) {
8466   assert(First <= Last);
8467 
8468   auto Prob = BranchProbability::getZero();
8469   unsigned NumCmps = 0;
8470   std::vector<MachineBasicBlock*> Table;
8471   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8472 
8473   // Initialize probabilities in JTProbs.
8474   for (unsigned I = First; I <= Last; ++I)
8475     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8476 
8477   for (unsigned I = First; I <= Last; ++I) {
8478     assert(Clusters[I].Kind == CC_Range);
8479     Prob += Clusters[I].Prob;
8480     const APInt &Low = Clusters[I].Low->getValue();
8481     const APInt &High = Clusters[I].High->getValue();
8482     NumCmps += (Low == High) ? 1 : 2;
8483     if (I != First) {
8484       // Fill the gap between this and the previous cluster.
8485       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8486       assert(PreviousHigh.slt(Low));
8487       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8488       for (uint64_t J = 0; J < Gap; J++)
8489         Table.push_back(DefaultMBB);
8490     }
8491     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8492     for (uint64_t J = 0; J < ClusterSize; ++J)
8493       Table.push_back(Clusters[I].MBB);
8494     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8495   }
8496 
8497   unsigned NumDests = JTProbs.size();
8498   if (isSuitableForBitTests(NumDests, NumCmps,
8499                             Clusters[First].Low->getValue(),
8500                             Clusters[Last].High->getValue())) {
8501     // Clusters[First..Last] should be lowered as bit tests instead.
8502     return false;
8503   }
8504 
8505   // Create the MBB that will load from and jump through the table.
8506   // Note: We create it here, but it's not inserted into the function yet.
8507   MachineFunction *CurMF = FuncInfo.MF;
8508   MachineBasicBlock *JumpTableMBB =
8509       CurMF->CreateMachineBasicBlock(SI->getParent());
8510 
8511   // Add successors. Note: use table order for determinism.
8512   SmallPtrSet<MachineBasicBlock *, 8> Done;
8513   for (MachineBasicBlock *Succ : Table) {
8514     if (Done.count(Succ))
8515       continue;
8516     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8517     Done.insert(Succ);
8518   }
8519   JumpTableMBB->normalizeSuccProbs();
8520 
8521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8522   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8523                      ->createJumpTableIndex(Table);
8524 
8525   // Set up the jump table info.
8526   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8527   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8528                       Clusters[Last].High->getValue(), SI->getCondition(),
8529                       nullptr, false);
8530   JTCases.emplace_back(std::move(JTH), std::move(JT));
8531 
8532   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8533                                      JTCases.size() - 1, Prob);
8534   return true;
8535 }
8536 
8537 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8538                                          const SwitchInst *SI,
8539                                          MachineBasicBlock *DefaultMBB) {
8540 #ifndef NDEBUG
8541   // Clusters must be non-empty, sorted, and only contain Range clusters.
8542   assert(!Clusters.empty());
8543   for (CaseCluster &C : Clusters)
8544     assert(C.Kind == CC_Range);
8545   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8546     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8547 #endif
8548 
8549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8550   if (!areJTsAllowed(TLI, SI))
8551     return;
8552 
8553   const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
8554 
8555   const int64_t N = Clusters.size();
8556   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8557   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8558   const unsigned MaxJumpTableSize =
8559                    OptForSize || TLI.getMaximumJumpTableSize() == 0
8560                    ? UINT_MAX : TLI.getMaximumJumpTableSize();
8561 
8562   if (N < 2 || N < MinJumpTableEntries)
8563     return;
8564 
8565   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8566   SmallVector<unsigned, 8> TotalCases(N);
8567   for (unsigned i = 0; i < N; ++i) {
8568     const APInt &Hi = Clusters[i].High->getValue();
8569     const APInt &Lo = Clusters[i].Low->getValue();
8570     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8571     if (i != 0)
8572       TotalCases[i] += TotalCases[i - 1];
8573   }
8574 
8575   const unsigned MinDensity =
8576     OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
8577 
8578   // Cheap case: the whole range may be suitable for jump table.
8579   unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
8580                             Clusters[0].Low->getValue())
8581                            .getLimitedValue(UINT_MAX - 1) + 1;
8582   if (JumpTableSize <= MaxJumpTableSize &&
8583       isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
8584     CaseCluster JTCluster;
8585     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8586       Clusters[0] = JTCluster;
8587       Clusters.resize(1);
8588       return;
8589     }
8590   }
8591 
8592   // The algorithm below is not suitable for -O0.
8593   if (TM.getOptLevel() == CodeGenOpt::None)
8594     return;
8595 
8596   // Split Clusters into minimum number of dense partitions. The algorithm uses
8597   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8598   // for the Case Statement'" (1994), but builds the MinPartitions array in
8599   // reverse order to make it easier to reconstruct the partitions in ascending
8600   // order. In the choice between two optimal partitionings, it picks the one
8601   // which yields more jump tables.
8602 
8603   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8604   SmallVector<unsigned, 8> MinPartitions(N);
8605   // LastElement[i] is the last element of the partition starting at i.
8606   SmallVector<unsigned, 8> LastElement(N);
8607   // PartitionsScore[i] is used to break ties when choosing between two
8608   // partitionings resulting in the same number of partitions.
8609   SmallVector<unsigned, 8> PartitionsScore(N);
8610   // For PartitionsScore, a small number of comparisons is considered as good as
8611   // a jump table and a single comparison is considered better than a jump
8612   // table.
8613   enum PartitionScores : unsigned {
8614     NoTable = 0,
8615     Table = 1,
8616     FewCases = 1,
8617     SingleCase = 2
8618   };
8619 
8620   // Base case: There is only one way to partition Clusters[N-1].
8621   MinPartitions[N - 1] = 1;
8622   LastElement[N - 1] = N - 1;
8623   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8624 
8625   // Note: loop indexes are signed to avoid underflow.
8626   for (int64_t i = N - 2; i >= 0; i--) {
8627     // Find optimal partitioning of Clusters[i..N-1].
8628     // Baseline: Put Clusters[i] into a partition on its own.
8629     MinPartitions[i] = MinPartitions[i + 1] + 1;
8630     LastElement[i] = i;
8631     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
8632 
8633     // Search for a solution that results in fewer partitions.
8634     for (int64_t j = N - 1; j > i; j--) {
8635       // Try building a partition from Clusters[i..j].
8636       JumpTableSize = (Clusters[j].High->getValue() -
8637                        Clusters[i].Low->getValue())
8638                       .getLimitedValue(UINT_MAX - 1) + 1;
8639       if (JumpTableSize <= MaxJumpTableSize &&
8640           isDense(Clusters, TotalCases, i, j, MinDensity)) {
8641         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8642         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
8643         int64_t NumEntries = j - i + 1;
8644 
8645         if (NumEntries == 1)
8646           Score += PartitionScores::SingleCase;
8647         else if (NumEntries <= SmallNumberOfEntries)
8648           Score += PartitionScores::FewCases;
8649         else if (NumEntries >= MinJumpTableEntries)
8650           Score += PartitionScores::Table;
8651 
8652         // If this leads to fewer partitions, or to the same number of
8653         // partitions with better score, it is a better partitioning.
8654         if (NumPartitions < MinPartitions[i] ||
8655             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
8656           MinPartitions[i] = NumPartitions;
8657           LastElement[i] = j;
8658           PartitionsScore[i] = Score;
8659         }
8660       }
8661     }
8662   }
8663 
8664   // Iterate over the partitions, replacing some with jump tables in-place.
8665   unsigned DstIndex = 0;
8666   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8667     Last = LastElement[First];
8668     assert(Last >= First);
8669     assert(DstIndex <= First);
8670     unsigned NumClusters = Last - First + 1;
8671 
8672     CaseCluster JTCluster;
8673     if (NumClusters >= MinJumpTableEntries &&
8674         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8675       Clusters[DstIndex++] = JTCluster;
8676     } else {
8677       for (unsigned I = First; I <= Last; ++I)
8678         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8679     }
8680   }
8681   Clusters.resize(DstIndex);
8682 }
8683 
8684 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8685   // FIXME: Using the pointer type doesn't seem ideal.
8686   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8687   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8688   return Range <= BW;
8689 }
8690 
8691 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8692                                                 unsigned NumCmps,
8693                                                 const APInt &Low,
8694                                                 const APInt &High) {
8695   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8696   // range of cases both require only one branch to lower. Just looking at the
8697   // number of clusters and destinations should be enough to decide whether to
8698   // build bit tests.
8699 
8700   // To lower a range with bit tests, the range must fit the bitwidth of a
8701   // machine word.
8702   if (!rangeFitsInWord(Low, High))
8703     return false;
8704 
8705   // Decide whether it's profitable to lower this range with bit tests. Each
8706   // destination requires a bit test and branch, and there is an overall range
8707   // check branch. For a small number of clusters, separate comparisons might be
8708   // cheaper, and for many destinations, splitting the range might be better.
8709   return (NumDests == 1 && NumCmps >= 3) ||
8710          (NumDests == 2 && NumCmps >= 5) ||
8711          (NumDests == 3 && NumCmps >= 6);
8712 }
8713 
8714 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8715                                         unsigned First, unsigned Last,
8716                                         const SwitchInst *SI,
8717                                         CaseCluster &BTCluster) {
8718   assert(First <= Last);
8719   if (First == Last)
8720     return false;
8721 
8722   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8723   unsigned NumCmps = 0;
8724   for (int64_t I = First; I <= Last; ++I) {
8725     assert(Clusters[I].Kind == CC_Range);
8726     Dests.set(Clusters[I].MBB->getNumber());
8727     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8728   }
8729   unsigned NumDests = Dests.count();
8730 
8731   APInt Low = Clusters[First].Low->getValue();
8732   APInt High = Clusters[Last].High->getValue();
8733   assert(Low.slt(High));
8734 
8735   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8736     return false;
8737 
8738   APInt LowBound;
8739   APInt CmpRange;
8740 
8741   const int BitWidth = DAG.getTargetLoweringInfo()
8742                            .getPointerTy(DAG.getDataLayout())
8743                            .getSizeInBits();
8744   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8745 
8746   // Check if the clusters cover a contiguous range such that no value in the
8747   // range will jump to the default statement.
8748   bool ContiguousRange = true;
8749   for (int64_t I = First + 1; I <= Last; ++I) {
8750     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8751       ContiguousRange = false;
8752       break;
8753     }
8754   }
8755 
8756   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8757     // Optimize the case where all the case values fit in a word without having
8758     // to subtract minValue. In this case, we can optimize away the subtraction.
8759     LowBound = APInt::getNullValue(Low.getBitWidth());
8760     CmpRange = High;
8761     ContiguousRange = false;
8762   } else {
8763     LowBound = Low;
8764     CmpRange = High - Low;
8765   }
8766 
8767   CaseBitsVector CBV;
8768   auto TotalProb = BranchProbability::getZero();
8769   for (unsigned i = First; i <= Last; ++i) {
8770     // Find the CaseBits for this destination.
8771     unsigned j;
8772     for (j = 0; j < CBV.size(); ++j)
8773       if (CBV[j].BB == Clusters[i].MBB)
8774         break;
8775     if (j == CBV.size())
8776       CBV.push_back(
8777           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8778     CaseBits *CB = &CBV[j];
8779 
8780     // Update Mask, Bits and ExtraProb.
8781     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8782     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8783     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8784     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8785     CB->Bits += Hi - Lo + 1;
8786     CB->ExtraProb += Clusters[i].Prob;
8787     TotalProb += Clusters[i].Prob;
8788   }
8789 
8790   BitTestInfo BTI;
8791   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8792     // Sort by probability first, number of bits second.
8793     if (a.ExtraProb != b.ExtraProb)
8794       return a.ExtraProb > b.ExtraProb;
8795     return a.Bits > b.Bits;
8796   });
8797 
8798   for (auto &CB : CBV) {
8799     MachineBasicBlock *BitTestBB =
8800         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8801     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8802   }
8803   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8804                             SI->getCondition(), -1U, MVT::Other, false,
8805                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8806                             TotalProb);
8807 
8808   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8809                                     BitTestCases.size() - 1, TotalProb);
8810   return true;
8811 }
8812 
8813 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8814                                               const SwitchInst *SI) {
8815 // Partition Clusters into as few subsets as possible, where each subset has a
8816 // range that fits in a machine word and has <= 3 unique destinations.
8817 
8818 #ifndef NDEBUG
8819   // Clusters must be sorted and contain Range or JumpTable clusters.
8820   assert(!Clusters.empty());
8821   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8822   for (const CaseCluster &C : Clusters)
8823     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8824   for (unsigned i = 1; i < Clusters.size(); ++i)
8825     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8826 #endif
8827 
8828   // The algorithm below is not suitable for -O0.
8829   if (TM.getOptLevel() == CodeGenOpt::None)
8830     return;
8831 
8832   // If target does not have legal shift left, do not emit bit tests at all.
8833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8835   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8836     return;
8837 
8838   int BitWidth = PTy.getSizeInBits();
8839   const int64_t N = Clusters.size();
8840 
8841   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8842   SmallVector<unsigned, 8> MinPartitions(N);
8843   // LastElement[i] is the last element of the partition starting at i.
8844   SmallVector<unsigned, 8> LastElement(N);
8845 
8846   // FIXME: This might not be the best algorithm for finding bit test clusters.
8847 
8848   // Base case: There is only one way to partition Clusters[N-1].
8849   MinPartitions[N - 1] = 1;
8850   LastElement[N - 1] = N - 1;
8851 
8852   // Note: loop indexes are signed to avoid underflow.
8853   for (int64_t i = N - 2; i >= 0; --i) {
8854     // Find optimal partitioning of Clusters[i..N-1].
8855     // Baseline: Put Clusters[i] into a partition on its own.
8856     MinPartitions[i] = MinPartitions[i + 1] + 1;
8857     LastElement[i] = i;
8858 
8859     // Search for a solution that results in fewer partitions.
8860     // Note: the search is limited by BitWidth, reducing time complexity.
8861     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8862       // Try building a partition from Clusters[i..j].
8863 
8864       // Check the range.
8865       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8866                            Clusters[j].High->getValue()))
8867         continue;
8868 
8869       // Check nbr of destinations and cluster types.
8870       // FIXME: This works, but doesn't seem very efficient.
8871       bool RangesOnly = true;
8872       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8873       for (int64_t k = i; k <= j; k++) {
8874         if (Clusters[k].Kind != CC_Range) {
8875           RangesOnly = false;
8876           break;
8877         }
8878         Dests.set(Clusters[k].MBB->getNumber());
8879       }
8880       if (!RangesOnly || Dests.count() > 3)
8881         break;
8882 
8883       // Check if it's a better partition.
8884       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8885       if (NumPartitions < MinPartitions[i]) {
8886         // Found a better partition.
8887         MinPartitions[i] = NumPartitions;
8888         LastElement[i] = j;
8889       }
8890     }
8891   }
8892 
8893   // Iterate over the partitions, replacing with bit-test clusters in-place.
8894   unsigned DstIndex = 0;
8895   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8896     Last = LastElement[First];
8897     assert(First <= Last);
8898     assert(DstIndex <= First);
8899 
8900     CaseCluster BitTestCluster;
8901     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8902       Clusters[DstIndex++] = BitTestCluster;
8903     } else {
8904       size_t NumClusters = Last - First + 1;
8905       std::memmove(&Clusters[DstIndex], &Clusters[First],
8906                    sizeof(Clusters[0]) * NumClusters);
8907       DstIndex += NumClusters;
8908     }
8909   }
8910   Clusters.resize(DstIndex);
8911 }
8912 
8913 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8914                                         MachineBasicBlock *SwitchMBB,
8915                                         MachineBasicBlock *DefaultMBB) {
8916   MachineFunction *CurMF = FuncInfo.MF;
8917   MachineBasicBlock *NextMBB = nullptr;
8918   MachineFunction::iterator BBI(W.MBB);
8919   if (++BBI != FuncInfo.MF->end())
8920     NextMBB = &*BBI;
8921 
8922   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8923 
8924   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8925 
8926   if (Size == 2 && W.MBB == SwitchMBB) {
8927     // If any two of the cases has the same destination, and if one value
8928     // is the same as the other, but has one bit unset that the other has set,
8929     // use bit manipulation to do two compares at once.  For example:
8930     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8931     // TODO: This could be extended to merge any 2 cases in switches with 3
8932     // cases.
8933     // TODO: Handle cases where W.CaseBB != SwitchBB.
8934     CaseCluster &Small = *W.FirstCluster;
8935     CaseCluster &Big = *W.LastCluster;
8936 
8937     if (Small.Low == Small.High && Big.Low == Big.High &&
8938         Small.MBB == Big.MBB) {
8939       const APInt &SmallValue = Small.Low->getValue();
8940       const APInt &BigValue = Big.Low->getValue();
8941 
8942       // Check that there is only one bit different.
8943       APInt CommonBit = BigValue ^ SmallValue;
8944       if (CommonBit.isPowerOf2()) {
8945         SDValue CondLHS = getValue(Cond);
8946         EVT VT = CondLHS.getValueType();
8947         SDLoc DL = getCurSDLoc();
8948 
8949         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8950                                  DAG.getConstant(CommonBit, DL, VT));
8951         SDValue Cond = DAG.getSetCC(
8952             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8953             ISD::SETEQ);
8954 
8955         // Update successor info.
8956         // Both Small and Big will jump to Small.BB, so we sum up the
8957         // probabilities.
8958         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8959         if (BPI)
8960           addSuccessorWithProb(
8961               SwitchMBB, DefaultMBB,
8962               // The default destination is the first successor in IR.
8963               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8964         else
8965           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8966 
8967         // Insert the true branch.
8968         SDValue BrCond =
8969             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8970                         DAG.getBasicBlock(Small.MBB));
8971         // Insert the false branch.
8972         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8973                              DAG.getBasicBlock(DefaultMBB));
8974 
8975         DAG.setRoot(BrCond);
8976         return;
8977       }
8978     }
8979   }
8980 
8981   if (TM.getOptLevel() != CodeGenOpt::None) {
8982     // Order cases by probability so the most likely case will be checked first.
8983     std::sort(W.FirstCluster, W.LastCluster + 1,
8984               [](const CaseCluster &a, const CaseCluster &b) {
8985       return a.Prob > b.Prob;
8986     });
8987 
8988     // Rearrange the case blocks so that the last one falls through if possible
8989     // without without changing the order of probabilities.
8990     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8991       --I;
8992       if (I->Prob > W.LastCluster->Prob)
8993         break;
8994       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8995         std::swap(*I, *W.LastCluster);
8996         break;
8997       }
8998     }
8999   }
9000 
9001   // Compute total probability.
9002   BranchProbability DefaultProb = W.DefaultProb;
9003   BranchProbability UnhandledProbs = DefaultProb;
9004   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9005     UnhandledProbs += I->Prob;
9006 
9007   MachineBasicBlock *CurMBB = W.MBB;
9008   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9009     MachineBasicBlock *Fallthrough;
9010     if (I == W.LastCluster) {
9011       // For the last cluster, fall through to the default destination.
9012       Fallthrough = DefaultMBB;
9013     } else {
9014       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9015       CurMF->insert(BBI, Fallthrough);
9016       // Put Cond in a virtual register to make it available from the new blocks.
9017       ExportFromCurrentBlock(Cond);
9018     }
9019     UnhandledProbs -= I->Prob;
9020 
9021     switch (I->Kind) {
9022       case CC_JumpTable: {
9023         // FIXME: Optimize away range check based on pivot comparisons.
9024         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9025         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9026 
9027         // The jump block hasn't been inserted yet; insert it here.
9028         MachineBasicBlock *JumpMBB = JT->MBB;
9029         CurMF->insert(BBI, JumpMBB);
9030 
9031         auto JumpProb = I->Prob;
9032         auto FallthroughProb = UnhandledProbs;
9033 
9034         // If the default statement is a target of the jump table, we evenly
9035         // distribute the default probability to successors of CurMBB. Also
9036         // update the probability on the edge from JumpMBB to Fallthrough.
9037         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9038                                               SE = JumpMBB->succ_end();
9039              SI != SE; ++SI) {
9040           if (*SI == DefaultMBB) {
9041             JumpProb += DefaultProb / 2;
9042             FallthroughProb -= DefaultProb / 2;
9043             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9044             JumpMBB->normalizeSuccProbs();
9045             break;
9046           }
9047         }
9048 
9049         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9050         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9051         CurMBB->normalizeSuccProbs();
9052 
9053         // The jump table header will be inserted in our current block, do the
9054         // range check, and fall through to our fallthrough block.
9055         JTH->HeaderBB = CurMBB;
9056         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9057 
9058         // If we're in the right place, emit the jump table header right now.
9059         if (CurMBB == SwitchMBB) {
9060           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9061           JTH->Emitted = true;
9062         }
9063         break;
9064       }
9065       case CC_BitTests: {
9066         // FIXME: Optimize away range check based on pivot comparisons.
9067         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9068 
9069         // The bit test blocks haven't been inserted yet; insert them here.
9070         for (BitTestCase &BTC : BTB->Cases)
9071           CurMF->insert(BBI, BTC.ThisBB);
9072 
9073         // Fill in fields of the BitTestBlock.
9074         BTB->Parent = CurMBB;
9075         BTB->Default = Fallthrough;
9076 
9077         BTB->DefaultProb = UnhandledProbs;
9078         // If the cases in bit test don't form a contiguous range, we evenly
9079         // distribute the probability on the edge to Fallthrough to two
9080         // successors of CurMBB.
9081         if (!BTB->ContiguousRange) {
9082           BTB->Prob += DefaultProb / 2;
9083           BTB->DefaultProb -= DefaultProb / 2;
9084         }
9085 
9086         // If we're in the right place, emit the bit test header right now.
9087         if (CurMBB == SwitchMBB) {
9088           visitBitTestHeader(*BTB, SwitchMBB);
9089           BTB->Emitted = true;
9090         }
9091         break;
9092       }
9093       case CC_Range: {
9094         const Value *RHS, *LHS, *MHS;
9095         ISD::CondCode CC;
9096         if (I->Low == I->High) {
9097           // Check Cond == I->Low.
9098           CC = ISD::SETEQ;
9099           LHS = Cond;
9100           RHS=I->Low;
9101           MHS = nullptr;
9102         } else {
9103           // Check I->Low <= Cond <= I->High.
9104           CC = ISD::SETLE;
9105           LHS = I->Low;
9106           MHS = Cond;
9107           RHS = I->High;
9108         }
9109 
9110         // The false probability is the sum of all unhandled cases.
9111         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9112                      UnhandledProbs);
9113 
9114         if (CurMBB == SwitchMBB)
9115           visitSwitchCase(CB, SwitchMBB);
9116         else
9117           SwitchCases.push_back(CB);
9118 
9119         break;
9120       }
9121     }
9122     CurMBB = Fallthrough;
9123   }
9124 }
9125 
9126 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9127                                               CaseClusterIt First,
9128                                               CaseClusterIt Last) {
9129   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9130     if (X.Prob != CC.Prob)
9131       return X.Prob > CC.Prob;
9132 
9133     // Ties are broken by comparing the case value.
9134     return X.Low->getValue().slt(CC.Low->getValue());
9135   });
9136 }
9137 
9138 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9139                                         const SwitchWorkListItem &W,
9140                                         Value *Cond,
9141                                         MachineBasicBlock *SwitchMBB) {
9142   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9143          "Clusters not sorted?");
9144 
9145   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9146 
9147   // Balance the tree based on branch probabilities to create a near-optimal (in
9148   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9149   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9150   CaseClusterIt LastLeft = W.FirstCluster;
9151   CaseClusterIt FirstRight = W.LastCluster;
9152   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9153   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9154 
9155   // Move LastLeft and FirstRight towards each other from opposite directions to
9156   // find a partitioning of the clusters which balances the probability on both
9157   // sides. If LeftProb and RightProb are equal, alternate which side is
9158   // taken to ensure 0-probability nodes are distributed evenly.
9159   unsigned I = 0;
9160   while (LastLeft + 1 < FirstRight) {
9161     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9162       LeftProb += (++LastLeft)->Prob;
9163     else
9164       RightProb += (--FirstRight)->Prob;
9165     I++;
9166   }
9167 
9168   for (;;) {
9169     // Our binary search tree differs from a typical BST in that ours can have up
9170     // to three values in each leaf. The pivot selection above doesn't take that
9171     // into account, which means the tree might require more nodes and be less
9172     // efficient. We compensate for this here.
9173 
9174     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9175     unsigned NumRight = W.LastCluster - FirstRight + 1;
9176 
9177     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9178       // If one side has less than 3 clusters, and the other has more than 3,
9179       // consider taking a cluster from the other side.
9180 
9181       if (NumLeft < NumRight) {
9182         // Consider moving the first cluster on the right to the left side.
9183         CaseCluster &CC = *FirstRight;
9184         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9185         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9186         if (LeftSideRank <= RightSideRank) {
9187           // Moving the cluster to the left does not demote it.
9188           ++LastLeft;
9189           ++FirstRight;
9190           continue;
9191         }
9192       } else {
9193         assert(NumRight < NumLeft);
9194         // Consider moving the last element on the left to the right side.
9195         CaseCluster &CC = *LastLeft;
9196         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9197         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9198         if (RightSideRank <= LeftSideRank) {
9199           // Moving the cluster to the right does not demot it.
9200           --LastLeft;
9201           --FirstRight;
9202           continue;
9203         }
9204       }
9205     }
9206     break;
9207   }
9208 
9209   assert(LastLeft + 1 == FirstRight);
9210   assert(LastLeft >= W.FirstCluster);
9211   assert(FirstRight <= W.LastCluster);
9212 
9213   // Use the first element on the right as pivot since we will make less-than
9214   // comparisons against it.
9215   CaseClusterIt PivotCluster = FirstRight;
9216   assert(PivotCluster > W.FirstCluster);
9217   assert(PivotCluster <= W.LastCluster);
9218 
9219   CaseClusterIt FirstLeft = W.FirstCluster;
9220   CaseClusterIt LastRight = W.LastCluster;
9221 
9222   const ConstantInt *Pivot = PivotCluster->Low;
9223 
9224   // New blocks will be inserted immediately after the current one.
9225   MachineFunction::iterator BBI(W.MBB);
9226   ++BBI;
9227 
9228   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9229   // we can branch to its destination directly if it's squeezed exactly in
9230   // between the known lower bound and Pivot - 1.
9231   MachineBasicBlock *LeftMBB;
9232   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9233       FirstLeft->Low == W.GE &&
9234       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9235     LeftMBB = FirstLeft->MBB;
9236   } else {
9237     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9238     FuncInfo.MF->insert(BBI, LeftMBB);
9239     WorkList.push_back(
9240         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9241     // Put Cond in a virtual register to make it available from the new blocks.
9242     ExportFromCurrentBlock(Cond);
9243   }
9244 
9245   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9246   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9247   // directly if RHS.High equals the current upper bound.
9248   MachineBasicBlock *RightMBB;
9249   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9250       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9251     RightMBB = FirstRight->MBB;
9252   } else {
9253     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9254     FuncInfo.MF->insert(BBI, RightMBB);
9255     WorkList.push_back(
9256         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9257     // Put Cond in a virtual register to make it available from the new blocks.
9258     ExportFromCurrentBlock(Cond);
9259   }
9260 
9261   // Create the CaseBlock record that will be used to lower the branch.
9262   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9263                LeftProb, RightProb);
9264 
9265   if (W.MBB == SwitchMBB)
9266     visitSwitchCase(CB, SwitchMBB);
9267   else
9268     SwitchCases.push_back(CB);
9269 }
9270 
9271 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9272   // Extract cases from the switch.
9273   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9274   CaseClusterVector Clusters;
9275   Clusters.reserve(SI.getNumCases());
9276   for (auto I : SI.cases()) {
9277     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9278     const ConstantInt *CaseVal = I.getCaseValue();
9279     BranchProbability Prob =
9280         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9281             : BranchProbability(1, SI.getNumCases() + 1);
9282     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9283   }
9284 
9285   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9286 
9287   // Cluster adjacent cases with the same destination. We do this at all
9288   // optimization levels because it's cheap to do and will make codegen faster
9289   // if there are many clusters.
9290   sortAndRangeify(Clusters);
9291 
9292   if (TM.getOptLevel() != CodeGenOpt::None) {
9293     // Replace an unreachable default with the most popular destination.
9294     // FIXME: Exploit unreachable default more aggressively.
9295     bool UnreachableDefault =
9296         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9297     if (UnreachableDefault && !Clusters.empty()) {
9298       DenseMap<const BasicBlock *, unsigned> Popularity;
9299       unsigned MaxPop = 0;
9300       const BasicBlock *MaxBB = nullptr;
9301       for (auto I : SI.cases()) {
9302         const BasicBlock *BB = I.getCaseSuccessor();
9303         if (++Popularity[BB] > MaxPop) {
9304           MaxPop = Popularity[BB];
9305           MaxBB = BB;
9306         }
9307       }
9308       // Set new default.
9309       assert(MaxPop > 0 && MaxBB);
9310       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9311 
9312       // Remove cases that were pointing to the destination that is now the
9313       // default.
9314       CaseClusterVector New;
9315       New.reserve(Clusters.size());
9316       for (CaseCluster &CC : Clusters) {
9317         if (CC.MBB != DefaultMBB)
9318           New.push_back(CC);
9319       }
9320       Clusters = std::move(New);
9321     }
9322   }
9323 
9324   // If there is only the default destination, jump there directly.
9325   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9326   if (Clusters.empty()) {
9327     SwitchMBB->addSuccessor(DefaultMBB);
9328     if (DefaultMBB != NextBlock(SwitchMBB)) {
9329       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9330                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9331     }
9332     return;
9333   }
9334 
9335   findJumpTables(Clusters, &SI, DefaultMBB);
9336   findBitTestClusters(Clusters, &SI);
9337 
9338   DEBUG({
9339     dbgs() << "Case clusters: ";
9340     for (const CaseCluster &C : Clusters) {
9341       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9342       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9343 
9344       C.Low->getValue().print(dbgs(), true);
9345       if (C.Low != C.High) {
9346         dbgs() << '-';
9347         C.High->getValue().print(dbgs(), true);
9348       }
9349       dbgs() << ' ';
9350     }
9351     dbgs() << '\n';
9352   });
9353 
9354   assert(!Clusters.empty());
9355   SwitchWorkList WorkList;
9356   CaseClusterIt First = Clusters.begin();
9357   CaseClusterIt Last = Clusters.end() - 1;
9358   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9359   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9360 
9361   while (!WorkList.empty()) {
9362     SwitchWorkListItem W = WorkList.back();
9363     WorkList.pop_back();
9364     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9365 
9366     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9367         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9368       // For optimized builds, lower large range as a balanced binary tree.
9369       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9370       continue;
9371     }
9372 
9373     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9374   }
9375 }
9376