xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision ea626d8bdb402b2ea91483be49e870e75c76e5e0)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
123 
124 using namespace llvm;
125 using namespace PatternMatch;
126 
127 #define DEBUG_TYPE "isel"
128 
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
132 
133 static cl::opt<unsigned, true>
134     LimitFPPrecision("limit-float-precision",
135                      cl::desc("Generate low-precision inline sequences "
136                               "for some float libcalls"),
137                      cl::location(LimitFloatPrecision), cl::Hidden,
138                      cl::init(0));
139 
140 static cl::opt<unsigned> SwitchPeelThreshold(
141     "switch-peel-threshold", cl::Hidden, cl::init(66),
142     cl::desc("Set the case probability threshold for peeling the case from a "
143              "switch statement. A value greater than 100 will void this "
144              "optimization"));
145 
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
152 //
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
161 
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166   if (auto *R = dyn_cast<ReturnInst>(V))
167     return R->getParent()->getParent()->getCallingConv();
168 
169   if (auto *CI = dyn_cast<CallInst>(V)) {
170     const bool IsInlineAsm = CI->isInlineAsm();
171     const bool IsIndirectFunctionCall =
172         !IsInlineAsm && !CI->getCalledFunction();
173 
174     // It is possible that the call instruction is an inline asm statement or an
175     // indirect function call in which case the return value of
176     // getCalledFunction() would be nullptr.
177     const bool IsInstrinsicCall =
178         !IsInlineAsm && !IsIndirectFunctionCall &&
179         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180 
181     if (!IsInlineAsm && !IsInstrinsicCall)
182       return CI->getCallingConv();
183   }
184 
185   return None;
186 }
187 
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189                                       const SDValue *Parts, unsigned NumParts,
190                                       MVT PartVT, EVT ValueVT, const Value *V,
191                                       Optional<CallingConv::ID> CC);
192 
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent.  If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199                                 const SDValue *Parts, unsigned NumParts,
200                                 MVT PartVT, EVT ValueVT, const Value *V,
201                                 Optional<CallingConv::ID> CC = None,
202                                 Optional<ISD::NodeType> AssertOp = None) {
203   if (ValueVT.isVector())
204     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205                                   CC);
206 
207   assert(NumParts > 0 && "No parts to assemble!");
208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209   SDValue Val = Parts[0];
210 
211   if (NumParts > 1) {
212     // Assemble the value from multiple parts.
213     if (ValueVT.isInteger()) {
214       unsigned PartBits = PartVT.getSizeInBits();
215       unsigned ValueBits = ValueVT.getSizeInBits();
216 
217       // Assemble the power of 2 part.
218       unsigned RoundParts = NumParts & (NumParts - 1) ?
219         1 << Log2_32(NumParts) : NumParts;
220       unsigned RoundBits = PartBits * RoundParts;
221       EVT RoundVT = RoundBits == ValueBits ?
222         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223       SDValue Lo, Hi;
224 
225       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226 
227       if (RoundParts > 2) {
228         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229                               PartVT, HalfVT, V);
230         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231                               RoundParts / 2, PartVT, HalfVT, V);
232       } else {
233         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235       }
236 
237       if (DAG.getDataLayout().isBigEndian())
238         std::swap(Lo, Hi);
239 
240       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241 
242       if (RoundParts < NumParts) {
243         // Assemble the trailing non-power-of-2 part.
244         unsigned OddParts = NumParts - RoundParts;
245         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247                               OddVT, V, CC);
248 
249         // Combine the round and odd parts.
250         Lo = Val;
251         if (DAG.getDataLayout().isBigEndian())
252           std::swap(Lo, Hi);
253         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255         Hi =
256             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
258                                         TLI.getPointerTy(DAG.getDataLayout())));
259         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261       }
262     } else if (PartVT.isFloatingPoint()) {
263       // FP split into multiple FP parts (for ppcf128)
264       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265              "Unexpected split");
266       SDValue Lo, Hi;
267       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270         std::swap(Lo, Hi);
271       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272     } else {
273       // FP split into integer parts (soft fp)
274       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275              !PartVT.isVector() && "Unexpected split");
276       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278     }
279   }
280 
281   // There is now one part, held in Val.  Correct it to match ValueVT.
282   // PartEVT is the type of the register class that holds the value.
283   // ValueVT is the type of the inline asm operation.
284   EVT PartEVT = Val.getValueType();
285 
286   if (PartEVT == ValueVT)
287     return Val;
288 
289   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290       ValueVT.bitsLT(PartEVT)) {
291     // For an FP value in an integer part, we need to truncate to the right
292     // width first.
293     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
294     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295   }
296 
297   // Handle types that have the same size.
298   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300 
301   // Handle types with different sizes.
302   if (PartEVT.isInteger() && ValueVT.isInteger()) {
303     if (ValueVT.bitsLT(PartEVT)) {
304       // For a truncate, see if we have any information to
305       // indicate whether the truncated bits will always be
306       // zero or sign-extension.
307       if (AssertOp.hasValue())
308         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309                           DAG.getValueType(ValueVT));
310       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311     }
312     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313   }
314 
315   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     // FP_ROUND's are always exact here.
317     if (ValueVT.bitsLT(Val.getValueType()))
318       return DAG.getNode(
319           ISD::FP_ROUND, DL, ValueVT, Val,
320           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321 
322     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323   }
324 
325   llvm_unreachable("Unknown mismatch!");
326 }
327 
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329                                               const Twine &ErrMsg) {
330   const Instruction *I = dyn_cast_or_null<Instruction>(V);
331   if (!V)
332     return Ctx.emitError(ErrMsg);
333 
334   const char *AsmError = ", possible invalid constraint for vector type";
335   if (const CallInst *CI = dyn_cast<CallInst>(I))
336     if (isa<InlineAsm>(CI->getCalledValue()))
337       return Ctx.emitError(I, ErrMsg + AsmError);
338 
339   return Ctx.emitError(I, ErrMsg);
340 }
341 
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent.  If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348                                       const SDValue *Parts, unsigned NumParts,
349                                       MVT PartVT, EVT ValueVT, const Value *V,
350                                       Optional<CallingConv::ID> CallConv) {
351   assert(ValueVT.isVector() && "Not a vector value");
352   assert(NumParts > 0 && "No parts to assemble!");
353   const bool IsABIRegCopy = CallConv.hasValue();
354 
355   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356   SDValue Val = Parts[0];
357 
358   // Handle a multi-element vector.
359   if (NumParts > 1) {
360     EVT IntermediateVT;
361     MVT RegisterVT;
362     unsigned NumIntermediates;
363     unsigned NumRegs;
364 
365     if (IsABIRegCopy) {
366       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368           NumIntermediates, RegisterVT);
369     } else {
370       NumRegs =
371           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372                                      NumIntermediates, RegisterVT);
373     }
374 
375     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376     NumParts = NumRegs; // Silence a compiler warning.
377     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378     assert(RegisterVT.getSizeInBits() ==
379            Parts[0].getSimpleValueType().getSizeInBits() &&
380            "Part type sizes don't match!");
381 
382     // Assemble the parts into intermediate operands.
383     SmallVector<SDValue, 8> Ops(NumIntermediates);
384     if (NumIntermediates == NumParts) {
385       // If the register was not expanded, truncate or copy the value,
386       // as appropriate.
387       for (unsigned i = 0; i != NumParts; ++i)
388         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389                                   PartVT, IntermediateVT, V);
390     } else if (NumParts > 0) {
391       // If the intermediate type was expanded, build the intermediate
392       // operands from the parts.
393       assert(NumParts % NumIntermediates == 0 &&
394              "Must expand into a divisible number of parts!");
395       unsigned Factor = NumParts / NumIntermediates;
396       for (unsigned i = 0; i != NumIntermediates; ++i)
397         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398                                   PartVT, IntermediateVT, V);
399     }
400 
401     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402     // intermediate operands.
403     EVT BuiltVectorTy =
404         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405                          (IntermediateVT.isVector()
406                               ? IntermediateVT.getVectorNumElements() * NumParts
407                               : NumIntermediates));
408     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409                                                 : ISD::BUILD_VECTOR,
410                       DL, BuiltVectorTy, Ops);
411   }
412 
413   // There is now one part, held in Val.  Correct it to match ValueVT.
414   EVT PartEVT = Val.getValueType();
415 
416   if (PartEVT == ValueVT)
417     return Val;
418 
419   if (PartEVT.isVector()) {
420     // If the element type of the source/dest vectors are the same, but the
421     // parts vector has more elements than the value vector, then we have a
422     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
423     // elements we want.
424     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426              "Cannot narrow, it would be a lossy transformation");
427       return DAG.getNode(
428           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430     }
431 
432     // Vector/Vector bitcast.
433     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437       "Cannot handle this kind of promotion");
438     // Promoted vector extract
439     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440 
441   }
442 
443   // Trivial bitcast if the types are the same size and the destination
444   // vector type is legal.
445   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446       TLI.isTypeLegal(ValueVT))
447     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448 
449   if (ValueVT.getVectorNumElements() != 1) {
450      // Certain ABIs require that vectors are passed as integers. For vectors
451      // are the same size, this is an obvious bitcast.
452      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455        // Bitcast Val back the original type and extract the corresponding
456        // vector we want.
457        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459                                            ValueVT.getVectorElementType(), Elts);
460        Val = DAG.getBitcast(WiderVecType, Val);
461        return DAG.getNode(
462            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464      }
465 
466      diagnosePossiblyInvalidConstraint(
467          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468      return DAG.getUNDEF(ValueVT);
469   }
470 
471   // Handle cases such as i8 -> <1 x i1>
472   EVT ValueSVT = ValueVT.getVectorElementType();
473   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476 
477   return DAG.getBuildVector(ValueVT, DL, Val);
478 }
479 
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481                                  SDValue Val, SDValue *Parts, unsigned NumParts,
482                                  MVT PartVT, const Value *V,
483                                  Optional<CallingConv::ID> CallConv);
484 
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts.  If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489                            SDValue *Parts, unsigned NumParts, MVT PartVT,
490                            const Value *V,
491                            Optional<CallingConv::ID> CallConv = None,
492                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493   EVT ValueVT = Val.getValueType();
494 
495   // Handle the vector case separately.
496   if (ValueVT.isVector())
497     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498                                 CallConv);
499 
500   unsigned PartBits = PartVT.getSizeInBits();
501   unsigned OrigNumParts = NumParts;
502   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503          "Copying to an illegal type!");
504 
505   if (NumParts == 0)
506     return;
507 
508   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509   EVT PartEVT = PartVT;
510   if (PartEVT == ValueVT) {
511     assert(NumParts == 1 && "No-op copy with multiple parts!");
512     Parts[0] = Val;
513     return;
514   }
515 
516   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517     // If the parts cover more bits than the value has, promote the value.
518     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519       assert(NumParts == 1 && "Do not know what to promote to!");
520       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521     } else {
522       if (ValueVT.isFloatingPoint()) {
523         // FP values need to be bitcast, then extended if they are being put
524         // into a larger container.
525         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
526         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527       }
528       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529              ValueVT.isInteger() &&
530              "Unknown mismatch!");
531       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533       if (PartVT == MVT::x86mmx)
534         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535     }
536   } else if (PartBits == ValueVT.getSizeInBits()) {
537     // Different types of the same size.
538     assert(NumParts == 1 && PartEVT != ValueVT);
539     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541     // If the parts cover less bits than value has, truncate the value.
542     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543            ValueVT.isInteger() &&
544            "Unknown mismatch!");
545     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547     if (PartVT == MVT::x86mmx)
548       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549   }
550 
551   // The value may have changed - recompute ValueVT.
552   ValueVT = Val.getValueType();
553   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554          "Failed to tile the value with PartVT!");
555 
556   if (NumParts == 1) {
557     if (PartEVT != ValueVT) {
558       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559                                         "scalar-to-vector conversion failed");
560       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561     }
562 
563     Parts[0] = Val;
564     return;
565   }
566 
567   // Expand the value into multiple parts.
568   if (NumParts & (NumParts - 1)) {
569     // The number of parts is not a power of 2.  Split off and copy the tail.
570     assert(PartVT.isInteger() && ValueVT.isInteger() &&
571            "Do not know what to expand to!");
572     unsigned RoundParts = 1 << Log2_32(NumParts);
573     unsigned RoundBits = RoundParts * PartBits;
574     unsigned OddParts = NumParts - RoundParts;
575     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
577 
578     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
579                    CallConv);
580 
581     if (DAG.getDataLayout().isBigEndian())
582       // The odd parts were reversed by getCopyToParts - unreverse them.
583       std::reverse(Parts + RoundParts, Parts + NumParts);
584 
585     NumParts = RoundParts;
586     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
587     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
588   }
589 
590   // The number of parts is a power of 2.  Repeatedly bisect the value using
591   // EXTRACT_ELEMENT.
592   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
593                          EVT::getIntegerVT(*DAG.getContext(),
594                                            ValueVT.getSizeInBits()),
595                          Val);
596 
597   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
598     for (unsigned i = 0; i < NumParts; i += StepSize) {
599       unsigned ThisBits = StepSize * PartBits / 2;
600       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
601       SDValue &Part0 = Parts[i];
602       SDValue &Part1 = Parts[i+StepSize/2];
603 
604       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
605                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
606       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
607                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 
609       if (ThisBits == PartBits && ThisVT != PartVT) {
610         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
611         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
612       }
613     }
614   }
615 
616   if (DAG.getDataLayout().isBigEndian())
617     std::reverse(Parts, Parts + OrigNumParts);
618 }
619 
620 static SDValue widenVectorToPartType(SelectionDAG &DAG,
621                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
622   if (!PartVT.isVector())
623     return SDValue();
624 
625   EVT ValueVT = Val.getValueType();
626   unsigned PartNumElts = PartVT.getVectorNumElements();
627   unsigned ValueNumElts = ValueVT.getVectorNumElements();
628   if (PartNumElts > ValueNumElts &&
629       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
630     EVT ElementVT = PartVT.getVectorElementType();
631     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
632     // undef elements.
633     SmallVector<SDValue, 16> Ops;
634     DAG.ExtractVectorElements(Val, Ops);
635     SDValue EltUndef = DAG.getUNDEF(ElementVT);
636     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
637       Ops.push_back(EltUndef);
638 
639     // FIXME: Use CONCAT for 2x -> 4x.
640     return DAG.getBuildVector(PartVT, DL, Ops);
641   }
642 
643   return SDValue();
644 }
645 
646 /// getCopyToPartsVector - Create a series of nodes that contain the specified
647 /// value split into legal parts.
648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
649                                  SDValue Val, SDValue *Parts, unsigned NumParts,
650                                  MVT PartVT, const Value *V,
651                                  Optional<CallingConv::ID> CallConv) {
652   EVT ValueVT = Val.getValueType();
653   assert(ValueVT.isVector() && "Not a vector");
654   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
655   const bool IsABIRegCopy = CallConv.hasValue();
656 
657   if (NumParts == 1) {
658     EVT PartEVT = PartVT;
659     if (PartEVT == ValueVT) {
660       // Nothing to do.
661     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
662       // Bitconvert vector->vector case.
663       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
664     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
665       Val = Widened;
666     } else if (PartVT.isVector() &&
667                PartEVT.getVectorElementType().bitsGE(
668                  ValueVT.getVectorElementType()) &&
669                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 
671       // Promoted vector extract
672       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
673     } else {
674       if (ValueVT.getVectorNumElements() == 1) {
675         Val = DAG.getNode(
676             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
677             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
678       } else {
679         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
680                "lossy conversion of vector to scalar type");
681         EVT IntermediateType =
682             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
683         Val = DAG.getBitcast(IntermediateType, Val);
684         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
685       }
686     }
687 
688     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
689     Parts[0] = Val;
690     return;
691   }
692 
693   // Handle a multi-element vector.
694   EVT IntermediateVT;
695   MVT RegisterVT;
696   unsigned NumIntermediates;
697   unsigned NumRegs;
698   if (IsABIRegCopy) {
699     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
700         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
701         NumIntermediates, RegisterVT);
702   } else {
703     NumRegs =
704         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
705                                    NumIntermediates, RegisterVT);
706   }
707 
708   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
709   NumParts = NumRegs; // Silence a compiler warning.
710   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 
712   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
713     IntermediateVT.getVectorNumElements() : 1;
714 
715   // Convert the vector to the appropiate type if necessary.
716   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 
718   EVT BuiltVectorTy = EVT::getVectorVT(
719       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
720   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
721   if (ValueVT != BuiltVectorTy) {
722     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
723       Val = Widened;
724 
725     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
726   }
727 
728   // Split the vector into intermediate operands.
729   SmallVector<SDValue, 8> Ops(NumIntermediates);
730   for (unsigned i = 0; i != NumIntermediates; ++i) {
731     if (IntermediateVT.isVector()) {
732       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
733                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
734     } else {
735       Ops[i] = DAG.getNode(
736           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
737           DAG.getConstant(i, DL, IdxVT));
738     }
739   }
740 
741   // Split the intermediate operands into legal parts.
742   if (NumParts == NumIntermediates) {
743     // If the register was not expanded, promote or copy the value,
744     // as appropriate.
745     for (unsigned i = 0; i != NumParts; ++i)
746       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
747   } else if (NumParts > 0) {
748     // If the intermediate type was expanded, split each the value into
749     // legal parts.
750     assert(NumIntermediates != 0 && "division by zero");
751     assert(NumParts % NumIntermediates == 0 &&
752            "Must expand into a divisible number of parts!");
753     unsigned Factor = NumParts / NumIntermediates;
754     for (unsigned i = 0; i != NumIntermediates; ++i)
755       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
756                      CallConv);
757   }
758 }
759 
760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
761                            EVT valuevt, Optional<CallingConv::ID> CC)
762     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
763       RegCount(1, regs.size()), CallConv(CC) {}
764 
765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
766                            const DataLayout &DL, unsigned Reg, Type *Ty,
767                            Optional<CallingConv::ID> CC) {
768   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 
770   CallConv = CC;
771 
772   for (EVT ValueVT : ValueVTs) {
773     unsigned NumRegs =
774         isABIMangled()
775             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
776             : TLI.getNumRegisters(Context, ValueVT);
777     MVT RegisterVT =
778         isABIMangled()
779             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
780             : TLI.getRegisterType(Context, ValueVT);
781     for (unsigned i = 0; i != NumRegs; ++i)
782       Regs.push_back(Reg + i);
783     RegVTs.push_back(RegisterVT);
784     RegCount.push_back(NumRegs);
785     Reg += NumRegs;
786   }
787 }
788 
789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
790                                       FunctionLoweringInfo &FuncInfo,
791                                       const SDLoc &dl, SDValue &Chain,
792                                       SDValue *Flag, const Value *V) const {
793   // A Value with type {} or [0 x %t] needs no registers.
794   if (ValueVTs.empty())
795     return SDValue();
796 
797   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 
799   // Assemble the legal parts into the final values.
800   SmallVector<SDValue, 4> Values(ValueVTs.size());
801   SmallVector<SDValue, 8> Parts;
802   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
803     // Copy the legal parts from the registers.
804     EVT ValueVT = ValueVTs[Value];
805     unsigned NumRegs = RegCount[Value];
806     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
807                                           *DAG.getContext(),
808                                           CallConv.getValue(), RegVTs[Value])
809                                     : RegVTs[Value];
810 
811     Parts.resize(NumRegs);
812     for (unsigned i = 0; i != NumRegs; ++i) {
813       SDValue P;
814       if (!Flag) {
815         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
816       } else {
817         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
818         *Flag = P.getValue(2);
819       }
820 
821       Chain = P.getValue(1);
822       Parts[i] = P;
823 
824       // If the source register was virtual and if we know something about it,
825       // add an assert node.
826       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
827           !RegisterVT.isInteger())
828         continue;
829 
830       const FunctionLoweringInfo::LiveOutInfo *LOI =
831         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
832       if (!LOI)
833         continue;
834 
835       unsigned RegSize = RegisterVT.getScalarSizeInBits();
836       unsigned NumSignBits = LOI->NumSignBits;
837       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 
839       if (NumZeroBits == RegSize) {
840         // The current value is a zero.
841         // Explicitly express that as it would be easier for
842         // optimizations to kick in.
843         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
844         continue;
845       }
846 
847       // FIXME: We capture more information than the dag can represent.  For
848       // now, just use the tightest assertzext/assertsext possible.
849       bool isSExt;
850       EVT FromVT(MVT::Other);
851       if (NumZeroBits) {
852         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
853         isSExt = false;
854       } else if (NumSignBits > 1) {
855         FromVT =
856             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
857         isSExt = true;
858       } else {
859         continue;
860       }
861       // Add an assertion node.
862       assert(FromVT != MVT::Other);
863       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
864                              RegisterVT, P, DAG.getValueType(FromVT));
865     }
866 
867     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
868                                      RegisterVT, ValueVT, V, CallConv);
869     Part += NumRegs;
870     Parts.clear();
871   }
872 
873   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
874 }
875 
876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
877                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
878                                  const Value *V,
879                                  ISD::NodeType PreferredExtendType) const {
880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
881   ISD::NodeType ExtendKind = PreferredExtendType;
882 
883   // Get the list of the values's legal parts.
884   unsigned NumRegs = Regs.size();
885   SmallVector<SDValue, 8> Parts(NumRegs);
886   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
887     unsigned NumParts = RegCount[Value];
888 
889     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
890                                           *DAG.getContext(),
891                                           CallConv.getValue(), RegVTs[Value])
892                                     : RegVTs[Value];
893 
894     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
895       ExtendKind = ISD::ZERO_EXTEND;
896 
897     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
898                    NumParts, RegisterVT, V, CallConv, ExtendKind);
899     Part += NumParts;
900   }
901 
902   // Copy the parts into the registers.
903   SmallVector<SDValue, 8> Chains(NumRegs);
904   for (unsigned i = 0; i != NumRegs; ++i) {
905     SDValue Part;
906     if (!Flag) {
907       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
908     } else {
909       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
910       *Flag = Part.getValue(1);
911     }
912 
913     Chains[i] = Part.getValue(0);
914   }
915 
916   if (NumRegs == 1 || Flag)
917     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
918     // flagged to it. That is the CopyToReg nodes and the user are considered
919     // a single scheduling unit. If we create a TokenFactor and return it as
920     // chain, then the TokenFactor is both a predecessor (operand) of the
921     // user as well as a successor (the TF operands are flagged to the user).
922     // c1, f1 = CopyToReg
923     // c2, f2 = CopyToReg
924     // c3     = TokenFactor c1, c2
925     // ...
926     //        = op c3, ..., f2
927     Chain = Chains[NumRegs-1];
928   else
929     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
930 }
931 
932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
933                                         unsigned MatchingIdx, const SDLoc &dl,
934                                         SelectionDAG &DAG,
935                                         std::vector<SDValue> &Ops) const {
936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 
938   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
939   if (HasMatching)
940     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
941   else if (!Regs.empty() &&
942            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
943     // Put the register class of the virtual registers in the flag word.  That
944     // way, later passes can recompute register class constraints for inline
945     // assembly as well as normal instructions.
946     // Don't do this for tied operands that can use the regclass information
947     // from the def.
948     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
949     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
950     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
951   }
952 
953   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
954   Ops.push_back(Res);
955 
956   if (Code == InlineAsm::Kind_Clobber) {
957     // Clobbers should always have a 1:1 mapping with registers, and may
958     // reference registers that have illegal (e.g. vector) types. Hence, we
959     // shouldn't try to apply any sort of splitting logic to them.
960     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
961            "No 1:1 mapping from clobbers to regs?");
962     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
963     (void)SP;
964     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
965       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
966       assert(
967           (Regs[I] != SP ||
968            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
969           "If we clobbered the stack pointer, MFI should know about it.");
970     }
971     return;
972   }
973 
974   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
975     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
976     MVT RegisterVT = RegVTs[Value];
977     for (unsigned i = 0; i != NumRegs; ++i) {
978       assert(Reg < Regs.size() && "Mismatch in # registers expected");
979       unsigned TheReg = Regs[Reg++];
980       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
981     }
982   }
983 }
984 
985 SmallVector<std::pair<unsigned, unsigned>, 4>
986 RegsForValue::getRegsAndSizes() const {
987   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
988   unsigned I = 0;
989   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
990     unsigned RegCount = std::get<0>(CountAndVT);
991     MVT RegisterVT = std::get<1>(CountAndVT);
992     unsigned RegisterSize = RegisterVT.getSizeInBits();
993     for (unsigned E = I + RegCount; I != E; ++I)
994       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995   }
996   return OutVec;
997 }
998 
999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1000                                const TargetLibraryInfo *li) {
1001   AA = aa;
1002   GFI = gfi;
1003   LibInfo = li;
1004   DL = &DAG.getDataLayout();
1005   Context = DAG.getContext();
1006   LPadToCallSiteMap.clear();
1007 }
1008 
1009 void SelectionDAGBuilder::clear() {
1010   NodeMap.clear();
1011   UnusedArgNodeMap.clear();
1012   PendingLoads.clear();
1013   PendingExports.clear();
1014   CurInst = nullptr;
1015   HasTailCall = false;
1016   SDNodeOrder = LowestSDNodeOrder;
1017   StatepointLowering.clear();
1018 }
1019 
1020 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1021   DanglingDebugInfoMap.clear();
1022 }
1023 
1024 SDValue SelectionDAGBuilder::getRoot() {
1025   if (PendingLoads.empty())
1026     return DAG.getRoot();
1027 
1028   if (PendingLoads.size() == 1) {
1029     SDValue Root = PendingLoads[0];
1030     DAG.setRoot(Root);
1031     PendingLoads.clear();
1032     return Root;
1033   }
1034 
1035   // Otherwise, we have to make a token factor node.
1036   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1037   PendingLoads.clear();
1038   DAG.setRoot(Root);
1039   return Root;
1040 }
1041 
1042 SDValue SelectionDAGBuilder::getControlRoot() {
1043   SDValue Root = DAG.getRoot();
1044 
1045   if (PendingExports.empty())
1046     return Root;
1047 
1048   // Turn all of the CopyToReg chains into one factored node.
1049   if (Root.getOpcode() != ISD::EntryToken) {
1050     unsigned i = 0, e = PendingExports.size();
1051     for (; i != e; ++i) {
1052       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1053       if (PendingExports[i].getNode()->getOperand(0) == Root)
1054         break;  // Don't add the root if we already indirectly depend on it.
1055     }
1056 
1057     if (i == e)
1058       PendingExports.push_back(Root);
1059   }
1060 
1061   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1062                      PendingExports);
1063   PendingExports.clear();
1064   DAG.setRoot(Root);
1065   return Root;
1066 }
1067 
1068 void SelectionDAGBuilder::visit(const Instruction &I) {
1069   // Set up outgoing PHI node register values before emitting the terminator.
1070   if (I.isTerminator()) {
1071     HandlePHINodesInSuccessorBlocks(I.getParent());
1072   }
1073 
1074   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1075   if (!isa<DbgInfoIntrinsic>(I))
1076     ++SDNodeOrder;
1077 
1078   CurInst = &I;
1079 
1080   visit(I.getOpcode(), I);
1081 
1082   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1083     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1084     // maps to this instruction.
1085     // TODO: We could handle all flags (nsw, etc) here.
1086     // TODO: If an IR instruction maps to >1 node, only the final node will have
1087     //       flags set.
1088     if (SDNode *Node = getNodeForIRValue(&I)) {
1089       SDNodeFlags IncomingFlags;
1090       IncomingFlags.copyFMF(*FPMO);
1091       if (!Node->getFlags().isDefined())
1092         Node->setFlags(IncomingFlags);
1093       else
1094         Node->intersectFlagsWith(IncomingFlags);
1095     }
1096   }
1097 
1098   if (!I.isTerminator() && !HasTailCall &&
1099       !isStatepoint(&I)) // statepoints handle their exports internally
1100     CopyToExportRegsIfNeeded(&I);
1101 
1102   CurInst = nullptr;
1103 }
1104 
1105 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1106   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1107 }
1108 
1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1110   // Note: this doesn't use InstVisitor, because it has to work with
1111   // ConstantExpr's in addition to instructions.
1112   switch (Opcode) {
1113   default: llvm_unreachable("Unknown instruction type encountered!");
1114     // Build the switch statement using the Instruction.def file.
1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1116     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1117 #include "llvm/IR/Instruction.def"
1118   }
1119 }
1120 
1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1122                                                 const DIExpression *Expr) {
1123   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1124     const DbgValueInst *DI = DDI.getDI();
1125     DIVariable *DanglingVariable = DI->getVariable();
1126     DIExpression *DanglingExpr = DI->getExpression();
1127     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1128       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1129       return true;
1130     }
1131     return false;
1132   };
1133 
1134   for (auto &DDIMI : DanglingDebugInfoMap) {
1135     DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 
1137     // If debug info is to be dropped, run it through final checks to see
1138     // whether it can be salvaged.
1139     for (auto &DDI : DDIV)
1140       if (isMatchingDbgValue(DDI))
1141         salvageUnresolvedDbgValue(DDI);
1142 
1143     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1144   }
1145 }
1146 
1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1148 // generate the debug data structures now that we've seen its definition.
1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1150                                                    SDValue Val) {
1151   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1152   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1153     return;
1154 
1155   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1156   for (auto &DDI : DDIV) {
1157     const DbgValueInst *DI = DDI.getDI();
1158     assert(DI && "Ill-formed DanglingDebugInfo");
1159     DebugLoc dl = DDI.getdl();
1160     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1161     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1162     DILocalVariable *Variable = DI->getVariable();
1163     DIExpression *Expr = DI->getExpression();
1164     assert(Variable->isValidLocationForIntrinsic(dl) &&
1165            "Expected inlined-at fields to agree");
1166     SDDbgValue *SDV;
1167     if (Val.getNode()) {
1168       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1169       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1170       // we couldn't resolve it directly when examining the DbgValue intrinsic
1171       // in the first place we should not be more successful here). Unless we
1172       // have some test case that prove this to be correct we should avoid
1173       // calling EmitFuncArgumentDbgValue here.
1174       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1175         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1176                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1177         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1178         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1179         // inserted after the definition of Val when emitting the instructions
1180         // after ISel. An alternative could be to teach
1181         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1182         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1183                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1184                    << ValSDNodeOrder << "\n");
1185         SDV = getDbgValue(Val, Variable, Expr, dl,
1186                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1187         DAG.AddDbgValue(SDV, Val.getNode(), false);
1188       } else
1189         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1190                           << "in EmitFuncArgumentDbgValue\n");
1191     } else {
1192       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1193       auto Undef =
1194           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1195       auto SDV =
1196           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1197       DAG.AddDbgValue(SDV, nullptr, false);
1198     }
1199   }
1200   DDIV.clear();
1201 }
1202 
1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1204   Value *V = DDI.getDI()->getValue();
1205   DILocalVariable *Var = DDI.getDI()->getVariable();
1206   DIExpression *Expr = DDI.getDI()->getExpression();
1207   DebugLoc DL = DDI.getdl();
1208   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1209   unsigned SDOrder = DDI.getSDNodeOrder();
1210 
1211   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1212   // that DW_OP_stack_value is desired.
1213   assert(isa<DbgValueInst>(DDI.getDI()));
1214   bool StackValue = true;
1215 
1216   // Can this Value can be encoded without any further work?
1217   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1218     return;
1219 
1220   // Attempt to salvage back through as many instructions as possible. Bail if
1221   // a non-instruction is seen, such as a constant expression or global
1222   // variable. FIXME: Further work could recover those too.
1223   while (isa<Instruction>(V)) {
1224     Instruction &VAsInst = *cast<Instruction>(V);
1225     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 
1227     // If we cannot salvage any further, and haven't yet found a suitable debug
1228     // expression, bail out.
1229     if (!NewExpr)
1230       break;
1231 
1232     // New value and expr now represent this debuginfo.
1233     V = VAsInst.getOperand(0);
1234     Expr = NewExpr;
1235 
1236     // Some kind of simplification occurred: check whether the operand of the
1237     // salvaged debug expression can be encoded in this DAG.
1238     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1239       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1240                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1241       return;
1242     }
1243   }
1244 
1245   // This was the final opportunity to salvage this debug information, and it
1246   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1247   // any earlier variable location.
1248   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1249   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1250   DAG.AddDbgValue(SDV, nullptr, false);
1251 
1252   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1253                     << "\n");
1254   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1255                     << "\n");
1256 }
1257 
1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1259                                            DIExpression *Expr, DebugLoc dl,
1260                                            DebugLoc InstDL, unsigned Order) {
1261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1262   SDDbgValue *SDV;
1263   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1264       isa<ConstantPointerNull>(V)) {
1265     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1266     DAG.AddDbgValue(SDV, nullptr, false);
1267     return true;
1268   }
1269 
1270   // If the Value is a frame index, we can create a FrameIndex debug value
1271   // without relying on the DAG at all.
1272   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1273     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1274     if (SI != FuncInfo.StaticAllocaMap.end()) {
1275       auto SDV =
1276           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1277                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1278       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1279       // is still available even if the SDNode gets optimized out.
1280       DAG.AddDbgValue(SDV, nullptr, false);
1281       return true;
1282     }
1283   }
1284 
1285   // Do not use getValue() in here; we don't want to generate code at
1286   // this point if it hasn't been done yet.
1287   SDValue N = NodeMap[V];
1288   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1289     N = UnusedArgNodeMap[V];
1290   if (N.getNode()) {
1291     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1292       return true;
1293     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1294     DAG.AddDbgValue(SDV, N.getNode(), false);
1295     return true;
1296   }
1297 
1298   // Special rules apply for the first dbg.values of parameter variables in a
1299   // function. Identify them by the fact they reference Argument Values, that
1300   // they're parameters, and they are parameters of the current function. We
1301   // need to let them dangle until they get an SDNode.
1302   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1303                        !InstDL.getInlinedAt();
1304   if (!IsParamOfFunc) {
1305     // The value is not used in this block yet (or it would have an SDNode).
1306     // We still want the value to appear for the user if possible -- if it has
1307     // an associated VReg, we can refer to that instead.
1308     auto VMI = FuncInfo.ValueMap.find(V);
1309     if (VMI != FuncInfo.ValueMap.end()) {
1310       unsigned Reg = VMI->second;
1311       // If this is a PHI node, it may be split up into several MI PHI nodes
1312       // (in FunctionLoweringInfo::set).
1313       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1314                        V->getType(), None);
1315       if (RFV.occupiesMultipleRegs()) {
1316         unsigned Offset = 0;
1317         unsigned BitsToDescribe = 0;
1318         if (auto VarSize = Var->getSizeInBits())
1319           BitsToDescribe = *VarSize;
1320         if (auto Fragment = Expr->getFragmentInfo())
1321           BitsToDescribe = Fragment->SizeInBits;
1322         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1323           unsigned RegisterSize = RegAndSize.second;
1324           // Bail out if all bits are described already.
1325           if (Offset >= BitsToDescribe)
1326             break;
1327           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1328               ? BitsToDescribe - Offset
1329               : RegisterSize;
1330           auto FragmentExpr = DIExpression::createFragmentExpression(
1331               Expr, Offset, FragmentSize);
1332           if (!FragmentExpr)
1333               continue;
1334           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1335                                     false, dl, SDNodeOrder);
1336           DAG.AddDbgValue(SDV, nullptr, false);
1337           Offset += RegisterSize;
1338         }
1339       } else {
1340         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1341         DAG.AddDbgValue(SDV, nullptr, false);
1342       }
1343       return true;
1344     }
1345   }
1346 
1347   return false;
1348 }
1349 
1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1351   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1352   for (auto &Pair : DanglingDebugInfoMap)
1353     for (auto &DDI : Pair.second)
1354       salvageUnresolvedDbgValue(DDI);
1355   clearDanglingDebugInfo();
1356 }
1357 
1358 /// getCopyFromRegs - If there was virtual register allocated for the value V
1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1361   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1362   SDValue Result;
1363 
1364   if (It != FuncInfo.ValueMap.end()) {
1365     unsigned InReg = It->second;
1366 
1367     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1368                      DAG.getDataLayout(), InReg, Ty,
1369                      None); // This is not an ABI copy.
1370     SDValue Chain = DAG.getEntryNode();
1371     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372                                  V);
1373     resolveDanglingDebugInfo(V, Result);
1374   }
1375 
1376   return Result;
1377 }
1378 
1379 /// getValue - Return an SDValue for the given Value.
1380 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1381   // If we already have an SDValue for this value, use it. It's important
1382   // to do this first, so that we don't create a CopyFromReg if we already
1383   // have a regular SDValue.
1384   SDValue &N = NodeMap[V];
1385   if (N.getNode()) return N;
1386 
1387   // If there's a virtual register allocated and initialized for this
1388   // value, use it.
1389   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1390     return copyFromReg;
1391 
1392   // Otherwise create a new SDValue and remember it.
1393   SDValue Val = getValueImpl(V);
1394   NodeMap[V] = Val;
1395   resolveDanglingDebugInfo(V, Val);
1396   return Val;
1397 }
1398 
1399 // Return true if SDValue exists for the given Value
1400 bool SelectionDAGBuilder::findValue(const Value *V) const {
1401   return (NodeMap.find(V) != NodeMap.end()) ||
1402     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1403 }
1404 
1405 /// getNonRegisterValue - Return an SDValue for the given Value, but
1406 /// don't look in FuncInfo.ValueMap for a virtual register.
1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1408   // If we already have an SDValue for this value, use it.
1409   SDValue &N = NodeMap[V];
1410   if (N.getNode()) {
1411     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1412       // Remove the debug location from the node as the node is about to be used
1413       // in a location which may differ from the original debug location.  This
1414       // is relevant to Constant and ConstantFP nodes because they can appear
1415       // as constant expressions inside PHI nodes.
1416       N->setDebugLoc(DebugLoc());
1417     }
1418     return N;
1419   }
1420 
1421   // Otherwise create a new SDValue and remember it.
1422   SDValue Val = getValueImpl(V);
1423   NodeMap[V] = Val;
1424   resolveDanglingDebugInfo(V, Val);
1425   return Val;
1426 }
1427 
1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1429 /// Create an SDValue for the given value.
1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1431   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 
1433   if (const Constant *C = dyn_cast<Constant>(V)) {
1434     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 
1436     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1437       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 
1439     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1440       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 
1442     if (isa<ConstantPointerNull>(C)) {
1443       unsigned AS = V->getType()->getPointerAddressSpace();
1444       return DAG.getConstant(0, getCurSDLoc(),
1445                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1446     }
1447 
1448     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1449       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 
1451     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1452       return DAG.getUNDEF(VT);
1453 
1454     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1455       visit(CE->getOpcode(), *CE);
1456       SDValue N1 = NodeMap[V];
1457       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1458       return N1;
1459     }
1460 
1461     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1462       SmallVector<SDValue, 4> Constants;
1463       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1464            OI != OE; ++OI) {
1465         SDNode *Val = getValue(*OI).getNode();
1466         // If the operand is an empty aggregate, there are no values.
1467         if (!Val) continue;
1468         // Add each leaf value from the operand to the Constants list
1469         // to form a flattened list of all the values.
1470         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1471           Constants.push_back(SDValue(Val, i));
1472       }
1473 
1474       return DAG.getMergeValues(Constants, getCurSDLoc());
1475     }
1476 
1477     if (const ConstantDataSequential *CDS =
1478           dyn_cast<ConstantDataSequential>(C)) {
1479       SmallVector<SDValue, 4> Ops;
1480       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1481         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Ops.push_back(SDValue(Val, i));
1486       }
1487 
1488       if (isa<ArrayType>(CDS->getType()))
1489         return DAG.getMergeValues(Ops, getCurSDLoc());
1490       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1491     }
1492 
1493     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1494       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1495              "Unknown struct or array constant!");
1496 
1497       SmallVector<EVT, 4> ValueVTs;
1498       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1499       unsigned NumElts = ValueVTs.size();
1500       if (NumElts == 0)
1501         return SDValue(); // empty struct
1502       SmallVector<SDValue, 4> Constants(NumElts);
1503       for (unsigned i = 0; i != NumElts; ++i) {
1504         EVT EltVT = ValueVTs[i];
1505         if (isa<UndefValue>(C))
1506           Constants[i] = DAG.getUNDEF(EltVT);
1507         else if (EltVT.isFloatingPoint())
1508           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1509         else
1510           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1511       }
1512 
1513       return DAG.getMergeValues(Constants, getCurSDLoc());
1514     }
1515 
1516     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1517       return DAG.getBlockAddress(BA, VT);
1518 
1519     VectorType *VecTy = cast<VectorType>(V->getType());
1520     unsigned NumElements = VecTy->getNumElements();
1521 
1522     // Now that we know the number and type of the elements, get that number of
1523     // elements into the Ops array based on what kind of constant it is.
1524     SmallVector<SDValue, 16> Ops;
1525     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1526       for (unsigned i = 0; i != NumElements; ++i)
1527         Ops.push_back(getValue(CV->getOperand(i)));
1528     } else {
1529       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1530       EVT EltVT =
1531           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 
1533       SDValue Op;
1534       if (EltVT.isFloatingPoint())
1535         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1536       else
1537         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1538       Ops.assign(NumElements, Op);
1539     }
1540 
1541     // Create a BUILD_VECTOR node.
1542     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1543   }
1544 
1545   // If this is a static alloca, generate it as the frameindex instead of
1546   // computation.
1547   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1548     DenseMap<const AllocaInst*, int>::iterator SI =
1549       FuncInfo.StaticAllocaMap.find(AI);
1550     if (SI != FuncInfo.StaticAllocaMap.end())
1551       return DAG.getFrameIndex(SI->second,
1552                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1553   }
1554 
1555   // If this is an instruction which fast-isel has deferred, select it now.
1556   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1557     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 
1559     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1560                      Inst->getType(), getABIRegCopyCC(V));
1561     SDValue Chain = DAG.getEntryNode();
1562     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1563   }
1564 
1565   llvm_unreachable("Can't get register for value!");
1566 }
1567 
1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1569   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1570   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1571   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1572   bool IsSEH = isAsynchronousEHPersonality(Pers);
1573   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1574   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1575   if (!IsSEH)
1576     CatchPadMBB->setIsEHScopeEntry();
1577   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1578   if (IsMSVCCXX || IsCoreCLR)
1579     CatchPadMBB->setIsEHFuncletEntry();
1580   // Wasm does not need catchpads anymore
1581   if (!IsWasmCXX)
1582     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1583                             getControlRoot()));
1584 }
1585 
1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1587   // Update machine-CFG edge.
1588   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1589   FuncInfo.MBB->addSuccessor(TargetMBB);
1590 
1591   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1592   bool IsSEH = isAsynchronousEHPersonality(Pers);
1593   if (IsSEH) {
1594     // If this is not a fall-through branch or optimizations are switched off,
1595     // emit the branch.
1596     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1597         TM.getOptLevel() == CodeGenOpt::None)
1598       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1599                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1600     return;
1601   }
1602 
1603   // Figure out the funclet membership for the catchret's successor.
1604   // This will be used by the FuncletLayout pass to determine how to order the
1605   // BB's.
1606   // A 'catchret' returns to the outer scope's color.
1607   Value *ParentPad = I.getCatchSwitchParentPad();
1608   const BasicBlock *SuccessorColor;
1609   if (isa<ConstantTokenNone>(ParentPad))
1610     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1611   else
1612     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1613   assert(SuccessorColor && "No parent funclet for catchret!");
1614   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1615   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 
1617   // Create the terminator node.
1618   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1619                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1620                             DAG.getBasicBlock(SuccessorColorMBB));
1621   DAG.setRoot(Ret);
1622 }
1623 
1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1625   // Don't emit any special code for the cleanuppad instruction. It just marks
1626   // the start of an EH scope/funclet.
1627   FuncInfo.MBB->setIsEHScopeEntry();
1628   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1629   if (Pers != EHPersonality::Wasm_CXX) {
1630     FuncInfo.MBB->setIsEHFuncletEntry();
1631     FuncInfo.MBB->setIsCleanupFuncletEntry();
1632   }
1633 }
1634 
1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1636 // the control flow always stops at the single catch pad, as it does for a
1637 // cleanup pad. In case the exception caught is not of the types the catch pad
1638 // catches, it will be rethrown by a rethrow.
1639 static void findWasmUnwindDestinations(
1640     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1641     BranchProbability Prob,
1642     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1643         &UnwindDests) {
1644   while (EHPadBB) {
1645     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1646     if (isa<CleanupPadInst>(Pad)) {
1647       // Stop on cleanup pads.
1648       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1649       UnwindDests.back().first->setIsEHScopeEntry();
1650       break;
1651     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1652       // Add the catchpad handlers to the possible destinations. We don't
1653       // continue to the unwind destination of the catchswitch for wasm.
1654       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1655         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1656         UnwindDests.back().first->setIsEHScopeEntry();
1657       }
1658       break;
1659     } else {
1660       continue;
1661     }
1662   }
1663 }
1664 
1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1666 /// many places it could ultimately go. In the IR, we have a single unwind
1667 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1668 /// This function skips over imaginary basic blocks that hold catchswitch
1669 /// instructions, and finds all the "real" machine
1670 /// basic block destinations. As those destinations may not be successors of
1671 /// EHPadBB, here we also calculate the edge probability to those destinations.
1672 /// The passed-in Prob is the edge probability to EHPadBB.
1673 static void findUnwindDestinations(
1674     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1675     BranchProbability Prob,
1676     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1677         &UnwindDests) {
1678   EHPersonality Personality =
1679     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1680   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1681   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1682   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1683   bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 
1685   if (IsWasmCXX) {
1686     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1687     assert(UnwindDests.size() <= 1 &&
1688            "There should be at most one unwind destination for wasm");
1689     return;
1690   }
1691 
1692   while (EHPadBB) {
1693     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1694     BasicBlock *NewEHPadBB = nullptr;
1695     if (isa<LandingPadInst>(Pad)) {
1696       // Stop on landingpads. They are not funclets.
1697       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1698       break;
1699     } else if (isa<CleanupPadInst>(Pad)) {
1700       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1701       // personalities.
1702       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1703       UnwindDests.back().first->setIsEHScopeEntry();
1704       UnwindDests.back().first->setIsEHFuncletEntry();
1705       break;
1706     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1707       // Add the catchpad handlers to the possible destinations.
1708       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1709         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1710         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1711         if (IsMSVCCXX || IsCoreCLR)
1712           UnwindDests.back().first->setIsEHFuncletEntry();
1713         if (!IsSEH)
1714           UnwindDests.back().first->setIsEHScopeEntry();
1715       }
1716       NewEHPadBB = CatchSwitch->getUnwindDest();
1717     } else {
1718       continue;
1719     }
1720 
1721     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1722     if (BPI && NewEHPadBB)
1723       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1724     EHPadBB = NewEHPadBB;
1725   }
1726 }
1727 
1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1729   // Update successor info.
1730   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1731   auto UnwindDest = I.getUnwindDest();
1732   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1733   BranchProbability UnwindDestProb =
1734       (BPI && UnwindDest)
1735           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1736           : BranchProbability::getZero();
1737   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1738   for (auto &UnwindDest : UnwindDests) {
1739     UnwindDest.first->setIsEHPad();
1740     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1741   }
1742   FuncInfo.MBB->normalizeSuccProbs();
1743 
1744   // Create the terminator node.
1745   SDValue Ret =
1746       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1747   DAG.setRoot(Ret);
1748 }
1749 
1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1751   report_fatal_error("visitCatchSwitch not yet implemented!");
1752 }
1753 
1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1755   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1756   auto &DL = DAG.getDataLayout();
1757   SDValue Chain = getControlRoot();
1758   SmallVector<ISD::OutputArg, 8> Outs;
1759   SmallVector<SDValue, 8> OutVals;
1760 
1761   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1762   // lower
1763   //
1764   //   %val = call <ty> @llvm.experimental.deoptimize()
1765   //   ret <ty> %val
1766   //
1767   // differently.
1768   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1769     LowerDeoptimizingReturn();
1770     return;
1771   }
1772 
1773   if (!FuncInfo.CanLowerReturn) {
1774     unsigned DemoteReg = FuncInfo.DemoteRegister;
1775     const Function *F = I.getParent()->getParent();
1776 
1777     // Emit a store of the return value through the virtual register.
1778     // Leave Outs empty so that LowerReturn won't try to load return
1779     // registers the usual way.
1780     SmallVector<EVT, 1> PtrValueVTs;
1781     ComputeValueVTs(TLI, DL,
1782                     F->getReturnType()->getPointerTo(
1783                         DAG.getDataLayout().getAllocaAddrSpace()),
1784                     PtrValueVTs);
1785 
1786     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1787                                         DemoteReg, PtrValueVTs[0]);
1788     SDValue RetOp = getValue(I.getOperand(0));
1789 
1790     SmallVector<EVT, 4> ValueVTs;
1791     SmallVector<uint64_t, 4> Offsets;
1792     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1793     unsigned NumValues = ValueVTs.size();
1794 
1795     SmallVector<SDValue, 4> Chains(NumValues);
1796     for (unsigned i = 0; i != NumValues; ++i) {
1797       // An aggregate return value cannot wrap around the address space, so
1798       // offsets to its parts don't wrap either.
1799       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1800       Chains[i] = DAG.getStore(
1801           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1802           // FIXME: better loc info would be nice.
1803           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1804     }
1805 
1806     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1807                         MVT::Other, Chains);
1808   } else if (I.getNumOperands() != 0) {
1809     SmallVector<EVT, 4> ValueVTs;
1810     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1811     unsigned NumValues = ValueVTs.size();
1812     if (NumValues) {
1813       SDValue RetOp = getValue(I.getOperand(0));
1814 
1815       const Function *F = I.getParent()->getParent();
1816 
1817       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1818       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819                                           Attribute::SExt))
1820         ExtendKind = ISD::SIGN_EXTEND;
1821       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1822                                                Attribute::ZExt))
1823         ExtendKind = ISD::ZERO_EXTEND;
1824 
1825       LLVMContext &Context = F->getContext();
1826       bool RetInReg = F->getAttributes().hasAttribute(
1827           AttributeList::ReturnIndex, Attribute::InReg);
1828 
1829       for (unsigned j = 0; j != NumValues; ++j) {
1830         EVT VT = ValueVTs[j];
1831 
1832         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1833           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1834 
1835         CallingConv::ID CC = F->getCallingConv();
1836 
1837         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1838         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1839         SmallVector<SDValue, 4> Parts(NumParts);
1840         getCopyToParts(DAG, getCurSDLoc(),
1841                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1842                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1843 
1844         // 'inreg' on function refers to return value
1845         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1846         if (RetInReg)
1847           Flags.setInReg();
1848 
1849         // Propagate extension type if any
1850         if (ExtendKind == ISD::SIGN_EXTEND)
1851           Flags.setSExt();
1852         else if (ExtendKind == ISD::ZERO_EXTEND)
1853           Flags.setZExt();
1854 
1855         for (unsigned i = 0; i < NumParts; ++i) {
1856           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1857                                         VT, /*isfixed=*/true, 0, 0));
1858           OutVals.push_back(Parts[i]);
1859         }
1860       }
1861     }
1862   }
1863 
1864   // Push in swifterror virtual register as the last element of Outs. This makes
1865   // sure swifterror virtual register will be returned in the swifterror
1866   // physical register.
1867   const Function *F = I.getParent()->getParent();
1868   if (TLI.supportSwiftError() &&
1869       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1870     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1871     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1872     Flags.setSwiftError();
1873     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1874                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1875                                   true /*isfixed*/, 1 /*origidx*/,
1876                                   0 /*partOffs*/));
1877     // Create SDNode for the swifterror virtual register.
1878     OutVals.push_back(
1879         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1880                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1881                         EVT(TLI.getPointerTy(DL))));
1882   }
1883 
1884   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1885   CallingConv::ID CallConv =
1886     DAG.getMachineFunction().getFunction().getCallingConv();
1887   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1888       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1889 
1890   // Verify that the target's LowerReturn behaved as expected.
1891   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1892          "LowerReturn didn't return a valid chain!");
1893 
1894   // Update the DAG with the new chain value resulting from return lowering.
1895   DAG.setRoot(Chain);
1896 }
1897 
1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1899 /// created for it, emit nodes to copy the value into the virtual
1900 /// registers.
1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1902   // Skip empty types
1903   if (V->getType()->isEmptyTy())
1904     return;
1905 
1906   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1907   if (VMI != FuncInfo.ValueMap.end()) {
1908     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1909     CopyValueToVirtualRegister(V, VMI->second);
1910   }
1911 }
1912 
1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1914 /// the current basic block, add it to ValueMap now so that we'll get a
1915 /// CopyTo/FromReg.
1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1917   // No need to export constants.
1918   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1919 
1920   // Already exported?
1921   if (FuncInfo.isExportedInst(V)) return;
1922 
1923   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1924   CopyValueToVirtualRegister(V, Reg);
1925 }
1926 
1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1928                                                      const BasicBlock *FromBB) {
1929   // The operands of the setcc have to be in this block.  We don't know
1930   // how to export them from some other block.
1931   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1932     // Can export from current BB.
1933     if (VI->getParent() == FromBB)
1934       return true;
1935 
1936     // Is already exported, noop.
1937     return FuncInfo.isExportedInst(V);
1938   }
1939 
1940   // If this is an argument, we can export it if the BB is the entry block or
1941   // if it is already exported.
1942   if (isa<Argument>(V)) {
1943     if (FromBB == &FromBB->getParent()->getEntryBlock())
1944       return true;
1945 
1946     // Otherwise, can only export this if it is already exported.
1947     return FuncInfo.isExportedInst(V);
1948   }
1949 
1950   // Otherwise, constants can always be exported.
1951   return true;
1952 }
1953 
1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1955 BranchProbability
1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1957                                         const MachineBasicBlock *Dst) const {
1958   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1959   const BasicBlock *SrcBB = Src->getBasicBlock();
1960   const BasicBlock *DstBB = Dst->getBasicBlock();
1961   if (!BPI) {
1962     // If BPI is not available, set the default probability as 1 / N, where N is
1963     // the number of successors.
1964     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1965     return BranchProbability(1, SuccSize);
1966   }
1967   return BPI->getEdgeProbability(SrcBB, DstBB);
1968 }
1969 
1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1971                                                MachineBasicBlock *Dst,
1972                                                BranchProbability Prob) {
1973   if (!FuncInfo.BPI)
1974     Src->addSuccessorWithoutProb(Dst);
1975   else {
1976     if (Prob.isUnknown())
1977       Prob = getEdgeProbability(Src, Dst);
1978     Src->addSuccessor(Dst, Prob);
1979   }
1980 }
1981 
1982 static bool InBlock(const Value *V, const BasicBlock *BB) {
1983   if (const Instruction *I = dyn_cast<Instruction>(V))
1984     return I->getParent() == BB;
1985   return true;
1986 }
1987 
1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1989 /// This function emits a branch and is used at the leaves of an OR or an
1990 /// AND operator tree.
1991 void
1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1993                                                   MachineBasicBlock *TBB,
1994                                                   MachineBasicBlock *FBB,
1995                                                   MachineBasicBlock *CurBB,
1996                                                   MachineBasicBlock *SwitchBB,
1997                                                   BranchProbability TProb,
1998                                                   BranchProbability FProb,
1999                                                   bool InvertCond) {
2000   const BasicBlock *BB = CurBB->getBasicBlock();
2001 
2002   // If the leaf of the tree is a comparison, merge the condition into
2003   // the caseblock.
2004   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2005     // The operands of the cmp have to be in this block.  We don't know
2006     // how to export them from some other block.  If this is the first block
2007     // of the sequence, no exporting is needed.
2008     if (CurBB == SwitchBB ||
2009         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2010          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2011       ISD::CondCode Condition;
2012       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2013         ICmpInst::Predicate Pred =
2014             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2015         Condition = getICmpCondCode(Pred);
2016       } else {
2017         const FCmpInst *FC = cast<FCmpInst>(Cond);
2018         FCmpInst::Predicate Pred =
2019             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2020         Condition = getFCmpCondCode(Pred);
2021         if (TM.Options.NoNaNsFPMath)
2022           Condition = getFCmpCodeWithoutNaN(Condition);
2023       }
2024 
2025       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2026                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2027       SwitchCases.push_back(CB);
2028       return;
2029     }
2030   }
2031 
2032   // Create a CaseBlock record representing this branch.
2033   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2034   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2035                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2036   SwitchCases.push_back(CB);
2037 }
2038 
2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2040                                                MachineBasicBlock *TBB,
2041                                                MachineBasicBlock *FBB,
2042                                                MachineBasicBlock *CurBB,
2043                                                MachineBasicBlock *SwitchBB,
2044                                                Instruction::BinaryOps Opc,
2045                                                BranchProbability TProb,
2046                                                BranchProbability FProb,
2047                                                bool InvertCond) {
2048   // Skip over not part of the tree and remember to invert op and operands at
2049   // next level.
2050   Value *NotCond;
2051   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2052       InBlock(NotCond, CurBB->getBasicBlock())) {
2053     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2054                          !InvertCond);
2055     return;
2056   }
2057 
2058   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2059   // Compute the effective opcode for Cond, taking into account whether it needs
2060   // to be inverted, e.g.
2061   //   and (not (or A, B)), C
2062   // gets lowered as
2063   //   and (and (not A, not B), C)
2064   unsigned BOpc = 0;
2065   if (BOp) {
2066     BOpc = BOp->getOpcode();
2067     if (InvertCond) {
2068       if (BOpc == Instruction::And)
2069         BOpc = Instruction::Or;
2070       else if (BOpc == Instruction::Or)
2071         BOpc = Instruction::And;
2072     }
2073   }
2074 
2075   // If this node is not part of the or/and tree, emit it as a branch.
2076   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2077       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2078       BOp->getParent() != CurBB->getBasicBlock() ||
2079       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2080       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2081     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2082                                  TProb, FProb, InvertCond);
2083     return;
2084   }
2085 
2086   //  Create TmpBB after CurBB.
2087   MachineFunction::iterator BBI(CurBB);
2088   MachineFunction &MF = DAG.getMachineFunction();
2089   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2090   CurBB->getParent()->insert(++BBI, TmpBB);
2091 
2092   if (Opc == Instruction::Or) {
2093     // Codegen X | Y as:
2094     // BB1:
2095     //   jmp_if_X TBB
2096     //   jmp TmpBB
2097     // TmpBB:
2098     //   jmp_if_Y TBB
2099     //   jmp FBB
2100     //
2101 
2102     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2103     // The requirement is that
2104     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2105     //     = TrueProb for original BB.
2106     // Assuming the original probabilities are A and B, one choice is to set
2107     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2108     // A/(1+B) and 2B/(1+B). This choice assumes that
2109     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2110     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2111     // TmpBB, but the math is more complicated.
2112 
2113     auto NewTrueProb = TProb / 2;
2114     auto NewFalseProb = TProb / 2 + FProb;
2115     // Emit the LHS condition.
2116     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2117                          NewTrueProb, NewFalseProb, InvertCond);
2118 
2119     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2120     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2121     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2122     // Emit the RHS condition into TmpBB.
2123     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2124                          Probs[0], Probs[1], InvertCond);
2125   } else {
2126     assert(Opc == Instruction::And && "Unknown merge op!");
2127     // Codegen X & Y as:
2128     // BB1:
2129     //   jmp_if_X TmpBB
2130     //   jmp FBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135     //  This requires creation of TmpBB after CurBB.
2136 
2137     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2138     // The requirement is that
2139     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2140     //     = FalseProb for original BB.
2141     // Assuming the original probabilities are A and B, one choice is to set
2142     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2143     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2144     // TrueProb for BB1 * FalseProb for TmpBB.
2145 
2146     auto NewTrueProb = TProb + FProb / 2;
2147     auto NewFalseProb = FProb / 2;
2148     // Emit the LHS condition.
2149     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2150                          NewTrueProb, NewFalseProb, InvertCond);
2151 
2152     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2153     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2154     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2155     // Emit the RHS condition into TmpBB.
2156     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2157                          Probs[0], Probs[1], InvertCond);
2158   }
2159 }
2160 
2161 /// If the set of cases should be emitted as a series of branches, return true.
2162 /// If we should emit this as a bunch of and/or'd together conditions, return
2163 /// false.
2164 bool
2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2166   if (Cases.size() != 2) return true;
2167 
2168   // If this is two comparisons of the same values or'd or and'd together, they
2169   // will get folded into a single comparison, so don't emit two blocks.
2170   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2171        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2172       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2173        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2174     return false;
2175   }
2176 
2177   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2178   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2179   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2180       Cases[0].CC == Cases[1].CC &&
2181       isa<Constant>(Cases[0].CmpRHS) &&
2182       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2183     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2184       return false;
2185     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2186       return false;
2187   }
2188 
2189   return true;
2190 }
2191 
2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2193   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2194 
2195   // Update machine-CFG edges.
2196   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2197 
2198   if (I.isUnconditional()) {
2199     // Update machine-CFG edges.
2200     BrMBB->addSuccessor(Succ0MBB);
2201 
2202     // If this is not a fall-through branch or optimizations are switched off,
2203     // emit the branch.
2204     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2205       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2206                               MVT::Other, getControlRoot(),
2207                               DAG.getBasicBlock(Succ0MBB)));
2208 
2209     return;
2210   }
2211 
2212   // If this condition is one of the special cases we handle, do special stuff
2213   // now.
2214   const Value *CondVal = I.getCondition();
2215   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2216 
2217   // If this is a series of conditions that are or'd or and'd together, emit
2218   // this as a sequence of branches instead of setcc's with and/or operations.
2219   // As long as jumps are not expensive, this should improve performance.
2220   // For example, instead of something like:
2221   //     cmp A, B
2222   //     C = seteq
2223   //     cmp D, E
2224   //     F = setle
2225   //     or C, F
2226   //     jnz foo
2227   // Emit:
2228   //     cmp A, B
2229   //     je foo
2230   //     cmp D, E
2231   //     jle foo
2232   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2233     Instruction::BinaryOps Opcode = BOp->getOpcode();
2234     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2235         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2236         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2237       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2238                            Opcode,
2239                            getEdgeProbability(BrMBB, Succ0MBB),
2240                            getEdgeProbability(BrMBB, Succ1MBB),
2241                            /*InvertCond=*/false);
2242       // If the compares in later blocks need to use values not currently
2243       // exported from this block, export them now.  This block should always
2244       // be the first entry.
2245       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2246 
2247       // Allow some cases to be rejected.
2248       if (ShouldEmitAsBranches(SwitchCases)) {
2249         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2250           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2251           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2252         }
2253 
2254         // Emit the branch for this block.
2255         visitSwitchCase(SwitchCases[0], BrMBB);
2256         SwitchCases.erase(SwitchCases.begin());
2257         return;
2258       }
2259 
2260       // Okay, we decided not to do this, remove any inserted MBB's and clear
2261       // SwitchCases.
2262       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2263         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2264 
2265       SwitchCases.clear();
2266     }
2267   }
2268 
2269   // Create a CaseBlock record representing this branch.
2270   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2271                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2272 
2273   // Use visitSwitchCase to actually insert the fast branch sequence for this
2274   // cond branch.
2275   visitSwitchCase(CB, BrMBB);
2276 }
2277 
2278 /// visitSwitchCase - Emits the necessary code to represent a single node in
2279 /// the binary search tree resulting from lowering a switch instruction.
2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2281                                           MachineBasicBlock *SwitchBB) {
2282   SDValue Cond;
2283   SDValue CondLHS = getValue(CB.CmpLHS);
2284   SDLoc dl = CB.DL;
2285 
2286   // Build the setcc now.
2287   if (!CB.CmpMHS) {
2288     // Fold "(X == true)" to X and "(X == false)" to !X to
2289     // handle common cases produced by branch lowering.
2290     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2291         CB.CC == ISD::SETEQ)
2292       Cond = CondLHS;
2293     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2294              CB.CC == ISD::SETEQ) {
2295       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2296       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2297     } else
2298       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2299   } else {
2300     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2301 
2302     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2303     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2304 
2305     SDValue CmpOp = getValue(CB.CmpMHS);
2306     EVT VT = CmpOp.getValueType();
2307 
2308     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2309       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2310                           ISD::SETLE);
2311     } else {
2312       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2313                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2314       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2315                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2316     }
2317   }
2318 
2319   // Update successor info
2320   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2321   // TrueBB and FalseBB are always different unless the incoming IR is
2322   // degenerate. This only happens when running llc on weird IR.
2323   if (CB.TrueBB != CB.FalseBB)
2324     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2325   SwitchBB->normalizeSuccProbs();
2326 
2327   // If the lhs block is the next block, invert the condition so that we can
2328   // fall through to the lhs instead of the rhs block.
2329   if (CB.TrueBB == NextBlock(SwitchBB)) {
2330     std::swap(CB.TrueBB, CB.FalseBB);
2331     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2332     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2333   }
2334 
2335   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2336                                MVT::Other, getControlRoot(), Cond,
2337                                DAG.getBasicBlock(CB.TrueBB));
2338 
2339   // Insert the false branch. Do this even if it's a fall through branch,
2340   // this makes it easier to do DAG optimizations which require inverting
2341   // the branch condition.
2342   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2343                        DAG.getBasicBlock(CB.FalseBB));
2344 
2345   DAG.setRoot(BrCond);
2346 }
2347 
2348 /// visitJumpTable - Emit JumpTable node in the current MBB
2349 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2350   // Emit the code for the jump table
2351   assert(JT.Reg != -1U && "Should lower JT Header first!");
2352   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2353   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2354                                      JT.Reg, PTy);
2355   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2356   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2357                                     MVT::Other, Index.getValue(1),
2358                                     Table, Index);
2359   DAG.setRoot(BrJumpTable);
2360 }
2361 
2362 /// visitJumpTableHeader - This function emits necessary code to produce index
2363 /// in the JumpTable from switch case.
2364 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2365                                                JumpTableHeader &JTH,
2366                                                MachineBasicBlock *SwitchBB) {
2367   SDLoc dl = getCurSDLoc();
2368 
2369   // Subtract the lowest switch case value from the value being switched on.
2370   SDValue SwitchOp = getValue(JTH.SValue);
2371   EVT VT = SwitchOp.getValueType();
2372   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2373                             DAG.getConstant(JTH.First, dl, VT));
2374 
2375   // The SDNode we just created, which holds the value being switched on minus
2376   // the smallest case value, needs to be copied to a virtual register so it
2377   // can be used as an index into the jump table in a subsequent basic block.
2378   // This value may be smaller or larger than the target's pointer type, and
2379   // therefore require extension or truncating.
2380   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2381   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2382 
2383   unsigned JumpTableReg =
2384       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2385   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2386                                     JumpTableReg, SwitchOp);
2387   JT.Reg = JumpTableReg;
2388 
2389   if (!JTH.OmitRangeCheck) {
2390     // Emit the range check for the jump table, and branch to the default block
2391     // for the switch statement if the value being switched on exceeds the
2392     // largest case in the switch.
2393     SDValue CMP = DAG.getSetCC(
2394         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2395                                    Sub.getValueType()),
2396         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2397 
2398     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2399                                  MVT::Other, CopyTo, CMP,
2400                                  DAG.getBasicBlock(JT.Default));
2401 
2402     // Avoid emitting unnecessary branches to the next block.
2403     if (JT.MBB != NextBlock(SwitchBB))
2404       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2405                            DAG.getBasicBlock(JT.MBB));
2406 
2407     DAG.setRoot(BrCond);
2408   } else {
2409     // Avoid emitting unnecessary branches to the next block.
2410     if (JT.MBB != NextBlock(SwitchBB))
2411       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2412                               DAG.getBasicBlock(JT.MBB)));
2413     else
2414       DAG.setRoot(CopyTo);
2415   }
2416 }
2417 
2418 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2419 /// variable if there exists one.
2420 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2421                                  SDValue &Chain) {
2422   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2423   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2424   MachineFunction &MF = DAG.getMachineFunction();
2425   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2426   MachineSDNode *Node =
2427       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2428   if (Global) {
2429     MachinePointerInfo MPInfo(Global);
2430     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2431                  MachineMemOperand::MODereferenceable;
2432     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2433         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2434     DAG.setNodeMemRefs(Node, {MemRef});
2435   }
2436   return SDValue(Node, 0);
2437 }
2438 
2439 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2440 /// tail spliced into a stack protector check success bb.
2441 ///
2442 /// For a high level explanation of how this fits into the stack protector
2443 /// generation see the comment on the declaration of class
2444 /// StackProtectorDescriptor.
2445 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2446                                                   MachineBasicBlock *ParentBB) {
2447 
2448   // First create the loads to the guard/stack slot for the comparison.
2449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2450   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2451 
2452   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2453   int FI = MFI.getStackProtectorIndex();
2454 
2455   SDValue Guard;
2456   SDLoc dl = getCurSDLoc();
2457   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2458   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2459   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2460 
2461   // Generate code to load the content of the guard slot.
2462   SDValue GuardVal = DAG.getLoad(
2463       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2464       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2465       MachineMemOperand::MOVolatile);
2466 
2467   if (TLI.useStackGuardXorFP())
2468     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2469 
2470   // Retrieve guard check function, nullptr if instrumentation is inlined.
2471   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2472     // The target provides a guard check function to validate the guard value.
2473     // Generate a call to that function with the content of the guard slot as
2474     // argument.
2475     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2476     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2477 
2478     TargetLowering::ArgListTy Args;
2479     TargetLowering::ArgListEntry Entry;
2480     Entry.Node = GuardVal;
2481     Entry.Ty = FnTy->getParamType(0);
2482     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2483       Entry.IsInReg = true;
2484     Args.push_back(Entry);
2485 
2486     TargetLowering::CallLoweringInfo CLI(DAG);
2487     CLI.setDebugLoc(getCurSDLoc())
2488         .setChain(DAG.getEntryNode())
2489         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2490                    getValue(GuardCheckFn), std::move(Args));
2491 
2492     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2493     DAG.setRoot(Result.second);
2494     return;
2495   }
2496 
2497   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2498   // Otherwise, emit a volatile load to retrieve the stack guard value.
2499   SDValue Chain = DAG.getEntryNode();
2500   if (TLI.useLoadStackGuardNode()) {
2501     Guard = getLoadStackGuard(DAG, dl, Chain);
2502   } else {
2503     const Value *IRGuard = TLI.getSDagStackGuard(M);
2504     SDValue GuardPtr = getValue(IRGuard);
2505 
2506     Guard =
2507         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2508                     Align, MachineMemOperand::MOVolatile);
2509   }
2510 
2511   // Perform the comparison via a subtract/getsetcc.
2512   EVT VT = Guard.getValueType();
2513   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2514 
2515   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2516                                                         *DAG.getContext(),
2517                                                         Sub.getValueType()),
2518                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2519 
2520   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2521   // branch to failure MBB.
2522   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2523                                MVT::Other, GuardVal.getOperand(0),
2524                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2525   // Otherwise branch to success MBB.
2526   SDValue Br = DAG.getNode(ISD::BR, dl,
2527                            MVT::Other, BrCond,
2528                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2529 
2530   DAG.setRoot(Br);
2531 }
2532 
2533 /// Codegen the failure basic block for a stack protector check.
2534 ///
2535 /// A failure stack protector machine basic block consists simply of a call to
2536 /// __stack_chk_fail().
2537 ///
2538 /// For a high level explanation of how this fits into the stack protector
2539 /// generation see the comment on the declaration of class
2540 /// StackProtectorDescriptor.
2541 void
2542 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2544   SDValue Chain =
2545       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2546                       None, false, getCurSDLoc(), false, false).second;
2547   // On PS4, the "return address" must still be within the calling function,
2548   // even if it's at the very end, so emit an explicit TRAP here.
2549   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2550   if (TM.getTargetTriple().isPS4CPU())
2551     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2552 
2553   DAG.setRoot(Chain);
2554 }
2555 
2556 /// visitBitTestHeader - This function emits necessary code to produce value
2557 /// suitable for "bit tests"
2558 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2559                                              MachineBasicBlock *SwitchBB) {
2560   SDLoc dl = getCurSDLoc();
2561 
2562   // Subtract the minimum value
2563   SDValue SwitchOp = getValue(B.SValue);
2564   EVT VT = SwitchOp.getValueType();
2565   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2566                             DAG.getConstant(B.First, dl, VT));
2567 
2568   // Check range
2569   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2570   SDValue RangeCmp = DAG.getSetCC(
2571       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2572                                  Sub.getValueType()),
2573       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2574 
2575   // Determine the type of the test operands.
2576   bool UsePtrType = false;
2577   if (!TLI.isTypeLegal(VT))
2578     UsePtrType = true;
2579   else {
2580     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2581       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2582         // Switch table case range are encoded into series of masks.
2583         // Just use pointer type, it's guaranteed to fit.
2584         UsePtrType = true;
2585         break;
2586       }
2587   }
2588   if (UsePtrType) {
2589     VT = TLI.getPointerTy(DAG.getDataLayout());
2590     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2591   }
2592 
2593   B.RegVT = VT.getSimpleVT();
2594   B.Reg = FuncInfo.CreateReg(B.RegVT);
2595   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2596 
2597   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2598 
2599   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2600   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2601   SwitchBB->normalizeSuccProbs();
2602 
2603   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2604                                 MVT::Other, CopyTo, RangeCmp,
2605                                 DAG.getBasicBlock(B.Default));
2606 
2607   // Avoid emitting unnecessary branches to the next block.
2608   if (MBB != NextBlock(SwitchBB))
2609     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2610                           DAG.getBasicBlock(MBB));
2611 
2612   DAG.setRoot(BrRange);
2613 }
2614 
2615 /// visitBitTestCase - this function produces one "bit test"
2616 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2617                                            MachineBasicBlock* NextMBB,
2618                                            BranchProbability BranchProbToNext,
2619                                            unsigned Reg,
2620                                            BitTestCase &B,
2621                                            MachineBasicBlock *SwitchBB) {
2622   SDLoc dl = getCurSDLoc();
2623   MVT VT = BB.RegVT;
2624   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2625   SDValue Cmp;
2626   unsigned PopCount = countPopulation(B.Mask);
2627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2628   if (PopCount == 1) {
2629     // Testing for a single bit; just compare the shift count with what it
2630     // would need to be to shift a 1 bit in that position.
2631     Cmp = DAG.getSetCC(
2632         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2633         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2634         ISD::SETEQ);
2635   } else if (PopCount == BB.Range) {
2636     // There is only one zero bit in the range, test for it directly.
2637     Cmp = DAG.getSetCC(
2638         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2639         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2640         ISD::SETNE);
2641   } else {
2642     // Make desired shift
2643     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2644                                     DAG.getConstant(1, dl, VT), ShiftOp);
2645 
2646     // Emit bit tests and jumps
2647     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2648                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2649     Cmp = DAG.getSetCC(
2650         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2651         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2652   }
2653 
2654   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2655   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2656   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2657   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2658   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2659   // one as they are relative probabilities (and thus work more like weights),
2660   // and hence we need to normalize them to let the sum of them become one.
2661   SwitchBB->normalizeSuccProbs();
2662 
2663   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2664                               MVT::Other, getControlRoot(),
2665                               Cmp, DAG.getBasicBlock(B.TargetBB));
2666 
2667   // Avoid emitting unnecessary branches to the next block.
2668   if (NextMBB != NextBlock(SwitchBB))
2669     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2670                         DAG.getBasicBlock(NextMBB));
2671 
2672   DAG.setRoot(BrAnd);
2673 }
2674 
2675 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2676   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2677 
2678   // Retrieve successors. Look through artificial IR level blocks like
2679   // catchswitch for successors.
2680   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2681   const BasicBlock *EHPadBB = I.getSuccessor(1);
2682 
2683   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2684   // have to do anything here to lower funclet bundles.
2685   assert(!I.hasOperandBundlesOtherThan(
2686              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2687          "Cannot lower invokes with arbitrary operand bundles yet!");
2688 
2689   const Value *Callee(I.getCalledValue());
2690   const Function *Fn = dyn_cast<Function>(Callee);
2691   if (isa<InlineAsm>(Callee))
2692     visitInlineAsm(&I);
2693   else if (Fn && Fn->isIntrinsic()) {
2694     switch (Fn->getIntrinsicID()) {
2695     default:
2696       llvm_unreachable("Cannot invoke this intrinsic");
2697     case Intrinsic::donothing:
2698       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2699       break;
2700     case Intrinsic::experimental_patchpoint_void:
2701     case Intrinsic::experimental_patchpoint_i64:
2702       visitPatchpoint(&I, EHPadBB);
2703       break;
2704     case Intrinsic::experimental_gc_statepoint:
2705       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2706       break;
2707     case Intrinsic::wasm_rethrow_in_catch: {
2708       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2709       // special because it can be invoked, so we manually lower it to a DAG
2710       // node here.
2711       SmallVector<SDValue, 8> Ops;
2712       Ops.push_back(getRoot()); // inchain
2713       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2714       Ops.push_back(
2715           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2716                                 TLI.getPointerTy(DAG.getDataLayout())));
2717       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2718       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2719       break;
2720     }
2721     }
2722   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2723     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2724     // Eventually we will support lowering the @llvm.experimental.deoptimize
2725     // intrinsic, and right now there are no plans to support other intrinsics
2726     // with deopt state.
2727     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2728   } else {
2729     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2730   }
2731 
2732   // If the value of the invoke is used outside of its defining block, make it
2733   // available as a virtual register.
2734   // We already took care of the exported value for the statepoint instruction
2735   // during call to the LowerStatepoint.
2736   if (!isStatepoint(I)) {
2737     CopyToExportRegsIfNeeded(&I);
2738   }
2739 
2740   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2741   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2742   BranchProbability EHPadBBProb =
2743       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2744           : BranchProbability::getZero();
2745   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2746 
2747   // Update successor info.
2748   addSuccessorWithProb(InvokeMBB, Return);
2749   for (auto &UnwindDest : UnwindDests) {
2750     UnwindDest.first->setIsEHPad();
2751     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2752   }
2753   InvokeMBB->normalizeSuccProbs();
2754 
2755   // Drop into normal successor.
2756   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2757                           DAG.getBasicBlock(Return)));
2758 }
2759 
2760 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2761   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2762 
2763   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2764   // have to do anything here to lower funclet bundles.
2765   assert(!I.hasOperandBundlesOtherThan(
2766              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2767          "Cannot lower callbrs with arbitrary operand bundles yet!");
2768 
2769   assert(isa<InlineAsm>(I.getCalledValue()) &&
2770          "Only know how to handle inlineasm callbr");
2771   visitInlineAsm(&I);
2772 
2773   // Retrieve successors.
2774   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2775 
2776   // Update successor info.
2777   addSuccessorWithProb(CallBrMBB, Return);
2778   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2779     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2780     addSuccessorWithProb(CallBrMBB, Target);
2781   }
2782   CallBrMBB->normalizeSuccProbs();
2783 
2784   // Drop into default successor.
2785   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2786                           MVT::Other, getControlRoot(),
2787                           DAG.getBasicBlock(Return)));
2788 }
2789 
2790 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2791   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2792 }
2793 
2794 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2795   assert(FuncInfo.MBB->isEHPad() &&
2796          "Call to landingpad not in landing pad!");
2797 
2798   // If there aren't registers to copy the values into (e.g., during SjLj
2799   // exceptions), then don't bother to create these DAG nodes.
2800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2801   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2802   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2803       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2804     return;
2805 
2806   // If landingpad's return type is token type, we don't create DAG nodes
2807   // for its exception pointer and selector value. The extraction of exception
2808   // pointer or selector value from token type landingpads is not currently
2809   // supported.
2810   if (LP.getType()->isTokenTy())
2811     return;
2812 
2813   SmallVector<EVT, 2> ValueVTs;
2814   SDLoc dl = getCurSDLoc();
2815   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2816   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2817 
2818   // Get the two live-in registers as SDValues. The physregs have already been
2819   // copied into virtual registers.
2820   SDValue Ops[2];
2821   if (FuncInfo.ExceptionPointerVirtReg) {
2822     Ops[0] = DAG.getZExtOrTrunc(
2823         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2824                            FuncInfo.ExceptionPointerVirtReg,
2825                            TLI.getPointerTy(DAG.getDataLayout())),
2826         dl, ValueVTs[0]);
2827   } else {
2828     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2829   }
2830   Ops[1] = DAG.getZExtOrTrunc(
2831       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2832                          FuncInfo.ExceptionSelectorVirtReg,
2833                          TLI.getPointerTy(DAG.getDataLayout())),
2834       dl, ValueVTs[1]);
2835 
2836   // Merge into one.
2837   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2838                             DAG.getVTList(ValueVTs), Ops);
2839   setValue(&LP, Res);
2840 }
2841 
2842 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2843 #ifndef NDEBUG
2844   for (const CaseCluster &CC : Clusters)
2845     assert(CC.Low == CC.High && "Input clusters must be single-case");
2846 #endif
2847 
2848   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2849     return a.Low->getValue().slt(b.Low->getValue());
2850   });
2851 
2852   // Merge adjacent clusters with the same destination.
2853   const unsigned N = Clusters.size();
2854   unsigned DstIndex = 0;
2855   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2856     CaseCluster &CC = Clusters[SrcIndex];
2857     const ConstantInt *CaseVal = CC.Low;
2858     MachineBasicBlock *Succ = CC.MBB;
2859 
2860     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2861         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2862       // If this case has the same successor and is a neighbour, merge it into
2863       // the previous cluster.
2864       Clusters[DstIndex - 1].High = CaseVal;
2865       Clusters[DstIndex - 1].Prob += CC.Prob;
2866     } else {
2867       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2868                    sizeof(Clusters[SrcIndex]));
2869     }
2870   }
2871   Clusters.resize(DstIndex);
2872 }
2873 
2874 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2875                                            MachineBasicBlock *Last) {
2876   // Update JTCases.
2877   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2878     if (JTCases[i].first.HeaderBB == First)
2879       JTCases[i].first.HeaderBB = Last;
2880 
2881   // Update BitTestCases.
2882   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2883     if (BitTestCases[i].Parent == First)
2884       BitTestCases[i].Parent = Last;
2885 }
2886 
2887 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2888   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2889 
2890   // Update machine-CFG edges with unique successors.
2891   SmallSet<BasicBlock*, 32> Done;
2892   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2893     BasicBlock *BB = I.getSuccessor(i);
2894     bool Inserted = Done.insert(BB).second;
2895     if (!Inserted)
2896         continue;
2897 
2898     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2899     addSuccessorWithProb(IndirectBrMBB, Succ);
2900   }
2901   IndirectBrMBB->normalizeSuccProbs();
2902 
2903   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2904                           MVT::Other, getControlRoot(),
2905                           getValue(I.getAddress())));
2906 }
2907 
2908 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2909   if (!DAG.getTarget().Options.TrapUnreachable)
2910     return;
2911 
2912   // We may be able to ignore unreachable behind a noreturn call.
2913   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2914     const BasicBlock &BB = *I.getParent();
2915     if (&I != &BB.front()) {
2916       BasicBlock::const_iterator PredI =
2917         std::prev(BasicBlock::const_iterator(&I));
2918       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2919         if (Call->doesNotReturn())
2920           return;
2921       }
2922     }
2923   }
2924 
2925   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2926 }
2927 
2928 void SelectionDAGBuilder::visitFSub(const User &I) {
2929   // -0.0 - X --> fneg
2930   Type *Ty = I.getType();
2931   if (isa<Constant>(I.getOperand(0)) &&
2932       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2933     SDValue Op2 = getValue(I.getOperand(1));
2934     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2935                              Op2.getValueType(), Op2));
2936     return;
2937   }
2938 
2939   visitBinary(I, ISD::FSUB);
2940 }
2941 
2942 /// Checks if the given instruction performs a vector reduction, in which case
2943 /// we have the freedom to alter the elements in the result as long as the
2944 /// reduction of them stays unchanged.
2945 static bool isVectorReductionOp(const User *I) {
2946   const Instruction *Inst = dyn_cast<Instruction>(I);
2947   if (!Inst || !Inst->getType()->isVectorTy())
2948     return false;
2949 
2950   auto OpCode = Inst->getOpcode();
2951   switch (OpCode) {
2952   case Instruction::Add:
2953   case Instruction::Mul:
2954   case Instruction::And:
2955   case Instruction::Or:
2956   case Instruction::Xor:
2957     break;
2958   case Instruction::FAdd:
2959   case Instruction::FMul:
2960     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2961       if (FPOp->getFastMathFlags().isFast())
2962         break;
2963     LLVM_FALLTHROUGH;
2964   default:
2965     return false;
2966   }
2967 
2968   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2969   // Ensure the reduction size is a power of 2.
2970   if (!isPowerOf2_32(ElemNum))
2971     return false;
2972 
2973   unsigned ElemNumToReduce = ElemNum;
2974 
2975   // Do DFS search on the def-use chain from the given instruction. We only
2976   // allow four kinds of operations during the search until we reach the
2977   // instruction that extracts the first element from the vector:
2978   //
2979   //   1. The reduction operation of the same opcode as the given instruction.
2980   //
2981   //   2. PHI node.
2982   //
2983   //   3. ShuffleVector instruction together with a reduction operation that
2984   //      does a partial reduction.
2985   //
2986   //   4. ExtractElement that extracts the first element from the vector, and we
2987   //      stop searching the def-use chain here.
2988   //
2989   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2990   // from 1-3 to the stack to continue the DFS. The given instruction is not
2991   // a reduction operation if we meet any other instructions other than those
2992   // listed above.
2993 
2994   SmallVector<const User *, 16> UsersToVisit{Inst};
2995   SmallPtrSet<const User *, 16> Visited;
2996   bool ReduxExtracted = false;
2997 
2998   while (!UsersToVisit.empty()) {
2999     auto User = UsersToVisit.back();
3000     UsersToVisit.pop_back();
3001     if (!Visited.insert(User).second)
3002       continue;
3003 
3004     for (const auto &U : User->users()) {
3005       auto Inst = dyn_cast<Instruction>(U);
3006       if (!Inst)
3007         return false;
3008 
3009       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3010         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3011           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3012             return false;
3013         UsersToVisit.push_back(U);
3014       } else if (const ShuffleVectorInst *ShufInst =
3015                      dyn_cast<ShuffleVectorInst>(U)) {
3016         // Detect the following pattern: A ShuffleVector instruction together
3017         // with a reduction that do partial reduction on the first and second
3018         // ElemNumToReduce / 2 elements, and store the result in
3019         // ElemNumToReduce / 2 elements in another vector.
3020 
3021         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3022         if (ResultElements < ElemNum)
3023           return false;
3024 
3025         if (ElemNumToReduce == 1)
3026           return false;
3027         if (!isa<UndefValue>(U->getOperand(1)))
3028           return false;
3029         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3030           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3031             return false;
3032         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3033           if (ShufInst->getMaskValue(i) != -1)
3034             return false;
3035 
3036         // There is only one user of this ShuffleVector instruction, which
3037         // must be a reduction operation.
3038         if (!U->hasOneUse())
3039           return false;
3040 
3041         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3042         if (!U2 || U2->getOpcode() != OpCode)
3043           return false;
3044 
3045         // Check operands of the reduction operation.
3046         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3047             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3048           UsersToVisit.push_back(U2);
3049           ElemNumToReduce /= 2;
3050         } else
3051           return false;
3052       } else if (isa<ExtractElementInst>(U)) {
3053         // At this moment we should have reduced all elements in the vector.
3054         if (ElemNumToReduce != 1)
3055           return false;
3056 
3057         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3058         if (!Val || !Val->isZero())
3059           return false;
3060 
3061         ReduxExtracted = true;
3062       } else
3063         return false;
3064     }
3065   }
3066   return ReduxExtracted;
3067 }
3068 
3069 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3070   SDNodeFlags Flags;
3071 
3072   SDValue Op = getValue(I.getOperand(0));
3073   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3074                                     Op, Flags);
3075   setValue(&I, UnNodeValue);
3076 }
3077 
3078 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3079   SDNodeFlags Flags;
3080   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3081     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3082     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3083   }
3084   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3085     Flags.setExact(ExactOp->isExact());
3086   }
3087   if (isVectorReductionOp(&I)) {
3088     Flags.setVectorReduction(true);
3089     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3090   }
3091 
3092   SDValue Op1 = getValue(I.getOperand(0));
3093   SDValue Op2 = getValue(I.getOperand(1));
3094   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3095                                      Op1, Op2, Flags);
3096   setValue(&I, BinNodeValue);
3097 }
3098 
3099 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3100   SDValue Op1 = getValue(I.getOperand(0));
3101   SDValue Op2 = getValue(I.getOperand(1));
3102 
3103   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3104       Op1.getValueType(), DAG.getDataLayout());
3105 
3106   // Coerce the shift amount to the right type if we can.
3107   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3108     unsigned ShiftSize = ShiftTy.getSizeInBits();
3109     unsigned Op2Size = Op2.getValueSizeInBits();
3110     SDLoc DL = getCurSDLoc();
3111 
3112     // If the operand is smaller than the shift count type, promote it.
3113     if (ShiftSize > Op2Size)
3114       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3115 
3116     // If the operand is larger than the shift count type but the shift
3117     // count type has enough bits to represent any shift value, truncate
3118     // it now. This is a common case and it exposes the truncate to
3119     // optimization early.
3120     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3121       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3122     // Otherwise we'll need to temporarily settle for some other convenient
3123     // type.  Type legalization will make adjustments once the shiftee is split.
3124     else
3125       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3126   }
3127 
3128   bool nuw = false;
3129   bool nsw = false;
3130   bool exact = false;
3131 
3132   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3133 
3134     if (const OverflowingBinaryOperator *OFBinOp =
3135             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3136       nuw = OFBinOp->hasNoUnsignedWrap();
3137       nsw = OFBinOp->hasNoSignedWrap();
3138     }
3139     if (const PossiblyExactOperator *ExactOp =
3140             dyn_cast<const PossiblyExactOperator>(&I))
3141       exact = ExactOp->isExact();
3142   }
3143   SDNodeFlags Flags;
3144   Flags.setExact(exact);
3145   Flags.setNoSignedWrap(nsw);
3146   Flags.setNoUnsignedWrap(nuw);
3147   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3148                             Flags);
3149   setValue(&I, Res);
3150 }
3151 
3152 void SelectionDAGBuilder::visitSDiv(const User &I) {
3153   SDValue Op1 = getValue(I.getOperand(0));
3154   SDValue Op2 = getValue(I.getOperand(1));
3155 
3156   SDNodeFlags Flags;
3157   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3158                  cast<PossiblyExactOperator>(&I)->isExact());
3159   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3160                            Op2, Flags));
3161 }
3162 
3163 void SelectionDAGBuilder::visitICmp(const User &I) {
3164   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3165   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3166     predicate = IC->getPredicate();
3167   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3168     predicate = ICmpInst::Predicate(IC->getPredicate());
3169   SDValue Op1 = getValue(I.getOperand(0));
3170   SDValue Op2 = getValue(I.getOperand(1));
3171   ISD::CondCode Opcode = getICmpCondCode(predicate);
3172 
3173   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3174                                                         I.getType());
3175   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3176 }
3177 
3178 void SelectionDAGBuilder::visitFCmp(const User &I) {
3179   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3180   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3181     predicate = FC->getPredicate();
3182   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3183     predicate = FCmpInst::Predicate(FC->getPredicate());
3184   SDValue Op1 = getValue(I.getOperand(0));
3185   SDValue Op2 = getValue(I.getOperand(1));
3186 
3187   ISD::CondCode Condition = getFCmpCondCode(predicate);
3188   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3189   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3190     Condition = getFCmpCodeWithoutNaN(Condition);
3191 
3192   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3193                                                         I.getType());
3194   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3195 }
3196 
3197 // Check if the condition of the select has one use or two users that are both
3198 // selects with the same condition.
3199 static bool hasOnlySelectUsers(const Value *Cond) {
3200   return llvm::all_of(Cond->users(), [](const Value *V) {
3201     return isa<SelectInst>(V);
3202   });
3203 }
3204 
3205 void SelectionDAGBuilder::visitSelect(const User &I) {
3206   SmallVector<EVT, 4> ValueVTs;
3207   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3208                   ValueVTs);
3209   unsigned NumValues = ValueVTs.size();
3210   if (NumValues == 0) return;
3211 
3212   SmallVector<SDValue, 4> Values(NumValues);
3213   SDValue Cond     = getValue(I.getOperand(0));
3214   SDValue LHSVal   = getValue(I.getOperand(1));
3215   SDValue RHSVal   = getValue(I.getOperand(2));
3216   auto BaseOps = {Cond};
3217   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3218     ISD::VSELECT : ISD::SELECT;
3219 
3220   bool IsUnaryAbs = false;
3221 
3222   // Min/max matching is only viable if all output VTs are the same.
3223   if (is_splat(ValueVTs)) {
3224     EVT VT = ValueVTs[0];
3225     LLVMContext &Ctx = *DAG.getContext();
3226     auto &TLI = DAG.getTargetLoweringInfo();
3227 
3228     // We care about the legality of the operation after it has been type
3229     // legalized.
3230     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3231            VT != TLI.getTypeToTransformTo(Ctx, VT))
3232       VT = TLI.getTypeToTransformTo(Ctx, VT);
3233 
3234     // If the vselect is legal, assume we want to leave this as a vector setcc +
3235     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3236     // min/max is legal on the scalar type.
3237     bool UseScalarMinMax = VT.isVector() &&
3238       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3239 
3240     Value *LHS, *RHS;
3241     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3242     ISD::NodeType Opc = ISD::DELETED_NODE;
3243     switch (SPR.Flavor) {
3244     case SPF_UMAX:    Opc = ISD::UMAX; break;
3245     case SPF_UMIN:    Opc = ISD::UMIN; break;
3246     case SPF_SMAX:    Opc = ISD::SMAX; break;
3247     case SPF_SMIN:    Opc = ISD::SMIN; break;
3248     case SPF_FMINNUM:
3249       switch (SPR.NaNBehavior) {
3250       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3251       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3252       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3253       case SPNB_RETURNS_ANY: {
3254         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3255           Opc = ISD::FMINNUM;
3256         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3257           Opc = ISD::FMINIMUM;
3258         else if (UseScalarMinMax)
3259           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3260             ISD::FMINNUM : ISD::FMINIMUM;
3261         break;
3262       }
3263       }
3264       break;
3265     case SPF_FMAXNUM:
3266       switch (SPR.NaNBehavior) {
3267       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3268       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3269       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3270       case SPNB_RETURNS_ANY:
3271 
3272         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3273           Opc = ISD::FMAXNUM;
3274         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3275           Opc = ISD::FMAXIMUM;
3276         else if (UseScalarMinMax)
3277           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3278             ISD::FMAXNUM : ISD::FMAXIMUM;
3279         break;
3280       }
3281       break;
3282     case SPF_ABS:
3283       IsUnaryAbs = true;
3284       Opc = ISD::ABS;
3285       break;
3286     case SPF_NABS:
3287       // TODO: we need to produce sub(0, abs(X)).
3288     default: break;
3289     }
3290 
3291     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3292         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3293          (UseScalarMinMax &&
3294           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3295         // If the underlying comparison instruction is used by any other
3296         // instruction, the consumed instructions won't be destroyed, so it is
3297         // not profitable to convert to a min/max.
3298         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3299       OpCode = Opc;
3300       LHSVal = getValue(LHS);
3301       RHSVal = getValue(RHS);
3302       BaseOps = {};
3303     }
3304 
3305     if (IsUnaryAbs) {
3306       OpCode = Opc;
3307       LHSVal = getValue(LHS);
3308       BaseOps = {};
3309     }
3310   }
3311 
3312   if (IsUnaryAbs) {
3313     for (unsigned i = 0; i != NumValues; ++i) {
3314       Values[i] =
3315           DAG.getNode(OpCode, getCurSDLoc(),
3316                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3317                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3318     }
3319   } else {
3320     for (unsigned i = 0; i != NumValues; ++i) {
3321       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3322       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3323       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3324       Values[i] = DAG.getNode(
3325           OpCode, getCurSDLoc(),
3326           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3327     }
3328   }
3329 
3330   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3331                            DAG.getVTList(ValueVTs), Values));
3332 }
3333 
3334 void SelectionDAGBuilder::visitTrunc(const User &I) {
3335   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3336   SDValue N = getValue(I.getOperand(0));
3337   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3338                                                         I.getType());
3339   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3340 }
3341 
3342 void SelectionDAGBuilder::visitZExt(const User &I) {
3343   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3344   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3345   SDValue N = getValue(I.getOperand(0));
3346   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3347                                                         I.getType());
3348   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3349 }
3350 
3351 void SelectionDAGBuilder::visitSExt(const User &I) {
3352   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3353   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3354   SDValue N = getValue(I.getOperand(0));
3355   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3356                                                         I.getType());
3357   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3358 }
3359 
3360 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3361   // FPTrunc is never a no-op cast, no need to check
3362   SDValue N = getValue(I.getOperand(0));
3363   SDLoc dl = getCurSDLoc();
3364   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3365   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3366   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3367                            DAG.getTargetConstant(
3368                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3369 }
3370 
3371 void SelectionDAGBuilder::visitFPExt(const User &I) {
3372   // FPExt is never a no-op cast, no need to check
3373   SDValue N = getValue(I.getOperand(0));
3374   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3375                                                         I.getType());
3376   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3377 }
3378 
3379 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3380   // FPToUI is never a no-op cast, no need to check
3381   SDValue N = getValue(I.getOperand(0));
3382   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3383                                                         I.getType());
3384   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3385 }
3386 
3387 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3388   // FPToSI is never a no-op cast, no need to check
3389   SDValue N = getValue(I.getOperand(0));
3390   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3391                                                         I.getType());
3392   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3393 }
3394 
3395 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3396   // UIToFP is never a no-op cast, no need to check
3397   SDValue N = getValue(I.getOperand(0));
3398   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3399                                                         I.getType());
3400   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3401 }
3402 
3403 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3404   // SIToFP is never a no-op cast, no need to check
3405   SDValue N = getValue(I.getOperand(0));
3406   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3407                                                         I.getType());
3408   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3409 }
3410 
3411 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3412   // What to do depends on the size of the integer and the size of the pointer.
3413   // We can either truncate, zero extend, or no-op, accordingly.
3414   SDValue N = getValue(I.getOperand(0));
3415   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3416                                                         I.getType());
3417   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3418 }
3419 
3420 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3421   // What to do depends on the size of the integer and the size of the pointer.
3422   // We can either truncate, zero extend, or no-op, accordingly.
3423   SDValue N = getValue(I.getOperand(0));
3424   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3425                                                         I.getType());
3426   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3427 }
3428 
3429 void SelectionDAGBuilder::visitBitCast(const User &I) {
3430   SDValue N = getValue(I.getOperand(0));
3431   SDLoc dl = getCurSDLoc();
3432   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3433                                                         I.getType());
3434 
3435   // BitCast assures us that source and destination are the same size so this is
3436   // either a BITCAST or a no-op.
3437   if (DestVT != N.getValueType())
3438     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3439                              DestVT, N)); // convert types.
3440   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3441   // might fold any kind of constant expression to an integer constant and that
3442   // is not what we are looking for. Only recognize a bitcast of a genuine
3443   // constant integer as an opaque constant.
3444   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3445     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3446                                  /*isOpaque*/true));
3447   else
3448     setValue(&I, N);            // noop cast.
3449 }
3450 
3451 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3452   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3453   const Value *SV = I.getOperand(0);
3454   SDValue N = getValue(SV);
3455   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3456 
3457   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3458   unsigned DestAS = I.getType()->getPointerAddressSpace();
3459 
3460   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3461     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3462 
3463   setValue(&I, N);
3464 }
3465 
3466 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3467   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3468   SDValue InVec = getValue(I.getOperand(0));
3469   SDValue InVal = getValue(I.getOperand(1));
3470   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3471                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3472   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3473                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3474                            InVec, InVal, InIdx));
3475 }
3476 
3477 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3479   SDValue InVec = getValue(I.getOperand(0));
3480   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3481                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3482   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3483                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3484                            InVec, InIdx));
3485 }
3486 
3487 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3488   SDValue Src1 = getValue(I.getOperand(0));
3489   SDValue Src2 = getValue(I.getOperand(1));
3490   SDLoc DL = getCurSDLoc();
3491 
3492   SmallVector<int, 8> Mask;
3493   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3494   unsigned MaskNumElts = Mask.size();
3495 
3496   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3497   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3498   EVT SrcVT = Src1.getValueType();
3499   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3500 
3501   if (SrcNumElts == MaskNumElts) {
3502     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3503     return;
3504   }
3505 
3506   // Normalize the shuffle vector since mask and vector length don't match.
3507   if (SrcNumElts < MaskNumElts) {
3508     // Mask is longer than the source vectors. We can use concatenate vector to
3509     // make the mask and vectors lengths match.
3510 
3511     if (MaskNumElts % SrcNumElts == 0) {
3512       // Mask length is a multiple of the source vector length.
3513       // Check if the shuffle is some kind of concatenation of the input
3514       // vectors.
3515       unsigned NumConcat = MaskNumElts / SrcNumElts;
3516       bool IsConcat = true;
3517       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3518       for (unsigned i = 0; i != MaskNumElts; ++i) {
3519         int Idx = Mask[i];
3520         if (Idx < 0)
3521           continue;
3522         // Ensure the indices in each SrcVT sized piece are sequential and that
3523         // the same source is used for the whole piece.
3524         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3525             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3526              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3527           IsConcat = false;
3528           break;
3529         }
3530         // Remember which source this index came from.
3531         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3532       }
3533 
3534       // The shuffle is concatenating multiple vectors together. Just emit
3535       // a CONCAT_VECTORS operation.
3536       if (IsConcat) {
3537         SmallVector<SDValue, 8> ConcatOps;
3538         for (auto Src : ConcatSrcs) {
3539           if (Src < 0)
3540             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3541           else if (Src == 0)
3542             ConcatOps.push_back(Src1);
3543           else
3544             ConcatOps.push_back(Src2);
3545         }
3546         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3547         return;
3548       }
3549     }
3550 
3551     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3552     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3553     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3554                                     PaddedMaskNumElts);
3555 
3556     // Pad both vectors with undefs to make them the same length as the mask.
3557     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3558 
3559     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3560     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3561     MOps1[0] = Src1;
3562     MOps2[0] = Src2;
3563 
3564     Src1 = Src1.isUndef()
3565                ? DAG.getUNDEF(PaddedVT)
3566                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3567     Src2 = Src2.isUndef()
3568                ? DAG.getUNDEF(PaddedVT)
3569                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3570 
3571     // Readjust mask for new input vector length.
3572     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3573     for (unsigned i = 0; i != MaskNumElts; ++i) {
3574       int Idx = Mask[i];
3575       if (Idx >= (int)SrcNumElts)
3576         Idx -= SrcNumElts - PaddedMaskNumElts;
3577       MappedOps[i] = Idx;
3578     }
3579 
3580     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3581 
3582     // If the concatenated vector was padded, extract a subvector with the
3583     // correct number of elements.
3584     if (MaskNumElts != PaddedMaskNumElts)
3585       Result = DAG.getNode(
3586           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3587           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3588 
3589     setValue(&I, Result);
3590     return;
3591   }
3592 
3593   if (SrcNumElts > MaskNumElts) {
3594     // Analyze the access pattern of the vector to see if we can extract
3595     // two subvectors and do the shuffle.
3596     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3597     bool CanExtract = true;
3598     for (int Idx : Mask) {
3599       unsigned Input = 0;
3600       if (Idx < 0)
3601         continue;
3602 
3603       if (Idx >= (int)SrcNumElts) {
3604         Input = 1;
3605         Idx -= SrcNumElts;
3606       }
3607 
3608       // If all the indices come from the same MaskNumElts sized portion of
3609       // the sources we can use extract. Also make sure the extract wouldn't
3610       // extract past the end of the source.
3611       int NewStartIdx = alignDown(Idx, MaskNumElts);
3612       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3613           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3614         CanExtract = false;
3615       // Make sure we always update StartIdx as we use it to track if all
3616       // elements are undef.
3617       StartIdx[Input] = NewStartIdx;
3618     }
3619 
3620     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3621       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3622       return;
3623     }
3624     if (CanExtract) {
3625       // Extract appropriate subvector and generate a vector shuffle
3626       for (unsigned Input = 0; Input < 2; ++Input) {
3627         SDValue &Src = Input == 0 ? Src1 : Src2;
3628         if (StartIdx[Input] < 0)
3629           Src = DAG.getUNDEF(VT);
3630         else {
3631           Src = DAG.getNode(
3632               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3633               DAG.getConstant(StartIdx[Input], DL,
3634                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3635         }
3636       }
3637 
3638       // Calculate new mask.
3639       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3640       for (int &Idx : MappedOps) {
3641         if (Idx >= (int)SrcNumElts)
3642           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3643         else if (Idx >= 0)
3644           Idx -= StartIdx[0];
3645       }
3646 
3647       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3648       return;
3649     }
3650   }
3651 
3652   // We can't use either concat vectors or extract subvectors so fall back to
3653   // replacing the shuffle with extract and build vector.
3654   // to insert and build vector.
3655   EVT EltVT = VT.getVectorElementType();
3656   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3657   SmallVector<SDValue,8> Ops;
3658   for (int Idx : Mask) {
3659     SDValue Res;
3660 
3661     if (Idx < 0) {
3662       Res = DAG.getUNDEF(EltVT);
3663     } else {
3664       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3665       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3666 
3667       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3668                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3669     }
3670 
3671     Ops.push_back(Res);
3672   }
3673 
3674   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3675 }
3676 
3677 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3678   ArrayRef<unsigned> Indices;
3679   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3680     Indices = IV->getIndices();
3681   else
3682     Indices = cast<ConstantExpr>(&I)->getIndices();
3683 
3684   const Value *Op0 = I.getOperand(0);
3685   const Value *Op1 = I.getOperand(1);
3686   Type *AggTy = I.getType();
3687   Type *ValTy = Op1->getType();
3688   bool IntoUndef = isa<UndefValue>(Op0);
3689   bool FromUndef = isa<UndefValue>(Op1);
3690 
3691   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3692 
3693   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3694   SmallVector<EVT, 4> AggValueVTs;
3695   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3696   SmallVector<EVT, 4> ValValueVTs;
3697   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3698 
3699   unsigned NumAggValues = AggValueVTs.size();
3700   unsigned NumValValues = ValValueVTs.size();
3701   SmallVector<SDValue, 4> Values(NumAggValues);
3702 
3703   // Ignore an insertvalue that produces an empty object
3704   if (!NumAggValues) {
3705     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3706     return;
3707   }
3708 
3709   SDValue Agg = getValue(Op0);
3710   unsigned i = 0;
3711   // Copy the beginning value(s) from the original aggregate.
3712   for (; i != LinearIndex; ++i)
3713     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3714                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3715   // Copy values from the inserted value(s).
3716   if (NumValValues) {
3717     SDValue Val = getValue(Op1);
3718     for (; i != LinearIndex + NumValValues; ++i)
3719       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3720                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3721   }
3722   // Copy remaining value(s) from the original aggregate.
3723   for (; i != NumAggValues; ++i)
3724     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3725                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3726 
3727   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3728                            DAG.getVTList(AggValueVTs), Values));
3729 }
3730 
3731 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3732   ArrayRef<unsigned> Indices;
3733   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3734     Indices = EV->getIndices();
3735   else
3736     Indices = cast<ConstantExpr>(&I)->getIndices();
3737 
3738   const Value *Op0 = I.getOperand(0);
3739   Type *AggTy = Op0->getType();
3740   Type *ValTy = I.getType();
3741   bool OutOfUndef = isa<UndefValue>(Op0);
3742 
3743   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3744 
3745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3746   SmallVector<EVT, 4> ValValueVTs;
3747   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3748 
3749   unsigned NumValValues = ValValueVTs.size();
3750 
3751   // Ignore a extractvalue that produces an empty object
3752   if (!NumValValues) {
3753     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3754     return;
3755   }
3756 
3757   SmallVector<SDValue, 4> Values(NumValValues);
3758 
3759   SDValue Agg = getValue(Op0);
3760   // Copy out the selected value(s).
3761   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3762     Values[i - LinearIndex] =
3763       OutOfUndef ?
3764         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3765         SDValue(Agg.getNode(), Agg.getResNo() + i);
3766 
3767   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3768                            DAG.getVTList(ValValueVTs), Values));
3769 }
3770 
3771 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3772   Value *Op0 = I.getOperand(0);
3773   // Note that the pointer operand may be a vector of pointers. Take the scalar
3774   // element which holds a pointer.
3775   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3776   SDValue N = getValue(Op0);
3777   SDLoc dl = getCurSDLoc();
3778 
3779   // Normalize Vector GEP - all scalar operands should be converted to the
3780   // splat vector.
3781   unsigned VectorWidth = I.getType()->isVectorTy() ?
3782     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3783 
3784   if (VectorWidth && !N.getValueType().isVector()) {
3785     LLVMContext &Context = *DAG.getContext();
3786     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3787     N = DAG.getSplatBuildVector(VT, dl, N);
3788   }
3789 
3790   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3791        GTI != E; ++GTI) {
3792     const Value *Idx = GTI.getOperand();
3793     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3794       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3795       if (Field) {
3796         // N = N + Offset
3797         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3798 
3799         // In an inbounds GEP with an offset that is nonnegative even when
3800         // interpreted as signed, assume there is no unsigned overflow.
3801         SDNodeFlags Flags;
3802         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3803           Flags.setNoUnsignedWrap(true);
3804 
3805         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3806                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3807       }
3808     } else {
3809       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3810       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3811       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3812 
3813       // If this is a scalar constant or a splat vector of constants,
3814       // handle it quickly.
3815       const auto *CI = dyn_cast<ConstantInt>(Idx);
3816       if (!CI && isa<ConstantDataVector>(Idx) &&
3817           cast<ConstantDataVector>(Idx)->getSplatValue())
3818         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3819 
3820       if (CI) {
3821         if (CI->isZero())
3822           continue;
3823         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3824         LLVMContext &Context = *DAG.getContext();
3825         SDValue OffsVal = VectorWidth ?
3826           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3827           DAG.getConstant(Offs, dl, IdxTy);
3828 
3829         // In an inbouds GEP with an offset that is nonnegative even when
3830         // interpreted as signed, assume there is no unsigned overflow.
3831         SDNodeFlags Flags;
3832         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3833           Flags.setNoUnsignedWrap(true);
3834 
3835         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3836         continue;
3837       }
3838 
3839       // N = N + Idx * ElementSize;
3840       SDValue IdxN = getValue(Idx);
3841 
3842       if (!IdxN.getValueType().isVector() && VectorWidth) {
3843         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3844         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3845       }
3846 
3847       // If the index is smaller or larger than intptr_t, truncate or extend
3848       // it.
3849       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3850 
3851       // If this is a multiply by a power of two, turn it into a shl
3852       // immediately.  This is a very common case.
3853       if (ElementSize != 1) {
3854         if (ElementSize.isPowerOf2()) {
3855           unsigned Amt = ElementSize.logBase2();
3856           IdxN = DAG.getNode(ISD::SHL, dl,
3857                              N.getValueType(), IdxN,
3858                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3859         } else {
3860           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3861           IdxN = DAG.getNode(ISD::MUL, dl,
3862                              N.getValueType(), IdxN, Scale);
3863         }
3864       }
3865 
3866       N = DAG.getNode(ISD::ADD, dl,
3867                       N.getValueType(), N, IdxN);
3868     }
3869   }
3870 
3871   setValue(&I, N);
3872 }
3873 
3874 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3875   // If this is a fixed sized alloca in the entry block of the function,
3876   // allocate it statically on the stack.
3877   if (FuncInfo.StaticAllocaMap.count(&I))
3878     return;   // getValue will auto-populate this.
3879 
3880   SDLoc dl = getCurSDLoc();
3881   Type *Ty = I.getAllocatedType();
3882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3883   auto &DL = DAG.getDataLayout();
3884   uint64_t TySize = DL.getTypeAllocSize(Ty);
3885   unsigned Align =
3886       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3887 
3888   SDValue AllocSize = getValue(I.getArraySize());
3889 
3890   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3891   if (AllocSize.getValueType() != IntPtr)
3892     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3893 
3894   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3895                           AllocSize,
3896                           DAG.getConstant(TySize, dl, IntPtr));
3897 
3898   // Handle alignment.  If the requested alignment is less than or equal to
3899   // the stack alignment, ignore it.  If the size is greater than or equal to
3900   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3901   unsigned StackAlign =
3902       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3903   if (Align <= StackAlign)
3904     Align = 0;
3905 
3906   // Round the size of the allocation up to the stack alignment size
3907   // by add SA-1 to the size. This doesn't overflow because we're computing
3908   // an address inside an alloca.
3909   SDNodeFlags Flags;
3910   Flags.setNoUnsignedWrap(true);
3911   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3912                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3913 
3914   // Mask out the low bits for alignment purposes.
3915   AllocSize =
3916       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3917                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3918 
3919   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3920   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3921   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3922   setValue(&I, DSA);
3923   DAG.setRoot(DSA.getValue(1));
3924 
3925   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3926 }
3927 
3928 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3929   if (I.isAtomic())
3930     return visitAtomicLoad(I);
3931 
3932   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3933   const Value *SV = I.getOperand(0);
3934   if (TLI.supportSwiftError()) {
3935     // Swifterror values can come from either a function parameter with
3936     // swifterror attribute or an alloca with swifterror attribute.
3937     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3938       if (Arg->hasSwiftErrorAttr())
3939         return visitLoadFromSwiftError(I);
3940     }
3941 
3942     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3943       if (Alloca->isSwiftError())
3944         return visitLoadFromSwiftError(I);
3945     }
3946   }
3947 
3948   SDValue Ptr = getValue(SV);
3949 
3950   Type *Ty = I.getType();
3951 
3952   bool isVolatile = I.isVolatile();
3953   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3954   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3955   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3956   unsigned Alignment = I.getAlignment();
3957 
3958   AAMDNodes AAInfo;
3959   I.getAAMetadata(AAInfo);
3960   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3961 
3962   SmallVector<EVT, 4> ValueVTs;
3963   SmallVector<uint64_t, 4> Offsets;
3964   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3965   unsigned NumValues = ValueVTs.size();
3966   if (NumValues == 0)
3967     return;
3968 
3969   SDValue Root;
3970   bool ConstantMemory = false;
3971   if (isVolatile || NumValues > MaxParallelChains)
3972     // Serialize volatile loads with other side effects.
3973     Root = getRoot();
3974   else if (AA &&
3975            AA->pointsToConstantMemory(MemoryLocation(
3976                SV,
3977                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3978                AAInfo))) {
3979     // Do not serialize (non-volatile) loads of constant memory with anything.
3980     Root = DAG.getEntryNode();
3981     ConstantMemory = true;
3982   } else {
3983     // Do not serialize non-volatile loads against each other.
3984     Root = DAG.getRoot();
3985   }
3986 
3987   SDLoc dl = getCurSDLoc();
3988 
3989   if (isVolatile)
3990     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3991 
3992   // An aggregate load cannot wrap around the address space, so offsets to its
3993   // parts don't wrap either.
3994   SDNodeFlags Flags;
3995   Flags.setNoUnsignedWrap(true);
3996 
3997   SmallVector<SDValue, 4> Values(NumValues);
3998   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3999   EVT PtrVT = Ptr.getValueType();
4000   unsigned ChainI = 0;
4001   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4002     // Serializing loads here may result in excessive register pressure, and
4003     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4004     // could recover a bit by hoisting nodes upward in the chain by recognizing
4005     // they are side-effect free or do not alias. The optimizer should really
4006     // avoid this case by converting large object/array copies to llvm.memcpy
4007     // (MaxParallelChains should always remain as failsafe).
4008     if (ChainI == MaxParallelChains) {
4009       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4010       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4011                                   makeArrayRef(Chains.data(), ChainI));
4012       Root = Chain;
4013       ChainI = 0;
4014     }
4015     SDValue A = DAG.getNode(ISD::ADD, dl,
4016                             PtrVT, Ptr,
4017                             DAG.getConstant(Offsets[i], dl, PtrVT),
4018                             Flags);
4019     auto MMOFlags = MachineMemOperand::MONone;
4020     if (isVolatile)
4021       MMOFlags |= MachineMemOperand::MOVolatile;
4022     if (isNonTemporal)
4023       MMOFlags |= MachineMemOperand::MONonTemporal;
4024     if (isInvariant)
4025       MMOFlags |= MachineMemOperand::MOInvariant;
4026     if (isDereferenceable)
4027       MMOFlags |= MachineMemOperand::MODereferenceable;
4028     MMOFlags |= TLI.getMMOFlags(I);
4029 
4030     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
4031                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4032                             MMOFlags, AAInfo, Ranges);
4033 
4034     Values[i] = L;
4035     Chains[ChainI] = L.getValue(1);
4036   }
4037 
4038   if (!ConstantMemory) {
4039     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4040                                 makeArrayRef(Chains.data(), ChainI));
4041     if (isVolatile)
4042       DAG.setRoot(Chain);
4043     else
4044       PendingLoads.push_back(Chain);
4045   }
4046 
4047   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4048                            DAG.getVTList(ValueVTs), Values));
4049 }
4050 
4051 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4052   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4053          "call visitStoreToSwiftError when backend supports swifterror");
4054 
4055   SmallVector<EVT, 4> ValueVTs;
4056   SmallVector<uint64_t, 4> Offsets;
4057   const Value *SrcV = I.getOperand(0);
4058   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4059                   SrcV->getType(), ValueVTs, &Offsets);
4060   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4061          "expect a single EVT for swifterror");
4062 
4063   SDValue Src = getValue(SrcV);
4064   // Create a virtual register, then update the virtual register.
4065   unsigned VReg; bool CreatedVReg;
4066   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4067   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4068   // Chain can be getRoot or getControlRoot.
4069   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4070                                       SDValue(Src.getNode(), Src.getResNo()));
4071   DAG.setRoot(CopyNode);
4072   if (CreatedVReg)
4073     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4074 }
4075 
4076 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4077   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4078          "call visitLoadFromSwiftError when backend supports swifterror");
4079 
4080   assert(!I.isVolatile() &&
4081          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4082          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4083          "Support volatile, non temporal, invariant for load_from_swift_error");
4084 
4085   const Value *SV = I.getOperand(0);
4086   Type *Ty = I.getType();
4087   AAMDNodes AAInfo;
4088   I.getAAMetadata(AAInfo);
4089   assert(
4090       (!AA ||
4091        !AA->pointsToConstantMemory(MemoryLocation(
4092            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4093            AAInfo))) &&
4094       "load_from_swift_error should not be constant memory");
4095 
4096   SmallVector<EVT, 4> ValueVTs;
4097   SmallVector<uint64_t, 4> Offsets;
4098   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4099                   ValueVTs, &Offsets);
4100   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4101          "expect a single EVT for swifterror");
4102 
4103   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4104   SDValue L = DAG.getCopyFromReg(
4105       getRoot(), getCurSDLoc(),
4106       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4107       ValueVTs[0]);
4108 
4109   setValue(&I, L);
4110 }
4111 
4112 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4113   if (I.isAtomic())
4114     return visitAtomicStore(I);
4115 
4116   const Value *SrcV = I.getOperand(0);
4117   const Value *PtrV = I.getOperand(1);
4118 
4119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4120   if (TLI.supportSwiftError()) {
4121     // Swifterror values can come from either a function parameter with
4122     // swifterror attribute or an alloca with swifterror attribute.
4123     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4124       if (Arg->hasSwiftErrorAttr())
4125         return visitStoreToSwiftError(I);
4126     }
4127 
4128     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4129       if (Alloca->isSwiftError())
4130         return visitStoreToSwiftError(I);
4131     }
4132   }
4133 
4134   SmallVector<EVT, 4> ValueVTs;
4135   SmallVector<uint64_t, 4> Offsets;
4136   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4137                   SrcV->getType(), ValueVTs, &Offsets);
4138   unsigned NumValues = ValueVTs.size();
4139   if (NumValues == 0)
4140     return;
4141 
4142   // Get the lowered operands. Note that we do this after
4143   // checking if NumResults is zero, because with zero results
4144   // the operands won't have values in the map.
4145   SDValue Src = getValue(SrcV);
4146   SDValue Ptr = getValue(PtrV);
4147 
4148   SDValue Root = getRoot();
4149   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4150   SDLoc dl = getCurSDLoc();
4151   EVT PtrVT = Ptr.getValueType();
4152   unsigned Alignment = I.getAlignment();
4153   AAMDNodes AAInfo;
4154   I.getAAMetadata(AAInfo);
4155 
4156   auto MMOFlags = MachineMemOperand::MONone;
4157   if (I.isVolatile())
4158     MMOFlags |= MachineMemOperand::MOVolatile;
4159   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4160     MMOFlags |= MachineMemOperand::MONonTemporal;
4161   MMOFlags |= TLI.getMMOFlags(I);
4162 
4163   // An aggregate load cannot wrap around the address space, so offsets to its
4164   // parts don't wrap either.
4165   SDNodeFlags Flags;
4166   Flags.setNoUnsignedWrap(true);
4167 
4168   unsigned ChainI = 0;
4169   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4170     // See visitLoad comments.
4171     if (ChainI == MaxParallelChains) {
4172       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4173                                   makeArrayRef(Chains.data(), ChainI));
4174       Root = Chain;
4175       ChainI = 0;
4176     }
4177     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4178                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4179     SDValue St = DAG.getStore(
4180         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4181         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4182     Chains[ChainI] = St;
4183   }
4184 
4185   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4186                                   makeArrayRef(Chains.data(), ChainI));
4187   DAG.setRoot(StoreNode);
4188 }
4189 
4190 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4191                                            bool IsCompressing) {
4192   SDLoc sdl = getCurSDLoc();
4193 
4194   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4195                            unsigned& Alignment) {
4196     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4197     Src0 = I.getArgOperand(0);
4198     Ptr = I.getArgOperand(1);
4199     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4200     Mask = I.getArgOperand(3);
4201   };
4202   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4203                            unsigned& Alignment) {
4204     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4205     Src0 = I.getArgOperand(0);
4206     Ptr = I.getArgOperand(1);
4207     Mask = I.getArgOperand(2);
4208     Alignment = 0;
4209   };
4210 
4211   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4212   unsigned Alignment;
4213   if (IsCompressing)
4214     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4215   else
4216     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4217 
4218   SDValue Ptr = getValue(PtrOperand);
4219   SDValue Src0 = getValue(Src0Operand);
4220   SDValue Mask = getValue(MaskOperand);
4221 
4222   EVT VT = Src0.getValueType();
4223   if (!Alignment)
4224     Alignment = DAG.getEVTAlignment(VT);
4225 
4226   AAMDNodes AAInfo;
4227   I.getAAMetadata(AAInfo);
4228 
4229   MachineMemOperand *MMO =
4230     DAG.getMachineFunction().
4231     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4232                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4233                           Alignment, AAInfo);
4234   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4235                                          MMO, false /* Truncating */,
4236                                          IsCompressing);
4237   DAG.setRoot(StoreNode);
4238   setValue(&I, StoreNode);
4239 }
4240 
4241 // Get a uniform base for the Gather/Scatter intrinsic.
4242 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4243 // We try to represent it as a base pointer + vector of indices.
4244 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4245 // The first operand of the GEP may be a single pointer or a vector of pointers
4246 // Example:
4247 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4248 //  or
4249 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4250 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4251 //
4252 // When the first GEP operand is a single pointer - it is the uniform base we
4253 // are looking for. If first operand of the GEP is a splat vector - we
4254 // extract the splat value and use it as a uniform base.
4255 // In all other cases the function returns 'false'.
4256 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4257                            SDValue &Scale, SelectionDAGBuilder* SDB) {
4258   SelectionDAG& DAG = SDB->DAG;
4259   LLVMContext &Context = *DAG.getContext();
4260 
4261   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4262   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4263   if (!GEP)
4264     return false;
4265 
4266   const Value *GEPPtr = GEP->getPointerOperand();
4267   if (!GEPPtr->getType()->isVectorTy())
4268     Ptr = GEPPtr;
4269   else if (!(Ptr = getSplatValue(GEPPtr)))
4270     return false;
4271 
4272   unsigned FinalIndex = GEP->getNumOperands() - 1;
4273   Value *IndexVal = GEP->getOperand(FinalIndex);
4274 
4275   // Ensure all the other indices are 0.
4276   for (unsigned i = 1; i < FinalIndex; ++i) {
4277     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4278     if (!C || !C->isZero())
4279       return false;
4280   }
4281 
4282   // The operands of the GEP may be defined in another basic block.
4283   // In this case we'll not find nodes for the operands.
4284   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4285     return false;
4286 
4287   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4288   const DataLayout &DL = DAG.getDataLayout();
4289   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4290                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4291   Base = SDB->getValue(Ptr);
4292   Index = SDB->getValue(IndexVal);
4293 
4294   if (!Index.getValueType().isVector()) {
4295     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4296     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4297     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4298   }
4299   return true;
4300 }
4301 
4302 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4303   SDLoc sdl = getCurSDLoc();
4304 
4305   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4306   const Value *Ptr = I.getArgOperand(1);
4307   SDValue Src0 = getValue(I.getArgOperand(0));
4308   SDValue Mask = getValue(I.getArgOperand(3));
4309   EVT VT = Src0.getValueType();
4310   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4311   if (!Alignment)
4312     Alignment = DAG.getEVTAlignment(VT);
4313   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4314 
4315   AAMDNodes AAInfo;
4316   I.getAAMetadata(AAInfo);
4317 
4318   SDValue Base;
4319   SDValue Index;
4320   SDValue Scale;
4321   const Value *BasePtr = Ptr;
4322   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4323 
4324   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4325   MachineMemOperand *MMO = DAG.getMachineFunction().
4326     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4327                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4328                          Alignment, AAInfo);
4329   if (!UniformBase) {
4330     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4331     Index = getValue(Ptr);
4332     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4333   }
4334   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4335   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4336                                          Ops, MMO);
4337   DAG.setRoot(Scatter);
4338   setValue(&I, Scatter);
4339 }
4340 
4341 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4342   SDLoc sdl = getCurSDLoc();
4343 
4344   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4345                            unsigned& Alignment) {
4346     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4347     Ptr = I.getArgOperand(0);
4348     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4349     Mask = I.getArgOperand(2);
4350     Src0 = I.getArgOperand(3);
4351   };
4352   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4353                            unsigned& Alignment) {
4354     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4355     Ptr = I.getArgOperand(0);
4356     Alignment = 0;
4357     Mask = I.getArgOperand(1);
4358     Src0 = I.getArgOperand(2);
4359   };
4360 
4361   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4362   unsigned Alignment;
4363   if (IsExpanding)
4364     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4365   else
4366     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4367 
4368   SDValue Ptr = getValue(PtrOperand);
4369   SDValue Src0 = getValue(Src0Operand);
4370   SDValue Mask = getValue(MaskOperand);
4371 
4372   EVT VT = Src0.getValueType();
4373   if (!Alignment)
4374     Alignment = DAG.getEVTAlignment(VT);
4375 
4376   AAMDNodes AAInfo;
4377   I.getAAMetadata(AAInfo);
4378   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4379 
4380   // Do not serialize masked loads of constant memory with anything.
4381   bool AddToChain =
4382       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4383                  PtrOperand,
4384                  LocationSize::precise(
4385                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4386                  AAInfo));
4387   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4388 
4389   MachineMemOperand *MMO =
4390     DAG.getMachineFunction().
4391     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4392                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4393                           Alignment, AAInfo, Ranges);
4394 
4395   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4396                                    ISD::NON_EXTLOAD, IsExpanding);
4397   if (AddToChain)
4398     PendingLoads.push_back(Load.getValue(1));
4399   setValue(&I, Load);
4400 }
4401 
4402 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4403   SDLoc sdl = getCurSDLoc();
4404 
4405   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4406   const Value *Ptr = I.getArgOperand(0);
4407   SDValue Src0 = getValue(I.getArgOperand(3));
4408   SDValue Mask = getValue(I.getArgOperand(2));
4409 
4410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4411   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4412   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4413   if (!Alignment)
4414     Alignment = DAG.getEVTAlignment(VT);
4415 
4416   AAMDNodes AAInfo;
4417   I.getAAMetadata(AAInfo);
4418   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4419 
4420   SDValue Root = DAG.getRoot();
4421   SDValue Base;
4422   SDValue Index;
4423   SDValue Scale;
4424   const Value *BasePtr = Ptr;
4425   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4426   bool ConstantMemory = false;
4427   if (UniformBase && AA &&
4428       AA->pointsToConstantMemory(
4429           MemoryLocation(BasePtr,
4430                          LocationSize::precise(
4431                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4432                          AAInfo))) {
4433     // Do not serialize (non-volatile) loads of constant memory with anything.
4434     Root = DAG.getEntryNode();
4435     ConstantMemory = true;
4436   }
4437 
4438   MachineMemOperand *MMO =
4439     DAG.getMachineFunction().
4440     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4441                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4442                          Alignment, AAInfo, Ranges);
4443 
4444   if (!UniformBase) {
4445     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4446     Index = getValue(Ptr);
4447     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4448   }
4449   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4450   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4451                                        Ops, MMO);
4452 
4453   SDValue OutChain = Gather.getValue(1);
4454   if (!ConstantMemory)
4455     PendingLoads.push_back(OutChain);
4456   setValue(&I, Gather);
4457 }
4458 
4459 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4460   SDLoc dl = getCurSDLoc();
4461   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4462   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4463   SyncScope::ID SSID = I.getSyncScopeID();
4464 
4465   SDValue InChain = getRoot();
4466 
4467   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4468   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4469 
4470   auto Alignment = DAG.getEVTAlignment(MemVT);
4471 
4472   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4473   if (I.isVolatile())
4474     Flags |= MachineMemOperand::MOVolatile;
4475   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4476 
4477   MachineFunction &MF = DAG.getMachineFunction();
4478   MachineMemOperand *MMO =
4479     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4480                             Flags, MemVT.getStoreSize(), Alignment,
4481                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4482                             FailureOrdering);
4483 
4484   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4485                                    dl, MemVT, VTs, InChain,
4486                                    getValue(I.getPointerOperand()),
4487                                    getValue(I.getCompareOperand()),
4488                                    getValue(I.getNewValOperand()), MMO);
4489 
4490   SDValue OutChain = L.getValue(2);
4491 
4492   setValue(&I, L);
4493   DAG.setRoot(OutChain);
4494 }
4495 
4496 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4497   SDLoc dl = getCurSDLoc();
4498   ISD::NodeType NT;
4499   switch (I.getOperation()) {
4500   default: llvm_unreachable("Unknown atomicrmw operation");
4501   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4502   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4503   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4504   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4505   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4506   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4507   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4508   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4509   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4510   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4511   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4512   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4513   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4514   }
4515   AtomicOrdering Ordering = I.getOrdering();
4516   SyncScope::ID SSID = I.getSyncScopeID();
4517 
4518   SDValue InChain = getRoot();
4519 
4520   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4521   auto Alignment = DAG.getEVTAlignment(MemVT);
4522 
4523   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4524   if (I.isVolatile())
4525     Flags |= MachineMemOperand::MOVolatile;
4526   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4527 
4528   MachineFunction &MF = DAG.getMachineFunction();
4529   MachineMemOperand *MMO =
4530     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4531                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4532                             nullptr, SSID, Ordering);
4533 
4534   SDValue L =
4535     DAG.getAtomic(NT, dl, MemVT, InChain,
4536                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4537                   MMO);
4538 
4539   SDValue OutChain = L.getValue(1);
4540 
4541   setValue(&I, L);
4542   DAG.setRoot(OutChain);
4543 }
4544 
4545 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4546   SDLoc dl = getCurSDLoc();
4547   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4548   SDValue Ops[3];
4549   Ops[0] = getRoot();
4550   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4551                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4552   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4553                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4554   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4555 }
4556 
4557 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4558   SDLoc dl = getCurSDLoc();
4559   AtomicOrdering Order = I.getOrdering();
4560   SyncScope::ID SSID = I.getSyncScopeID();
4561 
4562   SDValue InChain = getRoot();
4563 
4564   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4565   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4566 
4567   if (!TLI.supportsUnalignedAtomics() &&
4568       I.getAlignment() < VT.getStoreSize())
4569     report_fatal_error("Cannot generate unaligned atomic load");
4570 
4571   auto Flags = MachineMemOperand::MOLoad;
4572   if (I.isVolatile())
4573     Flags |= MachineMemOperand::MOVolatile;
4574   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4575     Flags |= MachineMemOperand::MOInvariant;
4576   if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4577     Flags |= MachineMemOperand::MODereferenceable;
4578 
4579   Flags |= TLI.getMMOFlags(I);
4580 
4581   MachineMemOperand *MMO =
4582       DAG.getMachineFunction().
4583       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4584                            Flags, VT.getStoreSize(),
4585                            I.getAlignment() ? I.getAlignment() :
4586                                               DAG.getEVTAlignment(VT),
4587                            AAMDNodes(), nullptr, SSID, Order);
4588 
4589   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4590   SDValue L =
4591       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4592                     getValue(I.getPointerOperand()), MMO);
4593 
4594   SDValue OutChain = L.getValue(1);
4595 
4596   setValue(&I, L);
4597   DAG.setRoot(OutChain);
4598 }
4599 
4600 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4601   SDLoc dl = getCurSDLoc();
4602 
4603   AtomicOrdering Ordering = I.getOrdering();
4604   SyncScope::ID SSID = I.getSyncScopeID();
4605 
4606   SDValue InChain = getRoot();
4607 
4608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4609   EVT VT =
4610       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4611 
4612   if (I.getAlignment() < VT.getStoreSize())
4613     report_fatal_error("Cannot generate unaligned atomic store");
4614 
4615   auto Flags = MachineMemOperand::MOStore;
4616   if (I.isVolatile())
4617     Flags |= MachineMemOperand::MOVolatile;
4618   Flags |= TLI.getMMOFlags(I);
4619 
4620   MachineFunction &MF = DAG.getMachineFunction();
4621   MachineMemOperand *MMO =
4622     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4623                             VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4624                             nullptr, SSID, Ordering);
4625   SDValue OutChain =
4626     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4627               getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4628               MMO);
4629 
4630 
4631   DAG.setRoot(OutChain);
4632 }
4633 
4634 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4635 /// node.
4636 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4637                                                unsigned Intrinsic) {
4638   // Ignore the callsite's attributes. A specific call site may be marked with
4639   // readnone, but the lowering code will expect the chain based on the
4640   // definition.
4641   const Function *F = I.getCalledFunction();
4642   bool HasChain = !F->doesNotAccessMemory();
4643   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4644 
4645   // Build the operand list.
4646   SmallVector<SDValue, 8> Ops;
4647   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4648     if (OnlyLoad) {
4649       // We don't need to serialize loads against other loads.
4650       Ops.push_back(DAG.getRoot());
4651     } else {
4652       Ops.push_back(getRoot());
4653     }
4654   }
4655 
4656   // Info is set by getTgtMemInstrinsic
4657   TargetLowering::IntrinsicInfo Info;
4658   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4659   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4660                                                DAG.getMachineFunction(),
4661                                                Intrinsic);
4662 
4663   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4664   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4665       Info.opc == ISD::INTRINSIC_W_CHAIN)
4666     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4667                                         TLI.getPointerTy(DAG.getDataLayout())));
4668 
4669   // Add all operands of the call to the operand list.
4670   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4671     SDValue Op = getValue(I.getArgOperand(i));
4672     Ops.push_back(Op);
4673   }
4674 
4675   SmallVector<EVT, 4> ValueVTs;
4676   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4677 
4678   if (HasChain)
4679     ValueVTs.push_back(MVT::Other);
4680 
4681   SDVTList VTs = DAG.getVTList(ValueVTs);
4682 
4683   // Create the node.
4684   SDValue Result;
4685   if (IsTgtIntrinsic) {
4686     // This is target intrinsic that touches memory
4687     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4688       Ops, Info.memVT,
4689       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4690       Info.flags, Info.size);
4691   } else if (!HasChain) {
4692     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4693   } else if (!I.getType()->isVoidTy()) {
4694     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4695   } else {
4696     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4697   }
4698 
4699   if (HasChain) {
4700     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4701     if (OnlyLoad)
4702       PendingLoads.push_back(Chain);
4703     else
4704       DAG.setRoot(Chain);
4705   }
4706 
4707   if (!I.getType()->isVoidTy()) {
4708     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4709       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4710       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4711     } else
4712       Result = lowerRangeToAssertZExt(DAG, I, Result);
4713 
4714     setValue(&I, Result);
4715   }
4716 }
4717 
4718 /// GetSignificand - Get the significand and build it into a floating-point
4719 /// number with exponent of 1:
4720 ///
4721 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4722 ///
4723 /// where Op is the hexadecimal representation of floating point value.
4724 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4725   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4726                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4727   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4728                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4729   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4730 }
4731 
4732 /// GetExponent - Get the exponent:
4733 ///
4734 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4735 ///
4736 /// where Op is the hexadecimal representation of floating point value.
4737 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4738                            const TargetLowering &TLI, const SDLoc &dl) {
4739   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4740                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4741   SDValue t1 = DAG.getNode(
4742       ISD::SRL, dl, MVT::i32, t0,
4743       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4744   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4745                            DAG.getConstant(127, dl, MVT::i32));
4746   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4747 }
4748 
4749 /// getF32Constant - Get 32-bit floating point constant.
4750 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4751                               const SDLoc &dl) {
4752   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4753                            MVT::f32);
4754 }
4755 
4756 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4757                                        SelectionDAG &DAG) {
4758   // TODO: What fast-math-flags should be set on the floating-point nodes?
4759 
4760   //   IntegerPartOfX = ((int32_t)(t0);
4761   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4762 
4763   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4764   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4765   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4766 
4767   //   IntegerPartOfX <<= 23;
4768   IntegerPartOfX = DAG.getNode(
4769       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4770       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4771                                   DAG.getDataLayout())));
4772 
4773   SDValue TwoToFractionalPartOfX;
4774   if (LimitFloatPrecision <= 6) {
4775     // For floating-point precision of 6:
4776     //
4777     //   TwoToFractionalPartOfX =
4778     //     0.997535578f +
4779     //       (0.735607626f + 0.252464424f * x) * x;
4780     //
4781     // error 0.0144103317, which is 6 bits
4782     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4783                              getF32Constant(DAG, 0x3e814304, dl));
4784     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4785                              getF32Constant(DAG, 0x3f3c50c8, dl));
4786     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4787     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4788                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4789   } else if (LimitFloatPrecision <= 12) {
4790     // For floating-point precision of 12:
4791     //
4792     //   TwoToFractionalPartOfX =
4793     //     0.999892986f +
4794     //       (0.696457318f +
4795     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4796     //
4797     // error 0.000107046256, which is 13 to 14 bits
4798     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4799                              getF32Constant(DAG, 0x3da235e3, dl));
4800     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4801                              getF32Constant(DAG, 0x3e65b8f3, dl));
4802     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4803     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4804                              getF32Constant(DAG, 0x3f324b07, dl));
4805     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4806     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4807                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4808   } else { // LimitFloatPrecision <= 18
4809     // For floating-point precision of 18:
4810     //
4811     //   TwoToFractionalPartOfX =
4812     //     0.999999982f +
4813     //       (0.693148872f +
4814     //         (0.240227044f +
4815     //           (0.554906021e-1f +
4816     //             (0.961591928e-2f +
4817     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4818     // error 2.47208000*10^(-7), which is better than 18 bits
4819     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4820                              getF32Constant(DAG, 0x3924b03e, dl));
4821     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4822                              getF32Constant(DAG, 0x3ab24b87, dl));
4823     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4824     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4825                              getF32Constant(DAG, 0x3c1d8c17, dl));
4826     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4827     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4828                              getF32Constant(DAG, 0x3d634a1d, dl));
4829     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4830     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4831                              getF32Constant(DAG, 0x3e75fe14, dl));
4832     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4833     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4834                               getF32Constant(DAG, 0x3f317234, dl));
4835     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4836     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4837                                          getF32Constant(DAG, 0x3f800000, dl));
4838   }
4839 
4840   // Add the exponent into the result in integer domain.
4841   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4842   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4843                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4844 }
4845 
4846 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4847 /// limited-precision mode.
4848 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4849                          const TargetLowering &TLI) {
4850   if (Op.getValueType() == MVT::f32 &&
4851       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4852 
4853     // Put the exponent in the right bit position for later addition to the
4854     // final result:
4855     //
4856     //   #define LOG2OFe 1.4426950f
4857     //   t0 = Op * LOG2OFe
4858 
4859     // TODO: What fast-math-flags should be set here?
4860     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4861                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4862     return getLimitedPrecisionExp2(t0, dl, DAG);
4863   }
4864 
4865   // No special expansion.
4866   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4867 }
4868 
4869 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4870 /// limited-precision mode.
4871 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4872                          const TargetLowering &TLI) {
4873   // TODO: What fast-math-flags should be set on the floating-point nodes?
4874 
4875   if (Op.getValueType() == MVT::f32 &&
4876       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4877     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4878 
4879     // Scale the exponent by log(2) [0.69314718f].
4880     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4881     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4882                                         getF32Constant(DAG, 0x3f317218, dl));
4883 
4884     // Get the significand and build it into a floating-point number with
4885     // exponent of 1.
4886     SDValue X = GetSignificand(DAG, Op1, dl);
4887 
4888     SDValue LogOfMantissa;
4889     if (LimitFloatPrecision <= 6) {
4890       // For floating-point precision of 6:
4891       //
4892       //   LogofMantissa =
4893       //     -1.1609546f +
4894       //       (1.4034025f - 0.23903021f * x) * x;
4895       //
4896       // error 0.0034276066, which is better than 8 bits
4897       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4898                                getF32Constant(DAG, 0xbe74c456, dl));
4899       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4900                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4901       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4902       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4903                                   getF32Constant(DAG, 0x3f949a29, dl));
4904     } else if (LimitFloatPrecision <= 12) {
4905       // For floating-point precision of 12:
4906       //
4907       //   LogOfMantissa =
4908       //     -1.7417939f +
4909       //       (2.8212026f +
4910       //         (-1.4699568f +
4911       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4912       //
4913       // error 0.000061011436, which is 14 bits
4914       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4915                                getF32Constant(DAG, 0xbd67b6d6, dl));
4916       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4917                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4918       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4919       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4920                                getF32Constant(DAG, 0x3fbc278b, dl));
4921       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4922       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4923                                getF32Constant(DAG, 0x40348e95, dl));
4924       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4925       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4926                                   getF32Constant(DAG, 0x3fdef31a, dl));
4927     } else { // LimitFloatPrecision <= 18
4928       // For floating-point precision of 18:
4929       //
4930       //   LogOfMantissa =
4931       //     -2.1072184f +
4932       //       (4.2372794f +
4933       //         (-3.7029485f +
4934       //           (2.2781945f +
4935       //             (-0.87823314f +
4936       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4937       //
4938       // error 0.0000023660568, which is better than 18 bits
4939       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4940                                getF32Constant(DAG, 0xbc91e5ac, dl));
4941       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4942                                getF32Constant(DAG, 0x3e4350aa, dl));
4943       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4944       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4945                                getF32Constant(DAG, 0x3f60d3e3, dl));
4946       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4947       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4948                                getF32Constant(DAG, 0x4011cdf0, dl));
4949       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4950       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4951                                getF32Constant(DAG, 0x406cfd1c, dl));
4952       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4953       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4954                                getF32Constant(DAG, 0x408797cb, dl));
4955       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4956       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4957                                   getF32Constant(DAG, 0x4006dcab, dl));
4958     }
4959 
4960     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4961   }
4962 
4963   // No special expansion.
4964   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4965 }
4966 
4967 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4968 /// limited-precision mode.
4969 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4970                           const TargetLowering &TLI) {
4971   // TODO: What fast-math-flags should be set on the floating-point nodes?
4972 
4973   if (Op.getValueType() == MVT::f32 &&
4974       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4975     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4976 
4977     // Get the exponent.
4978     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4979 
4980     // Get the significand and build it into a floating-point number with
4981     // exponent of 1.
4982     SDValue X = GetSignificand(DAG, Op1, dl);
4983 
4984     // Different possible minimax approximations of significand in
4985     // floating-point for various degrees of accuracy over [1,2].
4986     SDValue Log2ofMantissa;
4987     if (LimitFloatPrecision <= 6) {
4988       // For floating-point precision of 6:
4989       //
4990       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4991       //
4992       // error 0.0049451742, which is more than 7 bits
4993       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4994                                getF32Constant(DAG, 0xbeb08fe0, dl));
4995       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4996                                getF32Constant(DAG, 0x40019463, dl));
4997       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4998       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4999                                    getF32Constant(DAG, 0x3fd6633d, dl));
5000     } else if (LimitFloatPrecision <= 12) {
5001       // For floating-point precision of 12:
5002       //
5003       //   Log2ofMantissa =
5004       //     -2.51285454f +
5005       //       (4.07009056f +
5006       //         (-2.12067489f +
5007       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5008       //
5009       // error 0.0000876136000, which is better than 13 bits
5010       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5011                                getF32Constant(DAG, 0xbda7262e, dl));
5012       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5013                                getF32Constant(DAG, 0x3f25280b, dl));
5014       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5015       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5016                                getF32Constant(DAG, 0x4007b923, dl));
5017       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5018       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5019                                getF32Constant(DAG, 0x40823e2f, dl));
5020       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5021       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5022                                    getF32Constant(DAG, 0x4020d29c, dl));
5023     } else { // LimitFloatPrecision <= 18
5024       // For floating-point precision of 18:
5025       //
5026       //   Log2ofMantissa =
5027       //     -3.0400495f +
5028       //       (6.1129976f +
5029       //         (-5.3420409f +
5030       //           (3.2865683f +
5031       //             (-1.2669343f +
5032       //               (0.27515199f -
5033       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5034       //
5035       // error 0.0000018516, which is better than 18 bits
5036       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5037                                getF32Constant(DAG, 0xbcd2769e, dl));
5038       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5039                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5040       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5041       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5042                                getF32Constant(DAG, 0x3fa22ae7, dl));
5043       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5044       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5045                                getF32Constant(DAG, 0x40525723, dl));
5046       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5047       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5048                                getF32Constant(DAG, 0x40aaf200, dl));
5049       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5050       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5051                                getF32Constant(DAG, 0x40c39dad, dl));
5052       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5053       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5054                                    getF32Constant(DAG, 0x4042902c, dl));
5055     }
5056 
5057     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5058   }
5059 
5060   // No special expansion.
5061   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5062 }
5063 
5064 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5065 /// limited-precision mode.
5066 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5067                            const TargetLowering &TLI) {
5068   // TODO: What fast-math-flags should be set on the floating-point nodes?
5069 
5070   if (Op.getValueType() == MVT::f32 &&
5071       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5072     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5073 
5074     // Scale the exponent by log10(2) [0.30102999f].
5075     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5076     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5077                                         getF32Constant(DAG, 0x3e9a209a, dl));
5078 
5079     // Get the significand and build it into a floating-point number with
5080     // exponent of 1.
5081     SDValue X = GetSignificand(DAG, Op1, dl);
5082 
5083     SDValue Log10ofMantissa;
5084     if (LimitFloatPrecision <= 6) {
5085       // For floating-point precision of 6:
5086       //
5087       //   Log10ofMantissa =
5088       //     -0.50419619f +
5089       //       (0.60948995f - 0.10380950f * x) * x;
5090       //
5091       // error 0.0014886165, which is 6 bits
5092       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5093                                getF32Constant(DAG, 0xbdd49a13, dl));
5094       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5095                                getF32Constant(DAG, 0x3f1c0789, dl));
5096       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5097       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5098                                     getF32Constant(DAG, 0x3f011300, dl));
5099     } else if (LimitFloatPrecision <= 12) {
5100       // For floating-point precision of 12:
5101       //
5102       //   Log10ofMantissa =
5103       //     -0.64831180f +
5104       //       (0.91751397f +
5105       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5106       //
5107       // error 0.00019228036, which is better than 12 bits
5108       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5109                                getF32Constant(DAG, 0x3d431f31, dl));
5110       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5111                                getF32Constant(DAG, 0x3ea21fb2, dl));
5112       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5113       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5114                                getF32Constant(DAG, 0x3f6ae232, dl));
5115       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5116       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5117                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5118     } else { // LimitFloatPrecision <= 18
5119       // For floating-point precision of 18:
5120       //
5121       //   Log10ofMantissa =
5122       //     -0.84299375f +
5123       //       (1.5327582f +
5124       //         (-1.0688956f +
5125       //           (0.49102474f +
5126       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5127       //
5128       // error 0.0000037995730, which is better than 18 bits
5129       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5130                                getF32Constant(DAG, 0x3c5d51ce, dl));
5131       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5132                                getF32Constant(DAG, 0x3e00685a, dl));
5133       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5134       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5135                                getF32Constant(DAG, 0x3efb6798, dl));
5136       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5137       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5138                                getF32Constant(DAG, 0x3f88d192, dl));
5139       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5140       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5141                                getF32Constant(DAG, 0x3fc4316c, dl));
5142       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5143       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5144                                     getF32Constant(DAG, 0x3f57ce70, dl));
5145     }
5146 
5147     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5148   }
5149 
5150   // No special expansion.
5151   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5152 }
5153 
5154 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5155 /// limited-precision mode.
5156 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5157                           const TargetLowering &TLI) {
5158   if (Op.getValueType() == MVT::f32 &&
5159       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5160     return getLimitedPrecisionExp2(Op, dl, DAG);
5161 
5162   // No special expansion.
5163   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5164 }
5165 
5166 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5167 /// limited-precision mode with x == 10.0f.
5168 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5169                          SelectionDAG &DAG, const TargetLowering &TLI) {
5170   bool IsExp10 = false;
5171   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5172       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5173     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5174       APFloat Ten(10.0f);
5175       IsExp10 = LHSC->isExactlyValue(Ten);
5176     }
5177   }
5178 
5179   // TODO: What fast-math-flags should be set on the FMUL node?
5180   if (IsExp10) {
5181     // Put the exponent in the right bit position for later addition to the
5182     // final result:
5183     //
5184     //   #define LOG2OF10 3.3219281f
5185     //   t0 = Op * LOG2OF10;
5186     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5187                              getF32Constant(DAG, 0x40549a78, dl));
5188     return getLimitedPrecisionExp2(t0, dl, DAG);
5189   }
5190 
5191   // No special expansion.
5192   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5193 }
5194 
5195 /// ExpandPowI - Expand a llvm.powi intrinsic.
5196 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5197                           SelectionDAG &DAG) {
5198   // If RHS is a constant, we can expand this out to a multiplication tree,
5199   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5200   // optimizing for size, we only want to do this if the expansion would produce
5201   // a small number of multiplies, otherwise we do the full expansion.
5202   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5203     // Get the exponent as a positive value.
5204     unsigned Val = RHSC->getSExtValue();
5205     if ((int)Val < 0) Val = -Val;
5206 
5207     // powi(x, 0) -> 1.0
5208     if (Val == 0)
5209       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5210 
5211     const Function &F = DAG.getMachineFunction().getFunction();
5212     if (!F.optForSize() ||
5213         // If optimizing for size, don't insert too many multiplies.
5214         // This inserts up to 5 multiplies.
5215         countPopulation(Val) + Log2_32(Val) < 7) {
5216       // We use the simple binary decomposition method to generate the multiply
5217       // sequence.  There are more optimal ways to do this (for example,
5218       // powi(x,15) generates one more multiply than it should), but this has
5219       // the benefit of being both really simple and much better than a libcall.
5220       SDValue Res;  // Logically starts equal to 1.0
5221       SDValue CurSquare = LHS;
5222       // TODO: Intrinsics should have fast-math-flags that propagate to these
5223       // nodes.
5224       while (Val) {
5225         if (Val & 1) {
5226           if (Res.getNode())
5227             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5228           else
5229             Res = CurSquare;  // 1.0*CurSquare.
5230         }
5231 
5232         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5233                                 CurSquare, CurSquare);
5234         Val >>= 1;
5235       }
5236 
5237       // If the original was negative, invert the result, producing 1/(x*x*x).
5238       if (RHSC->getSExtValue() < 0)
5239         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5240                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5241       return Res;
5242     }
5243   }
5244 
5245   // Otherwise, expand to a libcall.
5246   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5247 }
5248 
5249 // getUnderlyingArgReg - Find underlying register used for a truncated or
5250 // bitcasted argument.
5251 static unsigned getUnderlyingArgReg(const SDValue &N) {
5252   switch (N.getOpcode()) {
5253   case ISD::CopyFromReg:
5254     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5255   case ISD::BITCAST:
5256   case ISD::AssertZext:
5257   case ISD::AssertSext:
5258   case ISD::TRUNCATE:
5259     return getUnderlyingArgReg(N.getOperand(0));
5260   default:
5261     return 0;
5262   }
5263 }
5264 
5265 /// If the DbgValueInst is a dbg_value of a function argument, create the
5266 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5267 /// instruction selection, they will be inserted to the entry BB.
5268 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5269     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5270     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5271   const Argument *Arg = dyn_cast<Argument>(V);
5272   if (!Arg)
5273     return false;
5274 
5275   if (!IsDbgDeclare) {
5276     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5277     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5278     // the entry block.
5279     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5280     if (!IsInEntryBlock)
5281       return false;
5282 
5283     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5284     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5285     // variable that also is a param.
5286     //
5287     // Although, if we are at the top of the entry block already, we can still
5288     // emit using ArgDbgValue. This might catch some situations when the
5289     // dbg.value refers to an argument that isn't used in the entry block, so
5290     // any CopyToReg node would be optimized out and the only way to express
5291     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5292     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5293     // we should only emit as ArgDbgValue if the Variable is an argument to the
5294     // current function, and the dbg.value intrinsic is found in the entry
5295     // block.
5296     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5297         !DL->getInlinedAt();
5298     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5299     if (!IsInPrologue && !VariableIsFunctionInputArg)
5300       return false;
5301 
5302     // Here we assume that a function argument on IR level only can be used to
5303     // describe one input parameter on source level. If we for example have
5304     // source code like this
5305     //
5306     //    struct A { long x, y; };
5307     //    void foo(struct A a, long b) {
5308     //      ...
5309     //      b = a.x;
5310     //      ...
5311     //    }
5312     //
5313     // and IR like this
5314     //
5315     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5316     //  entry:
5317     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5318     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5319     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5320     //    ...
5321     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5322     //    ...
5323     //
5324     // then the last dbg.value is describing a parameter "b" using a value that
5325     // is an argument. But since we already has used %a1 to describe a parameter
5326     // we should not handle that last dbg.value here (that would result in an
5327     // incorrect hoisting of the DBG_VALUE to the function entry).
5328     // Notice that we allow one dbg.value per IR level argument, to accomodate
5329     // for the situation with fragments above.
5330     if (VariableIsFunctionInputArg) {
5331       unsigned ArgNo = Arg->getArgNo();
5332       if (ArgNo >= FuncInfo.DescribedArgs.size())
5333         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5334       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5335         return false;
5336       FuncInfo.DescribedArgs.set(ArgNo);
5337     }
5338   }
5339 
5340   MachineFunction &MF = DAG.getMachineFunction();
5341   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5342 
5343   bool IsIndirect = false;
5344   Optional<MachineOperand> Op;
5345   // Some arguments' frame index is recorded during argument lowering.
5346   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5347   if (FI != std::numeric_limits<int>::max())
5348     Op = MachineOperand::CreateFI(FI);
5349 
5350   if (!Op && N.getNode()) {
5351     unsigned Reg = getUnderlyingArgReg(N);
5352     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5353       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5354       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5355       if (PR)
5356         Reg = PR;
5357     }
5358     if (Reg) {
5359       Op = MachineOperand::CreateReg(Reg, false);
5360       IsIndirect = IsDbgDeclare;
5361     }
5362   }
5363 
5364   if (!Op && N.getNode()) {
5365     // Check if frame index is available.
5366     SDValue LCandidate = peekThroughBitcasts(N);
5367     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5368       if (FrameIndexSDNode *FINode =
5369           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5370         Op = MachineOperand::CreateFI(FINode->getIndex());
5371   }
5372 
5373   if (!Op) {
5374     // Check if ValueMap has reg number.
5375     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5376     if (VMI != FuncInfo.ValueMap.end()) {
5377       const auto &TLI = DAG.getTargetLoweringInfo();
5378       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5379                        V->getType(), getABIRegCopyCC(V));
5380       if (RFV.occupiesMultipleRegs()) {
5381         unsigned Offset = 0;
5382         for (auto RegAndSize : RFV.getRegsAndSizes()) {
5383           Op = MachineOperand::CreateReg(RegAndSize.first, false);
5384           auto FragmentExpr = DIExpression::createFragmentExpression(
5385               Expr, Offset, RegAndSize.second);
5386           if (!FragmentExpr)
5387             continue;
5388           FuncInfo.ArgDbgValues.push_back(
5389               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5390                       Op->getReg(), Variable, *FragmentExpr));
5391           Offset += RegAndSize.second;
5392         }
5393         return true;
5394       }
5395       Op = MachineOperand::CreateReg(VMI->second, false);
5396       IsIndirect = IsDbgDeclare;
5397     }
5398   }
5399 
5400   if (!Op)
5401     return false;
5402 
5403   assert(Variable->isValidLocationForIntrinsic(DL) &&
5404          "Expected inlined-at fields to agree");
5405   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5406   FuncInfo.ArgDbgValues.push_back(
5407       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5408               *Op, Variable, Expr));
5409 
5410   return true;
5411 }
5412 
5413 /// Return the appropriate SDDbgValue based on N.
5414 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5415                                              DILocalVariable *Variable,
5416                                              DIExpression *Expr,
5417                                              const DebugLoc &dl,
5418                                              unsigned DbgSDNodeOrder) {
5419   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5420     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5421     // stack slot locations.
5422     //
5423     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5424     // debug values here after optimization:
5425     //
5426     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5427     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5428     //
5429     // Both describe the direct values of their associated variables.
5430     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5431                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5432   }
5433   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5434                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5435 }
5436 
5437 // VisualStudio defines setjmp as _setjmp
5438 #if defined(_MSC_VER) && defined(setjmp) && \
5439                          !defined(setjmp_undefined_for_msvc)
5440 #  pragma push_macro("setjmp")
5441 #  undef setjmp
5442 #  define setjmp_undefined_for_msvc
5443 #endif
5444 
5445 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5446   switch (Intrinsic) {
5447   case Intrinsic::smul_fix:
5448     return ISD::SMULFIX;
5449   case Intrinsic::umul_fix:
5450     return ISD::UMULFIX;
5451   default:
5452     llvm_unreachable("Unhandled fixed point intrinsic");
5453   }
5454 }
5455 
5456 /// Lower the call to the specified intrinsic function. If we want to emit this
5457 /// as a call to a named external function, return the name. Otherwise, lower it
5458 /// and return null.
5459 const char *
5460 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5461   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5462   SDLoc sdl = getCurSDLoc();
5463   DebugLoc dl = getCurDebugLoc();
5464   SDValue Res;
5465 
5466   switch (Intrinsic) {
5467   default:
5468     // By default, turn this into a target intrinsic node.
5469     visitTargetIntrinsic(I, Intrinsic);
5470     return nullptr;
5471   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5472   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5473   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5474   case Intrinsic::returnaddress:
5475     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5476                              TLI.getPointerTy(DAG.getDataLayout()),
5477                              getValue(I.getArgOperand(0))));
5478     return nullptr;
5479   case Intrinsic::addressofreturnaddress:
5480     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5481                              TLI.getPointerTy(DAG.getDataLayout())));
5482     return nullptr;
5483   case Intrinsic::sponentry:
5484     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5485                              TLI.getPointerTy(DAG.getDataLayout())));
5486     return nullptr;
5487   case Intrinsic::frameaddress:
5488     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5489                              TLI.getPointerTy(DAG.getDataLayout()),
5490                              getValue(I.getArgOperand(0))));
5491     return nullptr;
5492   case Intrinsic::read_register: {
5493     Value *Reg = I.getArgOperand(0);
5494     SDValue Chain = getRoot();
5495     SDValue RegName =
5496         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5497     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5498     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5499       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5500     setValue(&I, Res);
5501     DAG.setRoot(Res.getValue(1));
5502     return nullptr;
5503   }
5504   case Intrinsic::write_register: {
5505     Value *Reg = I.getArgOperand(0);
5506     Value *RegValue = I.getArgOperand(1);
5507     SDValue Chain = getRoot();
5508     SDValue RegName =
5509         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5510     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5511                             RegName, getValue(RegValue)));
5512     return nullptr;
5513   }
5514   case Intrinsic::setjmp:
5515     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5516   case Intrinsic::longjmp:
5517     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5518   case Intrinsic::memcpy: {
5519     const auto &MCI = cast<MemCpyInst>(I);
5520     SDValue Op1 = getValue(I.getArgOperand(0));
5521     SDValue Op2 = getValue(I.getArgOperand(1));
5522     SDValue Op3 = getValue(I.getArgOperand(2));
5523     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5524     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5525     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5526     unsigned Align = MinAlign(DstAlign, SrcAlign);
5527     bool isVol = MCI.isVolatile();
5528     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5529     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5530     // node.
5531     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5532                                false, isTC,
5533                                MachinePointerInfo(I.getArgOperand(0)),
5534                                MachinePointerInfo(I.getArgOperand(1)));
5535     updateDAGForMaybeTailCall(MC);
5536     return nullptr;
5537   }
5538   case Intrinsic::memset: {
5539     const auto &MSI = cast<MemSetInst>(I);
5540     SDValue Op1 = getValue(I.getArgOperand(0));
5541     SDValue Op2 = getValue(I.getArgOperand(1));
5542     SDValue Op3 = getValue(I.getArgOperand(2));
5543     // @llvm.memset defines 0 and 1 to both mean no alignment.
5544     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5545     bool isVol = MSI.isVolatile();
5546     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5547     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5548                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5549     updateDAGForMaybeTailCall(MS);
5550     return nullptr;
5551   }
5552   case Intrinsic::memmove: {
5553     const auto &MMI = cast<MemMoveInst>(I);
5554     SDValue Op1 = getValue(I.getArgOperand(0));
5555     SDValue Op2 = getValue(I.getArgOperand(1));
5556     SDValue Op3 = getValue(I.getArgOperand(2));
5557     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5558     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5559     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5560     unsigned Align = MinAlign(DstAlign, SrcAlign);
5561     bool isVol = MMI.isVolatile();
5562     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5563     // FIXME: Support passing different dest/src alignments to the memmove DAG
5564     // node.
5565     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5566                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5567                                 MachinePointerInfo(I.getArgOperand(1)));
5568     updateDAGForMaybeTailCall(MM);
5569     return nullptr;
5570   }
5571   case Intrinsic::memcpy_element_unordered_atomic: {
5572     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5573     SDValue Dst = getValue(MI.getRawDest());
5574     SDValue Src = getValue(MI.getRawSource());
5575     SDValue Length = getValue(MI.getLength());
5576 
5577     unsigned DstAlign = MI.getDestAlignment();
5578     unsigned SrcAlign = MI.getSourceAlignment();
5579     Type *LengthTy = MI.getLength()->getType();
5580     unsigned ElemSz = MI.getElementSizeInBytes();
5581     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5582     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5583                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5584                                      MachinePointerInfo(MI.getRawDest()),
5585                                      MachinePointerInfo(MI.getRawSource()));
5586     updateDAGForMaybeTailCall(MC);
5587     return nullptr;
5588   }
5589   case Intrinsic::memmove_element_unordered_atomic: {
5590     auto &MI = cast<AtomicMemMoveInst>(I);
5591     SDValue Dst = getValue(MI.getRawDest());
5592     SDValue Src = getValue(MI.getRawSource());
5593     SDValue Length = getValue(MI.getLength());
5594 
5595     unsigned DstAlign = MI.getDestAlignment();
5596     unsigned SrcAlign = MI.getSourceAlignment();
5597     Type *LengthTy = MI.getLength()->getType();
5598     unsigned ElemSz = MI.getElementSizeInBytes();
5599     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5600     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5601                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5602                                       MachinePointerInfo(MI.getRawDest()),
5603                                       MachinePointerInfo(MI.getRawSource()));
5604     updateDAGForMaybeTailCall(MC);
5605     return nullptr;
5606   }
5607   case Intrinsic::memset_element_unordered_atomic: {
5608     auto &MI = cast<AtomicMemSetInst>(I);
5609     SDValue Dst = getValue(MI.getRawDest());
5610     SDValue Val = getValue(MI.getValue());
5611     SDValue Length = getValue(MI.getLength());
5612 
5613     unsigned DstAlign = MI.getDestAlignment();
5614     Type *LengthTy = MI.getLength()->getType();
5615     unsigned ElemSz = MI.getElementSizeInBytes();
5616     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5617     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5618                                      LengthTy, ElemSz, isTC,
5619                                      MachinePointerInfo(MI.getRawDest()));
5620     updateDAGForMaybeTailCall(MC);
5621     return nullptr;
5622   }
5623   case Intrinsic::dbg_addr:
5624   case Intrinsic::dbg_declare: {
5625     const auto &DI = cast<DbgVariableIntrinsic>(I);
5626     DILocalVariable *Variable = DI.getVariable();
5627     DIExpression *Expression = DI.getExpression();
5628     dropDanglingDebugInfo(Variable, Expression);
5629     assert(Variable && "Missing variable");
5630 
5631     // Check if address has undef value.
5632     const Value *Address = DI.getVariableLocation();
5633     if (!Address || isa<UndefValue>(Address) ||
5634         (Address->use_empty() && !isa<Argument>(Address))) {
5635       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5636       return nullptr;
5637     }
5638 
5639     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5640 
5641     // Check if this variable can be described by a frame index, typically
5642     // either as a static alloca or a byval parameter.
5643     int FI = std::numeric_limits<int>::max();
5644     if (const auto *AI =
5645             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5646       if (AI->isStaticAlloca()) {
5647         auto I = FuncInfo.StaticAllocaMap.find(AI);
5648         if (I != FuncInfo.StaticAllocaMap.end())
5649           FI = I->second;
5650       }
5651     } else if (const auto *Arg = dyn_cast<Argument>(
5652                    Address->stripInBoundsConstantOffsets())) {
5653       FI = FuncInfo.getArgumentFrameIndex(Arg);
5654     }
5655 
5656     // llvm.dbg.addr is control dependent and always generates indirect
5657     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5658     // the MachineFunction variable table.
5659     if (FI != std::numeric_limits<int>::max()) {
5660       if (Intrinsic == Intrinsic::dbg_addr) {
5661         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5662             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5663         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5664       }
5665       return nullptr;
5666     }
5667 
5668     SDValue &N = NodeMap[Address];
5669     if (!N.getNode() && isa<Argument>(Address))
5670       // Check unused arguments map.
5671       N = UnusedArgNodeMap[Address];
5672     SDDbgValue *SDV;
5673     if (N.getNode()) {
5674       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5675         Address = BCI->getOperand(0);
5676       // Parameters are handled specially.
5677       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5678       if (isParameter && FINode) {
5679         // Byval parameter. We have a frame index at this point.
5680         SDV =
5681             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5682                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5683       } else if (isa<Argument>(Address)) {
5684         // Address is an argument, so try to emit its dbg value using
5685         // virtual register info from the FuncInfo.ValueMap.
5686         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5687         return nullptr;
5688       } else {
5689         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5690                               true, dl, SDNodeOrder);
5691       }
5692       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5693     } else {
5694       // If Address is an argument then try to emit its dbg value using
5695       // virtual register info from the FuncInfo.ValueMap.
5696       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5697                                     N)) {
5698         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5699       }
5700     }
5701     return nullptr;
5702   }
5703   case Intrinsic::dbg_label: {
5704     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5705     DILabel *Label = DI.getLabel();
5706     assert(Label && "Missing label");
5707 
5708     SDDbgLabel *SDV;
5709     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5710     DAG.AddDbgLabel(SDV);
5711     return nullptr;
5712   }
5713   case Intrinsic::dbg_value: {
5714     const DbgValueInst &DI = cast<DbgValueInst>(I);
5715     assert(DI.getVariable() && "Missing variable");
5716 
5717     DILocalVariable *Variable = DI.getVariable();
5718     DIExpression *Expression = DI.getExpression();
5719     dropDanglingDebugInfo(Variable, Expression);
5720     const Value *V = DI.getValue();
5721     if (!V)
5722       return nullptr;
5723 
5724     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5725         SDNodeOrder))
5726       return nullptr;
5727 
5728     // TODO: Dangling debug info will eventually either be resolved or produce
5729     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5730     // between the original dbg.value location and its resolved DBG_VALUE, which
5731     // we should ideally fill with an extra Undef DBG_VALUE.
5732 
5733     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5734     return nullptr;
5735   }
5736 
5737   case Intrinsic::eh_typeid_for: {
5738     // Find the type id for the given typeinfo.
5739     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5740     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5741     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5742     setValue(&I, Res);
5743     return nullptr;
5744   }
5745 
5746   case Intrinsic::eh_return_i32:
5747   case Intrinsic::eh_return_i64:
5748     DAG.getMachineFunction().setCallsEHReturn(true);
5749     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5750                             MVT::Other,
5751                             getControlRoot(),
5752                             getValue(I.getArgOperand(0)),
5753                             getValue(I.getArgOperand(1))));
5754     return nullptr;
5755   case Intrinsic::eh_unwind_init:
5756     DAG.getMachineFunction().setCallsUnwindInit(true);
5757     return nullptr;
5758   case Intrinsic::eh_dwarf_cfa:
5759     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5760                              TLI.getPointerTy(DAG.getDataLayout()),
5761                              getValue(I.getArgOperand(0))));
5762     return nullptr;
5763   case Intrinsic::eh_sjlj_callsite: {
5764     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5765     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5766     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5767     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5768 
5769     MMI.setCurrentCallSite(CI->getZExtValue());
5770     return nullptr;
5771   }
5772   case Intrinsic::eh_sjlj_functioncontext: {
5773     // Get and store the index of the function context.
5774     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5775     AllocaInst *FnCtx =
5776       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5777     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5778     MFI.setFunctionContextIndex(FI);
5779     return nullptr;
5780   }
5781   case Intrinsic::eh_sjlj_setjmp: {
5782     SDValue Ops[2];
5783     Ops[0] = getRoot();
5784     Ops[1] = getValue(I.getArgOperand(0));
5785     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5786                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5787     setValue(&I, Op.getValue(0));
5788     DAG.setRoot(Op.getValue(1));
5789     return nullptr;
5790   }
5791   case Intrinsic::eh_sjlj_longjmp:
5792     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5793                             getRoot(), getValue(I.getArgOperand(0))));
5794     return nullptr;
5795   case Intrinsic::eh_sjlj_setup_dispatch:
5796     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5797                             getRoot()));
5798     return nullptr;
5799   case Intrinsic::masked_gather:
5800     visitMaskedGather(I);
5801     return nullptr;
5802   case Intrinsic::masked_load:
5803     visitMaskedLoad(I);
5804     return nullptr;
5805   case Intrinsic::masked_scatter:
5806     visitMaskedScatter(I);
5807     return nullptr;
5808   case Intrinsic::masked_store:
5809     visitMaskedStore(I);
5810     return nullptr;
5811   case Intrinsic::masked_expandload:
5812     visitMaskedLoad(I, true /* IsExpanding */);
5813     return nullptr;
5814   case Intrinsic::masked_compressstore:
5815     visitMaskedStore(I, true /* IsCompressing */);
5816     return nullptr;
5817   case Intrinsic::x86_mmx_pslli_w:
5818   case Intrinsic::x86_mmx_pslli_d:
5819   case Intrinsic::x86_mmx_pslli_q:
5820   case Intrinsic::x86_mmx_psrli_w:
5821   case Intrinsic::x86_mmx_psrli_d:
5822   case Intrinsic::x86_mmx_psrli_q:
5823   case Intrinsic::x86_mmx_psrai_w:
5824   case Intrinsic::x86_mmx_psrai_d: {
5825     SDValue ShAmt = getValue(I.getArgOperand(1));
5826     if (isa<ConstantSDNode>(ShAmt)) {
5827       visitTargetIntrinsic(I, Intrinsic);
5828       return nullptr;
5829     }
5830     unsigned NewIntrinsic = 0;
5831     EVT ShAmtVT = MVT::v2i32;
5832     switch (Intrinsic) {
5833     case Intrinsic::x86_mmx_pslli_w:
5834       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5835       break;
5836     case Intrinsic::x86_mmx_pslli_d:
5837       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5838       break;
5839     case Intrinsic::x86_mmx_pslli_q:
5840       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5841       break;
5842     case Intrinsic::x86_mmx_psrli_w:
5843       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5844       break;
5845     case Intrinsic::x86_mmx_psrli_d:
5846       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5847       break;
5848     case Intrinsic::x86_mmx_psrli_q:
5849       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5850       break;
5851     case Intrinsic::x86_mmx_psrai_w:
5852       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5853       break;
5854     case Intrinsic::x86_mmx_psrai_d:
5855       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5856       break;
5857     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5858     }
5859 
5860     // The vector shift intrinsics with scalars uses 32b shift amounts but
5861     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5862     // to be zero.
5863     // We must do this early because v2i32 is not a legal type.
5864     SDValue ShOps[2];
5865     ShOps[0] = ShAmt;
5866     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5867     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5868     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5869     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5870     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5871                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5872                        getValue(I.getArgOperand(0)), ShAmt);
5873     setValue(&I, Res);
5874     return nullptr;
5875   }
5876   case Intrinsic::powi:
5877     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5878                             getValue(I.getArgOperand(1)), DAG));
5879     return nullptr;
5880   case Intrinsic::log:
5881     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5882     return nullptr;
5883   case Intrinsic::log2:
5884     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5885     return nullptr;
5886   case Intrinsic::log10:
5887     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5888     return nullptr;
5889   case Intrinsic::exp:
5890     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5891     return nullptr;
5892   case Intrinsic::exp2:
5893     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5894     return nullptr;
5895   case Intrinsic::pow:
5896     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5897                            getValue(I.getArgOperand(1)), DAG, TLI));
5898     return nullptr;
5899   case Intrinsic::sqrt:
5900   case Intrinsic::fabs:
5901   case Intrinsic::sin:
5902   case Intrinsic::cos:
5903   case Intrinsic::floor:
5904   case Intrinsic::ceil:
5905   case Intrinsic::trunc:
5906   case Intrinsic::rint:
5907   case Intrinsic::nearbyint:
5908   case Intrinsic::round:
5909   case Intrinsic::canonicalize: {
5910     unsigned Opcode;
5911     switch (Intrinsic) {
5912     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5913     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5914     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5915     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5916     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5917     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5918     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5919     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5920     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5921     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5922     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5923     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5924     }
5925 
5926     setValue(&I, DAG.getNode(Opcode, sdl,
5927                              getValue(I.getArgOperand(0)).getValueType(),
5928                              getValue(I.getArgOperand(0))));
5929     return nullptr;
5930   }
5931   case Intrinsic::minnum: {
5932     auto VT = getValue(I.getArgOperand(0)).getValueType();
5933     unsigned Opc =
5934         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5935             ? ISD::FMINIMUM
5936             : ISD::FMINNUM;
5937     setValue(&I, DAG.getNode(Opc, sdl, VT,
5938                              getValue(I.getArgOperand(0)),
5939                              getValue(I.getArgOperand(1))));
5940     return nullptr;
5941   }
5942   case Intrinsic::maxnum: {
5943     auto VT = getValue(I.getArgOperand(0)).getValueType();
5944     unsigned Opc =
5945         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5946             ? ISD::FMAXIMUM
5947             : ISD::FMAXNUM;
5948     setValue(&I, DAG.getNode(Opc, sdl, VT,
5949                              getValue(I.getArgOperand(0)),
5950                              getValue(I.getArgOperand(1))));
5951     return nullptr;
5952   }
5953   case Intrinsic::minimum:
5954     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5955                              getValue(I.getArgOperand(0)).getValueType(),
5956                              getValue(I.getArgOperand(0)),
5957                              getValue(I.getArgOperand(1))));
5958     return nullptr;
5959   case Intrinsic::maximum:
5960     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5961                              getValue(I.getArgOperand(0)).getValueType(),
5962                              getValue(I.getArgOperand(0)),
5963                              getValue(I.getArgOperand(1))));
5964     return nullptr;
5965   case Intrinsic::copysign:
5966     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5967                              getValue(I.getArgOperand(0)).getValueType(),
5968                              getValue(I.getArgOperand(0)),
5969                              getValue(I.getArgOperand(1))));
5970     return nullptr;
5971   case Intrinsic::fma:
5972     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5973                              getValue(I.getArgOperand(0)).getValueType(),
5974                              getValue(I.getArgOperand(0)),
5975                              getValue(I.getArgOperand(1)),
5976                              getValue(I.getArgOperand(2))));
5977     return nullptr;
5978   case Intrinsic::experimental_constrained_fadd:
5979   case Intrinsic::experimental_constrained_fsub:
5980   case Intrinsic::experimental_constrained_fmul:
5981   case Intrinsic::experimental_constrained_fdiv:
5982   case Intrinsic::experimental_constrained_frem:
5983   case Intrinsic::experimental_constrained_fma:
5984   case Intrinsic::experimental_constrained_sqrt:
5985   case Intrinsic::experimental_constrained_pow:
5986   case Intrinsic::experimental_constrained_powi:
5987   case Intrinsic::experimental_constrained_sin:
5988   case Intrinsic::experimental_constrained_cos:
5989   case Intrinsic::experimental_constrained_exp:
5990   case Intrinsic::experimental_constrained_exp2:
5991   case Intrinsic::experimental_constrained_log:
5992   case Intrinsic::experimental_constrained_log10:
5993   case Intrinsic::experimental_constrained_log2:
5994   case Intrinsic::experimental_constrained_rint:
5995   case Intrinsic::experimental_constrained_nearbyint:
5996   case Intrinsic::experimental_constrained_maxnum:
5997   case Intrinsic::experimental_constrained_minnum:
5998   case Intrinsic::experimental_constrained_ceil:
5999   case Intrinsic::experimental_constrained_floor:
6000   case Intrinsic::experimental_constrained_round:
6001   case Intrinsic::experimental_constrained_trunc:
6002     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6003     return nullptr;
6004   case Intrinsic::fmuladd: {
6005     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6006     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6007         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6008       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6009                                getValue(I.getArgOperand(0)).getValueType(),
6010                                getValue(I.getArgOperand(0)),
6011                                getValue(I.getArgOperand(1)),
6012                                getValue(I.getArgOperand(2))));
6013     } else {
6014       // TODO: Intrinsic calls should have fast-math-flags.
6015       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6016                                 getValue(I.getArgOperand(0)).getValueType(),
6017                                 getValue(I.getArgOperand(0)),
6018                                 getValue(I.getArgOperand(1)));
6019       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6020                                 getValue(I.getArgOperand(0)).getValueType(),
6021                                 Mul,
6022                                 getValue(I.getArgOperand(2)));
6023       setValue(&I, Add);
6024     }
6025     return nullptr;
6026   }
6027   case Intrinsic::convert_to_fp16:
6028     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6029                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6030                                          getValue(I.getArgOperand(0)),
6031                                          DAG.getTargetConstant(0, sdl,
6032                                                                MVT::i32))));
6033     return nullptr;
6034   case Intrinsic::convert_from_fp16:
6035     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6036                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6037                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6038                                          getValue(I.getArgOperand(0)))));
6039     return nullptr;
6040   case Intrinsic::pcmarker: {
6041     SDValue Tmp = getValue(I.getArgOperand(0));
6042     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6043     return nullptr;
6044   }
6045   case Intrinsic::readcyclecounter: {
6046     SDValue Op = getRoot();
6047     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6048                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6049     setValue(&I, Res);
6050     DAG.setRoot(Res.getValue(1));
6051     return nullptr;
6052   }
6053   case Intrinsic::bitreverse:
6054     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6055                              getValue(I.getArgOperand(0)).getValueType(),
6056                              getValue(I.getArgOperand(0))));
6057     return nullptr;
6058   case Intrinsic::bswap:
6059     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6060                              getValue(I.getArgOperand(0)).getValueType(),
6061                              getValue(I.getArgOperand(0))));
6062     return nullptr;
6063   case Intrinsic::cttz: {
6064     SDValue Arg = getValue(I.getArgOperand(0));
6065     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6066     EVT Ty = Arg.getValueType();
6067     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6068                              sdl, Ty, Arg));
6069     return nullptr;
6070   }
6071   case Intrinsic::ctlz: {
6072     SDValue Arg = getValue(I.getArgOperand(0));
6073     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6074     EVT Ty = Arg.getValueType();
6075     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6076                              sdl, Ty, Arg));
6077     return nullptr;
6078   }
6079   case Intrinsic::ctpop: {
6080     SDValue Arg = getValue(I.getArgOperand(0));
6081     EVT Ty = Arg.getValueType();
6082     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6083     return nullptr;
6084   }
6085   case Intrinsic::fshl:
6086   case Intrinsic::fshr: {
6087     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6088     SDValue X = getValue(I.getArgOperand(0));
6089     SDValue Y = getValue(I.getArgOperand(1));
6090     SDValue Z = getValue(I.getArgOperand(2));
6091     EVT VT = X.getValueType();
6092     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6093     SDValue Zero = DAG.getConstant(0, sdl, VT);
6094     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6095 
6096     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6097     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6098       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6099       return nullptr;
6100     }
6101 
6102     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6103     // avoid the select that is necessary in the general case to filter out
6104     // the 0-shift possibility that leads to UB.
6105     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6106       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6107       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6108         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6109         return nullptr;
6110       }
6111 
6112       // Some targets only rotate one way. Try the opposite direction.
6113       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6114       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6115         // Negate the shift amount because it is safe to ignore the high bits.
6116         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6117         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6118         return nullptr;
6119       }
6120 
6121       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6122       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6123       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6124       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6125       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6126       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6127       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6128       return nullptr;
6129     }
6130 
6131     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6132     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6133     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6134     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6135     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6136     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6137 
6138     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6139     // and that is undefined. We must compare and select to avoid UB.
6140     EVT CCVT = MVT::i1;
6141     if (VT.isVector())
6142       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6143 
6144     // For fshl, 0-shift returns the 1st arg (X).
6145     // For fshr, 0-shift returns the 2nd arg (Y).
6146     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6147     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6148     return nullptr;
6149   }
6150   case Intrinsic::sadd_sat: {
6151     SDValue Op1 = getValue(I.getArgOperand(0));
6152     SDValue Op2 = getValue(I.getArgOperand(1));
6153     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6154     return nullptr;
6155   }
6156   case Intrinsic::uadd_sat: {
6157     SDValue Op1 = getValue(I.getArgOperand(0));
6158     SDValue Op2 = getValue(I.getArgOperand(1));
6159     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6160     return nullptr;
6161   }
6162   case Intrinsic::ssub_sat: {
6163     SDValue Op1 = getValue(I.getArgOperand(0));
6164     SDValue Op2 = getValue(I.getArgOperand(1));
6165     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6166     return nullptr;
6167   }
6168   case Intrinsic::usub_sat: {
6169     SDValue Op1 = getValue(I.getArgOperand(0));
6170     SDValue Op2 = getValue(I.getArgOperand(1));
6171     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6172     return nullptr;
6173   }
6174   case Intrinsic::smul_fix:
6175   case Intrinsic::umul_fix: {
6176     SDValue Op1 = getValue(I.getArgOperand(0));
6177     SDValue Op2 = getValue(I.getArgOperand(1));
6178     SDValue Op3 = getValue(I.getArgOperand(2));
6179     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6180                              Op1.getValueType(), Op1, Op2, Op3));
6181     return nullptr;
6182   }
6183   case Intrinsic::stacksave: {
6184     SDValue Op = getRoot();
6185     Res = DAG.getNode(
6186         ISD::STACKSAVE, sdl,
6187         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6188     setValue(&I, Res);
6189     DAG.setRoot(Res.getValue(1));
6190     return nullptr;
6191   }
6192   case Intrinsic::stackrestore:
6193     Res = getValue(I.getArgOperand(0));
6194     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6195     return nullptr;
6196   case Intrinsic::get_dynamic_area_offset: {
6197     SDValue Op = getRoot();
6198     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6199     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6200     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6201     // target.
6202     if (PtrTy != ResTy)
6203       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6204                          " intrinsic!");
6205     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6206                       Op);
6207     DAG.setRoot(Op);
6208     setValue(&I, Res);
6209     return nullptr;
6210   }
6211   case Intrinsic::stackguard: {
6212     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6213     MachineFunction &MF = DAG.getMachineFunction();
6214     const Module &M = *MF.getFunction().getParent();
6215     SDValue Chain = getRoot();
6216     if (TLI.useLoadStackGuardNode()) {
6217       Res = getLoadStackGuard(DAG, sdl, Chain);
6218     } else {
6219       const Value *Global = TLI.getSDagStackGuard(M);
6220       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6221       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6222                         MachinePointerInfo(Global, 0), Align,
6223                         MachineMemOperand::MOVolatile);
6224     }
6225     if (TLI.useStackGuardXorFP())
6226       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6227     DAG.setRoot(Chain);
6228     setValue(&I, Res);
6229     return nullptr;
6230   }
6231   case Intrinsic::stackprotector: {
6232     // Emit code into the DAG to store the stack guard onto the stack.
6233     MachineFunction &MF = DAG.getMachineFunction();
6234     MachineFrameInfo &MFI = MF.getFrameInfo();
6235     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6236     SDValue Src, Chain = getRoot();
6237 
6238     if (TLI.useLoadStackGuardNode())
6239       Src = getLoadStackGuard(DAG, sdl, Chain);
6240     else
6241       Src = getValue(I.getArgOperand(0));   // The guard's value.
6242 
6243     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6244 
6245     int FI = FuncInfo.StaticAllocaMap[Slot];
6246     MFI.setStackProtectorIndex(FI);
6247 
6248     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6249 
6250     // Store the stack protector onto the stack.
6251     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6252                                                  DAG.getMachineFunction(), FI),
6253                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6254     setValue(&I, Res);
6255     DAG.setRoot(Res);
6256     return nullptr;
6257   }
6258   case Intrinsic::objectsize: {
6259     // If we don't know by now, we're never going to know.
6260     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6261 
6262     assert(CI && "Non-constant type in __builtin_object_size?");
6263 
6264     SDValue Arg = getValue(I.getCalledValue());
6265     EVT Ty = Arg.getValueType();
6266 
6267     if (CI->isZero())
6268       Res = DAG.getConstant(-1ULL, sdl, Ty);
6269     else
6270       Res = DAG.getConstant(0, sdl, Ty);
6271 
6272     setValue(&I, Res);
6273     return nullptr;
6274   }
6275 
6276   case Intrinsic::is_constant:
6277     // If this wasn't constant-folded away by now, then it's not a
6278     // constant.
6279     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6280     return nullptr;
6281 
6282   case Intrinsic::annotation:
6283   case Intrinsic::ptr_annotation:
6284   case Intrinsic::launder_invariant_group:
6285   case Intrinsic::strip_invariant_group:
6286     // Drop the intrinsic, but forward the value
6287     setValue(&I, getValue(I.getOperand(0)));
6288     return nullptr;
6289   case Intrinsic::assume:
6290   case Intrinsic::var_annotation:
6291   case Intrinsic::sideeffect:
6292     // Discard annotate attributes, assumptions, and artificial side-effects.
6293     return nullptr;
6294 
6295   case Intrinsic::codeview_annotation: {
6296     // Emit a label associated with this metadata.
6297     MachineFunction &MF = DAG.getMachineFunction();
6298     MCSymbol *Label =
6299         MF.getMMI().getContext().createTempSymbol("annotation", true);
6300     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6301     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6302     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6303     DAG.setRoot(Res);
6304     return nullptr;
6305   }
6306 
6307   case Intrinsic::init_trampoline: {
6308     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6309 
6310     SDValue Ops[6];
6311     Ops[0] = getRoot();
6312     Ops[1] = getValue(I.getArgOperand(0));
6313     Ops[2] = getValue(I.getArgOperand(1));
6314     Ops[3] = getValue(I.getArgOperand(2));
6315     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6316     Ops[5] = DAG.getSrcValue(F);
6317 
6318     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6319 
6320     DAG.setRoot(Res);
6321     return nullptr;
6322   }
6323   case Intrinsic::adjust_trampoline:
6324     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6325                              TLI.getPointerTy(DAG.getDataLayout()),
6326                              getValue(I.getArgOperand(0))));
6327     return nullptr;
6328   case Intrinsic::gcroot: {
6329     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6330            "only valid in functions with gc specified, enforced by Verifier");
6331     assert(GFI && "implied by previous");
6332     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6333     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6334 
6335     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6336     GFI->addStackRoot(FI->getIndex(), TypeMap);
6337     return nullptr;
6338   }
6339   case Intrinsic::gcread:
6340   case Intrinsic::gcwrite:
6341     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6342   case Intrinsic::flt_rounds:
6343     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6344     return nullptr;
6345 
6346   case Intrinsic::expect:
6347     // Just replace __builtin_expect(exp, c) with EXP.
6348     setValue(&I, getValue(I.getArgOperand(0)));
6349     return nullptr;
6350 
6351   case Intrinsic::debugtrap:
6352   case Intrinsic::trap: {
6353     StringRef TrapFuncName =
6354         I.getAttributes()
6355             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6356             .getValueAsString();
6357     if (TrapFuncName.empty()) {
6358       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6359         ISD::TRAP : ISD::DEBUGTRAP;
6360       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6361       return nullptr;
6362     }
6363     TargetLowering::ArgListTy Args;
6364 
6365     TargetLowering::CallLoweringInfo CLI(DAG);
6366     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6367         CallingConv::C, I.getType(),
6368         DAG.getExternalSymbol(TrapFuncName.data(),
6369                               TLI.getPointerTy(DAG.getDataLayout())),
6370         std::move(Args));
6371 
6372     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6373     DAG.setRoot(Result.second);
6374     return nullptr;
6375   }
6376 
6377   case Intrinsic::uadd_with_overflow:
6378   case Intrinsic::sadd_with_overflow:
6379   case Intrinsic::usub_with_overflow:
6380   case Intrinsic::ssub_with_overflow:
6381   case Intrinsic::umul_with_overflow:
6382   case Intrinsic::smul_with_overflow: {
6383     ISD::NodeType Op;
6384     switch (Intrinsic) {
6385     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6386     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6387     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6388     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6389     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6390     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6391     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6392     }
6393     SDValue Op1 = getValue(I.getArgOperand(0));
6394     SDValue Op2 = getValue(I.getArgOperand(1));
6395 
6396     EVT ResultVT = Op1.getValueType();
6397     EVT OverflowVT = MVT::i1;
6398     if (ResultVT.isVector())
6399       OverflowVT = EVT::getVectorVT(
6400           *Context, OverflowVT, ResultVT.getVectorNumElements());
6401 
6402     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6403     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6404     return nullptr;
6405   }
6406   case Intrinsic::prefetch: {
6407     SDValue Ops[5];
6408     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6409     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6410     Ops[0] = DAG.getRoot();
6411     Ops[1] = getValue(I.getArgOperand(0));
6412     Ops[2] = getValue(I.getArgOperand(1));
6413     Ops[3] = getValue(I.getArgOperand(2));
6414     Ops[4] = getValue(I.getArgOperand(3));
6415     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6416                                              DAG.getVTList(MVT::Other), Ops,
6417                                              EVT::getIntegerVT(*Context, 8),
6418                                              MachinePointerInfo(I.getArgOperand(0)),
6419                                              0, /* align */
6420                                              Flags);
6421 
6422     // Chain the prefetch in parallell with any pending loads, to stay out of
6423     // the way of later optimizations.
6424     PendingLoads.push_back(Result);
6425     Result = getRoot();
6426     DAG.setRoot(Result);
6427     return nullptr;
6428   }
6429   case Intrinsic::lifetime_start:
6430   case Intrinsic::lifetime_end: {
6431     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6432     // Stack coloring is not enabled in O0, discard region information.
6433     if (TM.getOptLevel() == CodeGenOpt::None)
6434       return nullptr;
6435 
6436     const int64_t ObjectSize =
6437         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6438     Value *const ObjectPtr = I.getArgOperand(1);
6439     SmallVector<Value *, 4> Allocas;
6440     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6441 
6442     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6443            E = Allocas.end(); Object != E; ++Object) {
6444       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6445 
6446       // Could not find an Alloca.
6447       if (!LifetimeObject)
6448         continue;
6449 
6450       // First check that the Alloca is static, otherwise it won't have a
6451       // valid frame index.
6452       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6453       if (SI == FuncInfo.StaticAllocaMap.end())
6454         return nullptr;
6455 
6456       const int FrameIndex = SI->second;
6457       int64_t Offset;
6458       if (GetPointerBaseWithConstantOffset(
6459               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6460         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6461       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6462                                 Offset);
6463       DAG.setRoot(Res);
6464     }
6465     return nullptr;
6466   }
6467   case Intrinsic::invariant_start:
6468     // Discard region information.
6469     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6470     return nullptr;
6471   case Intrinsic::invariant_end:
6472     // Discard region information.
6473     return nullptr;
6474   case Intrinsic::clear_cache:
6475     return TLI.getClearCacheBuiltinName();
6476   case Intrinsic::donothing:
6477     // ignore
6478     return nullptr;
6479   case Intrinsic::experimental_stackmap:
6480     visitStackmap(I);
6481     return nullptr;
6482   case Intrinsic::experimental_patchpoint_void:
6483   case Intrinsic::experimental_patchpoint_i64:
6484     visitPatchpoint(&I);
6485     return nullptr;
6486   case Intrinsic::experimental_gc_statepoint:
6487     LowerStatepoint(ImmutableStatepoint(&I));
6488     return nullptr;
6489   case Intrinsic::experimental_gc_result:
6490     visitGCResult(cast<GCResultInst>(I));
6491     return nullptr;
6492   case Intrinsic::experimental_gc_relocate:
6493     visitGCRelocate(cast<GCRelocateInst>(I));
6494     return nullptr;
6495   case Intrinsic::instrprof_increment:
6496     llvm_unreachable("instrprof failed to lower an increment");
6497   case Intrinsic::instrprof_value_profile:
6498     llvm_unreachable("instrprof failed to lower a value profiling call");
6499   case Intrinsic::localescape: {
6500     MachineFunction &MF = DAG.getMachineFunction();
6501     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6502 
6503     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6504     // is the same on all targets.
6505     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6506       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6507       if (isa<ConstantPointerNull>(Arg))
6508         continue; // Skip null pointers. They represent a hole in index space.
6509       AllocaInst *Slot = cast<AllocaInst>(Arg);
6510       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6511              "can only escape static allocas");
6512       int FI = FuncInfo.StaticAllocaMap[Slot];
6513       MCSymbol *FrameAllocSym =
6514           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6515               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6516       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6517               TII->get(TargetOpcode::LOCAL_ESCAPE))
6518           .addSym(FrameAllocSym)
6519           .addFrameIndex(FI);
6520     }
6521 
6522     return nullptr;
6523   }
6524 
6525   case Intrinsic::localrecover: {
6526     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6527     MachineFunction &MF = DAG.getMachineFunction();
6528     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6529 
6530     // Get the symbol that defines the frame offset.
6531     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6532     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6533     unsigned IdxVal =
6534         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6535     MCSymbol *FrameAllocSym =
6536         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6537             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6538 
6539     // Create a MCSymbol for the label to avoid any target lowering
6540     // that would make this PC relative.
6541     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6542     SDValue OffsetVal =
6543         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6544 
6545     // Add the offset to the FP.
6546     Value *FP = I.getArgOperand(1);
6547     SDValue FPVal = getValue(FP);
6548     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6549     setValue(&I, Add);
6550 
6551     return nullptr;
6552   }
6553 
6554   case Intrinsic::eh_exceptionpointer:
6555   case Intrinsic::eh_exceptioncode: {
6556     // Get the exception pointer vreg, copy from it, and resize it to fit.
6557     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6558     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6559     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6560     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6561     SDValue N =
6562         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6563     if (Intrinsic == Intrinsic::eh_exceptioncode)
6564       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6565     setValue(&I, N);
6566     return nullptr;
6567   }
6568   case Intrinsic::xray_customevent: {
6569     // Here we want to make sure that the intrinsic behaves as if it has a
6570     // specific calling convention, and only for x86_64.
6571     // FIXME: Support other platforms later.
6572     const auto &Triple = DAG.getTarget().getTargetTriple();
6573     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6574       return nullptr;
6575 
6576     SDLoc DL = getCurSDLoc();
6577     SmallVector<SDValue, 8> Ops;
6578 
6579     // We want to say that we always want the arguments in registers.
6580     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6581     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6582     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6583     SDValue Chain = getRoot();
6584     Ops.push_back(LogEntryVal);
6585     Ops.push_back(StrSizeVal);
6586     Ops.push_back(Chain);
6587 
6588     // We need to enforce the calling convention for the callsite, so that
6589     // argument ordering is enforced correctly, and that register allocation can
6590     // see that some registers may be assumed clobbered and have to preserve
6591     // them across calls to the intrinsic.
6592     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6593                                            DL, NodeTys, Ops);
6594     SDValue patchableNode = SDValue(MN, 0);
6595     DAG.setRoot(patchableNode);
6596     setValue(&I, patchableNode);
6597     return nullptr;
6598   }
6599   case Intrinsic::xray_typedevent: {
6600     // Here we want to make sure that the intrinsic behaves as if it has a
6601     // specific calling convention, and only for x86_64.
6602     // FIXME: Support other platforms later.
6603     const auto &Triple = DAG.getTarget().getTargetTriple();
6604     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6605       return nullptr;
6606 
6607     SDLoc DL = getCurSDLoc();
6608     SmallVector<SDValue, 8> Ops;
6609 
6610     // We want to say that we always want the arguments in registers.
6611     // It's unclear to me how manipulating the selection DAG here forces callers
6612     // to provide arguments in registers instead of on the stack.
6613     SDValue LogTypeId = getValue(I.getArgOperand(0));
6614     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6615     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6616     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6617     SDValue Chain = getRoot();
6618     Ops.push_back(LogTypeId);
6619     Ops.push_back(LogEntryVal);
6620     Ops.push_back(StrSizeVal);
6621     Ops.push_back(Chain);
6622 
6623     // We need to enforce the calling convention for the callsite, so that
6624     // argument ordering is enforced correctly, and that register allocation can
6625     // see that some registers may be assumed clobbered and have to preserve
6626     // them across calls to the intrinsic.
6627     MachineSDNode *MN = DAG.getMachineNode(
6628         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6629     SDValue patchableNode = SDValue(MN, 0);
6630     DAG.setRoot(patchableNode);
6631     setValue(&I, patchableNode);
6632     return nullptr;
6633   }
6634   case Intrinsic::experimental_deoptimize:
6635     LowerDeoptimizeCall(&I);
6636     return nullptr;
6637 
6638   case Intrinsic::experimental_vector_reduce_fadd:
6639   case Intrinsic::experimental_vector_reduce_fmul:
6640   case Intrinsic::experimental_vector_reduce_add:
6641   case Intrinsic::experimental_vector_reduce_mul:
6642   case Intrinsic::experimental_vector_reduce_and:
6643   case Intrinsic::experimental_vector_reduce_or:
6644   case Intrinsic::experimental_vector_reduce_xor:
6645   case Intrinsic::experimental_vector_reduce_smax:
6646   case Intrinsic::experimental_vector_reduce_smin:
6647   case Intrinsic::experimental_vector_reduce_umax:
6648   case Intrinsic::experimental_vector_reduce_umin:
6649   case Intrinsic::experimental_vector_reduce_fmax:
6650   case Intrinsic::experimental_vector_reduce_fmin:
6651     visitVectorReduce(I, Intrinsic);
6652     return nullptr;
6653 
6654   case Intrinsic::icall_branch_funnel: {
6655     SmallVector<SDValue, 16> Ops;
6656     Ops.push_back(DAG.getRoot());
6657     Ops.push_back(getValue(I.getArgOperand(0)));
6658 
6659     int64_t Offset;
6660     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6661         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6662     if (!Base)
6663       report_fatal_error(
6664           "llvm.icall.branch.funnel operand must be a GlobalValue");
6665     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6666 
6667     struct BranchFunnelTarget {
6668       int64_t Offset;
6669       SDValue Target;
6670     };
6671     SmallVector<BranchFunnelTarget, 8> Targets;
6672 
6673     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6674       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6675           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6676       if (ElemBase != Base)
6677         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6678                            "to the same GlobalValue");
6679 
6680       SDValue Val = getValue(I.getArgOperand(Op + 1));
6681       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6682       if (!GA)
6683         report_fatal_error(
6684             "llvm.icall.branch.funnel operand must be a GlobalValue");
6685       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6686                                      GA->getGlobal(), getCurSDLoc(),
6687                                      Val.getValueType(), GA->getOffset())});
6688     }
6689     llvm::sort(Targets,
6690                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6691                  return T1.Offset < T2.Offset;
6692                });
6693 
6694     for (auto &T : Targets) {
6695       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6696       Ops.push_back(T.Target);
6697     }
6698 
6699     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6700                                  getCurSDLoc(), MVT::Other, Ops),
6701               0);
6702     DAG.setRoot(N);
6703     setValue(&I, N);
6704     HasTailCall = true;
6705     return nullptr;
6706   }
6707 
6708   case Intrinsic::wasm_landingpad_index:
6709     // Information this intrinsic contained has been transferred to
6710     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6711     // delete it now.
6712     return nullptr;
6713   }
6714 }
6715 
6716 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6717     const ConstrainedFPIntrinsic &FPI) {
6718   SDLoc sdl = getCurSDLoc();
6719   unsigned Opcode;
6720   switch (FPI.getIntrinsicID()) {
6721   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6722   case Intrinsic::experimental_constrained_fadd:
6723     Opcode = ISD::STRICT_FADD;
6724     break;
6725   case Intrinsic::experimental_constrained_fsub:
6726     Opcode = ISD::STRICT_FSUB;
6727     break;
6728   case Intrinsic::experimental_constrained_fmul:
6729     Opcode = ISD::STRICT_FMUL;
6730     break;
6731   case Intrinsic::experimental_constrained_fdiv:
6732     Opcode = ISD::STRICT_FDIV;
6733     break;
6734   case Intrinsic::experimental_constrained_frem:
6735     Opcode = ISD::STRICT_FREM;
6736     break;
6737   case Intrinsic::experimental_constrained_fma:
6738     Opcode = ISD::STRICT_FMA;
6739     break;
6740   case Intrinsic::experimental_constrained_sqrt:
6741     Opcode = ISD::STRICT_FSQRT;
6742     break;
6743   case Intrinsic::experimental_constrained_pow:
6744     Opcode = ISD::STRICT_FPOW;
6745     break;
6746   case Intrinsic::experimental_constrained_powi:
6747     Opcode = ISD::STRICT_FPOWI;
6748     break;
6749   case Intrinsic::experimental_constrained_sin:
6750     Opcode = ISD::STRICT_FSIN;
6751     break;
6752   case Intrinsic::experimental_constrained_cos:
6753     Opcode = ISD::STRICT_FCOS;
6754     break;
6755   case Intrinsic::experimental_constrained_exp:
6756     Opcode = ISD::STRICT_FEXP;
6757     break;
6758   case Intrinsic::experimental_constrained_exp2:
6759     Opcode = ISD::STRICT_FEXP2;
6760     break;
6761   case Intrinsic::experimental_constrained_log:
6762     Opcode = ISD::STRICT_FLOG;
6763     break;
6764   case Intrinsic::experimental_constrained_log10:
6765     Opcode = ISD::STRICT_FLOG10;
6766     break;
6767   case Intrinsic::experimental_constrained_log2:
6768     Opcode = ISD::STRICT_FLOG2;
6769     break;
6770   case Intrinsic::experimental_constrained_rint:
6771     Opcode = ISD::STRICT_FRINT;
6772     break;
6773   case Intrinsic::experimental_constrained_nearbyint:
6774     Opcode = ISD::STRICT_FNEARBYINT;
6775     break;
6776   case Intrinsic::experimental_constrained_maxnum:
6777     Opcode = ISD::STRICT_FMAXNUM;
6778     break;
6779   case Intrinsic::experimental_constrained_minnum:
6780     Opcode = ISD::STRICT_FMINNUM;
6781     break;
6782   case Intrinsic::experimental_constrained_ceil:
6783     Opcode = ISD::STRICT_FCEIL;
6784     break;
6785   case Intrinsic::experimental_constrained_floor:
6786     Opcode = ISD::STRICT_FFLOOR;
6787     break;
6788   case Intrinsic::experimental_constrained_round:
6789     Opcode = ISD::STRICT_FROUND;
6790     break;
6791   case Intrinsic::experimental_constrained_trunc:
6792     Opcode = ISD::STRICT_FTRUNC;
6793     break;
6794   }
6795   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6796   SDValue Chain = getRoot();
6797   SmallVector<EVT, 4> ValueVTs;
6798   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6799   ValueVTs.push_back(MVT::Other); // Out chain
6800 
6801   SDVTList VTs = DAG.getVTList(ValueVTs);
6802   SDValue Result;
6803   if (FPI.isUnaryOp())
6804     Result = DAG.getNode(Opcode, sdl, VTs,
6805                          { Chain, getValue(FPI.getArgOperand(0)) });
6806   else if (FPI.isTernaryOp())
6807     Result = DAG.getNode(Opcode, sdl, VTs,
6808                          { Chain, getValue(FPI.getArgOperand(0)),
6809                                   getValue(FPI.getArgOperand(1)),
6810                                   getValue(FPI.getArgOperand(2)) });
6811   else
6812     Result = DAG.getNode(Opcode, sdl, VTs,
6813                          { Chain, getValue(FPI.getArgOperand(0)),
6814                            getValue(FPI.getArgOperand(1))  });
6815 
6816   assert(Result.getNode()->getNumValues() == 2);
6817   SDValue OutChain = Result.getValue(1);
6818   DAG.setRoot(OutChain);
6819   SDValue FPResult = Result.getValue(0);
6820   setValue(&FPI, FPResult);
6821 }
6822 
6823 std::pair<SDValue, SDValue>
6824 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6825                                     const BasicBlock *EHPadBB) {
6826   MachineFunction &MF = DAG.getMachineFunction();
6827   MachineModuleInfo &MMI = MF.getMMI();
6828   MCSymbol *BeginLabel = nullptr;
6829 
6830   if (EHPadBB) {
6831     // Insert a label before the invoke call to mark the try range.  This can be
6832     // used to detect deletion of the invoke via the MachineModuleInfo.
6833     BeginLabel = MMI.getContext().createTempSymbol();
6834 
6835     // For SjLj, keep track of which landing pads go with which invokes
6836     // so as to maintain the ordering of pads in the LSDA.
6837     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6838     if (CallSiteIndex) {
6839       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6840       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6841 
6842       // Now that the call site is handled, stop tracking it.
6843       MMI.setCurrentCallSite(0);
6844     }
6845 
6846     // Both PendingLoads and PendingExports must be flushed here;
6847     // this call might not return.
6848     (void)getRoot();
6849     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6850 
6851     CLI.setChain(getRoot());
6852   }
6853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6854   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6855 
6856   assert((CLI.IsTailCall || Result.second.getNode()) &&
6857          "Non-null chain expected with non-tail call!");
6858   assert((Result.second.getNode() || !Result.first.getNode()) &&
6859          "Null value expected with tail call!");
6860 
6861   if (!Result.second.getNode()) {
6862     // As a special case, a null chain means that a tail call has been emitted
6863     // and the DAG root is already updated.
6864     HasTailCall = true;
6865 
6866     // Since there's no actual continuation from this block, nothing can be
6867     // relying on us setting vregs for them.
6868     PendingExports.clear();
6869   } else {
6870     DAG.setRoot(Result.second);
6871   }
6872 
6873   if (EHPadBB) {
6874     // Insert a label at the end of the invoke call to mark the try range.  This
6875     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6876     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6877     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6878 
6879     // Inform MachineModuleInfo of range.
6880     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6881     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6882     // actually use outlined funclets and their LSDA info style.
6883     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6884       assert(CLI.CS);
6885       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6886       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6887                                 BeginLabel, EndLabel);
6888     } else if (!isScopedEHPersonality(Pers)) {
6889       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6890     }
6891   }
6892 
6893   return Result;
6894 }
6895 
6896 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6897                                       bool isTailCall,
6898                                       const BasicBlock *EHPadBB) {
6899   auto &DL = DAG.getDataLayout();
6900   FunctionType *FTy = CS.getFunctionType();
6901   Type *RetTy = CS.getType();
6902 
6903   TargetLowering::ArgListTy Args;
6904   Args.reserve(CS.arg_size());
6905 
6906   const Value *SwiftErrorVal = nullptr;
6907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6908 
6909   // We can't tail call inside a function with a swifterror argument. Lowering
6910   // does not support this yet. It would have to move into the swifterror
6911   // register before the call.
6912   auto *Caller = CS.getInstruction()->getParent()->getParent();
6913   if (TLI.supportSwiftError() &&
6914       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6915     isTailCall = false;
6916 
6917   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6918        i != e; ++i) {
6919     TargetLowering::ArgListEntry Entry;
6920     const Value *V = *i;
6921 
6922     // Skip empty types
6923     if (V->getType()->isEmptyTy())
6924       continue;
6925 
6926     SDValue ArgNode = getValue(V);
6927     Entry.Node = ArgNode; Entry.Ty = V->getType();
6928 
6929     Entry.setAttributes(&CS, i - CS.arg_begin());
6930 
6931     // Use swifterror virtual register as input to the call.
6932     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6933       SwiftErrorVal = V;
6934       // We find the virtual register for the actual swifterror argument.
6935       // Instead of using the Value, we use the virtual register instead.
6936       Entry.Node = DAG.getRegister(FuncInfo
6937                                        .getOrCreateSwiftErrorVRegUseAt(
6938                                            CS.getInstruction(), FuncInfo.MBB, V)
6939                                        .first,
6940                                    EVT(TLI.getPointerTy(DL)));
6941     }
6942 
6943     Args.push_back(Entry);
6944 
6945     // If we have an explicit sret argument that is an Instruction, (i.e., it
6946     // might point to function-local memory), we can't meaningfully tail-call.
6947     if (Entry.IsSRet && isa<Instruction>(V))
6948       isTailCall = false;
6949   }
6950 
6951   // Check if target-independent constraints permit a tail call here.
6952   // Target-dependent constraints are checked within TLI->LowerCallTo.
6953   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6954     isTailCall = false;
6955 
6956   // Disable tail calls if there is an swifterror argument. Targets have not
6957   // been updated to support tail calls.
6958   if (TLI.supportSwiftError() && SwiftErrorVal)
6959     isTailCall = false;
6960 
6961   TargetLowering::CallLoweringInfo CLI(DAG);
6962   CLI.setDebugLoc(getCurSDLoc())
6963       .setChain(getRoot())
6964       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6965       .setTailCall(isTailCall)
6966       .setConvergent(CS.isConvergent());
6967   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6968 
6969   if (Result.first.getNode()) {
6970     const Instruction *Inst = CS.getInstruction();
6971     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6972     setValue(Inst, Result.first);
6973   }
6974 
6975   // The last element of CLI.InVals has the SDValue for swifterror return.
6976   // Here we copy it to a virtual register and update SwiftErrorMap for
6977   // book-keeping.
6978   if (SwiftErrorVal && TLI.supportSwiftError()) {
6979     // Get the last element of InVals.
6980     SDValue Src = CLI.InVals.back();
6981     unsigned VReg; bool CreatedVReg;
6982     std::tie(VReg, CreatedVReg) =
6983         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6984     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6985     // We update the virtual register for the actual swifterror argument.
6986     if (CreatedVReg)
6987       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6988     DAG.setRoot(CopyNode);
6989   }
6990 }
6991 
6992 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6993                              SelectionDAGBuilder &Builder) {
6994   // Check to see if this load can be trivially constant folded, e.g. if the
6995   // input is from a string literal.
6996   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6997     // Cast pointer to the type we really want to load.
6998     Type *LoadTy =
6999         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7000     if (LoadVT.isVector())
7001       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7002 
7003     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7004                                          PointerType::getUnqual(LoadTy));
7005 
7006     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7007             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7008       return Builder.getValue(LoadCst);
7009   }
7010 
7011   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7012   // still constant memory, the input chain can be the entry node.
7013   SDValue Root;
7014   bool ConstantMemory = false;
7015 
7016   // Do not serialize (non-volatile) loads of constant memory with anything.
7017   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7018     Root = Builder.DAG.getEntryNode();
7019     ConstantMemory = true;
7020   } else {
7021     // Do not serialize non-volatile loads against each other.
7022     Root = Builder.DAG.getRoot();
7023   }
7024 
7025   SDValue Ptr = Builder.getValue(PtrVal);
7026   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7027                                         Ptr, MachinePointerInfo(PtrVal),
7028                                         /* Alignment = */ 1);
7029 
7030   if (!ConstantMemory)
7031     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7032   return LoadVal;
7033 }
7034 
7035 /// Record the value for an instruction that produces an integer result,
7036 /// converting the type where necessary.
7037 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7038                                                   SDValue Value,
7039                                                   bool IsSigned) {
7040   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7041                                                     I.getType(), true);
7042   if (IsSigned)
7043     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7044   else
7045     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7046   setValue(&I, Value);
7047 }
7048 
7049 /// See if we can lower a memcmp call into an optimized form. If so, return
7050 /// true and lower it. Otherwise return false, and it will be lowered like a
7051 /// normal call.
7052 /// The caller already checked that \p I calls the appropriate LibFunc with a
7053 /// correct prototype.
7054 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7055   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7056   const Value *Size = I.getArgOperand(2);
7057   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7058   if (CSize && CSize->getZExtValue() == 0) {
7059     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7060                                                           I.getType(), true);
7061     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7062     return true;
7063   }
7064 
7065   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7066   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7067       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7068       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7069   if (Res.first.getNode()) {
7070     processIntegerCallValue(I, Res.first, true);
7071     PendingLoads.push_back(Res.second);
7072     return true;
7073   }
7074 
7075   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7076   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7077   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7078     return false;
7079 
7080   // If the target has a fast compare for the given size, it will return a
7081   // preferred load type for that size. Require that the load VT is legal and
7082   // that the target supports unaligned loads of that type. Otherwise, return
7083   // INVALID.
7084   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7085     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7086     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7087     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7088       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7089       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7090       // TODO: Check alignment of src and dest ptrs.
7091       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7092       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7093       if (!TLI.isTypeLegal(LVT) ||
7094           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7095           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7096         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7097     }
7098 
7099     return LVT;
7100   };
7101 
7102   // This turns into unaligned loads. We only do this if the target natively
7103   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7104   // we'll only produce a small number of byte loads.
7105   MVT LoadVT;
7106   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7107   switch (NumBitsToCompare) {
7108   default:
7109     return false;
7110   case 16:
7111     LoadVT = MVT::i16;
7112     break;
7113   case 32:
7114     LoadVT = MVT::i32;
7115     break;
7116   case 64:
7117   case 128:
7118   case 256:
7119     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7120     break;
7121   }
7122 
7123   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7124     return false;
7125 
7126   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7127   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7128 
7129   // Bitcast to a wide integer type if the loads are vectors.
7130   if (LoadVT.isVector()) {
7131     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7132     LoadL = DAG.getBitcast(CmpVT, LoadL);
7133     LoadR = DAG.getBitcast(CmpVT, LoadR);
7134   }
7135 
7136   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7137   processIntegerCallValue(I, Cmp, false);
7138   return true;
7139 }
7140 
7141 /// See if we can lower a memchr call into an optimized form. If so, return
7142 /// true and lower it. Otherwise return false, and it will be lowered like a
7143 /// normal call.
7144 /// The caller already checked that \p I calls the appropriate LibFunc with a
7145 /// correct prototype.
7146 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7147   const Value *Src = I.getArgOperand(0);
7148   const Value *Char = I.getArgOperand(1);
7149   const Value *Length = I.getArgOperand(2);
7150 
7151   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7152   std::pair<SDValue, SDValue> Res =
7153     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7154                                 getValue(Src), getValue(Char), getValue(Length),
7155                                 MachinePointerInfo(Src));
7156   if (Res.first.getNode()) {
7157     setValue(&I, Res.first);
7158     PendingLoads.push_back(Res.second);
7159     return true;
7160   }
7161 
7162   return false;
7163 }
7164 
7165 /// See if we can lower a mempcpy call into an optimized form. If so, return
7166 /// true and lower it. Otherwise return false, and it will be lowered like a
7167 /// normal call.
7168 /// The caller already checked that \p I calls the appropriate LibFunc with a
7169 /// correct prototype.
7170 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7171   SDValue Dst = getValue(I.getArgOperand(0));
7172   SDValue Src = getValue(I.getArgOperand(1));
7173   SDValue Size = getValue(I.getArgOperand(2));
7174 
7175   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7176   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7177   unsigned Align = std::min(DstAlign, SrcAlign);
7178   if (Align == 0) // Alignment of one or both could not be inferred.
7179     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7180 
7181   bool isVol = false;
7182   SDLoc sdl = getCurSDLoc();
7183 
7184   // In the mempcpy context we need to pass in a false value for isTailCall
7185   // because the return pointer needs to be adjusted by the size of
7186   // the copied memory.
7187   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7188                              false, /*isTailCall=*/false,
7189                              MachinePointerInfo(I.getArgOperand(0)),
7190                              MachinePointerInfo(I.getArgOperand(1)));
7191   assert(MC.getNode() != nullptr &&
7192          "** memcpy should not be lowered as TailCall in mempcpy context **");
7193   DAG.setRoot(MC);
7194 
7195   // Check if Size needs to be truncated or extended.
7196   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7197 
7198   // Adjust return pointer to point just past the last dst byte.
7199   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7200                                     Dst, Size);
7201   setValue(&I, DstPlusSize);
7202   return true;
7203 }
7204 
7205 /// See if we can lower a strcpy call into an optimized form.  If so, return
7206 /// true and lower it, otherwise return false and it will be lowered like a
7207 /// normal call.
7208 /// The caller already checked that \p I calls the appropriate LibFunc with a
7209 /// correct prototype.
7210 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7211   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7212 
7213   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7214   std::pair<SDValue, SDValue> Res =
7215     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7216                                 getValue(Arg0), getValue(Arg1),
7217                                 MachinePointerInfo(Arg0),
7218                                 MachinePointerInfo(Arg1), isStpcpy);
7219   if (Res.first.getNode()) {
7220     setValue(&I, Res.first);
7221     DAG.setRoot(Res.second);
7222     return true;
7223   }
7224 
7225   return false;
7226 }
7227 
7228 /// See if we can lower a strcmp call into an optimized form.  If so, return
7229 /// true and lower it, otherwise return false and it will be lowered like a
7230 /// normal call.
7231 /// The caller already checked that \p I calls the appropriate LibFunc with a
7232 /// correct prototype.
7233 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7234   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7235 
7236   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7237   std::pair<SDValue, SDValue> Res =
7238     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7239                                 getValue(Arg0), getValue(Arg1),
7240                                 MachinePointerInfo(Arg0),
7241                                 MachinePointerInfo(Arg1));
7242   if (Res.first.getNode()) {
7243     processIntegerCallValue(I, Res.first, true);
7244     PendingLoads.push_back(Res.second);
7245     return true;
7246   }
7247 
7248   return false;
7249 }
7250 
7251 /// See if we can lower a strlen call into an optimized form.  If so, return
7252 /// true and lower it, otherwise return false and it will be lowered like a
7253 /// normal call.
7254 /// The caller already checked that \p I calls the appropriate LibFunc with a
7255 /// correct prototype.
7256 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7257   const Value *Arg0 = I.getArgOperand(0);
7258 
7259   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7260   std::pair<SDValue, SDValue> Res =
7261     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7262                                 getValue(Arg0), MachinePointerInfo(Arg0));
7263   if (Res.first.getNode()) {
7264     processIntegerCallValue(I, Res.first, false);
7265     PendingLoads.push_back(Res.second);
7266     return true;
7267   }
7268 
7269   return false;
7270 }
7271 
7272 /// See if we can lower a strnlen call into an optimized form.  If so, return
7273 /// true and lower it, otherwise return false and it will be lowered like a
7274 /// normal call.
7275 /// The caller already checked that \p I calls the appropriate LibFunc with a
7276 /// correct prototype.
7277 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7278   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7279 
7280   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7281   std::pair<SDValue, SDValue> Res =
7282     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7283                                  getValue(Arg0), getValue(Arg1),
7284                                  MachinePointerInfo(Arg0));
7285   if (Res.first.getNode()) {
7286     processIntegerCallValue(I, Res.first, false);
7287     PendingLoads.push_back(Res.second);
7288     return true;
7289   }
7290 
7291   return false;
7292 }
7293 
7294 /// See if we can lower a unary floating-point operation into an SDNode with
7295 /// the specified Opcode.  If so, return true and lower it, otherwise return
7296 /// false and it will be lowered like a normal call.
7297 /// The caller already checked that \p I calls the appropriate LibFunc with a
7298 /// correct prototype.
7299 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7300                                               unsigned Opcode) {
7301   // We already checked this call's prototype; verify it doesn't modify errno.
7302   if (!I.onlyReadsMemory())
7303     return false;
7304 
7305   SDValue Tmp = getValue(I.getArgOperand(0));
7306   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7307   return true;
7308 }
7309 
7310 /// See if we can lower a binary floating-point operation into an SDNode with
7311 /// the specified Opcode. If so, return true and lower it. Otherwise return
7312 /// false, and it will be lowered like a normal call.
7313 /// The caller already checked that \p I calls the appropriate LibFunc with a
7314 /// correct prototype.
7315 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7316                                                unsigned Opcode) {
7317   // We already checked this call's prototype; verify it doesn't modify errno.
7318   if (!I.onlyReadsMemory())
7319     return false;
7320 
7321   SDValue Tmp0 = getValue(I.getArgOperand(0));
7322   SDValue Tmp1 = getValue(I.getArgOperand(1));
7323   EVT VT = Tmp0.getValueType();
7324   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7325   return true;
7326 }
7327 
7328 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7329   // Handle inline assembly differently.
7330   if (isa<InlineAsm>(I.getCalledValue())) {
7331     visitInlineAsm(&I);
7332     return;
7333   }
7334 
7335   const char *RenameFn = nullptr;
7336   if (Function *F = I.getCalledFunction()) {
7337     if (F->isDeclaration()) {
7338       // Is this an LLVM intrinsic or a target-specific intrinsic?
7339       unsigned IID = F->getIntrinsicID();
7340       if (!IID)
7341         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7342           IID = II->getIntrinsicID(F);
7343 
7344       if (IID) {
7345         RenameFn = visitIntrinsicCall(I, IID);
7346         if (!RenameFn)
7347           return;
7348       }
7349     }
7350 
7351     // Check for well-known libc/libm calls.  If the function is internal, it
7352     // can't be a library call.  Don't do the check if marked as nobuiltin for
7353     // some reason or the call site requires strict floating point semantics.
7354     LibFunc Func;
7355     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7356         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7357         LibInfo->hasOptimizedCodeGen(Func)) {
7358       switch (Func) {
7359       default: break;
7360       case LibFunc_copysign:
7361       case LibFunc_copysignf:
7362       case LibFunc_copysignl:
7363         // We already checked this call's prototype; verify it doesn't modify
7364         // errno.
7365         if (I.onlyReadsMemory()) {
7366           SDValue LHS = getValue(I.getArgOperand(0));
7367           SDValue RHS = getValue(I.getArgOperand(1));
7368           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7369                                    LHS.getValueType(), LHS, RHS));
7370           return;
7371         }
7372         break;
7373       case LibFunc_fabs:
7374       case LibFunc_fabsf:
7375       case LibFunc_fabsl:
7376         if (visitUnaryFloatCall(I, ISD::FABS))
7377           return;
7378         break;
7379       case LibFunc_fmin:
7380       case LibFunc_fminf:
7381       case LibFunc_fminl:
7382         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7383           return;
7384         break;
7385       case LibFunc_fmax:
7386       case LibFunc_fmaxf:
7387       case LibFunc_fmaxl:
7388         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7389           return;
7390         break;
7391       case LibFunc_sin:
7392       case LibFunc_sinf:
7393       case LibFunc_sinl:
7394         if (visitUnaryFloatCall(I, ISD::FSIN))
7395           return;
7396         break;
7397       case LibFunc_cos:
7398       case LibFunc_cosf:
7399       case LibFunc_cosl:
7400         if (visitUnaryFloatCall(I, ISD::FCOS))
7401           return;
7402         break;
7403       case LibFunc_sqrt:
7404       case LibFunc_sqrtf:
7405       case LibFunc_sqrtl:
7406       case LibFunc_sqrt_finite:
7407       case LibFunc_sqrtf_finite:
7408       case LibFunc_sqrtl_finite:
7409         if (visitUnaryFloatCall(I, ISD::FSQRT))
7410           return;
7411         break;
7412       case LibFunc_floor:
7413       case LibFunc_floorf:
7414       case LibFunc_floorl:
7415         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7416           return;
7417         break;
7418       case LibFunc_nearbyint:
7419       case LibFunc_nearbyintf:
7420       case LibFunc_nearbyintl:
7421         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7422           return;
7423         break;
7424       case LibFunc_ceil:
7425       case LibFunc_ceilf:
7426       case LibFunc_ceill:
7427         if (visitUnaryFloatCall(I, ISD::FCEIL))
7428           return;
7429         break;
7430       case LibFunc_rint:
7431       case LibFunc_rintf:
7432       case LibFunc_rintl:
7433         if (visitUnaryFloatCall(I, ISD::FRINT))
7434           return;
7435         break;
7436       case LibFunc_round:
7437       case LibFunc_roundf:
7438       case LibFunc_roundl:
7439         if (visitUnaryFloatCall(I, ISD::FROUND))
7440           return;
7441         break;
7442       case LibFunc_trunc:
7443       case LibFunc_truncf:
7444       case LibFunc_truncl:
7445         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7446           return;
7447         break;
7448       case LibFunc_log2:
7449       case LibFunc_log2f:
7450       case LibFunc_log2l:
7451         if (visitUnaryFloatCall(I, ISD::FLOG2))
7452           return;
7453         break;
7454       case LibFunc_exp2:
7455       case LibFunc_exp2f:
7456       case LibFunc_exp2l:
7457         if (visitUnaryFloatCall(I, ISD::FEXP2))
7458           return;
7459         break;
7460       case LibFunc_memcmp:
7461         if (visitMemCmpCall(I))
7462           return;
7463         break;
7464       case LibFunc_mempcpy:
7465         if (visitMemPCpyCall(I))
7466           return;
7467         break;
7468       case LibFunc_memchr:
7469         if (visitMemChrCall(I))
7470           return;
7471         break;
7472       case LibFunc_strcpy:
7473         if (visitStrCpyCall(I, false))
7474           return;
7475         break;
7476       case LibFunc_stpcpy:
7477         if (visitStrCpyCall(I, true))
7478           return;
7479         break;
7480       case LibFunc_strcmp:
7481         if (visitStrCmpCall(I))
7482           return;
7483         break;
7484       case LibFunc_strlen:
7485         if (visitStrLenCall(I))
7486           return;
7487         break;
7488       case LibFunc_strnlen:
7489         if (visitStrNLenCall(I))
7490           return;
7491         break;
7492       }
7493     }
7494   }
7495 
7496   SDValue Callee;
7497   if (!RenameFn)
7498     Callee = getValue(I.getCalledValue());
7499   else
7500     Callee = DAG.getExternalSymbol(
7501         RenameFn,
7502         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7503 
7504   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7505   // have to do anything here to lower funclet bundles.
7506   assert(!I.hasOperandBundlesOtherThan(
7507              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7508          "Cannot lower calls with arbitrary operand bundles!");
7509 
7510   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7511     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7512   else
7513     // Check if we can potentially perform a tail call. More detailed checking
7514     // is be done within LowerCallTo, after more information about the call is
7515     // known.
7516     LowerCallTo(&I, Callee, I.isTailCall());
7517 }
7518 
7519 namespace {
7520 
7521 /// AsmOperandInfo - This contains information for each constraint that we are
7522 /// lowering.
7523 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7524 public:
7525   /// CallOperand - If this is the result output operand or a clobber
7526   /// this is null, otherwise it is the incoming operand to the CallInst.
7527   /// This gets modified as the asm is processed.
7528   SDValue CallOperand;
7529 
7530   /// AssignedRegs - If this is a register or register class operand, this
7531   /// contains the set of register corresponding to the operand.
7532   RegsForValue AssignedRegs;
7533 
7534   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7535     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7536   }
7537 
7538   /// Whether or not this operand accesses memory
7539   bool hasMemory(const TargetLowering &TLI) const {
7540     // Indirect operand accesses access memory.
7541     if (isIndirect)
7542       return true;
7543 
7544     for (const auto &Code : Codes)
7545       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7546         return true;
7547 
7548     return false;
7549   }
7550 
7551   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7552   /// corresponds to.  If there is no Value* for this operand, it returns
7553   /// MVT::Other.
7554   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7555                            const DataLayout &DL) const {
7556     if (!CallOperandVal) return MVT::Other;
7557 
7558     if (isa<BasicBlock>(CallOperandVal))
7559       return TLI.getPointerTy(DL);
7560 
7561     llvm::Type *OpTy = CallOperandVal->getType();
7562 
7563     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7564     // If this is an indirect operand, the operand is a pointer to the
7565     // accessed type.
7566     if (isIndirect) {
7567       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7568       if (!PtrTy)
7569         report_fatal_error("Indirect operand for inline asm not a pointer!");
7570       OpTy = PtrTy->getElementType();
7571     }
7572 
7573     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7574     if (StructType *STy = dyn_cast<StructType>(OpTy))
7575       if (STy->getNumElements() == 1)
7576         OpTy = STy->getElementType(0);
7577 
7578     // If OpTy is not a single value, it may be a struct/union that we
7579     // can tile with integers.
7580     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7581       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7582       switch (BitSize) {
7583       default: break;
7584       case 1:
7585       case 8:
7586       case 16:
7587       case 32:
7588       case 64:
7589       case 128:
7590         OpTy = IntegerType::get(Context, BitSize);
7591         break;
7592       }
7593     }
7594 
7595     return TLI.getValueType(DL, OpTy, true);
7596   }
7597 };
7598 
7599 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7600 
7601 } // end anonymous namespace
7602 
7603 /// Make sure that the output operand \p OpInfo and its corresponding input
7604 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7605 /// out).
7606 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7607                                SDISelAsmOperandInfo &MatchingOpInfo,
7608                                SelectionDAG &DAG) {
7609   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7610     return;
7611 
7612   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7613   const auto &TLI = DAG.getTargetLoweringInfo();
7614 
7615   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7616       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7617                                        OpInfo.ConstraintVT);
7618   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7619       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7620                                        MatchingOpInfo.ConstraintVT);
7621   if ((OpInfo.ConstraintVT.isInteger() !=
7622        MatchingOpInfo.ConstraintVT.isInteger()) ||
7623       (MatchRC.second != InputRC.second)) {
7624     // FIXME: error out in a more elegant fashion
7625     report_fatal_error("Unsupported asm: input constraint"
7626                        " with a matching output constraint of"
7627                        " incompatible type!");
7628   }
7629   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7630 }
7631 
7632 /// Get a direct memory input to behave well as an indirect operand.
7633 /// This may introduce stores, hence the need for a \p Chain.
7634 /// \return The (possibly updated) chain.
7635 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7636                                         SDISelAsmOperandInfo &OpInfo,
7637                                         SelectionDAG &DAG) {
7638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7639 
7640   // If we don't have an indirect input, put it in the constpool if we can,
7641   // otherwise spill it to a stack slot.
7642   // TODO: This isn't quite right. We need to handle these according to
7643   // the addressing mode that the constraint wants. Also, this may take
7644   // an additional register for the computation and we don't want that
7645   // either.
7646 
7647   // If the operand is a float, integer, or vector constant, spill to a
7648   // constant pool entry to get its address.
7649   const Value *OpVal = OpInfo.CallOperandVal;
7650   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7651       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7652     OpInfo.CallOperand = DAG.getConstantPool(
7653         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7654     return Chain;
7655   }
7656 
7657   // Otherwise, create a stack slot and emit a store to it before the asm.
7658   Type *Ty = OpVal->getType();
7659   auto &DL = DAG.getDataLayout();
7660   uint64_t TySize = DL.getTypeAllocSize(Ty);
7661   unsigned Align = DL.getPrefTypeAlignment(Ty);
7662   MachineFunction &MF = DAG.getMachineFunction();
7663   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7664   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7665   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7666                        MachinePointerInfo::getFixedStack(MF, SSFI));
7667   OpInfo.CallOperand = StackSlot;
7668 
7669   return Chain;
7670 }
7671 
7672 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7673 /// specified operand.  We prefer to assign virtual registers, to allow the
7674 /// register allocator to handle the assignment process.  However, if the asm
7675 /// uses features that we can't model on machineinstrs, we have SDISel do the
7676 /// allocation.  This produces generally horrible, but correct, code.
7677 ///
7678 ///   OpInfo describes the operand
7679 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7680 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7681                                  SDISelAsmOperandInfo &OpInfo,
7682                                  SDISelAsmOperandInfo &RefOpInfo) {
7683   LLVMContext &Context = *DAG.getContext();
7684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7685 
7686   MachineFunction &MF = DAG.getMachineFunction();
7687   SmallVector<unsigned, 4> Regs;
7688   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7689 
7690   // No work to do for memory operations.
7691   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7692     return;
7693 
7694   // If this is a constraint for a single physreg, or a constraint for a
7695   // register class, find it.
7696   unsigned AssignedReg;
7697   const TargetRegisterClass *RC;
7698   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7699       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7700   // RC is unset only on failure. Return immediately.
7701   if (!RC)
7702     return;
7703 
7704   // Get the actual register value type.  This is important, because the user
7705   // may have asked for (e.g.) the AX register in i32 type.  We need to
7706   // remember that AX is actually i16 to get the right extension.
7707   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7708 
7709   if (OpInfo.ConstraintVT != MVT::Other) {
7710     // If this is an FP operand in an integer register (or visa versa), or more
7711     // generally if the operand value disagrees with the register class we plan
7712     // to stick it in, fix the operand type.
7713     //
7714     // If this is an input value, the bitcast to the new type is done now.
7715     // Bitcast for output value is done at the end of visitInlineAsm().
7716     if ((OpInfo.Type == InlineAsm::isOutput ||
7717          OpInfo.Type == InlineAsm::isInput) &&
7718         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7719       // Try to convert to the first EVT that the reg class contains.  If the
7720       // types are identical size, use a bitcast to convert (e.g. two differing
7721       // vector types).  Note: output bitcast is done at the end of
7722       // visitInlineAsm().
7723       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7724         // Exclude indirect inputs while they are unsupported because the code
7725         // to perform the load is missing and thus OpInfo.CallOperand still
7726         // refers to the input address rather than the pointed-to value.
7727         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7728           OpInfo.CallOperand =
7729               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7730         OpInfo.ConstraintVT = RegVT;
7731         // If the operand is an FP value and we want it in integer registers,
7732         // use the corresponding integer type. This turns an f64 value into
7733         // i64, which can be passed with two i32 values on a 32-bit machine.
7734       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7735         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7736         if (OpInfo.Type == InlineAsm::isInput)
7737           OpInfo.CallOperand =
7738               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7739         OpInfo.ConstraintVT = VT;
7740       }
7741     }
7742   }
7743 
7744   // No need to allocate a matching input constraint since the constraint it's
7745   // matching to has already been allocated.
7746   if (OpInfo.isMatchingInputConstraint())
7747     return;
7748 
7749   EVT ValueVT = OpInfo.ConstraintVT;
7750   if (OpInfo.ConstraintVT == MVT::Other)
7751     ValueVT = RegVT;
7752 
7753   // Initialize NumRegs.
7754   unsigned NumRegs = 1;
7755   if (OpInfo.ConstraintVT != MVT::Other)
7756     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7757 
7758   // If this is a constraint for a specific physical register, like {r17},
7759   // assign it now.
7760 
7761   // If this associated to a specific register, initialize iterator to correct
7762   // place. If virtual, make sure we have enough registers
7763 
7764   // Initialize iterator if necessary
7765   TargetRegisterClass::iterator I = RC->begin();
7766   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7767 
7768   // Do not check for single registers.
7769   if (AssignedReg) {
7770       for (; *I != AssignedReg; ++I)
7771         assert(I != RC->end() && "AssignedReg should be member of RC");
7772   }
7773 
7774   for (; NumRegs; --NumRegs, ++I) {
7775     assert(I != RC->end() && "Ran out of registers to allocate!");
7776     auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7777     Regs.push_back(R);
7778   }
7779 
7780   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7781 }
7782 
7783 static unsigned
7784 findMatchingInlineAsmOperand(unsigned OperandNo,
7785                              const std::vector<SDValue> &AsmNodeOperands) {
7786   // Scan until we find the definition we already emitted of this operand.
7787   unsigned CurOp = InlineAsm::Op_FirstOperand;
7788   for (; OperandNo; --OperandNo) {
7789     // Advance to the next operand.
7790     unsigned OpFlag =
7791         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7792     assert((InlineAsm::isRegDefKind(OpFlag) ||
7793             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7794             InlineAsm::isMemKind(OpFlag)) &&
7795            "Skipped past definitions?");
7796     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7797   }
7798   return CurOp;
7799 }
7800 
7801 namespace {
7802 
7803 class ExtraFlags {
7804   unsigned Flags = 0;
7805 
7806 public:
7807   explicit ExtraFlags(ImmutableCallSite CS) {
7808     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7809     if (IA->hasSideEffects())
7810       Flags |= InlineAsm::Extra_HasSideEffects;
7811     if (IA->isAlignStack())
7812       Flags |= InlineAsm::Extra_IsAlignStack;
7813     if (CS.isConvergent())
7814       Flags |= InlineAsm::Extra_IsConvergent;
7815     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7816   }
7817 
7818   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7819     // Ideally, we would only check against memory constraints.  However, the
7820     // meaning of an Other constraint can be target-specific and we can't easily
7821     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7822     // for Other constraints as well.
7823     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7824         OpInfo.ConstraintType == TargetLowering::C_Other) {
7825       if (OpInfo.Type == InlineAsm::isInput)
7826         Flags |= InlineAsm::Extra_MayLoad;
7827       else if (OpInfo.Type == InlineAsm::isOutput)
7828         Flags |= InlineAsm::Extra_MayStore;
7829       else if (OpInfo.Type == InlineAsm::isClobber)
7830         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7831     }
7832   }
7833 
7834   unsigned get() const { return Flags; }
7835 };
7836 
7837 } // end anonymous namespace
7838 
7839 /// visitInlineAsm - Handle a call to an InlineAsm object.
7840 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7841   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7842 
7843   /// ConstraintOperands - Information about all of the constraints.
7844   SDISelAsmOperandInfoVector ConstraintOperands;
7845 
7846   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7847   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7848       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7849 
7850   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7851   // AsmDialect, MayLoad, MayStore).
7852   bool HasSideEffect = IA->hasSideEffects();
7853   ExtraFlags ExtraInfo(CS);
7854 
7855   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7856   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7857   for (auto &T : TargetConstraints) {
7858     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7859     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7860 
7861     // Compute the value type for each operand.
7862     if (OpInfo.Type == InlineAsm::isInput ||
7863         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7864       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7865 
7866       // Process the call argument. BasicBlocks are labels, currently appearing
7867       // only in asm's.
7868       const Instruction *I = CS.getInstruction();
7869       if (isa<CallBrInst>(I) &&
7870           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7871                           cast<CallBrInst>(I)->getNumIndirectDests())) {
7872         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7873         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7874         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7875       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7876         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7877       } else {
7878         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7879       }
7880 
7881       OpInfo.ConstraintVT =
7882           OpInfo
7883               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7884               .getSimpleVT();
7885     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7886       // The return value of the call is this value.  As such, there is no
7887       // corresponding argument.
7888       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7889       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7890         OpInfo.ConstraintVT = TLI.getSimpleValueType(
7891             DAG.getDataLayout(), STy->getElementType(ResNo));
7892       } else {
7893         assert(ResNo == 0 && "Asm only has one result!");
7894         OpInfo.ConstraintVT =
7895             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7896       }
7897       ++ResNo;
7898     } else {
7899       OpInfo.ConstraintVT = MVT::Other;
7900     }
7901 
7902     if (!HasSideEffect)
7903       HasSideEffect = OpInfo.hasMemory(TLI);
7904 
7905     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7906     // FIXME: Could we compute this on OpInfo rather than T?
7907 
7908     // Compute the constraint code and ConstraintType to use.
7909     TLI.ComputeConstraintToUse(T, SDValue());
7910 
7911     ExtraInfo.update(T);
7912   }
7913 
7914   // We won't need to flush pending loads if this asm doesn't touch
7915   // memory and is nonvolatile.
7916   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7917 
7918   // Second pass over the constraints: compute which constraint option to use.
7919   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7920     // If this is an output operand with a matching input operand, look up the
7921     // matching input. If their types mismatch, e.g. one is an integer, the
7922     // other is floating point, or their sizes are different, flag it as an
7923     // error.
7924     if (OpInfo.hasMatchingInput()) {
7925       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7926       patchMatchingInput(OpInfo, Input, DAG);
7927     }
7928 
7929     // Compute the constraint code and ConstraintType to use.
7930     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7931 
7932     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7933         OpInfo.Type == InlineAsm::isClobber)
7934       continue;
7935 
7936     // If this is a memory input, and if the operand is not indirect, do what we
7937     // need to provide an address for the memory input.
7938     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7939         !OpInfo.isIndirect) {
7940       assert((OpInfo.isMultipleAlternative ||
7941               (OpInfo.Type == InlineAsm::isInput)) &&
7942              "Can only indirectify direct input operands!");
7943 
7944       // Memory operands really want the address of the value.
7945       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7946 
7947       // There is no longer a Value* corresponding to this operand.
7948       OpInfo.CallOperandVal = nullptr;
7949 
7950       // It is now an indirect operand.
7951       OpInfo.isIndirect = true;
7952     }
7953 
7954   }
7955 
7956   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7957   std::vector<SDValue> AsmNodeOperands;
7958   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7959   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7960       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7961 
7962   // If we have a !srcloc metadata node associated with it, we want to attach
7963   // this to the ultimately generated inline asm machineinstr.  To do this, we
7964   // pass in the third operand as this (potentially null) inline asm MDNode.
7965   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7966   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7967 
7968   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7969   // bits as operand 3.
7970   AsmNodeOperands.push_back(DAG.getTargetConstant(
7971       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7972 
7973   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7974   // this, assign virtual and physical registers for inputs and otput.
7975   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7976     // Assign Registers.
7977     SDISelAsmOperandInfo &RefOpInfo =
7978         OpInfo.isMatchingInputConstraint()
7979             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7980             : OpInfo;
7981     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7982 
7983     switch (OpInfo.Type) {
7984     case InlineAsm::isOutput:
7985       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7986           (OpInfo.ConstraintType == TargetLowering::C_Other &&
7987            OpInfo.isIndirect)) {
7988         unsigned ConstraintID =
7989             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7990         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7991                "Failed to convert memory constraint code to constraint id.");
7992 
7993         // Add information to the INLINEASM node to know about this output.
7994         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7995         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7996         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7997                                                         MVT::i32));
7998         AsmNodeOperands.push_back(OpInfo.CallOperand);
7999         break;
8000       } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8001                   !OpInfo.isIndirect) ||
8002                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8003                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8004         // Otherwise, this outputs to a register (directly for C_Register /
8005         // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8006         // register that we can use.
8007         if (OpInfo.AssignedRegs.Regs.empty()) {
8008           emitInlineAsmError(
8009               CS, "couldn't allocate output register for constraint '" +
8010                       Twine(OpInfo.ConstraintCode) + "'");
8011           return;
8012         }
8013 
8014         // Add information to the INLINEASM node to know that this register is
8015         // set.
8016         OpInfo.AssignedRegs.AddInlineAsmOperands(
8017             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8018                                   : InlineAsm::Kind_RegDef,
8019             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8020       }
8021       break;
8022 
8023     case InlineAsm::isInput: {
8024       SDValue InOperandVal = OpInfo.CallOperand;
8025 
8026       if (OpInfo.isMatchingInputConstraint()) {
8027         // If this is required to match an output register we have already set,
8028         // just use its register.
8029         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8030                                                   AsmNodeOperands);
8031         unsigned OpFlag =
8032           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8033         if (InlineAsm::isRegDefKind(OpFlag) ||
8034             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8035           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8036           if (OpInfo.isIndirect) {
8037             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8038             emitInlineAsmError(CS, "inline asm not supported yet:"
8039                                    " don't know how to handle tied "
8040                                    "indirect register inputs");
8041             return;
8042           }
8043 
8044           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8045           SmallVector<unsigned, 4> Regs;
8046 
8047           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8048             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8049             MachineRegisterInfo &RegInfo =
8050                 DAG.getMachineFunction().getRegInfo();
8051             for (unsigned i = 0; i != NumRegs; ++i)
8052               Regs.push_back(RegInfo.createVirtualRegister(RC));
8053           } else {
8054             emitInlineAsmError(CS, "inline asm error: This value type register "
8055                                    "class is not natively supported!");
8056             return;
8057           }
8058 
8059           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8060 
8061           SDLoc dl = getCurSDLoc();
8062           // Use the produced MatchedRegs object to
8063           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8064                                     CS.getInstruction());
8065           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8066                                            true, OpInfo.getMatchedOperand(), dl,
8067                                            DAG, AsmNodeOperands);
8068           break;
8069         }
8070 
8071         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8072         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8073                "Unexpected number of operands");
8074         // Add information to the INLINEASM node to know about this input.
8075         // See InlineAsm.h isUseOperandTiedToDef.
8076         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8077         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8078                                                     OpInfo.getMatchedOperand());
8079         AsmNodeOperands.push_back(DAG.getTargetConstant(
8080             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8081         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8082         break;
8083       }
8084 
8085       // Treat indirect 'X' constraint as memory.
8086       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8087           OpInfo.isIndirect)
8088         OpInfo.ConstraintType = TargetLowering::C_Memory;
8089 
8090       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8091         std::vector<SDValue> Ops;
8092         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8093                                           Ops, DAG);
8094         if (Ops.empty()) {
8095           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8096                                      Twine(OpInfo.ConstraintCode) + "'");
8097           return;
8098         }
8099 
8100         // Add information to the INLINEASM node to know about this input.
8101         unsigned ResOpType =
8102           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8103         AsmNodeOperands.push_back(DAG.getTargetConstant(
8104             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8105         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8106         break;
8107       }
8108 
8109       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8110         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8111         assert(InOperandVal.getValueType() ==
8112                    TLI.getPointerTy(DAG.getDataLayout()) &&
8113                "Memory operands expect pointer values");
8114 
8115         unsigned ConstraintID =
8116             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8117         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8118                "Failed to convert memory constraint code to constraint id.");
8119 
8120         // Add information to the INLINEASM node to know about this input.
8121         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8122         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8123         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8124                                                         getCurSDLoc(),
8125                                                         MVT::i32));
8126         AsmNodeOperands.push_back(InOperandVal);
8127         break;
8128       }
8129 
8130       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8131               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8132              "Unknown constraint type!");
8133 
8134       // TODO: Support this.
8135       if (OpInfo.isIndirect) {
8136         emitInlineAsmError(
8137             CS, "Don't know how to handle indirect register inputs yet "
8138                 "for constraint '" +
8139                     Twine(OpInfo.ConstraintCode) + "'");
8140         return;
8141       }
8142 
8143       // Copy the input into the appropriate registers.
8144       if (OpInfo.AssignedRegs.Regs.empty()) {
8145         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8146                                    Twine(OpInfo.ConstraintCode) + "'");
8147         return;
8148       }
8149 
8150       SDLoc dl = getCurSDLoc();
8151 
8152       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8153                                         Chain, &Flag, CS.getInstruction());
8154 
8155       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8156                                                dl, DAG, AsmNodeOperands);
8157       break;
8158     }
8159     case InlineAsm::isClobber:
8160       // Add the clobbered value to the operand list, so that the register
8161       // allocator is aware that the physreg got clobbered.
8162       if (!OpInfo.AssignedRegs.Regs.empty())
8163         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8164                                                  false, 0, getCurSDLoc(), DAG,
8165                                                  AsmNodeOperands);
8166       break;
8167     }
8168   }
8169 
8170   // Finish up input operands.  Set the input chain and add the flag last.
8171   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8172   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8173 
8174   unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR
8175                                                          : ISD::INLINEASM;
8176   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8177                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8178   Flag = Chain.getValue(1);
8179 
8180   // Do additional work to generate outputs.
8181 
8182   SmallVector<EVT, 1> ResultVTs;
8183   SmallVector<SDValue, 1> ResultValues;
8184   SmallVector<SDValue, 8> OutChains;
8185 
8186   llvm::Type *CSResultType = CS.getType();
8187   ArrayRef<Type *> ResultTypes;
8188   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8189     ResultTypes = StructResult->elements();
8190   else if (!CSResultType->isVoidTy())
8191     ResultTypes = makeArrayRef(CSResultType);
8192 
8193   auto CurResultType = ResultTypes.begin();
8194   auto handleRegAssign = [&](SDValue V) {
8195     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8196     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8197     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8198     ++CurResultType;
8199     // If the type of the inline asm call site return value is different but has
8200     // same size as the type of the asm output bitcast it.  One example of this
8201     // is for vectors with different width / number of elements.  This can
8202     // happen for register classes that can contain multiple different value
8203     // types.  The preg or vreg allocated may not have the same VT as was
8204     // expected.
8205     //
8206     // This can also happen for a return value that disagrees with the register
8207     // class it is put in, eg. a double in a general-purpose register on a
8208     // 32-bit machine.
8209     if (ResultVT != V.getValueType() &&
8210         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8211       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8212     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8213              V.getValueType().isInteger()) {
8214       // If a result value was tied to an input value, the computed result
8215       // may have a wider width than the expected result.  Extract the
8216       // relevant portion.
8217       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8218     }
8219     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8220     ResultVTs.push_back(ResultVT);
8221     ResultValues.push_back(V);
8222   };
8223 
8224   // Deal with output operands.
8225   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8226     if (OpInfo.Type == InlineAsm::isOutput) {
8227       SDValue Val;
8228       // Skip trivial output operands.
8229       if (OpInfo.AssignedRegs.Regs.empty())
8230         continue;
8231 
8232       switch (OpInfo.ConstraintType) {
8233       case TargetLowering::C_Register:
8234       case TargetLowering::C_RegisterClass:
8235         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8236             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8237         break;
8238       case TargetLowering::C_Other:
8239         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8240                                               OpInfo, DAG);
8241         break;
8242       case TargetLowering::C_Memory:
8243         break; // Already handled.
8244       case TargetLowering::C_Unknown:
8245         assert(false && "Unexpected unknown constraint");
8246       }
8247 
8248       // Indirect output manifest as stores. Record output chains.
8249       if (OpInfo.isIndirect) {
8250         const Value *Ptr = OpInfo.CallOperandVal;
8251         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8252         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8253                                      MachinePointerInfo(Ptr));
8254         OutChains.push_back(Store);
8255       } else {
8256         // generate CopyFromRegs to associated registers.
8257         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8258         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8259           for (const SDValue &V : Val->op_values())
8260             handleRegAssign(V);
8261         } else
8262           handleRegAssign(Val);
8263       }
8264     }
8265   }
8266 
8267   // Set results.
8268   if (!ResultValues.empty()) {
8269     assert(CurResultType == ResultTypes.end() &&
8270            "Mismatch in number of ResultTypes");
8271     assert(ResultValues.size() == ResultTypes.size() &&
8272            "Mismatch in number of output operands in asm result");
8273 
8274     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8275                             DAG.getVTList(ResultVTs), ResultValues);
8276     setValue(CS.getInstruction(), V);
8277   }
8278 
8279   // Collect store chains.
8280   if (!OutChains.empty())
8281     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8282 
8283   // Only Update Root if inline assembly has a memory effect.
8284   if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8285     DAG.setRoot(Chain);
8286 }
8287 
8288 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8289                                              const Twine &Message) {
8290   LLVMContext &Ctx = *DAG.getContext();
8291   Ctx.emitError(CS.getInstruction(), Message);
8292 
8293   // Make sure we leave the DAG in a valid state
8294   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8295   SmallVector<EVT, 1> ValueVTs;
8296   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8297 
8298   if (ValueVTs.empty())
8299     return;
8300 
8301   SmallVector<SDValue, 1> Ops;
8302   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8303     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8304 
8305   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8306 }
8307 
8308 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8309   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8310                           MVT::Other, getRoot(),
8311                           getValue(I.getArgOperand(0)),
8312                           DAG.getSrcValue(I.getArgOperand(0))));
8313 }
8314 
8315 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8316   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8317   const DataLayout &DL = DAG.getDataLayout();
8318   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8319                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8320                            DAG.getSrcValue(I.getOperand(0)),
8321                            DL.getABITypeAlignment(I.getType()));
8322   setValue(&I, V);
8323   DAG.setRoot(V.getValue(1));
8324 }
8325 
8326 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8327   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8328                           MVT::Other, getRoot(),
8329                           getValue(I.getArgOperand(0)),
8330                           DAG.getSrcValue(I.getArgOperand(0))));
8331 }
8332 
8333 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8334   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8335                           MVT::Other, getRoot(),
8336                           getValue(I.getArgOperand(0)),
8337                           getValue(I.getArgOperand(1)),
8338                           DAG.getSrcValue(I.getArgOperand(0)),
8339                           DAG.getSrcValue(I.getArgOperand(1))));
8340 }
8341 
8342 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8343                                                     const Instruction &I,
8344                                                     SDValue Op) {
8345   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8346   if (!Range)
8347     return Op;
8348 
8349   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8350   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8351     return Op;
8352 
8353   APInt Lo = CR.getUnsignedMin();
8354   if (!Lo.isMinValue())
8355     return Op;
8356 
8357   APInt Hi = CR.getUnsignedMax();
8358   unsigned Bits = std::max(Hi.getActiveBits(),
8359                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8360 
8361   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8362 
8363   SDLoc SL = getCurSDLoc();
8364 
8365   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8366                              DAG.getValueType(SmallVT));
8367   unsigned NumVals = Op.getNode()->getNumValues();
8368   if (NumVals == 1)
8369     return ZExt;
8370 
8371   SmallVector<SDValue, 4> Ops;
8372 
8373   Ops.push_back(ZExt);
8374   for (unsigned I = 1; I != NumVals; ++I)
8375     Ops.push_back(Op.getValue(I));
8376 
8377   return DAG.getMergeValues(Ops, SL);
8378 }
8379 
8380 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8381 /// the call being lowered.
8382 ///
8383 /// This is a helper for lowering intrinsics that follow a target calling
8384 /// convention or require stack pointer adjustment. Only a subset of the
8385 /// intrinsic's operands need to participate in the calling convention.
8386 void SelectionDAGBuilder::populateCallLoweringInfo(
8387     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8388     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8389     bool IsPatchPoint) {
8390   TargetLowering::ArgListTy Args;
8391   Args.reserve(NumArgs);
8392 
8393   // Populate the argument list.
8394   // Attributes for args start at offset 1, after the return attribute.
8395   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8396        ArgI != ArgE; ++ArgI) {
8397     const Value *V = Call->getOperand(ArgI);
8398 
8399     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8400 
8401     TargetLowering::ArgListEntry Entry;
8402     Entry.Node = getValue(V);
8403     Entry.Ty = V->getType();
8404     Entry.setAttributes(Call, ArgI);
8405     Args.push_back(Entry);
8406   }
8407 
8408   CLI.setDebugLoc(getCurSDLoc())
8409       .setChain(getRoot())
8410       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8411       .setDiscardResult(Call->use_empty())
8412       .setIsPatchPoint(IsPatchPoint);
8413 }
8414 
8415 /// Add a stack map intrinsic call's live variable operands to a stackmap
8416 /// or patchpoint target node's operand list.
8417 ///
8418 /// Constants are converted to TargetConstants purely as an optimization to
8419 /// avoid constant materialization and register allocation.
8420 ///
8421 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8422 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8423 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8424 /// address materialization and register allocation, but may also be required
8425 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8426 /// alloca in the entry block, then the runtime may assume that the alloca's
8427 /// StackMap location can be read immediately after compilation and that the
8428 /// location is valid at any point during execution (this is similar to the
8429 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8430 /// only available in a register, then the runtime would need to trap when
8431 /// execution reaches the StackMap in order to read the alloca's location.
8432 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8433                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8434                                 SelectionDAGBuilder &Builder) {
8435   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8436     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8437     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8438       Ops.push_back(
8439         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8440       Ops.push_back(
8441         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8442     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8443       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8444       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8445           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8446     } else
8447       Ops.push_back(OpVal);
8448   }
8449 }
8450 
8451 /// Lower llvm.experimental.stackmap directly to its target opcode.
8452 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8453   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8454   //                                  [live variables...])
8455 
8456   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8457 
8458   SDValue Chain, InFlag, Callee, NullPtr;
8459   SmallVector<SDValue, 32> Ops;
8460 
8461   SDLoc DL = getCurSDLoc();
8462   Callee = getValue(CI.getCalledValue());
8463   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8464 
8465   // The stackmap intrinsic only records the live variables (the arguemnts
8466   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8467   // intrinsic, this won't be lowered to a function call. This means we don't
8468   // have to worry about calling conventions and target specific lowering code.
8469   // Instead we perform the call lowering right here.
8470   //
8471   // chain, flag = CALLSEQ_START(chain, 0, 0)
8472   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8473   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8474   //
8475   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8476   InFlag = Chain.getValue(1);
8477 
8478   // Add the <id> and <numBytes> constants.
8479   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8480   Ops.push_back(DAG.getTargetConstant(
8481                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8482   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8483   Ops.push_back(DAG.getTargetConstant(
8484                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8485                   MVT::i32));
8486 
8487   // Push live variables for the stack map.
8488   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8489 
8490   // We are not pushing any register mask info here on the operands list,
8491   // because the stackmap doesn't clobber anything.
8492 
8493   // Push the chain and the glue flag.
8494   Ops.push_back(Chain);
8495   Ops.push_back(InFlag);
8496 
8497   // Create the STACKMAP node.
8498   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8499   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8500   Chain = SDValue(SM, 0);
8501   InFlag = Chain.getValue(1);
8502 
8503   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8504 
8505   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8506 
8507   // Set the root to the target-lowered call chain.
8508   DAG.setRoot(Chain);
8509 
8510   // Inform the Frame Information that we have a stackmap in this function.
8511   FuncInfo.MF->getFrameInfo().setHasStackMap();
8512 }
8513 
8514 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8515 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8516                                           const BasicBlock *EHPadBB) {
8517   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8518   //                                                 i32 <numBytes>,
8519   //                                                 i8* <target>,
8520   //                                                 i32 <numArgs>,
8521   //                                                 [Args...],
8522   //                                                 [live variables...])
8523 
8524   CallingConv::ID CC = CS.getCallingConv();
8525   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8526   bool HasDef = !CS->getType()->isVoidTy();
8527   SDLoc dl = getCurSDLoc();
8528   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8529 
8530   // Handle immediate and symbolic callees.
8531   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8532     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8533                                    /*isTarget=*/true);
8534   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8535     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8536                                          SDLoc(SymbolicCallee),
8537                                          SymbolicCallee->getValueType(0));
8538 
8539   // Get the real number of arguments participating in the call <numArgs>
8540   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8541   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8542 
8543   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8544   // Intrinsics include all meta-operands up to but not including CC.
8545   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8546   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8547          "Not enough arguments provided to the patchpoint intrinsic");
8548 
8549   // For AnyRegCC the arguments are lowered later on manually.
8550   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8551   Type *ReturnTy =
8552     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8553 
8554   TargetLowering::CallLoweringInfo CLI(DAG);
8555   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8556                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8557   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8558 
8559   SDNode *CallEnd = Result.second.getNode();
8560   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8561     CallEnd = CallEnd->getOperand(0).getNode();
8562 
8563   /// Get a call instruction from the call sequence chain.
8564   /// Tail calls are not allowed.
8565   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8566          "Expected a callseq node.");
8567   SDNode *Call = CallEnd->getOperand(0).getNode();
8568   bool HasGlue = Call->getGluedNode();
8569 
8570   // Replace the target specific call node with the patchable intrinsic.
8571   SmallVector<SDValue, 8> Ops;
8572 
8573   // Add the <id> and <numBytes> constants.
8574   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8575   Ops.push_back(DAG.getTargetConstant(
8576                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8577   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8578   Ops.push_back(DAG.getTargetConstant(
8579                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8580                   MVT::i32));
8581 
8582   // Add the callee.
8583   Ops.push_back(Callee);
8584 
8585   // Adjust <numArgs> to account for any arguments that have been passed on the
8586   // stack instead.
8587   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8588   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8589   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8590   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8591 
8592   // Add the calling convention
8593   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8594 
8595   // Add the arguments we omitted previously. The register allocator should
8596   // place these in any free register.
8597   if (IsAnyRegCC)
8598     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8599       Ops.push_back(getValue(CS.getArgument(i)));
8600 
8601   // Push the arguments from the call instruction up to the register mask.
8602   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8603   Ops.append(Call->op_begin() + 2, e);
8604 
8605   // Push live variables for the stack map.
8606   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8607 
8608   // Push the register mask info.
8609   if (HasGlue)
8610     Ops.push_back(*(Call->op_end()-2));
8611   else
8612     Ops.push_back(*(Call->op_end()-1));
8613 
8614   // Push the chain (this is originally the first operand of the call, but
8615   // becomes now the last or second to last operand).
8616   Ops.push_back(*(Call->op_begin()));
8617 
8618   // Push the glue flag (last operand).
8619   if (HasGlue)
8620     Ops.push_back(*(Call->op_end()-1));
8621 
8622   SDVTList NodeTys;
8623   if (IsAnyRegCC && HasDef) {
8624     // Create the return types based on the intrinsic definition
8625     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8626     SmallVector<EVT, 3> ValueVTs;
8627     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8628     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8629 
8630     // There is always a chain and a glue type at the end
8631     ValueVTs.push_back(MVT::Other);
8632     ValueVTs.push_back(MVT::Glue);
8633     NodeTys = DAG.getVTList(ValueVTs);
8634   } else
8635     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8636 
8637   // Replace the target specific call node with a PATCHPOINT node.
8638   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8639                                          dl, NodeTys, Ops);
8640 
8641   // Update the NodeMap.
8642   if (HasDef) {
8643     if (IsAnyRegCC)
8644       setValue(CS.getInstruction(), SDValue(MN, 0));
8645     else
8646       setValue(CS.getInstruction(), Result.first);
8647   }
8648 
8649   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8650   // call sequence. Furthermore the location of the chain and glue can change
8651   // when the AnyReg calling convention is used and the intrinsic returns a
8652   // value.
8653   if (IsAnyRegCC && HasDef) {
8654     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8655     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8656     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8657   } else
8658     DAG.ReplaceAllUsesWith(Call, MN);
8659   DAG.DeleteNode(Call);
8660 
8661   // Inform the Frame Information that we have a patchpoint in this function.
8662   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8663 }
8664 
8665 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8666                                             unsigned Intrinsic) {
8667   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8668   SDValue Op1 = getValue(I.getArgOperand(0));
8669   SDValue Op2;
8670   if (I.getNumArgOperands() > 1)
8671     Op2 = getValue(I.getArgOperand(1));
8672   SDLoc dl = getCurSDLoc();
8673   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8674   SDValue Res;
8675   FastMathFlags FMF;
8676   if (isa<FPMathOperator>(I))
8677     FMF = I.getFastMathFlags();
8678 
8679   switch (Intrinsic) {
8680   case Intrinsic::experimental_vector_reduce_fadd:
8681     if (FMF.isFast())
8682       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8683     else
8684       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8685     break;
8686   case Intrinsic::experimental_vector_reduce_fmul:
8687     if (FMF.isFast())
8688       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8689     else
8690       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8691     break;
8692   case Intrinsic::experimental_vector_reduce_add:
8693     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8694     break;
8695   case Intrinsic::experimental_vector_reduce_mul:
8696     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8697     break;
8698   case Intrinsic::experimental_vector_reduce_and:
8699     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8700     break;
8701   case Intrinsic::experimental_vector_reduce_or:
8702     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8703     break;
8704   case Intrinsic::experimental_vector_reduce_xor:
8705     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8706     break;
8707   case Intrinsic::experimental_vector_reduce_smax:
8708     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8709     break;
8710   case Intrinsic::experimental_vector_reduce_smin:
8711     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8712     break;
8713   case Intrinsic::experimental_vector_reduce_umax:
8714     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8715     break;
8716   case Intrinsic::experimental_vector_reduce_umin:
8717     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8718     break;
8719   case Intrinsic::experimental_vector_reduce_fmax:
8720     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8721     break;
8722   case Intrinsic::experimental_vector_reduce_fmin:
8723     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8724     break;
8725   default:
8726     llvm_unreachable("Unhandled vector reduce intrinsic");
8727   }
8728   setValue(&I, Res);
8729 }
8730 
8731 /// Returns an AttributeList representing the attributes applied to the return
8732 /// value of the given call.
8733 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8734   SmallVector<Attribute::AttrKind, 2> Attrs;
8735   if (CLI.RetSExt)
8736     Attrs.push_back(Attribute::SExt);
8737   if (CLI.RetZExt)
8738     Attrs.push_back(Attribute::ZExt);
8739   if (CLI.IsInReg)
8740     Attrs.push_back(Attribute::InReg);
8741 
8742   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8743                             Attrs);
8744 }
8745 
8746 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8747 /// implementation, which just calls LowerCall.
8748 /// FIXME: When all targets are
8749 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8750 std::pair<SDValue, SDValue>
8751 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8752   // Handle the incoming return values from the call.
8753   CLI.Ins.clear();
8754   Type *OrigRetTy = CLI.RetTy;
8755   SmallVector<EVT, 4> RetTys;
8756   SmallVector<uint64_t, 4> Offsets;
8757   auto &DL = CLI.DAG.getDataLayout();
8758   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8759 
8760   if (CLI.IsPostTypeLegalization) {
8761     // If we are lowering a libcall after legalization, split the return type.
8762     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8763     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8764     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8765       EVT RetVT = OldRetTys[i];
8766       uint64_t Offset = OldOffsets[i];
8767       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8768       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8769       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8770       RetTys.append(NumRegs, RegisterVT);
8771       for (unsigned j = 0; j != NumRegs; ++j)
8772         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8773     }
8774   }
8775 
8776   SmallVector<ISD::OutputArg, 4> Outs;
8777   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8778 
8779   bool CanLowerReturn =
8780       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8781                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8782 
8783   SDValue DemoteStackSlot;
8784   int DemoteStackIdx = -100;
8785   if (!CanLowerReturn) {
8786     // FIXME: equivalent assert?
8787     // assert(!CS.hasInAllocaArgument() &&
8788     //        "sret demotion is incompatible with inalloca");
8789     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8790     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8791     MachineFunction &MF = CLI.DAG.getMachineFunction();
8792     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8793     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8794                                               DL.getAllocaAddrSpace());
8795 
8796     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8797     ArgListEntry Entry;
8798     Entry.Node = DemoteStackSlot;
8799     Entry.Ty = StackSlotPtrType;
8800     Entry.IsSExt = false;
8801     Entry.IsZExt = false;
8802     Entry.IsInReg = false;
8803     Entry.IsSRet = true;
8804     Entry.IsNest = false;
8805     Entry.IsByVal = false;
8806     Entry.IsReturned = false;
8807     Entry.IsSwiftSelf = false;
8808     Entry.IsSwiftError = false;
8809     Entry.Alignment = Align;
8810     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8811     CLI.NumFixedArgs += 1;
8812     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8813 
8814     // sret demotion isn't compatible with tail-calls, since the sret argument
8815     // points into the callers stack frame.
8816     CLI.IsTailCall = false;
8817   } else {
8818     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8819       EVT VT = RetTys[I];
8820       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8821                                                      CLI.CallConv, VT);
8822       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8823                                                        CLI.CallConv, VT);
8824       for (unsigned i = 0; i != NumRegs; ++i) {
8825         ISD::InputArg MyFlags;
8826         MyFlags.VT = RegisterVT;
8827         MyFlags.ArgVT = VT;
8828         MyFlags.Used = CLI.IsReturnValueUsed;
8829         if (CLI.RetSExt)
8830           MyFlags.Flags.setSExt();
8831         if (CLI.RetZExt)
8832           MyFlags.Flags.setZExt();
8833         if (CLI.IsInReg)
8834           MyFlags.Flags.setInReg();
8835         CLI.Ins.push_back(MyFlags);
8836       }
8837     }
8838   }
8839 
8840   // We push in swifterror return as the last element of CLI.Ins.
8841   ArgListTy &Args = CLI.getArgs();
8842   if (supportSwiftError()) {
8843     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8844       if (Args[i].IsSwiftError) {
8845         ISD::InputArg MyFlags;
8846         MyFlags.VT = getPointerTy(DL);
8847         MyFlags.ArgVT = EVT(getPointerTy(DL));
8848         MyFlags.Flags.setSwiftError();
8849         CLI.Ins.push_back(MyFlags);
8850       }
8851     }
8852   }
8853 
8854   // Handle all of the outgoing arguments.
8855   CLI.Outs.clear();
8856   CLI.OutVals.clear();
8857   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8858     SmallVector<EVT, 4> ValueVTs;
8859     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8860     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8861     Type *FinalType = Args[i].Ty;
8862     if (Args[i].IsByVal)
8863       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8864     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8865         FinalType, CLI.CallConv, CLI.IsVarArg);
8866     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8867          ++Value) {
8868       EVT VT = ValueVTs[Value];
8869       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8870       SDValue Op = SDValue(Args[i].Node.getNode(),
8871                            Args[i].Node.getResNo() + Value);
8872       ISD::ArgFlagsTy Flags;
8873 
8874       // Certain targets (such as MIPS), may have a different ABI alignment
8875       // for a type depending on the context. Give the target a chance to
8876       // specify the alignment it wants.
8877       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8878 
8879       if (Args[i].IsZExt)
8880         Flags.setZExt();
8881       if (Args[i].IsSExt)
8882         Flags.setSExt();
8883       if (Args[i].IsInReg) {
8884         // If we are using vectorcall calling convention, a structure that is
8885         // passed InReg - is surely an HVA
8886         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8887             isa<StructType>(FinalType)) {
8888           // The first value of a structure is marked
8889           if (0 == Value)
8890             Flags.setHvaStart();
8891           Flags.setHva();
8892         }
8893         // Set InReg Flag
8894         Flags.setInReg();
8895       }
8896       if (Args[i].IsSRet)
8897         Flags.setSRet();
8898       if (Args[i].IsSwiftSelf)
8899         Flags.setSwiftSelf();
8900       if (Args[i].IsSwiftError)
8901         Flags.setSwiftError();
8902       if (Args[i].IsByVal)
8903         Flags.setByVal();
8904       if (Args[i].IsInAlloca) {
8905         Flags.setInAlloca();
8906         // Set the byval flag for CCAssignFn callbacks that don't know about
8907         // inalloca.  This way we can know how many bytes we should've allocated
8908         // and how many bytes a callee cleanup function will pop.  If we port
8909         // inalloca to more targets, we'll have to add custom inalloca handling
8910         // in the various CC lowering callbacks.
8911         Flags.setByVal();
8912       }
8913       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8914         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8915         Type *ElementTy = Ty->getElementType();
8916         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8917         // For ByVal, alignment should come from FE.  BE will guess if this
8918         // info is not there but there are cases it cannot get right.
8919         unsigned FrameAlign;
8920         if (Args[i].Alignment)
8921           FrameAlign = Args[i].Alignment;
8922         else
8923           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8924         Flags.setByValAlign(FrameAlign);
8925       }
8926       if (Args[i].IsNest)
8927         Flags.setNest();
8928       if (NeedsRegBlock)
8929         Flags.setInConsecutiveRegs();
8930       Flags.setOrigAlign(OriginalAlignment);
8931 
8932       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8933                                                  CLI.CallConv, VT);
8934       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8935                                                         CLI.CallConv, VT);
8936       SmallVector<SDValue, 4> Parts(NumParts);
8937       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8938 
8939       if (Args[i].IsSExt)
8940         ExtendKind = ISD::SIGN_EXTEND;
8941       else if (Args[i].IsZExt)
8942         ExtendKind = ISD::ZERO_EXTEND;
8943 
8944       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8945       // for now.
8946       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8947           CanLowerReturn) {
8948         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8949                "unexpected use of 'returned'");
8950         // Before passing 'returned' to the target lowering code, ensure that
8951         // either the register MVT and the actual EVT are the same size or that
8952         // the return value and argument are extended in the same way; in these
8953         // cases it's safe to pass the argument register value unchanged as the
8954         // return register value (although it's at the target's option whether
8955         // to do so)
8956         // TODO: allow code generation to take advantage of partially preserved
8957         // registers rather than clobbering the entire register when the
8958         // parameter extension method is not compatible with the return
8959         // extension method
8960         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8961             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8962              CLI.RetZExt == Args[i].IsZExt))
8963           Flags.setReturned();
8964       }
8965 
8966       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8967                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8968 
8969       for (unsigned j = 0; j != NumParts; ++j) {
8970         // if it isn't first piece, alignment must be 1
8971         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8972                                i < CLI.NumFixedArgs,
8973                                i, j*Parts[j].getValueType().getStoreSize());
8974         if (NumParts > 1 && j == 0)
8975           MyFlags.Flags.setSplit();
8976         else if (j != 0) {
8977           MyFlags.Flags.setOrigAlign(1);
8978           if (j == NumParts - 1)
8979             MyFlags.Flags.setSplitEnd();
8980         }
8981 
8982         CLI.Outs.push_back(MyFlags);
8983         CLI.OutVals.push_back(Parts[j]);
8984       }
8985 
8986       if (NeedsRegBlock && Value == NumValues - 1)
8987         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8988     }
8989   }
8990 
8991   SmallVector<SDValue, 4> InVals;
8992   CLI.Chain = LowerCall(CLI, InVals);
8993 
8994   // Update CLI.InVals to use outside of this function.
8995   CLI.InVals = InVals;
8996 
8997   // Verify that the target's LowerCall behaved as expected.
8998   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8999          "LowerCall didn't return a valid chain!");
9000   assert((!CLI.IsTailCall || InVals.empty()) &&
9001          "LowerCall emitted a return value for a tail call!");
9002   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9003          "LowerCall didn't emit the correct number of values!");
9004 
9005   // For a tail call, the return value is merely live-out and there aren't
9006   // any nodes in the DAG representing it. Return a special value to
9007   // indicate that a tail call has been emitted and no more Instructions
9008   // should be processed in the current block.
9009   if (CLI.IsTailCall) {
9010     CLI.DAG.setRoot(CLI.Chain);
9011     return std::make_pair(SDValue(), SDValue());
9012   }
9013 
9014 #ifndef NDEBUG
9015   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9016     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9017     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9018            "LowerCall emitted a value with the wrong type!");
9019   }
9020 #endif
9021 
9022   SmallVector<SDValue, 4> ReturnValues;
9023   if (!CanLowerReturn) {
9024     // The instruction result is the result of loading from the
9025     // hidden sret parameter.
9026     SmallVector<EVT, 1> PVTs;
9027     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9028 
9029     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9030     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9031     EVT PtrVT = PVTs[0];
9032 
9033     unsigned NumValues = RetTys.size();
9034     ReturnValues.resize(NumValues);
9035     SmallVector<SDValue, 4> Chains(NumValues);
9036 
9037     // An aggregate return value cannot wrap around the address space, so
9038     // offsets to its parts don't wrap either.
9039     SDNodeFlags Flags;
9040     Flags.setNoUnsignedWrap(true);
9041 
9042     for (unsigned i = 0; i < NumValues; ++i) {
9043       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9044                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9045                                                         PtrVT), Flags);
9046       SDValue L = CLI.DAG.getLoad(
9047           RetTys[i], CLI.DL, CLI.Chain, Add,
9048           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9049                                             DemoteStackIdx, Offsets[i]),
9050           /* Alignment = */ 1);
9051       ReturnValues[i] = L;
9052       Chains[i] = L.getValue(1);
9053     }
9054 
9055     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9056   } else {
9057     // Collect the legal value parts into potentially illegal values
9058     // that correspond to the original function's return values.
9059     Optional<ISD::NodeType> AssertOp;
9060     if (CLI.RetSExt)
9061       AssertOp = ISD::AssertSext;
9062     else if (CLI.RetZExt)
9063       AssertOp = ISD::AssertZext;
9064     unsigned CurReg = 0;
9065     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9066       EVT VT = RetTys[I];
9067       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9068                                                      CLI.CallConv, VT);
9069       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9070                                                        CLI.CallConv, VT);
9071 
9072       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9073                                               NumRegs, RegisterVT, VT, nullptr,
9074                                               CLI.CallConv, AssertOp));
9075       CurReg += NumRegs;
9076     }
9077 
9078     // For a function returning void, there is no return value. We can't create
9079     // such a node, so we just return a null return value in that case. In
9080     // that case, nothing will actually look at the value.
9081     if (ReturnValues.empty())
9082       return std::make_pair(SDValue(), CLI.Chain);
9083   }
9084 
9085   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9086                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9087   return std::make_pair(Res, CLI.Chain);
9088 }
9089 
9090 void TargetLowering::LowerOperationWrapper(SDNode *N,
9091                                            SmallVectorImpl<SDValue> &Results,
9092                                            SelectionDAG &DAG) const {
9093   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9094     Results.push_back(Res);
9095 }
9096 
9097 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9098   llvm_unreachable("LowerOperation not implemented for this target!");
9099 }
9100 
9101 void
9102 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9103   SDValue Op = getNonRegisterValue(V);
9104   assert((Op.getOpcode() != ISD::CopyFromReg ||
9105           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9106          "Copy from a reg to the same reg!");
9107   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9108 
9109   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9110   // If this is an InlineAsm we have to match the registers required, not the
9111   // notional registers required by the type.
9112 
9113   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9114                    None); // This is not an ABI copy.
9115   SDValue Chain = DAG.getEntryNode();
9116 
9117   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9118                               FuncInfo.PreferredExtendType.end())
9119                                  ? ISD::ANY_EXTEND
9120                                  : FuncInfo.PreferredExtendType[V];
9121   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9122   PendingExports.push_back(Chain);
9123 }
9124 
9125 #include "llvm/CodeGen/SelectionDAGISel.h"
9126 
9127 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9128 /// entry block, return true.  This includes arguments used by switches, since
9129 /// the switch may expand into multiple basic blocks.
9130 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9131   // With FastISel active, we may be splitting blocks, so force creation
9132   // of virtual registers for all non-dead arguments.
9133   if (FastISel)
9134     return A->use_empty();
9135 
9136   const BasicBlock &Entry = A->getParent()->front();
9137   for (const User *U : A->users())
9138     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9139       return false;  // Use not in entry block.
9140 
9141   return true;
9142 }
9143 
9144 using ArgCopyElisionMapTy =
9145     DenseMap<const Argument *,
9146              std::pair<const AllocaInst *, const StoreInst *>>;
9147 
9148 /// Scan the entry block of the function in FuncInfo for arguments that look
9149 /// like copies into a local alloca. Record any copied arguments in
9150 /// ArgCopyElisionCandidates.
9151 static void
9152 findArgumentCopyElisionCandidates(const DataLayout &DL,
9153                                   FunctionLoweringInfo *FuncInfo,
9154                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9155   // Record the state of every static alloca used in the entry block. Argument
9156   // allocas are all used in the entry block, so we need approximately as many
9157   // entries as we have arguments.
9158   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9159   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9160   unsigned NumArgs = FuncInfo->Fn->arg_size();
9161   StaticAllocas.reserve(NumArgs * 2);
9162 
9163   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9164     if (!V)
9165       return nullptr;
9166     V = V->stripPointerCasts();
9167     const auto *AI = dyn_cast<AllocaInst>(V);
9168     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9169       return nullptr;
9170     auto Iter = StaticAllocas.insert({AI, Unknown});
9171     return &Iter.first->second;
9172   };
9173 
9174   // Look for stores of arguments to static allocas. Look through bitcasts and
9175   // GEPs to handle type coercions, as long as the alloca is fully initialized
9176   // by the store. Any non-store use of an alloca escapes it and any subsequent
9177   // unanalyzed store might write it.
9178   // FIXME: Handle structs initialized with multiple stores.
9179   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9180     // Look for stores, and handle non-store uses conservatively.
9181     const auto *SI = dyn_cast<StoreInst>(&I);
9182     if (!SI) {
9183       // We will look through cast uses, so ignore them completely.
9184       if (I.isCast())
9185         continue;
9186       // Ignore debug info intrinsics, they don't escape or store to allocas.
9187       if (isa<DbgInfoIntrinsic>(I))
9188         continue;
9189       // This is an unknown instruction. Assume it escapes or writes to all
9190       // static alloca operands.
9191       for (const Use &U : I.operands()) {
9192         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9193           *Info = StaticAllocaInfo::Clobbered;
9194       }
9195       continue;
9196     }
9197 
9198     // If the stored value is a static alloca, mark it as escaped.
9199     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9200       *Info = StaticAllocaInfo::Clobbered;
9201 
9202     // Check if the destination is a static alloca.
9203     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9204     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9205     if (!Info)
9206       continue;
9207     const AllocaInst *AI = cast<AllocaInst>(Dst);
9208 
9209     // Skip allocas that have been initialized or clobbered.
9210     if (*Info != StaticAllocaInfo::Unknown)
9211       continue;
9212 
9213     // Check if the stored value is an argument, and that this store fully
9214     // initializes the alloca. Don't elide copies from the same argument twice.
9215     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9216     const auto *Arg = dyn_cast<Argument>(Val);
9217     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9218         Arg->getType()->isEmptyTy() ||
9219         DL.getTypeStoreSize(Arg->getType()) !=
9220             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9221         ArgCopyElisionCandidates.count(Arg)) {
9222       *Info = StaticAllocaInfo::Clobbered;
9223       continue;
9224     }
9225 
9226     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9227                       << '\n');
9228 
9229     // Mark this alloca and store for argument copy elision.
9230     *Info = StaticAllocaInfo::Elidable;
9231     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9232 
9233     // Stop scanning if we've seen all arguments. This will happen early in -O0
9234     // builds, which is useful, because -O0 builds have large entry blocks and
9235     // many allocas.
9236     if (ArgCopyElisionCandidates.size() == NumArgs)
9237       break;
9238   }
9239 }
9240 
9241 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9242 /// ArgVal is a load from a suitable fixed stack object.
9243 static void tryToElideArgumentCopy(
9244     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9245     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9246     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9247     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9248     SDValue ArgVal, bool &ArgHasUses) {
9249   // Check if this is a load from a fixed stack object.
9250   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9251   if (!LNode)
9252     return;
9253   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9254   if (!FINode)
9255     return;
9256 
9257   // Check that the fixed stack object is the right size and alignment.
9258   // Look at the alignment that the user wrote on the alloca instead of looking
9259   // at the stack object.
9260   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9261   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9262   const AllocaInst *AI = ArgCopyIter->second.first;
9263   int FixedIndex = FINode->getIndex();
9264   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9265   int OldIndex = AllocaIndex;
9266   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9267   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9268     LLVM_DEBUG(
9269         dbgs() << "  argument copy elision failed due to bad fixed stack "
9270                   "object size\n");
9271     return;
9272   }
9273   unsigned RequiredAlignment = AI->getAlignment();
9274   if (!RequiredAlignment) {
9275     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9276         AI->getAllocatedType());
9277   }
9278   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9279     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9280                          "greater than stack argument alignment ("
9281                       << RequiredAlignment << " vs "
9282                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9283     return;
9284   }
9285 
9286   // Perform the elision. Delete the old stack object and replace its only use
9287   // in the variable info map. Mark the stack object as mutable.
9288   LLVM_DEBUG({
9289     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9290            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9291            << '\n';
9292   });
9293   MFI.RemoveStackObject(OldIndex);
9294   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9295   AllocaIndex = FixedIndex;
9296   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9297   Chains.push_back(ArgVal.getValue(1));
9298 
9299   // Avoid emitting code for the store implementing the copy.
9300   const StoreInst *SI = ArgCopyIter->second.second;
9301   ElidedArgCopyInstrs.insert(SI);
9302 
9303   // Check for uses of the argument again so that we can avoid exporting ArgVal
9304   // if it is't used by anything other than the store.
9305   for (const Value *U : Arg.users()) {
9306     if (U != SI) {
9307       ArgHasUses = true;
9308       break;
9309     }
9310   }
9311 }
9312 
9313 void SelectionDAGISel::LowerArguments(const Function &F) {
9314   SelectionDAG &DAG = SDB->DAG;
9315   SDLoc dl = SDB->getCurSDLoc();
9316   const DataLayout &DL = DAG.getDataLayout();
9317   SmallVector<ISD::InputArg, 16> Ins;
9318 
9319   if (!FuncInfo->CanLowerReturn) {
9320     // Put in an sret pointer parameter before all the other parameters.
9321     SmallVector<EVT, 1> ValueVTs;
9322     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9323                     F.getReturnType()->getPointerTo(
9324                         DAG.getDataLayout().getAllocaAddrSpace()),
9325                     ValueVTs);
9326 
9327     // NOTE: Assuming that a pointer will never break down to more than one VT
9328     // or one register.
9329     ISD::ArgFlagsTy Flags;
9330     Flags.setSRet();
9331     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9332     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9333                          ISD::InputArg::NoArgIndex, 0);
9334     Ins.push_back(RetArg);
9335   }
9336 
9337   // Look for stores of arguments to static allocas. Mark such arguments with a
9338   // flag to ask the target to give us the memory location of that argument if
9339   // available.
9340   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9341   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9342 
9343   // Set up the incoming argument description vector.
9344   for (const Argument &Arg : F.args()) {
9345     unsigned ArgNo = Arg.getArgNo();
9346     SmallVector<EVT, 4> ValueVTs;
9347     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9348     bool isArgValueUsed = !Arg.use_empty();
9349     unsigned PartBase = 0;
9350     Type *FinalType = Arg.getType();
9351     if (Arg.hasAttribute(Attribute::ByVal))
9352       FinalType = cast<PointerType>(FinalType)->getElementType();
9353     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9354         FinalType, F.getCallingConv(), F.isVarArg());
9355     for (unsigned Value = 0, NumValues = ValueVTs.size();
9356          Value != NumValues; ++Value) {
9357       EVT VT = ValueVTs[Value];
9358       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9359       ISD::ArgFlagsTy Flags;
9360 
9361       // Certain targets (such as MIPS), may have a different ABI alignment
9362       // for a type depending on the context. Give the target a chance to
9363       // specify the alignment it wants.
9364       unsigned OriginalAlignment =
9365           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9366 
9367       if (Arg.hasAttribute(Attribute::ZExt))
9368         Flags.setZExt();
9369       if (Arg.hasAttribute(Attribute::SExt))
9370         Flags.setSExt();
9371       if (Arg.hasAttribute(Attribute::InReg)) {
9372         // If we are using vectorcall calling convention, a structure that is
9373         // passed InReg - is surely an HVA
9374         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9375             isa<StructType>(Arg.getType())) {
9376           // The first value of a structure is marked
9377           if (0 == Value)
9378             Flags.setHvaStart();
9379           Flags.setHva();
9380         }
9381         // Set InReg Flag
9382         Flags.setInReg();
9383       }
9384       if (Arg.hasAttribute(Attribute::StructRet))
9385         Flags.setSRet();
9386       if (Arg.hasAttribute(Attribute::SwiftSelf))
9387         Flags.setSwiftSelf();
9388       if (Arg.hasAttribute(Attribute::SwiftError))
9389         Flags.setSwiftError();
9390       if (Arg.hasAttribute(Attribute::ByVal))
9391         Flags.setByVal();
9392       if (Arg.hasAttribute(Attribute::InAlloca)) {
9393         Flags.setInAlloca();
9394         // Set the byval flag for CCAssignFn callbacks that don't know about
9395         // inalloca.  This way we can know how many bytes we should've allocated
9396         // and how many bytes a callee cleanup function will pop.  If we port
9397         // inalloca to more targets, we'll have to add custom inalloca handling
9398         // in the various CC lowering callbacks.
9399         Flags.setByVal();
9400       }
9401       if (F.getCallingConv() == CallingConv::X86_INTR) {
9402         // IA Interrupt passes frame (1st parameter) by value in the stack.
9403         if (ArgNo == 0)
9404           Flags.setByVal();
9405       }
9406       if (Flags.isByVal() || Flags.isInAlloca()) {
9407         PointerType *Ty = cast<PointerType>(Arg.getType());
9408         Type *ElementTy = Ty->getElementType();
9409         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9410         // For ByVal, alignment should be passed from FE.  BE will guess if
9411         // this info is not there but there are cases it cannot get right.
9412         unsigned FrameAlign;
9413         if (Arg.getParamAlignment())
9414           FrameAlign = Arg.getParamAlignment();
9415         else
9416           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9417         Flags.setByValAlign(FrameAlign);
9418       }
9419       if (Arg.hasAttribute(Attribute::Nest))
9420         Flags.setNest();
9421       if (NeedsRegBlock)
9422         Flags.setInConsecutiveRegs();
9423       Flags.setOrigAlign(OriginalAlignment);
9424       if (ArgCopyElisionCandidates.count(&Arg))
9425         Flags.setCopyElisionCandidate();
9426 
9427       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9428           *CurDAG->getContext(), F.getCallingConv(), VT);
9429       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9430           *CurDAG->getContext(), F.getCallingConv(), VT);
9431       for (unsigned i = 0; i != NumRegs; ++i) {
9432         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9433                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9434         if (NumRegs > 1 && i == 0)
9435           MyFlags.Flags.setSplit();
9436         // if it isn't first piece, alignment must be 1
9437         else if (i > 0) {
9438           MyFlags.Flags.setOrigAlign(1);
9439           if (i == NumRegs - 1)
9440             MyFlags.Flags.setSplitEnd();
9441         }
9442         Ins.push_back(MyFlags);
9443       }
9444       if (NeedsRegBlock && Value == NumValues - 1)
9445         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9446       PartBase += VT.getStoreSize();
9447     }
9448   }
9449 
9450   // Call the target to set up the argument values.
9451   SmallVector<SDValue, 8> InVals;
9452   SDValue NewRoot = TLI->LowerFormalArguments(
9453       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9454 
9455   // Verify that the target's LowerFormalArguments behaved as expected.
9456   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9457          "LowerFormalArguments didn't return a valid chain!");
9458   assert(InVals.size() == Ins.size() &&
9459          "LowerFormalArguments didn't emit the correct number of values!");
9460   LLVM_DEBUG({
9461     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9462       assert(InVals[i].getNode() &&
9463              "LowerFormalArguments emitted a null value!");
9464       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9465              "LowerFormalArguments emitted a value with the wrong type!");
9466     }
9467   });
9468 
9469   // Update the DAG with the new chain value resulting from argument lowering.
9470   DAG.setRoot(NewRoot);
9471 
9472   // Set up the argument values.
9473   unsigned i = 0;
9474   if (!FuncInfo->CanLowerReturn) {
9475     // Create a virtual register for the sret pointer, and put in a copy
9476     // from the sret argument into it.
9477     SmallVector<EVT, 1> ValueVTs;
9478     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9479                     F.getReturnType()->getPointerTo(
9480                         DAG.getDataLayout().getAllocaAddrSpace()),
9481                     ValueVTs);
9482     MVT VT = ValueVTs[0].getSimpleVT();
9483     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9484     Optional<ISD::NodeType> AssertOp = None;
9485     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9486                                         nullptr, F.getCallingConv(), AssertOp);
9487 
9488     MachineFunction& MF = SDB->DAG.getMachineFunction();
9489     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9490     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9491     FuncInfo->DemoteRegister = SRetReg;
9492     NewRoot =
9493         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9494     DAG.setRoot(NewRoot);
9495 
9496     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9497     ++i;
9498   }
9499 
9500   SmallVector<SDValue, 4> Chains;
9501   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9502   for (const Argument &Arg : F.args()) {
9503     SmallVector<SDValue, 4> ArgValues;
9504     SmallVector<EVT, 4> ValueVTs;
9505     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9506     unsigned NumValues = ValueVTs.size();
9507     if (NumValues == 0)
9508       continue;
9509 
9510     bool ArgHasUses = !Arg.use_empty();
9511 
9512     // Elide the copying store if the target loaded this argument from a
9513     // suitable fixed stack object.
9514     if (Ins[i].Flags.isCopyElisionCandidate()) {
9515       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9516                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9517                              InVals[i], ArgHasUses);
9518     }
9519 
9520     // If this argument is unused then remember its value. It is used to generate
9521     // debugging information.
9522     bool isSwiftErrorArg =
9523         TLI->supportSwiftError() &&
9524         Arg.hasAttribute(Attribute::SwiftError);
9525     if (!ArgHasUses && !isSwiftErrorArg) {
9526       SDB->setUnusedArgValue(&Arg, InVals[i]);
9527 
9528       // Also remember any frame index for use in FastISel.
9529       if (FrameIndexSDNode *FI =
9530           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9531         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9532     }
9533 
9534     for (unsigned Val = 0; Val != NumValues; ++Val) {
9535       EVT VT = ValueVTs[Val];
9536       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9537                                                       F.getCallingConv(), VT);
9538       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9539           *CurDAG->getContext(), F.getCallingConv(), VT);
9540 
9541       // Even an apparant 'unused' swifterror argument needs to be returned. So
9542       // we do generate a copy for it that can be used on return from the
9543       // function.
9544       if (ArgHasUses || isSwiftErrorArg) {
9545         Optional<ISD::NodeType> AssertOp;
9546         if (Arg.hasAttribute(Attribute::SExt))
9547           AssertOp = ISD::AssertSext;
9548         else if (Arg.hasAttribute(Attribute::ZExt))
9549           AssertOp = ISD::AssertZext;
9550 
9551         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9552                                              PartVT, VT, nullptr,
9553                                              F.getCallingConv(), AssertOp));
9554       }
9555 
9556       i += NumParts;
9557     }
9558 
9559     // We don't need to do anything else for unused arguments.
9560     if (ArgValues.empty())
9561       continue;
9562 
9563     // Note down frame index.
9564     if (FrameIndexSDNode *FI =
9565         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9566       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9567 
9568     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9569                                      SDB->getCurSDLoc());
9570 
9571     SDB->setValue(&Arg, Res);
9572     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9573       // We want to associate the argument with the frame index, among
9574       // involved operands, that correspond to the lowest address. The
9575       // getCopyFromParts function, called earlier, is swapping the order of
9576       // the operands to BUILD_PAIR depending on endianness. The result of
9577       // that swapping is that the least significant bits of the argument will
9578       // be in the first operand of the BUILD_PAIR node, and the most
9579       // significant bits will be in the second operand.
9580       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9581       if (LoadSDNode *LNode =
9582           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9583         if (FrameIndexSDNode *FI =
9584             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9585           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9586     }
9587 
9588     // Update the SwiftErrorVRegDefMap.
9589     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9590       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9591       if (TargetRegisterInfo::isVirtualRegister(Reg))
9592         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9593                                            FuncInfo->SwiftErrorArg, Reg);
9594     }
9595 
9596     // If this argument is live outside of the entry block, insert a copy from
9597     // wherever we got it to the vreg that other BB's will reference it as.
9598     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9599       // If we can, though, try to skip creating an unnecessary vreg.
9600       // FIXME: This isn't very clean... it would be nice to make this more
9601       // general.  It's also subtly incompatible with the hacks FastISel
9602       // uses with vregs.
9603       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9604       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9605         FuncInfo->ValueMap[&Arg] = Reg;
9606         continue;
9607       }
9608     }
9609     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9610       FuncInfo->InitializeRegForValue(&Arg);
9611       SDB->CopyToExportRegsIfNeeded(&Arg);
9612     }
9613   }
9614 
9615   if (!Chains.empty()) {
9616     Chains.push_back(NewRoot);
9617     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9618   }
9619 
9620   DAG.setRoot(NewRoot);
9621 
9622   assert(i == InVals.size() && "Argument register count mismatch!");
9623 
9624   // If any argument copy elisions occurred and we have debug info, update the
9625   // stale frame indices used in the dbg.declare variable info table.
9626   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9627   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9628     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9629       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9630       if (I != ArgCopyElisionFrameIndexMap.end())
9631         VI.Slot = I->second;
9632     }
9633   }
9634 
9635   // Finally, if the target has anything special to do, allow it to do so.
9636   EmitFunctionEntryCode();
9637 }
9638 
9639 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9640 /// ensure constants are generated when needed.  Remember the virtual registers
9641 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9642 /// directly add them, because expansion might result in multiple MBB's for one
9643 /// BB.  As such, the start of the BB might correspond to a different MBB than
9644 /// the end.
9645 void
9646 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9647   const Instruction *TI = LLVMBB->getTerminator();
9648 
9649   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9650 
9651   // Check PHI nodes in successors that expect a value to be available from this
9652   // block.
9653   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9654     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9655     if (!isa<PHINode>(SuccBB->begin())) continue;
9656     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9657 
9658     // If this terminator has multiple identical successors (common for
9659     // switches), only handle each succ once.
9660     if (!SuccsHandled.insert(SuccMBB).second)
9661       continue;
9662 
9663     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9664 
9665     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9666     // nodes and Machine PHI nodes, but the incoming operands have not been
9667     // emitted yet.
9668     for (const PHINode &PN : SuccBB->phis()) {
9669       // Ignore dead phi's.
9670       if (PN.use_empty())
9671         continue;
9672 
9673       // Skip empty types
9674       if (PN.getType()->isEmptyTy())
9675         continue;
9676 
9677       unsigned Reg;
9678       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9679 
9680       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9681         unsigned &RegOut = ConstantsOut[C];
9682         if (RegOut == 0) {
9683           RegOut = FuncInfo.CreateRegs(C->getType());
9684           CopyValueToVirtualRegister(C, RegOut);
9685         }
9686         Reg = RegOut;
9687       } else {
9688         DenseMap<const Value *, unsigned>::iterator I =
9689           FuncInfo.ValueMap.find(PHIOp);
9690         if (I != FuncInfo.ValueMap.end())
9691           Reg = I->second;
9692         else {
9693           assert(isa<AllocaInst>(PHIOp) &&
9694                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9695                  "Didn't codegen value into a register!??");
9696           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9697           CopyValueToVirtualRegister(PHIOp, Reg);
9698         }
9699       }
9700 
9701       // Remember that this register needs to added to the machine PHI node as
9702       // the input for this MBB.
9703       SmallVector<EVT, 4> ValueVTs;
9704       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9705       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9706       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9707         EVT VT = ValueVTs[vti];
9708         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9709         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9710           FuncInfo.PHINodesToUpdate.push_back(
9711               std::make_pair(&*MBBI++, Reg + i));
9712         Reg += NumRegisters;
9713       }
9714     }
9715   }
9716 
9717   ConstantsOut.clear();
9718 }
9719 
9720 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9721 /// is 0.
9722 MachineBasicBlock *
9723 SelectionDAGBuilder::StackProtectorDescriptor::
9724 AddSuccessorMBB(const BasicBlock *BB,
9725                 MachineBasicBlock *ParentMBB,
9726                 bool IsLikely,
9727                 MachineBasicBlock *SuccMBB) {
9728   // If SuccBB has not been created yet, create it.
9729   if (!SuccMBB) {
9730     MachineFunction *MF = ParentMBB->getParent();
9731     MachineFunction::iterator BBI(ParentMBB);
9732     SuccMBB = MF->CreateMachineBasicBlock(BB);
9733     MF->insert(++BBI, SuccMBB);
9734   }
9735   // Add it as a successor of ParentMBB.
9736   ParentMBB->addSuccessor(
9737       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9738   return SuccMBB;
9739 }
9740 
9741 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9742   MachineFunction::iterator I(MBB);
9743   if (++I == FuncInfo.MF->end())
9744     return nullptr;
9745   return &*I;
9746 }
9747 
9748 /// During lowering new call nodes can be created (such as memset, etc.).
9749 /// Those will become new roots of the current DAG, but complications arise
9750 /// when they are tail calls. In such cases, the call lowering will update
9751 /// the root, but the builder still needs to know that a tail call has been
9752 /// lowered in order to avoid generating an additional return.
9753 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9754   // If the node is null, we do have a tail call.
9755   if (MaybeTC.getNode() != nullptr)
9756     DAG.setRoot(MaybeTC);
9757   else
9758     HasTailCall = true;
9759 }
9760 
9761 uint64_t
9762 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9763                                        unsigned First, unsigned Last) const {
9764   assert(Last >= First);
9765   const APInt &LowCase = Clusters[First].Low->getValue();
9766   const APInt &HighCase = Clusters[Last].High->getValue();
9767   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9768 
9769   // FIXME: A range of consecutive cases has 100% density, but only requires one
9770   // comparison to lower. We should discriminate against such consecutive ranges
9771   // in jump tables.
9772 
9773   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9774 }
9775 
9776 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9777     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9778     unsigned Last) const {
9779   assert(Last >= First);
9780   assert(TotalCases[Last] >= TotalCases[First]);
9781   uint64_t NumCases =
9782       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9783   return NumCases;
9784 }
9785 
9786 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9787                                          unsigned First, unsigned Last,
9788                                          const SwitchInst *SI,
9789                                          MachineBasicBlock *DefaultMBB,
9790                                          CaseCluster &JTCluster) {
9791   assert(First <= Last);
9792 
9793   auto Prob = BranchProbability::getZero();
9794   unsigned NumCmps = 0;
9795   std::vector<MachineBasicBlock*> Table;
9796   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9797 
9798   // Initialize probabilities in JTProbs.
9799   for (unsigned I = First; I <= Last; ++I)
9800     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9801 
9802   for (unsigned I = First; I <= Last; ++I) {
9803     assert(Clusters[I].Kind == CC_Range);
9804     Prob += Clusters[I].Prob;
9805     const APInt &Low = Clusters[I].Low->getValue();
9806     const APInt &High = Clusters[I].High->getValue();
9807     NumCmps += (Low == High) ? 1 : 2;
9808     if (I != First) {
9809       // Fill the gap between this and the previous cluster.
9810       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9811       assert(PreviousHigh.slt(Low));
9812       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9813       for (uint64_t J = 0; J < Gap; J++)
9814         Table.push_back(DefaultMBB);
9815     }
9816     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9817     for (uint64_t J = 0; J < ClusterSize; ++J)
9818       Table.push_back(Clusters[I].MBB);
9819     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9820   }
9821 
9822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9823   unsigned NumDests = JTProbs.size();
9824   if (TLI.isSuitableForBitTests(
9825           NumDests, NumCmps, Clusters[First].Low->getValue(),
9826           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9827     // Clusters[First..Last] should be lowered as bit tests instead.
9828     return false;
9829   }
9830 
9831   // Create the MBB that will load from and jump through the table.
9832   // Note: We create it here, but it's not inserted into the function yet.
9833   MachineFunction *CurMF = FuncInfo.MF;
9834   MachineBasicBlock *JumpTableMBB =
9835       CurMF->CreateMachineBasicBlock(SI->getParent());
9836 
9837   // Add successors. Note: use table order for determinism.
9838   SmallPtrSet<MachineBasicBlock *, 8> Done;
9839   for (MachineBasicBlock *Succ : Table) {
9840     if (Done.count(Succ))
9841       continue;
9842     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9843     Done.insert(Succ);
9844   }
9845   JumpTableMBB->normalizeSuccProbs();
9846 
9847   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9848                      ->createJumpTableIndex(Table);
9849 
9850   // Set up the jump table info.
9851   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9852   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9853                       Clusters[Last].High->getValue(), SI->getCondition(),
9854                       nullptr, false);
9855   JTCases.emplace_back(std::move(JTH), std::move(JT));
9856 
9857   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9858                                      JTCases.size() - 1, Prob);
9859   return true;
9860 }
9861 
9862 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9863                                          const SwitchInst *SI,
9864                                          MachineBasicBlock *DefaultMBB) {
9865 #ifndef NDEBUG
9866   // Clusters must be non-empty, sorted, and only contain Range clusters.
9867   assert(!Clusters.empty());
9868   for (CaseCluster &C : Clusters)
9869     assert(C.Kind == CC_Range);
9870   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9871     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9872 #endif
9873 
9874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9875   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9876     return;
9877 
9878   const int64_t N = Clusters.size();
9879   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9880   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9881 
9882   if (N < 2 || N < MinJumpTableEntries)
9883     return;
9884 
9885   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9886   SmallVector<unsigned, 8> TotalCases(N);
9887   for (unsigned i = 0; i < N; ++i) {
9888     const APInt &Hi = Clusters[i].High->getValue();
9889     const APInt &Lo = Clusters[i].Low->getValue();
9890     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9891     if (i != 0)
9892       TotalCases[i] += TotalCases[i - 1];
9893   }
9894 
9895   // Cheap case: the whole range may be suitable for jump table.
9896   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9897   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9898   assert(NumCases < UINT64_MAX / 100);
9899   assert(Range >= NumCases);
9900   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9901     CaseCluster JTCluster;
9902     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9903       Clusters[0] = JTCluster;
9904       Clusters.resize(1);
9905       return;
9906     }
9907   }
9908 
9909   // The algorithm below is not suitable for -O0.
9910   if (TM.getOptLevel() == CodeGenOpt::None)
9911     return;
9912 
9913   // Split Clusters into minimum number of dense partitions. The algorithm uses
9914   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9915   // for the Case Statement'" (1994), but builds the MinPartitions array in
9916   // reverse order to make it easier to reconstruct the partitions in ascending
9917   // order. In the choice between two optimal partitionings, it picks the one
9918   // which yields more jump tables.
9919 
9920   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9921   SmallVector<unsigned, 8> MinPartitions(N);
9922   // LastElement[i] is the last element of the partition starting at i.
9923   SmallVector<unsigned, 8> LastElement(N);
9924   // PartitionsScore[i] is used to break ties when choosing between two
9925   // partitionings resulting in the same number of partitions.
9926   SmallVector<unsigned, 8> PartitionsScore(N);
9927   // For PartitionsScore, a small number of comparisons is considered as good as
9928   // a jump table and a single comparison is considered better than a jump
9929   // table.
9930   enum PartitionScores : unsigned {
9931     NoTable = 0,
9932     Table = 1,
9933     FewCases = 1,
9934     SingleCase = 2
9935   };
9936 
9937   // Base case: There is only one way to partition Clusters[N-1].
9938   MinPartitions[N - 1] = 1;
9939   LastElement[N - 1] = N - 1;
9940   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9941 
9942   // Note: loop indexes are signed to avoid underflow.
9943   for (int64_t i = N - 2; i >= 0; i--) {
9944     // Find optimal partitioning of Clusters[i..N-1].
9945     // Baseline: Put Clusters[i] into a partition on its own.
9946     MinPartitions[i] = MinPartitions[i + 1] + 1;
9947     LastElement[i] = i;
9948     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9949 
9950     // Search for a solution that results in fewer partitions.
9951     for (int64_t j = N - 1; j > i; j--) {
9952       // Try building a partition from Clusters[i..j].
9953       uint64_t Range = getJumpTableRange(Clusters, i, j);
9954       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9955       assert(NumCases < UINT64_MAX / 100);
9956       assert(Range >= NumCases);
9957       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9958         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9959         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9960         int64_t NumEntries = j - i + 1;
9961 
9962         if (NumEntries == 1)
9963           Score += PartitionScores::SingleCase;
9964         else if (NumEntries <= SmallNumberOfEntries)
9965           Score += PartitionScores::FewCases;
9966         else if (NumEntries >= MinJumpTableEntries)
9967           Score += PartitionScores::Table;
9968 
9969         // If this leads to fewer partitions, or to the same number of
9970         // partitions with better score, it is a better partitioning.
9971         if (NumPartitions < MinPartitions[i] ||
9972             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9973           MinPartitions[i] = NumPartitions;
9974           LastElement[i] = j;
9975           PartitionsScore[i] = Score;
9976         }
9977       }
9978     }
9979   }
9980 
9981   // Iterate over the partitions, replacing some with jump tables in-place.
9982   unsigned DstIndex = 0;
9983   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9984     Last = LastElement[First];
9985     assert(Last >= First);
9986     assert(DstIndex <= First);
9987     unsigned NumClusters = Last - First + 1;
9988 
9989     CaseCluster JTCluster;
9990     if (NumClusters >= MinJumpTableEntries &&
9991         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9992       Clusters[DstIndex++] = JTCluster;
9993     } else {
9994       for (unsigned I = First; I <= Last; ++I)
9995         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9996     }
9997   }
9998   Clusters.resize(DstIndex);
9999 }
10000 
10001 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10002                                         unsigned First, unsigned Last,
10003                                         const SwitchInst *SI,
10004                                         CaseCluster &BTCluster) {
10005   assert(First <= Last);
10006   if (First == Last)
10007     return false;
10008 
10009   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10010   unsigned NumCmps = 0;
10011   for (int64_t I = First; I <= Last; ++I) {
10012     assert(Clusters[I].Kind == CC_Range);
10013     Dests.set(Clusters[I].MBB->getNumber());
10014     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10015   }
10016   unsigned NumDests = Dests.count();
10017 
10018   APInt Low = Clusters[First].Low->getValue();
10019   APInt High = Clusters[Last].High->getValue();
10020   assert(Low.slt(High));
10021 
10022   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10023   const DataLayout &DL = DAG.getDataLayout();
10024   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10025     return false;
10026 
10027   APInt LowBound;
10028   APInt CmpRange;
10029 
10030   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10031   assert(TLI.rangeFitsInWord(Low, High, DL) &&
10032          "Case range must fit in bit mask!");
10033 
10034   // Check if the clusters cover a contiguous range such that no value in the
10035   // range will jump to the default statement.
10036   bool ContiguousRange = true;
10037   for (int64_t I = First + 1; I <= Last; ++I) {
10038     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10039       ContiguousRange = false;
10040       break;
10041     }
10042   }
10043 
10044   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10045     // Optimize the case where all the case values fit in a word without having
10046     // to subtract minValue. In this case, we can optimize away the subtraction.
10047     LowBound = APInt::getNullValue(Low.getBitWidth());
10048     CmpRange = High;
10049     ContiguousRange = false;
10050   } else {
10051     LowBound = Low;
10052     CmpRange = High - Low;
10053   }
10054 
10055   CaseBitsVector CBV;
10056   auto TotalProb = BranchProbability::getZero();
10057   for (unsigned i = First; i <= Last; ++i) {
10058     // Find the CaseBits for this destination.
10059     unsigned j;
10060     for (j = 0; j < CBV.size(); ++j)
10061       if (CBV[j].BB == Clusters[i].MBB)
10062         break;
10063     if (j == CBV.size())
10064       CBV.push_back(
10065           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10066     CaseBits *CB = &CBV[j];
10067 
10068     // Update Mask, Bits and ExtraProb.
10069     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10070     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10071     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10072     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10073     CB->Bits += Hi - Lo + 1;
10074     CB->ExtraProb += Clusters[i].Prob;
10075     TotalProb += Clusters[i].Prob;
10076   }
10077 
10078   BitTestInfo BTI;
10079   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10080     // Sort by probability first, number of bits second, bit mask third.
10081     if (a.ExtraProb != b.ExtraProb)
10082       return a.ExtraProb > b.ExtraProb;
10083     if (a.Bits != b.Bits)
10084       return a.Bits > b.Bits;
10085     return a.Mask < b.Mask;
10086   });
10087 
10088   for (auto &CB : CBV) {
10089     MachineBasicBlock *BitTestBB =
10090         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10091     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10092   }
10093   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10094                             SI->getCondition(), -1U, MVT::Other, false,
10095                             ContiguousRange, nullptr, nullptr, std::move(BTI),
10096                             TotalProb);
10097 
10098   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10099                                     BitTestCases.size() - 1, TotalProb);
10100   return true;
10101 }
10102 
10103 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10104                                               const SwitchInst *SI) {
10105 // Partition Clusters into as few subsets as possible, where each subset has a
10106 // range that fits in a machine word and has <= 3 unique destinations.
10107 
10108 #ifndef NDEBUG
10109   // Clusters must be sorted and contain Range or JumpTable clusters.
10110   assert(!Clusters.empty());
10111   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10112   for (const CaseCluster &C : Clusters)
10113     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10114   for (unsigned i = 1; i < Clusters.size(); ++i)
10115     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10116 #endif
10117 
10118   // The algorithm below is not suitable for -O0.
10119   if (TM.getOptLevel() == CodeGenOpt::None)
10120     return;
10121 
10122   // If target does not have legal shift left, do not emit bit tests at all.
10123   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10124   const DataLayout &DL = DAG.getDataLayout();
10125 
10126   EVT PTy = TLI.getPointerTy(DL);
10127   if (!TLI.isOperationLegal(ISD::SHL, PTy))
10128     return;
10129 
10130   int BitWidth = PTy.getSizeInBits();
10131   const int64_t N = Clusters.size();
10132 
10133   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10134   SmallVector<unsigned, 8> MinPartitions(N);
10135   // LastElement[i] is the last element of the partition starting at i.
10136   SmallVector<unsigned, 8> LastElement(N);
10137 
10138   // FIXME: This might not be the best algorithm for finding bit test clusters.
10139 
10140   // Base case: There is only one way to partition Clusters[N-1].
10141   MinPartitions[N - 1] = 1;
10142   LastElement[N - 1] = N - 1;
10143 
10144   // Note: loop indexes are signed to avoid underflow.
10145   for (int64_t i = N - 2; i >= 0; --i) {
10146     // Find optimal partitioning of Clusters[i..N-1].
10147     // Baseline: Put Clusters[i] into a partition on its own.
10148     MinPartitions[i] = MinPartitions[i + 1] + 1;
10149     LastElement[i] = i;
10150 
10151     // Search for a solution that results in fewer partitions.
10152     // Note: the search is limited by BitWidth, reducing time complexity.
10153     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10154       // Try building a partition from Clusters[i..j].
10155 
10156       // Check the range.
10157       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10158                                Clusters[j].High->getValue(), DL))
10159         continue;
10160 
10161       // Check nbr of destinations and cluster types.
10162       // FIXME: This works, but doesn't seem very efficient.
10163       bool RangesOnly = true;
10164       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10165       for (int64_t k = i; k <= j; k++) {
10166         if (Clusters[k].Kind != CC_Range) {
10167           RangesOnly = false;
10168           break;
10169         }
10170         Dests.set(Clusters[k].MBB->getNumber());
10171       }
10172       if (!RangesOnly || Dests.count() > 3)
10173         break;
10174 
10175       // Check if it's a better partition.
10176       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10177       if (NumPartitions < MinPartitions[i]) {
10178         // Found a better partition.
10179         MinPartitions[i] = NumPartitions;
10180         LastElement[i] = j;
10181       }
10182     }
10183   }
10184 
10185   // Iterate over the partitions, replacing with bit-test clusters in-place.
10186   unsigned DstIndex = 0;
10187   for (unsigned First = 0, Last; First < N; First = Last + 1) {
10188     Last = LastElement[First];
10189     assert(First <= Last);
10190     assert(DstIndex <= First);
10191 
10192     CaseCluster BitTestCluster;
10193     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10194       Clusters[DstIndex++] = BitTestCluster;
10195     } else {
10196       size_t NumClusters = Last - First + 1;
10197       std::memmove(&Clusters[DstIndex], &Clusters[First],
10198                    sizeof(Clusters[0]) * NumClusters);
10199       DstIndex += NumClusters;
10200     }
10201   }
10202   Clusters.resize(DstIndex);
10203 }
10204 
10205 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10206                                         MachineBasicBlock *SwitchMBB,
10207                                         MachineBasicBlock *DefaultMBB) {
10208   MachineFunction *CurMF = FuncInfo.MF;
10209   MachineBasicBlock *NextMBB = nullptr;
10210   MachineFunction::iterator BBI(W.MBB);
10211   if (++BBI != FuncInfo.MF->end())
10212     NextMBB = &*BBI;
10213 
10214   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10215 
10216   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10217 
10218   if (Size == 2 && W.MBB == SwitchMBB) {
10219     // If any two of the cases has the same destination, and if one value
10220     // is the same as the other, but has one bit unset that the other has set,
10221     // use bit manipulation to do two compares at once.  For example:
10222     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10223     // TODO: This could be extended to merge any 2 cases in switches with 3
10224     // cases.
10225     // TODO: Handle cases where W.CaseBB != SwitchBB.
10226     CaseCluster &Small = *W.FirstCluster;
10227     CaseCluster &Big = *W.LastCluster;
10228 
10229     if (Small.Low == Small.High && Big.Low == Big.High &&
10230         Small.MBB == Big.MBB) {
10231       const APInt &SmallValue = Small.Low->getValue();
10232       const APInt &BigValue = Big.Low->getValue();
10233 
10234       // Check that there is only one bit different.
10235       APInt CommonBit = BigValue ^ SmallValue;
10236       if (CommonBit.isPowerOf2()) {
10237         SDValue CondLHS = getValue(Cond);
10238         EVT VT = CondLHS.getValueType();
10239         SDLoc DL = getCurSDLoc();
10240 
10241         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10242                                  DAG.getConstant(CommonBit, DL, VT));
10243         SDValue Cond = DAG.getSetCC(
10244             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10245             ISD::SETEQ);
10246 
10247         // Update successor info.
10248         // Both Small and Big will jump to Small.BB, so we sum up the
10249         // probabilities.
10250         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10251         if (BPI)
10252           addSuccessorWithProb(
10253               SwitchMBB, DefaultMBB,
10254               // The default destination is the first successor in IR.
10255               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10256         else
10257           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10258 
10259         // Insert the true branch.
10260         SDValue BrCond =
10261             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10262                         DAG.getBasicBlock(Small.MBB));
10263         // Insert the false branch.
10264         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10265                              DAG.getBasicBlock(DefaultMBB));
10266 
10267         DAG.setRoot(BrCond);
10268         return;
10269       }
10270     }
10271   }
10272 
10273   if (TM.getOptLevel() != CodeGenOpt::None) {
10274     // Here, we order cases by probability so the most likely case will be
10275     // checked first. However, two clusters can have the same probability in
10276     // which case their relative ordering is non-deterministic. So we use Low
10277     // as a tie-breaker as clusters are guaranteed to never overlap.
10278     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10279                [](const CaseCluster &a, const CaseCluster &b) {
10280       return a.Prob != b.Prob ?
10281              a.Prob > b.Prob :
10282              a.Low->getValue().slt(b.Low->getValue());
10283     });
10284 
10285     // Rearrange the case blocks so that the last one falls through if possible
10286     // without changing the order of probabilities.
10287     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10288       --I;
10289       if (I->Prob > W.LastCluster->Prob)
10290         break;
10291       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10292         std::swap(*I, *W.LastCluster);
10293         break;
10294       }
10295     }
10296   }
10297 
10298   // Compute total probability.
10299   BranchProbability DefaultProb = W.DefaultProb;
10300   BranchProbability UnhandledProbs = DefaultProb;
10301   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10302     UnhandledProbs += I->Prob;
10303 
10304   MachineBasicBlock *CurMBB = W.MBB;
10305   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10306     MachineBasicBlock *Fallthrough;
10307     if (I == W.LastCluster) {
10308       // For the last cluster, fall through to the default destination.
10309       Fallthrough = DefaultMBB;
10310     } else {
10311       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10312       CurMF->insert(BBI, Fallthrough);
10313       // Put Cond in a virtual register to make it available from the new blocks.
10314       ExportFromCurrentBlock(Cond);
10315     }
10316     UnhandledProbs -= I->Prob;
10317 
10318     switch (I->Kind) {
10319       case CC_JumpTable: {
10320         // FIXME: Optimize away range check based on pivot comparisons.
10321         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10322         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10323 
10324         // The jump block hasn't been inserted yet; insert it here.
10325         MachineBasicBlock *JumpMBB = JT->MBB;
10326         CurMF->insert(BBI, JumpMBB);
10327 
10328         auto JumpProb = I->Prob;
10329         auto FallthroughProb = UnhandledProbs;
10330 
10331         // If the default statement is a target of the jump table, we evenly
10332         // distribute the default probability to successors of CurMBB. Also
10333         // update the probability on the edge from JumpMBB to Fallthrough.
10334         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10335                                               SE = JumpMBB->succ_end();
10336              SI != SE; ++SI) {
10337           if (*SI == DefaultMBB) {
10338             JumpProb += DefaultProb / 2;
10339             FallthroughProb -= DefaultProb / 2;
10340             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10341             JumpMBB->normalizeSuccProbs();
10342             break;
10343           }
10344         }
10345 
10346         if (Fallthrough == DefaultMBB &&
10347             isa<UnreachableInst>(
10348                 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg())) {
10349           // Skip the range check if the fallthrough block is unreachable.
10350           JTH->OmitRangeCheck = true;
10351         }
10352 
10353         if (!JTH->OmitRangeCheck)
10354           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10355         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10356         CurMBB->normalizeSuccProbs();
10357 
10358         // The jump table header will be inserted in our current block, do the
10359         // range check, and fall through to our fallthrough block.
10360         JTH->HeaderBB = CurMBB;
10361         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10362 
10363         // If we're in the right place, emit the jump table header right now.
10364         if (CurMBB == SwitchMBB) {
10365           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10366           JTH->Emitted = true;
10367         }
10368         break;
10369       }
10370       case CC_BitTests: {
10371         // FIXME: Optimize away range check based on pivot comparisons.
10372         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10373 
10374         // The bit test blocks haven't been inserted yet; insert them here.
10375         for (BitTestCase &BTC : BTB->Cases)
10376           CurMF->insert(BBI, BTC.ThisBB);
10377 
10378         // Fill in fields of the BitTestBlock.
10379         BTB->Parent = CurMBB;
10380         BTB->Default = Fallthrough;
10381 
10382         BTB->DefaultProb = UnhandledProbs;
10383         // If the cases in bit test don't form a contiguous range, we evenly
10384         // distribute the probability on the edge to Fallthrough to two
10385         // successors of CurMBB.
10386         if (!BTB->ContiguousRange) {
10387           BTB->Prob += DefaultProb / 2;
10388           BTB->DefaultProb -= DefaultProb / 2;
10389         }
10390 
10391         // If we're in the right place, emit the bit test header right now.
10392         if (CurMBB == SwitchMBB) {
10393           visitBitTestHeader(*BTB, SwitchMBB);
10394           BTB->Emitted = true;
10395         }
10396         break;
10397       }
10398       case CC_Range: {
10399         const Value *RHS, *LHS, *MHS;
10400         ISD::CondCode CC;
10401         if (I->Low == I->High) {
10402           // Check Cond == I->Low.
10403           CC = ISD::SETEQ;
10404           LHS = Cond;
10405           RHS=I->Low;
10406           MHS = nullptr;
10407         } else {
10408           // Check I->Low <= Cond <= I->High.
10409           CC = ISD::SETLE;
10410           LHS = I->Low;
10411           MHS = Cond;
10412           RHS = I->High;
10413         }
10414 
10415         // The false probability is the sum of all unhandled cases.
10416         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10417                      getCurSDLoc(), I->Prob, UnhandledProbs);
10418 
10419         if (CurMBB == SwitchMBB)
10420           visitSwitchCase(CB, SwitchMBB);
10421         else
10422           SwitchCases.push_back(CB);
10423 
10424         break;
10425       }
10426     }
10427     CurMBB = Fallthrough;
10428   }
10429 }
10430 
10431 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10432                                               CaseClusterIt First,
10433                                               CaseClusterIt Last) {
10434   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10435     if (X.Prob != CC.Prob)
10436       return X.Prob > CC.Prob;
10437 
10438     // Ties are broken by comparing the case value.
10439     return X.Low->getValue().slt(CC.Low->getValue());
10440   });
10441 }
10442 
10443 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10444                                         const SwitchWorkListItem &W,
10445                                         Value *Cond,
10446                                         MachineBasicBlock *SwitchMBB) {
10447   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10448          "Clusters not sorted?");
10449 
10450   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10451 
10452   // Balance the tree based on branch probabilities to create a near-optimal (in
10453   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10454   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10455   CaseClusterIt LastLeft = W.FirstCluster;
10456   CaseClusterIt FirstRight = W.LastCluster;
10457   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10458   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10459 
10460   // Move LastLeft and FirstRight towards each other from opposite directions to
10461   // find a partitioning of the clusters which balances the probability on both
10462   // sides. If LeftProb and RightProb are equal, alternate which side is
10463   // taken to ensure 0-probability nodes are distributed evenly.
10464   unsigned I = 0;
10465   while (LastLeft + 1 < FirstRight) {
10466     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10467       LeftProb += (++LastLeft)->Prob;
10468     else
10469       RightProb += (--FirstRight)->Prob;
10470     I++;
10471   }
10472 
10473   while (true) {
10474     // Our binary search tree differs from a typical BST in that ours can have up
10475     // to three values in each leaf. The pivot selection above doesn't take that
10476     // into account, which means the tree might require more nodes and be less
10477     // efficient. We compensate for this here.
10478 
10479     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10480     unsigned NumRight = W.LastCluster - FirstRight + 1;
10481 
10482     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10483       // If one side has less than 3 clusters, and the other has more than 3,
10484       // consider taking a cluster from the other side.
10485 
10486       if (NumLeft < NumRight) {
10487         // Consider moving the first cluster on the right to the left side.
10488         CaseCluster &CC = *FirstRight;
10489         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10490         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10491         if (LeftSideRank <= RightSideRank) {
10492           // Moving the cluster to the left does not demote it.
10493           ++LastLeft;
10494           ++FirstRight;
10495           continue;
10496         }
10497       } else {
10498         assert(NumRight < NumLeft);
10499         // Consider moving the last element on the left to the right side.
10500         CaseCluster &CC = *LastLeft;
10501         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10502         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10503         if (RightSideRank <= LeftSideRank) {
10504           // Moving the cluster to the right does not demot it.
10505           --LastLeft;
10506           --FirstRight;
10507           continue;
10508         }
10509       }
10510     }
10511     break;
10512   }
10513 
10514   assert(LastLeft + 1 == FirstRight);
10515   assert(LastLeft >= W.FirstCluster);
10516   assert(FirstRight <= W.LastCluster);
10517 
10518   // Use the first element on the right as pivot since we will make less-than
10519   // comparisons against it.
10520   CaseClusterIt PivotCluster = FirstRight;
10521   assert(PivotCluster > W.FirstCluster);
10522   assert(PivotCluster <= W.LastCluster);
10523 
10524   CaseClusterIt FirstLeft = W.FirstCluster;
10525   CaseClusterIt LastRight = W.LastCluster;
10526 
10527   const ConstantInt *Pivot = PivotCluster->Low;
10528 
10529   // New blocks will be inserted immediately after the current one.
10530   MachineFunction::iterator BBI(W.MBB);
10531   ++BBI;
10532 
10533   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10534   // we can branch to its destination directly if it's squeezed exactly in
10535   // between the known lower bound and Pivot - 1.
10536   MachineBasicBlock *LeftMBB;
10537   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10538       FirstLeft->Low == W.GE &&
10539       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10540     LeftMBB = FirstLeft->MBB;
10541   } else {
10542     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10543     FuncInfo.MF->insert(BBI, LeftMBB);
10544     WorkList.push_back(
10545         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10546     // Put Cond in a virtual register to make it available from the new blocks.
10547     ExportFromCurrentBlock(Cond);
10548   }
10549 
10550   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10551   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10552   // directly if RHS.High equals the current upper bound.
10553   MachineBasicBlock *RightMBB;
10554   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10555       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10556     RightMBB = FirstRight->MBB;
10557   } else {
10558     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10559     FuncInfo.MF->insert(BBI, RightMBB);
10560     WorkList.push_back(
10561         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10562     // Put Cond in a virtual register to make it available from the new blocks.
10563     ExportFromCurrentBlock(Cond);
10564   }
10565 
10566   // Create the CaseBlock record that will be used to lower the branch.
10567   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10568                getCurSDLoc(), LeftProb, RightProb);
10569 
10570   if (W.MBB == SwitchMBB)
10571     visitSwitchCase(CB, SwitchMBB);
10572   else
10573     SwitchCases.push_back(CB);
10574 }
10575 
10576 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10577 // from the swith statement.
10578 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10579                                             BranchProbability PeeledCaseProb) {
10580   if (PeeledCaseProb == BranchProbability::getOne())
10581     return BranchProbability::getZero();
10582   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10583 
10584   uint32_t Numerator = CaseProb.getNumerator();
10585   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10586   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10587 }
10588 
10589 // Try to peel the top probability case if it exceeds the threshold.
10590 // Return current MachineBasicBlock for the switch statement if the peeling
10591 // does not occur.
10592 // If the peeling is performed, return the newly created MachineBasicBlock
10593 // for the peeled switch statement. Also update Clusters to remove the peeled
10594 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10595 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10596     const SwitchInst &SI, CaseClusterVector &Clusters,
10597     BranchProbability &PeeledCaseProb) {
10598   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10599   // Don't perform if there is only one cluster or optimizing for size.
10600   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10601       TM.getOptLevel() == CodeGenOpt::None ||
10602       SwitchMBB->getParent()->getFunction().optForMinSize())
10603     return SwitchMBB;
10604 
10605   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10606   unsigned PeeledCaseIndex = 0;
10607   bool SwitchPeeled = false;
10608   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10609     CaseCluster &CC = Clusters[Index];
10610     if (CC.Prob < TopCaseProb)
10611       continue;
10612     TopCaseProb = CC.Prob;
10613     PeeledCaseIndex = Index;
10614     SwitchPeeled = true;
10615   }
10616   if (!SwitchPeeled)
10617     return SwitchMBB;
10618 
10619   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10620                     << TopCaseProb << "\n");
10621 
10622   // Record the MBB for the peeled switch statement.
10623   MachineFunction::iterator BBI(SwitchMBB);
10624   ++BBI;
10625   MachineBasicBlock *PeeledSwitchMBB =
10626       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10627   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10628 
10629   ExportFromCurrentBlock(SI.getCondition());
10630   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10631   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10632                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10633   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10634 
10635   Clusters.erase(PeeledCaseIt);
10636   for (CaseCluster &CC : Clusters) {
10637     LLVM_DEBUG(
10638         dbgs() << "Scale the probablity for one cluster, before scaling: "
10639                << CC.Prob << "\n");
10640     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10641     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10642   }
10643   PeeledCaseProb = TopCaseProb;
10644   return PeeledSwitchMBB;
10645 }
10646 
10647 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10648   // Extract cases from the switch.
10649   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10650   CaseClusterVector Clusters;
10651   Clusters.reserve(SI.getNumCases());
10652   for (auto I : SI.cases()) {
10653     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10654     const ConstantInt *CaseVal = I.getCaseValue();
10655     BranchProbability Prob =
10656         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10657             : BranchProbability(1, SI.getNumCases() + 1);
10658     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10659   }
10660 
10661   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10662 
10663   // Cluster adjacent cases with the same destination. We do this at all
10664   // optimization levels because it's cheap to do and will make codegen faster
10665   // if there are many clusters.
10666   sortAndRangeify(Clusters);
10667 
10668   // The branch probablity of the peeled case.
10669   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10670   MachineBasicBlock *PeeledSwitchMBB =
10671       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10672 
10673   // If there is only the default destination, jump there directly.
10674   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10675   if (Clusters.empty()) {
10676     assert(PeeledSwitchMBB == SwitchMBB);
10677     SwitchMBB->addSuccessor(DefaultMBB);
10678     if (DefaultMBB != NextBlock(SwitchMBB)) {
10679       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10680                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10681     }
10682     return;
10683   }
10684 
10685   findJumpTables(Clusters, &SI, DefaultMBB);
10686   findBitTestClusters(Clusters, &SI);
10687 
10688   LLVM_DEBUG({
10689     dbgs() << "Case clusters: ";
10690     for (const CaseCluster &C : Clusters) {
10691       if (C.Kind == CC_JumpTable)
10692         dbgs() << "JT:";
10693       if (C.Kind == CC_BitTests)
10694         dbgs() << "BT:";
10695 
10696       C.Low->getValue().print(dbgs(), true);
10697       if (C.Low != C.High) {
10698         dbgs() << '-';
10699         C.High->getValue().print(dbgs(), true);
10700       }
10701       dbgs() << ' ';
10702     }
10703     dbgs() << '\n';
10704   });
10705 
10706   assert(!Clusters.empty());
10707   SwitchWorkList WorkList;
10708   CaseClusterIt First = Clusters.begin();
10709   CaseClusterIt Last = Clusters.end() - 1;
10710   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10711   // Scale the branchprobability for DefaultMBB if the peel occurs and
10712   // DefaultMBB is not replaced.
10713   if (PeeledCaseProb != BranchProbability::getZero() &&
10714       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10715     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10716   WorkList.push_back(
10717       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10718 
10719   while (!WorkList.empty()) {
10720     SwitchWorkListItem W = WorkList.back();
10721     WorkList.pop_back();
10722     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10723 
10724     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10725         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10726       // For optimized builds, lower large range as a balanced binary tree.
10727       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10728       continue;
10729     }
10730 
10731     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10732   }
10733 }
10734