1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetRegisterInfo.h" 48 #include "llvm/Target/TargetData.h" 49 #include "llvm/Target/TargetFrameInfo.h" 50 #include "llvm/Target/TargetInstrInfo.h" 51 #include "llvm/Target/TargetIntrinsicInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static cl::opt<unsigned> 89 MaxParallelChains("dag-chain-limit", cl::desc("Max parallel isel dag chains"), 90 cl::init(64), cl::Hidden); 91 92 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 93 const SDValue *Parts, unsigned NumParts, 94 EVT PartVT, EVT ValueVT); 95 96 /// getCopyFromParts - Create a value that contains the specified legal parts 97 /// combined into the value they represent. If the parts combine to a type 98 /// larger then ValueVT then AssertOp can be used to specify whether the extra 99 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 100 /// (ISD::AssertSext). 101 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 102 const SDValue *Parts, 103 unsigned NumParts, EVT PartVT, EVT ValueVT, 104 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 105 if (ValueVT.isVector()) 106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT); 133 } else { 134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getIntPtrConstant(1)); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 return SDValue(); 214 } 215 216 /// getCopyFromParts - Create a value that contains the specified legal parts 217 /// combined into the value they represent. If the parts combine to a type 218 /// larger then ValueVT then AssertOp can be used to specify whether the extra 219 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 220 /// (ISD::AssertSext). 221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 222 const SDValue *Parts, unsigned NumParts, 223 EVT PartVT, EVT ValueVT) { 224 assert(ValueVT.isVector() && "Not a vector value"); 225 assert(NumParts > 0 && "No parts to assemble!"); 226 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 227 SDValue Val = Parts[0]; 228 229 // Handle a multi-element vector. 230 if (NumParts > 1) { 231 EVT IntermediateVT, RegisterVT; 232 unsigned NumIntermediates; 233 unsigned NumRegs = 234 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 235 NumIntermediates, RegisterVT); 236 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 237 NumParts = NumRegs; // Silence a compiler warning. 238 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 239 assert(RegisterVT == Parts[0].getValueType() && 240 "Part type doesn't match part!"); 241 242 // Assemble the parts into intermediate operands. 243 SmallVector<SDValue, 8> Ops(NumIntermediates); 244 if (NumIntermediates == NumParts) { 245 // If the register was not expanded, truncate or copy the value, 246 // as appropriate. 247 for (unsigned i = 0; i != NumParts; ++i) 248 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 249 PartVT, IntermediateVT); 250 } else if (NumParts > 0) { 251 // If the intermediate type was expanded, build the intermediate 252 // operands from the parts. 253 assert(NumParts % NumIntermediates == 0 && 254 "Must expand into a divisible number of parts!"); 255 unsigned Factor = NumParts / NumIntermediates; 256 for (unsigned i = 0; i != NumIntermediates; ++i) 257 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 258 PartVT, IntermediateVT); 259 } 260 261 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 262 // intermediate operands. 263 Val = DAG.getNode(IntermediateVT.isVector() ? 264 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 265 ValueVT, &Ops[0], NumIntermediates); 266 } 267 268 // There is now one part, held in Val. Correct it to match ValueVT. 269 PartVT = Val.getValueType(); 270 271 if (PartVT == ValueVT) 272 return Val; 273 274 if (PartVT.isVector()) { 275 // If the element type of the source/dest vectors are the same, but the 276 // parts vector has more elements than the value vector, then we have a 277 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 278 // elements we want. 279 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 280 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 281 "Cannot narrow, it would be a lossy transformation"); 282 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 283 DAG.getIntPtrConstant(0)); 284 } 285 286 // Vector/Vector bitcast. 287 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 288 } 289 290 assert(ValueVT.getVectorElementType() == PartVT && 291 ValueVT.getVectorNumElements() == 1 && 292 "Only trivial scalar-to-vector conversions should get here!"); 293 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 294 } 295 296 297 298 299 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 300 SDValue Val, SDValue *Parts, unsigned NumParts, 301 EVT PartVT); 302 303 /// getCopyToParts - Create a series of nodes that contain the specified value 304 /// split into legal parts. If the parts contain more bits than Val, then, for 305 /// integers, ExtendKind can be used to specify how to generate the extra bits. 306 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 307 SDValue Val, SDValue *Parts, unsigned NumParts, 308 EVT PartVT, 309 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 310 EVT ValueVT = Val.getValueType(); 311 312 // Handle the vector case separately. 313 if (ValueVT.isVector()) 314 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 315 316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 317 unsigned PartBits = PartVT.getSizeInBits(); 318 unsigned OrigNumParts = NumParts; 319 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 320 321 if (NumParts == 0) 322 return; 323 324 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 325 if (PartVT == ValueVT) { 326 assert(NumParts == 1 && "No-op copy with multiple parts!"); 327 Parts[0] = Val; 328 return; 329 } 330 331 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 332 // If the parts cover more bits than the value has, promote the value. 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 assert(NumParts == 1 && "Do not know what to promote to!"); 335 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 336 } else { 337 assert(PartVT.isInteger() && ValueVT.isInteger() && 338 "Unknown mismatch!"); 339 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 340 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 341 } 342 } else if (PartBits == ValueVT.getSizeInBits()) { 343 // Different types of the same size. 344 assert(NumParts == 1 && PartVT != ValueVT); 345 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 346 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 347 // If the parts cover less bits than value has, truncate the value. 348 assert(PartVT.isInteger() && ValueVT.isInteger() && 349 "Unknown mismatch!"); 350 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 351 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 352 } 353 354 // The value may have changed - recompute ValueVT. 355 ValueVT = Val.getValueType(); 356 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 357 "Failed to tile the value with PartVT!"); 358 359 if (NumParts == 1) { 360 assert(PartVT == ValueVT && "Type conversion failed!"); 361 Parts[0] = Val; 362 return; 363 } 364 365 // Expand the value into multiple parts. 366 if (NumParts & (NumParts - 1)) { 367 // The number of parts is not a power of 2. Split off and copy the tail. 368 assert(PartVT.isInteger() && ValueVT.isInteger() && 369 "Do not know what to expand to!"); 370 unsigned RoundParts = 1 << Log2_32(NumParts); 371 unsigned RoundBits = RoundParts * PartBits; 372 unsigned OddParts = NumParts - RoundParts; 373 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 374 DAG.getIntPtrConstant(RoundBits)); 375 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 376 377 if (TLI.isBigEndian()) 378 // The odd parts were reversed by getCopyToParts - unreverse them. 379 std::reverse(Parts + RoundParts, Parts + NumParts); 380 381 NumParts = RoundParts; 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 384 } 385 386 // The number of parts is a power of 2. Repeatedly bisect the value using 387 // EXTRACT_ELEMENT. 388 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 389 EVT::getIntegerVT(*DAG.getContext(), 390 ValueVT.getSizeInBits()), 391 Val); 392 393 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 394 for (unsigned i = 0; i < NumParts; i += StepSize) { 395 unsigned ThisBits = StepSize * PartBits / 2; 396 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 397 SDValue &Part0 = Parts[i]; 398 SDValue &Part1 = Parts[i+StepSize/2]; 399 400 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 401 ThisVT, Part0, DAG.getIntPtrConstant(1)); 402 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 403 ThisVT, Part0, DAG.getIntPtrConstant(0)); 404 405 if (ThisBits == PartBits && ThisVT != PartVT) { 406 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 407 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 408 } 409 } 410 } 411 412 if (TLI.isBigEndian()) 413 std::reverse(Parts, Parts + OrigNumParts); 414 } 415 416 417 /// getCopyToPartsVector - Create a series of nodes that contain the specified 418 /// value split into legal parts. 419 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 420 SDValue Val, SDValue *Parts, unsigned NumParts, 421 EVT PartVT) { 422 EVT ValueVT = Val.getValueType(); 423 assert(ValueVT.isVector() && "Not a vector"); 424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 425 426 if (NumParts == 1) { 427 if (PartVT == ValueVT) { 428 // Nothing to do. 429 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 430 // Bitconvert vector->vector case. 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (PartVT.isVector() && 433 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 434 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 435 EVT ElementVT = PartVT.getVectorElementType(); 436 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 437 // undef elements. 438 SmallVector<SDValue, 16> Ops; 439 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 440 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 441 ElementVT, Val, DAG.getIntPtrConstant(i))); 442 443 for (unsigned i = ValueVT.getVectorNumElements(), 444 e = PartVT.getVectorNumElements(); i != e; ++i) 445 Ops.push_back(DAG.getUNDEF(ElementVT)); 446 447 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 448 449 // FIXME: Use CONCAT for 2x -> 4x. 450 451 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 452 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 453 } else { 454 // Vector -> scalar conversion. 455 assert(ValueVT.getVectorElementType() == PartVT && 456 ValueVT.getVectorNumElements() == 1 && 457 "Only trivial vector-to-scalar conversions should get here!"); 458 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 459 PartVT, Val, DAG.getIntPtrConstant(0)); 460 } 461 462 Parts[0] = Val; 463 return; 464 } 465 466 // Handle a multi-element vector. 467 EVT IntermediateVT, RegisterVT; 468 unsigned NumIntermediates; 469 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 470 IntermediateVT, 471 NumIntermediates, RegisterVT); 472 unsigned NumElements = ValueVT.getVectorNumElements(); 473 474 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 475 NumParts = NumRegs; // Silence a compiler warning. 476 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 477 478 // Split the vector into intermediate operands. 479 SmallVector<SDValue, 8> Ops(NumIntermediates); 480 for (unsigned i = 0; i != NumIntermediates; ++i) { 481 if (IntermediateVT.isVector()) 482 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 483 IntermediateVT, Val, 484 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 485 else 486 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 487 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 488 } 489 490 // Split the intermediate operands into legal parts. 491 if (NumParts == NumIntermediates) { 492 // If the register was not expanded, promote or copy the value, 493 // as appropriate. 494 for (unsigned i = 0; i != NumParts; ++i) 495 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 496 } else if (NumParts > 0) { 497 // If the intermediate type was expanded, split each the value into 498 // legal parts. 499 assert(NumParts % NumIntermediates == 0 && 500 "Must expand into a divisible number of parts!"); 501 unsigned Factor = NumParts / NumIntermediates; 502 for (unsigned i = 0; i != NumIntermediates; ++i) 503 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 504 } 505 } 506 507 508 509 510 namespace { 511 /// RegsForValue - This struct represents the registers (physical or virtual) 512 /// that a particular set of values is assigned, and the type information 513 /// about the value. The most common situation is to represent one value at a 514 /// time, but struct or array values are handled element-wise as multiple 515 /// values. The splitting of aggregates is performed recursively, so that we 516 /// never have aggregate-typed registers. The values at this point do not 517 /// necessarily have legal types, so each value may require one or more 518 /// registers of some legal type. 519 /// 520 struct RegsForValue { 521 /// ValueVTs - The value types of the values, which may not be legal, and 522 /// may need be promoted or synthesized from one or more registers. 523 /// 524 SmallVector<EVT, 4> ValueVTs; 525 526 /// RegVTs - The value types of the registers. This is the same size as 527 /// ValueVTs and it records, for each value, what the type of the assigned 528 /// register or registers are. (Individual values are never synthesized 529 /// from more than one type of register.) 530 /// 531 /// With virtual registers, the contents of RegVTs is redundant with TLI's 532 /// getRegisterType member function, however when with physical registers 533 /// it is necessary to have a separate record of the types. 534 /// 535 SmallVector<EVT, 4> RegVTs; 536 537 /// Regs - This list holds the registers assigned to the values. 538 /// Each legal or promoted value requires one register, and each 539 /// expanded value requires multiple registers. 540 /// 541 SmallVector<unsigned, 4> Regs; 542 543 RegsForValue() {} 544 545 RegsForValue(const SmallVector<unsigned, 4> ®s, 546 EVT regvt, EVT valuevt) 547 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 548 549 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 550 unsigned Reg, const Type *Ty) { 551 ComputeValueVTs(tli, Ty, ValueVTs); 552 553 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 554 EVT ValueVT = ValueVTs[Value]; 555 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 556 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 557 for (unsigned i = 0; i != NumRegs; ++i) 558 Regs.push_back(Reg + i); 559 RegVTs.push_back(RegisterVT); 560 Reg += NumRegs; 561 } 562 } 563 564 /// areValueTypesLegal - Return true if types of all the values are legal. 565 bool areValueTypesLegal(const TargetLowering &TLI) { 566 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 567 EVT RegisterVT = RegVTs[Value]; 568 if (!TLI.isTypeLegal(RegisterVT)) 569 return false; 570 } 571 return true; 572 } 573 574 /// append - Add the specified values to this one. 575 void append(const RegsForValue &RHS) { 576 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 577 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 578 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 579 } 580 581 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 582 /// this value and returns the result as a ValueVTs value. This uses 583 /// Chain/Flag as the input and updates them for the output Chain/Flag. 584 /// If the Flag pointer is NULL, no flag is used. 585 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 586 DebugLoc dl, 587 SDValue &Chain, SDValue *Flag) const; 588 589 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 590 /// specified value into the registers specified by this object. This uses 591 /// Chain/Flag as the input and updates them for the output Chain/Flag. 592 /// If the Flag pointer is NULL, no flag is used. 593 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 594 SDValue &Chain, SDValue *Flag) const; 595 596 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 597 /// operand list. This adds the code marker, matching input operand index 598 /// (if applicable), and includes the number of values added into it. 599 void AddInlineAsmOperands(unsigned Kind, 600 bool HasMatching, unsigned MatchingIdx, 601 SelectionDAG &DAG, 602 std::vector<SDValue> &Ops) const; 603 }; 604 } 605 606 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 607 /// this value and returns the result as a ValueVT value. This uses 608 /// Chain/Flag as the input and updates them for the output Chain/Flag. 609 /// If the Flag pointer is NULL, no flag is used. 610 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 611 FunctionLoweringInfo &FuncInfo, 612 DebugLoc dl, 613 SDValue &Chain, SDValue *Flag) const { 614 // A Value with type {} or [0 x %t] needs no registers. 615 if (ValueVTs.empty()) 616 return SDValue(); 617 618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 619 620 // Assemble the legal parts into the final values. 621 SmallVector<SDValue, 4> Values(ValueVTs.size()); 622 SmallVector<SDValue, 8> Parts; 623 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 624 // Copy the legal parts from the registers. 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 627 EVT RegisterVT = RegVTs[Value]; 628 629 Parts.resize(NumRegs); 630 for (unsigned i = 0; i != NumRegs; ++i) { 631 SDValue P; 632 if (Flag == 0) { 633 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 634 } else { 635 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 636 *Flag = P.getValue(2); 637 } 638 639 Chain = P.getValue(1); 640 641 // If the source register was virtual and if we know something about it, 642 // add an assert node. 643 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 644 RegisterVT.isInteger() && !RegisterVT.isVector()) { 645 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 646 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 647 const FunctionLoweringInfo::LiveOutInfo &LOI = 648 FuncInfo.LiveOutRegInfo[SlotNo]; 649 650 unsigned RegSize = RegisterVT.getSizeInBits(); 651 unsigned NumSignBits = LOI.NumSignBits; 652 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 653 654 // FIXME: We capture more information than the dag can represent. For 655 // now, just use the tightest assertzext/assertsext possible. 656 bool isSExt = true; 657 EVT FromVT(MVT::Other); 658 if (NumSignBits == RegSize) 659 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 660 else if (NumZeroBits >= RegSize-1) 661 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 662 else if (NumSignBits > RegSize-8) 663 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 664 else if (NumZeroBits >= RegSize-8) 665 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 666 else if (NumSignBits > RegSize-16) 667 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 668 else if (NumZeroBits >= RegSize-16) 669 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 670 else if (NumSignBits > RegSize-32) 671 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 672 else if (NumZeroBits >= RegSize-32) 673 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 674 675 if (FromVT != MVT::Other) 676 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 677 RegisterVT, P, DAG.getValueType(FromVT)); 678 } 679 } 680 681 Parts[i] = P; 682 } 683 684 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 685 NumRegs, RegisterVT, ValueVT); 686 Part += NumRegs; 687 Parts.clear(); 688 } 689 690 return DAG.getNode(ISD::MERGE_VALUES, dl, 691 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 692 &Values[0], ValueVTs.size()); 693 } 694 695 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 696 /// specified value into the registers specified by this object. This uses 697 /// Chain/Flag as the input and updates them for the output Chain/Flag. 698 /// If the Flag pointer is NULL, no flag is used. 699 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 700 SDValue &Chain, SDValue *Flag) const { 701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 702 703 // Get the list of the values's legal parts. 704 unsigned NumRegs = Regs.size(); 705 SmallVector<SDValue, 8> Parts(NumRegs); 706 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 707 EVT ValueVT = ValueVTs[Value]; 708 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 709 EVT RegisterVT = RegVTs[Value]; 710 711 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 712 &Parts[Part], NumParts, RegisterVT); 713 Part += NumParts; 714 } 715 716 // Copy the parts into the registers. 717 SmallVector<SDValue, 8> Chains(NumRegs); 718 for (unsigned i = 0; i != NumRegs; ++i) { 719 SDValue Part; 720 if (Flag == 0) { 721 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 722 } else { 723 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 724 *Flag = Part.getValue(1); 725 } 726 727 Chains[i] = Part.getValue(0); 728 } 729 730 if (NumRegs == 1 || Flag) 731 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 732 // flagged to it. That is the CopyToReg nodes and the user are considered 733 // a single scheduling unit. If we create a TokenFactor and return it as 734 // chain, then the TokenFactor is both a predecessor (operand) of the 735 // user as well as a successor (the TF operands are flagged to the user). 736 // c1, f1 = CopyToReg 737 // c2, f2 = CopyToReg 738 // c3 = TokenFactor c1, c2 739 // ... 740 // = op c3, ..., f2 741 Chain = Chains[NumRegs-1]; 742 else 743 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 744 } 745 746 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 747 /// operand list. This adds the code marker and includes the number of 748 /// values added into it. 749 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 750 unsigned MatchingIdx, 751 SelectionDAG &DAG, 752 std::vector<SDValue> &Ops) const { 753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 754 755 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 756 if (HasMatching) 757 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 758 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 759 Ops.push_back(Res); 760 761 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 762 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 763 EVT RegisterVT = RegVTs[Value]; 764 for (unsigned i = 0; i != NumRegs; ++i) { 765 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 766 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 767 } 768 } 769 } 770 771 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 772 AA = &aa; 773 GFI = gfi; 774 TD = DAG.getTarget().getTargetData(); 775 } 776 777 /// clear - Clear out the current SelectionDAG and the associated 778 /// state and prepare this SelectionDAGBuilder object to be used 779 /// for a new block. This doesn't clear out information about 780 /// additional blocks that are needed to complete switch lowering 781 /// or PHI node updating; that information is cleared out as it is 782 /// consumed. 783 void SelectionDAGBuilder::clear() { 784 NodeMap.clear(); 785 UnusedArgNodeMap.clear(); 786 PendingLoads.clear(); 787 PendingExports.clear(); 788 DanglingDebugInfoMap.clear(); 789 CurDebugLoc = DebugLoc(); 790 HasTailCall = false; 791 } 792 793 /// getRoot - Return the current virtual root of the Selection DAG, 794 /// flushing any PendingLoad items. This must be done before emitting 795 /// a store or any other node that may need to be ordered after any 796 /// prior load instructions. 797 /// 798 SDValue SelectionDAGBuilder::getRoot() { 799 if (PendingLoads.empty()) 800 return DAG.getRoot(); 801 802 if (PendingLoads.size() == 1) { 803 SDValue Root = PendingLoads[0]; 804 DAG.setRoot(Root); 805 PendingLoads.clear(); 806 return Root; 807 } 808 809 // Otherwise, we have to make a token factor node. 810 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 811 &PendingLoads[0], PendingLoads.size()); 812 PendingLoads.clear(); 813 DAG.setRoot(Root); 814 return Root; 815 } 816 817 /// getControlRoot - Similar to getRoot, but instead of flushing all the 818 /// PendingLoad items, flush all the PendingExports items. It is necessary 819 /// to do this before emitting a terminator instruction. 820 /// 821 SDValue SelectionDAGBuilder::getControlRoot() { 822 SDValue Root = DAG.getRoot(); 823 824 if (PendingExports.empty()) 825 return Root; 826 827 // Turn all of the CopyToReg chains into one factored node. 828 if (Root.getOpcode() != ISD::EntryToken) { 829 unsigned i = 0, e = PendingExports.size(); 830 for (; i != e; ++i) { 831 assert(PendingExports[i].getNode()->getNumOperands() > 1); 832 if (PendingExports[i].getNode()->getOperand(0) == Root) 833 break; // Don't add the root if we already indirectly depend on it. 834 } 835 836 if (i == e) 837 PendingExports.push_back(Root); 838 } 839 840 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 841 &PendingExports[0], 842 PendingExports.size()); 843 PendingExports.clear(); 844 DAG.setRoot(Root); 845 return Root; 846 } 847 848 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 849 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 850 DAG.AssignOrdering(Node, SDNodeOrder); 851 852 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 853 AssignOrderingToNode(Node->getOperand(I).getNode()); 854 } 855 856 void SelectionDAGBuilder::visit(const Instruction &I) { 857 // Set up outgoing PHI node register values before emitting the terminator. 858 if (isa<TerminatorInst>(&I)) 859 HandlePHINodesInSuccessorBlocks(I.getParent()); 860 861 CurDebugLoc = I.getDebugLoc(); 862 863 visit(I.getOpcode(), I); 864 865 if (!isa<TerminatorInst>(&I) && !HasTailCall) 866 CopyToExportRegsIfNeeded(&I); 867 868 CurDebugLoc = DebugLoc(); 869 } 870 871 void SelectionDAGBuilder::visitPHI(const PHINode &) { 872 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 873 } 874 875 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 876 // Note: this doesn't use InstVisitor, because it has to work with 877 // ConstantExpr's in addition to instructions. 878 switch (Opcode) { 879 default: llvm_unreachable("Unknown instruction type encountered!"); 880 // Build the switch statement using the Instruction.def file. 881 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 882 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 883 #include "llvm/Instruction.def" 884 } 885 886 // Assign the ordering to the freshly created DAG nodes. 887 if (NodeMap.count(&I)) { 888 ++SDNodeOrder; 889 AssignOrderingToNode(getValue(&I).getNode()); 890 } 891 } 892 893 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 894 // generate the debug data structures now that we've seen its definition. 895 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 896 SDValue Val) { 897 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 898 if (DDI.getDI()) { 899 const DbgValueInst *DI = DDI.getDI(); 900 DebugLoc dl = DDI.getdl(); 901 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 902 MDNode *Variable = DI->getVariable(); 903 uint64_t Offset = DI->getOffset(); 904 SDDbgValue *SDV; 905 if (Val.getNode()) { 906 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 907 SDV = DAG.getDbgValue(Variable, Val.getNode(), 908 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 909 DAG.AddDbgValue(SDV, Val.getNode(), false); 910 } 911 } else { 912 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 913 Offset, dl, SDNodeOrder); 914 DAG.AddDbgValue(SDV, 0, false); 915 } 916 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 917 } 918 } 919 920 // getValue - Return an SDValue for the given Value. 921 SDValue SelectionDAGBuilder::getValue(const Value *V) { 922 // If we already have an SDValue for this value, use it. It's important 923 // to do this first, so that we don't create a CopyFromReg if we already 924 // have a regular SDValue. 925 SDValue &N = NodeMap[V]; 926 if (N.getNode()) return N; 927 928 // If there's a virtual register allocated and initialized for this 929 // value, use it. 930 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 931 if (It != FuncInfo.ValueMap.end()) { 932 unsigned InReg = It->second; 933 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 934 SDValue Chain = DAG.getEntryNode(); 935 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 936 } 937 938 // Otherwise create a new SDValue and remember it. 939 SDValue Val = getValueImpl(V); 940 NodeMap[V] = Val; 941 resolveDanglingDebugInfo(V, Val); 942 return Val; 943 } 944 945 /// getNonRegisterValue - Return an SDValue for the given Value, but 946 /// don't look in FuncInfo.ValueMap for a virtual register. 947 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 948 // If we already have an SDValue for this value, use it. 949 SDValue &N = NodeMap[V]; 950 if (N.getNode()) return N; 951 952 // Otherwise create a new SDValue and remember it. 953 SDValue Val = getValueImpl(V); 954 NodeMap[V] = Val; 955 resolveDanglingDebugInfo(V, Val); 956 return Val; 957 } 958 959 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 960 /// Create an SDValue for the given value. 961 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 962 if (const Constant *C = dyn_cast<Constant>(V)) { 963 EVT VT = TLI.getValueType(V->getType(), true); 964 965 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 966 return DAG.getConstant(*CI, VT); 967 968 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 969 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 970 971 if (isa<ConstantPointerNull>(C)) 972 return DAG.getConstant(0, TLI.getPointerTy()); 973 974 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 975 return DAG.getConstantFP(*CFP, VT); 976 977 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 978 return DAG.getUNDEF(VT); 979 980 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 981 visit(CE->getOpcode(), *CE); 982 SDValue N1 = NodeMap[V]; 983 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 984 return N1; 985 } 986 987 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 988 SmallVector<SDValue, 4> Constants; 989 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 990 OI != OE; ++OI) { 991 SDNode *Val = getValue(*OI).getNode(); 992 // If the operand is an empty aggregate, there are no values. 993 if (!Val) continue; 994 // Add each leaf value from the operand to the Constants list 995 // to form a flattened list of all the values. 996 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 997 Constants.push_back(SDValue(Val, i)); 998 } 999 1000 return DAG.getMergeValues(&Constants[0], Constants.size(), 1001 getCurDebugLoc()); 1002 } 1003 1004 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1005 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1006 "Unknown struct or array constant!"); 1007 1008 SmallVector<EVT, 4> ValueVTs; 1009 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1010 unsigned NumElts = ValueVTs.size(); 1011 if (NumElts == 0) 1012 return SDValue(); // empty struct 1013 SmallVector<SDValue, 4> Constants(NumElts); 1014 for (unsigned i = 0; i != NumElts; ++i) { 1015 EVT EltVT = ValueVTs[i]; 1016 if (isa<UndefValue>(C)) 1017 Constants[i] = DAG.getUNDEF(EltVT); 1018 else if (EltVT.isFloatingPoint()) 1019 Constants[i] = DAG.getConstantFP(0, EltVT); 1020 else 1021 Constants[i] = DAG.getConstant(0, EltVT); 1022 } 1023 1024 return DAG.getMergeValues(&Constants[0], NumElts, 1025 getCurDebugLoc()); 1026 } 1027 1028 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1029 return DAG.getBlockAddress(BA, VT); 1030 1031 const VectorType *VecTy = cast<VectorType>(V->getType()); 1032 unsigned NumElements = VecTy->getNumElements(); 1033 1034 // Now that we know the number and type of the elements, get that number of 1035 // elements into the Ops array based on what kind of constant it is. 1036 SmallVector<SDValue, 16> Ops; 1037 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1038 for (unsigned i = 0; i != NumElements; ++i) 1039 Ops.push_back(getValue(CP->getOperand(i))); 1040 } else { 1041 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1042 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1043 1044 SDValue Op; 1045 if (EltVT.isFloatingPoint()) 1046 Op = DAG.getConstantFP(0, EltVT); 1047 else 1048 Op = DAG.getConstant(0, EltVT); 1049 Ops.assign(NumElements, Op); 1050 } 1051 1052 // Create a BUILD_VECTOR node. 1053 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1054 VT, &Ops[0], Ops.size()); 1055 } 1056 1057 // If this is a static alloca, generate it as the frameindex instead of 1058 // computation. 1059 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1060 DenseMap<const AllocaInst*, int>::iterator SI = 1061 FuncInfo.StaticAllocaMap.find(AI); 1062 if (SI != FuncInfo.StaticAllocaMap.end()) 1063 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1064 } 1065 1066 // If this is an instruction which fast-isel has deferred, select it now. 1067 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1068 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1069 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1070 SDValue Chain = DAG.getEntryNode(); 1071 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1072 } 1073 1074 llvm_unreachable("Can't get register for value!"); 1075 return SDValue(); 1076 } 1077 1078 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1079 SDValue Chain = getControlRoot(); 1080 SmallVector<ISD::OutputArg, 8> Outs; 1081 SmallVector<SDValue, 8> OutVals; 1082 1083 if (!FuncInfo.CanLowerReturn) { 1084 unsigned DemoteReg = FuncInfo.DemoteRegister; 1085 const Function *F = I.getParent()->getParent(); 1086 1087 // Emit a store of the return value through the virtual register. 1088 // Leave Outs empty so that LowerReturn won't try to load return 1089 // registers the usual way. 1090 SmallVector<EVT, 1> PtrValueVTs; 1091 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1092 PtrValueVTs); 1093 1094 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1095 SDValue RetOp = getValue(I.getOperand(0)); 1096 1097 SmallVector<EVT, 4> ValueVTs; 1098 SmallVector<uint64_t, 4> Offsets; 1099 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1100 unsigned NumValues = ValueVTs.size(); 1101 1102 SmallVector<SDValue, 4> Chains(NumValues); 1103 for (unsigned i = 0; i != NumValues; ++i) { 1104 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1105 RetPtr.getValueType(), RetPtr, 1106 DAG.getIntPtrConstant(Offsets[i])); 1107 Chains[i] = 1108 DAG.getStore(Chain, getCurDebugLoc(), 1109 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1110 // FIXME: better loc info would be nice. 1111 Add, MachinePointerInfo(), false, false, 0); 1112 } 1113 1114 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1115 MVT::Other, &Chains[0], NumValues); 1116 } else if (I.getNumOperands() != 0) { 1117 SmallVector<EVT, 4> ValueVTs; 1118 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1119 unsigned NumValues = ValueVTs.size(); 1120 if (NumValues) { 1121 SDValue RetOp = getValue(I.getOperand(0)); 1122 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1123 EVT VT = ValueVTs[j]; 1124 1125 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1126 1127 const Function *F = I.getParent()->getParent(); 1128 if (F->paramHasAttr(0, Attribute::SExt)) 1129 ExtendKind = ISD::SIGN_EXTEND; 1130 else if (F->paramHasAttr(0, Attribute::ZExt)) 1131 ExtendKind = ISD::ZERO_EXTEND; 1132 1133 // FIXME: C calling convention requires the return type to be promoted 1134 // to at least 32-bit. But this is not necessary for non-C calling 1135 // conventions. The frontend should mark functions whose return values 1136 // require promoting with signext or zeroext attributes. 1137 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1138 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1139 if (VT.bitsLT(MinVT)) 1140 VT = MinVT; 1141 } 1142 1143 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1144 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1145 SmallVector<SDValue, 4> Parts(NumParts); 1146 getCopyToParts(DAG, getCurDebugLoc(), 1147 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1148 &Parts[0], NumParts, PartVT, ExtendKind); 1149 1150 // 'inreg' on function refers to return value 1151 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1152 if (F->paramHasAttr(0, Attribute::InReg)) 1153 Flags.setInReg(); 1154 1155 // Propagate extension type if any 1156 if (F->paramHasAttr(0, Attribute::SExt)) 1157 Flags.setSExt(); 1158 else if (F->paramHasAttr(0, Attribute::ZExt)) 1159 Flags.setZExt(); 1160 1161 for (unsigned i = 0; i < NumParts; ++i) { 1162 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1163 /*isfixed=*/true)); 1164 OutVals.push_back(Parts[i]); 1165 } 1166 } 1167 } 1168 } 1169 1170 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1171 CallingConv::ID CallConv = 1172 DAG.getMachineFunction().getFunction()->getCallingConv(); 1173 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1174 Outs, OutVals, getCurDebugLoc(), DAG); 1175 1176 // Verify that the target's LowerReturn behaved as expected. 1177 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1178 "LowerReturn didn't return a valid chain!"); 1179 1180 // Update the DAG with the new chain value resulting from return lowering. 1181 DAG.setRoot(Chain); 1182 } 1183 1184 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1185 /// created for it, emit nodes to copy the value into the virtual 1186 /// registers. 1187 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1188 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1189 if (VMI != FuncInfo.ValueMap.end()) { 1190 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1191 CopyValueToVirtualRegister(V, VMI->second); 1192 } 1193 } 1194 1195 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1196 /// the current basic block, add it to ValueMap now so that we'll get a 1197 /// CopyTo/FromReg. 1198 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1199 // No need to export constants. 1200 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1201 1202 // Already exported? 1203 if (FuncInfo.isExportedInst(V)) return; 1204 1205 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1206 CopyValueToVirtualRegister(V, Reg); 1207 } 1208 1209 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1210 const BasicBlock *FromBB) { 1211 // The operands of the setcc have to be in this block. We don't know 1212 // how to export them from some other block. 1213 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1214 // Can export from current BB. 1215 if (VI->getParent() == FromBB) 1216 return true; 1217 1218 // Is already exported, noop. 1219 return FuncInfo.isExportedInst(V); 1220 } 1221 1222 // If this is an argument, we can export it if the BB is the entry block or 1223 // if it is already exported. 1224 if (isa<Argument>(V)) { 1225 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1226 return true; 1227 1228 // Otherwise, can only export this if it is already exported. 1229 return FuncInfo.isExportedInst(V); 1230 } 1231 1232 // Otherwise, constants can always be exported. 1233 return true; 1234 } 1235 1236 static bool InBlock(const Value *V, const BasicBlock *BB) { 1237 if (const Instruction *I = dyn_cast<Instruction>(V)) 1238 return I->getParent() == BB; 1239 return true; 1240 } 1241 1242 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1243 /// This function emits a branch and is used at the leaves of an OR or an 1244 /// AND operator tree. 1245 /// 1246 void 1247 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1248 MachineBasicBlock *TBB, 1249 MachineBasicBlock *FBB, 1250 MachineBasicBlock *CurBB, 1251 MachineBasicBlock *SwitchBB) { 1252 const BasicBlock *BB = CurBB->getBasicBlock(); 1253 1254 // If the leaf of the tree is a comparison, merge the condition into 1255 // the caseblock. 1256 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1257 // The operands of the cmp have to be in this block. We don't know 1258 // how to export them from some other block. If this is the first block 1259 // of the sequence, no exporting is needed. 1260 if (CurBB == SwitchBB || 1261 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1262 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1263 ISD::CondCode Condition; 1264 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1265 Condition = getICmpCondCode(IC->getPredicate()); 1266 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1267 Condition = getFCmpCondCode(FC->getPredicate()); 1268 } else { 1269 Condition = ISD::SETEQ; // silence warning. 1270 llvm_unreachable("Unknown compare instruction"); 1271 } 1272 1273 CaseBlock CB(Condition, BOp->getOperand(0), 1274 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1275 SwitchCases.push_back(CB); 1276 return; 1277 } 1278 } 1279 1280 // Create a CaseBlock record representing this branch. 1281 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1282 NULL, TBB, FBB, CurBB); 1283 SwitchCases.push_back(CB); 1284 } 1285 1286 /// FindMergedConditions - If Cond is an expression like 1287 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1288 MachineBasicBlock *TBB, 1289 MachineBasicBlock *FBB, 1290 MachineBasicBlock *CurBB, 1291 MachineBasicBlock *SwitchBB, 1292 unsigned Opc) { 1293 // If this node is not part of the or/and tree, emit it as a branch. 1294 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1295 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1296 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1297 BOp->getParent() != CurBB->getBasicBlock() || 1298 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1299 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1300 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1301 return; 1302 } 1303 1304 // Create TmpBB after CurBB. 1305 MachineFunction::iterator BBI = CurBB; 1306 MachineFunction &MF = DAG.getMachineFunction(); 1307 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1308 CurBB->getParent()->insert(++BBI, TmpBB); 1309 1310 if (Opc == Instruction::Or) { 1311 // Codegen X | Y as: 1312 // jmp_if_X TBB 1313 // jmp TmpBB 1314 // TmpBB: 1315 // jmp_if_Y TBB 1316 // jmp FBB 1317 // 1318 1319 // Emit the LHS condition. 1320 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1321 1322 // Emit the RHS condition into TmpBB. 1323 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1324 } else { 1325 assert(Opc == Instruction::And && "Unknown merge op!"); 1326 // Codegen X & Y as: 1327 // jmp_if_X TmpBB 1328 // jmp FBB 1329 // TmpBB: 1330 // jmp_if_Y TBB 1331 // jmp FBB 1332 // 1333 // This requires creation of TmpBB after CurBB. 1334 1335 // Emit the LHS condition. 1336 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1337 1338 // Emit the RHS condition into TmpBB. 1339 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1340 } 1341 } 1342 1343 /// If the set of cases should be emitted as a series of branches, return true. 1344 /// If we should emit this as a bunch of and/or'd together conditions, return 1345 /// false. 1346 bool 1347 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1348 if (Cases.size() != 2) return true; 1349 1350 // If this is two comparisons of the same values or'd or and'd together, they 1351 // will get folded into a single comparison, so don't emit two blocks. 1352 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1353 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1354 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1355 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1356 return false; 1357 } 1358 1359 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1360 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1361 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1362 Cases[0].CC == Cases[1].CC && 1363 isa<Constant>(Cases[0].CmpRHS) && 1364 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1365 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1366 return false; 1367 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1368 return false; 1369 } 1370 1371 return true; 1372 } 1373 1374 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1375 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1376 1377 // Update machine-CFG edges. 1378 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1379 1380 // Figure out which block is immediately after the current one. 1381 MachineBasicBlock *NextBlock = 0; 1382 MachineFunction::iterator BBI = BrMBB; 1383 if (++BBI != FuncInfo.MF->end()) 1384 NextBlock = BBI; 1385 1386 if (I.isUnconditional()) { 1387 // Update machine-CFG edges. 1388 BrMBB->addSuccessor(Succ0MBB); 1389 1390 // If this is not a fall-through branch, emit the branch. 1391 if (Succ0MBB != NextBlock) 1392 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1393 MVT::Other, getControlRoot(), 1394 DAG.getBasicBlock(Succ0MBB))); 1395 1396 return; 1397 } 1398 1399 // If this condition is one of the special cases we handle, do special stuff 1400 // now. 1401 const Value *CondVal = I.getCondition(); 1402 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1403 1404 // If this is a series of conditions that are or'd or and'd together, emit 1405 // this as a sequence of branches instead of setcc's with and/or operations. 1406 // As long as jumps are not expensive, this should improve performance. 1407 // For example, instead of something like: 1408 // cmp A, B 1409 // C = seteq 1410 // cmp D, E 1411 // F = setle 1412 // or C, F 1413 // jnz foo 1414 // Emit: 1415 // cmp A, B 1416 // je foo 1417 // cmp D, E 1418 // jle foo 1419 // 1420 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1421 if (!TLI.isJumpExpensive() && 1422 BOp->hasOneUse() && 1423 (BOp->getOpcode() == Instruction::And || 1424 BOp->getOpcode() == Instruction::Or)) { 1425 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1426 BOp->getOpcode()); 1427 // If the compares in later blocks need to use values not currently 1428 // exported from this block, export them now. This block should always 1429 // be the first entry. 1430 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1431 1432 // Allow some cases to be rejected. 1433 if (ShouldEmitAsBranches(SwitchCases)) { 1434 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1435 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1436 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1437 } 1438 1439 // Emit the branch for this block. 1440 visitSwitchCase(SwitchCases[0], BrMBB); 1441 SwitchCases.erase(SwitchCases.begin()); 1442 return; 1443 } 1444 1445 // Okay, we decided not to do this, remove any inserted MBB's and clear 1446 // SwitchCases. 1447 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1448 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1449 1450 SwitchCases.clear(); 1451 } 1452 } 1453 1454 // Create a CaseBlock record representing this branch. 1455 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1456 NULL, Succ0MBB, Succ1MBB, BrMBB); 1457 1458 // Use visitSwitchCase to actually insert the fast branch sequence for this 1459 // cond branch. 1460 visitSwitchCase(CB, BrMBB); 1461 } 1462 1463 /// visitSwitchCase - Emits the necessary code to represent a single node in 1464 /// the binary search tree resulting from lowering a switch instruction. 1465 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1466 MachineBasicBlock *SwitchBB) { 1467 SDValue Cond; 1468 SDValue CondLHS = getValue(CB.CmpLHS); 1469 DebugLoc dl = getCurDebugLoc(); 1470 1471 // Build the setcc now. 1472 if (CB.CmpMHS == NULL) { 1473 // Fold "(X == true)" to X and "(X == false)" to !X to 1474 // handle common cases produced by branch lowering. 1475 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1476 CB.CC == ISD::SETEQ) 1477 Cond = CondLHS; 1478 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1479 CB.CC == ISD::SETEQ) { 1480 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1481 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1482 } else 1483 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1484 } else { 1485 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1486 1487 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1488 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1489 1490 SDValue CmpOp = getValue(CB.CmpMHS); 1491 EVT VT = CmpOp.getValueType(); 1492 1493 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1494 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1495 ISD::SETLE); 1496 } else { 1497 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1498 VT, CmpOp, DAG.getConstant(Low, VT)); 1499 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1500 DAG.getConstant(High-Low, VT), ISD::SETULE); 1501 } 1502 } 1503 1504 // Update successor info 1505 SwitchBB->addSuccessor(CB.TrueBB); 1506 SwitchBB->addSuccessor(CB.FalseBB); 1507 1508 // Set NextBlock to be the MBB immediately after the current one, if any. 1509 // This is used to avoid emitting unnecessary branches to the next block. 1510 MachineBasicBlock *NextBlock = 0; 1511 MachineFunction::iterator BBI = SwitchBB; 1512 if (++BBI != FuncInfo.MF->end()) 1513 NextBlock = BBI; 1514 1515 // If the lhs block is the next block, invert the condition so that we can 1516 // fall through to the lhs instead of the rhs block. 1517 if (CB.TrueBB == NextBlock) { 1518 std::swap(CB.TrueBB, CB.FalseBB); 1519 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1520 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1521 } 1522 1523 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1524 MVT::Other, getControlRoot(), Cond, 1525 DAG.getBasicBlock(CB.TrueBB)); 1526 1527 // Insert the false branch. Do this even if it's a fall through branch, 1528 // this makes it easier to do DAG optimizations which require inverting 1529 // the branch condition. 1530 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1531 DAG.getBasicBlock(CB.FalseBB)); 1532 1533 DAG.setRoot(BrCond); 1534 } 1535 1536 /// visitJumpTable - Emit JumpTable node in the current MBB 1537 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1538 // Emit the code for the jump table 1539 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1540 EVT PTy = TLI.getPointerTy(); 1541 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1542 JT.Reg, PTy); 1543 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1544 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1545 MVT::Other, Index.getValue(1), 1546 Table, Index); 1547 DAG.setRoot(BrJumpTable); 1548 } 1549 1550 /// visitJumpTableHeader - This function emits necessary code to produce index 1551 /// in the JumpTable from switch case. 1552 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1553 JumpTableHeader &JTH, 1554 MachineBasicBlock *SwitchBB) { 1555 // Subtract the lowest switch case value from the value being switched on and 1556 // conditional branch to default mbb if the result is greater than the 1557 // difference between smallest and largest cases. 1558 SDValue SwitchOp = getValue(JTH.SValue); 1559 EVT VT = SwitchOp.getValueType(); 1560 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1561 DAG.getConstant(JTH.First, VT)); 1562 1563 // The SDNode we just created, which holds the value being switched on minus 1564 // the smallest case value, needs to be copied to a virtual register so it 1565 // can be used as an index into the jump table in a subsequent basic block. 1566 // This value may be smaller or larger than the target's pointer type, and 1567 // therefore require extension or truncating. 1568 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1569 1570 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1571 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1572 JumpTableReg, SwitchOp); 1573 JT.Reg = JumpTableReg; 1574 1575 // Emit the range check for the jump table, and branch to the default block 1576 // for the switch statement if the value being switched on exceeds the largest 1577 // case in the switch. 1578 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1579 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1580 DAG.getConstant(JTH.Last-JTH.First,VT), 1581 ISD::SETUGT); 1582 1583 // Set NextBlock to be the MBB immediately after the current one, if any. 1584 // This is used to avoid emitting unnecessary branches to the next block. 1585 MachineBasicBlock *NextBlock = 0; 1586 MachineFunction::iterator BBI = SwitchBB; 1587 1588 if (++BBI != FuncInfo.MF->end()) 1589 NextBlock = BBI; 1590 1591 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1592 MVT::Other, CopyTo, CMP, 1593 DAG.getBasicBlock(JT.Default)); 1594 1595 if (JT.MBB != NextBlock) 1596 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1597 DAG.getBasicBlock(JT.MBB)); 1598 1599 DAG.setRoot(BrCond); 1600 } 1601 1602 /// visitBitTestHeader - This function emits necessary code to produce value 1603 /// suitable for "bit tests" 1604 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1605 MachineBasicBlock *SwitchBB) { 1606 // Subtract the minimum value 1607 SDValue SwitchOp = getValue(B.SValue); 1608 EVT VT = SwitchOp.getValueType(); 1609 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1610 DAG.getConstant(B.First, VT)); 1611 1612 // Check range 1613 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1614 TLI.getSetCCResultType(Sub.getValueType()), 1615 Sub, DAG.getConstant(B.Range, VT), 1616 ISD::SETUGT); 1617 1618 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1619 TLI.getPointerTy()); 1620 1621 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1622 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1623 B.Reg, ShiftOp); 1624 1625 // Set NextBlock to be the MBB immediately after the current one, if any. 1626 // This is used to avoid emitting unnecessary branches to the next block. 1627 MachineBasicBlock *NextBlock = 0; 1628 MachineFunction::iterator BBI = SwitchBB; 1629 if (++BBI != FuncInfo.MF->end()) 1630 NextBlock = BBI; 1631 1632 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1633 1634 SwitchBB->addSuccessor(B.Default); 1635 SwitchBB->addSuccessor(MBB); 1636 1637 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1638 MVT::Other, CopyTo, RangeCmp, 1639 DAG.getBasicBlock(B.Default)); 1640 1641 if (MBB != NextBlock) 1642 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1643 DAG.getBasicBlock(MBB)); 1644 1645 DAG.setRoot(BrRange); 1646 } 1647 1648 /// visitBitTestCase - this function produces one "bit test" 1649 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1650 unsigned Reg, 1651 BitTestCase &B, 1652 MachineBasicBlock *SwitchBB) { 1653 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1654 TLI.getPointerTy()); 1655 SDValue Cmp; 1656 if (CountPopulation_64(B.Mask) == 1) { 1657 // Testing for a single bit; just compare the shift count with what it 1658 // would need to be to shift a 1 bit in that position. 1659 Cmp = DAG.getSetCC(getCurDebugLoc(), 1660 TLI.getSetCCResultType(ShiftOp.getValueType()), 1661 ShiftOp, 1662 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1663 TLI.getPointerTy()), 1664 ISD::SETEQ); 1665 } else { 1666 // Make desired shift 1667 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1668 TLI.getPointerTy(), 1669 DAG.getConstant(1, TLI.getPointerTy()), 1670 ShiftOp); 1671 1672 // Emit bit tests and jumps 1673 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1674 TLI.getPointerTy(), SwitchVal, 1675 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1676 Cmp = DAG.getSetCC(getCurDebugLoc(), 1677 TLI.getSetCCResultType(AndOp.getValueType()), 1678 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1679 ISD::SETNE); 1680 } 1681 1682 SwitchBB->addSuccessor(B.TargetBB); 1683 SwitchBB->addSuccessor(NextMBB); 1684 1685 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1686 MVT::Other, getControlRoot(), 1687 Cmp, DAG.getBasicBlock(B.TargetBB)); 1688 1689 // Set NextBlock to be the MBB immediately after the current one, if any. 1690 // This is used to avoid emitting unnecessary branches to the next block. 1691 MachineBasicBlock *NextBlock = 0; 1692 MachineFunction::iterator BBI = SwitchBB; 1693 if (++BBI != FuncInfo.MF->end()) 1694 NextBlock = BBI; 1695 1696 if (NextMBB != NextBlock) 1697 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1698 DAG.getBasicBlock(NextMBB)); 1699 1700 DAG.setRoot(BrAnd); 1701 } 1702 1703 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1704 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1705 1706 // Retrieve successors. 1707 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1708 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1709 1710 const Value *Callee(I.getCalledValue()); 1711 if (isa<InlineAsm>(Callee)) 1712 visitInlineAsm(&I); 1713 else 1714 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1715 1716 // If the value of the invoke is used outside of its defining block, make it 1717 // available as a virtual register. 1718 CopyToExportRegsIfNeeded(&I); 1719 1720 // Update successor info 1721 InvokeMBB->addSuccessor(Return); 1722 InvokeMBB->addSuccessor(LandingPad); 1723 1724 // Drop into normal successor. 1725 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1726 MVT::Other, getControlRoot(), 1727 DAG.getBasicBlock(Return))); 1728 } 1729 1730 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1731 } 1732 1733 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1734 /// small case ranges). 1735 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1736 CaseRecVector& WorkList, 1737 const Value* SV, 1738 MachineBasicBlock *Default, 1739 MachineBasicBlock *SwitchBB) { 1740 Case& BackCase = *(CR.Range.second-1); 1741 1742 // Size is the number of Cases represented by this range. 1743 size_t Size = CR.Range.second - CR.Range.first; 1744 if (Size > 3) 1745 return false; 1746 1747 // Get the MachineFunction which holds the current MBB. This is used when 1748 // inserting any additional MBBs necessary to represent the switch. 1749 MachineFunction *CurMF = FuncInfo.MF; 1750 1751 // Figure out which block is immediately after the current one. 1752 MachineBasicBlock *NextBlock = 0; 1753 MachineFunction::iterator BBI = CR.CaseBB; 1754 1755 if (++BBI != FuncInfo.MF->end()) 1756 NextBlock = BBI; 1757 1758 // If any two of the cases has the same destination, and if one value 1759 // is the same as the other, but has one bit unset that the other has set, 1760 // use bit manipulation to do two compares at once. For example: 1761 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1762 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1763 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1764 if (Size == 2 && CR.CaseBB == SwitchBB) { 1765 Case &Small = *CR.Range.first; 1766 Case &Big = *(CR.Range.second-1); 1767 1768 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1769 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1770 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1771 1772 // Check that there is only one bit different. 1773 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1774 (SmallValue | BigValue) == BigValue) { 1775 // Isolate the common bit. 1776 APInt CommonBit = BigValue & ~SmallValue; 1777 assert((SmallValue | CommonBit) == BigValue && 1778 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1779 1780 SDValue CondLHS = getValue(SV); 1781 EVT VT = CondLHS.getValueType(); 1782 DebugLoc DL = getCurDebugLoc(); 1783 1784 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1785 DAG.getConstant(CommonBit, VT)); 1786 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1787 Or, DAG.getConstant(BigValue, VT), 1788 ISD::SETEQ); 1789 1790 // Update successor info. 1791 SwitchBB->addSuccessor(Small.BB); 1792 SwitchBB->addSuccessor(Default); 1793 1794 // Insert the true branch. 1795 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1796 getControlRoot(), Cond, 1797 DAG.getBasicBlock(Small.BB)); 1798 1799 // Insert the false branch. 1800 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1801 DAG.getBasicBlock(Default)); 1802 1803 DAG.setRoot(BrCond); 1804 return true; 1805 } 1806 } 1807 } 1808 1809 // Rearrange the case blocks so that the last one falls through if possible. 1810 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1811 // The last case block won't fall through into 'NextBlock' if we emit the 1812 // branches in this order. See if rearranging a case value would help. 1813 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1814 if (I->BB == NextBlock) { 1815 std::swap(*I, BackCase); 1816 break; 1817 } 1818 } 1819 } 1820 1821 // Create a CaseBlock record representing a conditional branch to 1822 // the Case's target mbb if the value being switched on SV is equal 1823 // to C. 1824 MachineBasicBlock *CurBlock = CR.CaseBB; 1825 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1826 MachineBasicBlock *FallThrough; 1827 if (I != E-1) { 1828 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1829 CurMF->insert(BBI, FallThrough); 1830 1831 // Put SV in a virtual register to make it available from the new blocks. 1832 ExportFromCurrentBlock(SV); 1833 } else { 1834 // If the last case doesn't match, go to the default block. 1835 FallThrough = Default; 1836 } 1837 1838 const Value *RHS, *LHS, *MHS; 1839 ISD::CondCode CC; 1840 if (I->High == I->Low) { 1841 // This is just small small case range :) containing exactly 1 case 1842 CC = ISD::SETEQ; 1843 LHS = SV; RHS = I->High; MHS = NULL; 1844 } else { 1845 CC = ISD::SETLE; 1846 LHS = I->Low; MHS = SV; RHS = I->High; 1847 } 1848 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1849 1850 // If emitting the first comparison, just call visitSwitchCase to emit the 1851 // code into the current block. Otherwise, push the CaseBlock onto the 1852 // vector to be later processed by SDISel, and insert the node's MBB 1853 // before the next MBB. 1854 if (CurBlock == SwitchBB) 1855 visitSwitchCase(CB, SwitchBB); 1856 else 1857 SwitchCases.push_back(CB); 1858 1859 CurBlock = FallThrough; 1860 } 1861 1862 return true; 1863 } 1864 1865 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1866 return !DisableJumpTables && 1867 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1868 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1869 } 1870 1871 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1872 APInt LastExt(Last), FirstExt(First); 1873 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1874 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1875 return (LastExt - FirstExt + 1ULL); 1876 } 1877 1878 /// handleJTSwitchCase - Emit jumptable for current switch case range 1879 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1880 CaseRecVector& WorkList, 1881 const Value* SV, 1882 MachineBasicBlock* Default, 1883 MachineBasicBlock *SwitchBB) { 1884 Case& FrontCase = *CR.Range.first; 1885 Case& BackCase = *(CR.Range.second-1); 1886 1887 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1888 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1889 1890 APInt TSize(First.getBitWidth(), 0); 1891 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1892 I!=E; ++I) 1893 TSize += I->size(); 1894 1895 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1896 return false; 1897 1898 APInt Range = ComputeRange(First, Last); 1899 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1900 if (Density < 0.4) 1901 return false; 1902 1903 DEBUG(dbgs() << "Lowering jump table\n" 1904 << "First entry: " << First << ". Last entry: " << Last << '\n' 1905 << "Range: " << Range 1906 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1907 1908 // Get the MachineFunction which holds the current MBB. This is used when 1909 // inserting any additional MBBs necessary to represent the switch. 1910 MachineFunction *CurMF = FuncInfo.MF; 1911 1912 // Figure out which block is immediately after the current one. 1913 MachineFunction::iterator BBI = CR.CaseBB; 1914 ++BBI; 1915 1916 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1917 1918 // Create a new basic block to hold the code for loading the address 1919 // of the jump table, and jumping to it. Update successor information; 1920 // we will either branch to the default case for the switch, or the jump 1921 // table. 1922 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1923 CurMF->insert(BBI, JumpTableBB); 1924 CR.CaseBB->addSuccessor(Default); 1925 CR.CaseBB->addSuccessor(JumpTableBB); 1926 1927 // Build a vector of destination BBs, corresponding to each target 1928 // of the jump table. If the value of the jump table slot corresponds to 1929 // a case statement, push the case's BB onto the vector, otherwise, push 1930 // the default BB. 1931 std::vector<MachineBasicBlock*> DestBBs; 1932 APInt TEI = First; 1933 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1934 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1935 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1936 1937 if (Low.sle(TEI) && TEI.sle(High)) { 1938 DestBBs.push_back(I->BB); 1939 if (TEI==High) 1940 ++I; 1941 } else { 1942 DestBBs.push_back(Default); 1943 } 1944 } 1945 1946 // Update successor info. Add one edge to each unique successor. 1947 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1948 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1949 E = DestBBs.end(); I != E; ++I) { 1950 if (!SuccsHandled[(*I)->getNumber()]) { 1951 SuccsHandled[(*I)->getNumber()] = true; 1952 JumpTableBB->addSuccessor(*I); 1953 } 1954 } 1955 1956 // Create a jump table index for this jump table. 1957 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1958 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1959 ->createJumpTableIndex(DestBBs); 1960 1961 // Set the jump table information so that we can codegen it as a second 1962 // MachineBasicBlock 1963 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1964 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1965 if (CR.CaseBB == SwitchBB) 1966 visitJumpTableHeader(JT, JTH, SwitchBB); 1967 1968 JTCases.push_back(JumpTableBlock(JTH, JT)); 1969 1970 return true; 1971 } 1972 1973 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1974 /// 2 subtrees. 1975 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1976 CaseRecVector& WorkList, 1977 const Value* SV, 1978 MachineBasicBlock *Default, 1979 MachineBasicBlock *SwitchBB) { 1980 // Get the MachineFunction which holds the current MBB. This is used when 1981 // inserting any additional MBBs necessary to represent the switch. 1982 MachineFunction *CurMF = FuncInfo.MF; 1983 1984 // Figure out which block is immediately after the current one. 1985 MachineFunction::iterator BBI = CR.CaseBB; 1986 ++BBI; 1987 1988 Case& FrontCase = *CR.Range.first; 1989 Case& BackCase = *(CR.Range.second-1); 1990 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1991 1992 // Size is the number of Cases represented by this range. 1993 unsigned Size = CR.Range.second - CR.Range.first; 1994 1995 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1996 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1997 double FMetric = 0; 1998 CaseItr Pivot = CR.Range.first + Size/2; 1999 2000 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2001 // (heuristically) allow us to emit JumpTable's later. 2002 APInt TSize(First.getBitWidth(), 0); 2003 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2004 I!=E; ++I) 2005 TSize += I->size(); 2006 2007 APInt LSize = FrontCase.size(); 2008 APInt RSize = TSize-LSize; 2009 DEBUG(dbgs() << "Selecting best pivot: \n" 2010 << "First: " << First << ", Last: " << Last <<'\n' 2011 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2012 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2013 J!=E; ++I, ++J) { 2014 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2015 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2016 APInt Range = ComputeRange(LEnd, RBegin); 2017 assert((Range - 2ULL).isNonNegative() && 2018 "Invalid case distance"); 2019 double LDensity = (double)LSize.roundToDouble() / 2020 (LEnd - First + 1ULL).roundToDouble(); 2021 double RDensity = (double)RSize.roundToDouble() / 2022 (Last - RBegin + 1ULL).roundToDouble(); 2023 double Metric = Range.logBase2()*(LDensity+RDensity); 2024 // Should always split in some non-trivial place 2025 DEBUG(dbgs() <<"=>Step\n" 2026 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2027 << "LDensity: " << LDensity 2028 << ", RDensity: " << RDensity << '\n' 2029 << "Metric: " << Metric << '\n'); 2030 if (FMetric < Metric) { 2031 Pivot = J; 2032 FMetric = Metric; 2033 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2034 } 2035 2036 LSize += J->size(); 2037 RSize -= J->size(); 2038 } 2039 if (areJTsAllowed(TLI)) { 2040 // If our case is dense we *really* should handle it earlier! 2041 assert((FMetric > 0) && "Should handle dense range earlier!"); 2042 } else { 2043 Pivot = CR.Range.first + Size/2; 2044 } 2045 2046 CaseRange LHSR(CR.Range.first, Pivot); 2047 CaseRange RHSR(Pivot, CR.Range.second); 2048 Constant *C = Pivot->Low; 2049 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2050 2051 // We know that we branch to the LHS if the Value being switched on is 2052 // less than the Pivot value, C. We use this to optimize our binary 2053 // tree a bit, by recognizing that if SV is greater than or equal to the 2054 // LHS's Case Value, and that Case Value is exactly one less than the 2055 // Pivot's Value, then we can branch directly to the LHS's Target, 2056 // rather than creating a leaf node for it. 2057 if ((LHSR.second - LHSR.first) == 1 && 2058 LHSR.first->High == CR.GE && 2059 cast<ConstantInt>(C)->getValue() == 2060 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2061 TrueBB = LHSR.first->BB; 2062 } else { 2063 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2064 CurMF->insert(BBI, TrueBB); 2065 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2066 2067 // Put SV in a virtual register to make it available from the new blocks. 2068 ExportFromCurrentBlock(SV); 2069 } 2070 2071 // Similar to the optimization above, if the Value being switched on is 2072 // known to be less than the Constant CR.LT, and the current Case Value 2073 // is CR.LT - 1, then we can branch directly to the target block for 2074 // the current Case Value, rather than emitting a RHS leaf node for it. 2075 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2076 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2077 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2078 FalseBB = RHSR.first->BB; 2079 } else { 2080 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2081 CurMF->insert(BBI, FalseBB); 2082 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2083 2084 // Put SV in a virtual register to make it available from the new blocks. 2085 ExportFromCurrentBlock(SV); 2086 } 2087 2088 // Create a CaseBlock record representing a conditional branch to 2089 // the LHS node if the value being switched on SV is less than C. 2090 // Otherwise, branch to LHS. 2091 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2092 2093 if (CR.CaseBB == SwitchBB) 2094 visitSwitchCase(CB, SwitchBB); 2095 else 2096 SwitchCases.push_back(CB); 2097 2098 return true; 2099 } 2100 2101 /// handleBitTestsSwitchCase - if current case range has few destination and 2102 /// range span less, than machine word bitwidth, encode case range into series 2103 /// of masks and emit bit tests with these masks. 2104 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2105 CaseRecVector& WorkList, 2106 const Value* SV, 2107 MachineBasicBlock* Default, 2108 MachineBasicBlock *SwitchBB){ 2109 EVT PTy = TLI.getPointerTy(); 2110 unsigned IntPtrBits = PTy.getSizeInBits(); 2111 2112 Case& FrontCase = *CR.Range.first; 2113 Case& BackCase = *(CR.Range.second-1); 2114 2115 // Get the MachineFunction which holds the current MBB. This is used when 2116 // inserting any additional MBBs necessary to represent the switch. 2117 MachineFunction *CurMF = FuncInfo.MF; 2118 2119 // If target does not have legal shift left, do not emit bit tests at all. 2120 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2121 return false; 2122 2123 size_t numCmps = 0; 2124 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2125 I!=E; ++I) { 2126 // Single case counts one, case range - two. 2127 numCmps += (I->Low == I->High ? 1 : 2); 2128 } 2129 2130 // Count unique destinations 2131 SmallSet<MachineBasicBlock*, 4> Dests; 2132 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2133 Dests.insert(I->BB); 2134 if (Dests.size() > 3) 2135 // Don't bother the code below, if there are too much unique destinations 2136 return false; 2137 } 2138 DEBUG(dbgs() << "Total number of unique destinations: " 2139 << Dests.size() << '\n' 2140 << "Total number of comparisons: " << numCmps << '\n'); 2141 2142 // Compute span of values. 2143 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2144 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2145 APInt cmpRange = maxValue - minValue; 2146 2147 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2148 << "Low bound: " << minValue << '\n' 2149 << "High bound: " << maxValue << '\n'); 2150 2151 if (cmpRange.uge(IntPtrBits) || 2152 (!(Dests.size() == 1 && numCmps >= 3) && 2153 !(Dests.size() == 2 && numCmps >= 5) && 2154 !(Dests.size() >= 3 && numCmps >= 6))) 2155 return false; 2156 2157 DEBUG(dbgs() << "Emitting bit tests\n"); 2158 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2159 2160 // Optimize the case where all the case values fit in a 2161 // word without having to subtract minValue. In this case, 2162 // we can optimize away the subtraction. 2163 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2164 cmpRange = maxValue; 2165 } else { 2166 lowBound = minValue; 2167 } 2168 2169 CaseBitsVector CasesBits; 2170 unsigned i, count = 0; 2171 2172 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2173 MachineBasicBlock* Dest = I->BB; 2174 for (i = 0; i < count; ++i) 2175 if (Dest == CasesBits[i].BB) 2176 break; 2177 2178 if (i == count) { 2179 assert((count < 3) && "Too much destinations to test!"); 2180 CasesBits.push_back(CaseBits(0, Dest, 0)); 2181 count++; 2182 } 2183 2184 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2185 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2186 2187 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2188 uint64_t hi = (highValue - lowBound).getZExtValue(); 2189 2190 for (uint64_t j = lo; j <= hi; j++) { 2191 CasesBits[i].Mask |= 1ULL << j; 2192 CasesBits[i].Bits++; 2193 } 2194 2195 } 2196 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2197 2198 BitTestInfo BTC; 2199 2200 // Figure out which block is immediately after the current one. 2201 MachineFunction::iterator BBI = CR.CaseBB; 2202 ++BBI; 2203 2204 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2205 2206 DEBUG(dbgs() << "Cases:\n"); 2207 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2208 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2209 << ", Bits: " << CasesBits[i].Bits 2210 << ", BB: " << CasesBits[i].BB << '\n'); 2211 2212 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2213 CurMF->insert(BBI, CaseBB); 2214 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2215 CaseBB, 2216 CasesBits[i].BB)); 2217 2218 // Put SV in a virtual register to make it available from the new blocks. 2219 ExportFromCurrentBlock(SV); 2220 } 2221 2222 BitTestBlock BTB(lowBound, cmpRange, SV, 2223 -1U, (CR.CaseBB == SwitchBB), 2224 CR.CaseBB, Default, BTC); 2225 2226 if (CR.CaseBB == SwitchBB) 2227 visitBitTestHeader(BTB, SwitchBB); 2228 2229 BitTestCases.push_back(BTB); 2230 2231 return true; 2232 } 2233 2234 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2235 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2236 const SwitchInst& SI) { 2237 size_t numCmps = 0; 2238 2239 // Start with "simple" cases 2240 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2241 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2242 Cases.push_back(Case(SI.getSuccessorValue(i), 2243 SI.getSuccessorValue(i), 2244 SMBB)); 2245 } 2246 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2247 2248 // Merge case into clusters 2249 if (Cases.size() >= 2) 2250 // Must recompute end() each iteration because it may be 2251 // invalidated by erase if we hold on to it 2252 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2253 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2254 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2255 MachineBasicBlock* nextBB = J->BB; 2256 MachineBasicBlock* currentBB = I->BB; 2257 2258 // If the two neighboring cases go to the same destination, merge them 2259 // into a single case. 2260 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2261 I->High = J->High; 2262 J = Cases.erase(J); 2263 } else { 2264 I = J++; 2265 } 2266 } 2267 2268 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2269 if (I->Low != I->High) 2270 // A range counts double, since it requires two compares. 2271 ++numCmps; 2272 } 2273 2274 return numCmps; 2275 } 2276 2277 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2278 MachineBasicBlock *Last) { 2279 // Update JTCases. 2280 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2281 if (JTCases[i].first.HeaderBB == First) 2282 JTCases[i].first.HeaderBB = Last; 2283 2284 // Update BitTestCases. 2285 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2286 if (BitTestCases[i].Parent == First) 2287 BitTestCases[i].Parent = Last; 2288 } 2289 2290 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2291 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2292 2293 // Figure out which block is immediately after the current one. 2294 MachineBasicBlock *NextBlock = 0; 2295 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2296 2297 // If there is only the default destination, branch to it if it is not the 2298 // next basic block. Otherwise, just fall through. 2299 if (SI.getNumOperands() == 2) { 2300 // Update machine-CFG edges. 2301 2302 // If this is not a fall-through branch, emit the branch. 2303 SwitchMBB->addSuccessor(Default); 2304 if (Default != NextBlock) 2305 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2306 MVT::Other, getControlRoot(), 2307 DAG.getBasicBlock(Default))); 2308 2309 return; 2310 } 2311 2312 // If there are any non-default case statements, create a vector of Cases 2313 // representing each one, and sort the vector so that we can efficiently 2314 // create a binary search tree from them. 2315 CaseVector Cases; 2316 size_t numCmps = Clusterify(Cases, SI); 2317 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2318 << ". Total compares: " << numCmps << '\n'); 2319 numCmps = 0; 2320 2321 // Get the Value to be switched on and default basic blocks, which will be 2322 // inserted into CaseBlock records, representing basic blocks in the binary 2323 // search tree. 2324 const Value *SV = SI.getOperand(0); 2325 2326 // Push the initial CaseRec onto the worklist 2327 CaseRecVector WorkList; 2328 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2329 CaseRange(Cases.begin(),Cases.end()))); 2330 2331 while (!WorkList.empty()) { 2332 // Grab a record representing a case range to process off the worklist 2333 CaseRec CR = WorkList.back(); 2334 WorkList.pop_back(); 2335 2336 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2337 continue; 2338 2339 // If the range has few cases (two or less) emit a series of specific 2340 // tests. 2341 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2342 continue; 2343 2344 // If the switch has more than 5 blocks, and at least 40% dense, and the 2345 // target supports indirect branches, then emit a jump table rather than 2346 // lowering the switch to a binary tree of conditional branches. 2347 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2348 continue; 2349 2350 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2351 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2352 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2353 } 2354 } 2355 2356 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2357 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2358 2359 // Update machine-CFG edges with unique successors. 2360 SmallVector<BasicBlock*, 32> succs; 2361 succs.reserve(I.getNumSuccessors()); 2362 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2363 succs.push_back(I.getSuccessor(i)); 2364 array_pod_sort(succs.begin(), succs.end()); 2365 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2366 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2367 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2368 2369 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2370 MVT::Other, getControlRoot(), 2371 getValue(I.getAddress()))); 2372 } 2373 2374 void SelectionDAGBuilder::visitFSub(const User &I) { 2375 // -0.0 - X --> fneg 2376 const Type *Ty = I.getType(); 2377 if (Ty->isVectorTy()) { 2378 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2379 const VectorType *DestTy = cast<VectorType>(I.getType()); 2380 const Type *ElTy = DestTy->getElementType(); 2381 unsigned VL = DestTy->getNumElements(); 2382 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2383 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2384 if (CV == CNZ) { 2385 SDValue Op2 = getValue(I.getOperand(1)); 2386 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2387 Op2.getValueType(), Op2)); 2388 return; 2389 } 2390 } 2391 } 2392 2393 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2394 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2395 SDValue Op2 = getValue(I.getOperand(1)); 2396 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2397 Op2.getValueType(), Op2)); 2398 return; 2399 } 2400 2401 visitBinary(I, ISD::FSUB); 2402 } 2403 2404 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2405 SDValue Op1 = getValue(I.getOperand(0)); 2406 SDValue Op2 = getValue(I.getOperand(1)); 2407 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2408 Op1.getValueType(), Op1, Op2)); 2409 } 2410 2411 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2412 SDValue Op1 = getValue(I.getOperand(0)); 2413 SDValue Op2 = getValue(I.getOperand(1)); 2414 if (!I.getType()->isVectorTy() && 2415 Op2.getValueType() != TLI.getShiftAmountTy()) { 2416 // If the operand is smaller than the shift count type, promote it. 2417 EVT PTy = TLI.getPointerTy(); 2418 EVT STy = TLI.getShiftAmountTy(); 2419 if (STy.bitsGT(Op2.getValueType())) 2420 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2421 TLI.getShiftAmountTy(), Op2); 2422 // If the operand is larger than the shift count type but the shift 2423 // count type has enough bits to represent any shift value, truncate 2424 // it now. This is a common case and it exposes the truncate to 2425 // optimization early. 2426 else if (STy.getSizeInBits() >= 2427 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2428 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2429 TLI.getShiftAmountTy(), Op2); 2430 // Otherwise we'll need to temporarily settle for some other 2431 // convenient type; type legalization will make adjustments as 2432 // needed. 2433 else if (PTy.bitsLT(Op2.getValueType())) 2434 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2435 TLI.getPointerTy(), Op2); 2436 else if (PTy.bitsGT(Op2.getValueType())) 2437 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2438 TLI.getPointerTy(), Op2); 2439 } 2440 2441 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2442 Op1.getValueType(), Op1, Op2)); 2443 } 2444 2445 void SelectionDAGBuilder::visitICmp(const User &I) { 2446 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2447 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2448 predicate = IC->getPredicate(); 2449 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2450 predicate = ICmpInst::Predicate(IC->getPredicate()); 2451 SDValue Op1 = getValue(I.getOperand(0)); 2452 SDValue Op2 = getValue(I.getOperand(1)); 2453 ISD::CondCode Opcode = getICmpCondCode(predicate); 2454 2455 EVT DestVT = TLI.getValueType(I.getType()); 2456 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2457 } 2458 2459 void SelectionDAGBuilder::visitFCmp(const User &I) { 2460 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2461 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2462 predicate = FC->getPredicate(); 2463 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2464 predicate = FCmpInst::Predicate(FC->getPredicate()); 2465 SDValue Op1 = getValue(I.getOperand(0)); 2466 SDValue Op2 = getValue(I.getOperand(1)); 2467 ISD::CondCode Condition = getFCmpCondCode(predicate); 2468 EVT DestVT = TLI.getValueType(I.getType()); 2469 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2470 } 2471 2472 void SelectionDAGBuilder::visitSelect(const User &I) { 2473 SmallVector<EVT, 4> ValueVTs; 2474 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2475 unsigned NumValues = ValueVTs.size(); 2476 if (NumValues == 0) return; 2477 2478 SmallVector<SDValue, 4> Values(NumValues); 2479 SDValue Cond = getValue(I.getOperand(0)); 2480 SDValue TrueVal = getValue(I.getOperand(1)); 2481 SDValue FalseVal = getValue(I.getOperand(2)); 2482 2483 for (unsigned i = 0; i != NumValues; ++i) 2484 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2485 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2486 Cond, 2487 SDValue(TrueVal.getNode(), 2488 TrueVal.getResNo() + i), 2489 SDValue(FalseVal.getNode(), 2490 FalseVal.getResNo() + i)); 2491 2492 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2493 DAG.getVTList(&ValueVTs[0], NumValues), 2494 &Values[0], NumValues)); 2495 } 2496 2497 void SelectionDAGBuilder::visitTrunc(const User &I) { 2498 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2499 SDValue N = getValue(I.getOperand(0)); 2500 EVT DestVT = TLI.getValueType(I.getType()); 2501 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2502 } 2503 2504 void SelectionDAGBuilder::visitZExt(const User &I) { 2505 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2506 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2507 SDValue N = getValue(I.getOperand(0)); 2508 EVT DestVT = TLI.getValueType(I.getType()); 2509 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2510 } 2511 2512 void SelectionDAGBuilder::visitSExt(const User &I) { 2513 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2514 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2515 SDValue N = getValue(I.getOperand(0)); 2516 EVT DestVT = TLI.getValueType(I.getType()); 2517 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2518 } 2519 2520 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2521 // FPTrunc is never a no-op cast, no need to check 2522 SDValue N = getValue(I.getOperand(0)); 2523 EVT DestVT = TLI.getValueType(I.getType()); 2524 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2525 DestVT, N, DAG.getIntPtrConstant(0))); 2526 } 2527 2528 void SelectionDAGBuilder::visitFPExt(const User &I){ 2529 // FPTrunc is never a no-op cast, no need to check 2530 SDValue N = getValue(I.getOperand(0)); 2531 EVT DestVT = TLI.getValueType(I.getType()); 2532 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2533 } 2534 2535 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2536 // FPToUI is never a no-op cast, no need to check 2537 SDValue N = getValue(I.getOperand(0)); 2538 EVT DestVT = TLI.getValueType(I.getType()); 2539 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2540 } 2541 2542 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2543 // FPToSI is never a no-op cast, no need to check 2544 SDValue N = getValue(I.getOperand(0)); 2545 EVT DestVT = TLI.getValueType(I.getType()); 2546 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2547 } 2548 2549 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2550 // UIToFP is never a no-op cast, no need to check 2551 SDValue N = getValue(I.getOperand(0)); 2552 EVT DestVT = TLI.getValueType(I.getType()); 2553 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2554 } 2555 2556 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2557 // SIToFP is never a no-op cast, no need to check 2558 SDValue N = getValue(I.getOperand(0)); 2559 EVT DestVT = TLI.getValueType(I.getType()); 2560 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2561 } 2562 2563 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2564 // What to do depends on the size of the integer and the size of the pointer. 2565 // We can either truncate, zero extend, or no-op, accordingly. 2566 SDValue N = getValue(I.getOperand(0)); 2567 EVT DestVT = TLI.getValueType(I.getType()); 2568 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2569 } 2570 2571 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2572 // What to do depends on the size of the integer and the size of the pointer. 2573 // We can either truncate, zero extend, or no-op, accordingly. 2574 SDValue N = getValue(I.getOperand(0)); 2575 EVT DestVT = TLI.getValueType(I.getType()); 2576 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2577 } 2578 2579 void SelectionDAGBuilder::visitBitCast(const User &I) { 2580 SDValue N = getValue(I.getOperand(0)); 2581 EVT DestVT = TLI.getValueType(I.getType()); 2582 2583 // BitCast assures us that source and destination are the same size so this is 2584 // either a BITCAST or a no-op. 2585 if (DestVT != N.getValueType()) 2586 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2587 DestVT, N)); // convert types. 2588 else 2589 setValue(&I, N); // noop cast. 2590 } 2591 2592 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2593 SDValue InVec = getValue(I.getOperand(0)); 2594 SDValue InVal = getValue(I.getOperand(1)); 2595 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2596 TLI.getPointerTy(), 2597 getValue(I.getOperand(2))); 2598 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2599 TLI.getValueType(I.getType()), 2600 InVec, InVal, InIdx)); 2601 } 2602 2603 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2604 SDValue InVec = getValue(I.getOperand(0)); 2605 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2606 TLI.getPointerTy(), 2607 getValue(I.getOperand(1))); 2608 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2609 TLI.getValueType(I.getType()), InVec, InIdx)); 2610 } 2611 2612 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2613 // from SIndx and increasing to the element length (undefs are allowed). 2614 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2615 unsigned MaskNumElts = Mask.size(); 2616 for (unsigned i = 0; i != MaskNumElts; ++i) 2617 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2618 return false; 2619 return true; 2620 } 2621 2622 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2623 SmallVector<int, 8> Mask; 2624 SDValue Src1 = getValue(I.getOperand(0)); 2625 SDValue Src2 = getValue(I.getOperand(1)); 2626 2627 // Convert the ConstantVector mask operand into an array of ints, with -1 2628 // representing undef values. 2629 SmallVector<Constant*, 8> MaskElts; 2630 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2631 unsigned MaskNumElts = MaskElts.size(); 2632 for (unsigned i = 0; i != MaskNumElts; ++i) { 2633 if (isa<UndefValue>(MaskElts[i])) 2634 Mask.push_back(-1); 2635 else 2636 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2637 } 2638 2639 EVT VT = TLI.getValueType(I.getType()); 2640 EVT SrcVT = Src1.getValueType(); 2641 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2642 2643 if (SrcNumElts == MaskNumElts) { 2644 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2645 &Mask[0])); 2646 return; 2647 } 2648 2649 // Normalize the shuffle vector since mask and vector length don't match. 2650 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2651 // Mask is longer than the source vectors and is a multiple of the source 2652 // vectors. We can use concatenate vector to make the mask and vectors 2653 // lengths match. 2654 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2655 // The shuffle is concatenating two vectors together. 2656 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2657 VT, Src1, Src2)); 2658 return; 2659 } 2660 2661 // Pad both vectors with undefs to make them the same length as the mask. 2662 unsigned NumConcat = MaskNumElts / SrcNumElts; 2663 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2664 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2665 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2666 2667 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2668 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2669 MOps1[0] = Src1; 2670 MOps2[0] = Src2; 2671 2672 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2673 getCurDebugLoc(), VT, 2674 &MOps1[0], NumConcat); 2675 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2676 getCurDebugLoc(), VT, 2677 &MOps2[0], NumConcat); 2678 2679 // Readjust mask for new input vector length. 2680 SmallVector<int, 8> MappedOps; 2681 for (unsigned i = 0; i != MaskNumElts; ++i) { 2682 int Idx = Mask[i]; 2683 if (Idx < (int)SrcNumElts) 2684 MappedOps.push_back(Idx); 2685 else 2686 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2687 } 2688 2689 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2690 &MappedOps[0])); 2691 return; 2692 } 2693 2694 if (SrcNumElts > MaskNumElts) { 2695 // Analyze the access pattern of the vector to see if we can extract 2696 // two subvectors and do the shuffle. The analysis is done by calculating 2697 // the range of elements the mask access on both vectors. 2698 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2699 int MaxRange[2] = {-1, -1}; 2700 2701 for (unsigned i = 0; i != MaskNumElts; ++i) { 2702 int Idx = Mask[i]; 2703 int Input = 0; 2704 if (Idx < 0) 2705 continue; 2706 2707 if (Idx >= (int)SrcNumElts) { 2708 Input = 1; 2709 Idx -= SrcNumElts; 2710 } 2711 if (Idx > MaxRange[Input]) 2712 MaxRange[Input] = Idx; 2713 if (Idx < MinRange[Input]) 2714 MinRange[Input] = Idx; 2715 } 2716 2717 // Check if the access is smaller than the vector size and can we find 2718 // a reasonable extract index. 2719 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2720 // Extract. 2721 int StartIdx[2]; // StartIdx to extract from 2722 for (int Input=0; Input < 2; ++Input) { 2723 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2724 RangeUse[Input] = 0; // Unused 2725 StartIdx[Input] = 0; 2726 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2727 // Fits within range but we should see if we can find a good 2728 // start index that is a multiple of the mask length. 2729 if (MaxRange[Input] < (int)MaskNumElts) { 2730 RangeUse[Input] = 1; // Extract from beginning of the vector 2731 StartIdx[Input] = 0; 2732 } else { 2733 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2734 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2735 StartIdx[Input] + MaskNumElts < SrcNumElts) 2736 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2737 } 2738 } 2739 } 2740 2741 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2742 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2743 return; 2744 } 2745 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2746 // Extract appropriate subvector and generate a vector shuffle 2747 for (int Input=0; Input < 2; ++Input) { 2748 SDValue &Src = Input == 0 ? Src1 : Src2; 2749 if (RangeUse[Input] == 0) 2750 Src = DAG.getUNDEF(VT); 2751 else 2752 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2753 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2754 } 2755 2756 // Calculate new mask. 2757 SmallVector<int, 8> MappedOps; 2758 for (unsigned i = 0; i != MaskNumElts; ++i) { 2759 int Idx = Mask[i]; 2760 if (Idx < 0) 2761 MappedOps.push_back(Idx); 2762 else if (Idx < (int)SrcNumElts) 2763 MappedOps.push_back(Idx - StartIdx[0]); 2764 else 2765 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2766 } 2767 2768 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2769 &MappedOps[0])); 2770 return; 2771 } 2772 } 2773 2774 // We can't use either concat vectors or extract subvectors so fall back to 2775 // replacing the shuffle with extract and build vector. 2776 // to insert and build vector. 2777 EVT EltVT = VT.getVectorElementType(); 2778 EVT PtrVT = TLI.getPointerTy(); 2779 SmallVector<SDValue,8> Ops; 2780 for (unsigned i = 0; i != MaskNumElts; ++i) { 2781 if (Mask[i] < 0) { 2782 Ops.push_back(DAG.getUNDEF(EltVT)); 2783 } else { 2784 int Idx = Mask[i]; 2785 SDValue Res; 2786 2787 if (Idx < (int)SrcNumElts) 2788 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2789 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2790 else 2791 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2792 EltVT, Src2, 2793 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2794 2795 Ops.push_back(Res); 2796 } 2797 } 2798 2799 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2800 VT, &Ops[0], Ops.size())); 2801 } 2802 2803 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2804 const Value *Op0 = I.getOperand(0); 2805 const Value *Op1 = I.getOperand(1); 2806 const Type *AggTy = I.getType(); 2807 const Type *ValTy = Op1->getType(); 2808 bool IntoUndef = isa<UndefValue>(Op0); 2809 bool FromUndef = isa<UndefValue>(Op1); 2810 2811 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2812 2813 SmallVector<EVT, 4> AggValueVTs; 2814 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2815 SmallVector<EVT, 4> ValValueVTs; 2816 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2817 2818 unsigned NumAggValues = AggValueVTs.size(); 2819 unsigned NumValValues = ValValueVTs.size(); 2820 SmallVector<SDValue, 4> Values(NumAggValues); 2821 2822 SDValue Agg = getValue(Op0); 2823 SDValue Val = getValue(Op1); 2824 unsigned i = 0; 2825 // Copy the beginning value(s) from the original aggregate. 2826 for (; i != LinearIndex; ++i) 2827 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2828 SDValue(Agg.getNode(), Agg.getResNo() + i); 2829 // Copy values from the inserted value(s). 2830 for (; i != LinearIndex + NumValValues; ++i) 2831 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2832 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2833 // Copy remaining value(s) from the original aggregate. 2834 for (; i != NumAggValues; ++i) 2835 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2836 SDValue(Agg.getNode(), Agg.getResNo() + i); 2837 2838 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2839 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2840 &Values[0], NumAggValues)); 2841 } 2842 2843 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2844 const Value *Op0 = I.getOperand(0); 2845 const Type *AggTy = Op0->getType(); 2846 const Type *ValTy = I.getType(); 2847 bool OutOfUndef = isa<UndefValue>(Op0); 2848 2849 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.idx_begin(), I.idx_end()); 2850 2851 SmallVector<EVT, 4> ValValueVTs; 2852 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2853 2854 unsigned NumValValues = ValValueVTs.size(); 2855 SmallVector<SDValue, 4> Values(NumValValues); 2856 2857 SDValue Agg = getValue(Op0); 2858 // Copy out the selected value(s). 2859 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2860 Values[i - LinearIndex] = 2861 OutOfUndef ? 2862 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2863 SDValue(Agg.getNode(), Agg.getResNo() + i); 2864 2865 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2866 DAG.getVTList(&ValValueVTs[0], NumValValues), 2867 &Values[0], NumValValues)); 2868 } 2869 2870 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2871 SDValue N = getValue(I.getOperand(0)); 2872 const Type *Ty = I.getOperand(0)->getType(); 2873 2874 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2875 OI != E; ++OI) { 2876 const Value *Idx = *OI; 2877 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2878 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2879 if (Field) { 2880 // N = N + Offset 2881 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2882 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2883 DAG.getIntPtrConstant(Offset)); 2884 } 2885 2886 Ty = StTy->getElementType(Field); 2887 } else { 2888 Ty = cast<SequentialType>(Ty)->getElementType(); 2889 2890 // If this is a constant subscript, handle it quickly. 2891 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2892 if (CI->isZero()) continue; 2893 uint64_t Offs = 2894 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2895 SDValue OffsVal; 2896 EVT PTy = TLI.getPointerTy(); 2897 unsigned PtrBits = PTy.getSizeInBits(); 2898 if (PtrBits < 64) 2899 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2900 TLI.getPointerTy(), 2901 DAG.getConstant(Offs, MVT::i64)); 2902 else 2903 OffsVal = DAG.getIntPtrConstant(Offs); 2904 2905 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2906 OffsVal); 2907 continue; 2908 } 2909 2910 // N = N + Idx * ElementSize; 2911 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2912 TD->getTypeAllocSize(Ty)); 2913 SDValue IdxN = getValue(Idx); 2914 2915 // If the index is smaller or larger than intptr_t, truncate or extend 2916 // it. 2917 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2918 2919 // If this is a multiply by a power of two, turn it into a shl 2920 // immediately. This is a very common case. 2921 if (ElementSize != 1) { 2922 if (ElementSize.isPowerOf2()) { 2923 unsigned Amt = ElementSize.logBase2(); 2924 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2925 N.getValueType(), IdxN, 2926 DAG.getConstant(Amt, TLI.getPointerTy())); 2927 } else { 2928 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2929 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2930 N.getValueType(), IdxN, Scale); 2931 } 2932 } 2933 2934 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2935 N.getValueType(), N, IdxN); 2936 } 2937 } 2938 2939 setValue(&I, N); 2940 } 2941 2942 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2943 // If this is a fixed sized alloca in the entry block of the function, 2944 // allocate it statically on the stack. 2945 if (FuncInfo.StaticAllocaMap.count(&I)) 2946 return; // getValue will auto-populate this. 2947 2948 const Type *Ty = I.getAllocatedType(); 2949 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2950 unsigned Align = 2951 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2952 I.getAlignment()); 2953 2954 SDValue AllocSize = getValue(I.getArraySize()); 2955 2956 EVT IntPtr = TLI.getPointerTy(); 2957 if (AllocSize.getValueType() != IntPtr) 2958 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2959 2960 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2961 AllocSize, 2962 DAG.getConstant(TySize, IntPtr)); 2963 2964 // Handle alignment. If the requested alignment is less than or equal to 2965 // the stack alignment, ignore it. If the size is greater than or equal to 2966 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2967 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2968 if (Align <= StackAlign) 2969 Align = 0; 2970 2971 // Round the size of the allocation up to the stack alignment size 2972 // by add SA-1 to the size. 2973 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2974 AllocSize.getValueType(), AllocSize, 2975 DAG.getIntPtrConstant(StackAlign-1)); 2976 2977 // Mask out the low bits for alignment purposes. 2978 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2979 AllocSize.getValueType(), AllocSize, 2980 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2981 2982 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2983 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2984 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2985 VTs, Ops, 3); 2986 setValue(&I, DSA); 2987 DAG.setRoot(DSA.getValue(1)); 2988 2989 // Inform the Frame Information that we have just allocated a variable-sized 2990 // object. 2991 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2992 } 2993 2994 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2995 const Value *SV = I.getOperand(0); 2996 SDValue Ptr = getValue(SV); 2997 2998 const Type *Ty = I.getType(); 2999 3000 bool isVolatile = I.isVolatile(); 3001 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3002 unsigned Alignment = I.getAlignment(); 3003 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3004 3005 SmallVector<EVT, 4> ValueVTs; 3006 SmallVector<uint64_t, 4> Offsets; 3007 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3008 unsigned NumValues = ValueVTs.size(); 3009 if (NumValues == 0) 3010 return; 3011 3012 SDValue Root; 3013 bool ConstantMemory = false; 3014 if (I.isVolatile() || NumValues > MaxParallelChains) 3015 // Serialize volatile loads with other side effects. 3016 Root = getRoot(); 3017 else if (AA->pointsToConstantMemory( 3018 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3019 // Do not serialize (non-volatile) loads of constant memory with anything. 3020 Root = DAG.getEntryNode(); 3021 ConstantMemory = true; 3022 } else { 3023 // Do not serialize non-volatile loads against each other. 3024 Root = DAG.getRoot(); 3025 } 3026 3027 SmallVector<SDValue, 4> Values(NumValues); 3028 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3029 NumValues)); 3030 EVT PtrVT = Ptr.getValueType(); 3031 unsigned ChainI = 0; 3032 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3033 // Serializing loads here may result in excessive register pressure, and 3034 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3035 // could recover a bit by hoisting nodes upward in the chain by recognizing 3036 // they are side-effect free or do not alias. The optimizer should really 3037 // avoid this case by converting large object/array copies to llvm.memcpy 3038 // (MaxParallelChains should always remain as failsafe). 3039 if (ChainI == MaxParallelChains) { 3040 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3041 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3042 MVT::Other, &Chains[0], ChainI); 3043 Root = Chain; 3044 ChainI = 0; 3045 } 3046 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3047 PtrVT, Ptr, 3048 DAG.getConstant(Offsets[i], PtrVT)); 3049 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3050 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3051 isNonTemporal, Alignment, TBAAInfo); 3052 3053 Values[i] = L; 3054 Chains[ChainI] = L.getValue(1); 3055 } 3056 3057 if (!ConstantMemory) { 3058 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3059 MVT::Other, &Chains[0], ChainI); 3060 if (isVolatile) 3061 DAG.setRoot(Chain); 3062 else 3063 PendingLoads.push_back(Chain); 3064 } 3065 3066 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3067 DAG.getVTList(&ValueVTs[0], NumValues), 3068 &Values[0], NumValues)); 3069 } 3070 3071 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3072 const Value *SrcV = I.getOperand(0); 3073 const Value *PtrV = I.getOperand(1); 3074 3075 SmallVector<EVT, 4> ValueVTs; 3076 SmallVector<uint64_t, 4> Offsets; 3077 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3078 unsigned NumValues = ValueVTs.size(); 3079 if (NumValues == 0) 3080 return; 3081 3082 // Get the lowered operands. Note that we do this after 3083 // checking if NumResults is zero, because with zero results 3084 // the operands won't have values in the map. 3085 SDValue Src = getValue(SrcV); 3086 SDValue Ptr = getValue(PtrV); 3087 3088 SDValue Root = getRoot(); 3089 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3090 NumValues)); 3091 EVT PtrVT = Ptr.getValueType(); 3092 bool isVolatile = I.isVolatile(); 3093 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3094 unsigned Alignment = I.getAlignment(); 3095 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3096 3097 unsigned ChainI = 0; 3098 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3099 // See visitLoad comments. 3100 if (ChainI == MaxParallelChains) { 3101 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3102 MVT::Other, &Chains[0], ChainI); 3103 Root = Chain; 3104 ChainI = 0; 3105 } 3106 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3107 DAG.getConstant(Offsets[i], PtrVT)); 3108 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3109 SDValue(Src.getNode(), Src.getResNo() + i), 3110 Add, MachinePointerInfo(PtrV, Offsets[i]), 3111 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3112 Chains[ChainI] = St; 3113 } 3114 3115 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3116 MVT::Other, &Chains[0], ChainI); 3117 ++SDNodeOrder; 3118 AssignOrderingToNode(StoreNode.getNode()); 3119 DAG.setRoot(StoreNode); 3120 } 3121 3122 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3123 /// node. 3124 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3125 unsigned Intrinsic) { 3126 bool HasChain = !I.doesNotAccessMemory(); 3127 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3128 3129 // Build the operand list. 3130 SmallVector<SDValue, 8> Ops; 3131 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3132 if (OnlyLoad) { 3133 // We don't need to serialize loads against other loads. 3134 Ops.push_back(DAG.getRoot()); 3135 } else { 3136 Ops.push_back(getRoot()); 3137 } 3138 } 3139 3140 // Info is set by getTgtMemInstrinsic 3141 TargetLowering::IntrinsicInfo Info; 3142 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3143 3144 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3145 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3146 Info.opc == ISD::INTRINSIC_W_CHAIN) 3147 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3148 3149 // Add all operands of the call to the operand list. 3150 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3151 SDValue Op = getValue(I.getArgOperand(i)); 3152 assert(TLI.isTypeLegal(Op.getValueType()) && 3153 "Intrinsic uses a non-legal type?"); 3154 Ops.push_back(Op); 3155 } 3156 3157 SmallVector<EVT, 4> ValueVTs; 3158 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3159 #ifndef NDEBUG 3160 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3161 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3162 "Intrinsic uses a non-legal type?"); 3163 } 3164 #endif // NDEBUG 3165 3166 if (HasChain) 3167 ValueVTs.push_back(MVT::Other); 3168 3169 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3170 3171 // Create the node. 3172 SDValue Result; 3173 if (IsTgtIntrinsic) { 3174 // This is target intrinsic that touches memory 3175 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3176 VTs, &Ops[0], Ops.size(), 3177 Info.memVT, 3178 MachinePointerInfo(Info.ptrVal, Info.offset), 3179 Info.align, Info.vol, 3180 Info.readMem, Info.writeMem); 3181 } else if (!HasChain) { 3182 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3183 VTs, &Ops[0], Ops.size()); 3184 } else if (!I.getType()->isVoidTy()) { 3185 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3186 VTs, &Ops[0], Ops.size()); 3187 } else { 3188 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3189 VTs, &Ops[0], Ops.size()); 3190 } 3191 3192 if (HasChain) { 3193 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3194 if (OnlyLoad) 3195 PendingLoads.push_back(Chain); 3196 else 3197 DAG.setRoot(Chain); 3198 } 3199 3200 if (!I.getType()->isVoidTy()) { 3201 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3202 EVT VT = TLI.getValueType(PTy); 3203 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3204 } 3205 3206 setValue(&I, Result); 3207 } 3208 } 3209 3210 /// GetSignificand - Get the significand and build it into a floating-point 3211 /// number with exponent of 1: 3212 /// 3213 /// Op = (Op & 0x007fffff) | 0x3f800000; 3214 /// 3215 /// where Op is the hexidecimal representation of floating point value. 3216 static SDValue 3217 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3218 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3219 DAG.getConstant(0x007fffff, MVT::i32)); 3220 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3221 DAG.getConstant(0x3f800000, MVT::i32)); 3222 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3223 } 3224 3225 /// GetExponent - Get the exponent: 3226 /// 3227 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3228 /// 3229 /// where Op is the hexidecimal representation of floating point value. 3230 static SDValue 3231 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3232 DebugLoc dl) { 3233 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3234 DAG.getConstant(0x7f800000, MVT::i32)); 3235 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3236 DAG.getConstant(23, TLI.getPointerTy())); 3237 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3238 DAG.getConstant(127, MVT::i32)); 3239 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3240 } 3241 3242 /// getF32Constant - Get 32-bit floating point constant. 3243 static SDValue 3244 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3245 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3246 } 3247 3248 /// Inlined utility function to implement binary input atomic intrinsics for 3249 /// visitIntrinsicCall: I is a call instruction 3250 /// Op is the associated NodeType for I 3251 const char * 3252 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3253 ISD::NodeType Op) { 3254 SDValue Root = getRoot(); 3255 SDValue L = 3256 DAG.getAtomic(Op, getCurDebugLoc(), 3257 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3258 Root, 3259 getValue(I.getArgOperand(0)), 3260 getValue(I.getArgOperand(1)), 3261 I.getArgOperand(0)); 3262 setValue(&I, L); 3263 DAG.setRoot(L.getValue(1)); 3264 return 0; 3265 } 3266 3267 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3268 const char * 3269 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3270 SDValue Op1 = getValue(I.getArgOperand(0)); 3271 SDValue Op2 = getValue(I.getArgOperand(1)); 3272 3273 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3274 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3275 return 0; 3276 } 3277 3278 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3279 /// limited-precision mode. 3280 void 3281 SelectionDAGBuilder::visitExp(const CallInst &I) { 3282 SDValue result; 3283 DebugLoc dl = getCurDebugLoc(); 3284 3285 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3286 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3287 SDValue Op = getValue(I.getArgOperand(0)); 3288 3289 // Put the exponent in the right bit position for later addition to the 3290 // final result: 3291 // 3292 // #define LOG2OFe 1.4426950f 3293 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3294 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3295 getF32Constant(DAG, 0x3fb8aa3b)); 3296 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3297 3298 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3299 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3300 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3301 3302 // IntegerPartOfX <<= 23; 3303 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3304 DAG.getConstant(23, TLI.getPointerTy())); 3305 3306 if (LimitFloatPrecision <= 6) { 3307 // For floating-point precision of 6: 3308 // 3309 // TwoToFractionalPartOfX = 3310 // 0.997535578f + 3311 // (0.735607626f + 0.252464424f * x) * x; 3312 // 3313 // error 0.0144103317, which is 6 bits 3314 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3315 getF32Constant(DAG, 0x3e814304)); 3316 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3317 getF32Constant(DAG, 0x3f3c50c8)); 3318 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3319 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3320 getF32Constant(DAG, 0x3f7f5e7e)); 3321 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3322 3323 // Add the exponent into the result in integer domain. 3324 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3325 TwoToFracPartOfX, IntegerPartOfX); 3326 3327 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3328 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3329 // For floating-point precision of 12: 3330 // 3331 // TwoToFractionalPartOfX = 3332 // 0.999892986f + 3333 // (0.696457318f + 3334 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3335 // 3336 // 0.000107046256 error, which is 13 to 14 bits 3337 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3338 getF32Constant(DAG, 0x3da235e3)); 3339 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3340 getF32Constant(DAG, 0x3e65b8f3)); 3341 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3342 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3343 getF32Constant(DAG, 0x3f324b07)); 3344 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3345 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3346 getF32Constant(DAG, 0x3f7ff8fd)); 3347 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3348 3349 // Add the exponent into the result in integer domain. 3350 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3351 TwoToFracPartOfX, IntegerPartOfX); 3352 3353 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3354 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3355 // For floating-point precision of 18: 3356 // 3357 // TwoToFractionalPartOfX = 3358 // 0.999999982f + 3359 // (0.693148872f + 3360 // (0.240227044f + 3361 // (0.554906021e-1f + 3362 // (0.961591928e-2f + 3363 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3364 // 3365 // error 2.47208000*10^(-7), which is better than 18 bits 3366 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3367 getF32Constant(DAG, 0x3924b03e)); 3368 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3369 getF32Constant(DAG, 0x3ab24b87)); 3370 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3371 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3372 getF32Constant(DAG, 0x3c1d8c17)); 3373 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3374 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3375 getF32Constant(DAG, 0x3d634a1d)); 3376 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3377 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3378 getF32Constant(DAG, 0x3e75fe14)); 3379 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3380 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3381 getF32Constant(DAG, 0x3f317234)); 3382 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3383 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3384 getF32Constant(DAG, 0x3f800000)); 3385 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3386 MVT::i32, t13); 3387 3388 // Add the exponent into the result in integer domain. 3389 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3390 TwoToFracPartOfX, IntegerPartOfX); 3391 3392 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3393 } 3394 } else { 3395 // No special expansion. 3396 result = DAG.getNode(ISD::FEXP, dl, 3397 getValue(I.getArgOperand(0)).getValueType(), 3398 getValue(I.getArgOperand(0))); 3399 } 3400 3401 setValue(&I, result); 3402 } 3403 3404 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3405 /// limited-precision mode. 3406 void 3407 SelectionDAGBuilder::visitLog(const CallInst &I) { 3408 SDValue result; 3409 DebugLoc dl = getCurDebugLoc(); 3410 3411 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3412 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3413 SDValue Op = getValue(I.getArgOperand(0)); 3414 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3415 3416 // Scale the exponent by log(2) [0.69314718f]. 3417 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3418 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3419 getF32Constant(DAG, 0x3f317218)); 3420 3421 // Get the significand and build it into a floating-point number with 3422 // exponent of 1. 3423 SDValue X = GetSignificand(DAG, Op1, dl); 3424 3425 if (LimitFloatPrecision <= 6) { 3426 // For floating-point precision of 6: 3427 // 3428 // LogofMantissa = 3429 // -1.1609546f + 3430 // (1.4034025f - 0.23903021f * x) * x; 3431 // 3432 // error 0.0034276066, which is better than 8 bits 3433 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3434 getF32Constant(DAG, 0xbe74c456)); 3435 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3436 getF32Constant(DAG, 0x3fb3a2b1)); 3437 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3438 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3439 getF32Constant(DAG, 0x3f949a29)); 3440 3441 result = DAG.getNode(ISD::FADD, dl, 3442 MVT::f32, LogOfExponent, LogOfMantissa); 3443 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3444 // For floating-point precision of 12: 3445 // 3446 // LogOfMantissa = 3447 // -1.7417939f + 3448 // (2.8212026f + 3449 // (-1.4699568f + 3450 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3451 // 3452 // error 0.000061011436, which is 14 bits 3453 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3454 getF32Constant(DAG, 0xbd67b6d6)); 3455 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3456 getF32Constant(DAG, 0x3ee4f4b8)); 3457 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3458 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3459 getF32Constant(DAG, 0x3fbc278b)); 3460 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3461 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3462 getF32Constant(DAG, 0x40348e95)); 3463 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3464 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3465 getF32Constant(DAG, 0x3fdef31a)); 3466 3467 result = DAG.getNode(ISD::FADD, dl, 3468 MVT::f32, LogOfExponent, LogOfMantissa); 3469 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3470 // For floating-point precision of 18: 3471 // 3472 // LogOfMantissa = 3473 // -2.1072184f + 3474 // (4.2372794f + 3475 // (-3.7029485f + 3476 // (2.2781945f + 3477 // (-0.87823314f + 3478 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3479 // 3480 // error 0.0000023660568, which is better than 18 bits 3481 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3482 getF32Constant(DAG, 0xbc91e5ac)); 3483 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3484 getF32Constant(DAG, 0x3e4350aa)); 3485 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3486 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3487 getF32Constant(DAG, 0x3f60d3e3)); 3488 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3489 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3490 getF32Constant(DAG, 0x4011cdf0)); 3491 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3492 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3493 getF32Constant(DAG, 0x406cfd1c)); 3494 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3495 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3496 getF32Constant(DAG, 0x408797cb)); 3497 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3498 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3499 getF32Constant(DAG, 0x4006dcab)); 3500 3501 result = DAG.getNode(ISD::FADD, dl, 3502 MVT::f32, LogOfExponent, LogOfMantissa); 3503 } 3504 } else { 3505 // No special expansion. 3506 result = DAG.getNode(ISD::FLOG, dl, 3507 getValue(I.getArgOperand(0)).getValueType(), 3508 getValue(I.getArgOperand(0))); 3509 } 3510 3511 setValue(&I, result); 3512 } 3513 3514 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3515 /// limited-precision mode. 3516 void 3517 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3518 SDValue result; 3519 DebugLoc dl = getCurDebugLoc(); 3520 3521 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3522 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3523 SDValue Op = getValue(I.getArgOperand(0)); 3524 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3525 3526 // Get the exponent. 3527 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3528 3529 // Get the significand and build it into a floating-point number with 3530 // exponent of 1. 3531 SDValue X = GetSignificand(DAG, Op1, dl); 3532 3533 // Different possible minimax approximations of significand in 3534 // floating-point for various degrees of accuracy over [1,2]. 3535 if (LimitFloatPrecision <= 6) { 3536 // For floating-point precision of 6: 3537 // 3538 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3539 // 3540 // error 0.0049451742, which is more than 7 bits 3541 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3542 getF32Constant(DAG, 0xbeb08fe0)); 3543 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3544 getF32Constant(DAG, 0x40019463)); 3545 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3546 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3547 getF32Constant(DAG, 0x3fd6633d)); 3548 3549 result = DAG.getNode(ISD::FADD, dl, 3550 MVT::f32, LogOfExponent, Log2ofMantissa); 3551 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3552 // For floating-point precision of 12: 3553 // 3554 // Log2ofMantissa = 3555 // -2.51285454f + 3556 // (4.07009056f + 3557 // (-2.12067489f + 3558 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3559 // 3560 // error 0.0000876136000, which is better than 13 bits 3561 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3562 getF32Constant(DAG, 0xbda7262e)); 3563 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3564 getF32Constant(DAG, 0x3f25280b)); 3565 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3566 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3567 getF32Constant(DAG, 0x4007b923)); 3568 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3569 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3570 getF32Constant(DAG, 0x40823e2f)); 3571 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3572 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3573 getF32Constant(DAG, 0x4020d29c)); 3574 3575 result = DAG.getNode(ISD::FADD, dl, 3576 MVT::f32, LogOfExponent, Log2ofMantissa); 3577 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3578 // For floating-point precision of 18: 3579 // 3580 // Log2ofMantissa = 3581 // -3.0400495f + 3582 // (6.1129976f + 3583 // (-5.3420409f + 3584 // (3.2865683f + 3585 // (-1.2669343f + 3586 // (0.27515199f - 3587 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3588 // 3589 // error 0.0000018516, which is better than 18 bits 3590 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3591 getF32Constant(DAG, 0xbcd2769e)); 3592 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3593 getF32Constant(DAG, 0x3e8ce0b9)); 3594 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3595 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3596 getF32Constant(DAG, 0x3fa22ae7)); 3597 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3598 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3599 getF32Constant(DAG, 0x40525723)); 3600 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3601 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3602 getF32Constant(DAG, 0x40aaf200)); 3603 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3604 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3605 getF32Constant(DAG, 0x40c39dad)); 3606 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3607 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3608 getF32Constant(DAG, 0x4042902c)); 3609 3610 result = DAG.getNode(ISD::FADD, dl, 3611 MVT::f32, LogOfExponent, Log2ofMantissa); 3612 } 3613 } else { 3614 // No special expansion. 3615 result = DAG.getNode(ISD::FLOG2, dl, 3616 getValue(I.getArgOperand(0)).getValueType(), 3617 getValue(I.getArgOperand(0))); 3618 } 3619 3620 setValue(&I, result); 3621 } 3622 3623 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3624 /// limited-precision mode. 3625 void 3626 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3627 SDValue result; 3628 DebugLoc dl = getCurDebugLoc(); 3629 3630 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3631 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3632 SDValue Op = getValue(I.getArgOperand(0)); 3633 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3634 3635 // Scale the exponent by log10(2) [0.30102999f]. 3636 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3637 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3638 getF32Constant(DAG, 0x3e9a209a)); 3639 3640 // Get the significand and build it into a floating-point number with 3641 // exponent of 1. 3642 SDValue X = GetSignificand(DAG, Op1, dl); 3643 3644 if (LimitFloatPrecision <= 6) { 3645 // For floating-point precision of 6: 3646 // 3647 // Log10ofMantissa = 3648 // -0.50419619f + 3649 // (0.60948995f - 0.10380950f * x) * x; 3650 // 3651 // error 0.0014886165, which is 6 bits 3652 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3653 getF32Constant(DAG, 0xbdd49a13)); 3654 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3655 getF32Constant(DAG, 0x3f1c0789)); 3656 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3657 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3658 getF32Constant(DAG, 0x3f011300)); 3659 3660 result = DAG.getNode(ISD::FADD, dl, 3661 MVT::f32, LogOfExponent, Log10ofMantissa); 3662 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3663 // For floating-point precision of 12: 3664 // 3665 // Log10ofMantissa = 3666 // -0.64831180f + 3667 // (0.91751397f + 3668 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3669 // 3670 // error 0.00019228036, which is better than 12 bits 3671 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3672 getF32Constant(DAG, 0x3d431f31)); 3673 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3674 getF32Constant(DAG, 0x3ea21fb2)); 3675 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3676 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3677 getF32Constant(DAG, 0x3f6ae232)); 3678 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3679 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3680 getF32Constant(DAG, 0x3f25f7c3)); 3681 3682 result = DAG.getNode(ISD::FADD, dl, 3683 MVT::f32, LogOfExponent, Log10ofMantissa); 3684 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3685 // For floating-point precision of 18: 3686 // 3687 // Log10ofMantissa = 3688 // -0.84299375f + 3689 // (1.5327582f + 3690 // (-1.0688956f + 3691 // (0.49102474f + 3692 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3693 // 3694 // error 0.0000037995730, which is better than 18 bits 3695 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3696 getF32Constant(DAG, 0x3c5d51ce)); 3697 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3698 getF32Constant(DAG, 0x3e00685a)); 3699 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3700 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3701 getF32Constant(DAG, 0x3efb6798)); 3702 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3703 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3704 getF32Constant(DAG, 0x3f88d192)); 3705 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3706 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3707 getF32Constant(DAG, 0x3fc4316c)); 3708 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3709 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3710 getF32Constant(DAG, 0x3f57ce70)); 3711 3712 result = DAG.getNode(ISD::FADD, dl, 3713 MVT::f32, LogOfExponent, Log10ofMantissa); 3714 } 3715 } else { 3716 // No special expansion. 3717 result = DAG.getNode(ISD::FLOG10, dl, 3718 getValue(I.getArgOperand(0)).getValueType(), 3719 getValue(I.getArgOperand(0))); 3720 } 3721 3722 setValue(&I, result); 3723 } 3724 3725 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3726 /// limited-precision mode. 3727 void 3728 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3729 SDValue result; 3730 DebugLoc dl = getCurDebugLoc(); 3731 3732 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3733 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3734 SDValue Op = getValue(I.getArgOperand(0)); 3735 3736 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3737 3738 // FractionalPartOfX = x - (float)IntegerPartOfX; 3739 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3740 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3741 3742 // IntegerPartOfX <<= 23; 3743 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3744 DAG.getConstant(23, TLI.getPointerTy())); 3745 3746 if (LimitFloatPrecision <= 6) { 3747 // For floating-point precision of 6: 3748 // 3749 // TwoToFractionalPartOfX = 3750 // 0.997535578f + 3751 // (0.735607626f + 0.252464424f * x) * x; 3752 // 3753 // error 0.0144103317, which is 6 bits 3754 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3755 getF32Constant(DAG, 0x3e814304)); 3756 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3757 getF32Constant(DAG, 0x3f3c50c8)); 3758 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3759 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3760 getF32Constant(DAG, 0x3f7f5e7e)); 3761 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3762 SDValue TwoToFractionalPartOfX = 3763 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3764 3765 result = DAG.getNode(ISD::BITCAST, dl, 3766 MVT::f32, TwoToFractionalPartOfX); 3767 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3768 // For floating-point precision of 12: 3769 // 3770 // TwoToFractionalPartOfX = 3771 // 0.999892986f + 3772 // (0.696457318f + 3773 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3774 // 3775 // error 0.000107046256, which is 13 to 14 bits 3776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3777 getF32Constant(DAG, 0x3da235e3)); 3778 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3779 getF32Constant(DAG, 0x3e65b8f3)); 3780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3781 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3782 getF32Constant(DAG, 0x3f324b07)); 3783 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3784 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3785 getF32Constant(DAG, 0x3f7ff8fd)); 3786 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3787 SDValue TwoToFractionalPartOfX = 3788 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3789 3790 result = DAG.getNode(ISD::BITCAST, dl, 3791 MVT::f32, TwoToFractionalPartOfX); 3792 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3793 // For floating-point precision of 18: 3794 // 3795 // TwoToFractionalPartOfX = 3796 // 0.999999982f + 3797 // (0.693148872f + 3798 // (0.240227044f + 3799 // (0.554906021e-1f + 3800 // (0.961591928e-2f + 3801 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3802 // error 2.47208000*10^(-7), which is better than 18 bits 3803 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3804 getF32Constant(DAG, 0x3924b03e)); 3805 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3806 getF32Constant(DAG, 0x3ab24b87)); 3807 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3808 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3809 getF32Constant(DAG, 0x3c1d8c17)); 3810 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3811 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3812 getF32Constant(DAG, 0x3d634a1d)); 3813 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3814 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3815 getF32Constant(DAG, 0x3e75fe14)); 3816 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3817 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3818 getF32Constant(DAG, 0x3f317234)); 3819 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3820 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3821 getF32Constant(DAG, 0x3f800000)); 3822 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3823 SDValue TwoToFractionalPartOfX = 3824 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3825 3826 result = DAG.getNode(ISD::BITCAST, dl, 3827 MVT::f32, TwoToFractionalPartOfX); 3828 } 3829 } else { 3830 // No special expansion. 3831 result = DAG.getNode(ISD::FEXP2, dl, 3832 getValue(I.getArgOperand(0)).getValueType(), 3833 getValue(I.getArgOperand(0))); 3834 } 3835 3836 setValue(&I, result); 3837 } 3838 3839 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3840 /// limited-precision mode with x == 10.0f. 3841 void 3842 SelectionDAGBuilder::visitPow(const CallInst &I) { 3843 SDValue result; 3844 const Value *Val = I.getArgOperand(0); 3845 DebugLoc dl = getCurDebugLoc(); 3846 bool IsExp10 = false; 3847 3848 if (getValue(Val).getValueType() == MVT::f32 && 3849 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3850 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3851 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3852 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3853 APFloat Ten(10.0f); 3854 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3855 } 3856 } 3857 } 3858 3859 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3860 SDValue Op = getValue(I.getArgOperand(1)); 3861 3862 // Put the exponent in the right bit position for later addition to the 3863 // final result: 3864 // 3865 // #define LOG2OF10 3.3219281f 3866 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3867 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3868 getF32Constant(DAG, 0x40549a78)); 3869 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3870 3871 // FractionalPartOfX = x - (float)IntegerPartOfX; 3872 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3873 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3874 3875 // IntegerPartOfX <<= 23; 3876 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3877 DAG.getConstant(23, TLI.getPointerTy())); 3878 3879 if (LimitFloatPrecision <= 6) { 3880 // For floating-point precision of 6: 3881 // 3882 // twoToFractionalPartOfX = 3883 // 0.997535578f + 3884 // (0.735607626f + 0.252464424f * x) * x; 3885 // 3886 // error 0.0144103317, which is 6 bits 3887 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3888 getF32Constant(DAG, 0x3e814304)); 3889 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3890 getF32Constant(DAG, 0x3f3c50c8)); 3891 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3892 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3893 getF32Constant(DAG, 0x3f7f5e7e)); 3894 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 3895 SDValue TwoToFractionalPartOfX = 3896 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3897 3898 result = DAG.getNode(ISD::BITCAST, dl, 3899 MVT::f32, TwoToFractionalPartOfX); 3900 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3901 // For floating-point precision of 12: 3902 // 3903 // TwoToFractionalPartOfX = 3904 // 0.999892986f + 3905 // (0.696457318f + 3906 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3907 // 3908 // error 0.000107046256, which is 13 to 14 bits 3909 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3910 getF32Constant(DAG, 0x3da235e3)); 3911 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3912 getF32Constant(DAG, 0x3e65b8f3)); 3913 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3914 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3915 getF32Constant(DAG, 0x3f324b07)); 3916 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3917 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3918 getF32Constant(DAG, 0x3f7ff8fd)); 3919 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 3920 SDValue TwoToFractionalPartOfX = 3921 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3922 3923 result = DAG.getNode(ISD::BITCAST, dl, 3924 MVT::f32, TwoToFractionalPartOfX); 3925 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3926 // For floating-point precision of 18: 3927 // 3928 // TwoToFractionalPartOfX = 3929 // 0.999999982f + 3930 // (0.693148872f + 3931 // (0.240227044f + 3932 // (0.554906021e-1f + 3933 // (0.961591928e-2f + 3934 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3935 // error 2.47208000*10^(-7), which is better than 18 bits 3936 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3937 getF32Constant(DAG, 0x3924b03e)); 3938 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3939 getF32Constant(DAG, 0x3ab24b87)); 3940 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3941 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3942 getF32Constant(DAG, 0x3c1d8c17)); 3943 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3944 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3945 getF32Constant(DAG, 0x3d634a1d)); 3946 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3947 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3948 getF32Constant(DAG, 0x3e75fe14)); 3949 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3950 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3951 getF32Constant(DAG, 0x3f317234)); 3952 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3953 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3954 getF32Constant(DAG, 0x3f800000)); 3955 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 3956 SDValue TwoToFractionalPartOfX = 3957 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3958 3959 result = DAG.getNode(ISD::BITCAST, dl, 3960 MVT::f32, TwoToFractionalPartOfX); 3961 } 3962 } else { 3963 // No special expansion. 3964 result = DAG.getNode(ISD::FPOW, dl, 3965 getValue(I.getArgOperand(0)).getValueType(), 3966 getValue(I.getArgOperand(0)), 3967 getValue(I.getArgOperand(1))); 3968 } 3969 3970 setValue(&I, result); 3971 } 3972 3973 3974 /// ExpandPowI - Expand a llvm.powi intrinsic. 3975 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3976 SelectionDAG &DAG) { 3977 // If RHS is a constant, we can expand this out to a multiplication tree, 3978 // otherwise we end up lowering to a call to __powidf2 (for example). When 3979 // optimizing for size, we only want to do this if the expansion would produce 3980 // a small number of multiplies, otherwise we do the full expansion. 3981 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3982 // Get the exponent as a positive value. 3983 unsigned Val = RHSC->getSExtValue(); 3984 if ((int)Val < 0) Val = -Val; 3985 3986 // powi(x, 0) -> 1.0 3987 if (Val == 0) 3988 return DAG.getConstantFP(1.0, LHS.getValueType()); 3989 3990 const Function *F = DAG.getMachineFunction().getFunction(); 3991 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3992 // If optimizing for size, don't insert too many multiplies. This 3993 // inserts up to 5 multiplies. 3994 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3995 // We use the simple binary decomposition method to generate the multiply 3996 // sequence. There are more optimal ways to do this (for example, 3997 // powi(x,15) generates one more multiply than it should), but this has 3998 // the benefit of being both really simple and much better than a libcall. 3999 SDValue Res; // Logically starts equal to 1.0 4000 SDValue CurSquare = LHS; 4001 while (Val) { 4002 if (Val & 1) { 4003 if (Res.getNode()) 4004 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4005 else 4006 Res = CurSquare; // 1.0*CurSquare. 4007 } 4008 4009 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4010 CurSquare, CurSquare); 4011 Val >>= 1; 4012 } 4013 4014 // If the original was negative, invert the result, producing 1/(x*x*x). 4015 if (RHSC->getSExtValue() < 0) 4016 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4017 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4018 return Res; 4019 } 4020 } 4021 4022 // Otherwise, expand to a libcall. 4023 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4024 } 4025 4026 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4027 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4028 /// At the end of instruction selection, they will be inserted to the entry BB. 4029 bool 4030 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4031 int64_t Offset, 4032 const SDValue &N) { 4033 const Argument *Arg = dyn_cast<Argument>(V); 4034 if (!Arg) 4035 return false; 4036 4037 MachineFunction &MF = DAG.getMachineFunction(); 4038 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4039 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4040 4041 // Ignore inlined function arguments here. 4042 DIVariable DV(Variable); 4043 if (DV.isInlinedFnArgument(MF.getFunction())) 4044 return false; 4045 4046 MachineBasicBlock *MBB = FuncInfo.MBB; 4047 if (MBB != &MF.front()) 4048 return false; 4049 4050 unsigned Reg = 0; 4051 if (Arg->hasByValAttr()) { 4052 // Byval arguments' frame index is recorded during argument lowering. 4053 // Use this info directly. 4054 Reg = TRI->getFrameRegister(MF); 4055 Offset = FuncInfo.getByValArgumentFrameIndex(Arg); 4056 // If byval argument ofset is not recorded then ignore this. 4057 if (!Offset) 4058 Reg = 0; 4059 } 4060 4061 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 4062 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4063 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4064 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4065 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4066 if (PR) 4067 Reg = PR; 4068 } 4069 } 4070 4071 if (!Reg) { 4072 // Check if ValueMap has reg number. 4073 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4074 if (VMI != FuncInfo.ValueMap.end()) 4075 Reg = VMI->second; 4076 } 4077 4078 if (!Reg && N.getNode()) { 4079 // Check if frame index is available. 4080 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4081 if (FrameIndexSDNode *FINode = 4082 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4083 Reg = TRI->getFrameRegister(MF); 4084 Offset = FINode->getIndex(); 4085 } 4086 } 4087 4088 if (!Reg) 4089 return false; 4090 4091 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4092 TII->get(TargetOpcode::DBG_VALUE)) 4093 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4094 FuncInfo.ArgDbgValues.push_back(&*MIB); 4095 return true; 4096 } 4097 4098 // VisualStudio defines setjmp as _setjmp 4099 #if defined(_MSC_VER) && defined(setjmp) && \ 4100 !defined(setjmp_undefined_for_msvc) 4101 # pragma push_macro("setjmp") 4102 # undef setjmp 4103 # define setjmp_undefined_for_msvc 4104 #endif 4105 4106 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4107 /// we want to emit this as a call to a named external function, return the name 4108 /// otherwise lower it and return null. 4109 const char * 4110 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4111 DebugLoc dl = getCurDebugLoc(); 4112 SDValue Res; 4113 4114 switch (Intrinsic) { 4115 default: 4116 // By default, turn this into a target intrinsic node. 4117 visitTargetIntrinsic(I, Intrinsic); 4118 return 0; 4119 case Intrinsic::vastart: visitVAStart(I); return 0; 4120 case Intrinsic::vaend: visitVAEnd(I); return 0; 4121 case Intrinsic::vacopy: visitVACopy(I); return 0; 4122 case Intrinsic::returnaddress: 4123 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4124 getValue(I.getArgOperand(0)))); 4125 return 0; 4126 case Intrinsic::frameaddress: 4127 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4128 getValue(I.getArgOperand(0)))); 4129 return 0; 4130 case Intrinsic::setjmp: 4131 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4132 case Intrinsic::longjmp: 4133 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4134 case Intrinsic::memcpy: { 4135 // Assert for address < 256 since we support only user defined address 4136 // spaces. 4137 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4138 < 256 && 4139 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4140 < 256 && 4141 "Unknown address space"); 4142 SDValue Op1 = getValue(I.getArgOperand(0)); 4143 SDValue Op2 = getValue(I.getArgOperand(1)); 4144 SDValue Op3 = getValue(I.getArgOperand(2)); 4145 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4146 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4147 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4148 MachinePointerInfo(I.getArgOperand(0)), 4149 MachinePointerInfo(I.getArgOperand(1)))); 4150 return 0; 4151 } 4152 case Intrinsic::memset: { 4153 // Assert for address < 256 since we support only user defined address 4154 // spaces. 4155 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4156 < 256 && 4157 "Unknown address space"); 4158 SDValue Op1 = getValue(I.getArgOperand(0)); 4159 SDValue Op2 = getValue(I.getArgOperand(1)); 4160 SDValue Op3 = getValue(I.getArgOperand(2)); 4161 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4162 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4163 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4164 MachinePointerInfo(I.getArgOperand(0)))); 4165 return 0; 4166 } 4167 case Intrinsic::memmove: { 4168 // Assert for address < 256 since we support only user defined address 4169 // spaces. 4170 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4171 < 256 && 4172 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4173 < 256 && 4174 "Unknown address space"); 4175 SDValue Op1 = getValue(I.getArgOperand(0)); 4176 SDValue Op2 = getValue(I.getArgOperand(1)); 4177 SDValue Op3 = getValue(I.getArgOperand(2)); 4178 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4179 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4180 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4181 MachinePointerInfo(I.getArgOperand(0)), 4182 MachinePointerInfo(I.getArgOperand(1)))); 4183 return 0; 4184 } 4185 case Intrinsic::dbg_declare: { 4186 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4187 MDNode *Variable = DI.getVariable(); 4188 const Value *Address = DI.getAddress(); 4189 if (!Address || !DIVariable(DI.getVariable()).Verify()) 4190 return 0; 4191 4192 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4193 // but do not always have a corresponding SDNode built. The SDNodeOrder 4194 // absolute, but not relative, values are different depending on whether 4195 // debug info exists. 4196 ++SDNodeOrder; 4197 4198 // Check if address has undef value. 4199 if (isa<UndefValue>(Address) || 4200 (Address->use_empty() && !isa<Argument>(Address))) { 4201 SDDbgValue*SDV = 4202 DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4203 0, dl, SDNodeOrder); 4204 DAG.AddDbgValue(SDV, 0, false); 4205 return 0; 4206 } 4207 4208 SDValue &N = NodeMap[Address]; 4209 if (!N.getNode() && isa<Argument>(Address)) 4210 // Check unused arguments map. 4211 N = UnusedArgNodeMap[Address]; 4212 SDDbgValue *SDV; 4213 if (N.getNode()) { 4214 // Parameters are handled specially. 4215 bool isParameter = 4216 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4217 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4218 Address = BCI->getOperand(0); 4219 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4220 4221 if (isParameter && !AI) { 4222 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4223 if (FINode) 4224 // Byval parameter. We have a frame index at this point. 4225 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4226 0, dl, SDNodeOrder); 4227 else 4228 // Can't do anything with other non-AI cases yet. This might be a 4229 // parameter of a callee function that got inlined, for example. 4230 return 0; 4231 } else if (AI) 4232 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4233 0, dl, SDNodeOrder); 4234 else 4235 // Can't do anything with other non-AI cases yet. 4236 return 0; 4237 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4238 } else { 4239 // If Address is an argument then try to emit its dbg value using 4240 // virtual register info from the FuncInfo.ValueMap. 4241 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4242 // If variable is pinned by a alloca in dominating bb then 4243 // use StaticAllocaMap. 4244 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4245 if (AI->getParent() != DI.getParent()) { 4246 DenseMap<const AllocaInst*, int>::iterator SI = 4247 FuncInfo.StaticAllocaMap.find(AI); 4248 if (SI != FuncInfo.StaticAllocaMap.end()) { 4249 SDV = DAG.getDbgValue(Variable, SI->second, 4250 0, dl, SDNodeOrder); 4251 DAG.AddDbgValue(SDV, 0, false); 4252 return 0; 4253 } 4254 } 4255 } 4256 // Otherwise add undef to help track missing debug info. 4257 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4258 0, dl, SDNodeOrder); 4259 DAG.AddDbgValue(SDV, 0, false); 4260 } 4261 } 4262 return 0; 4263 } 4264 case Intrinsic::dbg_value: { 4265 const DbgValueInst &DI = cast<DbgValueInst>(I); 4266 if (!DIVariable(DI.getVariable()).Verify()) 4267 return 0; 4268 4269 MDNode *Variable = DI.getVariable(); 4270 uint64_t Offset = DI.getOffset(); 4271 const Value *V = DI.getValue(); 4272 if (!V) 4273 return 0; 4274 4275 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4276 // but do not always have a corresponding SDNode built. The SDNodeOrder 4277 // absolute, but not relative, values are different depending on whether 4278 // debug info exists. 4279 ++SDNodeOrder; 4280 SDDbgValue *SDV; 4281 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4282 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4283 DAG.AddDbgValue(SDV, 0, false); 4284 } else { 4285 // Do not use getValue() in here; we don't want to generate code at 4286 // this point if it hasn't been done yet. 4287 SDValue N = NodeMap[V]; 4288 if (!N.getNode() && isa<Argument>(V)) 4289 // Check unused arguments map. 4290 N = UnusedArgNodeMap[V]; 4291 if (N.getNode()) { 4292 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4293 SDV = DAG.getDbgValue(Variable, N.getNode(), 4294 N.getResNo(), Offset, dl, SDNodeOrder); 4295 DAG.AddDbgValue(SDV, N.getNode(), false); 4296 } 4297 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4298 // Do not call getValue(V) yet, as we don't want to generate code. 4299 // Remember it for later. 4300 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4301 DanglingDebugInfoMap[V] = DDI; 4302 } else { 4303 // We may expand this to cover more cases. One case where we have no 4304 // data available is an unreferenced parameter; we need this fallback. 4305 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4306 Offset, dl, SDNodeOrder); 4307 DAG.AddDbgValue(SDV, 0, false); 4308 } 4309 } 4310 4311 // Build a debug info table entry. 4312 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4313 V = BCI->getOperand(0); 4314 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4315 // Don't handle byval struct arguments or VLAs, for example. 4316 if (!AI) 4317 return 0; 4318 DenseMap<const AllocaInst*, int>::iterator SI = 4319 FuncInfo.StaticAllocaMap.find(AI); 4320 if (SI == FuncInfo.StaticAllocaMap.end()) 4321 return 0; // VLAs. 4322 int FI = SI->second; 4323 4324 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4325 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4326 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4327 return 0; 4328 } 4329 case Intrinsic::eh_exception: { 4330 // Insert the EXCEPTIONADDR instruction. 4331 assert(FuncInfo.MBB->isLandingPad() && 4332 "Call to eh.exception not in landing pad!"); 4333 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4334 SDValue Ops[1]; 4335 Ops[0] = DAG.getRoot(); 4336 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4337 setValue(&I, Op); 4338 DAG.setRoot(Op.getValue(1)); 4339 return 0; 4340 } 4341 4342 case Intrinsic::eh_selector: { 4343 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4344 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4345 if (CallMBB->isLandingPad()) 4346 AddCatchInfo(I, &MMI, CallMBB); 4347 else { 4348 #ifndef NDEBUG 4349 FuncInfo.CatchInfoLost.insert(&I); 4350 #endif 4351 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4352 unsigned Reg = TLI.getExceptionSelectorRegister(); 4353 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4354 } 4355 4356 // Insert the EHSELECTION instruction. 4357 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4358 SDValue Ops[2]; 4359 Ops[0] = getValue(I.getArgOperand(0)); 4360 Ops[1] = getRoot(); 4361 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4362 DAG.setRoot(Op.getValue(1)); 4363 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4364 return 0; 4365 } 4366 4367 case Intrinsic::eh_typeid_for: { 4368 // Find the type id for the given typeinfo. 4369 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4370 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4371 Res = DAG.getConstant(TypeID, MVT::i32); 4372 setValue(&I, Res); 4373 return 0; 4374 } 4375 4376 case Intrinsic::eh_return_i32: 4377 case Intrinsic::eh_return_i64: 4378 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4379 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4380 MVT::Other, 4381 getControlRoot(), 4382 getValue(I.getArgOperand(0)), 4383 getValue(I.getArgOperand(1)))); 4384 return 0; 4385 case Intrinsic::eh_unwind_init: 4386 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4387 return 0; 4388 case Intrinsic::eh_dwarf_cfa: { 4389 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4390 TLI.getPointerTy()); 4391 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4392 TLI.getPointerTy(), 4393 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4394 TLI.getPointerTy()), 4395 CfaArg); 4396 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4397 TLI.getPointerTy(), 4398 DAG.getConstant(0, TLI.getPointerTy())); 4399 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4400 FA, Offset)); 4401 return 0; 4402 } 4403 case Intrinsic::eh_sjlj_callsite: { 4404 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4405 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4406 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4407 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4408 4409 MMI.setCurrentCallSite(CI->getZExtValue()); 4410 return 0; 4411 } 4412 case Intrinsic::eh_sjlj_setjmp: { 4413 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4414 getValue(I.getArgOperand(0)))); 4415 return 0; 4416 } 4417 case Intrinsic::eh_sjlj_longjmp: { 4418 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4419 getRoot(), getValue(I.getArgOperand(0)))); 4420 return 0; 4421 } 4422 case Intrinsic::eh_sjlj_dispatch_setup: { 4423 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4424 getRoot(), getValue(I.getArgOperand(0)))); 4425 return 0; 4426 } 4427 4428 case Intrinsic::x86_mmx_pslli_w: 4429 case Intrinsic::x86_mmx_pslli_d: 4430 case Intrinsic::x86_mmx_pslli_q: 4431 case Intrinsic::x86_mmx_psrli_w: 4432 case Intrinsic::x86_mmx_psrli_d: 4433 case Intrinsic::x86_mmx_psrli_q: 4434 case Intrinsic::x86_mmx_psrai_w: 4435 case Intrinsic::x86_mmx_psrai_d: { 4436 SDValue ShAmt = getValue(I.getArgOperand(1)); 4437 if (isa<ConstantSDNode>(ShAmt)) { 4438 visitTargetIntrinsic(I, Intrinsic); 4439 return 0; 4440 } 4441 unsigned NewIntrinsic = 0; 4442 EVT ShAmtVT = MVT::v2i32; 4443 switch (Intrinsic) { 4444 case Intrinsic::x86_mmx_pslli_w: 4445 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4446 break; 4447 case Intrinsic::x86_mmx_pslli_d: 4448 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4449 break; 4450 case Intrinsic::x86_mmx_pslli_q: 4451 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4452 break; 4453 case Intrinsic::x86_mmx_psrli_w: 4454 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4455 break; 4456 case Intrinsic::x86_mmx_psrli_d: 4457 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4458 break; 4459 case Intrinsic::x86_mmx_psrli_q: 4460 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4461 break; 4462 case Intrinsic::x86_mmx_psrai_w: 4463 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4464 break; 4465 case Intrinsic::x86_mmx_psrai_d: 4466 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4467 break; 4468 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4469 } 4470 4471 // The vector shift intrinsics with scalars uses 32b shift amounts but 4472 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4473 // to be zero. 4474 // We must do this early because v2i32 is not a legal type. 4475 DebugLoc dl = getCurDebugLoc(); 4476 SDValue ShOps[2]; 4477 ShOps[0] = ShAmt; 4478 ShOps[1] = DAG.getConstant(0, MVT::i32); 4479 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4480 EVT DestVT = TLI.getValueType(I.getType()); 4481 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4482 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4483 DAG.getConstant(NewIntrinsic, MVT::i32), 4484 getValue(I.getArgOperand(0)), ShAmt); 4485 setValue(&I, Res); 4486 return 0; 4487 } 4488 case Intrinsic::convertff: 4489 case Intrinsic::convertfsi: 4490 case Intrinsic::convertfui: 4491 case Intrinsic::convertsif: 4492 case Intrinsic::convertuif: 4493 case Intrinsic::convertss: 4494 case Intrinsic::convertsu: 4495 case Intrinsic::convertus: 4496 case Intrinsic::convertuu: { 4497 ISD::CvtCode Code = ISD::CVT_INVALID; 4498 switch (Intrinsic) { 4499 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4500 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4501 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4502 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4503 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4504 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4505 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4506 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4507 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4508 } 4509 EVT DestVT = TLI.getValueType(I.getType()); 4510 const Value *Op1 = I.getArgOperand(0); 4511 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4512 DAG.getValueType(DestVT), 4513 DAG.getValueType(getValue(Op1).getValueType()), 4514 getValue(I.getArgOperand(1)), 4515 getValue(I.getArgOperand(2)), 4516 Code); 4517 setValue(&I, Res); 4518 return 0; 4519 } 4520 case Intrinsic::sqrt: 4521 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4522 getValue(I.getArgOperand(0)).getValueType(), 4523 getValue(I.getArgOperand(0)))); 4524 return 0; 4525 case Intrinsic::powi: 4526 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4527 getValue(I.getArgOperand(1)), DAG)); 4528 return 0; 4529 case Intrinsic::sin: 4530 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4531 getValue(I.getArgOperand(0)).getValueType(), 4532 getValue(I.getArgOperand(0)))); 4533 return 0; 4534 case Intrinsic::cos: 4535 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4536 getValue(I.getArgOperand(0)).getValueType(), 4537 getValue(I.getArgOperand(0)))); 4538 return 0; 4539 case Intrinsic::log: 4540 visitLog(I); 4541 return 0; 4542 case Intrinsic::log2: 4543 visitLog2(I); 4544 return 0; 4545 case Intrinsic::log10: 4546 visitLog10(I); 4547 return 0; 4548 case Intrinsic::exp: 4549 visitExp(I); 4550 return 0; 4551 case Intrinsic::exp2: 4552 visitExp2(I); 4553 return 0; 4554 case Intrinsic::pow: 4555 visitPow(I); 4556 return 0; 4557 case Intrinsic::convert_to_fp16: 4558 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4559 MVT::i16, getValue(I.getArgOperand(0)))); 4560 return 0; 4561 case Intrinsic::convert_from_fp16: 4562 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4563 MVT::f32, getValue(I.getArgOperand(0)))); 4564 return 0; 4565 case Intrinsic::pcmarker: { 4566 SDValue Tmp = getValue(I.getArgOperand(0)); 4567 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4568 return 0; 4569 } 4570 case Intrinsic::readcyclecounter: { 4571 SDValue Op = getRoot(); 4572 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4573 DAG.getVTList(MVT::i64, MVT::Other), 4574 &Op, 1); 4575 setValue(&I, Res); 4576 DAG.setRoot(Res.getValue(1)); 4577 return 0; 4578 } 4579 case Intrinsic::bswap: 4580 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4581 getValue(I.getArgOperand(0)).getValueType(), 4582 getValue(I.getArgOperand(0)))); 4583 return 0; 4584 case Intrinsic::cttz: { 4585 SDValue Arg = getValue(I.getArgOperand(0)); 4586 EVT Ty = Arg.getValueType(); 4587 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4588 return 0; 4589 } 4590 case Intrinsic::ctlz: { 4591 SDValue Arg = getValue(I.getArgOperand(0)); 4592 EVT Ty = Arg.getValueType(); 4593 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4594 return 0; 4595 } 4596 case Intrinsic::ctpop: { 4597 SDValue Arg = getValue(I.getArgOperand(0)); 4598 EVT Ty = Arg.getValueType(); 4599 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4600 return 0; 4601 } 4602 case Intrinsic::stacksave: { 4603 SDValue Op = getRoot(); 4604 Res = DAG.getNode(ISD::STACKSAVE, dl, 4605 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4606 setValue(&I, Res); 4607 DAG.setRoot(Res.getValue(1)); 4608 return 0; 4609 } 4610 case Intrinsic::stackrestore: { 4611 Res = getValue(I.getArgOperand(0)); 4612 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4613 return 0; 4614 } 4615 case Intrinsic::stackprotector: { 4616 // Emit code into the DAG to store the stack guard onto the stack. 4617 MachineFunction &MF = DAG.getMachineFunction(); 4618 MachineFrameInfo *MFI = MF.getFrameInfo(); 4619 EVT PtrTy = TLI.getPointerTy(); 4620 4621 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4622 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4623 4624 int FI = FuncInfo.StaticAllocaMap[Slot]; 4625 MFI->setStackProtectorIndex(FI); 4626 4627 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4628 4629 // Store the stack protector onto the stack. 4630 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4631 MachinePointerInfo::getFixedStack(FI), 4632 true, false, 0); 4633 setValue(&I, Res); 4634 DAG.setRoot(Res); 4635 return 0; 4636 } 4637 case Intrinsic::objectsize: { 4638 // If we don't know by now, we're never going to know. 4639 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4640 4641 assert(CI && "Non-constant type in __builtin_object_size?"); 4642 4643 SDValue Arg = getValue(I.getCalledValue()); 4644 EVT Ty = Arg.getValueType(); 4645 4646 if (CI->isZero()) 4647 Res = DAG.getConstant(-1ULL, Ty); 4648 else 4649 Res = DAG.getConstant(0, Ty); 4650 4651 setValue(&I, Res); 4652 return 0; 4653 } 4654 case Intrinsic::var_annotation: 4655 // Discard annotate attributes 4656 return 0; 4657 4658 case Intrinsic::init_trampoline: { 4659 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4660 4661 SDValue Ops[6]; 4662 Ops[0] = getRoot(); 4663 Ops[1] = getValue(I.getArgOperand(0)); 4664 Ops[2] = getValue(I.getArgOperand(1)); 4665 Ops[3] = getValue(I.getArgOperand(2)); 4666 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4667 Ops[5] = DAG.getSrcValue(F); 4668 4669 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4670 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4671 Ops, 6); 4672 4673 setValue(&I, Res); 4674 DAG.setRoot(Res.getValue(1)); 4675 return 0; 4676 } 4677 case Intrinsic::gcroot: 4678 if (GFI) { 4679 const Value *Alloca = I.getArgOperand(0); 4680 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4681 4682 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4683 GFI->addStackRoot(FI->getIndex(), TypeMap); 4684 } 4685 return 0; 4686 case Intrinsic::gcread: 4687 case Intrinsic::gcwrite: 4688 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4689 return 0; 4690 case Intrinsic::flt_rounds: 4691 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4692 return 0; 4693 case Intrinsic::trap: 4694 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4695 return 0; 4696 case Intrinsic::uadd_with_overflow: 4697 return implVisitAluOverflow(I, ISD::UADDO); 4698 case Intrinsic::sadd_with_overflow: 4699 return implVisitAluOverflow(I, ISD::SADDO); 4700 case Intrinsic::usub_with_overflow: 4701 return implVisitAluOverflow(I, ISD::USUBO); 4702 case Intrinsic::ssub_with_overflow: 4703 return implVisitAluOverflow(I, ISD::SSUBO); 4704 case Intrinsic::umul_with_overflow: 4705 return implVisitAluOverflow(I, ISD::UMULO); 4706 case Intrinsic::smul_with_overflow: 4707 return implVisitAluOverflow(I, ISD::SMULO); 4708 4709 case Intrinsic::prefetch: { 4710 SDValue Ops[4]; 4711 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4712 Ops[0] = getRoot(); 4713 Ops[1] = getValue(I.getArgOperand(0)); 4714 Ops[2] = getValue(I.getArgOperand(1)); 4715 Ops[3] = getValue(I.getArgOperand(2)); 4716 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 4717 DAG.getVTList(MVT::Other), 4718 &Ops[0], 4, 4719 EVT::getIntegerVT(*Context, 8), 4720 MachinePointerInfo(I.getArgOperand(0)), 4721 0, /* align */ 4722 false, /* volatile */ 4723 rw==0, /* read */ 4724 rw==1)); /* write */ 4725 return 0; 4726 } 4727 case Intrinsic::memory_barrier: { 4728 SDValue Ops[6]; 4729 Ops[0] = getRoot(); 4730 for (int x = 1; x < 6; ++x) 4731 Ops[x] = getValue(I.getArgOperand(x - 1)); 4732 4733 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4734 return 0; 4735 } 4736 case Intrinsic::atomic_cmp_swap: { 4737 SDValue Root = getRoot(); 4738 SDValue L = 4739 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4740 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4741 Root, 4742 getValue(I.getArgOperand(0)), 4743 getValue(I.getArgOperand(1)), 4744 getValue(I.getArgOperand(2)), 4745 MachinePointerInfo(I.getArgOperand(0))); 4746 setValue(&I, L); 4747 DAG.setRoot(L.getValue(1)); 4748 return 0; 4749 } 4750 case Intrinsic::atomic_load_add: 4751 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4752 case Intrinsic::atomic_load_sub: 4753 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4754 case Intrinsic::atomic_load_or: 4755 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4756 case Intrinsic::atomic_load_xor: 4757 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4758 case Intrinsic::atomic_load_and: 4759 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4760 case Intrinsic::atomic_load_nand: 4761 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4762 case Intrinsic::atomic_load_max: 4763 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4764 case Intrinsic::atomic_load_min: 4765 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4766 case Intrinsic::atomic_load_umin: 4767 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4768 case Intrinsic::atomic_load_umax: 4769 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4770 case Intrinsic::atomic_swap: 4771 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4772 4773 case Intrinsic::invariant_start: 4774 case Intrinsic::lifetime_start: 4775 // Discard region information. 4776 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4777 return 0; 4778 case Intrinsic::invariant_end: 4779 case Intrinsic::lifetime_end: 4780 // Discard region information. 4781 return 0; 4782 } 4783 } 4784 4785 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4786 bool isTailCall, 4787 MachineBasicBlock *LandingPad) { 4788 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4789 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4790 const Type *RetTy = FTy->getReturnType(); 4791 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4792 MCSymbol *BeginLabel = 0; 4793 4794 TargetLowering::ArgListTy Args; 4795 TargetLowering::ArgListEntry Entry; 4796 Args.reserve(CS.arg_size()); 4797 4798 // Check whether the function can return without sret-demotion. 4799 SmallVector<ISD::OutputArg, 4> Outs; 4800 SmallVector<uint64_t, 4> Offsets; 4801 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4802 Outs, TLI, &Offsets); 4803 4804 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4805 FTy->isVarArg(), Outs, FTy->getContext()); 4806 4807 SDValue DemoteStackSlot; 4808 int DemoteStackIdx = -100; 4809 4810 if (!CanLowerReturn) { 4811 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4812 FTy->getReturnType()); 4813 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4814 FTy->getReturnType()); 4815 MachineFunction &MF = DAG.getMachineFunction(); 4816 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4817 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4818 4819 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 4820 Entry.Node = DemoteStackSlot; 4821 Entry.Ty = StackSlotPtrType; 4822 Entry.isSExt = false; 4823 Entry.isZExt = false; 4824 Entry.isInReg = false; 4825 Entry.isSRet = true; 4826 Entry.isNest = false; 4827 Entry.isByVal = false; 4828 Entry.Alignment = Align; 4829 Args.push_back(Entry); 4830 RetTy = Type::getVoidTy(FTy->getContext()); 4831 } 4832 4833 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4834 i != e; ++i) { 4835 SDValue ArgNode = getValue(*i); 4836 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4837 4838 unsigned attrInd = i - CS.arg_begin() + 1; 4839 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4840 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4841 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4842 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4843 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4844 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4845 Entry.Alignment = CS.getParamAlignment(attrInd); 4846 Args.push_back(Entry); 4847 } 4848 4849 if (LandingPad) { 4850 // Insert a label before the invoke call to mark the try range. This can be 4851 // used to detect deletion of the invoke via the MachineModuleInfo. 4852 BeginLabel = MMI.getContext().CreateTempSymbol(); 4853 4854 // For SjLj, keep track of which landing pads go with which invokes 4855 // so as to maintain the ordering of pads in the LSDA. 4856 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4857 if (CallSiteIndex) { 4858 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4859 // Now that the call site is handled, stop tracking it. 4860 MMI.setCurrentCallSite(0); 4861 } 4862 4863 // Both PendingLoads and PendingExports must be flushed here; 4864 // this call might not return. 4865 (void)getRoot(); 4866 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4867 } 4868 4869 // Check if target-independent constraints permit a tail call here. 4870 // Target-dependent constraints are checked within TLI.LowerCallTo. 4871 if (isTailCall && 4872 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4873 isTailCall = false; 4874 4875 // If there's a possibility that fast-isel has already selected some amount 4876 // of the current basic block, don't emit a tail call. 4877 if (isTailCall && EnableFastISel) 4878 isTailCall = false; 4879 4880 std::pair<SDValue,SDValue> Result = 4881 TLI.LowerCallTo(getRoot(), RetTy, 4882 CS.paramHasAttr(0, Attribute::SExt), 4883 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4884 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4885 CS.getCallingConv(), 4886 isTailCall, 4887 !CS.getInstruction()->use_empty(), 4888 Callee, Args, DAG, getCurDebugLoc()); 4889 assert((isTailCall || Result.second.getNode()) && 4890 "Non-null chain expected with non-tail call!"); 4891 assert((Result.second.getNode() || !Result.first.getNode()) && 4892 "Null value expected with tail call!"); 4893 if (Result.first.getNode()) { 4894 setValue(CS.getInstruction(), Result.first); 4895 } else if (!CanLowerReturn && Result.second.getNode()) { 4896 // The instruction result is the result of loading from the 4897 // hidden sret parameter. 4898 SmallVector<EVT, 1> PVTs; 4899 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4900 4901 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4902 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4903 EVT PtrVT = PVTs[0]; 4904 unsigned NumValues = Outs.size(); 4905 SmallVector<SDValue, 4> Values(NumValues); 4906 SmallVector<SDValue, 4> Chains(NumValues); 4907 4908 for (unsigned i = 0; i < NumValues; ++i) { 4909 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4910 DemoteStackSlot, 4911 DAG.getConstant(Offsets[i], PtrVT)); 4912 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4913 Add, 4914 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 4915 false, false, 1); 4916 Values[i] = L; 4917 Chains[i] = L.getValue(1); 4918 } 4919 4920 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4921 MVT::Other, &Chains[0], NumValues); 4922 PendingLoads.push_back(Chain); 4923 4924 // Collect the legal value parts into potentially illegal values 4925 // that correspond to the original function's return values. 4926 SmallVector<EVT, 4> RetTys; 4927 RetTy = FTy->getReturnType(); 4928 ComputeValueVTs(TLI, RetTy, RetTys); 4929 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4930 SmallVector<SDValue, 4> ReturnValues; 4931 unsigned CurReg = 0; 4932 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4933 EVT VT = RetTys[I]; 4934 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4935 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4936 4937 SDValue ReturnValue = 4938 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4939 RegisterVT, VT, AssertOp); 4940 ReturnValues.push_back(ReturnValue); 4941 CurReg += NumRegs; 4942 } 4943 4944 setValue(CS.getInstruction(), 4945 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4946 DAG.getVTList(&RetTys[0], RetTys.size()), 4947 &ReturnValues[0], ReturnValues.size())); 4948 4949 } 4950 4951 // As a special case, a null chain means that a tail call has been emitted and 4952 // the DAG root is already updated. 4953 if (Result.second.getNode()) 4954 DAG.setRoot(Result.second); 4955 else 4956 HasTailCall = true; 4957 4958 if (LandingPad) { 4959 // Insert a label at the end of the invoke call to mark the try range. This 4960 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4961 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4962 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4963 4964 // Inform MachineModuleInfo of range. 4965 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4966 } 4967 } 4968 4969 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4970 /// value is equal or not-equal to zero. 4971 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4972 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4973 UI != E; ++UI) { 4974 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4975 if (IC->isEquality()) 4976 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4977 if (C->isNullValue()) 4978 continue; 4979 // Unknown instruction. 4980 return false; 4981 } 4982 return true; 4983 } 4984 4985 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4986 const Type *LoadTy, 4987 SelectionDAGBuilder &Builder) { 4988 4989 // Check to see if this load can be trivially constant folded, e.g. if the 4990 // input is from a string literal. 4991 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4992 // Cast pointer to the type we really want to load. 4993 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4994 PointerType::getUnqual(LoadTy)); 4995 4996 if (const Constant *LoadCst = 4997 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4998 Builder.TD)) 4999 return Builder.getValue(LoadCst); 5000 } 5001 5002 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5003 // still constant memory, the input chain can be the entry node. 5004 SDValue Root; 5005 bool ConstantMemory = false; 5006 5007 // Do not serialize (non-volatile) loads of constant memory with anything. 5008 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5009 Root = Builder.DAG.getEntryNode(); 5010 ConstantMemory = true; 5011 } else { 5012 // Do not serialize non-volatile loads against each other. 5013 Root = Builder.DAG.getRoot(); 5014 } 5015 5016 SDValue Ptr = Builder.getValue(PtrVal); 5017 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5018 Ptr, MachinePointerInfo(PtrVal), 5019 false /*volatile*/, 5020 false /*nontemporal*/, 1 /* align=1 */); 5021 5022 if (!ConstantMemory) 5023 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5024 return LoadVal; 5025 } 5026 5027 5028 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5029 /// If so, return true and lower it, otherwise return false and it will be 5030 /// lowered like a normal call. 5031 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5032 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5033 if (I.getNumArgOperands() != 3) 5034 return false; 5035 5036 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5037 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5038 !I.getArgOperand(2)->getType()->isIntegerTy() || 5039 !I.getType()->isIntegerTy()) 5040 return false; 5041 5042 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5043 5044 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5045 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5046 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5047 bool ActuallyDoIt = true; 5048 MVT LoadVT; 5049 const Type *LoadTy; 5050 switch (Size->getZExtValue()) { 5051 default: 5052 LoadVT = MVT::Other; 5053 LoadTy = 0; 5054 ActuallyDoIt = false; 5055 break; 5056 case 2: 5057 LoadVT = MVT::i16; 5058 LoadTy = Type::getInt16Ty(Size->getContext()); 5059 break; 5060 case 4: 5061 LoadVT = MVT::i32; 5062 LoadTy = Type::getInt32Ty(Size->getContext()); 5063 break; 5064 case 8: 5065 LoadVT = MVT::i64; 5066 LoadTy = Type::getInt64Ty(Size->getContext()); 5067 break; 5068 /* 5069 case 16: 5070 LoadVT = MVT::v4i32; 5071 LoadTy = Type::getInt32Ty(Size->getContext()); 5072 LoadTy = VectorType::get(LoadTy, 4); 5073 break; 5074 */ 5075 } 5076 5077 // This turns into unaligned loads. We only do this if the target natively 5078 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5079 // we'll only produce a small number of byte loads. 5080 5081 // Require that we can find a legal MVT, and only do this if the target 5082 // supports unaligned loads of that type. Expanding into byte loads would 5083 // bloat the code. 5084 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5085 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5086 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5087 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5088 ActuallyDoIt = false; 5089 } 5090 5091 if (ActuallyDoIt) { 5092 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5093 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5094 5095 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5096 ISD::SETNE); 5097 EVT CallVT = TLI.getValueType(I.getType(), true); 5098 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5099 return true; 5100 } 5101 } 5102 5103 5104 return false; 5105 } 5106 5107 5108 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5109 // Handle inline assembly differently. 5110 if (isa<InlineAsm>(I.getCalledValue())) { 5111 visitInlineAsm(&I); 5112 return; 5113 } 5114 5115 // See if any floating point values are being passed to this function. This is 5116 // used to emit an undefined reference to fltused on Windows. 5117 const FunctionType *FT = 5118 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5119 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5120 if (FT->isVarArg() && 5121 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5122 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5123 const Type* T = I.getArgOperand(i)->getType(); 5124 for (po_iterator<const Type*> i = po_begin(T), e = po_end(T); 5125 i != e; ++i) { 5126 if (!i->isFloatingPointTy()) continue; 5127 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5128 break; 5129 } 5130 } 5131 } 5132 5133 const char *RenameFn = 0; 5134 if (Function *F = I.getCalledFunction()) { 5135 if (F->isDeclaration()) { 5136 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5137 if (unsigned IID = II->getIntrinsicID(F)) { 5138 RenameFn = visitIntrinsicCall(I, IID); 5139 if (!RenameFn) 5140 return; 5141 } 5142 } 5143 if (unsigned IID = F->getIntrinsicID()) { 5144 RenameFn = visitIntrinsicCall(I, IID); 5145 if (!RenameFn) 5146 return; 5147 } 5148 } 5149 5150 // Check for well-known libc/libm calls. If the function is internal, it 5151 // can't be a library call. 5152 if (!F->hasLocalLinkage() && F->hasName()) { 5153 StringRef Name = F->getName(); 5154 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5155 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5156 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5157 I.getType() == I.getArgOperand(0)->getType() && 5158 I.getType() == I.getArgOperand(1)->getType()) { 5159 SDValue LHS = getValue(I.getArgOperand(0)); 5160 SDValue RHS = getValue(I.getArgOperand(1)); 5161 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5162 LHS.getValueType(), LHS, RHS)); 5163 return; 5164 } 5165 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5166 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5167 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5168 I.getType() == I.getArgOperand(0)->getType()) { 5169 SDValue Tmp = getValue(I.getArgOperand(0)); 5170 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5171 Tmp.getValueType(), Tmp)); 5172 return; 5173 } 5174 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5175 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5176 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5177 I.getType() == I.getArgOperand(0)->getType() && 5178 I.onlyReadsMemory()) { 5179 SDValue Tmp = getValue(I.getArgOperand(0)); 5180 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5181 Tmp.getValueType(), Tmp)); 5182 return; 5183 } 5184 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5185 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5186 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5187 I.getType() == I.getArgOperand(0)->getType() && 5188 I.onlyReadsMemory()) { 5189 SDValue Tmp = getValue(I.getArgOperand(0)); 5190 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5191 Tmp.getValueType(), Tmp)); 5192 return; 5193 } 5194 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5195 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5196 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5197 I.getType() == I.getArgOperand(0)->getType() && 5198 I.onlyReadsMemory()) { 5199 SDValue Tmp = getValue(I.getArgOperand(0)); 5200 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5201 Tmp.getValueType(), Tmp)); 5202 return; 5203 } 5204 } else if (Name == "memcmp") { 5205 if (visitMemCmpCall(I)) 5206 return; 5207 } 5208 } 5209 } 5210 5211 SDValue Callee; 5212 if (!RenameFn) 5213 Callee = getValue(I.getCalledValue()); 5214 else 5215 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5216 5217 // Check if we can potentially perform a tail call. More detailed checking is 5218 // be done within LowerCallTo, after more information about the call is known. 5219 LowerCallTo(&I, Callee, I.isTailCall()); 5220 } 5221 5222 namespace llvm { 5223 5224 /// AsmOperandInfo - This contains information for each constraint that we are 5225 /// lowering. 5226 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 5227 public TargetLowering::AsmOperandInfo { 5228 public: 5229 /// CallOperand - If this is the result output operand or a clobber 5230 /// this is null, otherwise it is the incoming operand to the CallInst. 5231 /// This gets modified as the asm is processed. 5232 SDValue CallOperand; 5233 5234 /// AssignedRegs - If this is a register or register class operand, this 5235 /// contains the set of register corresponding to the operand. 5236 RegsForValue AssignedRegs; 5237 5238 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5239 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5240 } 5241 5242 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5243 /// busy in OutputRegs/InputRegs. 5244 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5245 std::set<unsigned> &OutputRegs, 5246 std::set<unsigned> &InputRegs, 5247 const TargetRegisterInfo &TRI) const { 5248 if (isOutReg) { 5249 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5250 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5251 } 5252 if (isInReg) { 5253 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5254 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5255 } 5256 } 5257 5258 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5259 /// corresponds to. If there is no Value* for this operand, it returns 5260 /// MVT::Other. 5261 EVT getCallOperandValEVT(LLVMContext &Context, 5262 const TargetLowering &TLI, 5263 const TargetData *TD) const { 5264 if (CallOperandVal == 0) return MVT::Other; 5265 5266 if (isa<BasicBlock>(CallOperandVal)) 5267 return TLI.getPointerTy(); 5268 5269 const llvm::Type *OpTy = CallOperandVal->getType(); 5270 5271 // If this is an indirect operand, the operand is a pointer to the 5272 // accessed type. 5273 if (isIndirect) { 5274 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5275 if (!PtrTy) 5276 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5277 OpTy = PtrTy->getElementType(); 5278 } 5279 5280 // If OpTy is not a single value, it may be a struct/union that we 5281 // can tile with integers. 5282 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5283 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5284 switch (BitSize) { 5285 default: break; 5286 case 1: 5287 case 8: 5288 case 16: 5289 case 32: 5290 case 64: 5291 case 128: 5292 OpTy = IntegerType::get(Context, BitSize); 5293 break; 5294 } 5295 } 5296 5297 return TLI.getValueType(OpTy, true); 5298 } 5299 5300 private: 5301 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5302 /// specified set. 5303 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5304 const TargetRegisterInfo &TRI) { 5305 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5306 Regs.insert(Reg); 5307 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5308 for (; *Aliases; ++Aliases) 5309 Regs.insert(*Aliases); 5310 } 5311 }; 5312 5313 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5314 5315 } // end llvm namespace. 5316 5317 /// isAllocatableRegister - If the specified register is safe to allocate, 5318 /// i.e. it isn't a stack pointer or some other special register, return the 5319 /// register class for the register. Otherwise, return null. 5320 static const TargetRegisterClass * 5321 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5322 const TargetLowering &TLI, 5323 const TargetRegisterInfo *TRI) { 5324 EVT FoundVT = MVT::Other; 5325 const TargetRegisterClass *FoundRC = 0; 5326 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5327 E = TRI->regclass_end(); RCI != E; ++RCI) { 5328 EVT ThisVT = MVT::Other; 5329 5330 const TargetRegisterClass *RC = *RCI; 5331 // If none of the value types for this register class are valid, we 5332 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5333 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5334 I != E; ++I) { 5335 if (TLI.isTypeLegal(*I)) { 5336 // If we have already found this register in a different register class, 5337 // choose the one with the largest VT specified. For example, on 5338 // PowerPC, we favor f64 register classes over f32. 5339 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5340 ThisVT = *I; 5341 break; 5342 } 5343 } 5344 } 5345 5346 if (ThisVT == MVT::Other) continue; 5347 5348 // NOTE: This isn't ideal. In particular, this might allocate the 5349 // frame pointer in functions that need it (due to them not being taken 5350 // out of allocation, because a variable sized allocation hasn't been seen 5351 // yet). This is a slight code pessimization, but should still work. 5352 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5353 E = RC->allocation_order_end(MF); I != E; ++I) 5354 if (*I == Reg) { 5355 // We found a matching register class. Keep looking at others in case 5356 // we find one with larger registers that this physreg is also in. 5357 FoundRC = RC; 5358 FoundVT = ThisVT; 5359 break; 5360 } 5361 } 5362 return FoundRC; 5363 } 5364 5365 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5366 /// specified operand. We prefer to assign virtual registers, to allow the 5367 /// register allocator to handle the assignment process. However, if the asm 5368 /// uses features that we can't model on machineinstrs, we have SDISel do the 5369 /// allocation. This produces generally horrible, but correct, code. 5370 /// 5371 /// OpInfo describes the operand. 5372 /// Input and OutputRegs are the set of already allocated physical registers. 5373 /// 5374 void SelectionDAGBuilder:: 5375 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5376 std::set<unsigned> &OutputRegs, 5377 std::set<unsigned> &InputRegs) { 5378 LLVMContext &Context = FuncInfo.Fn->getContext(); 5379 5380 // Compute whether this value requires an input register, an output register, 5381 // or both. 5382 bool isOutReg = false; 5383 bool isInReg = false; 5384 switch (OpInfo.Type) { 5385 case InlineAsm::isOutput: 5386 isOutReg = true; 5387 5388 // If there is an input constraint that matches this, we need to reserve 5389 // the input register so no other inputs allocate to it. 5390 isInReg = OpInfo.hasMatchingInput(); 5391 break; 5392 case InlineAsm::isInput: 5393 isInReg = true; 5394 isOutReg = false; 5395 break; 5396 case InlineAsm::isClobber: 5397 isOutReg = true; 5398 isInReg = true; 5399 break; 5400 } 5401 5402 5403 MachineFunction &MF = DAG.getMachineFunction(); 5404 SmallVector<unsigned, 4> Regs; 5405 5406 // If this is a constraint for a single physreg, or a constraint for a 5407 // register class, find it. 5408 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5409 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5410 OpInfo.ConstraintVT); 5411 5412 unsigned NumRegs = 1; 5413 if (OpInfo.ConstraintVT != MVT::Other) { 5414 // If this is a FP input in an integer register (or visa versa) insert a bit 5415 // cast of the input value. More generally, handle any case where the input 5416 // value disagrees with the register class we plan to stick this in. 5417 if (OpInfo.Type == InlineAsm::isInput && 5418 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5419 // Try to convert to the first EVT that the reg class contains. If the 5420 // types are identical size, use a bitcast to convert (e.g. two differing 5421 // vector types). 5422 EVT RegVT = *PhysReg.second->vt_begin(); 5423 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5424 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5425 RegVT, OpInfo.CallOperand); 5426 OpInfo.ConstraintVT = RegVT; 5427 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5428 // If the input is a FP value and we want it in FP registers, do a 5429 // bitcast to the corresponding integer type. This turns an f64 value 5430 // into i64, which can be passed with two i32 values on a 32-bit 5431 // machine. 5432 RegVT = EVT::getIntegerVT(Context, 5433 OpInfo.ConstraintVT.getSizeInBits()); 5434 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5435 RegVT, OpInfo.CallOperand); 5436 OpInfo.ConstraintVT = RegVT; 5437 } 5438 } 5439 5440 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5441 } 5442 5443 EVT RegVT; 5444 EVT ValueVT = OpInfo.ConstraintVT; 5445 5446 // If this is a constraint for a specific physical register, like {r17}, 5447 // assign it now. 5448 if (unsigned AssignedReg = PhysReg.first) { 5449 const TargetRegisterClass *RC = PhysReg.second; 5450 if (OpInfo.ConstraintVT == MVT::Other) 5451 ValueVT = *RC->vt_begin(); 5452 5453 // Get the actual register value type. This is important, because the user 5454 // may have asked for (e.g.) the AX register in i32 type. We need to 5455 // remember that AX is actually i16 to get the right extension. 5456 RegVT = *RC->vt_begin(); 5457 5458 // This is a explicit reference to a physical register. 5459 Regs.push_back(AssignedReg); 5460 5461 // If this is an expanded reference, add the rest of the regs to Regs. 5462 if (NumRegs != 1) { 5463 TargetRegisterClass::iterator I = RC->begin(); 5464 for (; *I != AssignedReg; ++I) 5465 assert(I != RC->end() && "Didn't find reg!"); 5466 5467 // Already added the first reg. 5468 --NumRegs; ++I; 5469 for (; NumRegs; --NumRegs, ++I) { 5470 assert(I != RC->end() && "Ran out of registers to allocate!"); 5471 Regs.push_back(*I); 5472 } 5473 } 5474 5475 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5476 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5477 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5478 return; 5479 } 5480 5481 // Otherwise, if this was a reference to an LLVM register class, create vregs 5482 // for this reference. 5483 if (const TargetRegisterClass *RC = PhysReg.second) { 5484 RegVT = *RC->vt_begin(); 5485 if (OpInfo.ConstraintVT == MVT::Other) 5486 ValueVT = RegVT; 5487 5488 // Create the appropriate number of virtual registers. 5489 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5490 for (; NumRegs; --NumRegs) 5491 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5492 5493 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5494 return; 5495 } 5496 5497 // This is a reference to a register class that doesn't directly correspond 5498 // to an LLVM register class. Allocate NumRegs consecutive, available, 5499 // registers from the class. 5500 std::vector<unsigned> RegClassRegs 5501 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5502 OpInfo.ConstraintVT); 5503 5504 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5505 unsigned NumAllocated = 0; 5506 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5507 unsigned Reg = RegClassRegs[i]; 5508 // See if this register is available. 5509 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5510 (isInReg && InputRegs.count(Reg))) { // Already used. 5511 // Make sure we find consecutive registers. 5512 NumAllocated = 0; 5513 continue; 5514 } 5515 5516 // Check to see if this register is allocatable (i.e. don't give out the 5517 // stack pointer). 5518 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5519 if (!RC) { // Couldn't allocate this register. 5520 // Reset NumAllocated to make sure we return consecutive registers. 5521 NumAllocated = 0; 5522 continue; 5523 } 5524 5525 // Okay, this register is good, we can use it. 5526 ++NumAllocated; 5527 5528 // If we allocated enough consecutive registers, succeed. 5529 if (NumAllocated == NumRegs) { 5530 unsigned RegStart = (i-NumAllocated)+1; 5531 unsigned RegEnd = i+1; 5532 // Mark all of the allocated registers used. 5533 for (unsigned i = RegStart; i != RegEnd; ++i) 5534 Regs.push_back(RegClassRegs[i]); 5535 5536 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5537 OpInfo.ConstraintVT); 5538 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5539 return; 5540 } 5541 } 5542 5543 // Otherwise, we couldn't allocate enough registers for this. 5544 } 5545 5546 /// visitInlineAsm - Handle a call to an InlineAsm object. 5547 /// 5548 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5549 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5550 5551 /// ConstraintOperands - Information about all of the constraints. 5552 SDISelAsmOperandInfoVector ConstraintOperands; 5553 5554 std::set<unsigned> OutputRegs, InputRegs; 5555 5556 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(CS); 5557 bool hasMemory = false; 5558 5559 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5560 unsigned ResNo = 0; // ResNo - The result number of the next output. 5561 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5562 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5563 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5564 5565 EVT OpVT = MVT::Other; 5566 5567 // Compute the value type for each operand. 5568 switch (OpInfo.Type) { 5569 case InlineAsm::isOutput: 5570 // Indirect outputs just consume an argument. 5571 if (OpInfo.isIndirect) { 5572 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5573 break; 5574 } 5575 5576 // The return value of the call is this value. As such, there is no 5577 // corresponding argument. 5578 assert(!CS.getType()->isVoidTy() && 5579 "Bad inline asm!"); 5580 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5581 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5582 } else { 5583 assert(ResNo == 0 && "Asm only has one result!"); 5584 OpVT = TLI.getValueType(CS.getType()); 5585 } 5586 ++ResNo; 5587 break; 5588 case InlineAsm::isInput: 5589 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5590 break; 5591 case InlineAsm::isClobber: 5592 // Nothing to do. 5593 break; 5594 } 5595 5596 // If this is an input or an indirect output, process the call argument. 5597 // BasicBlocks are labels, currently appearing only in asm's. 5598 if (OpInfo.CallOperandVal) { 5599 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5600 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5601 } else { 5602 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5603 } 5604 5605 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5606 } 5607 5608 OpInfo.ConstraintVT = OpVT; 5609 5610 // Indirect operand accesses access memory. 5611 if (OpInfo.isIndirect) 5612 hasMemory = true; 5613 else { 5614 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5615 TargetLowering::ConstraintType CType = TLI.getConstraintType(OpInfo.Codes[j]); 5616 if (CType == TargetLowering::C_Memory) { 5617 hasMemory = true; 5618 break; 5619 } 5620 } 5621 } 5622 } 5623 5624 SDValue Chain, Flag; 5625 5626 // We won't need to flush pending loads if this asm doesn't touch 5627 // memory and is nonvolatile. 5628 if (hasMemory || IA->hasSideEffects()) 5629 Chain = getRoot(); 5630 else 5631 Chain = DAG.getRoot(); 5632 5633 // Second pass over the constraints: compute which constraint option to use 5634 // and assign registers to constraints that want a specific physreg. 5635 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5636 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5637 5638 // If this is an output operand with a matching input operand, look up the 5639 // matching input. If their types mismatch, e.g. one is an integer, the 5640 // other is floating point, or their sizes are different, flag it as an 5641 // error. 5642 if (OpInfo.hasMatchingInput()) { 5643 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5644 5645 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5646 if ((OpInfo.ConstraintVT.isInteger() != 5647 Input.ConstraintVT.isInteger()) || 5648 (OpInfo.ConstraintVT.getSizeInBits() != 5649 Input.ConstraintVT.getSizeInBits())) { 5650 report_fatal_error("Unsupported asm: input constraint" 5651 " with a matching output constraint of" 5652 " incompatible type!"); 5653 } 5654 Input.ConstraintVT = OpInfo.ConstraintVT; 5655 } 5656 } 5657 5658 // Compute the constraint code and ConstraintType to use. 5659 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5660 5661 // If this is a memory input, and if the operand is not indirect, do what we 5662 // need to to provide an address for the memory input. 5663 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5664 !OpInfo.isIndirect) { 5665 assert((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && 5666 "Can only indirectify direct input operands!"); 5667 5668 // Memory operands really want the address of the value. If we don't have 5669 // an indirect input, put it in the constpool if we can, otherwise spill 5670 // it to a stack slot. 5671 5672 // If the operand is a float, integer, or vector constant, spill to a 5673 // constant pool entry to get its address. 5674 const Value *OpVal = OpInfo.CallOperandVal; 5675 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5676 isa<ConstantVector>(OpVal)) { 5677 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5678 TLI.getPointerTy()); 5679 } else { 5680 // Otherwise, create a stack slot and emit a store to it before the 5681 // asm. 5682 const Type *Ty = OpVal->getType(); 5683 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5684 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5685 MachineFunction &MF = DAG.getMachineFunction(); 5686 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5687 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5688 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5689 OpInfo.CallOperand, StackSlot, 5690 MachinePointerInfo::getFixedStack(SSFI), 5691 false, false, 0); 5692 OpInfo.CallOperand = StackSlot; 5693 } 5694 5695 // There is no longer a Value* corresponding to this operand. 5696 OpInfo.CallOperandVal = 0; 5697 5698 // It is now an indirect operand. 5699 OpInfo.isIndirect = true; 5700 } 5701 5702 // If this constraint is for a specific register, allocate it before 5703 // anything else. 5704 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5705 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5706 } 5707 5708 // Second pass - Loop over all of the operands, assigning virtual or physregs 5709 // to register class operands. 5710 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5711 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5712 5713 // C_Register operands have already been allocated, Other/Memory don't need 5714 // to be. 5715 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5716 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5717 } 5718 5719 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5720 std::vector<SDValue> AsmNodeOperands; 5721 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5722 AsmNodeOperands.push_back( 5723 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5724 TLI.getPointerTy())); 5725 5726 // If we have a !srcloc metadata node associated with it, we want to attach 5727 // this to the ultimately generated inline asm machineinstr. To do this, we 5728 // pass in the third operand as this (potentially null) inline asm MDNode. 5729 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5730 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5731 5732 // Remember the AlignStack bit as operand 3. 5733 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5734 MVT::i1)); 5735 5736 // Loop over all of the inputs, copying the operand values into the 5737 // appropriate registers and processing the output regs. 5738 RegsForValue RetValRegs; 5739 5740 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5741 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5742 5743 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5744 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5745 5746 switch (OpInfo.Type) { 5747 case InlineAsm::isOutput: { 5748 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5749 OpInfo.ConstraintType != TargetLowering::C_Register) { 5750 // Memory output, or 'other' output (e.g. 'X' constraint). 5751 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5752 5753 // Add information to the INLINEASM node to know about this output. 5754 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5755 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5756 TLI.getPointerTy())); 5757 AsmNodeOperands.push_back(OpInfo.CallOperand); 5758 break; 5759 } 5760 5761 // Otherwise, this is a register or register class output. 5762 5763 // Copy the output from the appropriate register. Find a register that 5764 // we can use. 5765 if (OpInfo.AssignedRegs.Regs.empty()) 5766 report_fatal_error("Couldn't allocate output reg for constraint '" + 5767 Twine(OpInfo.ConstraintCode) + "'!"); 5768 5769 // If this is an indirect operand, store through the pointer after the 5770 // asm. 5771 if (OpInfo.isIndirect) { 5772 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5773 OpInfo.CallOperandVal)); 5774 } else { 5775 // This is the result value of the call. 5776 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5777 // Concatenate this output onto the outputs list. 5778 RetValRegs.append(OpInfo.AssignedRegs); 5779 } 5780 5781 // Add information to the INLINEASM node to know that this register is 5782 // set. 5783 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5784 InlineAsm::Kind_RegDefEarlyClobber : 5785 InlineAsm::Kind_RegDef, 5786 false, 5787 0, 5788 DAG, 5789 AsmNodeOperands); 5790 break; 5791 } 5792 case InlineAsm::isInput: { 5793 SDValue InOperandVal = OpInfo.CallOperand; 5794 5795 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5796 // If this is required to match an output register we have already set, 5797 // just use its register. 5798 unsigned OperandNo = OpInfo.getMatchedOperand(); 5799 5800 // Scan until we find the definition we already emitted of this operand. 5801 // When we find it, create a RegsForValue operand. 5802 unsigned CurOp = InlineAsm::Op_FirstOperand; 5803 for (; OperandNo; --OperandNo) { 5804 // Advance to the next operand. 5805 unsigned OpFlag = 5806 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5807 assert((InlineAsm::isRegDefKind(OpFlag) || 5808 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5809 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5810 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5811 } 5812 5813 unsigned OpFlag = 5814 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5815 if (InlineAsm::isRegDefKind(OpFlag) || 5816 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5817 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5818 if (OpInfo.isIndirect) { 5819 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5820 LLVMContext &Ctx = *DAG.getContext(); 5821 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5822 " don't know how to handle tied " 5823 "indirect register inputs"); 5824 } 5825 5826 RegsForValue MatchedRegs; 5827 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5828 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5829 MatchedRegs.RegVTs.push_back(RegVT); 5830 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5831 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5832 i != e; ++i) 5833 MatchedRegs.Regs.push_back 5834 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5835 5836 // Use the produced MatchedRegs object to 5837 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5838 Chain, &Flag); 5839 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5840 true, OpInfo.getMatchedOperand(), 5841 DAG, AsmNodeOperands); 5842 break; 5843 } 5844 5845 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5846 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5847 "Unexpected number of operands"); 5848 // Add information to the INLINEASM node to know about this input. 5849 // See InlineAsm.h isUseOperandTiedToDef. 5850 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5851 OpInfo.getMatchedOperand()); 5852 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5853 TLI.getPointerTy())); 5854 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5855 break; 5856 } 5857 5858 // Treat indirect 'X' constraint as memory. 5859 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5860 OpInfo.isIndirect) 5861 OpInfo.ConstraintType = TargetLowering::C_Memory; 5862 5863 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5864 std::vector<SDValue> Ops; 5865 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5866 Ops, DAG); 5867 if (Ops.empty()) 5868 report_fatal_error("Invalid operand for inline asm constraint '" + 5869 Twine(OpInfo.ConstraintCode) + "'!"); 5870 5871 // Add information to the INLINEASM node to know about this input. 5872 unsigned ResOpType = 5873 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5874 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5875 TLI.getPointerTy())); 5876 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5877 break; 5878 } 5879 5880 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5881 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5882 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5883 "Memory operands expect pointer values"); 5884 5885 // Add information to the INLINEASM node to know about this input. 5886 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5887 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5888 TLI.getPointerTy())); 5889 AsmNodeOperands.push_back(InOperandVal); 5890 break; 5891 } 5892 5893 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5894 OpInfo.ConstraintType == TargetLowering::C_Register) && 5895 "Unknown constraint type!"); 5896 assert(!OpInfo.isIndirect && 5897 "Don't know how to handle indirect register inputs yet!"); 5898 5899 // Copy the input into the appropriate registers. 5900 if (OpInfo.AssignedRegs.Regs.empty() || 5901 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5902 report_fatal_error("Couldn't allocate input reg for constraint '" + 5903 Twine(OpInfo.ConstraintCode) + "'!"); 5904 5905 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5906 Chain, &Flag); 5907 5908 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5909 DAG, AsmNodeOperands); 5910 break; 5911 } 5912 case InlineAsm::isClobber: { 5913 // Add the clobbered value to the operand list, so that the register 5914 // allocator is aware that the physreg got clobbered. 5915 if (!OpInfo.AssignedRegs.Regs.empty()) 5916 OpInfo.AssignedRegs.AddInlineAsmOperands( 5917 InlineAsm::Kind_RegDefEarlyClobber, 5918 false, 0, DAG, 5919 AsmNodeOperands); 5920 break; 5921 } 5922 } 5923 } 5924 5925 // Finish up input operands. Set the input chain and add the flag last. 5926 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5927 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5928 5929 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5930 DAG.getVTList(MVT::Other, MVT::Flag), 5931 &AsmNodeOperands[0], AsmNodeOperands.size()); 5932 Flag = Chain.getValue(1); 5933 5934 // If this asm returns a register value, copy the result from that register 5935 // and set it as the value of the call. 5936 if (!RetValRegs.Regs.empty()) { 5937 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5938 Chain, &Flag); 5939 5940 // FIXME: Why don't we do this for inline asms with MRVs? 5941 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5942 EVT ResultType = TLI.getValueType(CS.getType()); 5943 5944 // If any of the results of the inline asm is a vector, it may have the 5945 // wrong width/num elts. This can happen for register classes that can 5946 // contain multiple different value types. The preg or vreg allocated may 5947 // not have the same VT as was expected. Convert it to the right type 5948 // with bit_convert. 5949 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5950 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 5951 ResultType, Val); 5952 5953 } else if (ResultType != Val.getValueType() && 5954 ResultType.isInteger() && Val.getValueType().isInteger()) { 5955 // If a result value was tied to an input value, the computed result may 5956 // have a wider width than the expected result. Extract the relevant 5957 // portion. 5958 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5959 } 5960 5961 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5962 } 5963 5964 setValue(CS.getInstruction(), Val); 5965 // Don't need to use this as a chain in this case. 5966 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5967 return; 5968 } 5969 5970 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5971 5972 // Process indirect outputs, first output all of the flagged copies out of 5973 // physregs. 5974 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5975 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5976 const Value *Ptr = IndirectStoresToEmit[i].second; 5977 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5978 Chain, &Flag); 5979 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5980 } 5981 5982 // Emit the non-flagged stores from the physregs. 5983 SmallVector<SDValue, 8> OutChains; 5984 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5985 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5986 StoresToEmit[i].first, 5987 getValue(StoresToEmit[i].second), 5988 MachinePointerInfo(StoresToEmit[i].second), 5989 false, false, 0); 5990 OutChains.push_back(Val); 5991 } 5992 5993 if (!OutChains.empty()) 5994 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5995 &OutChains[0], OutChains.size()); 5996 5997 DAG.setRoot(Chain); 5998 } 5999 6000 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6001 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6002 MVT::Other, getRoot(), 6003 getValue(I.getArgOperand(0)), 6004 DAG.getSrcValue(I.getArgOperand(0)))); 6005 } 6006 6007 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6008 const TargetData &TD = *TLI.getTargetData(); 6009 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6010 getRoot(), getValue(I.getOperand(0)), 6011 DAG.getSrcValue(I.getOperand(0)), 6012 TD.getABITypeAlignment(I.getType())); 6013 setValue(&I, V); 6014 DAG.setRoot(V.getValue(1)); 6015 } 6016 6017 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6018 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6019 MVT::Other, getRoot(), 6020 getValue(I.getArgOperand(0)), 6021 DAG.getSrcValue(I.getArgOperand(0)))); 6022 } 6023 6024 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6025 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6026 MVT::Other, getRoot(), 6027 getValue(I.getArgOperand(0)), 6028 getValue(I.getArgOperand(1)), 6029 DAG.getSrcValue(I.getArgOperand(0)), 6030 DAG.getSrcValue(I.getArgOperand(1)))); 6031 } 6032 6033 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6034 /// implementation, which just calls LowerCall. 6035 /// FIXME: When all targets are 6036 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6037 std::pair<SDValue, SDValue> 6038 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 6039 bool RetSExt, bool RetZExt, bool isVarArg, 6040 bool isInreg, unsigned NumFixedArgs, 6041 CallingConv::ID CallConv, bool isTailCall, 6042 bool isReturnValueUsed, 6043 SDValue Callee, 6044 ArgListTy &Args, SelectionDAG &DAG, 6045 DebugLoc dl) const { 6046 // Handle all of the outgoing arguments. 6047 SmallVector<ISD::OutputArg, 32> Outs; 6048 SmallVector<SDValue, 32> OutVals; 6049 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6050 SmallVector<EVT, 4> ValueVTs; 6051 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6052 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6053 Value != NumValues; ++Value) { 6054 EVT VT = ValueVTs[Value]; 6055 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6056 SDValue Op = SDValue(Args[i].Node.getNode(), 6057 Args[i].Node.getResNo() + Value); 6058 ISD::ArgFlagsTy Flags; 6059 unsigned OriginalAlignment = 6060 getTargetData()->getABITypeAlignment(ArgTy); 6061 6062 if (Args[i].isZExt) 6063 Flags.setZExt(); 6064 if (Args[i].isSExt) 6065 Flags.setSExt(); 6066 if (Args[i].isInReg) 6067 Flags.setInReg(); 6068 if (Args[i].isSRet) 6069 Flags.setSRet(); 6070 if (Args[i].isByVal) { 6071 Flags.setByVal(); 6072 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 6073 const Type *ElementTy = Ty->getElementType(); 6074 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 6075 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 6076 // For ByVal, alignment should come from FE. BE will guess if this 6077 // info is not there but there are cases it cannot get right. 6078 if (Args[i].Alignment) 6079 FrameAlign = Args[i].Alignment; 6080 Flags.setByValAlign(FrameAlign); 6081 Flags.setByValSize(FrameSize); 6082 } 6083 if (Args[i].isNest) 6084 Flags.setNest(); 6085 Flags.setOrigAlign(OriginalAlignment); 6086 6087 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6088 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6089 SmallVector<SDValue, 4> Parts(NumParts); 6090 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6091 6092 if (Args[i].isSExt) 6093 ExtendKind = ISD::SIGN_EXTEND; 6094 else if (Args[i].isZExt) 6095 ExtendKind = ISD::ZERO_EXTEND; 6096 6097 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6098 PartVT, ExtendKind); 6099 6100 for (unsigned j = 0; j != NumParts; ++j) { 6101 // if it isn't first piece, alignment must be 1 6102 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6103 i < NumFixedArgs); 6104 if (NumParts > 1 && j == 0) 6105 MyFlags.Flags.setSplit(); 6106 else if (j != 0) 6107 MyFlags.Flags.setOrigAlign(1); 6108 6109 Outs.push_back(MyFlags); 6110 OutVals.push_back(Parts[j]); 6111 } 6112 } 6113 } 6114 6115 // Handle the incoming return values from the call. 6116 SmallVector<ISD::InputArg, 32> Ins; 6117 SmallVector<EVT, 4> RetTys; 6118 ComputeValueVTs(*this, RetTy, RetTys); 6119 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6120 EVT VT = RetTys[I]; 6121 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6122 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6123 for (unsigned i = 0; i != NumRegs; ++i) { 6124 ISD::InputArg MyFlags; 6125 MyFlags.VT = RegisterVT.getSimpleVT(); 6126 MyFlags.Used = isReturnValueUsed; 6127 if (RetSExt) 6128 MyFlags.Flags.setSExt(); 6129 if (RetZExt) 6130 MyFlags.Flags.setZExt(); 6131 if (isInreg) 6132 MyFlags.Flags.setInReg(); 6133 Ins.push_back(MyFlags); 6134 } 6135 } 6136 6137 SmallVector<SDValue, 4> InVals; 6138 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6139 Outs, OutVals, Ins, dl, DAG, InVals); 6140 6141 // Verify that the target's LowerCall behaved as expected. 6142 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6143 "LowerCall didn't return a valid chain!"); 6144 assert((!isTailCall || InVals.empty()) && 6145 "LowerCall emitted a return value for a tail call!"); 6146 assert((isTailCall || InVals.size() == Ins.size()) && 6147 "LowerCall didn't emit the correct number of values!"); 6148 6149 // For a tail call, the return value is merely live-out and there aren't 6150 // any nodes in the DAG representing it. Return a special value to 6151 // indicate that a tail call has been emitted and no more Instructions 6152 // should be processed in the current block. 6153 if (isTailCall) { 6154 DAG.setRoot(Chain); 6155 return std::make_pair(SDValue(), SDValue()); 6156 } 6157 6158 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6159 assert(InVals[i].getNode() && 6160 "LowerCall emitted a null value!"); 6161 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6162 "LowerCall emitted a value with the wrong type!"); 6163 }); 6164 6165 // Collect the legal value parts into potentially illegal values 6166 // that correspond to the original function's return values. 6167 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6168 if (RetSExt) 6169 AssertOp = ISD::AssertSext; 6170 else if (RetZExt) 6171 AssertOp = ISD::AssertZext; 6172 SmallVector<SDValue, 4> ReturnValues; 6173 unsigned CurReg = 0; 6174 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6175 EVT VT = RetTys[I]; 6176 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6177 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6178 6179 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6180 NumRegs, RegisterVT, VT, 6181 AssertOp)); 6182 CurReg += NumRegs; 6183 } 6184 6185 // For a function returning void, there is no return value. We can't create 6186 // such a node, so we just return a null return value in that case. In 6187 // that case, nothing will actualy look at the value. 6188 if (ReturnValues.empty()) 6189 return std::make_pair(SDValue(), Chain); 6190 6191 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6192 DAG.getVTList(&RetTys[0], RetTys.size()), 6193 &ReturnValues[0], ReturnValues.size()); 6194 return std::make_pair(Res, Chain); 6195 } 6196 6197 void TargetLowering::LowerOperationWrapper(SDNode *N, 6198 SmallVectorImpl<SDValue> &Results, 6199 SelectionDAG &DAG) const { 6200 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6201 if (Res.getNode()) 6202 Results.push_back(Res); 6203 } 6204 6205 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6206 llvm_unreachable("LowerOperation not implemented for this target!"); 6207 return SDValue(); 6208 } 6209 6210 void 6211 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6212 SDValue Op = getNonRegisterValue(V); 6213 assert((Op.getOpcode() != ISD::CopyFromReg || 6214 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6215 "Copy from a reg to the same reg!"); 6216 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6217 6218 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6219 SDValue Chain = DAG.getEntryNode(); 6220 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6221 PendingExports.push_back(Chain); 6222 } 6223 6224 #include "llvm/CodeGen/SelectionDAGISel.h" 6225 6226 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6227 // If this is the entry block, emit arguments. 6228 const Function &F = *LLVMBB->getParent(); 6229 SelectionDAG &DAG = SDB->DAG; 6230 DebugLoc dl = SDB->getCurDebugLoc(); 6231 const TargetData *TD = TLI.getTargetData(); 6232 SmallVector<ISD::InputArg, 16> Ins; 6233 6234 // Check whether the function can return without sret-demotion. 6235 SmallVector<ISD::OutputArg, 4> Outs; 6236 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6237 Outs, TLI); 6238 6239 if (!FuncInfo->CanLowerReturn) { 6240 // Put in an sret pointer parameter before all the other parameters. 6241 SmallVector<EVT, 1> ValueVTs; 6242 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6243 6244 // NOTE: Assuming that a pointer will never break down to more than one VT 6245 // or one register. 6246 ISD::ArgFlagsTy Flags; 6247 Flags.setSRet(); 6248 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6249 ISD::InputArg RetArg(Flags, RegisterVT, true); 6250 Ins.push_back(RetArg); 6251 } 6252 6253 // Set up the incoming argument description vector. 6254 unsigned Idx = 1; 6255 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6256 I != E; ++I, ++Idx) { 6257 SmallVector<EVT, 4> ValueVTs; 6258 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6259 bool isArgValueUsed = !I->use_empty(); 6260 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6261 Value != NumValues; ++Value) { 6262 EVT VT = ValueVTs[Value]; 6263 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6264 ISD::ArgFlagsTy Flags; 6265 unsigned OriginalAlignment = 6266 TD->getABITypeAlignment(ArgTy); 6267 6268 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6269 Flags.setZExt(); 6270 if (F.paramHasAttr(Idx, Attribute::SExt)) 6271 Flags.setSExt(); 6272 if (F.paramHasAttr(Idx, Attribute::InReg)) 6273 Flags.setInReg(); 6274 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6275 Flags.setSRet(); 6276 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6277 Flags.setByVal(); 6278 const PointerType *Ty = cast<PointerType>(I->getType()); 6279 const Type *ElementTy = Ty->getElementType(); 6280 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6281 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6282 // For ByVal, alignment should be passed from FE. BE will guess if 6283 // this info is not there but there are cases it cannot get right. 6284 if (F.getParamAlignment(Idx)) 6285 FrameAlign = F.getParamAlignment(Idx); 6286 Flags.setByValAlign(FrameAlign); 6287 Flags.setByValSize(FrameSize); 6288 } 6289 if (F.paramHasAttr(Idx, Attribute::Nest)) 6290 Flags.setNest(); 6291 Flags.setOrigAlign(OriginalAlignment); 6292 6293 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6294 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6295 for (unsigned i = 0; i != NumRegs; ++i) { 6296 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6297 if (NumRegs > 1 && i == 0) 6298 MyFlags.Flags.setSplit(); 6299 // if it isn't first piece, alignment must be 1 6300 else if (i > 0) 6301 MyFlags.Flags.setOrigAlign(1); 6302 Ins.push_back(MyFlags); 6303 } 6304 } 6305 } 6306 6307 // Call the target to set up the argument values. 6308 SmallVector<SDValue, 8> InVals; 6309 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6310 F.isVarArg(), Ins, 6311 dl, DAG, InVals); 6312 6313 // Verify that the target's LowerFormalArguments behaved as expected. 6314 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6315 "LowerFormalArguments didn't return a valid chain!"); 6316 assert(InVals.size() == Ins.size() && 6317 "LowerFormalArguments didn't emit the correct number of values!"); 6318 DEBUG({ 6319 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6320 assert(InVals[i].getNode() && 6321 "LowerFormalArguments emitted a null value!"); 6322 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6323 "LowerFormalArguments emitted a value with the wrong type!"); 6324 } 6325 }); 6326 6327 // Update the DAG with the new chain value resulting from argument lowering. 6328 DAG.setRoot(NewRoot); 6329 6330 // Set up the argument values. 6331 unsigned i = 0; 6332 Idx = 1; 6333 if (!FuncInfo->CanLowerReturn) { 6334 // Create a virtual register for the sret pointer, and put in a copy 6335 // from the sret argument into it. 6336 SmallVector<EVT, 1> ValueVTs; 6337 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6338 EVT VT = ValueVTs[0]; 6339 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6340 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6341 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6342 RegVT, VT, AssertOp); 6343 6344 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6345 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6346 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6347 FuncInfo->DemoteRegister = SRetReg; 6348 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6349 SRetReg, ArgValue); 6350 DAG.setRoot(NewRoot); 6351 6352 // i indexes lowered arguments. Bump it past the hidden sret argument. 6353 // Idx indexes LLVM arguments. Don't touch it. 6354 ++i; 6355 } 6356 6357 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6358 ++I, ++Idx) { 6359 SmallVector<SDValue, 4> ArgValues; 6360 SmallVector<EVT, 4> ValueVTs; 6361 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6362 unsigned NumValues = ValueVTs.size(); 6363 6364 // If this argument is unused then remember its value. It is used to generate 6365 // debugging information. 6366 if (I->use_empty() && NumValues) 6367 SDB->setUnusedArgValue(I, InVals[i]); 6368 6369 for (unsigned Value = 0; Value != NumValues; ++Value) { 6370 EVT VT = ValueVTs[Value]; 6371 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6372 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6373 6374 if (!I->use_empty()) { 6375 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6376 if (F.paramHasAttr(Idx, Attribute::SExt)) 6377 AssertOp = ISD::AssertSext; 6378 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6379 AssertOp = ISD::AssertZext; 6380 6381 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6382 NumParts, PartVT, VT, 6383 AssertOp)); 6384 } 6385 6386 i += NumParts; 6387 } 6388 6389 // Note down frame index for byval arguments. 6390 if (I->hasByValAttr() && !ArgValues.empty()) 6391 if (FrameIndexSDNode *FI = 6392 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6393 FuncInfo->setByValArgumentFrameIndex(I, FI->getIndex()); 6394 6395 if (!I->use_empty()) { 6396 SDValue Res; 6397 if (!ArgValues.empty()) 6398 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6399 SDB->getCurDebugLoc()); 6400 SDB->setValue(I, Res); 6401 6402 // If this argument is live outside of the entry block, insert a copy from 6403 // whereever we got it to the vreg that other BB's will reference it as. 6404 SDB->CopyToExportRegsIfNeeded(I); 6405 } 6406 } 6407 6408 assert(i == InVals.size() && "Argument register count mismatch!"); 6409 6410 // Finally, if the target has anything special to do, allow it to do so. 6411 // FIXME: this should insert code into the DAG! 6412 EmitFunctionEntryCode(); 6413 } 6414 6415 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6416 /// ensure constants are generated when needed. Remember the virtual registers 6417 /// that need to be added to the Machine PHI nodes as input. We cannot just 6418 /// directly add them, because expansion might result in multiple MBB's for one 6419 /// BB. As such, the start of the BB might correspond to a different MBB than 6420 /// the end. 6421 /// 6422 void 6423 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6424 const TerminatorInst *TI = LLVMBB->getTerminator(); 6425 6426 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6427 6428 // Check successor nodes' PHI nodes that expect a constant to be available 6429 // from this block. 6430 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6431 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6432 if (!isa<PHINode>(SuccBB->begin())) continue; 6433 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6434 6435 // If this terminator has multiple identical successors (common for 6436 // switches), only handle each succ once. 6437 if (!SuccsHandled.insert(SuccMBB)) continue; 6438 6439 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6440 6441 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6442 // nodes and Machine PHI nodes, but the incoming operands have not been 6443 // emitted yet. 6444 for (BasicBlock::const_iterator I = SuccBB->begin(); 6445 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6446 // Ignore dead phi's. 6447 if (PN->use_empty()) continue; 6448 6449 unsigned Reg; 6450 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6451 6452 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6453 unsigned &RegOut = ConstantsOut[C]; 6454 if (RegOut == 0) { 6455 RegOut = FuncInfo.CreateRegs(C->getType()); 6456 CopyValueToVirtualRegister(C, RegOut); 6457 } 6458 Reg = RegOut; 6459 } else { 6460 DenseMap<const Value *, unsigned>::iterator I = 6461 FuncInfo.ValueMap.find(PHIOp); 6462 if (I != FuncInfo.ValueMap.end()) 6463 Reg = I->second; 6464 else { 6465 assert(isa<AllocaInst>(PHIOp) && 6466 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6467 "Didn't codegen value into a register!??"); 6468 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6469 CopyValueToVirtualRegister(PHIOp, Reg); 6470 } 6471 } 6472 6473 // Remember that this register needs to added to the machine PHI node as 6474 // the input for this MBB. 6475 SmallVector<EVT, 4> ValueVTs; 6476 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6477 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6478 EVT VT = ValueVTs[vti]; 6479 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6480 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6481 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6482 Reg += NumRegisters; 6483 } 6484 } 6485 } 6486 ConstantsOut.clear(); 6487 } 6488