1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SelectionDAGBuilder.h" 16 #include "FunctionLoweringInfo.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Constants.h" 21 #include "llvm/CallingConv.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/Function.h" 24 #include "llvm/GlobalVariable.h" 25 #include "llvm/InlineAsm.h" 26 #include "llvm/Instructions.h" 27 #include "llvm/Intrinsics.h" 28 #include "llvm/IntrinsicInst.h" 29 #include "llvm/LLVMContext.h" 30 #include "llvm/Module.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/GCStrategy.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFrameInfo.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineModuleInfo.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/PseudoSourceValue.h" 41 #include "llvm/CodeGen/SelectionDAG.h" 42 #include "llvm/CodeGen/DwarfWriter.h" 43 #include "llvm/Analysis/DebugInfo.h" 44 #include "llvm/Target/TargetRegisterInfo.h" 45 #include "llvm/Target/TargetData.h" 46 #include "llvm/Target/TargetFrameInfo.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetIntrinsicInfo.h" 49 #include "llvm/Target/TargetLowering.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 using namespace llvm; 59 60 /// LimitFloatPrecision - Generate low-precision inline sequences for 61 /// some float libcalls (6, 8 or 12 bits). 62 static unsigned LimitFloatPrecision; 63 64 static cl::opt<unsigned, true> 65 LimitFPPrecision("limit-float-precision", 66 cl::desc("Generate low-precision inline sequences " 67 "for some float libcalls"), 68 cl::location(LimitFloatPrecision), 69 cl::init(0)); 70 71 namespace { 72 /// RegsForValue - This struct represents the registers (physical or virtual) 73 /// that a particular set of values is assigned, and the type information about 74 /// the value. The most common situation is to represent one value at a time, 75 /// but struct or array values are handled element-wise as multiple values. 76 /// The splitting of aggregates is performed recursively, so that we never 77 /// have aggregate-typed registers. The values at this point do not necessarily 78 /// have legal types, so each value may require one or more registers of some 79 /// legal type. 80 /// 81 struct RegsForValue { 82 /// TLI - The TargetLowering object. 83 /// 84 const TargetLowering *TLI; 85 86 /// ValueVTs - The value types of the values, which may not be legal, and 87 /// may need be promoted or synthesized from one or more registers. 88 /// 89 SmallVector<EVT, 4> ValueVTs; 90 91 /// RegVTs - The value types of the registers. This is the same size as 92 /// ValueVTs and it records, for each value, what the type of the assigned 93 /// register or registers are. (Individual values are never synthesized 94 /// from more than one type of register.) 95 /// 96 /// With virtual registers, the contents of RegVTs is redundant with TLI's 97 /// getRegisterType member function, however when with physical registers 98 /// it is necessary to have a separate record of the types. 99 /// 100 SmallVector<EVT, 4> RegVTs; 101 102 /// Regs - This list holds the registers assigned to the values. 103 /// Each legal or promoted value requires one register, and each 104 /// expanded value requires multiple registers. 105 /// 106 SmallVector<unsigned, 4> Regs; 107 108 RegsForValue() : TLI(0) {} 109 110 RegsForValue(const TargetLowering &tli, 111 const SmallVector<unsigned, 4> ®s, 112 EVT regvt, EVT valuevt) 113 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 114 RegsForValue(const TargetLowering &tli, 115 const SmallVector<unsigned, 4> ®s, 116 const SmallVector<EVT, 4> ®vts, 117 const SmallVector<EVT, 4> &valuevts) 118 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 119 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 120 unsigned Reg, const Type *Ty) : TLI(&tli) { 121 ComputeValueVTs(tli, Ty, ValueVTs); 122 123 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 124 EVT ValueVT = ValueVTs[Value]; 125 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 126 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 127 for (unsigned i = 0; i != NumRegs; ++i) 128 Regs.push_back(Reg + i); 129 RegVTs.push_back(RegisterVT); 130 Reg += NumRegs; 131 } 132 } 133 134 /// append - Add the specified values to this one. 135 void append(const RegsForValue &RHS) { 136 TLI = RHS.TLI; 137 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 138 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 139 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 140 } 141 142 143 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 144 /// this value and returns the result as a ValueVTs value. This uses 145 /// Chain/Flag as the input and updates them for the output Chain/Flag. 146 /// If the Flag pointer is NULL, no flag is used. 147 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 148 SDValue &Chain, SDValue *Flag) const; 149 150 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 151 /// specified value into the registers specified by this object. This uses 152 /// Chain/Flag as the input and updates them for the output Chain/Flag. 153 /// If the Flag pointer is NULL, no flag is used. 154 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 155 SDValue &Chain, SDValue *Flag) const; 156 157 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 158 /// operand list. This adds the code marker, matching input operand index 159 /// (if applicable), and includes the number of values added into it. 160 void AddInlineAsmOperands(unsigned Code, 161 bool HasMatching, unsigned MatchingIdx, 162 SelectionDAG &DAG, std::vector<SDValue> &Ops) const; 163 }; 164 } 165 166 /// getCopyFromParts - Create a value that contains the specified legal parts 167 /// combined into the value they represent. If the parts combine to a type 168 /// larger then ValueVT then AssertOp can be used to specify whether the extra 169 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 170 /// (ISD::AssertSext). 171 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 172 const SDValue *Parts, 173 unsigned NumParts, EVT PartVT, EVT ValueVT, 174 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 175 assert(NumParts > 0 && "No parts to assemble!"); 176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 177 SDValue Val = Parts[0]; 178 179 if (NumParts > 1) { 180 // Assemble the value from multiple parts. 181 if (!ValueVT.isVector() && ValueVT.isInteger()) { 182 unsigned PartBits = PartVT.getSizeInBits(); 183 unsigned ValueBits = ValueVT.getSizeInBits(); 184 185 // Assemble the power of 2 part. 186 unsigned RoundParts = NumParts & (NumParts - 1) ? 187 1 << Log2_32(NumParts) : NumParts; 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT); 197 Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2, 198 PartVT, HalfVT); 199 } else { 200 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 201 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 202 } 203 if (TLI.isBigEndian()) 204 std::swap(Lo, Hi); 205 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 206 207 if (RoundParts < NumParts) { 208 // Assemble the trailing non-power-of-2 part. 209 unsigned OddParts = NumParts - RoundParts; 210 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 211 Hi = getCopyFromParts(DAG, dl, 212 Parts+RoundParts, OddParts, PartVT, OddVT); 213 214 // Combine the round and odd parts. 215 Lo = Val; 216 if (TLI.isBigEndian()) 217 std::swap(Lo, Hi); 218 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 219 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 220 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 221 DAG.getConstant(Lo.getValueType().getSizeInBits(), 222 TLI.getPointerTy())); 223 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 224 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 225 } 226 } else if (ValueVT.isVector()) { 227 // Handle a multi-element vector. 228 EVT IntermediateVT, RegisterVT; 229 unsigned NumIntermediates; 230 unsigned NumRegs = 231 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 232 NumIntermediates, RegisterVT); 233 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 234 NumParts = NumRegs; // Silence a compiler warning. 235 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 236 assert(RegisterVT == Parts[0].getValueType() && 237 "Part type doesn't match part!"); 238 239 // Assemble the parts into intermediate operands. 240 SmallVector<SDValue, 8> Ops(NumIntermediates); 241 if (NumIntermediates == NumParts) { 242 // If the register was not expanded, truncate or copy the value, 243 // as appropriate. 244 for (unsigned i = 0; i != NumParts; ++i) 245 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 246 PartVT, IntermediateVT); 247 } else if (NumParts > 0) { 248 // If the intermediate type was expanded, build the intermediate operands 249 // from the parts. 250 assert(NumParts % NumIntermediates == 0 && 251 "Must expand into a divisible number of parts!"); 252 unsigned Factor = NumParts / NumIntermediates; 253 for (unsigned i = 0; i != NumIntermediates; ++i) 254 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 255 PartVT, IntermediateVT); 256 } 257 258 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate 259 // operands. 260 Val = DAG.getNode(IntermediateVT.isVector() ? 261 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 262 ValueVT, &Ops[0], NumIntermediates); 263 } else if (PartVT.isFloatingPoint()) { 264 // FP split into multiple FP parts (for ppcf128) 265 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 266 "Unexpected split"); 267 SDValue Lo, Hi; 268 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 269 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 270 if (TLI.isBigEndian()) 271 std::swap(Lo, Hi); 272 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 273 } else { 274 // FP split into integer parts (soft fp) 275 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 276 !PartVT.isVector() && "Unexpected split"); 277 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 278 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 279 } 280 } 281 282 // There is now one part, held in Val. Correct it to match ValueVT. 283 PartVT = Val.getValueType(); 284 285 if (PartVT == ValueVT) 286 return Val; 287 288 if (PartVT.isVector()) { 289 assert(ValueVT.isVector() && "Unknown vector conversion!"); 290 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 291 } 292 293 if (ValueVT.isVector()) { 294 assert(ValueVT.getVectorElementType() == PartVT && 295 ValueVT.getVectorNumElements() == 1 && 296 "Only trivial scalar-to-vector conversions should get here!"); 297 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 298 } 299 300 if (PartVT.isInteger() && 301 ValueVT.isInteger()) { 302 if (ValueVT.bitsLT(PartVT)) { 303 // For a truncate, see if we have any information to 304 // indicate whether the truncated bits will always be 305 // zero or sign-extension. 306 if (AssertOp != ISD::DELETED_NODE) 307 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 308 DAG.getValueType(ValueVT)); 309 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 310 } else { 311 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 312 } 313 } 314 315 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 if (ValueVT.bitsLT(Val.getValueType())) 317 // FP_ROUND's are always exact here. 318 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 319 DAG.getIntPtrConstant(1)); 320 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 321 } 322 323 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 324 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 325 326 llvm_unreachable("Unknown mismatch!"); 327 return SDValue(); 328 } 329 330 /// getCopyToParts - Create a series of nodes that contain the specified value 331 /// split into legal parts. If the parts contain more bits than Val, then, for 332 /// integers, ExtendKind can be used to specify how to generate the extra bits. 333 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val, 334 SDValue *Parts, unsigned NumParts, EVT PartVT, 335 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 336 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 337 EVT PtrVT = TLI.getPointerTy(); 338 EVT ValueVT = Val.getValueType(); 339 unsigned PartBits = PartVT.getSizeInBits(); 340 unsigned OrigNumParts = NumParts; 341 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 342 343 if (!NumParts) 344 return; 345 346 if (!ValueVT.isVector()) { 347 if (PartVT == ValueVT) { 348 assert(NumParts == 1 && "No-op copy with multiple parts!"); 349 Parts[0] = Val; 350 return; 351 } 352 353 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 354 // If the parts cover more bits than the value has, promote the value. 355 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 356 assert(NumParts == 1 && "Do not know what to promote to!"); 357 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 358 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 359 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 360 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 361 } else { 362 llvm_unreachable("Unknown mismatch!"); 363 } 364 } else if (PartBits == ValueVT.getSizeInBits()) { 365 // Different types of the same size. 366 assert(NumParts == 1 && PartVT != ValueVT); 367 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 368 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 369 // If the parts cover less bits than value has, truncate the value. 370 if (PartVT.isInteger() && ValueVT.isInteger()) { 371 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 372 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 373 } else { 374 llvm_unreachable("Unknown mismatch!"); 375 } 376 } 377 378 // The value may have changed - recompute ValueVT. 379 ValueVT = Val.getValueType(); 380 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 381 "Failed to tile the value with PartVT!"); 382 383 if (NumParts == 1) { 384 assert(PartVT == ValueVT && "Type conversion failed!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 // Expand the value into multiple parts. 390 if (NumParts & (NumParts - 1)) { 391 // The number of parts is not a power of 2. Split off and copy the tail. 392 assert(PartVT.isInteger() && ValueVT.isInteger() && 393 "Do not know what to expand to!"); 394 unsigned RoundParts = 1 << Log2_32(NumParts); 395 unsigned RoundBits = RoundParts * PartBits; 396 unsigned OddParts = NumParts - RoundParts; 397 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 398 DAG.getConstant(RoundBits, 399 TLI.getPointerTy())); 400 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT); 401 if (TLI.isBigEndian()) 402 // The odd parts were reversed by getCopyToParts - unreverse them. 403 std::reverse(Parts + RoundParts, Parts + NumParts); 404 NumParts = RoundParts; 405 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 406 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 407 } 408 409 // The number of parts is a power of 2. Repeatedly bisect the value using 410 // EXTRACT_ELEMENT. 411 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 412 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()), 413 Val); 414 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 415 for (unsigned i = 0; i < NumParts; i += StepSize) { 416 unsigned ThisBits = StepSize * PartBits / 2; 417 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 418 SDValue &Part0 = Parts[i]; 419 SDValue &Part1 = Parts[i+StepSize/2]; 420 421 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 422 ThisVT, Part0, 423 DAG.getConstant(1, PtrVT)); 424 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 425 ThisVT, Part0, 426 DAG.getConstant(0, PtrVT)); 427 428 if (ThisBits == PartBits && ThisVT != PartVT) { 429 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 430 PartVT, Part0); 431 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 432 PartVT, Part1); 433 } 434 } 435 } 436 437 if (TLI.isBigEndian()) 438 std::reverse(Parts, Parts + OrigNumParts); 439 440 return; 441 } 442 443 // Vector ValueVT. 444 if (NumParts == 1) { 445 if (PartVT != ValueVT) { 446 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 447 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 448 } else { 449 assert(ValueVT.getVectorElementType() == PartVT && 450 ValueVT.getVectorNumElements() == 1 && 451 "Only trivial vector-to-scalar conversions should get here!"); 452 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 453 PartVT, Val, 454 DAG.getConstant(0, PtrVT)); 455 } 456 } 457 458 Parts[0] = Val; 459 return; 460 } 461 462 // Handle a multi-element vector. 463 EVT IntermediateVT, RegisterVT; 464 unsigned NumIntermediates; 465 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 466 IntermediateVT, NumIntermediates, RegisterVT); 467 unsigned NumElements = ValueVT.getVectorNumElements(); 468 469 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 470 NumParts = NumRegs; // Silence a compiler warning. 471 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 472 473 // Split the vector into intermediate operands. 474 SmallVector<SDValue, 8> Ops(NumIntermediates); 475 for (unsigned i = 0; i != NumIntermediates; ++i) 476 if (IntermediateVT.isVector()) 477 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 478 IntermediateVT, Val, 479 DAG.getConstant(i * (NumElements / NumIntermediates), 480 PtrVT)); 481 else 482 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 483 IntermediateVT, Val, 484 DAG.getConstant(i, PtrVT)); 485 486 // Split the intermediate operands into legal parts. 487 if (NumParts == NumIntermediates) { 488 // If the register was not expanded, promote or copy the value, 489 // as appropriate. 490 for (unsigned i = 0; i != NumParts; ++i) 491 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 492 } else if (NumParts > 0) { 493 // If the intermediate type was expanded, split each the value into 494 // legal parts. 495 assert(NumParts % NumIntermediates == 0 && 496 "Must expand into a divisible number of parts!"); 497 unsigned Factor = NumParts / NumIntermediates; 498 for (unsigned i = 0; i != NumIntermediates; ++i) 499 getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT); 500 } 501 } 502 503 504 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 505 AA = &aa; 506 GFI = gfi; 507 TD = DAG.getTarget().getTargetData(); 508 } 509 510 /// clear - Clear out the curret SelectionDAG and the associated 511 /// state and prepare this SelectionDAGBuilder object to be used 512 /// for a new block. This doesn't clear out information about 513 /// additional blocks that are needed to complete switch lowering 514 /// or PHI node updating; that information is cleared out as it is 515 /// consumed. 516 void SelectionDAGBuilder::clear() { 517 NodeMap.clear(); 518 PendingLoads.clear(); 519 PendingExports.clear(); 520 EdgeMapping.clear(); 521 DAG.clear(); 522 CurDebugLoc = DebugLoc::getUnknownLoc(); 523 HasTailCall = false; 524 } 525 526 /// getRoot - Return the current virtual root of the Selection DAG, 527 /// flushing any PendingLoad items. This must be done before emitting 528 /// a store or any other node that may need to be ordered after any 529 /// prior load instructions. 530 /// 531 SDValue SelectionDAGBuilder::getRoot() { 532 if (PendingLoads.empty()) 533 return DAG.getRoot(); 534 535 if (PendingLoads.size() == 1) { 536 SDValue Root = PendingLoads[0]; 537 DAG.setRoot(Root); 538 PendingLoads.clear(); 539 return Root; 540 } 541 542 // Otherwise, we have to make a token factor node. 543 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 544 &PendingLoads[0], PendingLoads.size()); 545 PendingLoads.clear(); 546 DAG.setRoot(Root); 547 return Root; 548 } 549 550 /// getControlRoot - Similar to getRoot, but instead of flushing all the 551 /// PendingLoad items, flush all the PendingExports items. It is necessary 552 /// to do this before emitting a terminator instruction. 553 /// 554 SDValue SelectionDAGBuilder::getControlRoot() { 555 SDValue Root = DAG.getRoot(); 556 557 if (PendingExports.empty()) 558 return Root; 559 560 // Turn all of the CopyToReg chains into one factored node. 561 if (Root.getOpcode() != ISD::EntryToken) { 562 unsigned i = 0, e = PendingExports.size(); 563 for (; i != e; ++i) { 564 assert(PendingExports[i].getNode()->getNumOperands() > 1); 565 if (PendingExports[i].getNode()->getOperand(0) == Root) 566 break; // Don't add the root if we already indirectly depend on it. 567 } 568 569 if (i == e) 570 PendingExports.push_back(Root); 571 } 572 573 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 574 &PendingExports[0], 575 PendingExports.size()); 576 PendingExports.clear(); 577 DAG.setRoot(Root); 578 return Root; 579 } 580 581 void SelectionDAGBuilder::visit(Instruction &I) { 582 visit(I.getOpcode(), I); 583 } 584 585 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) { 586 // We're processing a new instruction. 587 ++SDNodeOrder; 588 589 // Note: this doesn't use InstVisitor, because it has to work with 590 // ConstantExpr's in addition to instructions. 591 switch (Opcode) { 592 default: llvm_unreachable("Unknown instruction type encountered!"); 593 // Build the switch statement using the Instruction.def file. 594 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 595 case Instruction::OPCODE: return visit##OPCODE((CLASS&)I); 596 #include "llvm/Instruction.def" 597 } 598 } 599 600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 601 SDValue &N = NodeMap[V]; 602 if (N.getNode()) return N; 603 604 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) { 605 EVT VT = TLI.getValueType(V->getType(), true); 606 607 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 608 return N = DAG.getConstant(*CI, VT); 609 610 if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) 611 return N = DAG.getGlobalAddress(GV, VT); 612 613 if (isa<ConstantPointerNull>(C)) 614 return N = DAG.getConstant(0, TLI.getPointerTy()); 615 616 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 617 return N = DAG.getConstantFP(*CFP, VT); 618 619 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 620 return N = DAG.getUNDEF(VT); 621 622 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 623 visit(CE->getOpcode(), *CE); 624 SDValue N1 = NodeMap[V]; 625 assert(N1.getNode() && "visit didn't populate the ValueMap!"); 626 return N1; 627 } 628 629 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 630 SmallVector<SDValue, 4> Constants; 631 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 632 OI != OE; ++OI) { 633 SDNode *Val = getValue(*OI).getNode(); 634 // If the operand is an empty aggregate, there are no values. 635 if (!Val) continue; 636 // Add each leaf value from the operand to the Constants list 637 // to form a flattened list of all the values. 638 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 639 Constants.push_back(SDValue(Val, i)); 640 } 641 642 SDValue Res = DAG.getMergeValues(&Constants[0], Constants.size(), 643 getCurDebugLoc()); 644 if (DisableScheduling) 645 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 646 return Res; 647 } 648 649 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) { 650 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 651 "Unknown struct or array constant!"); 652 653 SmallVector<EVT, 4> ValueVTs; 654 ComputeValueVTs(TLI, C->getType(), ValueVTs); 655 unsigned NumElts = ValueVTs.size(); 656 if (NumElts == 0) 657 return SDValue(); // empty struct 658 SmallVector<SDValue, 4> Constants(NumElts); 659 for (unsigned i = 0; i != NumElts; ++i) { 660 EVT EltVT = ValueVTs[i]; 661 if (isa<UndefValue>(C)) 662 Constants[i] = DAG.getUNDEF(EltVT); 663 else if (EltVT.isFloatingPoint()) 664 Constants[i] = DAG.getConstantFP(0, EltVT); 665 else 666 Constants[i] = DAG.getConstant(0, EltVT); 667 } 668 669 SDValue Res = DAG.getMergeValues(&Constants[0], NumElts, 670 getCurDebugLoc()); 671 if (DisableScheduling) 672 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 673 return Res; 674 } 675 676 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 677 return DAG.getBlockAddress(BA, VT); 678 679 const VectorType *VecTy = cast<VectorType>(V->getType()); 680 unsigned NumElements = VecTy->getNumElements(); 681 682 // Now that we know the number and type of the elements, get that number of 683 // elements into the Ops array based on what kind of constant it is. 684 SmallVector<SDValue, 16> Ops; 685 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 686 for (unsigned i = 0; i != NumElements; ++i) 687 Ops.push_back(getValue(CP->getOperand(i))); 688 } else { 689 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 690 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 691 692 SDValue Op; 693 if (EltVT.isFloatingPoint()) 694 Op = DAG.getConstantFP(0, EltVT); 695 else 696 Op = DAG.getConstant(0, EltVT); 697 Ops.assign(NumElements, Op); 698 } 699 700 // Create a BUILD_VECTOR node. 701 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 702 VT, &Ops[0], Ops.size()); 703 if (DisableScheduling) 704 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 705 706 return NodeMap[V] = Res; 707 } 708 709 // If this is a static alloca, generate it as the frameindex instead of 710 // computation. 711 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 712 DenseMap<const AllocaInst*, int>::iterator SI = 713 FuncInfo.StaticAllocaMap.find(AI); 714 if (SI != FuncInfo.StaticAllocaMap.end()) 715 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 716 } 717 718 unsigned InReg = FuncInfo.ValueMap[V]; 719 assert(InReg && "Value not in map!"); 720 721 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 722 SDValue Chain = DAG.getEntryNode(); 723 SDValue Res = RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 724 if (DisableScheduling) 725 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 726 return Res; 727 } 728 729 /// Get the EVTs and ArgFlags collections that represent the return type 730 /// of the given function. This does not require a DAG or a return value, and 731 /// is suitable for use before any DAGs for the function are constructed. 732 static void getReturnInfo(const Type* ReturnType, 733 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 734 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 735 TargetLowering &TLI, 736 SmallVectorImpl<uint64_t> *Offsets = 0) { 737 SmallVector<EVT, 4> ValueVTs; 738 ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets); 739 unsigned NumValues = ValueVTs.size(); 740 if ( NumValues == 0 ) return; 741 742 for (unsigned j = 0, f = NumValues; j != f; ++j) { 743 EVT VT = ValueVTs[j]; 744 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 745 746 if (attr & Attribute::SExt) 747 ExtendKind = ISD::SIGN_EXTEND; 748 else if (attr & Attribute::ZExt) 749 ExtendKind = ISD::ZERO_EXTEND; 750 751 // FIXME: C calling convention requires the return type to be promoted to 752 // at least 32-bit. But this is not necessary for non-C calling 753 // conventions. The frontend should mark functions whose return values 754 // require promoting with signext or zeroext attributes. 755 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 756 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 757 if (VT.bitsLT(MinVT)) 758 VT = MinVT; 759 } 760 761 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 762 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 763 // 'inreg' on function refers to return value 764 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 765 if (attr & Attribute::InReg) 766 Flags.setInReg(); 767 768 // Propagate extension type if any 769 if (attr & Attribute::SExt) 770 Flags.setSExt(); 771 else if (attr & Attribute::ZExt) 772 Flags.setZExt(); 773 774 for (unsigned i = 0; i < NumParts; ++i) { 775 OutVTs.push_back(PartVT); 776 OutFlags.push_back(Flags); 777 } 778 } 779 } 780 781 void SelectionDAGBuilder::visitRet(ReturnInst &I) { 782 SDValue Chain = getControlRoot(); 783 SmallVector<ISD::OutputArg, 8> Outs; 784 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 785 786 if (!FLI.CanLowerReturn) { 787 unsigned DemoteReg = FLI.DemoteRegister; 788 const Function *F = I.getParent()->getParent(); 789 790 // Emit a store of the return value through the virtual register. 791 // Leave Outs empty so that LowerReturn won't try to load return 792 // registers the usual way. 793 SmallVector<EVT, 1> PtrValueVTs; 794 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 795 PtrValueVTs); 796 797 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 798 SDValue RetOp = getValue(I.getOperand(0)); 799 800 SmallVector<EVT, 4> ValueVTs; 801 SmallVector<uint64_t, 4> Offsets; 802 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 803 unsigned NumValues = ValueVTs.size(); 804 805 SmallVector<SDValue, 4> Chains(NumValues); 806 EVT PtrVT = PtrValueVTs[0]; 807 for (unsigned i = 0; i != NumValues; ++i) { 808 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 809 DAG.getConstant(Offsets[i], PtrVT)); 810 Chains[i] = 811 DAG.getStore(Chain, getCurDebugLoc(), 812 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 813 Add, NULL, Offsets[i], false, 0); 814 815 if (DisableScheduling) { 816 DAG.AssignOrdering(Add.getNode(), SDNodeOrder); 817 DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder); 818 } 819 } 820 821 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 822 MVT::Other, &Chains[0], NumValues); 823 824 if (DisableScheduling) 825 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 826 } else { 827 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 828 SmallVector<EVT, 4> ValueVTs; 829 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs); 830 unsigned NumValues = ValueVTs.size(); 831 if (NumValues == 0) continue; 832 833 SDValue RetOp = getValue(I.getOperand(i)); 834 for (unsigned j = 0, f = NumValues; j != f; ++j) { 835 EVT VT = ValueVTs[j]; 836 837 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 838 839 const Function *F = I.getParent()->getParent(); 840 if (F->paramHasAttr(0, Attribute::SExt)) 841 ExtendKind = ISD::SIGN_EXTEND; 842 else if (F->paramHasAttr(0, Attribute::ZExt)) 843 ExtendKind = ISD::ZERO_EXTEND; 844 845 // FIXME: C calling convention requires the return type to be promoted to 846 // at least 32-bit. But this is not necessary for non-C calling 847 // conventions. The frontend should mark functions whose return values 848 // require promoting with signext or zeroext attributes. 849 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 850 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 851 if (VT.bitsLT(MinVT)) 852 VT = MinVT; 853 } 854 855 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 856 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 857 SmallVector<SDValue, 4> Parts(NumParts); 858 getCopyToParts(DAG, getCurDebugLoc(), 859 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 860 &Parts[0], NumParts, PartVT, ExtendKind); 861 862 // 'inreg' on function refers to return value 863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 864 if (F->paramHasAttr(0, Attribute::InReg)) 865 Flags.setInReg(); 866 867 // Propagate extension type if any 868 if (F->paramHasAttr(0, Attribute::SExt)) 869 Flags.setSExt(); 870 else if (F->paramHasAttr(0, Attribute::ZExt)) 871 Flags.setZExt(); 872 873 for (unsigned i = 0; i < NumParts; ++i) 874 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 875 } 876 } 877 } 878 879 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 880 CallingConv::ID CallConv = 881 DAG.getMachineFunction().getFunction()->getCallingConv(); 882 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 883 Outs, getCurDebugLoc(), DAG); 884 885 // Verify that the target's LowerReturn behaved as expected. 886 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 887 "LowerReturn didn't return a valid chain!"); 888 889 // Update the DAG with the new chain value resulting from return lowering. 890 DAG.setRoot(Chain); 891 892 if (DisableScheduling) 893 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 894 } 895 896 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 897 /// created for it, emit nodes to copy the value into the virtual 898 /// registers. 899 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) { 900 if (!V->use_empty()) { 901 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 902 if (VMI != FuncInfo.ValueMap.end()) 903 CopyValueToVirtualRegister(V, VMI->second); 904 } 905 } 906 907 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 908 /// the current basic block, add it to ValueMap now so that we'll get a 909 /// CopyTo/FromReg. 910 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) { 911 // No need to export constants. 912 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 913 914 // Already exported? 915 if (FuncInfo.isExportedInst(V)) return; 916 917 unsigned Reg = FuncInfo.InitializeRegForValue(V); 918 CopyValueToVirtualRegister(V, Reg); 919 } 920 921 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V, 922 const BasicBlock *FromBB) { 923 // The operands of the setcc have to be in this block. We don't know 924 // how to export them from some other block. 925 if (Instruction *VI = dyn_cast<Instruction>(V)) { 926 // Can export from current BB. 927 if (VI->getParent() == FromBB) 928 return true; 929 930 // Is already exported, noop. 931 return FuncInfo.isExportedInst(V); 932 } 933 934 // If this is an argument, we can export it if the BB is the entry block or 935 // if it is already exported. 936 if (isa<Argument>(V)) { 937 if (FromBB == &FromBB->getParent()->getEntryBlock()) 938 return true; 939 940 // Otherwise, can only export this if it is already exported. 941 return FuncInfo.isExportedInst(V); 942 } 943 944 // Otherwise, constants can always be exported. 945 return true; 946 } 947 948 static bool InBlock(const Value *V, const BasicBlock *BB) { 949 if (const Instruction *I = dyn_cast<Instruction>(V)) 950 return I->getParent() == BB; 951 return true; 952 } 953 954 /// getFCmpCondCode - Return the ISD condition code corresponding to 955 /// the given LLVM IR floating-point condition code. This includes 956 /// consideration of global floating-point math flags. 957 /// 958 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) { 959 ISD::CondCode FPC, FOC; 960 switch (Pred) { 961 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; 962 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; 963 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; 964 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; 965 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; 966 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; 967 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; 968 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; 969 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; 970 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; 971 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; 972 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; 973 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; 974 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; 975 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; 976 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; 977 default: 978 llvm_unreachable("Invalid FCmp predicate opcode!"); 979 FOC = FPC = ISD::SETFALSE; 980 break; 981 } 982 if (FiniteOnlyFPMath()) 983 return FOC; 984 else 985 return FPC; 986 } 987 988 /// getICmpCondCode - Return the ISD condition code corresponding to 989 /// the given LLVM IR integer condition code. 990 /// 991 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) { 992 switch (Pred) { 993 case ICmpInst::ICMP_EQ: return ISD::SETEQ; 994 case ICmpInst::ICMP_NE: return ISD::SETNE; 995 case ICmpInst::ICMP_SLE: return ISD::SETLE; 996 case ICmpInst::ICMP_ULE: return ISD::SETULE; 997 case ICmpInst::ICMP_SGE: return ISD::SETGE; 998 case ICmpInst::ICMP_UGE: return ISD::SETUGE; 999 case ICmpInst::ICMP_SLT: return ISD::SETLT; 1000 case ICmpInst::ICMP_ULT: return ISD::SETULT; 1001 case ICmpInst::ICMP_SGT: return ISD::SETGT; 1002 case ICmpInst::ICMP_UGT: return ISD::SETUGT; 1003 default: 1004 llvm_unreachable("Invalid ICmp predicate opcode!"); 1005 return ISD::SETNE; 1006 } 1007 } 1008 1009 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1010 /// This function emits a branch and is used at the leaves of an OR or an 1011 /// AND operator tree. 1012 /// 1013 void 1014 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond, 1015 MachineBasicBlock *TBB, 1016 MachineBasicBlock *FBB, 1017 MachineBasicBlock *CurBB) { 1018 const BasicBlock *BB = CurBB->getBasicBlock(); 1019 1020 // If the leaf of the tree is a comparison, merge the condition into 1021 // the caseblock. 1022 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1023 // The operands of the cmp have to be in this block. We don't know 1024 // how to export them from some other block. If this is the first block 1025 // of the sequence, no exporting is needed. 1026 if (CurBB == CurMBB || 1027 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1028 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1029 ISD::CondCode Condition; 1030 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1031 Condition = getICmpCondCode(IC->getPredicate()); 1032 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1033 Condition = getFCmpCondCode(FC->getPredicate()); 1034 } else { 1035 Condition = ISD::SETEQ; // silence warning. 1036 llvm_unreachable("Unknown compare instruction"); 1037 } 1038 1039 CaseBlock CB(Condition, BOp->getOperand(0), 1040 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1041 SwitchCases.push_back(CB); 1042 return; 1043 } 1044 } 1045 1046 // Create a CaseBlock record representing this branch. 1047 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1048 NULL, TBB, FBB, CurBB); 1049 SwitchCases.push_back(CB); 1050 } 1051 1052 /// FindMergedConditions - If Cond is an expression like 1053 void SelectionDAGBuilder::FindMergedConditions(Value *Cond, 1054 MachineBasicBlock *TBB, 1055 MachineBasicBlock *FBB, 1056 MachineBasicBlock *CurBB, 1057 unsigned Opc) { 1058 // If this node is not part of the or/and tree, emit it as a branch. 1059 Instruction *BOp = dyn_cast<Instruction>(Cond); 1060 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1061 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1062 BOp->getParent() != CurBB->getBasicBlock() || 1063 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1064 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1065 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB); 1066 return; 1067 } 1068 1069 // Create TmpBB after CurBB. 1070 MachineFunction::iterator BBI = CurBB; 1071 MachineFunction &MF = DAG.getMachineFunction(); 1072 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1073 CurBB->getParent()->insert(++BBI, TmpBB); 1074 1075 if (Opc == Instruction::Or) { 1076 // Codegen X | Y as: 1077 // jmp_if_X TBB 1078 // jmp TmpBB 1079 // TmpBB: 1080 // jmp_if_Y TBB 1081 // jmp FBB 1082 // 1083 1084 // Emit the LHS condition. 1085 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc); 1086 1087 // Emit the RHS condition into TmpBB. 1088 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1089 } else { 1090 assert(Opc == Instruction::And && "Unknown merge op!"); 1091 // Codegen X & Y as: 1092 // jmp_if_X TmpBB 1093 // jmp FBB 1094 // TmpBB: 1095 // jmp_if_Y TBB 1096 // jmp FBB 1097 // 1098 // This requires creation of TmpBB after CurBB. 1099 1100 // Emit the LHS condition. 1101 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc); 1102 1103 // Emit the RHS condition into TmpBB. 1104 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc); 1105 } 1106 } 1107 1108 /// If the set of cases should be emitted as a series of branches, return true. 1109 /// If we should emit this as a bunch of and/or'd together conditions, return 1110 /// false. 1111 bool 1112 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1113 if (Cases.size() != 2) return true; 1114 1115 // If this is two comparisons of the same values or'd or and'd together, they 1116 // will get folded into a single comparison, so don't emit two blocks. 1117 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1118 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1119 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1120 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1121 return false; 1122 } 1123 1124 return true; 1125 } 1126 1127 void SelectionDAGBuilder::visitBr(BranchInst &I) { 1128 // Update machine-CFG edges. 1129 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1130 1131 // Figure out which block is immediately after the current one. 1132 MachineBasicBlock *NextBlock = 0; 1133 MachineFunction::iterator BBI = CurMBB; 1134 if (++BBI != FuncInfo.MF->end()) 1135 NextBlock = BBI; 1136 1137 if (I.isUnconditional()) { 1138 // Update machine-CFG edges. 1139 CurMBB->addSuccessor(Succ0MBB); 1140 1141 // If this is not a fall-through branch, emit the branch. 1142 if (Succ0MBB != NextBlock) { 1143 SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(), 1144 MVT::Other, getControlRoot(), 1145 DAG.getBasicBlock(Succ0MBB)); 1146 DAG.setRoot(V); 1147 1148 if (DisableScheduling) 1149 DAG.AssignOrdering(V.getNode(), SDNodeOrder); 1150 } 1151 1152 return; 1153 } 1154 1155 // If this condition is one of the special cases we handle, do special stuff 1156 // now. 1157 Value *CondVal = I.getCondition(); 1158 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1159 1160 // If this is a series of conditions that are or'd or and'd together, emit 1161 // this as a sequence of branches instead of setcc's with and/or operations. 1162 // For example, instead of something like: 1163 // cmp A, B 1164 // C = seteq 1165 // cmp D, E 1166 // F = setle 1167 // or C, F 1168 // jnz foo 1169 // Emit: 1170 // cmp A, B 1171 // je foo 1172 // cmp D, E 1173 // jle foo 1174 // 1175 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1176 if (BOp->hasOneUse() && 1177 (BOp->getOpcode() == Instruction::And || 1178 BOp->getOpcode() == Instruction::Or)) { 1179 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode()); 1180 // If the compares in later blocks need to use values not currently 1181 // exported from this block, export them now. This block should always 1182 // be the first entry. 1183 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!"); 1184 1185 // Allow some cases to be rejected. 1186 if (ShouldEmitAsBranches(SwitchCases)) { 1187 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1188 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1189 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1190 } 1191 1192 // Emit the branch for this block. 1193 visitSwitchCase(SwitchCases[0]); 1194 SwitchCases.erase(SwitchCases.begin()); 1195 return; 1196 } 1197 1198 // Okay, we decided not to do this, remove any inserted MBB's and clear 1199 // SwitchCases. 1200 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1201 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1202 1203 SwitchCases.clear(); 1204 } 1205 } 1206 1207 // Create a CaseBlock record representing this branch. 1208 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1209 NULL, Succ0MBB, Succ1MBB, CurMBB); 1210 1211 // Use visitSwitchCase to actually insert the fast branch sequence for this 1212 // cond branch. 1213 visitSwitchCase(CB); 1214 } 1215 1216 /// visitSwitchCase - Emits the necessary code to represent a single node in 1217 /// the binary search tree resulting from lowering a switch instruction. 1218 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) { 1219 SDValue Cond; 1220 SDValue CondLHS = getValue(CB.CmpLHS); 1221 DebugLoc dl = getCurDebugLoc(); 1222 1223 // Build the setcc now. 1224 if (CB.CmpMHS == NULL) { 1225 // Fold "(X == true)" to X and "(X == false)" to !X to 1226 // handle common cases produced by branch lowering. 1227 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1228 CB.CC == ISD::SETEQ) 1229 Cond = CondLHS; 1230 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1231 CB.CC == ISD::SETEQ) { 1232 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1233 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1234 } else 1235 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1236 } else { 1237 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1238 1239 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1240 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1241 1242 SDValue CmpOp = getValue(CB.CmpMHS); 1243 EVT VT = CmpOp.getValueType(); 1244 1245 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1246 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1247 ISD::SETLE); 1248 } else { 1249 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1250 VT, CmpOp, DAG.getConstant(Low, VT)); 1251 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1252 DAG.getConstant(High-Low, VT), ISD::SETULE); 1253 } 1254 } 1255 1256 if (DisableScheduling) 1257 DAG.AssignOrdering(Cond.getNode(), SDNodeOrder); 1258 1259 // Update successor info 1260 CurMBB->addSuccessor(CB.TrueBB); 1261 CurMBB->addSuccessor(CB.FalseBB); 1262 1263 // Set NextBlock to be the MBB immediately after the current one, if any. 1264 // This is used to avoid emitting unnecessary branches to the next block. 1265 MachineBasicBlock *NextBlock = 0; 1266 MachineFunction::iterator BBI = CurMBB; 1267 if (++BBI != FuncInfo.MF->end()) 1268 NextBlock = BBI; 1269 1270 // If the lhs block is the next block, invert the condition so that we can 1271 // fall through to the lhs instead of the rhs block. 1272 if (CB.TrueBB == NextBlock) { 1273 std::swap(CB.TrueBB, CB.FalseBB); 1274 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1275 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1276 1277 if (DisableScheduling) 1278 DAG.AssignOrdering(Cond.getNode(), SDNodeOrder); 1279 } 1280 1281 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1282 MVT::Other, getControlRoot(), Cond, 1283 DAG.getBasicBlock(CB.TrueBB)); 1284 1285 if (DisableScheduling) 1286 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1287 1288 // If the branch was constant folded, fix up the CFG. 1289 if (BrCond.getOpcode() == ISD::BR) { 1290 CurMBB->removeSuccessor(CB.FalseBB); 1291 } else { 1292 // Otherwise, go ahead and insert the false branch. 1293 if (BrCond == getControlRoot()) 1294 CurMBB->removeSuccessor(CB.TrueBB); 1295 1296 if (CB.FalseBB != NextBlock) { 1297 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1298 DAG.getBasicBlock(CB.FalseBB)); 1299 1300 if (DisableScheduling) 1301 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1302 } 1303 } 1304 1305 DAG.setRoot(BrCond); 1306 } 1307 1308 /// visitJumpTable - Emit JumpTable node in the current MBB 1309 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1310 // Emit the code for the jump table 1311 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1312 EVT PTy = TLI.getPointerTy(); 1313 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1314 JT.Reg, PTy); 1315 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1316 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1317 MVT::Other, Index.getValue(1), 1318 Table, Index); 1319 DAG.setRoot(BrJumpTable); 1320 1321 if (DisableScheduling) { 1322 DAG.AssignOrdering(Index.getNode(), SDNodeOrder); 1323 DAG.AssignOrdering(Table.getNode(), SDNodeOrder); 1324 DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder); 1325 } 1326 } 1327 1328 /// visitJumpTableHeader - This function emits necessary code to produce index 1329 /// in the JumpTable from switch case. 1330 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1331 JumpTableHeader &JTH) { 1332 // Subtract the lowest switch case value from the value being switched on and 1333 // conditional branch to default mbb if the result is greater than the 1334 // difference between smallest and largest cases. 1335 SDValue SwitchOp = getValue(JTH.SValue); 1336 EVT VT = SwitchOp.getValueType(); 1337 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1338 DAG.getConstant(JTH.First, VT)); 1339 1340 // The SDNode we just created, which holds the value being switched on minus 1341 // the the smallest case value, needs to be copied to a virtual register so it 1342 // can be used as an index into the jump table in a subsequent basic block. 1343 // This value may be smaller or larger than the target's pointer type, and 1344 // therefore require extension or truncating. 1345 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1346 1347 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1348 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1349 JumpTableReg, SwitchOp); 1350 JT.Reg = JumpTableReg; 1351 1352 // Emit the range check for the jump table, and branch to the default block 1353 // for the switch statement if the value being switched on exceeds the largest 1354 // case in the switch. 1355 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1356 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1357 DAG.getConstant(JTH.Last-JTH.First,VT), 1358 ISD::SETUGT); 1359 1360 if (DisableScheduling) { 1361 DAG.AssignOrdering(Sub.getNode(), SDNodeOrder); 1362 DAG.AssignOrdering(SwitchOp.getNode(), SDNodeOrder); 1363 DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder); 1364 DAG.AssignOrdering(CMP.getNode(), SDNodeOrder); 1365 } 1366 1367 // Set NextBlock to be the MBB immediately after the current one, if any. 1368 // This is used to avoid emitting unnecessary branches to the next block. 1369 MachineBasicBlock *NextBlock = 0; 1370 MachineFunction::iterator BBI = CurMBB; 1371 1372 if (++BBI != FuncInfo.MF->end()) 1373 NextBlock = BBI; 1374 1375 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1376 MVT::Other, CopyTo, CMP, 1377 DAG.getBasicBlock(JT.Default)); 1378 1379 if (DisableScheduling) 1380 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1381 1382 if (JT.MBB != NextBlock) { 1383 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1384 DAG.getBasicBlock(JT.MBB)); 1385 1386 if (DisableScheduling) 1387 DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder); 1388 } 1389 1390 DAG.setRoot(BrCond); 1391 } 1392 1393 /// visitBitTestHeader - This function emits necessary code to produce value 1394 /// suitable for "bit tests" 1395 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) { 1396 // Subtract the minimum value 1397 SDValue SwitchOp = getValue(B.SValue); 1398 EVT VT = SwitchOp.getValueType(); 1399 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1400 DAG.getConstant(B.First, VT)); 1401 1402 // Check range 1403 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1404 TLI.getSetCCResultType(Sub.getValueType()), 1405 Sub, DAG.getConstant(B.Range, VT), 1406 ISD::SETUGT); 1407 1408 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1409 TLI.getPointerTy()); 1410 1411 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1412 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1413 B.Reg, ShiftOp); 1414 1415 if (DisableScheduling) { 1416 DAG.AssignOrdering(Sub.getNode(), SDNodeOrder); 1417 DAG.AssignOrdering(RangeCmp.getNode(), SDNodeOrder); 1418 DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder); 1419 DAG.AssignOrdering(CopyTo.getNode(), SDNodeOrder); 1420 } 1421 1422 // Set NextBlock to be the MBB immediately after the current one, if any. 1423 // This is used to avoid emitting unnecessary branches to the next block. 1424 MachineBasicBlock *NextBlock = 0; 1425 MachineFunction::iterator BBI = CurMBB; 1426 if (++BBI != FuncInfo.MF->end()) 1427 NextBlock = BBI; 1428 1429 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1430 1431 CurMBB->addSuccessor(B.Default); 1432 CurMBB->addSuccessor(MBB); 1433 1434 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1435 MVT::Other, CopyTo, RangeCmp, 1436 DAG.getBasicBlock(B.Default)); 1437 1438 if (DisableScheduling) 1439 DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder); 1440 1441 if (MBB != NextBlock) { 1442 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1443 DAG.getBasicBlock(MBB)); 1444 1445 if (DisableScheduling) 1446 DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder); 1447 } 1448 1449 DAG.setRoot(BrRange); 1450 } 1451 1452 /// visitBitTestCase - this function produces one "bit test" 1453 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1454 unsigned Reg, 1455 BitTestCase &B) { 1456 // Make desired shift 1457 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1458 TLI.getPointerTy()); 1459 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1460 TLI.getPointerTy(), 1461 DAG.getConstant(1, TLI.getPointerTy()), 1462 ShiftOp); 1463 1464 // Emit bit tests and jumps 1465 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1466 TLI.getPointerTy(), SwitchVal, 1467 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1468 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1469 TLI.getSetCCResultType(AndOp.getValueType()), 1470 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1471 ISD::SETNE); 1472 1473 if (DisableScheduling) { 1474 DAG.AssignOrdering(ShiftOp.getNode(), SDNodeOrder); 1475 DAG.AssignOrdering(SwitchVal.getNode(), SDNodeOrder); 1476 DAG.AssignOrdering(AndOp.getNode(), SDNodeOrder); 1477 DAG.AssignOrdering(AndCmp.getNode(), SDNodeOrder); 1478 } 1479 1480 CurMBB->addSuccessor(B.TargetBB); 1481 CurMBB->addSuccessor(NextMBB); 1482 1483 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1484 MVT::Other, getControlRoot(), 1485 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1486 1487 if (DisableScheduling) 1488 DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder); 1489 1490 // Set NextBlock to be the MBB immediately after the current one, if any. 1491 // This is used to avoid emitting unnecessary branches to the next block. 1492 MachineBasicBlock *NextBlock = 0; 1493 MachineFunction::iterator BBI = CurMBB; 1494 if (++BBI != FuncInfo.MF->end()) 1495 NextBlock = BBI; 1496 1497 if (NextMBB != NextBlock) { 1498 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1499 DAG.getBasicBlock(NextMBB)); 1500 1501 if (DisableScheduling) 1502 DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder); 1503 } 1504 1505 DAG.setRoot(BrAnd); 1506 } 1507 1508 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) { 1509 // Retrieve successors. 1510 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1511 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1512 1513 const Value *Callee(I.getCalledValue()); 1514 if (isa<InlineAsm>(Callee)) 1515 visitInlineAsm(&I); 1516 else 1517 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1518 1519 // If the value of the invoke is used outside of its defining block, make it 1520 // available as a virtual register. 1521 CopyToExportRegsIfNeeded(&I); 1522 1523 // Update successor info 1524 CurMBB->addSuccessor(Return); 1525 CurMBB->addSuccessor(LandingPad); 1526 1527 // Drop into normal successor. 1528 SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(), 1529 MVT::Other, getControlRoot(), 1530 DAG.getBasicBlock(Return)); 1531 DAG.setRoot(Branch); 1532 1533 if (DisableScheduling) 1534 DAG.AssignOrdering(Branch.getNode(), SDNodeOrder); 1535 } 1536 1537 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) { 1538 } 1539 1540 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1541 /// small case ranges). 1542 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1543 CaseRecVector& WorkList, 1544 Value* SV, 1545 MachineBasicBlock* Default) { 1546 Case& BackCase = *(CR.Range.second-1); 1547 1548 // Size is the number of Cases represented by this range. 1549 size_t Size = CR.Range.second - CR.Range.first; 1550 if (Size > 3) 1551 return false; 1552 1553 // Get the MachineFunction which holds the current MBB. This is used when 1554 // inserting any additional MBBs necessary to represent the switch. 1555 MachineFunction *CurMF = FuncInfo.MF; 1556 1557 // Figure out which block is immediately after the current one. 1558 MachineBasicBlock *NextBlock = 0; 1559 MachineFunction::iterator BBI = CR.CaseBB; 1560 1561 if (++BBI != FuncInfo.MF->end()) 1562 NextBlock = BBI; 1563 1564 // TODO: If any two of the cases has the same destination, and if one value 1565 // is the same as the other, but has one bit unset that the other has set, 1566 // use bit manipulation to do two compares at once. For example: 1567 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1568 1569 // Rearrange the case blocks so that the last one falls through if possible. 1570 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1571 // The last case block won't fall through into 'NextBlock' if we emit the 1572 // branches in this order. See if rearranging a case value would help. 1573 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1574 if (I->BB == NextBlock) { 1575 std::swap(*I, BackCase); 1576 break; 1577 } 1578 } 1579 } 1580 1581 // Create a CaseBlock record representing a conditional branch to 1582 // the Case's target mbb if the value being switched on SV is equal 1583 // to C. 1584 MachineBasicBlock *CurBlock = CR.CaseBB; 1585 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1586 MachineBasicBlock *FallThrough; 1587 if (I != E-1) { 1588 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1589 CurMF->insert(BBI, FallThrough); 1590 1591 // Put SV in a virtual register to make it available from the new blocks. 1592 ExportFromCurrentBlock(SV); 1593 } else { 1594 // If the last case doesn't match, go to the default block. 1595 FallThrough = Default; 1596 } 1597 1598 Value *RHS, *LHS, *MHS; 1599 ISD::CondCode CC; 1600 if (I->High == I->Low) { 1601 // This is just small small case range :) containing exactly 1 case 1602 CC = ISD::SETEQ; 1603 LHS = SV; RHS = I->High; MHS = NULL; 1604 } else { 1605 CC = ISD::SETLE; 1606 LHS = I->Low; MHS = SV; RHS = I->High; 1607 } 1608 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1609 1610 // If emitting the first comparison, just call visitSwitchCase to emit the 1611 // code into the current block. Otherwise, push the CaseBlock onto the 1612 // vector to be later processed by SDISel, and insert the node's MBB 1613 // before the next MBB. 1614 if (CurBlock == CurMBB) 1615 visitSwitchCase(CB); 1616 else 1617 SwitchCases.push_back(CB); 1618 1619 CurBlock = FallThrough; 1620 } 1621 1622 return true; 1623 } 1624 1625 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1626 return !DisableJumpTables && 1627 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1628 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1629 } 1630 1631 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1632 APInt LastExt(Last), FirstExt(First); 1633 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1634 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1635 return (LastExt - FirstExt + 1ULL); 1636 } 1637 1638 /// handleJTSwitchCase - Emit jumptable for current switch case range 1639 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1640 CaseRecVector& WorkList, 1641 Value* SV, 1642 MachineBasicBlock* Default) { 1643 Case& FrontCase = *CR.Range.first; 1644 Case& BackCase = *(CR.Range.second-1); 1645 1646 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1647 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1648 1649 APInt TSize(First.getBitWidth(), 0); 1650 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1651 I!=E; ++I) 1652 TSize += I->size(); 1653 1654 if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4))) 1655 return false; 1656 1657 APInt Range = ComputeRange(First, Last); 1658 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1659 if (Density < 0.4) 1660 return false; 1661 1662 DEBUG(errs() << "Lowering jump table\n" 1663 << "First entry: " << First << ". Last entry: " << Last << '\n' 1664 << "Range: " << Range 1665 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1666 1667 // Get the MachineFunction which holds the current MBB. This is used when 1668 // inserting any additional MBBs necessary to represent the switch. 1669 MachineFunction *CurMF = FuncInfo.MF; 1670 1671 // Figure out which block is immediately after the current one. 1672 MachineFunction::iterator BBI = CR.CaseBB; 1673 ++BBI; 1674 1675 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1676 1677 // Create a new basic block to hold the code for loading the address 1678 // of the jump table, and jumping to it. Update successor information; 1679 // we will either branch to the default case for the switch, or the jump 1680 // table. 1681 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1682 CurMF->insert(BBI, JumpTableBB); 1683 CR.CaseBB->addSuccessor(Default); 1684 CR.CaseBB->addSuccessor(JumpTableBB); 1685 1686 // Build a vector of destination BBs, corresponding to each target 1687 // of the jump table. If the value of the jump table slot corresponds to 1688 // a case statement, push the case's BB onto the vector, otherwise, push 1689 // the default BB. 1690 std::vector<MachineBasicBlock*> DestBBs; 1691 APInt TEI = First; 1692 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1693 const APInt& Low = cast<ConstantInt>(I->Low)->getValue(); 1694 const APInt& High = cast<ConstantInt>(I->High)->getValue(); 1695 1696 if (Low.sle(TEI) && TEI.sle(High)) { 1697 DestBBs.push_back(I->BB); 1698 if (TEI==High) 1699 ++I; 1700 } else { 1701 DestBBs.push_back(Default); 1702 } 1703 } 1704 1705 // Update successor info. Add one edge to each unique successor. 1706 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1707 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1708 E = DestBBs.end(); I != E; ++I) { 1709 if (!SuccsHandled[(*I)->getNumber()]) { 1710 SuccsHandled[(*I)->getNumber()] = true; 1711 JumpTableBB->addSuccessor(*I); 1712 } 1713 } 1714 1715 // Create a jump table index for this jump table, or return an existing 1716 // one. 1717 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs); 1718 1719 // Set the jump table information so that we can codegen it as a second 1720 // MachineBasicBlock 1721 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1722 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB)); 1723 if (CR.CaseBB == CurMBB) 1724 visitJumpTableHeader(JT, JTH); 1725 1726 JTCases.push_back(JumpTableBlock(JTH, JT)); 1727 1728 return true; 1729 } 1730 1731 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1732 /// 2 subtrees. 1733 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1734 CaseRecVector& WorkList, 1735 Value* SV, 1736 MachineBasicBlock* Default) { 1737 // Get the MachineFunction which holds the current MBB. This is used when 1738 // inserting any additional MBBs necessary to represent the switch. 1739 MachineFunction *CurMF = FuncInfo.MF; 1740 1741 // Figure out which block is immediately after the current one. 1742 MachineFunction::iterator BBI = CR.CaseBB; 1743 ++BBI; 1744 1745 Case& FrontCase = *CR.Range.first; 1746 Case& BackCase = *(CR.Range.second-1); 1747 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1748 1749 // Size is the number of Cases represented by this range. 1750 unsigned Size = CR.Range.second - CR.Range.first; 1751 1752 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1753 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1754 double FMetric = 0; 1755 CaseItr Pivot = CR.Range.first + Size/2; 1756 1757 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1758 // (heuristically) allow us to emit JumpTable's later. 1759 APInt TSize(First.getBitWidth(), 0); 1760 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1761 I!=E; ++I) 1762 TSize += I->size(); 1763 1764 APInt LSize = FrontCase.size(); 1765 APInt RSize = TSize-LSize; 1766 DEBUG(errs() << "Selecting best pivot: \n" 1767 << "First: " << First << ", Last: " << Last <<'\n' 1768 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1769 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1770 J!=E; ++I, ++J) { 1771 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1772 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1773 APInt Range = ComputeRange(LEnd, RBegin); 1774 assert((Range - 2ULL).isNonNegative() && 1775 "Invalid case distance"); 1776 double LDensity = (double)LSize.roundToDouble() / 1777 (LEnd - First + 1ULL).roundToDouble(); 1778 double RDensity = (double)RSize.roundToDouble() / 1779 (Last - RBegin + 1ULL).roundToDouble(); 1780 double Metric = Range.logBase2()*(LDensity+RDensity); 1781 // Should always split in some non-trivial place 1782 DEBUG(errs() <<"=>Step\n" 1783 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1784 << "LDensity: " << LDensity 1785 << ", RDensity: " << RDensity << '\n' 1786 << "Metric: " << Metric << '\n'); 1787 if (FMetric < Metric) { 1788 Pivot = J; 1789 FMetric = Metric; 1790 DEBUG(errs() << "Current metric set to: " << FMetric << '\n'); 1791 } 1792 1793 LSize += J->size(); 1794 RSize -= J->size(); 1795 } 1796 if (areJTsAllowed(TLI)) { 1797 // If our case is dense we *really* should handle it earlier! 1798 assert((FMetric > 0) && "Should handle dense range earlier!"); 1799 } else { 1800 Pivot = CR.Range.first + Size/2; 1801 } 1802 1803 CaseRange LHSR(CR.Range.first, Pivot); 1804 CaseRange RHSR(Pivot, CR.Range.second); 1805 Constant *C = Pivot->Low; 1806 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1807 1808 // We know that we branch to the LHS if the Value being switched on is 1809 // less than the Pivot value, C. We use this to optimize our binary 1810 // tree a bit, by recognizing that if SV is greater than or equal to the 1811 // LHS's Case Value, and that Case Value is exactly one less than the 1812 // Pivot's Value, then we can branch directly to the LHS's Target, 1813 // rather than creating a leaf node for it. 1814 if ((LHSR.second - LHSR.first) == 1 && 1815 LHSR.first->High == CR.GE && 1816 cast<ConstantInt>(C)->getValue() == 1817 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1818 TrueBB = LHSR.first->BB; 1819 } else { 1820 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1821 CurMF->insert(BBI, TrueBB); 1822 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1823 1824 // Put SV in a virtual register to make it available from the new blocks. 1825 ExportFromCurrentBlock(SV); 1826 } 1827 1828 // Similar to the optimization above, if the Value being switched on is 1829 // known to be less than the Constant CR.LT, and the current Case Value 1830 // is CR.LT - 1, then we can branch directly to the target block for 1831 // the current Case Value, rather than emitting a RHS leaf node for it. 1832 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1833 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1834 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1835 FalseBB = RHSR.first->BB; 1836 } else { 1837 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1838 CurMF->insert(BBI, FalseBB); 1839 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1840 1841 // Put SV in a virtual register to make it available from the new blocks. 1842 ExportFromCurrentBlock(SV); 1843 } 1844 1845 // Create a CaseBlock record representing a conditional branch to 1846 // the LHS node if the value being switched on SV is less than C. 1847 // Otherwise, branch to LHS. 1848 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1849 1850 if (CR.CaseBB == CurMBB) 1851 visitSwitchCase(CB); 1852 else 1853 SwitchCases.push_back(CB); 1854 1855 return true; 1856 } 1857 1858 /// handleBitTestsSwitchCase - if current case range has few destination and 1859 /// range span less, than machine word bitwidth, encode case range into series 1860 /// of masks and emit bit tests with these masks. 1861 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1862 CaseRecVector& WorkList, 1863 Value* SV, 1864 MachineBasicBlock* Default){ 1865 EVT PTy = TLI.getPointerTy(); 1866 unsigned IntPtrBits = PTy.getSizeInBits(); 1867 1868 Case& FrontCase = *CR.Range.first; 1869 Case& BackCase = *(CR.Range.second-1); 1870 1871 // Get the MachineFunction which holds the current MBB. This is used when 1872 // inserting any additional MBBs necessary to represent the switch. 1873 MachineFunction *CurMF = FuncInfo.MF; 1874 1875 // If target does not have legal shift left, do not emit bit tests at all. 1876 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1877 return false; 1878 1879 size_t numCmps = 0; 1880 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1881 I!=E; ++I) { 1882 // Single case counts one, case range - two. 1883 numCmps += (I->Low == I->High ? 1 : 2); 1884 } 1885 1886 // Count unique destinations 1887 SmallSet<MachineBasicBlock*, 4> Dests; 1888 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1889 Dests.insert(I->BB); 1890 if (Dests.size() > 3) 1891 // Don't bother the code below, if there are too much unique destinations 1892 return false; 1893 } 1894 DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n' 1895 << "Total number of comparisons: " << numCmps << '\n'); 1896 1897 // Compute span of values. 1898 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1899 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1900 APInt cmpRange = maxValue - minValue; 1901 1902 DEBUG(errs() << "Compare range: " << cmpRange << '\n' 1903 << "Low bound: " << minValue << '\n' 1904 << "High bound: " << maxValue << '\n'); 1905 1906 if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) || 1907 (!(Dests.size() == 1 && numCmps >= 3) && 1908 !(Dests.size() == 2 && numCmps >= 5) && 1909 !(Dests.size() >= 3 && numCmps >= 6))) 1910 return false; 1911 1912 DEBUG(errs() << "Emitting bit tests\n"); 1913 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1914 1915 // Optimize the case where all the case values fit in a 1916 // word without having to subtract minValue. In this case, 1917 // we can optimize away the subtraction. 1918 if (minValue.isNonNegative() && 1919 maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) { 1920 cmpRange = maxValue; 1921 } else { 1922 lowBound = minValue; 1923 } 1924 1925 CaseBitsVector CasesBits; 1926 unsigned i, count = 0; 1927 1928 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1929 MachineBasicBlock* Dest = I->BB; 1930 for (i = 0; i < count; ++i) 1931 if (Dest == CasesBits[i].BB) 1932 break; 1933 1934 if (i == count) { 1935 assert((count < 3) && "Too much destinations to test!"); 1936 CasesBits.push_back(CaseBits(0, Dest, 0)); 1937 count++; 1938 } 1939 1940 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1941 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1942 1943 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1944 uint64_t hi = (highValue - lowBound).getZExtValue(); 1945 1946 for (uint64_t j = lo; j <= hi; j++) { 1947 CasesBits[i].Mask |= 1ULL << j; 1948 CasesBits[i].Bits++; 1949 } 1950 1951 } 1952 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1953 1954 BitTestInfo BTC; 1955 1956 // Figure out which block is immediately after the current one. 1957 MachineFunction::iterator BBI = CR.CaseBB; 1958 ++BBI; 1959 1960 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1961 1962 DEBUG(errs() << "Cases:\n"); 1963 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1964 DEBUG(errs() << "Mask: " << CasesBits[i].Mask 1965 << ", Bits: " << CasesBits[i].Bits 1966 << ", BB: " << CasesBits[i].BB << '\n'); 1967 1968 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1969 CurMF->insert(BBI, CaseBB); 1970 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1971 CaseBB, 1972 CasesBits[i].BB)); 1973 1974 // Put SV in a virtual register to make it available from the new blocks. 1975 ExportFromCurrentBlock(SV); 1976 } 1977 1978 BitTestBlock BTB(lowBound, cmpRange, SV, 1979 -1U, (CR.CaseBB == CurMBB), 1980 CR.CaseBB, Default, BTC); 1981 1982 if (CR.CaseBB == CurMBB) 1983 visitBitTestHeader(BTB); 1984 1985 BitTestCases.push_back(BTB); 1986 1987 return true; 1988 } 1989 1990 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1991 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1992 const SwitchInst& SI) { 1993 size_t numCmps = 0; 1994 1995 // Start with "simple" cases 1996 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1997 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1998 Cases.push_back(Case(SI.getSuccessorValue(i), 1999 SI.getSuccessorValue(i), 2000 SMBB)); 2001 } 2002 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2003 2004 // Merge case into clusters 2005 if (Cases.size() >= 2) 2006 // Must recompute end() each iteration because it may be 2007 // invalidated by erase if we hold on to it 2008 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2009 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2010 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2011 MachineBasicBlock* nextBB = J->BB; 2012 MachineBasicBlock* currentBB = I->BB; 2013 2014 // If the two neighboring cases go to the same destination, merge them 2015 // into a single case. 2016 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2017 I->High = J->High; 2018 J = Cases.erase(J); 2019 } else { 2020 I = J++; 2021 } 2022 } 2023 2024 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2025 if (I->Low != I->High) 2026 // A range counts double, since it requires two compares. 2027 ++numCmps; 2028 } 2029 2030 return numCmps; 2031 } 2032 2033 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) { 2034 // Figure out which block is immediately after the current one. 2035 MachineBasicBlock *NextBlock = 0; 2036 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2037 2038 // If there is only the default destination, branch to it if it is not the 2039 // next basic block. Otherwise, just fall through. 2040 if (SI.getNumOperands() == 2) { 2041 // Update machine-CFG edges. 2042 2043 // If this is not a fall-through branch, emit the branch. 2044 CurMBB->addSuccessor(Default); 2045 if (Default != NextBlock) { 2046 SDValue Res = DAG.getNode(ISD::BR, getCurDebugLoc(), 2047 MVT::Other, getControlRoot(), 2048 DAG.getBasicBlock(Default)); 2049 DAG.setRoot(Res); 2050 2051 if (DisableScheduling) 2052 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2053 } 2054 2055 return; 2056 } 2057 2058 // If there are any non-default case statements, create a vector of Cases 2059 // representing each one, and sort the vector so that we can efficiently 2060 // create a binary search tree from them. 2061 CaseVector Cases; 2062 size_t numCmps = Clusterify(Cases, SI); 2063 DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size() 2064 << ". Total compares: " << numCmps << '\n'); 2065 numCmps = 0; 2066 2067 // Get the Value to be switched on and default basic blocks, which will be 2068 // inserted into CaseBlock records, representing basic blocks in the binary 2069 // search tree. 2070 Value *SV = SI.getOperand(0); 2071 2072 // Push the initial CaseRec onto the worklist 2073 CaseRecVector WorkList; 2074 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end()))); 2075 2076 while (!WorkList.empty()) { 2077 // Grab a record representing a case range to process off the worklist 2078 CaseRec CR = WorkList.back(); 2079 WorkList.pop_back(); 2080 2081 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default)) 2082 continue; 2083 2084 // If the range has few cases (two or less) emit a series of specific 2085 // tests. 2086 if (handleSmallSwitchRange(CR, WorkList, SV, Default)) 2087 continue; 2088 2089 // If the switch has more than 5 blocks, and at least 40% dense, and the 2090 // target supports indirect branches, then emit a jump table rather than 2091 // lowering the switch to a binary tree of conditional branches. 2092 if (handleJTSwitchCase(CR, WorkList, SV, Default)) 2093 continue; 2094 2095 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2096 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2097 handleBTSplitSwitchCase(CR, WorkList, SV, Default); 2098 } 2099 } 2100 2101 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) { 2102 // Update machine-CFG edges. 2103 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2104 CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]); 2105 2106 SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2107 MVT::Other, getControlRoot(), 2108 getValue(I.getAddress())); 2109 DAG.setRoot(Res); 2110 2111 if (DisableScheduling) 2112 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2113 } 2114 2115 void SelectionDAGBuilder::visitFSub(User &I) { 2116 // -0.0 - X --> fneg 2117 const Type *Ty = I.getType(); 2118 if (isa<VectorType>(Ty)) { 2119 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2120 const VectorType *DestTy = cast<VectorType>(I.getType()); 2121 const Type *ElTy = DestTy->getElementType(); 2122 unsigned VL = DestTy->getNumElements(); 2123 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2124 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2125 if (CV == CNZ) { 2126 SDValue Op2 = getValue(I.getOperand(1)); 2127 SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2128 Op2.getValueType(), Op2); 2129 setValue(&I, Res); 2130 2131 if (DisableScheduling) 2132 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2133 2134 return; 2135 } 2136 } 2137 } 2138 2139 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2140 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2141 SDValue Op2 = getValue(I.getOperand(1)); 2142 SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2143 Op2.getValueType(), Op2); 2144 setValue(&I, Res); 2145 2146 if (DisableScheduling) 2147 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2148 2149 return; 2150 } 2151 2152 visitBinary(I, ISD::FSUB); 2153 } 2154 2155 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) { 2156 SDValue Op1 = getValue(I.getOperand(0)); 2157 SDValue Op2 = getValue(I.getOperand(1)); 2158 SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(), 2159 Op1.getValueType(), Op1, Op2); 2160 setValue(&I, Res); 2161 2162 if (DisableScheduling) 2163 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2164 } 2165 2166 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) { 2167 SDValue Op1 = getValue(I.getOperand(0)); 2168 SDValue Op2 = getValue(I.getOperand(1)); 2169 if (!isa<VectorType>(I.getType()) && 2170 Op2.getValueType() != TLI.getShiftAmountTy()) { 2171 // If the operand is smaller than the shift count type, promote it. 2172 EVT PTy = TLI.getPointerTy(); 2173 EVT STy = TLI.getShiftAmountTy(); 2174 if (STy.bitsGT(Op2.getValueType())) 2175 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2176 TLI.getShiftAmountTy(), Op2); 2177 // If the operand is larger than the shift count type but the shift 2178 // count type has enough bits to represent any shift value, truncate 2179 // it now. This is a common case and it exposes the truncate to 2180 // optimization early. 2181 else if (STy.getSizeInBits() >= 2182 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2183 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2184 TLI.getShiftAmountTy(), Op2); 2185 // Otherwise we'll need to temporarily settle for some other 2186 // convenient type; type legalization will make adjustments as 2187 // needed. 2188 else if (PTy.bitsLT(Op2.getValueType())) 2189 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2190 TLI.getPointerTy(), Op2); 2191 else if (PTy.bitsGT(Op2.getValueType())) 2192 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2193 TLI.getPointerTy(), Op2); 2194 } 2195 2196 SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(), 2197 Op1.getValueType(), Op1, Op2); 2198 setValue(&I, Res); 2199 2200 if (DisableScheduling) { 2201 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 2202 DAG.AssignOrdering(Op2.getNode(), SDNodeOrder); 2203 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2204 } 2205 } 2206 2207 void SelectionDAGBuilder::visitICmp(User &I) { 2208 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2209 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2210 predicate = IC->getPredicate(); 2211 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2212 predicate = ICmpInst::Predicate(IC->getPredicate()); 2213 SDValue Op1 = getValue(I.getOperand(0)); 2214 SDValue Op2 = getValue(I.getOperand(1)); 2215 ISD::CondCode Opcode = getICmpCondCode(predicate); 2216 2217 EVT DestVT = TLI.getValueType(I.getType()); 2218 SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode); 2219 setValue(&I, Res); 2220 2221 if (DisableScheduling) 2222 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2223 } 2224 2225 void SelectionDAGBuilder::visitFCmp(User &I) { 2226 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2227 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2228 predicate = FC->getPredicate(); 2229 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2230 predicate = FCmpInst::Predicate(FC->getPredicate()); 2231 SDValue Op1 = getValue(I.getOperand(0)); 2232 SDValue Op2 = getValue(I.getOperand(1)); 2233 ISD::CondCode Condition = getFCmpCondCode(predicate); 2234 EVT DestVT = TLI.getValueType(I.getType()); 2235 SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition); 2236 setValue(&I, Res); 2237 2238 if (DisableScheduling) 2239 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2240 } 2241 2242 void SelectionDAGBuilder::visitSelect(User &I) { 2243 SmallVector<EVT, 4> ValueVTs; 2244 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2245 unsigned NumValues = ValueVTs.size(); 2246 if (NumValues == 0) return; 2247 2248 SmallVector<SDValue, 4> Values(NumValues); 2249 SDValue Cond = getValue(I.getOperand(0)); 2250 SDValue TrueVal = getValue(I.getOperand(1)); 2251 SDValue FalseVal = getValue(I.getOperand(2)); 2252 2253 for (unsigned i = 0; i != NumValues; ++i) { 2254 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2255 TrueVal.getNode()->getValueType(i), Cond, 2256 SDValue(TrueVal.getNode(), 2257 TrueVal.getResNo() + i), 2258 SDValue(FalseVal.getNode(), 2259 FalseVal.getResNo() + i)); 2260 2261 if (DisableScheduling) 2262 DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder); 2263 } 2264 2265 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2266 DAG.getVTList(&ValueVTs[0], NumValues), 2267 &Values[0], NumValues); 2268 setValue(&I, Res); 2269 2270 if (DisableScheduling) 2271 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2272 } 2273 2274 void SelectionDAGBuilder::visitTrunc(User &I) { 2275 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2276 SDValue N = getValue(I.getOperand(0)); 2277 EVT DestVT = TLI.getValueType(I.getType()); 2278 SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N); 2279 setValue(&I, Res); 2280 2281 if (DisableScheduling) 2282 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2283 } 2284 2285 void SelectionDAGBuilder::visitZExt(User &I) { 2286 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2287 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2288 SDValue N = getValue(I.getOperand(0)); 2289 EVT DestVT = TLI.getValueType(I.getType()); 2290 SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N); 2291 setValue(&I, Res); 2292 2293 if (DisableScheduling) 2294 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2295 } 2296 2297 void SelectionDAGBuilder::visitSExt(User &I) { 2298 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2299 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2300 SDValue N = getValue(I.getOperand(0)); 2301 EVT DestVT = TLI.getValueType(I.getType()); 2302 SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N); 2303 setValue(&I, Res); 2304 2305 if (DisableScheduling) 2306 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2307 } 2308 2309 void SelectionDAGBuilder::visitFPTrunc(User &I) { 2310 // FPTrunc is never a no-op cast, no need to check 2311 SDValue N = getValue(I.getOperand(0)); 2312 EVT DestVT = TLI.getValueType(I.getType()); 2313 SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2314 DestVT, N, DAG.getIntPtrConstant(0)); 2315 setValue(&I, Res); 2316 2317 if (DisableScheduling) 2318 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2319 } 2320 2321 void SelectionDAGBuilder::visitFPExt(User &I){ 2322 // FPTrunc is never a no-op cast, no need to check 2323 SDValue N = getValue(I.getOperand(0)); 2324 EVT DestVT = TLI.getValueType(I.getType()); 2325 SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N); 2326 setValue(&I, Res); 2327 2328 if (DisableScheduling) 2329 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2330 } 2331 2332 void SelectionDAGBuilder::visitFPToUI(User &I) { 2333 // FPToUI is never a no-op cast, no need to check 2334 SDValue N = getValue(I.getOperand(0)); 2335 EVT DestVT = TLI.getValueType(I.getType()); 2336 SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N); 2337 setValue(&I, Res); 2338 2339 if (DisableScheduling) 2340 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2341 } 2342 2343 void SelectionDAGBuilder::visitFPToSI(User &I) { 2344 // FPToSI is never a no-op cast, no need to check 2345 SDValue N = getValue(I.getOperand(0)); 2346 EVT DestVT = TLI.getValueType(I.getType()); 2347 SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N); 2348 setValue(&I, Res); 2349 2350 if (DisableScheduling) 2351 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2352 } 2353 2354 void SelectionDAGBuilder::visitUIToFP(User &I) { 2355 // UIToFP is never a no-op cast, no need to check 2356 SDValue N = getValue(I.getOperand(0)); 2357 EVT DestVT = TLI.getValueType(I.getType()); 2358 SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N); 2359 setValue(&I, Res); 2360 2361 if (DisableScheduling) 2362 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2363 } 2364 2365 void SelectionDAGBuilder::visitSIToFP(User &I){ 2366 // SIToFP is never a no-op cast, no need to check 2367 SDValue N = getValue(I.getOperand(0)); 2368 EVT DestVT = TLI.getValueType(I.getType()); 2369 SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N); 2370 setValue(&I, Res); 2371 2372 if (DisableScheduling) 2373 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2374 } 2375 2376 void SelectionDAGBuilder::visitPtrToInt(User &I) { 2377 // What to do depends on the size of the integer and the size of the pointer. 2378 // We can either truncate, zero extend, or no-op, accordingly. 2379 SDValue N = getValue(I.getOperand(0)); 2380 EVT SrcVT = N.getValueType(); 2381 EVT DestVT = TLI.getValueType(I.getType()); 2382 SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2383 setValue(&I, Res); 2384 2385 if (DisableScheduling) 2386 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2387 } 2388 2389 void SelectionDAGBuilder::visitIntToPtr(User &I) { 2390 // What to do depends on the size of the integer and the size of the pointer. 2391 // We can either truncate, zero extend, or no-op, accordingly. 2392 SDValue N = getValue(I.getOperand(0)); 2393 EVT SrcVT = N.getValueType(); 2394 EVT DestVT = TLI.getValueType(I.getType()); 2395 SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT); 2396 setValue(&I, Res); 2397 2398 if (DisableScheduling) 2399 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2400 } 2401 2402 void SelectionDAGBuilder::visitBitCast(User &I) { 2403 SDValue N = getValue(I.getOperand(0)); 2404 EVT DestVT = TLI.getValueType(I.getType()); 2405 2406 // BitCast assures us that source and destination are the same size so this is 2407 // either a BIT_CONVERT or a no-op. 2408 if (DestVT != N.getValueType()) { 2409 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2410 DestVT, N); // convert types. 2411 setValue(&I, Res); 2412 2413 if (DisableScheduling) 2414 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2415 } else { 2416 setValue(&I, N); // noop cast. 2417 } 2418 } 2419 2420 void SelectionDAGBuilder::visitInsertElement(User &I) { 2421 SDValue InVec = getValue(I.getOperand(0)); 2422 SDValue InVal = getValue(I.getOperand(1)); 2423 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2424 TLI.getPointerTy(), 2425 getValue(I.getOperand(2))); 2426 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2427 TLI.getValueType(I.getType()), 2428 InVec, InVal, InIdx); 2429 setValue(&I, Res); 2430 2431 if (DisableScheduling) { 2432 DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder); 2433 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2434 } 2435 } 2436 2437 void SelectionDAGBuilder::visitExtractElement(User &I) { 2438 SDValue InVec = getValue(I.getOperand(0)); 2439 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2440 TLI.getPointerTy(), 2441 getValue(I.getOperand(1))); 2442 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2443 TLI.getValueType(I.getType()), InVec, InIdx); 2444 setValue(&I, Res); 2445 2446 if (DisableScheduling) { 2447 DAG.AssignOrdering(InIdx.getNode(), SDNodeOrder); 2448 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2449 } 2450 } 2451 2452 2453 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2454 // from SIndx and increasing to the element length (undefs are allowed). 2455 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2456 unsigned MaskNumElts = Mask.size(); 2457 for (unsigned i = 0; i != MaskNumElts; ++i) 2458 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2459 return false; 2460 return true; 2461 } 2462 2463 void SelectionDAGBuilder::visitShuffleVector(User &I) { 2464 SmallVector<int, 8> Mask; 2465 SDValue Src1 = getValue(I.getOperand(0)); 2466 SDValue Src2 = getValue(I.getOperand(1)); 2467 2468 // Convert the ConstantVector mask operand into an array of ints, with -1 2469 // representing undef values. 2470 SmallVector<Constant*, 8> MaskElts; 2471 cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(), 2472 MaskElts); 2473 unsigned MaskNumElts = MaskElts.size(); 2474 for (unsigned i = 0; i != MaskNumElts; ++i) { 2475 if (isa<UndefValue>(MaskElts[i])) 2476 Mask.push_back(-1); 2477 else 2478 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2479 } 2480 2481 EVT VT = TLI.getValueType(I.getType()); 2482 EVT SrcVT = Src1.getValueType(); 2483 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2484 2485 if (SrcNumElts == MaskNumElts) { 2486 SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2487 &Mask[0]); 2488 setValue(&I, Res); 2489 2490 if (DisableScheduling) 2491 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2492 2493 return; 2494 } 2495 2496 // Normalize the shuffle vector since mask and vector length don't match. 2497 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2498 // Mask is longer than the source vectors and is a multiple of the source 2499 // vectors. We can use concatenate vector to make the mask and vectors 2500 // lengths match. 2501 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2502 // The shuffle is concatenating two vectors together. 2503 SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2504 VT, Src1, Src2); 2505 setValue(&I, Res); 2506 2507 if (DisableScheduling) 2508 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2509 2510 return; 2511 } 2512 2513 // Pad both vectors with undefs to make them the same length as the mask. 2514 unsigned NumConcat = MaskNumElts / SrcNumElts; 2515 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2516 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2517 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2518 2519 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2520 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2521 MOps1[0] = Src1; 2522 MOps2[0] = Src2; 2523 2524 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2525 getCurDebugLoc(), VT, 2526 &MOps1[0], NumConcat); 2527 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2528 getCurDebugLoc(), VT, 2529 &MOps2[0], NumConcat); 2530 2531 // Readjust mask for new input vector length. 2532 SmallVector<int, 8> MappedOps; 2533 for (unsigned i = 0; i != MaskNumElts; ++i) { 2534 int Idx = Mask[i]; 2535 if (Idx < (int)SrcNumElts) 2536 MappedOps.push_back(Idx); 2537 else 2538 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2539 } 2540 2541 SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2542 &MappedOps[0]); 2543 setValue(&I, Res); 2544 2545 if (DisableScheduling) { 2546 DAG.AssignOrdering(Src1.getNode(), SDNodeOrder); 2547 DAG.AssignOrdering(Src2.getNode(), SDNodeOrder); 2548 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2549 } 2550 2551 return; 2552 } 2553 2554 if (SrcNumElts > MaskNumElts) { 2555 // Analyze the access pattern of the vector to see if we can extract 2556 // two subvectors and do the shuffle. The analysis is done by calculating 2557 // the range of elements the mask access on both vectors. 2558 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2559 int MaxRange[2] = {-1, -1}; 2560 2561 for (unsigned i = 0; i != MaskNumElts; ++i) { 2562 int Idx = Mask[i]; 2563 int Input = 0; 2564 if (Idx < 0) 2565 continue; 2566 2567 if (Idx >= (int)SrcNumElts) { 2568 Input = 1; 2569 Idx -= SrcNumElts; 2570 } 2571 if (Idx > MaxRange[Input]) 2572 MaxRange[Input] = Idx; 2573 if (Idx < MinRange[Input]) 2574 MinRange[Input] = Idx; 2575 } 2576 2577 // Check if the access is smaller than the vector size and can we find 2578 // a reasonable extract index. 2579 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not Extract. 2580 int StartIdx[2]; // StartIdx to extract from 2581 for (int Input=0; Input < 2; ++Input) { 2582 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2583 RangeUse[Input] = 0; // Unused 2584 StartIdx[Input] = 0; 2585 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2586 // Fits within range but we should see if we can find a good 2587 // start index that is a multiple of the mask length. 2588 if (MaxRange[Input] < (int)MaskNumElts) { 2589 RangeUse[Input] = 1; // Extract from beginning of the vector 2590 StartIdx[Input] = 0; 2591 } else { 2592 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2593 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2594 StartIdx[Input] + MaskNumElts < SrcNumElts) 2595 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2596 } 2597 } 2598 } 2599 2600 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2601 SDValue Res = DAG.getUNDEF(VT); 2602 setValue(&I, Res); // Vectors are not used. 2603 2604 if (DisableScheduling) 2605 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2606 2607 return; 2608 } 2609 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2610 // Extract appropriate subvector and generate a vector shuffle 2611 for (int Input=0; Input < 2; ++Input) { 2612 SDValue &Src = Input == 0 ? Src1 : Src2; 2613 if (RangeUse[Input] == 0) 2614 Src = DAG.getUNDEF(VT); 2615 else 2616 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2617 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2618 2619 if (DisableScheduling) 2620 DAG.AssignOrdering(Src.getNode(), SDNodeOrder); 2621 } 2622 2623 // Calculate new mask. 2624 SmallVector<int, 8> MappedOps; 2625 for (unsigned i = 0; i != MaskNumElts; ++i) { 2626 int Idx = Mask[i]; 2627 if (Idx < 0) 2628 MappedOps.push_back(Idx); 2629 else if (Idx < (int)SrcNumElts) 2630 MappedOps.push_back(Idx - StartIdx[0]); 2631 else 2632 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2633 } 2634 2635 SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2636 &MappedOps[0]); 2637 setValue(&I, Res); 2638 2639 if (DisableScheduling) 2640 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2641 2642 return; 2643 } 2644 } 2645 2646 // We can't use either concat vectors or extract subvectors so fall back to 2647 // replacing the shuffle with extract and build vector. 2648 // to insert and build vector. 2649 EVT EltVT = VT.getVectorElementType(); 2650 EVT PtrVT = TLI.getPointerTy(); 2651 SmallVector<SDValue,8> Ops; 2652 for (unsigned i = 0; i != MaskNumElts; ++i) { 2653 if (Mask[i] < 0) { 2654 Ops.push_back(DAG.getUNDEF(EltVT)); 2655 } else { 2656 int Idx = Mask[i]; 2657 SDValue Res; 2658 2659 if (Idx < (int)SrcNumElts) 2660 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2661 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2662 else 2663 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2664 EltVT, Src2, 2665 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2666 2667 Ops.push_back(Res); 2668 2669 if (DisableScheduling) 2670 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2671 } 2672 } 2673 2674 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2675 VT, &Ops[0], Ops.size()); 2676 setValue(&I, Res); 2677 2678 if (DisableScheduling) 2679 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2680 } 2681 2682 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) { 2683 const Value *Op0 = I.getOperand(0); 2684 const Value *Op1 = I.getOperand(1); 2685 const Type *AggTy = I.getType(); 2686 const Type *ValTy = Op1->getType(); 2687 bool IntoUndef = isa<UndefValue>(Op0); 2688 bool FromUndef = isa<UndefValue>(Op1); 2689 2690 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2691 I.idx_begin(), I.idx_end()); 2692 2693 SmallVector<EVT, 4> AggValueVTs; 2694 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2695 SmallVector<EVT, 4> ValValueVTs; 2696 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2697 2698 unsigned NumAggValues = AggValueVTs.size(); 2699 unsigned NumValValues = ValValueVTs.size(); 2700 SmallVector<SDValue, 4> Values(NumAggValues); 2701 2702 SDValue Agg = getValue(Op0); 2703 SDValue Val = getValue(Op1); 2704 unsigned i = 0; 2705 // Copy the beginning value(s) from the original aggregate. 2706 for (; i != LinearIndex; ++i) 2707 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2708 SDValue(Agg.getNode(), Agg.getResNo() + i); 2709 // Copy values from the inserted value(s). 2710 for (; i != LinearIndex + NumValValues; ++i) 2711 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2712 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2713 // Copy remaining value(s) from the original aggregate. 2714 for (; i != NumAggValues; ++i) 2715 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2716 SDValue(Agg.getNode(), Agg.getResNo() + i); 2717 2718 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2719 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2720 &Values[0], NumAggValues); 2721 setValue(&I, Res); 2722 2723 if (DisableScheduling) 2724 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2725 } 2726 2727 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) { 2728 const Value *Op0 = I.getOperand(0); 2729 const Type *AggTy = Op0->getType(); 2730 const Type *ValTy = I.getType(); 2731 bool OutOfUndef = isa<UndefValue>(Op0); 2732 2733 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2734 I.idx_begin(), I.idx_end()); 2735 2736 SmallVector<EVT, 4> ValValueVTs; 2737 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2738 2739 unsigned NumValValues = ValValueVTs.size(); 2740 SmallVector<SDValue, 4> Values(NumValValues); 2741 2742 SDValue Agg = getValue(Op0); 2743 // Copy out the selected value(s). 2744 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2745 Values[i - LinearIndex] = 2746 OutOfUndef ? 2747 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2748 SDValue(Agg.getNode(), Agg.getResNo() + i); 2749 2750 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2751 DAG.getVTList(&ValValueVTs[0], NumValValues), 2752 &Values[0], NumValValues); 2753 setValue(&I, Res); 2754 2755 if (DisableScheduling) 2756 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2757 } 2758 2759 void SelectionDAGBuilder::visitGetElementPtr(User &I) { 2760 SDValue N = getValue(I.getOperand(0)); 2761 const Type *Ty = I.getOperand(0)->getType(); 2762 2763 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end(); 2764 OI != E; ++OI) { 2765 Value *Idx = *OI; 2766 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2767 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2768 if (Field) { 2769 // N = N + Offset 2770 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2771 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2772 DAG.getIntPtrConstant(Offset)); 2773 2774 if (DisableScheduling) 2775 DAG.AssignOrdering(N.getNode(), SDNodeOrder); 2776 } 2777 2778 Ty = StTy->getElementType(Field); 2779 } else { 2780 Ty = cast<SequentialType>(Ty)->getElementType(); 2781 2782 // If this is a constant subscript, handle it quickly. 2783 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2784 if (CI->getZExtValue() == 0) continue; 2785 uint64_t Offs = 2786 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2787 SDValue OffsVal; 2788 EVT PTy = TLI.getPointerTy(); 2789 unsigned PtrBits = PTy.getSizeInBits(); 2790 if (PtrBits < 64) 2791 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2792 TLI.getPointerTy(), 2793 DAG.getConstant(Offs, MVT::i64)); 2794 else 2795 OffsVal = DAG.getIntPtrConstant(Offs); 2796 2797 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2798 OffsVal); 2799 2800 if (DisableScheduling) { 2801 DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder); 2802 DAG.AssignOrdering(N.getNode(), SDNodeOrder); 2803 } 2804 2805 continue; 2806 } 2807 2808 // N = N + Idx * ElementSize; 2809 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2810 TD->getTypeAllocSize(Ty)); 2811 SDValue IdxN = getValue(Idx); 2812 2813 // If the index is smaller or larger than intptr_t, truncate or extend 2814 // it. 2815 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2816 2817 // If this is a multiply by a power of two, turn it into a shl 2818 // immediately. This is a very common case. 2819 if (ElementSize != 1) { 2820 if (ElementSize.isPowerOf2()) { 2821 unsigned Amt = ElementSize.logBase2(); 2822 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2823 N.getValueType(), IdxN, 2824 DAG.getConstant(Amt, TLI.getPointerTy())); 2825 } else { 2826 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2827 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2828 N.getValueType(), IdxN, Scale); 2829 } 2830 2831 if (DisableScheduling) 2832 DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder); 2833 } 2834 2835 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2836 N.getValueType(), N, IdxN); 2837 2838 if (DisableScheduling) 2839 DAG.AssignOrdering(N.getNode(), SDNodeOrder); 2840 } 2841 } 2842 2843 setValue(&I, N); 2844 } 2845 2846 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) { 2847 // If this is a fixed sized alloca in the entry block of the function, 2848 // allocate it statically on the stack. 2849 if (FuncInfo.StaticAllocaMap.count(&I)) 2850 return; // getValue will auto-populate this. 2851 2852 const Type *Ty = I.getAllocatedType(); 2853 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2854 unsigned Align = 2855 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2856 I.getAlignment()); 2857 2858 SDValue AllocSize = getValue(I.getArraySize()); 2859 2860 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2861 AllocSize, 2862 DAG.getConstant(TySize, AllocSize.getValueType())); 2863 2864 if (DisableScheduling) 2865 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2866 2867 EVT IntPtr = TLI.getPointerTy(); 2868 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2869 2870 if (DisableScheduling) 2871 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2872 2873 // Handle alignment. If the requested alignment is less than or equal to 2874 // the stack alignment, ignore it. If the size is greater than or equal to 2875 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2876 unsigned StackAlign = 2877 TLI.getTargetMachine().getFrameInfo()->getStackAlignment(); 2878 if (Align <= StackAlign) 2879 Align = 0; 2880 2881 // Round the size of the allocation up to the stack alignment size 2882 // by add SA-1 to the size. 2883 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2884 AllocSize.getValueType(), AllocSize, 2885 DAG.getIntPtrConstant(StackAlign-1)); 2886 if (DisableScheduling) 2887 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2888 2889 // Mask out the low bits for alignment purposes. 2890 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2891 AllocSize.getValueType(), AllocSize, 2892 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2893 if (DisableScheduling) 2894 DAG.AssignOrdering(AllocSize.getNode(), SDNodeOrder); 2895 2896 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2897 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2898 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2899 VTs, Ops, 3); 2900 setValue(&I, DSA); 2901 DAG.setRoot(DSA.getValue(1)); 2902 2903 if (DisableScheduling) 2904 DAG.AssignOrdering(DSA.getNode(), SDNodeOrder); 2905 2906 // Inform the Frame Information that we have just allocated a variable-sized 2907 // object. 2908 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2909 } 2910 2911 void SelectionDAGBuilder::visitLoad(LoadInst &I) { 2912 const Value *SV = I.getOperand(0); 2913 SDValue Ptr = getValue(SV); 2914 2915 const Type *Ty = I.getType(); 2916 bool isVolatile = I.isVolatile(); 2917 unsigned Alignment = I.getAlignment(); 2918 2919 SmallVector<EVT, 4> ValueVTs; 2920 SmallVector<uint64_t, 4> Offsets; 2921 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2922 unsigned NumValues = ValueVTs.size(); 2923 if (NumValues == 0) 2924 return; 2925 2926 SDValue Root; 2927 bool ConstantMemory = false; 2928 if (I.isVolatile()) 2929 // Serialize volatile loads with other side effects. 2930 Root = getRoot(); 2931 else if (AA->pointsToConstantMemory(SV)) { 2932 // Do not serialize (non-volatile) loads of constant memory with anything. 2933 Root = DAG.getEntryNode(); 2934 ConstantMemory = true; 2935 } else { 2936 // Do not serialize non-volatile loads against each other. 2937 Root = DAG.getRoot(); 2938 } 2939 2940 SmallVector<SDValue, 4> Values(NumValues); 2941 SmallVector<SDValue, 4> Chains(NumValues); 2942 EVT PtrVT = Ptr.getValueType(); 2943 for (unsigned i = 0; i != NumValues; ++i) { 2944 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2945 PtrVT, Ptr, 2946 DAG.getConstant(Offsets[i], PtrVT)); 2947 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2948 A, SV, Offsets[i], isVolatile, Alignment); 2949 2950 Values[i] = L; 2951 Chains[i] = L.getValue(1); 2952 2953 if (DisableScheduling) { 2954 DAG.AssignOrdering(A.getNode(), SDNodeOrder); 2955 DAG.AssignOrdering(L.getNode(), SDNodeOrder); 2956 } 2957 } 2958 2959 if (!ConstantMemory) { 2960 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2961 MVT::Other, &Chains[0], NumValues); 2962 if (isVolatile) 2963 DAG.setRoot(Chain); 2964 else 2965 PendingLoads.push_back(Chain); 2966 2967 if (DisableScheduling) 2968 DAG.AssignOrdering(Chain.getNode(), SDNodeOrder); 2969 } 2970 2971 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2972 DAG.getVTList(&ValueVTs[0], NumValues), 2973 &Values[0], NumValues); 2974 setValue(&I, Res); 2975 2976 if (DisableScheduling) 2977 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 2978 } 2979 2980 void SelectionDAGBuilder::visitStore(StoreInst &I) { 2981 Value *SrcV = I.getOperand(0); 2982 Value *PtrV = I.getOperand(1); 2983 2984 SmallVector<EVT, 4> ValueVTs; 2985 SmallVector<uint64_t, 4> Offsets; 2986 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2987 unsigned NumValues = ValueVTs.size(); 2988 if (NumValues == 0) 2989 return; 2990 2991 // Get the lowered operands. Note that we do this after 2992 // checking if NumResults is zero, because with zero results 2993 // the operands won't have values in the map. 2994 SDValue Src = getValue(SrcV); 2995 SDValue Ptr = getValue(PtrV); 2996 2997 SDValue Root = getRoot(); 2998 SmallVector<SDValue, 4> Chains(NumValues); 2999 EVT PtrVT = Ptr.getValueType(); 3000 bool isVolatile = I.isVolatile(); 3001 unsigned Alignment = I.getAlignment(); 3002 3003 for (unsigned i = 0; i != NumValues; ++i) { 3004 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3005 DAG.getConstant(Offsets[i], PtrVT)); 3006 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3007 SDValue(Src.getNode(), Src.getResNo() + i), 3008 Add, PtrV, Offsets[i], isVolatile, Alignment); 3009 3010 if (DisableScheduling) { 3011 DAG.AssignOrdering(Add.getNode(), SDNodeOrder); 3012 DAG.AssignOrdering(Chains[i].getNode(), SDNodeOrder); 3013 } 3014 } 3015 3016 SDValue Res = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3017 MVT::Other, &Chains[0], NumValues); 3018 DAG.setRoot(Res); 3019 3020 if (DisableScheduling) 3021 DAG.AssignOrdering(Res.getNode(), SDNodeOrder); 3022 } 3023 3024 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3025 /// node. 3026 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I, 3027 unsigned Intrinsic) { 3028 bool HasChain = !I.doesNotAccessMemory(); 3029 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3030 3031 // Build the operand list. 3032 SmallVector<SDValue, 8> Ops; 3033 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3034 if (OnlyLoad) { 3035 // We don't need to serialize loads against other loads. 3036 Ops.push_back(DAG.getRoot()); 3037 } else { 3038 Ops.push_back(getRoot()); 3039 } 3040 } 3041 3042 // Info is set by getTgtMemInstrinsic 3043 TargetLowering::IntrinsicInfo Info; 3044 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3045 3046 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3047 if (!IsTgtIntrinsic) 3048 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3049 3050 // Add all operands of the call to the operand list. 3051 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 3052 SDValue Op = getValue(I.getOperand(i)); 3053 assert(TLI.isTypeLegal(Op.getValueType()) && 3054 "Intrinsic uses a non-legal type?"); 3055 Ops.push_back(Op); 3056 } 3057 3058 SmallVector<EVT, 4> ValueVTs; 3059 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3060 #ifndef NDEBUG 3061 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3062 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3063 "Intrinsic uses a non-legal type?"); 3064 } 3065 #endif // NDEBUG 3066 3067 if (HasChain) 3068 ValueVTs.push_back(MVT::Other); 3069 3070 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3071 3072 // Create the node. 3073 SDValue Result; 3074 if (IsTgtIntrinsic) { 3075 // This is target intrinsic that touches memory 3076 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3077 VTs, &Ops[0], Ops.size(), 3078 Info.memVT, Info.ptrVal, Info.offset, 3079 Info.align, Info.vol, 3080 Info.readMem, Info.writeMem); 3081 } else if (!HasChain) { 3082 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3083 VTs, &Ops[0], Ops.size()); 3084 } else if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 3085 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3086 VTs, &Ops[0], Ops.size()); 3087 } else { 3088 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3089 VTs, &Ops[0], Ops.size()); 3090 } 3091 3092 if (DisableScheduling) 3093 DAG.AssignOrdering(Result.getNode(), SDNodeOrder); 3094 3095 if (HasChain) { 3096 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3097 if (OnlyLoad) 3098 PendingLoads.push_back(Chain); 3099 else 3100 DAG.setRoot(Chain); 3101 } 3102 3103 if (I.getType() != Type::getVoidTy(*DAG.getContext())) { 3104 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3105 EVT VT = TLI.getValueType(PTy); 3106 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3107 3108 if (DisableScheduling) 3109 DAG.AssignOrdering(Result.getNode(), SDNodeOrder); 3110 } 3111 3112 setValue(&I, Result); 3113 } 3114 } 3115 3116 /// GetSignificand - Get the significand and build it into a floating-point 3117 /// number with exponent of 1: 3118 /// 3119 /// Op = (Op & 0x007fffff) | 0x3f800000; 3120 /// 3121 /// where Op is the hexidecimal representation of floating point value. 3122 static SDValue 3123 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl, unsigned Order) { 3124 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3125 DAG.getConstant(0x007fffff, MVT::i32)); 3126 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3127 DAG.getConstant(0x3f800000, MVT::i32)); 3128 SDValue Res = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3129 3130 if (DisableScheduling) { 3131 DAG.AssignOrdering(t1.getNode(), Order); 3132 DAG.AssignOrdering(t2.getNode(), Order); 3133 DAG.AssignOrdering(Res.getNode(), Order); 3134 } 3135 3136 return Res; 3137 } 3138 3139 /// GetExponent - Get the exponent: 3140 /// 3141 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3142 /// 3143 /// where Op is the hexidecimal representation of floating point value. 3144 static SDValue 3145 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3146 DebugLoc dl, unsigned Order) { 3147 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3148 DAG.getConstant(0x7f800000, MVT::i32)); 3149 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3150 DAG.getConstant(23, TLI.getPointerTy())); 3151 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3152 DAG.getConstant(127, MVT::i32)); 3153 SDValue Res = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3154 3155 if (DisableScheduling) { 3156 DAG.AssignOrdering(t0.getNode(), Order); 3157 DAG.AssignOrdering(t1.getNode(), Order); 3158 DAG.AssignOrdering(t2.getNode(), Order); 3159 DAG.AssignOrdering(Res.getNode(), Order); 3160 } 3161 3162 return Res; 3163 } 3164 3165 /// getF32Constant - Get 32-bit floating point constant. 3166 static SDValue 3167 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3168 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3169 } 3170 3171 /// Inlined utility function to implement binary input atomic intrinsics for 3172 /// visitIntrinsicCall: I is a call instruction 3173 /// Op is the associated NodeType for I 3174 const char * 3175 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) { 3176 SDValue Root = getRoot(); 3177 SDValue L = 3178 DAG.getAtomic(Op, getCurDebugLoc(), 3179 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 3180 Root, 3181 getValue(I.getOperand(1)), 3182 getValue(I.getOperand(2)), 3183 I.getOperand(1)); 3184 setValue(&I, L); 3185 DAG.setRoot(L.getValue(1)); 3186 3187 if (DisableScheduling) 3188 DAG.AssignOrdering(L.getNode(), SDNodeOrder); 3189 3190 return 0; 3191 } 3192 3193 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3194 const char * 3195 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) { 3196 SDValue Op1 = getValue(I.getOperand(1)); 3197 SDValue Op2 = getValue(I.getOperand(2)); 3198 3199 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3200 SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2); 3201 3202 setValue(&I, Result); 3203 3204 if (DisableScheduling) 3205 DAG.AssignOrdering(Result.getNode(), SDNodeOrder); 3206 3207 return 0; 3208 } 3209 3210 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3211 /// limited-precision mode. 3212 void 3213 SelectionDAGBuilder::visitExp(CallInst &I) { 3214 SDValue result; 3215 DebugLoc dl = getCurDebugLoc(); 3216 3217 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3218 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3219 SDValue Op = getValue(I.getOperand(1)); 3220 3221 // Put the exponent in the right bit position for later addition to the 3222 // final result: 3223 // 3224 // #define LOG2OFe 1.4426950f 3225 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3226 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3227 getF32Constant(DAG, 0x3fb8aa3b)); 3228 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3229 3230 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3231 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3232 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3233 3234 if (DisableScheduling) { 3235 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3236 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3237 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3238 DAG.AssignOrdering(X.getNode(), SDNodeOrder); 3239 } 3240 3241 // IntegerPartOfX <<= 23; 3242 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3243 DAG.getConstant(23, TLI.getPointerTy())); 3244 3245 if (DisableScheduling) 3246 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3247 3248 if (LimitFloatPrecision <= 6) { 3249 // For floating-point precision of 6: 3250 // 3251 // TwoToFractionalPartOfX = 3252 // 0.997535578f + 3253 // (0.735607626f + 0.252464424f * x) * x; 3254 // 3255 // error 0.0144103317, which is 6 bits 3256 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3257 getF32Constant(DAG, 0x3e814304)); 3258 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3259 getF32Constant(DAG, 0x3f3c50c8)); 3260 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3261 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3262 getF32Constant(DAG, 0x3f7f5e7e)); 3263 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3264 3265 // Add the exponent into the result in integer domain. 3266 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3267 TwoToFracPartOfX, IntegerPartOfX); 3268 3269 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3270 3271 if (DisableScheduling) { 3272 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3273 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3274 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3275 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3276 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3277 DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder); 3278 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3279 } 3280 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3281 // For floating-point precision of 12: 3282 // 3283 // TwoToFractionalPartOfX = 3284 // 0.999892986f + 3285 // (0.696457318f + 3286 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3287 // 3288 // 0.000107046256 error, which is 13 to 14 bits 3289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3290 getF32Constant(DAG, 0x3da235e3)); 3291 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3292 getF32Constant(DAG, 0x3e65b8f3)); 3293 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3294 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3295 getF32Constant(DAG, 0x3f324b07)); 3296 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3297 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3298 getF32Constant(DAG, 0x3f7ff8fd)); 3299 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3300 3301 // Add the exponent into the result in integer domain. 3302 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3303 TwoToFracPartOfX, IntegerPartOfX); 3304 3305 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3306 3307 if (DisableScheduling) { 3308 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3309 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3310 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3311 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3312 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3313 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3314 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3315 DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder); 3316 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3317 } 3318 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3319 // For floating-point precision of 18: 3320 // 3321 // TwoToFractionalPartOfX = 3322 // 0.999999982f + 3323 // (0.693148872f + 3324 // (0.240227044f + 3325 // (0.554906021e-1f + 3326 // (0.961591928e-2f + 3327 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3328 // 3329 // error 2.47208000*10^(-7), which is better than 18 bits 3330 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3331 getF32Constant(DAG, 0x3924b03e)); 3332 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3333 getF32Constant(DAG, 0x3ab24b87)); 3334 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3335 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3336 getF32Constant(DAG, 0x3c1d8c17)); 3337 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3338 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3339 getF32Constant(DAG, 0x3d634a1d)); 3340 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3341 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3342 getF32Constant(DAG, 0x3e75fe14)); 3343 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3344 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3345 getF32Constant(DAG, 0x3f317234)); 3346 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3347 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3348 getF32Constant(DAG, 0x3f800000)); 3349 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3350 MVT::i32, t13); 3351 3352 // Add the exponent into the result in integer domain. 3353 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3354 TwoToFracPartOfX, IntegerPartOfX); 3355 3356 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3357 3358 if (DisableScheduling) { 3359 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3360 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3361 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3362 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3363 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3364 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3365 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3366 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3367 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3368 DAG.AssignOrdering(t11.getNode(), SDNodeOrder); 3369 DAG.AssignOrdering(t12.getNode(), SDNodeOrder); 3370 DAG.AssignOrdering(t13.getNode(), SDNodeOrder); 3371 DAG.AssignOrdering(t14.getNode(), SDNodeOrder); 3372 DAG.AssignOrdering(TwoToFracPartOfX.getNode(), SDNodeOrder); 3373 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3374 } 3375 } 3376 } else { 3377 // No special expansion. 3378 result = DAG.getNode(ISD::FEXP, dl, 3379 getValue(I.getOperand(1)).getValueType(), 3380 getValue(I.getOperand(1))); 3381 if (DisableScheduling) 3382 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3383 } 3384 3385 setValue(&I, result); 3386 } 3387 3388 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3389 /// limited-precision mode. 3390 void 3391 SelectionDAGBuilder::visitLog(CallInst &I) { 3392 SDValue result; 3393 DebugLoc dl = getCurDebugLoc(); 3394 3395 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3396 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3397 SDValue Op = getValue(I.getOperand(1)); 3398 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3399 3400 if (DisableScheduling) 3401 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 3402 3403 // Scale the exponent by log(2) [0.69314718f]. 3404 SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder); 3405 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3406 getF32Constant(DAG, 0x3f317218)); 3407 3408 if (DisableScheduling) 3409 DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder); 3410 3411 // Get the significand and build it into a floating-point number with 3412 // exponent of 1. 3413 SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder); 3414 3415 if (LimitFloatPrecision <= 6) { 3416 // For floating-point precision of 6: 3417 // 3418 // LogofMantissa = 3419 // -1.1609546f + 3420 // (1.4034025f - 0.23903021f * x) * x; 3421 // 3422 // error 0.0034276066, which is better than 8 bits 3423 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3424 getF32Constant(DAG, 0xbe74c456)); 3425 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3426 getF32Constant(DAG, 0x3fb3a2b1)); 3427 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3428 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3429 getF32Constant(DAG, 0x3f949a29)); 3430 3431 result = DAG.getNode(ISD::FADD, dl, 3432 MVT::f32, LogOfExponent, LogOfMantissa); 3433 3434 if (DisableScheduling) { 3435 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3436 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3437 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3438 DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder); 3439 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3440 } 3441 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3442 // For floating-point precision of 12: 3443 // 3444 // LogOfMantissa = 3445 // -1.7417939f + 3446 // (2.8212026f + 3447 // (-1.4699568f + 3448 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3449 // 3450 // error 0.000061011436, which is 14 bits 3451 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3452 getF32Constant(DAG, 0xbd67b6d6)); 3453 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3454 getF32Constant(DAG, 0x3ee4f4b8)); 3455 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3456 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3457 getF32Constant(DAG, 0x3fbc278b)); 3458 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3459 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3460 getF32Constant(DAG, 0x40348e95)); 3461 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3462 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3463 getF32Constant(DAG, 0x3fdef31a)); 3464 3465 result = DAG.getNode(ISD::FADD, dl, 3466 MVT::f32, LogOfExponent, LogOfMantissa); 3467 3468 if (DisableScheduling) { 3469 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3470 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3471 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3472 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3473 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3474 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3475 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3476 DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder); 3477 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3478 } 3479 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3480 // For floating-point precision of 18: 3481 // 3482 // LogOfMantissa = 3483 // -2.1072184f + 3484 // (4.2372794f + 3485 // (-3.7029485f + 3486 // (2.2781945f + 3487 // (-0.87823314f + 3488 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3489 // 3490 // error 0.0000023660568, which is better than 18 bits 3491 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3492 getF32Constant(DAG, 0xbc91e5ac)); 3493 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3494 getF32Constant(DAG, 0x3e4350aa)); 3495 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3496 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3497 getF32Constant(DAG, 0x3f60d3e3)); 3498 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3499 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3500 getF32Constant(DAG, 0x4011cdf0)); 3501 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3502 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3503 getF32Constant(DAG, 0x406cfd1c)); 3504 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3505 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3506 getF32Constant(DAG, 0x408797cb)); 3507 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3508 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3509 getF32Constant(DAG, 0x4006dcab)); 3510 3511 result = DAG.getNode(ISD::FADD, dl, 3512 MVT::f32, LogOfExponent, LogOfMantissa); 3513 3514 if (DisableScheduling) { 3515 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3516 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3517 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3518 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3519 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3520 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3521 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3522 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3523 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3524 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3525 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3526 DAG.AssignOrdering(LogOfMantissa.getNode(), SDNodeOrder); 3527 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3528 } 3529 } 3530 } else { 3531 // No special expansion. 3532 result = DAG.getNode(ISD::FLOG, dl, 3533 getValue(I.getOperand(1)).getValueType(), 3534 getValue(I.getOperand(1))); 3535 3536 if (DisableScheduling) 3537 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3538 } 3539 3540 setValue(&I, result); 3541 } 3542 3543 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3544 /// limited-precision mode. 3545 void 3546 SelectionDAGBuilder::visitLog2(CallInst &I) { 3547 SDValue result; 3548 DebugLoc dl = getCurDebugLoc(); 3549 3550 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3551 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3552 SDValue Op = getValue(I.getOperand(1)); 3553 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3554 3555 if (DisableScheduling) 3556 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 3557 3558 // Get the exponent. 3559 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder); 3560 3561 if (DisableScheduling) 3562 DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder); 3563 3564 // Get the significand and build it into a floating-point number with 3565 // exponent of 1. 3566 SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder); 3567 3568 // Different possible minimax approximations of significand in 3569 // floating-point for various degrees of accuracy over [1,2]. 3570 if (LimitFloatPrecision <= 6) { 3571 // For floating-point precision of 6: 3572 // 3573 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3574 // 3575 // error 0.0049451742, which is more than 7 bits 3576 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3577 getF32Constant(DAG, 0xbeb08fe0)); 3578 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3579 getF32Constant(DAG, 0x40019463)); 3580 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3581 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3582 getF32Constant(DAG, 0x3fd6633d)); 3583 3584 result = DAG.getNode(ISD::FADD, dl, 3585 MVT::f32, LogOfExponent, Log2ofMantissa); 3586 3587 if (DisableScheduling) { 3588 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3589 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3590 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3591 DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder); 3592 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3593 } 3594 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3595 // For floating-point precision of 12: 3596 // 3597 // Log2ofMantissa = 3598 // -2.51285454f + 3599 // (4.07009056f + 3600 // (-2.12067489f + 3601 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3602 // 3603 // error 0.0000876136000, which is better than 13 bits 3604 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3605 getF32Constant(DAG, 0xbda7262e)); 3606 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3607 getF32Constant(DAG, 0x3f25280b)); 3608 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3609 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3610 getF32Constant(DAG, 0x4007b923)); 3611 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3612 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3613 getF32Constant(DAG, 0x40823e2f)); 3614 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3615 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3616 getF32Constant(DAG, 0x4020d29c)); 3617 3618 result = DAG.getNode(ISD::FADD, dl, 3619 MVT::f32, LogOfExponent, Log2ofMantissa); 3620 3621 if (DisableScheduling) { 3622 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3623 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3624 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3625 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3626 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3627 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3628 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3629 DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder); 3630 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3631 } 3632 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3633 // For floating-point precision of 18: 3634 // 3635 // Log2ofMantissa = 3636 // -3.0400495f + 3637 // (6.1129976f + 3638 // (-5.3420409f + 3639 // (3.2865683f + 3640 // (-1.2669343f + 3641 // (0.27515199f - 3642 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3643 // 3644 // error 0.0000018516, which is better than 18 bits 3645 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3646 getF32Constant(DAG, 0xbcd2769e)); 3647 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3648 getF32Constant(DAG, 0x3e8ce0b9)); 3649 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3650 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3651 getF32Constant(DAG, 0x3fa22ae7)); 3652 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3653 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3654 getF32Constant(DAG, 0x40525723)); 3655 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3656 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3657 getF32Constant(DAG, 0x40aaf200)); 3658 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3659 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3660 getF32Constant(DAG, 0x40c39dad)); 3661 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3662 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3663 getF32Constant(DAG, 0x4042902c)); 3664 3665 result = DAG.getNode(ISD::FADD, dl, 3666 MVT::f32, LogOfExponent, Log2ofMantissa); 3667 3668 if (DisableScheduling) { 3669 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3670 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3671 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3672 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3673 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3674 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3675 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3676 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3677 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3678 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3679 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3680 DAG.AssignOrdering(Log2ofMantissa.getNode(), SDNodeOrder); 3681 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3682 } 3683 } 3684 } else { 3685 // No special expansion. 3686 result = DAG.getNode(ISD::FLOG2, dl, 3687 getValue(I.getOperand(1)).getValueType(), 3688 getValue(I.getOperand(1))); 3689 3690 if (DisableScheduling) 3691 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3692 } 3693 3694 setValue(&I, result); 3695 } 3696 3697 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3698 /// limited-precision mode. 3699 void 3700 SelectionDAGBuilder::visitLog10(CallInst &I) { 3701 SDValue result; 3702 DebugLoc dl = getCurDebugLoc(); 3703 3704 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3705 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3706 SDValue Op = getValue(I.getOperand(1)); 3707 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3708 3709 if (DisableScheduling) 3710 DAG.AssignOrdering(Op1.getNode(), SDNodeOrder); 3711 3712 // Scale the exponent by log10(2) [0.30102999f]. 3713 SDValue Exp = GetExponent(DAG, Op1, TLI, dl, SDNodeOrder); 3714 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3715 getF32Constant(DAG, 0x3e9a209a)); 3716 3717 if (DisableScheduling) 3718 DAG.AssignOrdering(LogOfExponent.getNode(), SDNodeOrder); 3719 3720 // Get the significand and build it into a floating-point number with 3721 // exponent of 1. 3722 SDValue X = GetSignificand(DAG, Op1, dl, SDNodeOrder); 3723 3724 if (LimitFloatPrecision <= 6) { 3725 // For floating-point precision of 6: 3726 // 3727 // Log10ofMantissa = 3728 // -0.50419619f + 3729 // (0.60948995f - 0.10380950f * x) * x; 3730 // 3731 // error 0.0014886165, which is 6 bits 3732 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3733 getF32Constant(DAG, 0xbdd49a13)); 3734 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3735 getF32Constant(DAG, 0x3f1c0789)); 3736 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3737 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3738 getF32Constant(DAG, 0x3f011300)); 3739 3740 result = DAG.getNode(ISD::FADD, dl, 3741 MVT::f32, LogOfExponent, Log10ofMantissa); 3742 3743 if (DisableScheduling) { 3744 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3745 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3746 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3747 DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder); 3748 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3749 } 3750 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3751 // For floating-point precision of 12: 3752 // 3753 // Log10ofMantissa = 3754 // -0.64831180f + 3755 // (0.91751397f + 3756 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3757 // 3758 // error 0.00019228036, which is better than 12 bits 3759 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3760 getF32Constant(DAG, 0x3d431f31)); 3761 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3762 getF32Constant(DAG, 0x3ea21fb2)); 3763 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3764 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3765 getF32Constant(DAG, 0x3f6ae232)); 3766 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3767 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3768 getF32Constant(DAG, 0x3f25f7c3)); 3769 3770 result = DAG.getNode(ISD::FADD, dl, 3771 MVT::f32, LogOfExponent, Log10ofMantissa); 3772 3773 if (DisableScheduling) { 3774 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3775 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3776 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3777 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3778 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3779 DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder); 3780 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3781 } 3782 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3783 // For floating-point precision of 18: 3784 // 3785 // Log10ofMantissa = 3786 // -0.84299375f + 3787 // (1.5327582f + 3788 // (-1.0688956f + 3789 // (0.49102474f + 3790 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3791 // 3792 // error 0.0000037995730, which is better than 18 bits 3793 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3794 getF32Constant(DAG, 0x3c5d51ce)); 3795 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3796 getF32Constant(DAG, 0x3e00685a)); 3797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3798 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3799 getF32Constant(DAG, 0x3efb6798)); 3800 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3801 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3802 getF32Constant(DAG, 0x3f88d192)); 3803 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3804 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3805 getF32Constant(DAG, 0x3fc4316c)); 3806 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3807 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3808 getF32Constant(DAG, 0x3f57ce70)); 3809 3810 result = DAG.getNode(ISD::FADD, dl, 3811 MVT::f32, LogOfExponent, Log10ofMantissa); 3812 3813 if (DisableScheduling) { 3814 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 3815 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3816 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3817 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3818 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3819 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3820 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3821 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3822 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3823 DAG.AssignOrdering(Log10ofMantissa.getNode(), SDNodeOrder); 3824 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3825 } 3826 } 3827 } else { 3828 // No special expansion. 3829 result = DAG.getNode(ISD::FLOG10, dl, 3830 getValue(I.getOperand(1)).getValueType(), 3831 getValue(I.getOperand(1))); 3832 3833 if (DisableScheduling) 3834 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3835 } 3836 3837 setValue(&I, result); 3838 } 3839 3840 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3841 /// limited-precision mode. 3842 void 3843 SelectionDAGBuilder::visitExp2(CallInst &I) { 3844 SDValue result; 3845 DebugLoc dl = getCurDebugLoc(); 3846 3847 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3848 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3849 SDValue Op = getValue(I.getOperand(1)); 3850 3851 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3852 3853 if (DisableScheduling) 3854 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3855 3856 // FractionalPartOfX = x - (float)IntegerPartOfX; 3857 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3858 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3859 3860 // IntegerPartOfX <<= 23; 3861 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3862 DAG.getConstant(23, TLI.getPointerTy())); 3863 3864 if (DisableScheduling) { 3865 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 3866 DAG.AssignOrdering(X.getNode(), SDNodeOrder); 3867 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 3868 } 3869 3870 if (LimitFloatPrecision <= 6) { 3871 // For floating-point precision of 6: 3872 // 3873 // TwoToFractionalPartOfX = 3874 // 0.997535578f + 3875 // (0.735607626f + 0.252464424f * x) * x; 3876 // 3877 // error 0.0144103317, which is 6 bits 3878 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3879 getF32Constant(DAG, 0x3e814304)); 3880 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3f3c50c8)); 3882 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3883 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3884 getF32Constant(DAG, 0x3f7f5e7e)); 3885 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3886 SDValue TwoToFractionalPartOfX = 3887 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3888 3889 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3890 MVT::f32, TwoToFractionalPartOfX); 3891 3892 if (DisableScheduling) { 3893 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3894 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3895 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3896 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3897 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3898 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 3899 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3900 } 3901 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3902 // For floating-point precision of 12: 3903 // 3904 // TwoToFractionalPartOfX = 3905 // 0.999892986f + 3906 // (0.696457318f + 3907 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3908 // 3909 // error 0.000107046256, which is 13 to 14 bits 3910 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3911 getF32Constant(DAG, 0x3da235e3)); 3912 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3913 getF32Constant(DAG, 0x3e65b8f3)); 3914 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3915 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3916 getF32Constant(DAG, 0x3f324b07)); 3917 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3918 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3919 getF32Constant(DAG, 0x3f7ff8fd)); 3920 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3921 SDValue TwoToFractionalPartOfX = 3922 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3923 3924 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3925 MVT::f32, TwoToFractionalPartOfX); 3926 3927 if (DisableScheduling) { 3928 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3929 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3930 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3931 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3932 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3933 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3934 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3935 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 3936 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3937 } 3938 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3939 // For floating-point precision of 18: 3940 // 3941 // TwoToFractionalPartOfX = 3942 // 0.999999982f + 3943 // (0.693148872f + 3944 // (0.240227044f + 3945 // (0.554906021e-1f + 3946 // (0.961591928e-2f + 3947 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3948 // error 2.47208000*10^(-7), which is better than 18 bits 3949 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3950 getF32Constant(DAG, 0x3924b03e)); 3951 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3952 getF32Constant(DAG, 0x3ab24b87)); 3953 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3954 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3955 getF32Constant(DAG, 0x3c1d8c17)); 3956 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3957 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3958 getF32Constant(DAG, 0x3d634a1d)); 3959 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3960 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3961 getF32Constant(DAG, 0x3e75fe14)); 3962 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3963 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3964 getF32Constant(DAG, 0x3f317234)); 3965 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3966 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3967 getF32Constant(DAG, 0x3f800000)); 3968 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3969 SDValue TwoToFractionalPartOfX = 3970 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3971 3972 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3973 MVT::f32, TwoToFractionalPartOfX); 3974 3975 if (DisableScheduling) { 3976 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 3977 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 3978 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 3979 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 3980 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 3981 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 3982 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 3983 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 3984 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 3985 DAG.AssignOrdering(t11.getNode(), SDNodeOrder); 3986 DAG.AssignOrdering(t12.getNode(), SDNodeOrder); 3987 DAG.AssignOrdering(t13.getNode(), SDNodeOrder); 3988 DAG.AssignOrdering(t14.getNode(), SDNodeOrder); 3989 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 3990 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 3991 } 3992 } 3993 } else { 3994 // No special expansion. 3995 result = DAG.getNode(ISD::FEXP2, dl, 3996 getValue(I.getOperand(1)).getValueType(), 3997 getValue(I.getOperand(1))); 3998 3999 if (DisableScheduling) 4000 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4001 } 4002 4003 setValue(&I, result); 4004 } 4005 4006 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4007 /// limited-precision mode with x == 10.0f. 4008 void 4009 SelectionDAGBuilder::visitPow(CallInst &I) { 4010 SDValue result; 4011 Value *Val = I.getOperand(1); 4012 DebugLoc dl = getCurDebugLoc(); 4013 bool IsExp10 = false; 4014 4015 if (getValue(Val).getValueType() == MVT::f32 && 4016 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 4017 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4018 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4019 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4020 APFloat Ten(10.0f); 4021 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4022 } 4023 } 4024 } 4025 4026 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4027 SDValue Op = getValue(I.getOperand(2)); 4028 4029 // Put the exponent in the right bit position for later addition to the 4030 // final result: 4031 // 4032 // #define LOG2OF10 3.3219281f 4033 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4035 getF32Constant(DAG, 0x40549a78)); 4036 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4037 4038 // FractionalPartOfX = x - (float)IntegerPartOfX; 4039 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4040 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4041 4042 if (DisableScheduling) { 4043 DAG.AssignOrdering(t0.getNode(), SDNodeOrder); 4044 DAG.AssignOrdering(t1.getNode(), SDNodeOrder); 4045 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 4046 DAG.AssignOrdering(X.getNode(), SDNodeOrder); 4047 } 4048 4049 // IntegerPartOfX <<= 23; 4050 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4051 DAG.getConstant(23, TLI.getPointerTy())); 4052 4053 if (DisableScheduling) 4054 DAG.AssignOrdering(IntegerPartOfX.getNode(), SDNodeOrder); 4055 4056 if (LimitFloatPrecision <= 6) { 4057 // For floating-point precision of 6: 4058 // 4059 // twoToFractionalPartOfX = 4060 // 0.997535578f + 4061 // (0.735607626f + 0.252464424f * x) * x; 4062 // 4063 // error 0.0144103317, which is 6 bits 4064 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4065 getF32Constant(DAG, 0x3e814304)); 4066 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4067 getF32Constant(DAG, 0x3f3c50c8)); 4068 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4069 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4070 getF32Constant(DAG, 0x3f7f5e7e)); 4071 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 4072 SDValue TwoToFractionalPartOfX = 4073 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4074 4075 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4076 MVT::f32, TwoToFractionalPartOfX); 4077 4078 if (DisableScheduling) { 4079 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4080 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4081 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4082 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4083 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4084 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4085 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4086 } 4087 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4088 // For floating-point precision of 12: 4089 // 4090 // TwoToFractionalPartOfX = 4091 // 0.999892986f + 4092 // (0.696457318f + 4093 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4094 // 4095 // error 0.000107046256, which is 13 to 14 bits 4096 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4097 getF32Constant(DAG, 0x3da235e3)); 4098 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4099 getF32Constant(DAG, 0x3e65b8f3)); 4100 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4101 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4102 getF32Constant(DAG, 0x3f324b07)); 4103 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4104 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4105 getF32Constant(DAG, 0x3f7ff8fd)); 4106 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 4107 SDValue TwoToFractionalPartOfX = 4108 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4109 4110 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4111 MVT::f32, TwoToFractionalPartOfX); 4112 4113 if (DisableScheduling) { 4114 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4115 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4116 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4117 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4118 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4119 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 4120 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 4121 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4122 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4123 } 4124 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4125 // For floating-point precision of 18: 4126 // 4127 // TwoToFractionalPartOfX = 4128 // 0.999999982f + 4129 // (0.693148872f + 4130 // (0.240227044f + 4131 // (0.554906021e-1f + 4132 // (0.961591928e-2f + 4133 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4134 // error 2.47208000*10^(-7), which is better than 18 bits 4135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0x3924b03e)); 4137 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4138 getF32Constant(DAG, 0x3ab24b87)); 4139 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4140 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4141 getF32Constant(DAG, 0x3c1d8c17)); 4142 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4143 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4144 getF32Constant(DAG, 0x3d634a1d)); 4145 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4146 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4147 getF32Constant(DAG, 0x3e75fe14)); 4148 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4149 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4150 getF32Constant(DAG, 0x3f317234)); 4151 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4152 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4153 getF32Constant(DAG, 0x3f800000)); 4154 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 4155 SDValue TwoToFractionalPartOfX = 4156 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4157 4158 result = DAG.getNode(ISD::BIT_CONVERT, dl, 4159 MVT::f32, TwoToFractionalPartOfX); 4160 4161 if (DisableScheduling) { 4162 DAG.AssignOrdering(t2.getNode(), SDNodeOrder); 4163 DAG.AssignOrdering(t3.getNode(), SDNodeOrder); 4164 DAG.AssignOrdering(t4.getNode(), SDNodeOrder); 4165 DAG.AssignOrdering(t5.getNode(), SDNodeOrder); 4166 DAG.AssignOrdering(t6.getNode(), SDNodeOrder); 4167 DAG.AssignOrdering(t7.getNode(), SDNodeOrder); 4168 DAG.AssignOrdering(t8.getNode(), SDNodeOrder); 4169 DAG.AssignOrdering(t9.getNode(), SDNodeOrder); 4170 DAG.AssignOrdering(t10.getNode(), SDNodeOrder); 4171 DAG.AssignOrdering(t11.getNode(), SDNodeOrder); 4172 DAG.AssignOrdering(t12.getNode(), SDNodeOrder); 4173 DAG.AssignOrdering(t13.getNode(), SDNodeOrder); 4174 DAG.AssignOrdering(t14.getNode(), SDNodeOrder); 4175 DAG.AssignOrdering(TwoToFractionalPartOfX.getNode(), SDNodeOrder); 4176 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4177 } 4178 } 4179 } else { 4180 // No special expansion. 4181 result = DAG.getNode(ISD::FPOW, dl, 4182 getValue(I.getOperand(1)).getValueType(), 4183 getValue(I.getOperand(1)), 4184 getValue(I.getOperand(2))); 4185 4186 if (DisableScheduling) 4187 DAG.AssignOrdering(result.getNode(), SDNodeOrder); 4188 } 4189 4190 setValue(&I, result); 4191 } 4192 4193 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4194 /// we want to emit this as a call to a named external function, return the name 4195 /// otherwise lower it and return null. 4196 const char * 4197 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) { 4198 DebugLoc dl = getCurDebugLoc(); 4199 switch (Intrinsic) { 4200 default: 4201 // By default, turn this into a target intrinsic node. 4202 visitTargetIntrinsic(I, Intrinsic); 4203 return 0; 4204 case Intrinsic::vastart: visitVAStart(I); return 0; 4205 case Intrinsic::vaend: visitVAEnd(I); return 0; 4206 case Intrinsic::vacopy: visitVACopy(I); return 0; 4207 case Intrinsic::returnaddress: 4208 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4209 getValue(I.getOperand(1)))); 4210 return 0; 4211 case Intrinsic::frameaddress: 4212 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4213 getValue(I.getOperand(1)))); 4214 return 0; 4215 case Intrinsic::setjmp: 4216 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4217 break; 4218 case Intrinsic::longjmp: 4219 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4220 break; 4221 case Intrinsic::memcpy: { 4222 SDValue Op1 = getValue(I.getOperand(1)); 4223 SDValue Op2 = getValue(I.getOperand(2)); 4224 SDValue Op3 = getValue(I.getOperand(3)); 4225 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 4226 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 4227 I.getOperand(1), 0, I.getOperand(2), 0)); 4228 return 0; 4229 } 4230 case Intrinsic::memset: { 4231 SDValue Op1 = getValue(I.getOperand(1)); 4232 SDValue Op2 = getValue(I.getOperand(2)); 4233 SDValue Op3 = getValue(I.getOperand(3)); 4234 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 4235 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, 4236 I.getOperand(1), 0)); 4237 return 0; 4238 } 4239 case Intrinsic::memmove: { 4240 SDValue Op1 = getValue(I.getOperand(1)); 4241 SDValue Op2 = getValue(I.getOperand(2)); 4242 SDValue Op3 = getValue(I.getOperand(3)); 4243 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 4244 4245 // If the source and destination are known to not be aliases, we can 4246 // lower memmove as memcpy. 4247 uint64_t Size = -1ULL; 4248 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4249 Size = C->getZExtValue(); 4250 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 4251 AliasAnalysis::NoAlias) { 4252 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false, 4253 I.getOperand(1), 0, I.getOperand(2), 0)); 4254 return 0; 4255 } 4256 4257 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, 4258 I.getOperand(1), 0, I.getOperand(2), 0)); 4259 return 0; 4260 } 4261 case Intrinsic::dbg_stoppoint: 4262 case Intrinsic::dbg_region_start: 4263 case Intrinsic::dbg_region_end: 4264 case Intrinsic::dbg_func_start: 4265 // FIXME - Remove this instructions once the dust settles. 4266 return 0; 4267 case Intrinsic::dbg_declare: { 4268 if (OptLevel != CodeGenOpt::None) 4269 // FIXME: Variable debug info is not supported here. 4270 return 0; 4271 DwarfWriter *DW = DAG.getDwarfWriter(); 4272 if (!DW) 4273 return 0; 4274 DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4275 if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None)) 4276 return 0; 4277 4278 MDNode *Variable = DI.getVariable(); 4279 Value *Address = DI.getAddress(); 4280 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4281 Address = BCI->getOperand(0); 4282 AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4283 // Don't handle byval struct arguments or VLAs, for example. 4284 if (!AI) 4285 return 0; 4286 DenseMap<const AllocaInst*, int>::iterator SI = 4287 FuncInfo.StaticAllocaMap.find(AI); 4288 if (SI == FuncInfo.StaticAllocaMap.end()) 4289 return 0; // VLAs. 4290 int FI = SI->second; 4291 4292 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4293 if (MMI) { 4294 MetadataContext &TheMetadata = 4295 DI.getParent()->getContext().getMetadata(); 4296 unsigned MDDbgKind = TheMetadata.getMDKind("dbg"); 4297 MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI); 4298 MMI->setVariableDbgInfo(Variable, FI, Dbg); 4299 } 4300 return 0; 4301 } 4302 case Intrinsic::eh_exception: { 4303 // Insert the EXCEPTIONADDR instruction. 4304 assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!"); 4305 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4306 SDValue Ops[1]; 4307 Ops[0] = DAG.getRoot(); 4308 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4309 setValue(&I, Op); 4310 DAG.setRoot(Op.getValue(1)); 4311 return 0; 4312 } 4313 4314 case Intrinsic::eh_selector: { 4315 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4316 4317 if (CurMBB->isLandingPad()) 4318 AddCatchInfo(I, MMI, CurMBB); 4319 else { 4320 #ifndef NDEBUG 4321 FuncInfo.CatchInfoLost.insert(&I); 4322 #endif 4323 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4324 unsigned Reg = TLI.getExceptionSelectorRegister(); 4325 if (Reg) CurMBB->addLiveIn(Reg); 4326 } 4327 4328 // Insert the EHSELECTION instruction. 4329 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4330 SDValue Ops[2]; 4331 Ops[0] = getValue(I.getOperand(1)); 4332 Ops[1] = getRoot(); 4333 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4334 4335 DAG.setRoot(Op.getValue(1)); 4336 4337 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4338 return 0; 4339 } 4340 4341 case Intrinsic::eh_typeid_for: { 4342 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4343 4344 if (MMI) { 4345 // Find the type id for the given typeinfo. 4346 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 4347 4348 unsigned TypeID = MMI->getTypeIDFor(GV); 4349 setValue(&I, DAG.getConstant(TypeID, MVT::i32)); 4350 } else { 4351 // Return something different to eh_selector. 4352 setValue(&I, DAG.getConstant(1, MVT::i32)); 4353 } 4354 4355 return 0; 4356 } 4357 4358 case Intrinsic::eh_return_i32: 4359 case Intrinsic::eh_return_i64: 4360 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 4361 MMI->setCallsEHReturn(true); 4362 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4363 MVT::Other, 4364 getControlRoot(), 4365 getValue(I.getOperand(1)), 4366 getValue(I.getOperand(2)))); 4367 } else { 4368 setValue(&I, DAG.getConstant(0, TLI.getPointerTy())); 4369 } 4370 4371 return 0; 4372 case Intrinsic::eh_unwind_init: 4373 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) { 4374 MMI->setCallsUnwindInit(true); 4375 } 4376 4377 return 0; 4378 4379 case Intrinsic::eh_dwarf_cfa: { 4380 EVT VT = getValue(I.getOperand(1)).getValueType(); 4381 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 4382 TLI.getPointerTy()); 4383 4384 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4385 TLI.getPointerTy(), 4386 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4387 TLI.getPointerTy()), 4388 CfaArg); 4389 setValue(&I, DAG.getNode(ISD::ADD, dl, 4390 TLI.getPointerTy(), 4391 DAG.getNode(ISD::FRAMEADDR, dl, 4392 TLI.getPointerTy(), 4393 DAG.getConstant(0, 4394 TLI.getPointerTy())), 4395 Offset)); 4396 return 0; 4397 } 4398 case Intrinsic::convertff: 4399 case Intrinsic::convertfsi: 4400 case Intrinsic::convertfui: 4401 case Intrinsic::convertsif: 4402 case Intrinsic::convertuif: 4403 case Intrinsic::convertss: 4404 case Intrinsic::convertsu: 4405 case Intrinsic::convertus: 4406 case Intrinsic::convertuu: { 4407 ISD::CvtCode Code = ISD::CVT_INVALID; 4408 switch (Intrinsic) { 4409 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4410 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4411 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4412 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4413 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4414 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4415 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4416 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4417 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4418 } 4419 EVT DestVT = TLI.getValueType(I.getType()); 4420 Value* Op1 = I.getOperand(1); 4421 setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4422 DAG.getValueType(DestVT), 4423 DAG.getValueType(getValue(Op1).getValueType()), 4424 getValue(I.getOperand(2)), 4425 getValue(I.getOperand(3)), 4426 Code)); 4427 return 0; 4428 } 4429 4430 case Intrinsic::sqrt: 4431 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4432 getValue(I.getOperand(1)).getValueType(), 4433 getValue(I.getOperand(1)))); 4434 return 0; 4435 case Intrinsic::powi: 4436 setValue(&I, DAG.getNode(ISD::FPOWI, dl, 4437 getValue(I.getOperand(1)).getValueType(), 4438 getValue(I.getOperand(1)), 4439 getValue(I.getOperand(2)))); 4440 return 0; 4441 case Intrinsic::sin: 4442 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4443 getValue(I.getOperand(1)).getValueType(), 4444 getValue(I.getOperand(1)))); 4445 return 0; 4446 case Intrinsic::cos: 4447 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4448 getValue(I.getOperand(1)).getValueType(), 4449 getValue(I.getOperand(1)))); 4450 return 0; 4451 case Intrinsic::log: 4452 visitLog(I); 4453 return 0; 4454 case Intrinsic::log2: 4455 visitLog2(I); 4456 return 0; 4457 case Intrinsic::log10: 4458 visitLog10(I); 4459 return 0; 4460 case Intrinsic::exp: 4461 visitExp(I); 4462 return 0; 4463 case Intrinsic::exp2: 4464 visitExp2(I); 4465 return 0; 4466 case Intrinsic::pow: 4467 visitPow(I); 4468 return 0; 4469 case Intrinsic::pcmarker: { 4470 SDValue Tmp = getValue(I.getOperand(1)); 4471 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4472 return 0; 4473 } 4474 case Intrinsic::readcyclecounter: { 4475 SDValue Op = getRoot(); 4476 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4477 DAG.getVTList(MVT::i64, MVT::Other), 4478 &Op, 1); 4479 setValue(&I, Tmp); 4480 DAG.setRoot(Tmp.getValue(1)); 4481 return 0; 4482 } 4483 case Intrinsic::bswap: 4484 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4485 getValue(I.getOperand(1)).getValueType(), 4486 getValue(I.getOperand(1)))); 4487 return 0; 4488 case Intrinsic::cttz: { 4489 SDValue Arg = getValue(I.getOperand(1)); 4490 EVT Ty = Arg.getValueType(); 4491 SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg); 4492 setValue(&I, result); 4493 return 0; 4494 } 4495 case Intrinsic::ctlz: { 4496 SDValue Arg = getValue(I.getOperand(1)); 4497 EVT Ty = Arg.getValueType(); 4498 SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg); 4499 setValue(&I, result); 4500 return 0; 4501 } 4502 case Intrinsic::ctpop: { 4503 SDValue Arg = getValue(I.getOperand(1)); 4504 EVT Ty = Arg.getValueType(); 4505 SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg); 4506 setValue(&I, result); 4507 return 0; 4508 } 4509 case Intrinsic::stacksave: { 4510 SDValue Op = getRoot(); 4511 SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl, 4512 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4513 setValue(&I, Tmp); 4514 DAG.setRoot(Tmp.getValue(1)); 4515 return 0; 4516 } 4517 case Intrinsic::stackrestore: { 4518 SDValue Tmp = getValue(I.getOperand(1)); 4519 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp)); 4520 return 0; 4521 } 4522 case Intrinsic::stackprotector: { 4523 // Emit code into the DAG to store the stack guard onto the stack. 4524 MachineFunction &MF = DAG.getMachineFunction(); 4525 MachineFrameInfo *MFI = MF.getFrameInfo(); 4526 EVT PtrTy = TLI.getPointerTy(); 4527 4528 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4529 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4530 4531 int FI = FuncInfo.StaticAllocaMap[Slot]; 4532 MFI->setStackProtectorIndex(FI); 4533 4534 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4535 4536 // Store the stack protector onto the stack. 4537 SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4538 PseudoSourceValue::getFixedStack(FI), 4539 0, true); 4540 setValue(&I, Result); 4541 DAG.setRoot(Result); 4542 return 0; 4543 } 4544 case Intrinsic::objectsize: { 4545 // If we don't know by now, we're never going to know. 4546 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4547 4548 assert(CI && "Non-constant type in __builtin_object_size?"); 4549 4550 SDValue Arg = getValue(I.getOperand(0)); 4551 EVT Ty = Arg.getValueType(); 4552 4553 if (CI->getZExtValue() < 2) 4554 setValue(&I, DAG.getConstant(-1ULL, Ty)); 4555 else 4556 setValue(&I, DAG.getConstant(0, Ty)); 4557 return 0; 4558 } 4559 case Intrinsic::var_annotation: 4560 // Discard annotate attributes 4561 return 0; 4562 4563 case Intrinsic::init_trampoline: { 4564 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4565 4566 SDValue Ops[6]; 4567 Ops[0] = getRoot(); 4568 Ops[1] = getValue(I.getOperand(1)); 4569 Ops[2] = getValue(I.getOperand(2)); 4570 Ops[3] = getValue(I.getOperand(3)); 4571 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4572 Ops[5] = DAG.getSrcValue(F); 4573 4574 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl, 4575 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4576 Ops, 6); 4577 4578 setValue(&I, Tmp); 4579 DAG.setRoot(Tmp.getValue(1)); 4580 return 0; 4581 } 4582 4583 case Intrinsic::gcroot: 4584 if (GFI) { 4585 Value *Alloca = I.getOperand(1); 4586 Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4587 4588 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4589 GFI->addStackRoot(FI->getIndex(), TypeMap); 4590 } 4591 return 0; 4592 4593 case Intrinsic::gcread: 4594 case Intrinsic::gcwrite: 4595 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4596 return 0; 4597 4598 case Intrinsic::flt_rounds: { 4599 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4600 return 0; 4601 } 4602 4603 case Intrinsic::trap: { 4604 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4605 return 0; 4606 } 4607 4608 case Intrinsic::uadd_with_overflow: 4609 return implVisitAluOverflow(I, ISD::UADDO); 4610 case Intrinsic::sadd_with_overflow: 4611 return implVisitAluOverflow(I, ISD::SADDO); 4612 case Intrinsic::usub_with_overflow: 4613 return implVisitAluOverflow(I, ISD::USUBO); 4614 case Intrinsic::ssub_with_overflow: 4615 return implVisitAluOverflow(I, ISD::SSUBO); 4616 case Intrinsic::umul_with_overflow: 4617 return implVisitAluOverflow(I, ISD::UMULO); 4618 case Intrinsic::smul_with_overflow: 4619 return implVisitAluOverflow(I, ISD::SMULO); 4620 4621 case Intrinsic::prefetch: { 4622 SDValue Ops[4]; 4623 Ops[0] = getRoot(); 4624 Ops[1] = getValue(I.getOperand(1)); 4625 Ops[2] = getValue(I.getOperand(2)); 4626 Ops[3] = getValue(I.getOperand(3)); 4627 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4628 return 0; 4629 } 4630 4631 case Intrinsic::memory_barrier: { 4632 SDValue Ops[6]; 4633 Ops[0] = getRoot(); 4634 for (int x = 1; x < 6; ++x) 4635 Ops[x] = getValue(I.getOperand(x)); 4636 4637 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4638 return 0; 4639 } 4640 case Intrinsic::atomic_cmp_swap: { 4641 SDValue Root = getRoot(); 4642 SDValue L = 4643 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4644 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4645 Root, 4646 getValue(I.getOperand(1)), 4647 getValue(I.getOperand(2)), 4648 getValue(I.getOperand(3)), 4649 I.getOperand(1)); 4650 setValue(&I, L); 4651 DAG.setRoot(L.getValue(1)); 4652 return 0; 4653 } 4654 case Intrinsic::atomic_load_add: 4655 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4656 case Intrinsic::atomic_load_sub: 4657 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4658 case Intrinsic::atomic_load_or: 4659 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4660 case Intrinsic::atomic_load_xor: 4661 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4662 case Intrinsic::atomic_load_and: 4663 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4664 case Intrinsic::atomic_load_nand: 4665 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4666 case Intrinsic::atomic_load_max: 4667 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4668 case Intrinsic::atomic_load_min: 4669 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4670 case Intrinsic::atomic_load_umin: 4671 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4672 case Intrinsic::atomic_load_umax: 4673 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4674 case Intrinsic::atomic_swap: 4675 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4676 4677 case Intrinsic::invariant_start: 4678 case Intrinsic::lifetime_start: 4679 // Discard region information. 4680 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4681 return 0; 4682 case Intrinsic::invariant_end: 4683 case Intrinsic::lifetime_end: 4684 // Discard region information. 4685 return 0; 4686 } 4687 } 4688 4689 /// Test if the given instruction is in a position to be optimized 4690 /// with a tail-call. This roughly means that it's in a block with 4691 /// a return and there's nothing that needs to be scheduled 4692 /// between it and the return. 4693 /// 4694 /// This function only tests target-independent requirements. 4695 /// For target-dependent requirements, a target should override 4696 /// TargetLowering::IsEligibleForTailCallOptimization. 4697 /// 4698 static bool 4699 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr, 4700 const TargetLowering &TLI) { 4701 const BasicBlock *ExitBB = I->getParent(); 4702 const TerminatorInst *Term = ExitBB->getTerminator(); 4703 const ReturnInst *Ret = dyn_cast<ReturnInst>(Term); 4704 const Function *F = ExitBB->getParent(); 4705 4706 // The block must end in a return statement or an unreachable. 4707 if (!Ret && !isa<UnreachableInst>(Term)) return false; 4708 4709 // If I will have a chain, make sure no other instruction that will have a 4710 // chain interposes between I and the return. 4711 if (I->mayHaveSideEffects() || I->mayReadFromMemory() || 4712 !I->isSafeToSpeculativelyExecute()) 4713 for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ; 4714 --BBI) { 4715 if (&*BBI == I) 4716 break; 4717 if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() || 4718 !BBI->isSafeToSpeculativelyExecute()) 4719 return false; 4720 } 4721 4722 // If the block ends with a void return or unreachable, it doesn't matter 4723 // what the call's return type is. 4724 if (!Ret || Ret->getNumOperands() == 0) return true; 4725 4726 // If the return value is undef, it doesn't matter what the call's 4727 // return type is. 4728 if (isa<UndefValue>(Ret->getOperand(0))) return true; 4729 4730 // Conservatively require the attributes of the call to match those of 4731 // the return. Ignore noalias because it doesn't affect the call sequence. 4732 unsigned CallerRetAttr = F->getAttributes().getRetAttributes(); 4733 if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias) 4734 return false; 4735 4736 // Otherwise, make sure the unmodified return value of I is the return value. 4737 for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ; 4738 U = dyn_cast<Instruction>(U->getOperand(0))) { 4739 if (!U) 4740 return false; 4741 if (!U->hasOneUse()) 4742 return false; 4743 if (U == I) 4744 break; 4745 // Check for a truly no-op truncate. 4746 if (isa<TruncInst>(U) && 4747 TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType())) 4748 continue; 4749 // Check for a truly no-op bitcast. 4750 if (isa<BitCastInst>(U) && 4751 (U->getOperand(0)->getType() == U->getType() || 4752 (isa<PointerType>(U->getOperand(0)->getType()) && 4753 isa<PointerType>(U->getType())))) 4754 continue; 4755 // Otherwise it's not a true no-op. 4756 return false; 4757 } 4758 4759 return true; 4760 } 4761 4762 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee, 4763 bool isTailCall, 4764 MachineBasicBlock *LandingPad) { 4765 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4766 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4767 const Type *RetTy = FTy->getReturnType(); 4768 MachineModuleInfo *MMI = DAG.getMachineModuleInfo(); 4769 unsigned BeginLabel = 0, EndLabel = 0; 4770 4771 TargetLowering::ArgListTy Args; 4772 TargetLowering::ArgListEntry Entry; 4773 Args.reserve(CS.arg_size()); 4774 4775 // Check whether the function can return without sret-demotion. 4776 SmallVector<EVT, 4> OutVTs; 4777 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4778 SmallVector<uint64_t, 4> Offsets; 4779 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4780 OutVTs, OutsFlags, TLI, &Offsets); 4781 4782 4783 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4784 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4785 4786 SDValue DemoteStackSlot; 4787 4788 if (!CanLowerReturn) { 4789 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4790 FTy->getReturnType()); 4791 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4792 FTy->getReturnType()); 4793 MachineFunction &MF = DAG.getMachineFunction(); 4794 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4795 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4796 4797 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4798 Entry.Node = DemoteStackSlot; 4799 Entry.Ty = StackSlotPtrType; 4800 Entry.isSExt = false; 4801 Entry.isZExt = false; 4802 Entry.isInReg = false; 4803 Entry.isSRet = true; 4804 Entry.isNest = false; 4805 Entry.isByVal = false; 4806 Entry.Alignment = Align; 4807 Args.push_back(Entry); 4808 RetTy = Type::getVoidTy(FTy->getContext()); 4809 } 4810 4811 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4812 i != e; ++i) { 4813 SDValue ArgNode = getValue(*i); 4814 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4815 4816 unsigned attrInd = i - CS.arg_begin() + 1; 4817 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4818 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4819 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4820 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4821 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4822 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4823 Entry.Alignment = CS.getParamAlignment(attrInd); 4824 Args.push_back(Entry); 4825 } 4826 4827 if (LandingPad && MMI) { 4828 // Insert a label before the invoke call to mark the try range. This can be 4829 // used to detect deletion of the invoke via the MachineModuleInfo. 4830 BeginLabel = MMI->NextLabelID(); 4831 4832 // Both PendingLoads and PendingExports must be flushed here; 4833 // this call might not return. 4834 (void)getRoot(); 4835 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4836 getControlRoot(), BeginLabel)); 4837 } 4838 4839 // Check if target-independent constraints permit a tail call here. 4840 // Target-dependent constraints are checked within TLI.LowerCallTo. 4841 if (isTailCall && 4842 !isInTailCallPosition(CS.getInstruction(), 4843 CS.getAttributes().getRetAttributes(), 4844 TLI)) 4845 isTailCall = false; 4846 4847 std::pair<SDValue,SDValue> Result = 4848 TLI.LowerCallTo(getRoot(), RetTy, 4849 CS.paramHasAttr(0, Attribute::SExt), 4850 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4851 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4852 CS.getCallingConv(), 4853 isTailCall, 4854 !CS.getInstruction()->use_empty(), 4855 Callee, Args, DAG, getCurDebugLoc()); 4856 assert((isTailCall || Result.second.getNode()) && 4857 "Non-null chain expected with non-tail call!"); 4858 assert((Result.second.getNode() || !Result.first.getNode()) && 4859 "Null value expected with tail call!"); 4860 if (Result.first.getNode()) 4861 setValue(CS.getInstruction(), Result.first); 4862 else if (!CanLowerReturn && Result.second.getNode()) { 4863 // The instruction result is the result of loading from the 4864 // hidden sret parameter. 4865 SmallVector<EVT, 1> PVTs; 4866 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4867 4868 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4869 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4870 EVT PtrVT = PVTs[0]; 4871 unsigned NumValues = OutVTs.size(); 4872 SmallVector<SDValue, 4> Values(NumValues); 4873 SmallVector<SDValue, 4> Chains(NumValues); 4874 4875 for (unsigned i = 0; i < NumValues; ++i) { 4876 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4877 DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot, 4878 DAG.getConstant(Offsets[i], PtrVT)), 4879 NULL, Offsets[i], false, 1); 4880 Values[i] = L; 4881 Chains[i] = L.getValue(1); 4882 } 4883 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4884 MVT::Other, &Chains[0], NumValues); 4885 PendingLoads.push_back(Chain); 4886 4887 setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES, 4888 getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues), 4889 &Values[0], NumValues)); 4890 } 4891 // As a special case, a null chain means that a tail call has 4892 // been emitted and the DAG root is already updated. 4893 if (Result.second.getNode()) 4894 DAG.setRoot(Result.second); 4895 else 4896 HasTailCall = true; 4897 4898 if (LandingPad && MMI) { 4899 // Insert a label at the end of the invoke call to mark the try range. This 4900 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4901 EndLabel = MMI->NextLabelID(); 4902 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(), 4903 getRoot(), EndLabel)); 4904 4905 // Inform MachineModuleInfo of range. 4906 MMI->addInvoke(LandingPad, BeginLabel, EndLabel); 4907 } 4908 } 4909 4910 4911 void SelectionDAGBuilder::visitCall(CallInst &I) { 4912 const char *RenameFn = 0; 4913 if (Function *F = I.getCalledFunction()) { 4914 if (F->isDeclaration()) { 4915 const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo(); 4916 if (II) { 4917 if (unsigned IID = II->getIntrinsicID(F)) { 4918 RenameFn = visitIntrinsicCall(I, IID); 4919 if (!RenameFn) 4920 return; 4921 } 4922 } 4923 if (unsigned IID = F->getIntrinsicID()) { 4924 RenameFn = visitIntrinsicCall(I, IID); 4925 if (!RenameFn) 4926 return; 4927 } 4928 } 4929 4930 // Check for well-known libc/libm calls. If the function is internal, it 4931 // can't be a library call. 4932 if (!F->hasLocalLinkage() && F->hasName()) { 4933 StringRef Name = F->getName(); 4934 if (Name == "copysign" || Name == "copysignf") { 4935 if (I.getNumOperands() == 3 && // Basic sanity checks. 4936 I.getOperand(1)->getType()->isFloatingPoint() && 4937 I.getType() == I.getOperand(1)->getType() && 4938 I.getType() == I.getOperand(2)->getType()) { 4939 SDValue LHS = getValue(I.getOperand(1)); 4940 SDValue RHS = getValue(I.getOperand(2)); 4941 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4942 LHS.getValueType(), LHS, RHS)); 4943 return; 4944 } 4945 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4946 if (I.getNumOperands() == 2 && // Basic sanity checks. 4947 I.getOperand(1)->getType()->isFloatingPoint() && 4948 I.getType() == I.getOperand(1)->getType()) { 4949 SDValue Tmp = getValue(I.getOperand(1)); 4950 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4951 Tmp.getValueType(), Tmp)); 4952 return; 4953 } 4954 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4955 if (I.getNumOperands() == 2 && // Basic sanity checks. 4956 I.getOperand(1)->getType()->isFloatingPoint() && 4957 I.getType() == I.getOperand(1)->getType() && 4958 I.onlyReadsMemory()) { 4959 SDValue Tmp = getValue(I.getOperand(1)); 4960 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4961 Tmp.getValueType(), Tmp)); 4962 return; 4963 } 4964 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4965 if (I.getNumOperands() == 2 && // Basic sanity checks. 4966 I.getOperand(1)->getType()->isFloatingPoint() && 4967 I.getType() == I.getOperand(1)->getType() && 4968 I.onlyReadsMemory()) { 4969 SDValue Tmp = getValue(I.getOperand(1)); 4970 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4971 Tmp.getValueType(), Tmp)); 4972 return; 4973 } 4974 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4975 if (I.getNumOperands() == 2 && // Basic sanity checks. 4976 I.getOperand(1)->getType()->isFloatingPoint() && 4977 I.getType() == I.getOperand(1)->getType() && 4978 I.onlyReadsMemory()) { 4979 SDValue Tmp = getValue(I.getOperand(1)); 4980 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4981 Tmp.getValueType(), Tmp)); 4982 return; 4983 } 4984 } 4985 } 4986 } else if (isa<InlineAsm>(I.getOperand(0))) { 4987 visitInlineAsm(&I); 4988 return; 4989 } 4990 4991 SDValue Callee; 4992 if (!RenameFn) 4993 Callee = getValue(I.getOperand(0)); 4994 else 4995 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4996 4997 // Check if we can potentially perform a tail call. More detailed 4998 // checking is be done within LowerCallTo, after more information 4999 // about the call is known. 5000 bool isTailCall = PerformTailCallOpt && I.isTailCall(); 5001 5002 LowerCallTo(&I, Callee, isTailCall); 5003 } 5004 5005 5006 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 5007 /// this value and returns the result as a ValueVT value. This uses 5008 /// Chain/Flag as the input and updates them for the output Chain/Flag. 5009 /// If the Flag pointer is NULL, no flag is used. 5010 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 5011 SDValue &Chain, 5012 SDValue *Flag) const { 5013 // Assemble the legal parts into the final values. 5014 SmallVector<SDValue, 4> Values(ValueVTs.size()); 5015 SmallVector<SDValue, 8> Parts; 5016 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 5017 // Copy the legal parts from the registers. 5018 EVT ValueVT = ValueVTs[Value]; 5019 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 5020 EVT RegisterVT = RegVTs[Value]; 5021 5022 Parts.resize(NumRegs); 5023 for (unsigned i = 0; i != NumRegs; ++i) { 5024 SDValue P; 5025 if (Flag == 0) 5026 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 5027 else { 5028 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 5029 *Flag = P.getValue(2); 5030 } 5031 Chain = P.getValue(1); 5032 5033 // If the source register was virtual and if we know something about it, 5034 // add an assert node. 5035 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 5036 RegisterVT.isInteger() && !RegisterVT.isVector()) { 5037 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 5038 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5039 if (FLI.LiveOutRegInfo.size() > SlotNo) { 5040 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 5041 5042 unsigned RegSize = RegisterVT.getSizeInBits(); 5043 unsigned NumSignBits = LOI.NumSignBits; 5044 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 5045 5046 // FIXME: We capture more information than the dag can represent. For 5047 // now, just use the tightest assertzext/assertsext possible. 5048 bool isSExt = true; 5049 EVT FromVT(MVT::Other); 5050 if (NumSignBits == RegSize) 5051 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 5052 else if (NumZeroBits >= RegSize-1) 5053 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 5054 else if (NumSignBits > RegSize-8) 5055 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 5056 else if (NumZeroBits >= RegSize-8) 5057 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 5058 else if (NumSignBits > RegSize-16) 5059 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 5060 else if (NumZeroBits >= RegSize-16) 5061 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 5062 else if (NumSignBits > RegSize-32) 5063 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 5064 else if (NumZeroBits >= RegSize-32) 5065 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 5066 5067 if (FromVT != MVT::Other) { 5068 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 5069 RegisterVT, P, DAG.getValueType(FromVT)); 5070 5071 } 5072 } 5073 } 5074 5075 Parts[i] = P; 5076 } 5077 5078 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 5079 NumRegs, RegisterVT, ValueVT); 5080 Part += NumRegs; 5081 Parts.clear(); 5082 } 5083 5084 return DAG.getNode(ISD::MERGE_VALUES, dl, 5085 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 5086 &Values[0], ValueVTs.size()); 5087 } 5088 5089 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 5090 /// specified value into the registers specified by this object. This uses 5091 /// Chain/Flag as the input and updates them for the output Chain/Flag. 5092 /// If the Flag pointer is NULL, no flag is used. 5093 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 5094 SDValue &Chain, SDValue *Flag) const { 5095 // Get the list of the values's legal parts. 5096 unsigned NumRegs = Regs.size(); 5097 SmallVector<SDValue, 8> Parts(NumRegs); 5098 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 5099 EVT ValueVT = ValueVTs[Value]; 5100 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 5101 EVT RegisterVT = RegVTs[Value]; 5102 5103 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 5104 &Parts[Part], NumParts, RegisterVT); 5105 Part += NumParts; 5106 } 5107 5108 // Copy the parts into the registers. 5109 SmallVector<SDValue, 8> Chains(NumRegs); 5110 for (unsigned i = 0; i != NumRegs; ++i) { 5111 SDValue Part; 5112 if (Flag == 0) 5113 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 5114 else { 5115 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 5116 *Flag = Part.getValue(1); 5117 } 5118 Chains[i] = Part.getValue(0); 5119 } 5120 5121 if (NumRegs == 1 || Flag) 5122 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 5123 // flagged to it. That is the CopyToReg nodes and the user are considered 5124 // a single scheduling unit. If we create a TokenFactor and return it as 5125 // chain, then the TokenFactor is both a predecessor (operand) of the 5126 // user as well as a successor (the TF operands are flagged to the user). 5127 // c1, f1 = CopyToReg 5128 // c2, f2 = CopyToReg 5129 // c3 = TokenFactor c1, c2 5130 // ... 5131 // = op c3, ..., f2 5132 Chain = Chains[NumRegs-1]; 5133 else 5134 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 5135 } 5136 5137 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 5138 /// operand list. This adds the code marker and includes the number of 5139 /// values added into it. 5140 void RegsForValue::AddInlineAsmOperands(unsigned Code, 5141 bool HasMatching,unsigned MatchingIdx, 5142 SelectionDAG &DAG, 5143 std::vector<SDValue> &Ops) const { 5144 EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy(); 5145 assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!"); 5146 unsigned Flag = Code | (Regs.size() << 3); 5147 if (HasMatching) 5148 Flag |= 0x80000000 | (MatchingIdx << 16); 5149 Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy)); 5150 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 5151 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 5152 EVT RegisterVT = RegVTs[Value]; 5153 for (unsigned i = 0; i != NumRegs; ++i) { 5154 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 5155 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 5156 } 5157 } 5158 } 5159 5160 /// isAllocatableRegister - If the specified register is safe to allocate, 5161 /// i.e. it isn't a stack pointer or some other special register, return the 5162 /// register class for the register. Otherwise, return null. 5163 static const TargetRegisterClass * 5164 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5165 const TargetLowering &TLI, 5166 const TargetRegisterInfo *TRI) { 5167 EVT FoundVT = MVT::Other; 5168 const TargetRegisterClass *FoundRC = 0; 5169 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5170 E = TRI->regclass_end(); RCI != E; ++RCI) { 5171 EVT ThisVT = MVT::Other; 5172 5173 const TargetRegisterClass *RC = *RCI; 5174 // If none of the the value types for this register class are valid, we 5175 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5176 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5177 I != E; ++I) { 5178 if (TLI.isTypeLegal(*I)) { 5179 // If we have already found this register in a different register class, 5180 // choose the one with the largest VT specified. For example, on 5181 // PowerPC, we favor f64 register classes over f32. 5182 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5183 ThisVT = *I; 5184 break; 5185 } 5186 } 5187 } 5188 5189 if (ThisVT == MVT::Other) continue; 5190 5191 // NOTE: This isn't ideal. In particular, this might allocate the 5192 // frame pointer in functions that need it (due to them not being taken 5193 // out of allocation, because a variable sized allocation hasn't been seen 5194 // yet). This is a slight code pessimization, but should still work. 5195 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5196 E = RC->allocation_order_end(MF); I != E; ++I) 5197 if (*I == Reg) { 5198 // We found a matching register class. Keep looking at others in case 5199 // we find one with larger registers that this physreg is also in. 5200 FoundRC = RC; 5201 FoundVT = ThisVT; 5202 break; 5203 } 5204 } 5205 return FoundRC; 5206 } 5207 5208 5209 namespace llvm { 5210 /// AsmOperandInfo - This contains information for each constraint that we are 5211 /// lowering. 5212 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 5213 public TargetLowering::AsmOperandInfo { 5214 public: 5215 /// CallOperand - If this is the result output operand or a clobber 5216 /// this is null, otherwise it is the incoming operand to the CallInst. 5217 /// This gets modified as the asm is processed. 5218 SDValue CallOperand; 5219 5220 /// AssignedRegs - If this is a register or register class operand, this 5221 /// contains the set of register corresponding to the operand. 5222 RegsForValue AssignedRegs; 5223 5224 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 5225 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5226 } 5227 5228 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5229 /// busy in OutputRegs/InputRegs. 5230 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5231 std::set<unsigned> &OutputRegs, 5232 std::set<unsigned> &InputRegs, 5233 const TargetRegisterInfo &TRI) const { 5234 if (isOutReg) { 5235 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5236 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5237 } 5238 if (isInReg) { 5239 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5240 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5241 } 5242 } 5243 5244 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5245 /// corresponds to. If there is no Value* for this operand, it returns 5246 /// MVT::Other. 5247 EVT getCallOperandValEVT(LLVMContext &Context, 5248 const TargetLowering &TLI, 5249 const TargetData *TD) const { 5250 if (CallOperandVal == 0) return MVT::Other; 5251 5252 if (isa<BasicBlock>(CallOperandVal)) 5253 return TLI.getPointerTy(); 5254 5255 const llvm::Type *OpTy = CallOperandVal->getType(); 5256 5257 // If this is an indirect operand, the operand is a pointer to the 5258 // accessed type. 5259 if (isIndirect) 5260 OpTy = cast<PointerType>(OpTy)->getElementType(); 5261 5262 // If OpTy is not a single value, it may be a struct/union that we 5263 // can tile with integers. 5264 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5265 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5266 switch (BitSize) { 5267 default: break; 5268 case 1: 5269 case 8: 5270 case 16: 5271 case 32: 5272 case 64: 5273 case 128: 5274 OpTy = IntegerType::get(Context, BitSize); 5275 break; 5276 } 5277 } 5278 5279 return TLI.getValueType(OpTy, true); 5280 } 5281 5282 private: 5283 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5284 /// specified set. 5285 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5286 const TargetRegisterInfo &TRI) { 5287 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5288 Regs.insert(Reg); 5289 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5290 for (; *Aliases; ++Aliases) 5291 Regs.insert(*Aliases); 5292 } 5293 }; 5294 } // end llvm namespace. 5295 5296 5297 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5298 /// specified operand. We prefer to assign virtual registers, to allow the 5299 /// register allocator to handle the assignment process. However, if the asm 5300 /// uses features that we can't model on machineinstrs, we have SDISel do the 5301 /// allocation. This produces generally horrible, but correct, code. 5302 /// 5303 /// OpInfo describes the operand. 5304 /// Input and OutputRegs are the set of already allocated physical registers. 5305 /// 5306 void SelectionDAGBuilder:: 5307 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5308 std::set<unsigned> &OutputRegs, 5309 std::set<unsigned> &InputRegs) { 5310 LLVMContext &Context = FuncInfo.Fn->getContext(); 5311 5312 // Compute whether this value requires an input register, an output register, 5313 // or both. 5314 bool isOutReg = false; 5315 bool isInReg = false; 5316 switch (OpInfo.Type) { 5317 case InlineAsm::isOutput: 5318 isOutReg = true; 5319 5320 // If there is an input constraint that matches this, we need to reserve 5321 // the input register so no other inputs allocate to it. 5322 isInReg = OpInfo.hasMatchingInput(); 5323 break; 5324 case InlineAsm::isInput: 5325 isInReg = true; 5326 isOutReg = false; 5327 break; 5328 case InlineAsm::isClobber: 5329 isOutReg = true; 5330 isInReg = true; 5331 break; 5332 } 5333 5334 5335 MachineFunction &MF = DAG.getMachineFunction(); 5336 SmallVector<unsigned, 4> Regs; 5337 5338 // If this is a constraint for a single physreg, or a constraint for a 5339 // register class, find it. 5340 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5341 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5342 OpInfo.ConstraintVT); 5343 5344 unsigned NumRegs = 1; 5345 if (OpInfo.ConstraintVT != MVT::Other) { 5346 // If this is a FP input in an integer register (or visa versa) insert a bit 5347 // cast of the input value. More generally, handle any case where the input 5348 // value disagrees with the register class we plan to stick this in. 5349 if (OpInfo.Type == InlineAsm::isInput && 5350 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5351 // Try to convert to the first EVT that the reg class contains. If the 5352 // types are identical size, use a bitcast to convert (e.g. two differing 5353 // vector types). 5354 EVT RegVT = *PhysReg.second->vt_begin(); 5355 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5356 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5357 RegVT, OpInfo.CallOperand); 5358 OpInfo.ConstraintVT = RegVT; 5359 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5360 // If the input is a FP value and we want it in FP registers, do a 5361 // bitcast to the corresponding integer type. This turns an f64 value 5362 // into i64, which can be passed with two i32 values on a 32-bit 5363 // machine. 5364 RegVT = EVT::getIntegerVT(Context, 5365 OpInfo.ConstraintVT.getSizeInBits()); 5366 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5367 RegVT, OpInfo.CallOperand); 5368 OpInfo.ConstraintVT = RegVT; 5369 } 5370 } 5371 5372 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5373 } 5374 5375 EVT RegVT; 5376 EVT ValueVT = OpInfo.ConstraintVT; 5377 5378 // If this is a constraint for a specific physical register, like {r17}, 5379 // assign it now. 5380 if (unsigned AssignedReg = PhysReg.first) { 5381 const TargetRegisterClass *RC = PhysReg.second; 5382 if (OpInfo.ConstraintVT == MVT::Other) 5383 ValueVT = *RC->vt_begin(); 5384 5385 // Get the actual register value type. This is important, because the user 5386 // may have asked for (e.g.) the AX register in i32 type. We need to 5387 // remember that AX is actually i16 to get the right extension. 5388 RegVT = *RC->vt_begin(); 5389 5390 // This is a explicit reference to a physical register. 5391 Regs.push_back(AssignedReg); 5392 5393 // If this is an expanded reference, add the rest of the regs to Regs. 5394 if (NumRegs != 1) { 5395 TargetRegisterClass::iterator I = RC->begin(); 5396 for (; *I != AssignedReg; ++I) 5397 assert(I != RC->end() && "Didn't find reg!"); 5398 5399 // Already added the first reg. 5400 --NumRegs; ++I; 5401 for (; NumRegs; --NumRegs, ++I) { 5402 assert(I != RC->end() && "Ran out of registers to allocate!"); 5403 Regs.push_back(*I); 5404 } 5405 } 5406 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5407 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5408 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5409 return; 5410 } 5411 5412 // Otherwise, if this was a reference to an LLVM register class, create vregs 5413 // for this reference. 5414 if (const TargetRegisterClass *RC = PhysReg.second) { 5415 RegVT = *RC->vt_begin(); 5416 if (OpInfo.ConstraintVT == MVT::Other) 5417 ValueVT = RegVT; 5418 5419 // Create the appropriate number of virtual registers. 5420 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5421 for (; NumRegs; --NumRegs) 5422 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5423 5424 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5425 return; 5426 } 5427 5428 // This is a reference to a register class that doesn't directly correspond 5429 // to an LLVM register class. Allocate NumRegs consecutive, available, 5430 // registers from the class. 5431 std::vector<unsigned> RegClassRegs 5432 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5433 OpInfo.ConstraintVT); 5434 5435 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5436 unsigned NumAllocated = 0; 5437 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5438 unsigned Reg = RegClassRegs[i]; 5439 // See if this register is available. 5440 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5441 (isInReg && InputRegs.count(Reg))) { // Already used. 5442 // Make sure we find consecutive registers. 5443 NumAllocated = 0; 5444 continue; 5445 } 5446 5447 // Check to see if this register is allocatable (i.e. don't give out the 5448 // stack pointer). 5449 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5450 if (!RC) { // Couldn't allocate this register. 5451 // Reset NumAllocated to make sure we return consecutive registers. 5452 NumAllocated = 0; 5453 continue; 5454 } 5455 5456 // Okay, this register is good, we can use it. 5457 ++NumAllocated; 5458 5459 // If we allocated enough consecutive registers, succeed. 5460 if (NumAllocated == NumRegs) { 5461 unsigned RegStart = (i-NumAllocated)+1; 5462 unsigned RegEnd = i+1; 5463 // Mark all of the allocated registers used. 5464 for (unsigned i = RegStart; i != RegEnd; ++i) 5465 Regs.push_back(RegClassRegs[i]); 5466 5467 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5468 OpInfo.ConstraintVT); 5469 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5470 return; 5471 } 5472 } 5473 5474 // Otherwise, we couldn't allocate enough registers for this. 5475 } 5476 5477 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being 5478 /// processed uses a memory 'm' constraint. 5479 static bool 5480 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, 5481 const TargetLowering &TLI) { 5482 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { 5483 InlineAsm::ConstraintInfo &CI = CInfos[i]; 5484 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { 5485 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); 5486 if (CType == TargetLowering::C_Memory) 5487 return true; 5488 } 5489 5490 // Indirect operand accesses access memory. 5491 if (CI.isIndirect) 5492 return true; 5493 } 5494 5495 return false; 5496 } 5497 5498 /// visitInlineAsm - Handle a call to an InlineAsm object. 5499 /// 5500 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) { 5501 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5502 5503 /// ConstraintOperands - Information about all of the constraints. 5504 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5505 5506 std::set<unsigned> OutputRegs, InputRegs; 5507 5508 // Do a prepass over the constraints, canonicalizing them, and building up the 5509 // ConstraintOperands list. 5510 std::vector<InlineAsm::ConstraintInfo> 5511 ConstraintInfos = IA->ParseConstraints(); 5512 5513 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5514 5515 SDValue Chain, Flag; 5516 5517 // We won't need to flush pending loads if this asm doesn't touch 5518 // memory and is nonvolatile. 5519 if (hasMemory || IA->hasSideEffects()) 5520 Chain = getRoot(); 5521 else 5522 Chain = DAG.getRoot(); 5523 5524 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5525 unsigned ResNo = 0; // ResNo - The result number of the next output. 5526 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5527 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5528 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5529 5530 EVT OpVT = MVT::Other; 5531 5532 // Compute the value type for each operand. 5533 switch (OpInfo.Type) { 5534 case InlineAsm::isOutput: 5535 // Indirect outputs just consume an argument. 5536 if (OpInfo.isIndirect) { 5537 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5538 break; 5539 } 5540 5541 // The return value of the call is this value. As such, there is no 5542 // corresponding argument. 5543 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5544 "Bad inline asm!"); 5545 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5546 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5547 } else { 5548 assert(ResNo == 0 && "Asm only has one result!"); 5549 OpVT = TLI.getValueType(CS.getType()); 5550 } 5551 ++ResNo; 5552 break; 5553 case InlineAsm::isInput: 5554 OpInfo.CallOperandVal = CS.getArgument(ArgNo++); 5555 break; 5556 case InlineAsm::isClobber: 5557 // Nothing to do. 5558 break; 5559 } 5560 5561 // If this is an input or an indirect output, process the call argument. 5562 // BasicBlocks are labels, currently appearing only in asm's. 5563 if (OpInfo.CallOperandVal) { 5564 // Strip bitcasts, if any. This mostly comes up for functions. 5565 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5566 5567 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5568 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5569 } else { 5570 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5571 } 5572 5573 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5574 } 5575 5576 OpInfo.ConstraintVT = OpVT; 5577 } 5578 5579 // Second pass over the constraints: compute which constraint option to use 5580 // and assign registers to constraints that want a specific physreg. 5581 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5582 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5583 5584 // If this is an output operand with a matching input operand, look up the 5585 // matching input. If their types mismatch, e.g. one is an integer, the 5586 // other is floating point, or their sizes are different, flag it as an 5587 // error. 5588 if (OpInfo.hasMatchingInput()) { 5589 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5590 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5591 if ((OpInfo.ConstraintVT.isInteger() != 5592 Input.ConstraintVT.isInteger()) || 5593 (OpInfo.ConstraintVT.getSizeInBits() != 5594 Input.ConstraintVT.getSizeInBits())) { 5595 llvm_report_error("Unsupported asm: input constraint" 5596 " with a matching output constraint of incompatible" 5597 " type!"); 5598 } 5599 Input.ConstraintVT = OpInfo.ConstraintVT; 5600 } 5601 } 5602 5603 // Compute the constraint code and ConstraintType to use. 5604 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5605 5606 // If this is a memory input, and if the operand is not indirect, do what we 5607 // need to to provide an address for the memory input. 5608 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5609 !OpInfo.isIndirect) { 5610 assert(OpInfo.Type == InlineAsm::isInput && 5611 "Can only indirectify direct input operands!"); 5612 5613 // Memory operands really want the address of the value. If we don't have 5614 // an indirect input, put it in the constpool if we can, otherwise spill 5615 // it to a stack slot. 5616 5617 // If the operand is a float, integer, or vector constant, spill to a 5618 // constant pool entry to get its address. 5619 Value *OpVal = OpInfo.CallOperandVal; 5620 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5621 isa<ConstantVector>(OpVal)) { 5622 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5623 TLI.getPointerTy()); 5624 } else { 5625 // Otherwise, create a stack slot and emit a store to it before the 5626 // asm. 5627 const Type *Ty = OpVal->getType(); 5628 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5629 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5630 MachineFunction &MF = DAG.getMachineFunction(); 5631 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5632 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5633 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5634 OpInfo.CallOperand, StackSlot, NULL, 0); 5635 OpInfo.CallOperand = StackSlot; 5636 } 5637 5638 // There is no longer a Value* corresponding to this operand. 5639 OpInfo.CallOperandVal = 0; 5640 // It is now an indirect operand. 5641 OpInfo.isIndirect = true; 5642 } 5643 5644 // If this constraint is for a specific register, allocate it before 5645 // anything else. 5646 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5647 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5648 } 5649 ConstraintInfos.clear(); 5650 5651 5652 // Second pass - Loop over all of the operands, assigning virtual or physregs 5653 // to register class operands. 5654 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5655 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5656 5657 // C_Register operands have already been allocated, Other/Memory don't need 5658 // to be. 5659 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5660 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5661 } 5662 5663 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5664 std::vector<SDValue> AsmNodeOperands; 5665 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5666 AsmNodeOperands.push_back( 5667 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other)); 5668 5669 5670 // Loop over all of the inputs, copying the operand values into the 5671 // appropriate registers and processing the output regs. 5672 RegsForValue RetValRegs; 5673 5674 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5675 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5676 5677 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5678 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5679 5680 switch (OpInfo.Type) { 5681 case InlineAsm::isOutput: { 5682 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5683 OpInfo.ConstraintType != TargetLowering::C_Register) { 5684 // Memory output, or 'other' output (e.g. 'X' constraint). 5685 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5686 5687 // Add information to the INLINEASM node to know about this output. 5688 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5689 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5690 TLI.getPointerTy())); 5691 AsmNodeOperands.push_back(OpInfo.CallOperand); 5692 break; 5693 } 5694 5695 // Otherwise, this is a register or register class output. 5696 5697 // Copy the output from the appropriate register. Find a register that 5698 // we can use. 5699 if (OpInfo.AssignedRegs.Regs.empty()) { 5700 llvm_report_error("Couldn't allocate output reg for" 5701 " constraint '" + OpInfo.ConstraintCode + "'!"); 5702 } 5703 5704 // If this is an indirect operand, store through the pointer after the 5705 // asm. 5706 if (OpInfo.isIndirect) { 5707 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5708 OpInfo.CallOperandVal)); 5709 } else { 5710 // This is the result value of the call. 5711 assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) && 5712 "Bad inline asm!"); 5713 // Concatenate this output onto the outputs list. 5714 RetValRegs.append(OpInfo.AssignedRegs); 5715 } 5716 5717 // Add information to the INLINEASM node to know that this register is 5718 // set. 5719 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5720 6 /* EARLYCLOBBER REGDEF */ : 5721 2 /* REGDEF */ , 5722 false, 5723 0, 5724 DAG, AsmNodeOperands); 5725 break; 5726 } 5727 case InlineAsm::isInput: { 5728 SDValue InOperandVal = OpInfo.CallOperand; 5729 5730 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5731 // If this is required to match an output register we have already set, 5732 // just use its register. 5733 unsigned OperandNo = OpInfo.getMatchedOperand(); 5734 5735 // Scan until we find the definition we already emitted of this operand. 5736 // When we find it, create a RegsForValue operand. 5737 unsigned CurOp = 2; // The first operand. 5738 for (; OperandNo; --OperandNo) { 5739 // Advance to the next operand. 5740 unsigned OpFlag = 5741 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5742 assert(((OpFlag & 7) == 2 /*REGDEF*/ || 5743 (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ || 5744 (OpFlag & 7) == 4 /*MEM*/) && 5745 "Skipped past definitions?"); 5746 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5747 } 5748 5749 unsigned OpFlag = 5750 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5751 if ((OpFlag & 7) == 2 /*REGDEF*/ 5752 || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) { 5753 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5754 if (OpInfo.isIndirect) { 5755 llvm_report_error("Don't know how to handle tied indirect " 5756 "register inputs yet!"); 5757 } 5758 RegsForValue MatchedRegs; 5759 MatchedRegs.TLI = &TLI; 5760 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5761 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5762 MatchedRegs.RegVTs.push_back(RegVT); 5763 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5764 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5765 i != e; ++i) 5766 MatchedRegs.Regs. 5767 push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5768 5769 // Use the produced MatchedRegs object to 5770 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5771 Chain, &Flag); 5772 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, 5773 true, OpInfo.getMatchedOperand(), 5774 DAG, AsmNodeOperands); 5775 break; 5776 } else { 5777 assert(((OpFlag & 7) == 4) && "Unknown matching constraint!"); 5778 assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 && 5779 "Unexpected number of operands"); 5780 // Add information to the INLINEASM node to know about this input. 5781 // See InlineAsm.h isUseOperandTiedToDef. 5782 OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16); 5783 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5784 TLI.getPointerTy())); 5785 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5786 break; 5787 } 5788 } 5789 5790 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5791 assert(!OpInfo.isIndirect && 5792 "Don't know how to handle indirect other inputs yet!"); 5793 5794 std::vector<SDValue> Ops; 5795 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5796 hasMemory, Ops, DAG); 5797 if (Ops.empty()) { 5798 llvm_report_error("Invalid operand for inline asm" 5799 " constraint '" + OpInfo.ConstraintCode + "'!"); 5800 } 5801 5802 // Add information to the INLINEASM node to know about this input. 5803 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3); 5804 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5805 TLI.getPointerTy())); 5806 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5807 break; 5808 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5809 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5810 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5811 "Memory operands expect pointer values"); 5812 5813 // Add information to the INLINEASM node to know about this input. 5814 unsigned ResOpType = 4/*MEM*/ | (1<<3); 5815 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5816 TLI.getPointerTy())); 5817 AsmNodeOperands.push_back(InOperandVal); 5818 break; 5819 } 5820 5821 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5822 OpInfo.ConstraintType == TargetLowering::C_Register) && 5823 "Unknown constraint type!"); 5824 assert(!OpInfo.isIndirect && 5825 "Don't know how to handle indirect register inputs yet!"); 5826 5827 // Copy the input into the appropriate registers. 5828 if (OpInfo.AssignedRegs.Regs.empty()) { 5829 llvm_report_error("Couldn't allocate input reg for" 5830 " constraint '"+ OpInfo.ConstraintCode +"'!"); 5831 } 5832 5833 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5834 Chain, &Flag); 5835 5836 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0, 5837 DAG, AsmNodeOperands); 5838 break; 5839 } 5840 case InlineAsm::isClobber: { 5841 // Add the clobbered value to the operand list, so that the register 5842 // allocator is aware that the physreg got clobbered. 5843 if (!OpInfo.AssignedRegs.Regs.empty()) 5844 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */, 5845 false, 0, DAG,AsmNodeOperands); 5846 break; 5847 } 5848 } 5849 } 5850 5851 // Finish up input operands. 5852 AsmNodeOperands[0] = Chain; 5853 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5854 5855 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5856 DAG.getVTList(MVT::Other, MVT::Flag), 5857 &AsmNodeOperands[0], AsmNodeOperands.size()); 5858 Flag = Chain.getValue(1); 5859 5860 // If this asm returns a register value, copy the result from that register 5861 // and set it as the value of the call. 5862 if (!RetValRegs.Regs.empty()) { 5863 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5864 Chain, &Flag); 5865 5866 // FIXME: Why don't we do this for inline asms with MRVs? 5867 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5868 EVT ResultType = TLI.getValueType(CS.getType()); 5869 5870 // If any of the results of the inline asm is a vector, it may have the 5871 // wrong width/num elts. This can happen for register classes that can 5872 // contain multiple different value types. The preg or vreg allocated may 5873 // not have the same VT as was expected. Convert it to the right type 5874 // with bit_convert. 5875 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5876 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5877 ResultType, Val); 5878 5879 } else if (ResultType != Val.getValueType() && 5880 ResultType.isInteger() && Val.getValueType().isInteger()) { 5881 // If a result value was tied to an input value, the computed result may 5882 // have a wider width than the expected result. Extract the relevant 5883 // portion. 5884 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5885 } 5886 5887 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5888 } 5889 5890 setValue(CS.getInstruction(), Val); 5891 // Don't need to use this as a chain in this case. 5892 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5893 return; 5894 } 5895 5896 std::vector<std::pair<SDValue, Value*> > StoresToEmit; 5897 5898 // Process indirect outputs, first output all of the flagged copies out of 5899 // physregs. 5900 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5901 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5902 Value *Ptr = IndirectStoresToEmit[i].second; 5903 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5904 Chain, &Flag); 5905 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5906 5907 } 5908 5909 // Emit the non-flagged stores from the physregs. 5910 SmallVector<SDValue, 8> OutChains; 5911 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) 5912 OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(), 5913 StoresToEmit[i].first, 5914 getValue(StoresToEmit[i].second), 5915 StoresToEmit[i].second, 0)); 5916 if (!OutChains.empty()) 5917 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5918 &OutChains[0], OutChains.size()); 5919 DAG.setRoot(Chain); 5920 } 5921 5922 void SelectionDAGBuilder::visitVAStart(CallInst &I) { 5923 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5924 MVT::Other, getRoot(), 5925 getValue(I.getOperand(1)), 5926 DAG.getSrcValue(I.getOperand(1)))); 5927 } 5928 5929 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) { 5930 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5931 getRoot(), getValue(I.getOperand(0)), 5932 DAG.getSrcValue(I.getOperand(0))); 5933 setValue(&I, V); 5934 DAG.setRoot(V.getValue(1)); 5935 } 5936 5937 void SelectionDAGBuilder::visitVAEnd(CallInst &I) { 5938 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5939 MVT::Other, getRoot(), 5940 getValue(I.getOperand(1)), 5941 DAG.getSrcValue(I.getOperand(1)))); 5942 } 5943 5944 void SelectionDAGBuilder::visitVACopy(CallInst &I) { 5945 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5946 MVT::Other, getRoot(), 5947 getValue(I.getOperand(1)), 5948 getValue(I.getOperand(2)), 5949 DAG.getSrcValue(I.getOperand(1)), 5950 DAG.getSrcValue(I.getOperand(2)))); 5951 } 5952 5953 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5954 /// implementation, which just calls LowerCall. 5955 /// FIXME: When all targets are 5956 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5957 std::pair<SDValue, SDValue> 5958 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5959 bool RetSExt, bool RetZExt, bool isVarArg, 5960 bool isInreg, unsigned NumFixedArgs, 5961 CallingConv::ID CallConv, bool isTailCall, 5962 bool isReturnValueUsed, 5963 SDValue Callee, 5964 ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) { 5965 5966 assert((!isTailCall || PerformTailCallOpt) && 5967 "isTailCall set when tail-call optimizations are disabled!"); 5968 5969 // Handle all of the outgoing arguments. 5970 SmallVector<ISD::OutputArg, 32> Outs; 5971 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5972 SmallVector<EVT, 4> ValueVTs; 5973 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5974 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5975 Value != NumValues; ++Value) { 5976 EVT VT = ValueVTs[Value]; 5977 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5978 SDValue Op = SDValue(Args[i].Node.getNode(), 5979 Args[i].Node.getResNo() + Value); 5980 ISD::ArgFlagsTy Flags; 5981 unsigned OriginalAlignment = 5982 getTargetData()->getABITypeAlignment(ArgTy); 5983 5984 if (Args[i].isZExt) 5985 Flags.setZExt(); 5986 if (Args[i].isSExt) 5987 Flags.setSExt(); 5988 if (Args[i].isInReg) 5989 Flags.setInReg(); 5990 if (Args[i].isSRet) 5991 Flags.setSRet(); 5992 if (Args[i].isByVal) { 5993 Flags.setByVal(); 5994 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5995 const Type *ElementTy = Ty->getElementType(); 5996 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5997 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5998 // For ByVal, alignment should come from FE. BE will guess if this 5999 // info is not there but there are cases it cannot get right. 6000 if (Args[i].Alignment) 6001 FrameAlign = Args[i].Alignment; 6002 Flags.setByValAlign(FrameAlign); 6003 Flags.setByValSize(FrameSize); 6004 } 6005 if (Args[i].isNest) 6006 Flags.setNest(); 6007 Flags.setOrigAlign(OriginalAlignment); 6008 6009 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6010 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6011 SmallVector<SDValue, 4> Parts(NumParts); 6012 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6013 6014 if (Args[i].isSExt) 6015 ExtendKind = ISD::SIGN_EXTEND; 6016 else if (Args[i].isZExt) 6017 ExtendKind = ISD::ZERO_EXTEND; 6018 6019 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind); 6020 6021 for (unsigned j = 0; j != NumParts; ++j) { 6022 // if it isn't first piece, alignment must be 1 6023 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 6024 if (NumParts > 1 && j == 0) 6025 MyFlags.Flags.setSplit(); 6026 else if (j != 0) 6027 MyFlags.Flags.setOrigAlign(1); 6028 6029 Outs.push_back(MyFlags); 6030 } 6031 } 6032 } 6033 6034 // Handle the incoming return values from the call. 6035 SmallVector<ISD::InputArg, 32> Ins; 6036 SmallVector<EVT, 4> RetTys; 6037 ComputeValueVTs(*this, RetTy, RetTys); 6038 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6039 EVT VT = RetTys[I]; 6040 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6041 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6042 for (unsigned i = 0; i != NumRegs; ++i) { 6043 ISD::InputArg MyFlags; 6044 MyFlags.VT = RegisterVT; 6045 MyFlags.Used = isReturnValueUsed; 6046 if (RetSExt) 6047 MyFlags.Flags.setSExt(); 6048 if (RetZExt) 6049 MyFlags.Flags.setZExt(); 6050 if (isInreg) 6051 MyFlags.Flags.setInReg(); 6052 Ins.push_back(MyFlags); 6053 } 6054 } 6055 6056 // Check if target-dependent constraints permit a tail call here. 6057 // Target-independent constraints should be checked by the caller. 6058 if (isTailCall && 6059 !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG)) 6060 isTailCall = false; 6061 6062 SmallVector<SDValue, 4> InVals; 6063 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6064 Outs, Ins, dl, DAG, InVals); 6065 6066 // Verify that the target's LowerCall behaved as expected. 6067 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6068 "LowerCall didn't return a valid chain!"); 6069 assert((!isTailCall || InVals.empty()) && 6070 "LowerCall emitted a return value for a tail call!"); 6071 assert((isTailCall || InVals.size() == Ins.size()) && 6072 "LowerCall didn't emit the correct number of values!"); 6073 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6074 assert(InVals[i].getNode() && 6075 "LowerCall emitted a null value!"); 6076 assert(Ins[i].VT == InVals[i].getValueType() && 6077 "LowerCall emitted a value with the wrong type!"); 6078 }); 6079 6080 // For a tail call, the return value is merely live-out and there aren't 6081 // any nodes in the DAG representing it. Return a special value to 6082 // indicate that a tail call has been emitted and no more Instructions 6083 // should be processed in the current block. 6084 if (isTailCall) { 6085 DAG.setRoot(Chain); 6086 return std::make_pair(SDValue(), SDValue()); 6087 } 6088 6089 // Collect the legal value parts into potentially illegal values 6090 // that correspond to the original function's return values. 6091 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6092 if (RetSExt) 6093 AssertOp = ISD::AssertSext; 6094 else if (RetZExt) 6095 AssertOp = ISD::AssertZext; 6096 SmallVector<SDValue, 4> ReturnValues; 6097 unsigned CurReg = 0; 6098 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6099 EVT VT = RetTys[I]; 6100 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6101 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6102 6103 SDValue ReturnValue = 6104 getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT, 6105 AssertOp); 6106 ReturnValues.push_back(ReturnValue); 6107 CurReg += NumRegs; 6108 } 6109 6110 // For a function returning void, there is no return value. We can't create 6111 // such a node, so we just return a null return value in that case. In 6112 // that case, nothing will actualy look at the value. 6113 if (ReturnValues.empty()) 6114 return std::make_pair(SDValue(), Chain); 6115 6116 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6117 DAG.getVTList(&RetTys[0], RetTys.size()), 6118 &ReturnValues[0], ReturnValues.size()); 6119 6120 return std::make_pair(Res, Chain); 6121 } 6122 6123 void TargetLowering::LowerOperationWrapper(SDNode *N, 6124 SmallVectorImpl<SDValue> &Results, 6125 SelectionDAG &DAG) { 6126 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6127 if (Res.getNode()) 6128 Results.push_back(Res); 6129 } 6130 6131 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { 6132 llvm_unreachable("LowerOperation not implemented for this target!"); 6133 return SDValue(); 6134 } 6135 6136 6137 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) { 6138 SDValue Op = getValue(V); 6139 assert((Op.getOpcode() != ISD::CopyFromReg || 6140 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6141 "Copy from a reg to the same reg!"); 6142 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6143 6144 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6145 SDValue Chain = DAG.getEntryNode(); 6146 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6147 PendingExports.push_back(Chain); 6148 } 6149 6150 #include "llvm/CodeGen/SelectionDAGISel.h" 6151 6152 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) { 6153 // If this is the entry block, emit arguments. 6154 Function &F = *LLVMBB->getParent(); 6155 SelectionDAG &DAG = SDB->DAG; 6156 SDValue OldRoot = DAG.getRoot(); 6157 DebugLoc dl = SDB->getCurDebugLoc(); 6158 const TargetData *TD = TLI.getTargetData(); 6159 SmallVector<ISD::InputArg, 16> Ins; 6160 6161 // Check whether the function can return without sret-demotion. 6162 SmallVector<EVT, 4> OutVTs; 6163 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 6164 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6165 OutVTs, OutsFlags, TLI); 6166 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 6167 6168 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 6169 OutVTs, OutsFlags, DAG); 6170 if (!FLI.CanLowerReturn) { 6171 // Put in an sret pointer parameter before all the other parameters. 6172 SmallVector<EVT, 1> ValueVTs; 6173 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6174 6175 // NOTE: Assuming that a pointer will never break down to more than one VT 6176 // or one register. 6177 ISD::ArgFlagsTy Flags; 6178 Flags.setSRet(); 6179 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 6180 ISD::InputArg RetArg(Flags, RegisterVT, true); 6181 Ins.push_back(RetArg); 6182 } 6183 6184 // Set up the incoming argument description vector. 6185 unsigned Idx = 1; 6186 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); 6187 I != E; ++I, ++Idx) { 6188 SmallVector<EVT, 4> ValueVTs; 6189 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6190 bool isArgValueUsed = !I->use_empty(); 6191 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6192 Value != NumValues; ++Value) { 6193 EVT VT = ValueVTs[Value]; 6194 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6195 ISD::ArgFlagsTy Flags; 6196 unsigned OriginalAlignment = 6197 TD->getABITypeAlignment(ArgTy); 6198 6199 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6200 Flags.setZExt(); 6201 if (F.paramHasAttr(Idx, Attribute::SExt)) 6202 Flags.setSExt(); 6203 if (F.paramHasAttr(Idx, Attribute::InReg)) 6204 Flags.setInReg(); 6205 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6206 Flags.setSRet(); 6207 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6208 Flags.setByVal(); 6209 const PointerType *Ty = cast<PointerType>(I->getType()); 6210 const Type *ElementTy = Ty->getElementType(); 6211 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6212 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6213 // For ByVal, alignment should be passed from FE. BE will guess if 6214 // this info is not there but there are cases it cannot get right. 6215 if (F.getParamAlignment(Idx)) 6216 FrameAlign = F.getParamAlignment(Idx); 6217 Flags.setByValAlign(FrameAlign); 6218 Flags.setByValSize(FrameSize); 6219 } 6220 if (F.paramHasAttr(Idx, Attribute::Nest)) 6221 Flags.setNest(); 6222 Flags.setOrigAlign(OriginalAlignment); 6223 6224 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6225 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6226 for (unsigned i = 0; i != NumRegs; ++i) { 6227 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6228 if (NumRegs > 1 && i == 0) 6229 MyFlags.Flags.setSplit(); 6230 // if it isn't first piece, alignment must be 1 6231 else if (i > 0) 6232 MyFlags.Flags.setOrigAlign(1); 6233 Ins.push_back(MyFlags); 6234 } 6235 } 6236 } 6237 6238 // Call the target to set up the argument values. 6239 SmallVector<SDValue, 8> InVals; 6240 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6241 F.isVarArg(), Ins, 6242 dl, DAG, InVals); 6243 6244 // Verify that the target's LowerFormalArguments behaved as expected. 6245 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6246 "LowerFormalArguments didn't return a valid chain!"); 6247 assert(InVals.size() == Ins.size() && 6248 "LowerFormalArguments didn't emit the correct number of values!"); 6249 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6250 assert(InVals[i].getNode() && 6251 "LowerFormalArguments emitted a null value!"); 6252 assert(Ins[i].VT == InVals[i].getValueType() && 6253 "LowerFormalArguments emitted a value with the wrong type!"); 6254 }); 6255 6256 // Update the DAG with the new chain value resulting from argument lowering. 6257 DAG.setRoot(NewRoot); 6258 6259 // Set up the argument values. 6260 unsigned i = 0; 6261 Idx = 1; 6262 if (!FLI.CanLowerReturn) { 6263 // Create a virtual register for the sret pointer, and put in a copy 6264 // from the sret argument into it. 6265 SmallVector<EVT, 1> ValueVTs; 6266 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6267 EVT VT = ValueVTs[0]; 6268 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6269 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6270 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, 6271 VT, AssertOp); 6272 6273 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6274 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6275 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6276 FLI.DemoteRegister = SRetReg; 6277 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue); 6278 DAG.setRoot(NewRoot); 6279 6280 // i indexes lowered arguments. Bump it past the hidden sret argument. 6281 // Idx indexes LLVM arguments. Don't touch it. 6282 ++i; 6283 } 6284 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6285 ++I, ++Idx) { 6286 SmallVector<SDValue, 4> ArgValues; 6287 SmallVector<EVT, 4> ValueVTs; 6288 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6289 unsigned NumValues = ValueVTs.size(); 6290 for (unsigned Value = 0; Value != NumValues; ++Value) { 6291 EVT VT = ValueVTs[Value]; 6292 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6293 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6294 6295 if (!I->use_empty()) { 6296 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6297 if (F.paramHasAttr(Idx, Attribute::SExt)) 6298 AssertOp = ISD::AssertSext; 6299 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6300 AssertOp = ISD::AssertZext; 6301 6302 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 6303 PartVT, VT, AssertOp)); 6304 } 6305 i += NumParts; 6306 } 6307 if (!I->use_empty()) { 6308 SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues, 6309 SDB->getCurDebugLoc())); 6310 // If this argument is live outside of the entry block, insert a copy from 6311 // whereever we got it to the vreg that other BB's will reference it as. 6312 SDB->CopyToExportRegsIfNeeded(I); 6313 } 6314 } 6315 assert(i == InVals.size() && "Argument register count mismatch!"); 6316 6317 // Finally, if the target has anything special to do, allow it to do so. 6318 // FIXME: this should insert code into the DAG! 6319 EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction()); 6320 } 6321 6322 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6323 /// ensure constants are generated when needed. Remember the virtual registers 6324 /// that need to be added to the Machine PHI nodes as input. We cannot just 6325 /// directly add them, because expansion might result in multiple MBB's for one 6326 /// BB. As such, the start of the BB might correspond to a different MBB than 6327 /// the end. 6328 /// 6329 void 6330 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) { 6331 TerminatorInst *TI = LLVMBB->getTerminator(); 6332 6333 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6334 6335 // Check successor nodes' PHI nodes that expect a constant to be available 6336 // from this block. 6337 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6338 BasicBlock *SuccBB = TI->getSuccessor(succ); 6339 if (!isa<PHINode>(SuccBB->begin())) continue; 6340 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6341 6342 // If this terminator has multiple identical successors (common for 6343 // switches), only handle each succ once. 6344 if (!SuccsHandled.insert(SuccMBB)) continue; 6345 6346 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6347 PHINode *PN; 6348 6349 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6350 // nodes and Machine PHI nodes, but the incoming operands have not been 6351 // emitted yet. 6352 for (BasicBlock::iterator I = SuccBB->begin(); 6353 (PN = dyn_cast<PHINode>(I)); ++I) { 6354 // Ignore dead phi's. 6355 if (PN->use_empty()) continue; 6356 6357 unsigned Reg; 6358 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6359 6360 if (Constant *C = dyn_cast<Constant>(PHIOp)) { 6361 unsigned &RegOut = SDB->ConstantsOut[C]; 6362 if (RegOut == 0) { 6363 RegOut = FuncInfo->CreateRegForValue(C); 6364 SDB->CopyValueToVirtualRegister(C, RegOut); 6365 } 6366 Reg = RegOut; 6367 } else { 6368 Reg = FuncInfo->ValueMap[PHIOp]; 6369 if (Reg == 0) { 6370 assert(isa<AllocaInst>(PHIOp) && 6371 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6372 "Didn't codegen value into a register!??"); 6373 Reg = FuncInfo->CreateRegForValue(PHIOp); 6374 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 6375 } 6376 } 6377 6378 // Remember that this register needs to added to the machine PHI node as 6379 // the input for this MBB. 6380 SmallVector<EVT, 4> ValueVTs; 6381 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6382 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6383 EVT VT = ValueVTs[vti]; 6384 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6385 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6386 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6387 Reg += NumRegisters; 6388 } 6389 } 6390 } 6391 SDB->ConstantsOut.clear(); 6392 } 6393 6394 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 6395 /// supports legal types, and it emits MachineInstrs directly instead of 6396 /// creating SelectionDAG nodes. 6397 /// 6398 bool 6399 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB, 6400 FastISel *F) { 6401 TerminatorInst *TI = LLVMBB->getTerminator(); 6402 6403 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6404 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 6405 6406 // Check successor nodes' PHI nodes that expect a constant to be available 6407 // from this block. 6408 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6409 BasicBlock *SuccBB = TI->getSuccessor(succ); 6410 if (!isa<PHINode>(SuccBB->begin())) continue; 6411 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6412 6413 // If this terminator has multiple identical successors (common for 6414 // switches), only handle each succ once. 6415 if (!SuccsHandled.insert(SuccMBB)) continue; 6416 6417 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6418 PHINode *PN; 6419 6420 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6421 // nodes and Machine PHI nodes, but the incoming operands have not been 6422 // emitted yet. 6423 for (BasicBlock::iterator I = SuccBB->begin(); 6424 (PN = dyn_cast<PHINode>(I)); ++I) { 6425 // Ignore dead phi's. 6426 if (PN->use_empty()) continue; 6427 6428 // Only handle legal types. Two interesting things to note here. First, 6429 // by bailing out early, we may leave behind some dead instructions, 6430 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 6431 // own moves. Second, this check is necessary becuase FastISel doesn't 6432 // use CreateRegForValue to create registers, so it always creates 6433 // exactly one register for each non-void instruction. 6434 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 6435 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 6436 // Promote MVT::i1. 6437 if (VT == MVT::i1) 6438 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 6439 else { 6440 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6441 return false; 6442 } 6443 } 6444 6445 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6446 6447 unsigned Reg = F->getRegForValue(PHIOp); 6448 if (Reg == 0) { 6449 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6450 return false; 6451 } 6452 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 6453 } 6454 } 6455 6456 return true; 6457 } 6458