1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/TargetTransformInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 34 #include "llvm/CodeGen/CodeGenCommonISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 43 #include "llvm/CodeGen/MachineMemOperand.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineOperand.h" 46 #include "llvm/CodeGen/MachineRegisterInfo.h" 47 #include "llvm/CodeGen/RuntimeLibcalls.h" 48 #include "llvm/CodeGen/SelectionDAG.h" 49 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 50 #include "llvm/CodeGen/StackMaps.h" 51 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 52 #include "llvm/CodeGen/TargetFrameLowering.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/CodeGen/WinEHFuncInfo.h" 58 #include "llvm/IR/Argument.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/CFG.h" 62 #include "llvm/IR/CallingConv.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/ConstantRange.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/DiagnosticInfo.h" 71 #include "llvm/IR/EHPersonalities.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsAMDGPU.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Module.h" 86 #include "llvm/IR/Operator.h" 87 #include "llvm/IR/PatternMatch.h" 88 #include "llvm/IR/Statepoint.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/User.h" 91 #include "llvm/IR/Value.h" 92 #include "llvm/MC/MCContext.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/InstructionCost.h" 99 #include "llvm/Support/MathExtras.h" 100 #include "llvm/Support/raw_ostream.h" 101 #include "llvm/Target/TargetIntrinsicInfo.h" 102 #include "llvm/Target/TargetMachine.h" 103 #include "llvm/Target/TargetOptions.h" 104 #include "llvm/TargetParser/Triple.h" 105 #include "llvm/Transforms/Utils/Local.h" 106 #include <cstddef> 107 #include <iterator> 108 #include <limits> 109 #include <optional> 110 #include <tuple> 111 112 using namespace llvm; 113 using namespace PatternMatch; 114 using namespace SwitchCG; 115 116 #define DEBUG_TYPE "isel" 117 118 /// LimitFloatPrecision - Generate low-precision inline sequences for 119 /// some float libcalls (6, 8 or 12 bits). 120 static unsigned LimitFloatPrecision; 121 122 static cl::opt<bool> 123 InsertAssertAlign("insert-assert-align", cl::init(true), 124 cl::desc("Insert the experimental `assertalign` node."), 125 cl::ReallyHidden); 126 127 static cl::opt<unsigned, true> 128 LimitFPPrecision("limit-float-precision", 129 cl::desc("Generate low-precision inline sequences " 130 "for some float libcalls"), 131 cl::location(LimitFloatPrecision), cl::Hidden, 132 cl::init(0)); 133 134 static cl::opt<unsigned> SwitchPeelThreshold( 135 "switch-peel-threshold", cl::Hidden, cl::init(66), 136 cl::desc("Set the case probability threshold for peeling the case from a " 137 "switch statement. A value greater than 100 will void this " 138 "optimization")); 139 140 // Limit the width of DAG chains. This is important in general to prevent 141 // DAG-based analysis from blowing up. For example, alias analysis and 142 // load clustering may not complete in reasonable time. It is difficult to 143 // recognize and avoid this situation within each individual analysis, and 144 // future analyses are likely to have the same behavior. Limiting DAG width is 145 // the safe approach and will be especially important with global DAGs. 146 // 147 // MaxParallelChains default is arbitrarily high to avoid affecting 148 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 149 // sequence over this should have been converted to llvm.memcpy by the 150 // frontend. It is easy to induce this behavior with .ll code such as: 151 // %buffer = alloca [4096 x i8] 152 // %data = load [4096 x i8]* %argPtr 153 // store [4096 x i8] %data, [4096 x i8]* %buffer 154 static const unsigned MaxParallelChains = 64; 155 156 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 157 const SDValue *Parts, unsigned NumParts, 158 MVT PartVT, EVT ValueVT, const Value *V, 159 SDValue InChain, 160 std::optional<CallingConv::ID> CC); 161 162 /// getCopyFromParts - Create a value that contains the specified legal parts 163 /// combined into the value they represent. If the parts combine to a type 164 /// larger than ValueVT then AssertOp can be used to specify whether the extra 165 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 166 /// (ISD::AssertSext). 167 static SDValue 168 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 169 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 170 SDValue InChain, 171 std::optional<CallingConv::ID> CC = std::nullopt, 172 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 173 // Let the target assemble the parts if it wants to 174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 175 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 176 PartVT, ValueVT, CC)) 177 return Val; 178 179 if (ValueVT.isVector()) 180 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 181 InChain, CC); 182 183 assert(NumParts > 0 && "No parts to assemble!"); 184 SDValue Val = Parts[0]; 185 186 if (NumParts > 1) { 187 // Assemble the value from multiple parts. 188 if (ValueVT.isInteger()) { 189 unsigned PartBits = PartVT.getSizeInBits(); 190 unsigned ValueBits = ValueVT.getSizeInBits(); 191 192 // Assemble the power of 2 part. 193 unsigned RoundParts = llvm::bit_floor(NumParts); 194 unsigned RoundBits = PartBits * RoundParts; 195 EVT RoundVT = RoundBits == ValueBits ? 196 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 197 SDValue Lo, Hi; 198 199 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 200 201 if (RoundParts > 2) { 202 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 203 InChain); 204 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 205 PartVT, HalfVT, V, InChain); 206 } else { 207 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 208 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 209 } 210 211 if (DAG.getDataLayout().isBigEndian()) 212 std::swap(Lo, Hi); 213 214 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 215 216 if (RoundParts < NumParts) { 217 // Assemble the trailing non-power-of-2 part. 218 unsigned OddParts = NumParts - RoundParts; 219 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 220 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 221 OddVT, V, InChain, CC); 222 223 // Combine the round and odd parts. 224 Lo = Val; 225 if (DAG.getDataLayout().isBigEndian()) 226 std::swap(Lo, Hi); 227 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 228 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 229 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 230 DAG.getConstant(Lo.getValueSizeInBits(), DL, 231 TLI.getShiftAmountTy( 232 TotalVT, DAG.getDataLayout()))); 233 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 234 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 235 } 236 } else if (PartVT.isFloatingPoint()) { 237 // FP split into multiple FP parts (for ppcf128) 238 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 239 "Unexpected split"); 240 SDValue Lo, Hi; 241 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 242 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 243 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 244 std::swap(Lo, Hi); 245 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 246 } else { 247 // FP split into integer parts (soft fp) 248 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 249 !PartVT.isVector() && "Unexpected split"); 250 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 251 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 252 InChain, CC); 253 } 254 } 255 256 // There is now one part, held in Val. Correct it to match ValueVT. 257 // PartEVT is the type of the register class that holds the value. 258 // ValueVT is the type of the inline asm operation. 259 EVT PartEVT = Val.getValueType(); 260 261 if (PartEVT == ValueVT) 262 return Val; 263 264 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 265 ValueVT.bitsLT(PartEVT)) { 266 // For an FP value in an integer part, we need to truncate to the right 267 // width first. 268 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 269 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 270 } 271 272 // Handle types that have the same size. 273 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 274 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 275 276 // Handle types with different sizes. 277 if (PartEVT.isInteger() && ValueVT.isInteger()) { 278 if (ValueVT.bitsLT(PartEVT)) { 279 // For a truncate, see if we have any information to 280 // indicate whether the truncated bits will always be 281 // zero or sign-extension. 282 if (AssertOp) 283 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 284 DAG.getValueType(ValueVT)); 285 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 286 } 287 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 288 } 289 290 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 291 // FP_ROUND's are always exact here. 292 if (ValueVT.bitsLT(Val.getValueType())) { 293 294 SDValue NoChange = 295 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 296 297 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 298 llvm::Attribute::StrictFP)) { 299 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 300 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 301 NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 305 } 306 307 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 308 } 309 310 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 311 // then truncating. 312 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 313 ValueVT.bitsLT(PartEVT)) { 314 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 315 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 316 } 317 318 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (CI->isInlineAsm()) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 SDValue InChain, 344 std::optional<CallingConv::ID> CallConv) { 345 assert(ValueVT.isVector() && "Not a vector value"); 346 assert(NumParts > 0 && "No parts to assemble!"); 347 const bool IsABIRegCopy = CallConv.has_value(); 348 349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 350 SDValue Val = Parts[0]; 351 352 // Handle a multi-element vector. 353 if (NumParts > 1) { 354 EVT IntermediateVT; 355 MVT RegisterVT; 356 unsigned NumIntermediates; 357 unsigned NumRegs; 358 359 if (IsABIRegCopy) { 360 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 361 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 362 NumIntermediates, RegisterVT); 363 } else { 364 NumRegs = 365 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 366 NumIntermediates, RegisterVT); 367 } 368 369 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 370 NumParts = NumRegs; // Silence a compiler warning. 371 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 372 assert(RegisterVT.getSizeInBits() == 373 Parts[0].getSimpleValueType().getSizeInBits() && 374 "Part type sizes don't match!"); 375 376 // Assemble the parts into intermediate operands. 377 SmallVector<SDValue, 8> Ops(NumIntermediates); 378 if (NumIntermediates == NumParts) { 379 // If the register was not expanded, truncate or copy the value, 380 // as appropriate. 381 for (unsigned i = 0; i != NumParts; ++i) 382 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 383 V, InChain, CallConv); 384 } else if (NumParts > 0) { 385 // If the intermediate type was expanded, build the intermediate 386 // operands from the parts. 387 assert(NumParts % NumIntermediates == 0 && 388 "Must expand into a divisible number of parts!"); 389 unsigned Factor = NumParts / NumIntermediates; 390 for (unsigned i = 0; i != NumIntermediates; ++i) 391 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 392 IntermediateVT, V, InChain, CallConv); 393 } 394 395 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 396 // intermediate operands. 397 EVT BuiltVectorTy = 398 IntermediateVT.isVector() 399 ? EVT::getVectorVT( 400 *DAG.getContext(), IntermediateVT.getScalarType(), 401 IntermediateVT.getVectorElementCount() * NumParts) 402 : EVT::getVectorVT(*DAG.getContext(), 403 IntermediateVT.getScalarType(), 404 NumIntermediates); 405 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 406 : ISD::BUILD_VECTOR, 407 DL, BuiltVectorTy, Ops); 408 } 409 410 // There is now one part, held in Val. Correct it to match ValueVT. 411 EVT PartEVT = Val.getValueType(); 412 413 if (PartEVT == ValueVT) 414 return Val; 415 416 if (PartEVT.isVector()) { 417 // Vector/Vector bitcast. 418 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 419 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 420 421 // If the parts vector has more elements than the value vector, then we 422 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 423 // Extract the elements we want. 424 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 425 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 426 ValueVT.getVectorElementCount().getKnownMinValue()) && 427 (PartEVT.getVectorElementCount().isScalable() == 428 ValueVT.getVectorElementCount().isScalable()) && 429 "Cannot narrow, it would be a lossy transformation"); 430 PartEVT = 431 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 432 ValueVT.getVectorElementCount()); 433 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 434 DAG.getVectorIdxConstant(0, DL)); 435 if (PartEVT == ValueVT) 436 return Val; 437 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 443 } 444 445 // Promoted vector extract 446 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 447 } 448 449 // Trivial bitcast if the types are the same size and the destination 450 // vector type is legal. 451 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 452 TLI.isTypeLegal(ValueVT)) 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 455 if (ValueVT.getVectorNumElements() != 1) { 456 // Certain ABIs require that vectors are passed as integers. For vectors 457 // are the same size, this is an obvious bitcast. 458 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 459 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 460 } else if (ValueVT.bitsLT(PartEVT)) { 461 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 462 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 463 // Drop the extra bits. 464 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 465 return DAG.getBitcast(ValueVT, Val); 466 } 467 468 diagnosePossiblyInvalidConstraint( 469 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 470 return DAG.getUNDEF(ValueVT); 471 } 472 473 // Handle cases such as i8 -> <1 x i1> 474 EVT ValueSVT = ValueVT.getVectorElementType(); 475 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 476 unsigned ValueSize = ValueSVT.getSizeInBits(); 477 if (ValueSize == PartEVT.getSizeInBits()) { 478 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 479 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 480 // It's possible a scalar floating point type gets softened to integer and 481 // then promoted to a larger integer. If PartEVT is the larger integer 482 // we need to truncate it and then bitcast to the FP type. 483 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 484 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 485 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 486 Val = DAG.getBitcast(ValueSVT, Val); 487 } else { 488 Val = ValueVT.isFloatingPoint() 489 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 490 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 491 } 492 } 493 494 return DAG.getBuildVector(ValueVT, DL, Val); 495 } 496 497 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 498 SDValue Val, SDValue *Parts, unsigned NumParts, 499 MVT PartVT, const Value *V, 500 std::optional<CallingConv::ID> CallConv); 501 502 /// getCopyToParts - Create a series of nodes that contain the specified value 503 /// split into legal parts. If the parts contain more bits than Val, then, for 504 /// integers, ExtendKind can be used to specify how to generate the extra bits. 505 static void 506 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 507 unsigned NumParts, MVT PartVT, const Value *V, 508 std::optional<CallingConv::ID> CallConv = std::nullopt, 509 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 510 // Let the target split the parts if it wants to 511 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 512 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 513 CallConv)) 514 return; 515 EVT ValueVT = Val.getValueType(); 516 517 // Handle the vector case separately. 518 if (ValueVT.isVector()) 519 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 520 CallConv); 521 522 unsigned OrigNumParts = NumParts; 523 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 524 "Copying to an illegal type!"); 525 526 if (NumParts == 0) 527 return; 528 529 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 530 EVT PartEVT = PartVT; 531 if (PartEVT == ValueVT) { 532 assert(NumParts == 1 && "No-op copy with multiple parts!"); 533 Parts[0] = Val; 534 return; 535 } 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 539 // If the parts cover more bits than the value has, promote the value. 540 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 541 assert(NumParts == 1 && "Do not know what to promote to!"); 542 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 543 } else { 544 if (ValueVT.isFloatingPoint()) { 545 // FP values need to be bitcast, then extended if they are being put 546 // into a larger container. 547 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 548 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 549 } 550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 551 ValueVT.isInteger() && 552 "Unknown mismatch!"); 553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 554 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 555 if (PartVT == MVT::x86mmx) 556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 557 } 558 } else if (PartBits == ValueVT.getSizeInBits()) { 559 // Different types of the same size. 560 assert(NumParts == 1 && PartEVT != ValueVT); 561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 562 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 563 // If the parts cover less bits than value has, truncate the value. 564 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 565 ValueVT.isInteger() && 566 "Unknown mismatch!"); 567 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 568 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 569 if (PartVT == MVT::x86mmx) 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 // The value may have changed - recompute ValueVT. 574 ValueVT = Val.getValueType(); 575 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 576 "Failed to tile the value with PartVT!"); 577 578 if (NumParts == 1) { 579 if (PartEVT != ValueVT) { 580 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 581 "scalar-to-vector conversion failed"); 582 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 583 } 584 585 Parts[0] = Val; 586 return; 587 } 588 589 // Expand the value into multiple parts. 590 if (NumParts & (NumParts - 1)) { 591 // The number of parts is not a power of 2. Split off and copy the tail. 592 assert(PartVT.isInteger() && ValueVT.isInteger() && 593 "Do not know what to expand to!"); 594 unsigned RoundParts = llvm::bit_floor(NumParts); 595 unsigned RoundBits = RoundParts * PartBits; 596 unsigned OddParts = NumParts - RoundParts; 597 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 598 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 599 600 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 601 CallConv); 602 603 if (DAG.getDataLayout().isBigEndian()) 604 // The odd parts were reversed by getCopyToParts - unreverse them. 605 std::reverse(Parts + RoundParts, Parts + NumParts); 606 607 NumParts = RoundParts; 608 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 609 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 610 } 611 612 // The number of parts is a power of 2. Repeatedly bisect the value using 613 // EXTRACT_ELEMENT. 614 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 615 EVT::getIntegerVT(*DAG.getContext(), 616 ValueVT.getSizeInBits()), 617 Val); 618 619 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 620 for (unsigned i = 0; i < NumParts; i += StepSize) { 621 unsigned ThisBits = StepSize * PartBits / 2; 622 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 623 SDValue &Part0 = Parts[i]; 624 SDValue &Part1 = Parts[i+StepSize/2]; 625 626 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 627 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 628 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 629 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 630 631 if (ThisBits == PartBits && ThisVT != PartVT) { 632 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 633 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 634 } 635 } 636 } 637 638 if (DAG.getDataLayout().isBigEndian()) 639 std::reverse(Parts, Parts + OrigNumParts); 640 } 641 642 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 643 const SDLoc &DL, EVT PartVT) { 644 if (!PartVT.isVector()) 645 return SDValue(); 646 647 EVT ValueVT = Val.getValueType(); 648 EVT PartEVT = PartVT.getVectorElementType(); 649 EVT ValueEVT = ValueVT.getVectorElementType(); 650 ElementCount PartNumElts = PartVT.getVectorElementCount(); 651 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 652 653 // We only support widening vectors with equivalent element types and 654 // fixed/scalable properties. If a target needs to widen a fixed-length type 655 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 656 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 657 PartNumElts.isScalable() != ValueNumElts.isScalable()) 658 return SDValue(); 659 660 // Have a try for bf16 because some targets share its ABI with fp16. 661 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 662 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 663 "Cannot widen to illegal type"); 664 Val = DAG.getNode(ISD::BITCAST, DL, 665 ValueVT.changeVectorElementType(MVT::f16), Val); 666 } else if (PartEVT != ValueEVT) { 667 return SDValue(); 668 } 669 670 // Widening a scalable vector to another scalable vector is done by inserting 671 // the vector into a larger undef one. 672 if (PartNumElts.isScalable()) 673 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 674 Val, DAG.getVectorIdxConstant(0, DL)); 675 676 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 677 // undef elements. 678 SmallVector<SDValue, 16> Ops; 679 DAG.ExtractVectorElements(Val, Ops); 680 SDValue EltUndef = DAG.getUNDEF(PartEVT); 681 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 682 683 // FIXME: Use CONCAT for 2x -> 4x. 684 return DAG.getBuildVector(PartVT, DL, Ops); 685 } 686 687 /// getCopyToPartsVector - Create a series of nodes that contain the specified 688 /// value split into legal parts. 689 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 690 SDValue Val, SDValue *Parts, unsigned NumParts, 691 MVT PartVT, const Value *V, 692 std::optional<CallingConv::ID> CallConv) { 693 EVT ValueVT = Val.getValueType(); 694 assert(ValueVT.isVector() && "Not a vector"); 695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 696 const bool IsABIRegCopy = CallConv.has_value(); 697 698 if (NumParts == 1) { 699 EVT PartEVT = PartVT; 700 if (PartEVT == ValueVT) { 701 // Nothing to do. 702 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 703 // Bitconvert vector->vector case. 704 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 705 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 706 Val = Widened; 707 } else if (PartVT.isVector() && 708 PartEVT.getVectorElementType().bitsGE( 709 ValueVT.getVectorElementType()) && 710 PartEVT.getVectorElementCount() == 711 ValueVT.getVectorElementCount()) { 712 713 // Promoted vector extract 714 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 715 } else if (PartEVT.isVector() && 716 PartEVT.getVectorElementType() != 717 ValueVT.getVectorElementType() && 718 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 719 TargetLowering::TypeWidenVector) { 720 // Combination of widening and promotion. 721 EVT WidenVT = 722 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 723 PartVT.getVectorElementCount()); 724 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 725 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 726 } else { 727 // Don't extract an integer from a float vector. This can happen if the 728 // FP type gets softened to integer and then promoted. The promotion 729 // prevents it from being picked up by the earlier bitcast case. 730 if (ValueVT.getVectorElementCount().isScalar() && 731 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 732 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 733 DAG.getVectorIdxConstant(0, DL)); 734 } else { 735 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 736 assert(PartVT.getFixedSizeInBits() > ValueSize && 737 "lossy conversion of vector to scalar type"); 738 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 739 Val = DAG.getBitcast(IntermediateType, Val); 740 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 741 } 742 } 743 744 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 745 Parts[0] = Val; 746 return; 747 } 748 749 // Handle a multi-element vector. 750 EVT IntermediateVT; 751 MVT RegisterVT; 752 unsigned NumIntermediates; 753 unsigned NumRegs; 754 if (IsABIRegCopy) { 755 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 756 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 757 RegisterVT); 758 } else { 759 NumRegs = 760 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 761 NumIntermediates, RegisterVT); 762 } 763 764 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 765 NumParts = NumRegs; // Silence a compiler warning. 766 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 767 768 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 769 "Mixing scalable and fixed vectors when copying in parts"); 770 771 std::optional<ElementCount> DestEltCnt; 772 773 if (IntermediateVT.isVector()) 774 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 775 else 776 DestEltCnt = ElementCount::getFixed(NumIntermediates); 777 778 EVT BuiltVectorTy = EVT::getVectorVT( 779 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 780 781 if (ValueVT == BuiltVectorTy) { 782 // Nothing to do. 783 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 784 // Bitconvert vector->vector case. 785 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 786 } else { 787 if (BuiltVectorTy.getVectorElementType().bitsGT( 788 ValueVT.getVectorElementType())) { 789 // Integer promotion. 790 ValueVT = EVT::getVectorVT(*DAG.getContext(), 791 BuiltVectorTy.getVectorElementType(), 792 ValueVT.getVectorElementCount()); 793 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 794 } 795 796 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 797 Val = Widened; 798 } 799 } 800 801 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 802 803 // Split the vector into intermediate operands. 804 SmallVector<SDValue, 8> Ops(NumIntermediates); 805 for (unsigned i = 0; i != NumIntermediates; ++i) { 806 if (IntermediateVT.isVector()) { 807 // This does something sensible for scalable vectors - see the 808 // definition of EXTRACT_SUBVECTOR for further details. 809 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 810 Ops[i] = 811 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 812 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 813 } else { 814 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 815 DAG.getVectorIdxConstant(i, DL)); 816 } 817 } 818 819 // Split the intermediate operands into legal parts. 820 if (NumParts == NumIntermediates) { 821 // If the register was not expanded, promote or copy the value, 822 // as appropriate. 823 for (unsigned i = 0; i != NumParts; ++i) 824 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 825 } else if (NumParts > 0) { 826 // If the intermediate type was expanded, split each the value into 827 // legal parts. 828 assert(NumIntermediates != 0 && "division by zero"); 829 assert(NumParts % NumIntermediates == 0 && 830 "Must expand into a divisible number of parts!"); 831 unsigned Factor = NumParts / NumIntermediates; 832 for (unsigned i = 0; i != NumIntermediates; ++i) 833 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 834 CallConv); 835 } 836 } 837 838 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 839 EVT valuevt, std::optional<CallingConv::ID> CC) 840 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 841 RegCount(1, regs.size()), CallConv(CC) {} 842 843 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 844 const DataLayout &DL, unsigned Reg, Type *Ty, 845 std::optional<CallingConv::ID> CC) { 846 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 847 848 CallConv = CC; 849 850 for (EVT ValueVT : ValueVTs) { 851 unsigned NumRegs = 852 isABIMangled() 853 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 854 : TLI.getNumRegisters(Context, ValueVT); 855 MVT RegisterVT = 856 isABIMangled() 857 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 858 : TLI.getRegisterType(Context, ValueVT); 859 for (unsigned i = 0; i != NumRegs; ++i) 860 Regs.push_back(Reg + i); 861 RegVTs.push_back(RegisterVT); 862 RegCount.push_back(NumRegs); 863 Reg += NumRegs; 864 } 865 } 866 867 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 868 FunctionLoweringInfo &FuncInfo, 869 const SDLoc &dl, SDValue &Chain, 870 SDValue *Glue, const Value *V) const { 871 // A Value with type {} or [0 x %t] needs no registers. 872 if (ValueVTs.empty()) 873 return SDValue(); 874 875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 876 877 // Assemble the legal parts into the final values. 878 SmallVector<SDValue, 4> Values(ValueVTs.size()); 879 SmallVector<SDValue, 8> Parts; 880 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 881 // Copy the legal parts from the registers. 882 EVT ValueVT = ValueVTs[Value]; 883 unsigned NumRegs = RegCount[Value]; 884 MVT RegisterVT = isABIMangled() 885 ? TLI.getRegisterTypeForCallingConv( 886 *DAG.getContext(), *CallConv, RegVTs[Value]) 887 : RegVTs[Value]; 888 889 Parts.resize(NumRegs); 890 for (unsigned i = 0; i != NumRegs; ++i) { 891 SDValue P; 892 if (!Glue) { 893 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 894 } else { 895 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 896 *Glue = P.getValue(2); 897 } 898 899 Chain = P.getValue(1); 900 Parts[i] = P; 901 902 // If the source register was virtual and if we know something about it, 903 // add an assert node. 904 if (!Register::isVirtualRegister(Regs[Part + i]) || 905 !RegisterVT.isInteger()) 906 continue; 907 908 const FunctionLoweringInfo::LiveOutInfo *LOI = 909 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 910 if (!LOI) 911 continue; 912 913 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 914 unsigned NumSignBits = LOI->NumSignBits; 915 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 916 917 if (NumZeroBits == RegSize) { 918 // The current value is a zero. 919 // Explicitly express that as it would be easier for 920 // optimizations to kick in. 921 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 922 continue; 923 } 924 925 // FIXME: We capture more information than the dag can represent. For 926 // now, just use the tightest assertzext/assertsext possible. 927 bool isSExt; 928 EVT FromVT(MVT::Other); 929 if (NumZeroBits) { 930 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 931 isSExt = false; 932 } else if (NumSignBits > 1) { 933 FromVT = 934 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 935 isSExt = true; 936 } else { 937 continue; 938 } 939 // Add an assertion node. 940 assert(FromVT != MVT::Other); 941 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 942 RegisterVT, P, DAG.getValueType(FromVT)); 943 } 944 945 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 946 RegisterVT, ValueVT, V, Chain, CallConv); 947 Part += NumRegs; 948 Parts.clear(); 949 } 950 951 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 952 } 953 954 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 955 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 956 const Value *V, 957 ISD::NodeType PreferredExtendType) const { 958 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 959 ISD::NodeType ExtendKind = PreferredExtendType; 960 961 // Get the list of the values's legal parts. 962 unsigned NumRegs = Regs.size(); 963 SmallVector<SDValue, 8> Parts(NumRegs); 964 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 965 unsigned NumParts = RegCount[Value]; 966 967 MVT RegisterVT = isABIMangled() 968 ? TLI.getRegisterTypeForCallingConv( 969 *DAG.getContext(), *CallConv, RegVTs[Value]) 970 : RegVTs[Value]; 971 972 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 973 ExtendKind = ISD::ZERO_EXTEND; 974 975 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 976 NumParts, RegisterVT, V, CallConv, ExtendKind); 977 Part += NumParts; 978 } 979 980 // Copy the parts into the registers. 981 SmallVector<SDValue, 8> Chains(NumRegs); 982 for (unsigned i = 0; i != NumRegs; ++i) { 983 SDValue Part; 984 if (!Glue) { 985 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 986 } else { 987 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 988 *Glue = Part.getValue(1); 989 } 990 991 Chains[i] = Part.getValue(0); 992 } 993 994 if (NumRegs == 1 || Glue) 995 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 996 // flagged to it. That is the CopyToReg nodes and the user are considered 997 // a single scheduling unit. If we create a TokenFactor and return it as 998 // chain, then the TokenFactor is both a predecessor (operand) of the 999 // user as well as a successor (the TF operands are flagged to the user). 1000 // c1, f1 = CopyToReg 1001 // c2, f2 = CopyToReg 1002 // c3 = TokenFactor c1, c2 1003 // ... 1004 // = op c3, ..., f2 1005 Chain = Chains[NumRegs-1]; 1006 else 1007 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1008 } 1009 1010 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1011 unsigned MatchingIdx, const SDLoc &dl, 1012 SelectionDAG &DAG, 1013 std::vector<SDValue> &Ops) const { 1014 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1015 1016 InlineAsm::Flag Flag(Code, Regs.size()); 1017 if (HasMatching) 1018 Flag.setMatchingOp(MatchingIdx); 1019 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1020 // Put the register class of the virtual registers in the flag word. That 1021 // way, later passes can recompute register class constraints for inline 1022 // assembly as well as normal instructions. 1023 // Don't do this for tied operands that can use the regclass information 1024 // from the def. 1025 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1026 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1027 Flag.setRegClass(RC->getID()); 1028 } 1029 1030 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1031 Ops.push_back(Res); 1032 1033 if (Code == InlineAsm::Kind::Clobber) { 1034 // Clobbers should always have a 1:1 mapping with registers, and may 1035 // reference registers that have illegal (e.g. vector) types. Hence, we 1036 // shouldn't try to apply any sort of splitting logic to them. 1037 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1038 "No 1:1 mapping from clobbers to regs?"); 1039 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1040 (void)SP; 1041 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1042 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1043 assert( 1044 (Regs[I] != SP || 1045 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1046 "If we clobbered the stack pointer, MFI should know about it."); 1047 } 1048 return; 1049 } 1050 1051 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1052 MVT RegisterVT = RegVTs[Value]; 1053 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1054 RegisterVT); 1055 for (unsigned i = 0; i != NumRegs; ++i) { 1056 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1057 unsigned TheReg = Regs[Reg++]; 1058 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1059 } 1060 } 1061 } 1062 1063 SmallVector<std::pair<unsigned, TypeSize>, 4> 1064 RegsForValue::getRegsAndSizes() const { 1065 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1066 unsigned I = 0; 1067 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1068 unsigned RegCount = std::get<0>(CountAndVT); 1069 MVT RegisterVT = std::get<1>(CountAndVT); 1070 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1071 for (unsigned E = I + RegCount; I != E; ++I) 1072 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1073 } 1074 return OutVec; 1075 } 1076 1077 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1078 AssumptionCache *ac, 1079 const TargetLibraryInfo *li) { 1080 AA = aa; 1081 AC = ac; 1082 GFI = gfi; 1083 LibInfo = li; 1084 Context = DAG.getContext(); 1085 LPadToCallSiteMap.clear(); 1086 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1087 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1088 *DAG.getMachineFunction().getFunction().getParent()); 1089 } 1090 1091 void SelectionDAGBuilder::clear() { 1092 NodeMap.clear(); 1093 UnusedArgNodeMap.clear(); 1094 PendingLoads.clear(); 1095 PendingExports.clear(); 1096 PendingConstrainedFP.clear(); 1097 PendingConstrainedFPStrict.clear(); 1098 CurInst = nullptr; 1099 HasTailCall = false; 1100 SDNodeOrder = LowestSDNodeOrder; 1101 StatepointLowering.clear(); 1102 } 1103 1104 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1105 DanglingDebugInfoMap.clear(); 1106 } 1107 1108 // Update DAG root to include dependencies on Pending chains. 1109 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1110 SDValue Root = DAG.getRoot(); 1111 1112 if (Pending.empty()) 1113 return Root; 1114 1115 // Add current root to PendingChains, unless we already indirectly 1116 // depend on it. 1117 if (Root.getOpcode() != ISD::EntryToken) { 1118 unsigned i = 0, e = Pending.size(); 1119 for (; i != e; ++i) { 1120 assert(Pending[i].getNode()->getNumOperands() > 1); 1121 if (Pending[i].getNode()->getOperand(0) == Root) 1122 break; // Don't add the root if we already indirectly depend on it. 1123 } 1124 1125 if (i == e) 1126 Pending.push_back(Root); 1127 } 1128 1129 if (Pending.size() == 1) 1130 Root = Pending[0]; 1131 else 1132 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1133 1134 DAG.setRoot(Root); 1135 Pending.clear(); 1136 return Root; 1137 } 1138 1139 SDValue SelectionDAGBuilder::getMemoryRoot() { 1140 return updateRoot(PendingLoads); 1141 } 1142 1143 SDValue SelectionDAGBuilder::getRoot() { 1144 // Chain up all pending constrained intrinsics together with all 1145 // pending loads, by simply appending them to PendingLoads and 1146 // then calling getMemoryRoot(). 1147 PendingLoads.reserve(PendingLoads.size() + 1148 PendingConstrainedFP.size() + 1149 PendingConstrainedFPStrict.size()); 1150 PendingLoads.append(PendingConstrainedFP.begin(), 1151 PendingConstrainedFP.end()); 1152 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1153 PendingConstrainedFPStrict.end()); 1154 PendingConstrainedFP.clear(); 1155 PendingConstrainedFPStrict.clear(); 1156 return getMemoryRoot(); 1157 } 1158 1159 SDValue SelectionDAGBuilder::getControlRoot() { 1160 // We need to emit pending fpexcept.strict constrained intrinsics, 1161 // so append them to the PendingExports list. 1162 PendingExports.append(PendingConstrainedFPStrict.begin(), 1163 PendingConstrainedFPStrict.end()); 1164 PendingConstrainedFPStrict.clear(); 1165 return updateRoot(PendingExports); 1166 } 1167 1168 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1169 DILocalVariable *Variable, 1170 DIExpression *Expression, 1171 DebugLoc DL) { 1172 assert(Variable && "Missing variable"); 1173 1174 // Check if address has undef value. 1175 if (!Address || isa<UndefValue>(Address) || 1176 (Address->use_empty() && !isa<Argument>(Address))) { 1177 LLVM_DEBUG( 1178 dbgs() 1179 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1180 return; 1181 } 1182 1183 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1184 1185 SDValue &N = NodeMap[Address]; 1186 if (!N.getNode() && isa<Argument>(Address)) 1187 // Check unused arguments map. 1188 N = UnusedArgNodeMap[Address]; 1189 SDDbgValue *SDV; 1190 if (N.getNode()) { 1191 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1192 Address = BCI->getOperand(0); 1193 // Parameters are handled specially. 1194 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1195 if (IsParameter && FINode) { 1196 // Byval parameter. We have a frame index at this point. 1197 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1198 /*IsIndirect*/ true, DL, SDNodeOrder); 1199 } else if (isa<Argument>(Address)) { 1200 // Address is an argument, so try to emit its dbg value using 1201 // virtual register info from the FuncInfo.ValueMap. 1202 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1203 FuncArgumentDbgValueKind::Declare, N); 1204 return; 1205 } else { 1206 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1207 true, DL, SDNodeOrder); 1208 } 1209 DAG.AddDbgValue(SDV, IsParameter); 1210 } else { 1211 // If Address is an argument then try to emit its dbg value using 1212 // virtual register info from the FuncInfo.ValueMap. 1213 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1214 FuncArgumentDbgValueKind::Declare, N)) { 1215 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1216 << " (could not emit func-arg dbg_value)\n"); 1217 } 1218 } 1219 return; 1220 } 1221 1222 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1223 // Add SDDbgValue nodes for any var locs here. Do so before updating 1224 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1225 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1226 // Add SDDbgValue nodes for any var locs here. Do so before updating 1227 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1228 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1229 It != End; ++It) { 1230 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1231 dropDanglingDebugInfo(Var, It->Expr); 1232 if (It->Values.isKillLocation(It->Expr)) { 1233 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1234 continue; 1235 } 1236 SmallVector<Value *> Values(It->Values.location_ops()); 1237 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1238 It->Values.hasArgList())) { 1239 SmallVector<Value *, 4> Vals; 1240 for (Value *V : It->Values.location_ops()) 1241 Vals.push_back(V); 1242 addDanglingDebugInfo(Vals, 1243 FnVarLocs->getDILocalVariable(It->VariableID), 1244 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1245 } 1246 } 1247 } 1248 1249 // We must skip DbgVariableRecords if they've already been processed above as 1250 // we have just emitted the debug values resulting from assignment tracking 1251 // analysis, making any existing DbgVariableRecords redundant (and probably 1252 // less correct). We still need to process DbgLabelRecords. This does sink 1253 // DbgLabelRecords to the bottom of the group of debug records. That sholdn't 1254 // be important as it does so deterministcally and ordering between 1255 // DbgLabelRecords and DbgVariableRecords is immaterial (other than for MIR/IR 1256 // printing). 1257 bool SkipDbgVariableRecords = DAG.getFunctionVarLocs(); 1258 // Is there is any debug-info attached to this instruction, in the form of 1259 // DbgRecord non-instruction debug-info records. 1260 for (DbgRecord &DR : I.getDbgRecordRange()) { 1261 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 1262 assert(DLR->getLabel() && "Missing label"); 1263 SDDbgLabel *SDV = 1264 DAG.getDbgLabel(DLR->getLabel(), DLR->getDebugLoc(), SDNodeOrder); 1265 DAG.AddDbgLabel(SDV); 1266 continue; 1267 } 1268 1269 if (SkipDbgVariableRecords) 1270 continue; 1271 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 1272 DILocalVariable *Variable = DVR.getVariable(); 1273 DIExpression *Expression = DVR.getExpression(); 1274 dropDanglingDebugInfo(Variable, Expression); 1275 1276 if (DVR.getType() == DbgVariableRecord::LocationType::Declare) { 1277 if (FuncInfo.PreprocessedDVRDeclares.contains(&DVR)) 1278 continue; 1279 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DVR 1280 << "\n"); 1281 handleDebugDeclare(DVR.getVariableLocationOp(0), Variable, Expression, 1282 DVR.getDebugLoc()); 1283 continue; 1284 } 1285 1286 // A DbgVariableRecord with no locations is a kill location. 1287 SmallVector<Value *, 4> Values(DVR.location_ops()); 1288 if (Values.empty()) { 1289 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1290 SDNodeOrder); 1291 continue; 1292 } 1293 1294 // A DbgVariableRecord with an undef or absent location is also a kill 1295 // location. 1296 if (llvm::any_of(Values, 1297 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1298 handleKillDebugValue(Variable, Expression, DVR.getDebugLoc(), 1299 SDNodeOrder); 1300 continue; 1301 } 1302 1303 bool IsVariadic = DVR.hasArgList(); 1304 if (!handleDebugValue(Values, Variable, Expression, DVR.getDebugLoc(), 1305 SDNodeOrder, IsVariadic)) { 1306 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1307 DVR.getDebugLoc(), SDNodeOrder); 1308 } 1309 } 1310 } 1311 1312 void SelectionDAGBuilder::visit(const Instruction &I) { 1313 visitDbgInfo(I); 1314 1315 // Set up outgoing PHI node register values before emitting the terminator. 1316 if (I.isTerminator()) { 1317 HandlePHINodesInSuccessorBlocks(I.getParent()); 1318 } 1319 1320 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1321 if (!isa<DbgInfoIntrinsic>(I)) 1322 ++SDNodeOrder; 1323 1324 CurInst = &I; 1325 1326 // Set inserted listener only if required. 1327 bool NodeInserted = false; 1328 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1329 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1330 MDNode *MMRA = I.getMetadata(LLVMContext::MD_mmra); 1331 if (PCSectionsMD || MMRA) { 1332 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1333 DAG, [&](SDNode *) { NodeInserted = true; }); 1334 } 1335 1336 visit(I.getOpcode(), I); 1337 1338 if (!I.isTerminator() && !HasTailCall && 1339 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1340 CopyToExportRegsIfNeeded(&I); 1341 1342 // Handle metadata. 1343 if (PCSectionsMD || MMRA) { 1344 auto It = NodeMap.find(&I); 1345 if (It != NodeMap.end()) { 1346 if (PCSectionsMD) 1347 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1348 if (MMRA) 1349 DAG.addMMRAMetadata(It->second.getNode(), MMRA); 1350 } else if (NodeInserted) { 1351 // This should not happen; if it does, don't let it go unnoticed so we can 1352 // fix it. Relevant visit*() function is probably missing a setValue(). 1353 errs() << "warning: loosing !pcsections and/or !mmra metadata [" 1354 << I.getModule()->getName() << "]\n"; 1355 LLVM_DEBUG(I.dump()); 1356 assert(false); 1357 } 1358 } 1359 1360 CurInst = nullptr; 1361 } 1362 1363 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1364 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1365 } 1366 1367 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1368 // Note: this doesn't use InstVisitor, because it has to work with 1369 // ConstantExpr's in addition to instructions. 1370 switch (Opcode) { 1371 default: llvm_unreachable("Unknown instruction type encountered!"); 1372 // Build the switch statement using the Instruction.def file. 1373 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1374 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1375 #include "llvm/IR/Instruction.def" 1376 } 1377 } 1378 1379 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1380 DILocalVariable *Variable, 1381 DebugLoc DL, unsigned Order, 1382 SmallVectorImpl<Value *> &Values, 1383 DIExpression *Expression) { 1384 // For variadic dbg_values we will now insert an undef. 1385 // FIXME: We can potentially recover these! 1386 SmallVector<SDDbgOperand, 2> Locs; 1387 for (const Value *V : Values) { 1388 auto *Undef = UndefValue::get(V->getType()); 1389 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1390 } 1391 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1392 /*IsIndirect=*/false, DL, Order, 1393 /*IsVariadic=*/true); 1394 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1395 return true; 1396 } 1397 1398 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1399 DILocalVariable *Var, 1400 DIExpression *Expr, 1401 bool IsVariadic, DebugLoc DL, 1402 unsigned Order) { 1403 if (IsVariadic) { 1404 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1405 return; 1406 } 1407 // TODO: Dangling debug info will eventually either be resolved or produce 1408 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1409 // between the original dbg.value location and its resolved DBG_VALUE, 1410 // which we should ideally fill with an extra Undef DBG_VALUE. 1411 assert(Values.size() == 1); 1412 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1413 } 1414 1415 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1416 const DIExpression *Expr) { 1417 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1418 DIVariable *DanglingVariable = DDI.getVariable(); 1419 DIExpression *DanglingExpr = DDI.getExpression(); 1420 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1421 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1422 << printDDI(nullptr, DDI) << "\n"); 1423 return true; 1424 } 1425 return false; 1426 }; 1427 1428 for (auto &DDIMI : DanglingDebugInfoMap) { 1429 DanglingDebugInfoVector &DDIV = DDIMI.second; 1430 1431 // If debug info is to be dropped, run it through final checks to see 1432 // whether it can be salvaged. 1433 for (auto &DDI : DDIV) 1434 if (isMatchingDbgValue(DDI)) 1435 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1436 1437 erase_if(DDIV, isMatchingDbgValue); 1438 } 1439 } 1440 1441 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1442 // generate the debug data structures now that we've seen its definition. 1443 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1444 SDValue Val) { 1445 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1446 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1447 return; 1448 1449 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1450 for (auto &DDI : DDIV) { 1451 DebugLoc DL = DDI.getDebugLoc(); 1452 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1453 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1454 DILocalVariable *Variable = DDI.getVariable(); 1455 DIExpression *Expr = DDI.getExpression(); 1456 assert(Variable->isValidLocationForIntrinsic(DL) && 1457 "Expected inlined-at fields to agree"); 1458 SDDbgValue *SDV; 1459 if (Val.getNode()) { 1460 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1461 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1462 // we couldn't resolve it directly when examining the DbgValue intrinsic 1463 // in the first place we should not be more successful here). Unless we 1464 // have some test case that prove this to be correct we should avoid 1465 // calling EmitFuncArgumentDbgValue here. 1466 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1467 FuncArgumentDbgValueKind::Value, Val)) { 1468 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1469 << printDDI(V, DDI) << "\n"); 1470 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1471 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1472 // inserted after the definition of Val when emitting the instructions 1473 // after ISel. An alternative could be to teach 1474 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1475 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1476 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1477 << ValSDNodeOrder << "\n"); 1478 SDV = getDbgValue(Val, Variable, Expr, DL, 1479 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1480 DAG.AddDbgValue(SDV, false); 1481 } else 1482 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1483 << printDDI(V, DDI) 1484 << " in EmitFuncArgumentDbgValue\n"); 1485 } else { 1486 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1487 << "\n"); 1488 auto Undef = UndefValue::get(V->getType()); 1489 auto SDV = 1490 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1491 DAG.AddDbgValue(SDV, false); 1492 } 1493 } 1494 DDIV.clear(); 1495 } 1496 1497 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1498 DanglingDebugInfo &DDI) { 1499 // TODO: For the variadic implementation, instead of only checking the fail 1500 // state of `handleDebugValue`, we need know specifically which values were 1501 // invalid, so that we attempt to salvage only those values when processing 1502 // a DIArgList. 1503 const Value *OrigV = V; 1504 DILocalVariable *Var = DDI.getVariable(); 1505 DIExpression *Expr = DDI.getExpression(); 1506 DebugLoc DL = DDI.getDebugLoc(); 1507 unsigned SDOrder = DDI.getSDNodeOrder(); 1508 1509 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1510 // that DW_OP_stack_value is desired. 1511 bool StackValue = true; 1512 1513 // Can this Value can be encoded without any further work? 1514 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1515 return; 1516 1517 // Attempt to salvage back through as many instructions as possible. Bail if 1518 // a non-instruction is seen, such as a constant expression or global 1519 // variable. FIXME: Further work could recover those too. 1520 while (isa<Instruction>(V)) { 1521 const Instruction &VAsInst = *cast<const Instruction>(V); 1522 // Temporary "0", awaiting real implementation. 1523 SmallVector<uint64_t, 16> Ops; 1524 SmallVector<Value *, 4> AdditionalValues; 1525 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1526 Expr->getNumLocationOperands(), Ops, 1527 AdditionalValues); 1528 // If we cannot salvage any further, and haven't yet found a suitable debug 1529 // expression, bail out. 1530 if (!V) 1531 break; 1532 1533 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1534 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1535 // here for variadic dbg_values, remove that condition. 1536 if (!AdditionalValues.empty()) 1537 break; 1538 1539 // New value and expr now represent this debuginfo. 1540 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1541 1542 // Some kind of simplification occurred: check whether the operand of the 1543 // salvaged debug expression can be encoded in this DAG. 1544 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1545 LLVM_DEBUG( 1546 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1547 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1548 return; 1549 } 1550 } 1551 1552 // This was the final opportunity to salvage this debug information, and it 1553 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1554 // any earlier variable location. 1555 assert(OrigV && "V shouldn't be null"); 1556 auto *Undef = UndefValue::get(OrigV->getType()); 1557 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1558 DAG.AddDbgValue(SDV, false); 1559 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1560 << printDDI(OrigV, DDI) << "\n"); 1561 } 1562 1563 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1564 DIExpression *Expr, 1565 DebugLoc DbgLoc, 1566 unsigned Order) { 1567 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1568 DIExpression *NewExpr = 1569 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1570 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1571 /*IsVariadic*/ false); 1572 } 1573 1574 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1575 DILocalVariable *Var, 1576 DIExpression *Expr, DebugLoc DbgLoc, 1577 unsigned Order, bool IsVariadic) { 1578 if (Values.empty()) 1579 return true; 1580 1581 // Filter EntryValue locations out early. 1582 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1583 return true; 1584 1585 SmallVector<SDDbgOperand> LocationOps; 1586 SmallVector<SDNode *> Dependencies; 1587 for (const Value *V : Values) { 1588 // Constant value. 1589 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1590 isa<ConstantPointerNull>(V)) { 1591 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1592 continue; 1593 } 1594 1595 // Look through IntToPtr constants. 1596 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1597 if (CE->getOpcode() == Instruction::IntToPtr) { 1598 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1599 continue; 1600 } 1601 1602 // If the Value is a frame index, we can create a FrameIndex debug value 1603 // without relying on the DAG at all. 1604 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1605 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1606 if (SI != FuncInfo.StaticAllocaMap.end()) { 1607 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1608 continue; 1609 } 1610 } 1611 1612 // Do not use getValue() in here; we don't want to generate code at 1613 // this point if it hasn't been done yet. 1614 SDValue N = NodeMap[V]; 1615 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1616 N = UnusedArgNodeMap[V]; 1617 if (N.getNode()) { 1618 // Only emit func arg dbg value for non-variadic dbg.values for now. 1619 if (!IsVariadic && 1620 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1621 FuncArgumentDbgValueKind::Value, N)) 1622 return true; 1623 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1624 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1625 // describe stack slot locations. 1626 // 1627 // Consider "int x = 0; int *px = &x;". There are two kinds of 1628 // interesting debug values here after optimization: 1629 // 1630 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1631 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1632 // 1633 // Both describe the direct values of their associated variables. 1634 Dependencies.push_back(N.getNode()); 1635 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1636 continue; 1637 } 1638 LocationOps.emplace_back( 1639 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1640 continue; 1641 } 1642 1643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1644 // Special rules apply for the first dbg.values of parameter variables in a 1645 // function. Identify them by the fact they reference Argument Values, that 1646 // they're parameters, and they are parameters of the current function. We 1647 // need to let them dangle until they get an SDNode. 1648 bool IsParamOfFunc = 1649 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1650 if (IsParamOfFunc) 1651 return false; 1652 1653 // The value is not used in this block yet (or it would have an SDNode). 1654 // We still want the value to appear for the user if possible -- if it has 1655 // an associated VReg, we can refer to that instead. 1656 auto VMI = FuncInfo.ValueMap.find(V); 1657 if (VMI != FuncInfo.ValueMap.end()) { 1658 unsigned Reg = VMI->second; 1659 // If this is a PHI node, it may be split up into several MI PHI nodes 1660 // (in FunctionLoweringInfo::set). 1661 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1662 V->getType(), std::nullopt); 1663 if (RFV.occupiesMultipleRegs()) { 1664 // FIXME: We could potentially support variadic dbg_values here. 1665 if (IsVariadic) 1666 return false; 1667 unsigned Offset = 0; 1668 unsigned BitsToDescribe = 0; 1669 if (auto VarSize = Var->getSizeInBits()) 1670 BitsToDescribe = *VarSize; 1671 if (auto Fragment = Expr->getFragmentInfo()) 1672 BitsToDescribe = Fragment->SizeInBits; 1673 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1674 // Bail out if all bits are described already. 1675 if (Offset >= BitsToDescribe) 1676 break; 1677 // TODO: handle scalable vectors. 1678 unsigned RegisterSize = RegAndSize.second; 1679 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1680 ? BitsToDescribe - Offset 1681 : RegisterSize; 1682 auto FragmentExpr = DIExpression::createFragmentExpression( 1683 Expr, Offset, FragmentSize); 1684 if (!FragmentExpr) 1685 continue; 1686 SDDbgValue *SDV = DAG.getVRegDbgValue( 1687 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, Order); 1688 DAG.AddDbgValue(SDV, false); 1689 Offset += RegisterSize; 1690 } 1691 return true; 1692 } 1693 // We can use simple vreg locations for variadic dbg_values as well. 1694 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1695 continue; 1696 } 1697 // We failed to create a SDDbgOperand for V. 1698 return false; 1699 } 1700 1701 // We have created a SDDbgOperand for each Value in Values. 1702 assert(!LocationOps.empty()); 1703 SDDbgValue *SDV = 1704 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1705 /*IsIndirect=*/false, DbgLoc, Order, IsVariadic); 1706 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1707 return true; 1708 } 1709 1710 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1711 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1712 for (auto &Pair : DanglingDebugInfoMap) 1713 for (auto &DDI : Pair.second) 1714 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1715 clearDanglingDebugInfo(); 1716 } 1717 1718 /// getCopyFromRegs - If there was virtual register allocated for the value V 1719 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1720 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1721 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1722 SDValue Result; 1723 1724 if (It != FuncInfo.ValueMap.end()) { 1725 Register InReg = It->second; 1726 1727 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1728 DAG.getDataLayout(), InReg, Ty, 1729 std::nullopt); // This is not an ABI copy. 1730 SDValue Chain = DAG.getEntryNode(); 1731 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1732 V); 1733 resolveDanglingDebugInfo(V, Result); 1734 } 1735 1736 return Result; 1737 } 1738 1739 /// getValue - Return an SDValue for the given Value. 1740 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1741 // If we already have an SDValue for this value, use it. It's important 1742 // to do this first, so that we don't create a CopyFromReg if we already 1743 // have a regular SDValue. 1744 SDValue &N = NodeMap[V]; 1745 if (N.getNode()) return N; 1746 1747 // If there's a virtual register allocated and initialized for this 1748 // value, use it. 1749 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1750 return copyFromReg; 1751 1752 // Otherwise create a new SDValue and remember it. 1753 SDValue Val = getValueImpl(V); 1754 NodeMap[V] = Val; 1755 resolveDanglingDebugInfo(V, Val); 1756 return Val; 1757 } 1758 1759 /// getNonRegisterValue - Return an SDValue for the given Value, but 1760 /// don't look in FuncInfo.ValueMap for a virtual register. 1761 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1762 // If we already have an SDValue for this value, use it. 1763 SDValue &N = NodeMap[V]; 1764 if (N.getNode()) { 1765 if (isIntOrFPConstant(N)) { 1766 // Remove the debug location from the node as the node is about to be used 1767 // in a location which may differ from the original debug location. This 1768 // is relevant to Constant and ConstantFP nodes because they can appear 1769 // as constant expressions inside PHI nodes. 1770 N->setDebugLoc(DebugLoc()); 1771 } 1772 return N; 1773 } 1774 1775 // Otherwise create a new SDValue and remember it. 1776 SDValue Val = getValueImpl(V); 1777 NodeMap[V] = Val; 1778 resolveDanglingDebugInfo(V, Val); 1779 return Val; 1780 } 1781 1782 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1783 /// Create an SDValue for the given value. 1784 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 1787 if (const Constant *C = dyn_cast<Constant>(V)) { 1788 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1789 1790 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1791 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1792 1793 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1794 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1795 1796 if (isa<ConstantPointerNull>(C)) { 1797 unsigned AS = V->getType()->getPointerAddressSpace(); 1798 return DAG.getConstant(0, getCurSDLoc(), 1799 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1800 } 1801 1802 if (match(C, m_VScale())) 1803 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1804 1805 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1806 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1807 1808 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1809 return DAG.getUNDEF(VT); 1810 1811 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1812 visit(CE->getOpcode(), *CE); 1813 SDValue N1 = NodeMap[V]; 1814 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1815 return N1; 1816 } 1817 1818 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1819 SmallVector<SDValue, 4> Constants; 1820 for (const Use &U : C->operands()) { 1821 SDNode *Val = getValue(U).getNode(); 1822 // If the operand is an empty aggregate, there are no values. 1823 if (!Val) continue; 1824 // Add each leaf value from the operand to the Constants list 1825 // to form a flattened list of all the values. 1826 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1827 Constants.push_back(SDValue(Val, i)); 1828 } 1829 1830 return DAG.getMergeValues(Constants, getCurSDLoc()); 1831 } 1832 1833 if (const ConstantDataSequential *CDS = 1834 dyn_cast<ConstantDataSequential>(C)) { 1835 SmallVector<SDValue, 4> Ops; 1836 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1837 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1838 // Add each leaf value from the operand to the Constants list 1839 // to form a flattened list of all the values. 1840 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1841 Ops.push_back(SDValue(Val, i)); 1842 } 1843 1844 if (isa<ArrayType>(CDS->getType())) 1845 return DAG.getMergeValues(Ops, getCurSDLoc()); 1846 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1847 } 1848 1849 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1850 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1851 "Unknown struct or array constant!"); 1852 1853 SmallVector<EVT, 4> ValueVTs; 1854 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1855 unsigned NumElts = ValueVTs.size(); 1856 if (NumElts == 0) 1857 return SDValue(); // empty struct 1858 SmallVector<SDValue, 4> Constants(NumElts); 1859 for (unsigned i = 0; i != NumElts; ++i) { 1860 EVT EltVT = ValueVTs[i]; 1861 if (isa<UndefValue>(C)) 1862 Constants[i] = DAG.getUNDEF(EltVT); 1863 else if (EltVT.isFloatingPoint()) 1864 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1865 else 1866 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1867 } 1868 1869 return DAG.getMergeValues(Constants, getCurSDLoc()); 1870 } 1871 1872 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1873 return DAG.getBlockAddress(BA, VT); 1874 1875 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1876 return getValue(Equiv->getGlobalValue()); 1877 1878 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1879 return getValue(NC->getGlobalValue()); 1880 1881 if (VT == MVT::aarch64svcount) { 1882 assert(C->isNullValue() && "Can only zero this target type!"); 1883 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1884 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1885 } 1886 1887 VectorType *VecTy = cast<VectorType>(V->getType()); 1888 1889 // Now that we know the number and type of the elements, get that number of 1890 // elements into the Ops array based on what kind of constant it is. 1891 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1892 SmallVector<SDValue, 16> Ops; 1893 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1894 for (unsigned i = 0; i != NumElements; ++i) 1895 Ops.push_back(getValue(CV->getOperand(i))); 1896 1897 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1898 } 1899 1900 if (isa<ConstantAggregateZero>(C)) { 1901 EVT EltVT = 1902 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1903 1904 SDValue Op; 1905 if (EltVT.isFloatingPoint()) 1906 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1907 else 1908 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1909 1910 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1911 } 1912 1913 llvm_unreachable("Unknown vector constant"); 1914 } 1915 1916 // If this is a static alloca, generate it as the frameindex instead of 1917 // computation. 1918 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1919 DenseMap<const AllocaInst*, int>::iterator SI = 1920 FuncInfo.StaticAllocaMap.find(AI); 1921 if (SI != FuncInfo.StaticAllocaMap.end()) 1922 return DAG.getFrameIndex( 1923 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1924 } 1925 1926 // If this is an instruction which fast-isel has deferred, select it now. 1927 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1928 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1929 1930 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1931 Inst->getType(), std::nullopt); 1932 SDValue Chain = DAG.getEntryNode(); 1933 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1934 } 1935 1936 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1937 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1938 1939 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1940 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1941 1942 llvm_unreachable("Can't get register for value!"); 1943 } 1944 1945 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1946 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1947 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1948 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1949 bool IsSEH = isAsynchronousEHPersonality(Pers); 1950 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1951 if (!IsSEH) 1952 CatchPadMBB->setIsEHScopeEntry(); 1953 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1954 if (IsMSVCCXX || IsCoreCLR) 1955 CatchPadMBB->setIsEHFuncletEntry(); 1956 } 1957 1958 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1959 // Update machine-CFG edge. 1960 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1961 FuncInfo.MBB->addSuccessor(TargetMBB); 1962 TargetMBB->setIsEHCatchretTarget(true); 1963 DAG.getMachineFunction().setHasEHCatchret(true); 1964 1965 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1966 bool IsSEH = isAsynchronousEHPersonality(Pers); 1967 if (IsSEH) { 1968 // If this is not a fall-through branch or optimizations are switched off, 1969 // emit the branch. 1970 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1971 TM.getOptLevel() == CodeGenOptLevel::None) 1972 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1973 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1974 return; 1975 } 1976 1977 // Figure out the funclet membership for the catchret's successor. 1978 // This will be used by the FuncletLayout pass to determine how to order the 1979 // BB's. 1980 // A 'catchret' returns to the outer scope's color. 1981 Value *ParentPad = I.getCatchSwitchParentPad(); 1982 const BasicBlock *SuccessorColor; 1983 if (isa<ConstantTokenNone>(ParentPad)) 1984 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1985 else 1986 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1987 assert(SuccessorColor && "No parent funclet for catchret!"); 1988 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1989 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1990 1991 // Create the terminator node. 1992 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1993 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1994 DAG.getBasicBlock(SuccessorColorMBB)); 1995 DAG.setRoot(Ret); 1996 } 1997 1998 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1999 // Don't emit any special code for the cleanuppad instruction. It just marks 2000 // the start of an EH scope/funclet. 2001 FuncInfo.MBB->setIsEHScopeEntry(); 2002 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2003 if (Pers != EHPersonality::Wasm_CXX) { 2004 FuncInfo.MBB->setIsEHFuncletEntry(); 2005 FuncInfo.MBB->setIsCleanupFuncletEntry(); 2006 } 2007 } 2008 2009 // In wasm EH, even though a catchpad may not catch an exception if a tag does 2010 // not match, it is OK to add only the first unwind destination catchpad to the 2011 // successors, because there will be at least one invoke instruction within the 2012 // catch scope that points to the next unwind destination, if one exists, so 2013 // CFGSort cannot mess up with BB sorting order. 2014 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 2015 // call within them, and catchpads only consisting of 'catch (...)' have a 2016 // '__cxa_end_catch' call within them, both of which generate invokes in case 2017 // the next unwind destination exists, i.e., the next unwind destination is not 2018 // the caller.) 2019 // 2020 // Having at most one EH pad successor is also simpler and helps later 2021 // transformations. 2022 // 2023 // For example, 2024 // current: 2025 // invoke void @foo to ... unwind label %catch.dispatch 2026 // catch.dispatch: 2027 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2028 // catch.start: 2029 // ... 2030 // ... in this BB or some other child BB dominated by this BB there will be an 2031 // invoke that points to 'next' BB as an unwind destination 2032 // 2033 // next: ; We don't need to add this to 'current' BB's successor 2034 // ... 2035 static void findWasmUnwindDestinations( 2036 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2037 BranchProbability Prob, 2038 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2039 &UnwindDests) { 2040 while (EHPadBB) { 2041 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2042 if (isa<CleanupPadInst>(Pad)) { 2043 // Stop on cleanup pads. 2044 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2045 UnwindDests.back().first->setIsEHScopeEntry(); 2046 break; 2047 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2048 // Add the catchpad handlers to the possible destinations. We don't 2049 // continue to the unwind destination of the catchswitch for wasm. 2050 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2051 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2052 UnwindDests.back().first->setIsEHScopeEntry(); 2053 } 2054 break; 2055 } else { 2056 continue; 2057 } 2058 } 2059 } 2060 2061 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2062 /// many places it could ultimately go. In the IR, we have a single unwind 2063 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2064 /// This function skips over imaginary basic blocks that hold catchswitch 2065 /// instructions, and finds all the "real" machine 2066 /// basic block destinations. As those destinations may not be successors of 2067 /// EHPadBB, here we also calculate the edge probability to those destinations. 2068 /// The passed-in Prob is the edge probability to EHPadBB. 2069 static void findUnwindDestinations( 2070 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2071 BranchProbability Prob, 2072 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2073 &UnwindDests) { 2074 EHPersonality Personality = 2075 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2076 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2077 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2078 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2079 bool IsSEH = isAsynchronousEHPersonality(Personality); 2080 2081 if (IsWasmCXX) { 2082 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2083 assert(UnwindDests.size() <= 1 && 2084 "There should be at most one unwind destination for wasm"); 2085 return; 2086 } 2087 2088 while (EHPadBB) { 2089 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2090 BasicBlock *NewEHPadBB = nullptr; 2091 if (isa<LandingPadInst>(Pad)) { 2092 // Stop on landingpads. They are not funclets. 2093 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2094 break; 2095 } else if (isa<CleanupPadInst>(Pad)) { 2096 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2097 // personalities. 2098 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2099 UnwindDests.back().first->setIsEHScopeEntry(); 2100 UnwindDests.back().first->setIsEHFuncletEntry(); 2101 break; 2102 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2103 // Add the catchpad handlers to the possible destinations. 2104 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2105 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2106 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2107 if (IsMSVCCXX || IsCoreCLR) 2108 UnwindDests.back().first->setIsEHFuncletEntry(); 2109 if (!IsSEH) 2110 UnwindDests.back().first->setIsEHScopeEntry(); 2111 } 2112 NewEHPadBB = CatchSwitch->getUnwindDest(); 2113 } else { 2114 continue; 2115 } 2116 2117 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2118 if (BPI && NewEHPadBB) 2119 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2120 EHPadBB = NewEHPadBB; 2121 } 2122 } 2123 2124 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2125 // Update successor info. 2126 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2127 auto UnwindDest = I.getUnwindDest(); 2128 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2129 BranchProbability UnwindDestProb = 2130 (BPI && UnwindDest) 2131 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2132 : BranchProbability::getZero(); 2133 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2134 for (auto &UnwindDest : UnwindDests) { 2135 UnwindDest.first->setIsEHPad(); 2136 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2137 } 2138 FuncInfo.MBB->normalizeSuccProbs(); 2139 2140 // Create the terminator node. 2141 SDValue Ret = 2142 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2143 DAG.setRoot(Ret); 2144 } 2145 2146 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2147 report_fatal_error("visitCatchSwitch not yet implemented!"); 2148 } 2149 2150 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2152 auto &DL = DAG.getDataLayout(); 2153 SDValue Chain = getControlRoot(); 2154 SmallVector<ISD::OutputArg, 8> Outs; 2155 SmallVector<SDValue, 8> OutVals; 2156 2157 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2158 // lower 2159 // 2160 // %val = call <ty> @llvm.experimental.deoptimize() 2161 // ret <ty> %val 2162 // 2163 // differently. 2164 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2165 LowerDeoptimizingReturn(); 2166 return; 2167 } 2168 2169 if (!FuncInfo.CanLowerReturn) { 2170 unsigned DemoteReg = FuncInfo.DemoteRegister; 2171 const Function *F = I.getParent()->getParent(); 2172 2173 // Emit a store of the return value through the virtual register. 2174 // Leave Outs empty so that LowerReturn won't try to load return 2175 // registers the usual way. 2176 SmallVector<EVT, 1> PtrValueVTs; 2177 ComputeValueVTs(TLI, DL, 2178 PointerType::get(F->getContext(), 2179 DAG.getDataLayout().getAllocaAddrSpace()), 2180 PtrValueVTs); 2181 2182 SDValue RetPtr = 2183 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2184 SDValue RetOp = getValue(I.getOperand(0)); 2185 2186 SmallVector<EVT, 4> ValueVTs, MemVTs; 2187 SmallVector<uint64_t, 4> Offsets; 2188 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2189 &Offsets, 0); 2190 unsigned NumValues = ValueVTs.size(); 2191 2192 SmallVector<SDValue, 4> Chains(NumValues); 2193 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2194 for (unsigned i = 0; i != NumValues; ++i) { 2195 // An aggregate return value cannot wrap around the address space, so 2196 // offsets to its parts don't wrap either. 2197 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2198 TypeSize::getFixed(Offsets[i])); 2199 2200 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2201 if (MemVTs[i] != ValueVTs[i]) 2202 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2203 Chains[i] = DAG.getStore( 2204 Chain, getCurSDLoc(), Val, 2205 // FIXME: better loc info would be nice. 2206 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2207 commonAlignment(BaseAlign, Offsets[i])); 2208 } 2209 2210 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2211 MVT::Other, Chains); 2212 } else if (I.getNumOperands() != 0) { 2213 SmallVector<EVT, 4> ValueVTs; 2214 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2215 unsigned NumValues = ValueVTs.size(); 2216 if (NumValues) { 2217 SDValue RetOp = getValue(I.getOperand(0)); 2218 2219 const Function *F = I.getParent()->getParent(); 2220 2221 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2222 I.getOperand(0)->getType(), F->getCallingConv(), 2223 /*IsVarArg*/ false, DL); 2224 2225 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2226 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2227 ExtendKind = ISD::SIGN_EXTEND; 2228 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2229 ExtendKind = ISD::ZERO_EXTEND; 2230 2231 LLVMContext &Context = F->getContext(); 2232 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2233 2234 for (unsigned j = 0; j != NumValues; ++j) { 2235 EVT VT = ValueVTs[j]; 2236 2237 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2238 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2239 2240 CallingConv::ID CC = F->getCallingConv(); 2241 2242 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2243 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2244 SmallVector<SDValue, 4> Parts(NumParts); 2245 getCopyToParts(DAG, getCurSDLoc(), 2246 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2247 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2248 2249 // 'inreg' on function refers to return value 2250 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2251 if (RetInReg) 2252 Flags.setInReg(); 2253 2254 if (I.getOperand(0)->getType()->isPointerTy()) { 2255 Flags.setPointer(); 2256 Flags.setPointerAddrSpace( 2257 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2258 } 2259 2260 if (NeedsRegBlock) { 2261 Flags.setInConsecutiveRegs(); 2262 if (j == NumValues - 1) 2263 Flags.setInConsecutiveRegsLast(); 2264 } 2265 2266 // Propagate extension type if any 2267 if (ExtendKind == ISD::SIGN_EXTEND) 2268 Flags.setSExt(); 2269 else if (ExtendKind == ISD::ZERO_EXTEND) 2270 Flags.setZExt(); 2271 2272 for (unsigned i = 0; i < NumParts; ++i) { 2273 Outs.push_back(ISD::OutputArg(Flags, 2274 Parts[i].getValueType().getSimpleVT(), 2275 VT, /*isfixed=*/true, 0, 0)); 2276 OutVals.push_back(Parts[i]); 2277 } 2278 } 2279 } 2280 } 2281 2282 // Push in swifterror virtual register as the last element of Outs. This makes 2283 // sure swifterror virtual register will be returned in the swifterror 2284 // physical register. 2285 const Function *F = I.getParent()->getParent(); 2286 if (TLI.supportSwiftError() && 2287 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2288 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2289 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2290 Flags.setSwiftError(); 2291 Outs.push_back(ISD::OutputArg( 2292 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2293 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2294 // Create SDNode for the swifterror virtual register. 2295 OutVals.push_back( 2296 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2297 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2298 EVT(TLI.getPointerTy(DL)))); 2299 } 2300 2301 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2302 CallingConv::ID CallConv = 2303 DAG.getMachineFunction().getFunction().getCallingConv(); 2304 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2305 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2306 2307 // Verify that the target's LowerReturn behaved as expected. 2308 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2309 "LowerReturn didn't return a valid chain!"); 2310 2311 // Update the DAG with the new chain value resulting from return lowering. 2312 DAG.setRoot(Chain); 2313 } 2314 2315 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2316 /// created for it, emit nodes to copy the value into the virtual 2317 /// registers. 2318 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2319 // Skip empty types 2320 if (V->getType()->isEmptyTy()) 2321 return; 2322 2323 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2324 if (VMI != FuncInfo.ValueMap.end()) { 2325 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2326 "Unused value assigned virtual registers!"); 2327 CopyValueToVirtualRegister(V, VMI->second); 2328 } 2329 } 2330 2331 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2332 /// the current basic block, add it to ValueMap now so that we'll get a 2333 /// CopyTo/FromReg. 2334 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2335 // No need to export constants. 2336 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2337 2338 // Already exported? 2339 if (FuncInfo.isExportedInst(V)) return; 2340 2341 Register Reg = FuncInfo.InitializeRegForValue(V); 2342 CopyValueToVirtualRegister(V, Reg); 2343 } 2344 2345 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2346 const BasicBlock *FromBB) { 2347 // The operands of the setcc have to be in this block. We don't know 2348 // how to export them from some other block. 2349 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2350 // Can export from current BB. 2351 if (VI->getParent() == FromBB) 2352 return true; 2353 2354 // Is already exported, noop. 2355 return FuncInfo.isExportedInst(V); 2356 } 2357 2358 // If this is an argument, we can export it if the BB is the entry block or 2359 // if it is already exported. 2360 if (isa<Argument>(V)) { 2361 if (FromBB->isEntryBlock()) 2362 return true; 2363 2364 // Otherwise, can only export this if it is already exported. 2365 return FuncInfo.isExportedInst(V); 2366 } 2367 2368 // Otherwise, constants can always be exported. 2369 return true; 2370 } 2371 2372 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2373 BranchProbability 2374 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2375 const MachineBasicBlock *Dst) const { 2376 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2377 const BasicBlock *SrcBB = Src->getBasicBlock(); 2378 const BasicBlock *DstBB = Dst->getBasicBlock(); 2379 if (!BPI) { 2380 // If BPI is not available, set the default probability as 1 / N, where N is 2381 // the number of successors. 2382 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2383 return BranchProbability(1, SuccSize); 2384 } 2385 return BPI->getEdgeProbability(SrcBB, DstBB); 2386 } 2387 2388 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2389 MachineBasicBlock *Dst, 2390 BranchProbability Prob) { 2391 if (!FuncInfo.BPI) 2392 Src->addSuccessorWithoutProb(Dst); 2393 else { 2394 if (Prob.isUnknown()) 2395 Prob = getEdgeProbability(Src, Dst); 2396 Src->addSuccessor(Dst, Prob); 2397 } 2398 } 2399 2400 static bool InBlock(const Value *V, const BasicBlock *BB) { 2401 if (const Instruction *I = dyn_cast<Instruction>(V)) 2402 return I->getParent() == BB; 2403 return true; 2404 } 2405 2406 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2407 /// This function emits a branch and is used at the leaves of an OR or an 2408 /// AND operator tree. 2409 void 2410 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2411 MachineBasicBlock *TBB, 2412 MachineBasicBlock *FBB, 2413 MachineBasicBlock *CurBB, 2414 MachineBasicBlock *SwitchBB, 2415 BranchProbability TProb, 2416 BranchProbability FProb, 2417 bool InvertCond) { 2418 const BasicBlock *BB = CurBB->getBasicBlock(); 2419 2420 // If the leaf of the tree is a comparison, merge the condition into 2421 // the caseblock. 2422 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2423 // The operands of the cmp have to be in this block. We don't know 2424 // how to export them from some other block. If this is the first block 2425 // of the sequence, no exporting is needed. 2426 if (CurBB == SwitchBB || 2427 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2428 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2429 ISD::CondCode Condition; 2430 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2431 ICmpInst::Predicate Pred = 2432 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2433 Condition = getICmpCondCode(Pred); 2434 } else { 2435 const FCmpInst *FC = cast<FCmpInst>(Cond); 2436 FCmpInst::Predicate Pred = 2437 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2438 Condition = getFCmpCondCode(Pred); 2439 if (TM.Options.NoNaNsFPMath) 2440 Condition = getFCmpCodeWithoutNaN(Condition); 2441 } 2442 2443 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2444 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2445 SL->SwitchCases.push_back(CB); 2446 return; 2447 } 2448 } 2449 2450 // Create a CaseBlock record representing this branch. 2451 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2452 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2453 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2454 SL->SwitchCases.push_back(CB); 2455 } 2456 2457 // Collect dependencies on V recursively. This is used for the cost analysis in 2458 // `shouldKeepJumpConditionsTogether`. 2459 static bool collectInstructionDeps( 2460 SmallMapVector<const Instruction *, bool, 8> *Deps, const Value *V, 2461 SmallMapVector<const Instruction *, bool, 8> *Necessary = nullptr, 2462 unsigned Depth = 0) { 2463 // Return false if we have an incomplete count. 2464 if (Depth >= SelectionDAG::MaxRecursionDepth) 2465 return false; 2466 2467 auto *I = dyn_cast<Instruction>(V); 2468 if (I == nullptr) 2469 return true; 2470 2471 if (Necessary != nullptr) { 2472 // This instruction is necessary for the other side of the condition so 2473 // don't count it. 2474 if (Necessary->contains(I)) 2475 return true; 2476 } 2477 2478 // Already added this dep. 2479 if (!Deps->try_emplace(I, false).second) 2480 return true; 2481 2482 for (unsigned OpIdx = 0, E = I->getNumOperands(); OpIdx < E; ++OpIdx) 2483 if (!collectInstructionDeps(Deps, I->getOperand(OpIdx), Necessary, 2484 Depth + 1)) 2485 return false; 2486 return true; 2487 } 2488 2489 bool SelectionDAGBuilder::shouldKeepJumpConditionsTogether( 2490 const FunctionLoweringInfo &FuncInfo, const BranchInst &I, 2491 Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs, 2492 TargetLoweringBase::CondMergingParams Params) const { 2493 if (I.getNumSuccessors() != 2) 2494 return false; 2495 2496 if (!I.isConditional()) 2497 return false; 2498 2499 if (Params.BaseCost < 0) 2500 return false; 2501 2502 // Baseline cost. 2503 InstructionCost CostThresh = Params.BaseCost; 2504 2505 BranchProbabilityInfo *BPI = nullptr; 2506 if (Params.LikelyBias || Params.UnlikelyBias) 2507 BPI = FuncInfo.BPI; 2508 if (BPI != nullptr) { 2509 // See if we are either likely to get an early out or compute both lhs/rhs 2510 // of the condition. 2511 BasicBlock *IfFalse = I.getSuccessor(0); 2512 BasicBlock *IfTrue = I.getSuccessor(1); 2513 2514 std::optional<bool> Likely; 2515 if (BPI->isEdgeHot(I.getParent(), IfTrue)) 2516 Likely = true; 2517 else if (BPI->isEdgeHot(I.getParent(), IfFalse)) 2518 Likely = false; 2519 2520 if (Likely) { 2521 if (Opc == (*Likely ? Instruction::And : Instruction::Or)) 2522 // Its likely we will have to compute both lhs and rhs of condition 2523 CostThresh += Params.LikelyBias; 2524 else { 2525 if (Params.UnlikelyBias < 0) 2526 return false; 2527 // Its likely we will get an early out. 2528 CostThresh -= Params.UnlikelyBias; 2529 } 2530 } 2531 } 2532 2533 if (CostThresh <= 0) 2534 return false; 2535 2536 // Collect "all" instructions that lhs condition is dependent on. 2537 // Use map for stable iteration (to avoid non-determanism of iteration of 2538 // SmallPtrSet). The `bool` value is just a dummy. 2539 SmallMapVector<const Instruction *, bool, 8> LhsDeps, RhsDeps; 2540 collectInstructionDeps(&LhsDeps, Lhs); 2541 // Collect "all" instructions that rhs condition is dependent on AND are 2542 // dependencies of lhs. This gives us an estimate on which instructions we 2543 // stand to save by splitting the condition. 2544 if (!collectInstructionDeps(&RhsDeps, Rhs, &LhsDeps)) 2545 return false; 2546 // Add the compare instruction itself unless its a dependency on the LHS. 2547 if (const auto *RhsI = dyn_cast<Instruction>(Rhs)) 2548 if (!LhsDeps.contains(RhsI)) 2549 RhsDeps.try_emplace(RhsI, false); 2550 2551 const auto &TLI = DAG.getTargetLoweringInfo(); 2552 const auto &TTI = 2553 TLI.getTargetMachine().getTargetTransformInfo(*I.getFunction()); 2554 2555 InstructionCost CostOfIncluding = 0; 2556 // See if this instruction will need to computed independently of whether RHS 2557 // is. 2558 Value *BrCond = I.getCondition(); 2559 auto ShouldCountInsn = [&RhsDeps, &BrCond](const Instruction *Ins) { 2560 for (const auto *U : Ins->users()) { 2561 // If user is independent of RHS calculation we don't need to count it. 2562 if (auto *UIns = dyn_cast<Instruction>(U)) 2563 if (UIns != BrCond && !RhsDeps.contains(UIns)) 2564 return false; 2565 } 2566 return true; 2567 }; 2568 2569 // Prune instructions from RHS Deps that are dependencies of unrelated 2570 // instructions. The value (SelectionDAG::MaxRecursionDepth) is fairly 2571 // arbitrary and just meant to cap the how much time we spend in the pruning 2572 // loop. Its highly unlikely to come into affect. 2573 const unsigned MaxPruneIters = SelectionDAG::MaxRecursionDepth; 2574 // Stop after a certain point. No incorrectness from including too many 2575 // instructions. 2576 for (unsigned PruneIters = 0; PruneIters < MaxPruneIters; ++PruneIters) { 2577 const Instruction *ToDrop = nullptr; 2578 for (const auto &InsPair : RhsDeps) { 2579 if (!ShouldCountInsn(InsPair.first)) { 2580 ToDrop = InsPair.first; 2581 break; 2582 } 2583 } 2584 if (ToDrop == nullptr) 2585 break; 2586 RhsDeps.erase(ToDrop); 2587 } 2588 2589 for (const auto &InsPair : RhsDeps) { 2590 // Finally accumulate latency that we can only attribute to computing the 2591 // RHS condition. Use latency because we are essentially trying to calculate 2592 // the cost of the dependency chain. 2593 // Possible TODO: We could try to estimate ILP and make this more precise. 2594 CostOfIncluding += 2595 TTI.getInstructionCost(InsPair.first, TargetTransformInfo::TCK_Latency); 2596 2597 if (CostOfIncluding > CostThresh) 2598 return false; 2599 } 2600 return true; 2601 } 2602 2603 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2604 MachineBasicBlock *TBB, 2605 MachineBasicBlock *FBB, 2606 MachineBasicBlock *CurBB, 2607 MachineBasicBlock *SwitchBB, 2608 Instruction::BinaryOps Opc, 2609 BranchProbability TProb, 2610 BranchProbability FProb, 2611 bool InvertCond) { 2612 // Skip over not part of the tree and remember to invert op and operands at 2613 // next level. 2614 Value *NotCond; 2615 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2616 InBlock(NotCond, CurBB->getBasicBlock())) { 2617 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2618 !InvertCond); 2619 return; 2620 } 2621 2622 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2623 const Value *BOpOp0, *BOpOp1; 2624 // Compute the effective opcode for Cond, taking into account whether it needs 2625 // to be inverted, e.g. 2626 // and (not (or A, B)), C 2627 // gets lowered as 2628 // and (and (not A, not B), C) 2629 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2630 if (BOp) { 2631 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2632 ? Instruction::And 2633 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2634 ? Instruction::Or 2635 : (Instruction::BinaryOps)0); 2636 if (InvertCond) { 2637 if (BOpc == Instruction::And) 2638 BOpc = Instruction::Or; 2639 else if (BOpc == Instruction::Or) 2640 BOpc = Instruction::And; 2641 } 2642 } 2643 2644 // If this node is not part of the or/and tree, emit it as a branch. 2645 // Note that all nodes in the tree should have same opcode. 2646 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2647 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2648 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2649 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2650 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2651 TProb, FProb, InvertCond); 2652 return; 2653 } 2654 2655 // Create TmpBB after CurBB. 2656 MachineFunction::iterator BBI(CurBB); 2657 MachineFunction &MF = DAG.getMachineFunction(); 2658 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2659 CurBB->getParent()->insert(++BBI, TmpBB); 2660 2661 if (Opc == Instruction::Or) { 2662 // Codegen X | Y as: 2663 // BB1: 2664 // jmp_if_X TBB 2665 // jmp TmpBB 2666 // TmpBB: 2667 // jmp_if_Y TBB 2668 // jmp FBB 2669 // 2670 2671 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2672 // The requirement is that 2673 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2674 // = TrueProb for original BB. 2675 // Assuming the original probabilities are A and B, one choice is to set 2676 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2677 // A/(1+B) and 2B/(1+B). This choice assumes that 2678 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2679 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2680 // TmpBB, but the math is more complicated. 2681 2682 auto NewTrueProb = TProb / 2; 2683 auto NewFalseProb = TProb / 2 + FProb; 2684 // Emit the LHS condition. 2685 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2686 NewFalseProb, InvertCond); 2687 2688 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2689 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2690 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2691 // Emit the RHS condition into TmpBB. 2692 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2693 Probs[1], InvertCond); 2694 } else { 2695 assert(Opc == Instruction::And && "Unknown merge op!"); 2696 // Codegen X & Y as: 2697 // BB1: 2698 // jmp_if_X TmpBB 2699 // jmp FBB 2700 // TmpBB: 2701 // jmp_if_Y TBB 2702 // jmp FBB 2703 // 2704 // This requires creation of TmpBB after CurBB. 2705 2706 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2707 // The requirement is that 2708 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2709 // = FalseProb for original BB. 2710 // Assuming the original probabilities are A and B, one choice is to set 2711 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2712 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2713 // TrueProb for BB1 * FalseProb for TmpBB. 2714 2715 auto NewTrueProb = TProb + FProb / 2; 2716 auto NewFalseProb = FProb / 2; 2717 // Emit the LHS condition. 2718 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2719 NewFalseProb, InvertCond); 2720 2721 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2722 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2723 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2724 // Emit the RHS condition into TmpBB. 2725 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2726 Probs[1], InvertCond); 2727 } 2728 } 2729 2730 /// If the set of cases should be emitted as a series of branches, return true. 2731 /// If we should emit this as a bunch of and/or'd together conditions, return 2732 /// false. 2733 bool 2734 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2735 if (Cases.size() != 2) return true; 2736 2737 // If this is two comparisons of the same values or'd or and'd together, they 2738 // will get folded into a single comparison, so don't emit two blocks. 2739 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2740 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2741 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2742 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2743 return false; 2744 } 2745 2746 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2747 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2748 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2749 Cases[0].CC == Cases[1].CC && 2750 isa<Constant>(Cases[0].CmpRHS) && 2751 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2752 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2753 return false; 2754 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2755 return false; 2756 } 2757 2758 return true; 2759 } 2760 2761 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2762 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2763 2764 // Update machine-CFG edges. 2765 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2766 2767 if (I.isUnconditional()) { 2768 // Update machine-CFG edges. 2769 BrMBB->addSuccessor(Succ0MBB); 2770 2771 // If this is not a fall-through branch or optimizations are switched off, 2772 // emit the branch. 2773 if (Succ0MBB != NextBlock(BrMBB) || 2774 TM.getOptLevel() == CodeGenOptLevel::None) { 2775 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2776 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2777 setValue(&I, Br); 2778 DAG.setRoot(Br); 2779 } 2780 2781 return; 2782 } 2783 2784 // If this condition is one of the special cases we handle, do special stuff 2785 // now. 2786 const Value *CondVal = I.getCondition(); 2787 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2788 2789 // If this is a series of conditions that are or'd or and'd together, emit 2790 // this as a sequence of branches instead of setcc's with and/or operations. 2791 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2792 // unpredictable branches, and vector extracts because those jumps are likely 2793 // expensive for any target), this should improve performance. 2794 // For example, instead of something like: 2795 // cmp A, B 2796 // C = seteq 2797 // cmp D, E 2798 // F = setle 2799 // or C, F 2800 // jnz foo 2801 // Emit: 2802 // cmp A, B 2803 // je foo 2804 // cmp D, E 2805 // jle foo 2806 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2807 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2808 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2809 Value *Vec; 2810 const Value *BOp0, *BOp1; 2811 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2812 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2813 Opcode = Instruction::And; 2814 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2815 Opcode = Instruction::Or; 2816 2817 if (Opcode && 2818 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2819 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value()))) && 2820 !shouldKeepJumpConditionsTogether( 2821 FuncInfo, I, Opcode, BOp0, BOp1, 2822 DAG.getTargetLoweringInfo().getJumpConditionMergingParams( 2823 Opcode, BOp0, BOp1))) { 2824 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2825 getEdgeProbability(BrMBB, Succ0MBB), 2826 getEdgeProbability(BrMBB, Succ1MBB), 2827 /*InvertCond=*/false); 2828 // If the compares in later blocks need to use values not currently 2829 // exported from this block, export them now. This block should always 2830 // be the first entry. 2831 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2832 2833 // Allow some cases to be rejected. 2834 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2835 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2836 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2837 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2838 } 2839 2840 // Emit the branch for this block. 2841 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2842 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2843 return; 2844 } 2845 2846 // Okay, we decided not to do this, remove any inserted MBB's and clear 2847 // SwitchCases. 2848 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2849 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2850 2851 SL->SwitchCases.clear(); 2852 } 2853 } 2854 2855 // Create a CaseBlock record representing this branch. 2856 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2857 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2858 2859 // Use visitSwitchCase to actually insert the fast branch sequence for this 2860 // cond branch. 2861 visitSwitchCase(CB, BrMBB); 2862 } 2863 2864 /// visitSwitchCase - Emits the necessary code to represent a single node in 2865 /// the binary search tree resulting from lowering a switch instruction. 2866 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2867 MachineBasicBlock *SwitchBB) { 2868 SDValue Cond; 2869 SDValue CondLHS = getValue(CB.CmpLHS); 2870 SDLoc dl = CB.DL; 2871 2872 if (CB.CC == ISD::SETTRUE) { 2873 // Branch or fall through to TrueBB. 2874 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2875 SwitchBB->normalizeSuccProbs(); 2876 if (CB.TrueBB != NextBlock(SwitchBB)) { 2877 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2878 DAG.getBasicBlock(CB.TrueBB))); 2879 } 2880 return; 2881 } 2882 2883 auto &TLI = DAG.getTargetLoweringInfo(); 2884 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2885 2886 // Build the setcc now. 2887 if (!CB.CmpMHS) { 2888 // Fold "(X == true)" to X and "(X == false)" to !X to 2889 // handle common cases produced by branch lowering. 2890 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2891 CB.CC == ISD::SETEQ) 2892 Cond = CondLHS; 2893 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2894 CB.CC == ISD::SETEQ) { 2895 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2896 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2897 } else { 2898 SDValue CondRHS = getValue(CB.CmpRHS); 2899 2900 // If a pointer's DAG type is larger than its memory type then the DAG 2901 // values are zero-extended. This breaks signed comparisons so truncate 2902 // back to the underlying type before doing the compare. 2903 if (CondLHS.getValueType() != MemVT) { 2904 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2905 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2906 } 2907 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2908 } 2909 } else { 2910 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2911 2912 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2913 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2914 2915 SDValue CmpOp = getValue(CB.CmpMHS); 2916 EVT VT = CmpOp.getValueType(); 2917 2918 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2919 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2920 ISD::SETLE); 2921 } else { 2922 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2923 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2924 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2925 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2926 } 2927 } 2928 2929 // Update successor info 2930 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2931 // TrueBB and FalseBB are always different unless the incoming IR is 2932 // degenerate. This only happens when running llc on weird IR. 2933 if (CB.TrueBB != CB.FalseBB) 2934 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2935 SwitchBB->normalizeSuccProbs(); 2936 2937 // If the lhs block is the next block, invert the condition so that we can 2938 // fall through to the lhs instead of the rhs block. 2939 if (CB.TrueBB == NextBlock(SwitchBB)) { 2940 std::swap(CB.TrueBB, CB.FalseBB); 2941 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2942 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2943 } 2944 2945 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2946 MVT::Other, getControlRoot(), Cond, 2947 DAG.getBasicBlock(CB.TrueBB)); 2948 2949 setValue(CurInst, BrCond); 2950 2951 // Insert the false branch. Do this even if it's a fall through branch, 2952 // this makes it easier to do DAG optimizations which require inverting 2953 // the branch condition. 2954 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2955 DAG.getBasicBlock(CB.FalseBB)); 2956 2957 DAG.setRoot(BrCond); 2958 } 2959 2960 /// visitJumpTable - Emit JumpTable node in the current MBB 2961 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2962 // Emit the code for the jump table 2963 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2964 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2965 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2966 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2967 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2968 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2969 Index.getValue(1), Table, Index); 2970 DAG.setRoot(BrJumpTable); 2971 } 2972 2973 /// visitJumpTableHeader - This function emits necessary code to produce index 2974 /// in the JumpTable from switch case. 2975 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2976 JumpTableHeader &JTH, 2977 MachineBasicBlock *SwitchBB) { 2978 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2979 const SDLoc &dl = *JT.SL; 2980 2981 // Subtract the lowest switch case value from the value being switched on. 2982 SDValue SwitchOp = getValue(JTH.SValue); 2983 EVT VT = SwitchOp.getValueType(); 2984 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2985 DAG.getConstant(JTH.First, dl, VT)); 2986 2987 // The SDNode we just created, which holds the value being switched on minus 2988 // the smallest case value, needs to be copied to a virtual register so it 2989 // can be used as an index into the jump table in a subsequent basic block. 2990 // This value may be smaller or larger than the target's pointer type, and 2991 // therefore require extension or truncating. 2992 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2993 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2994 2995 unsigned JumpTableReg = 2996 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2997 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2998 JumpTableReg, SwitchOp); 2999 JT.Reg = JumpTableReg; 3000 3001 if (!JTH.FallthroughUnreachable) { 3002 // Emit the range check for the jump table, and branch to the default block 3003 // for the switch statement if the value being switched on exceeds the 3004 // largest case in the switch. 3005 SDValue CMP = DAG.getSetCC( 3006 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3007 Sub.getValueType()), 3008 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 3009 3010 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3011 MVT::Other, CopyTo, CMP, 3012 DAG.getBasicBlock(JT.Default)); 3013 3014 // Avoid emitting unnecessary branches to the next block. 3015 if (JT.MBB != NextBlock(SwitchBB)) 3016 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 3017 DAG.getBasicBlock(JT.MBB)); 3018 3019 DAG.setRoot(BrCond); 3020 } else { 3021 // Avoid emitting unnecessary branches to the next block. 3022 if (JT.MBB != NextBlock(SwitchBB)) 3023 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 3024 DAG.getBasicBlock(JT.MBB))); 3025 else 3026 DAG.setRoot(CopyTo); 3027 } 3028 } 3029 3030 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 3031 /// variable if there exists one. 3032 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 3033 SDValue &Chain) { 3034 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3035 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3036 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3037 MachineFunction &MF = DAG.getMachineFunction(); 3038 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 3039 MachineSDNode *Node = 3040 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 3041 if (Global) { 3042 MachinePointerInfo MPInfo(Global); 3043 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 3044 MachineMemOperand::MODereferenceable; 3045 MachineMemOperand *MemRef = MF.getMachineMemOperand( 3046 MPInfo, Flags, LocationSize::precise(PtrTy.getSizeInBits() / 8), 3047 DAG.getEVTAlign(PtrTy)); 3048 DAG.setNodeMemRefs(Node, {MemRef}); 3049 } 3050 if (PtrTy != PtrMemTy) 3051 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 3052 return SDValue(Node, 0); 3053 } 3054 3055 /// Codegen a new tail for a stack protector check ParentMBB which has had its 3056 /// tail spliced into a stack protector check success bb. 3057 /// 3058 /// For a high level explanation of how this fits into the stack protector 3059 /// generation see the comment on the declaration of class 3060 /// StackProtectorDescriptor. 3061 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 3062 MachineBasicBlock *ParentBB) { 3063 3064 // First create the loads to the guard/stack slot for the comparison. 3065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3066 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 3067 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 3068 3069 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 3070 int FI = MFI.getStackProtectorIndex(); 3071 3072 SDValue Guard; 3073 SDLoc dl = getCurSDLoc(); 3074 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 3075 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 3076 Align Align = 3077 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 3078 3079 // Generate code to load the content of the guard slot. 3080 SDValue GuardVal = DAG.getLoad( 3081 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 3082 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 3083 MachineMemOperand::MOVolatile); 3084 3085 if (TLI.useStackGuardXorFP()) 3086 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 3087 3088 // Retrieve guard check function, nullptr if instrumentation is inlined. 3089 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 3090 // The target provides a guard check function to validate the guard value. 3091 // Generate a call to that function with the content of the guard slot as 3092 // argument. 3093 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 3094 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 3095 3096 TargetLowering::ArgListTy Args; 3097 TargetLowering::ArgListEntry Entry; 3098 Entry.Node = GuardVal; 3099 Entry.Ty = FnTy->getParamType(0); 3100 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 3101 Entry.IsInReg = true; 3102 Args.push_back(Entry); 3103 3104 TargetLowering::CallLoweringInfo CLI(DAG); 3105 CLI.setDebugLoc(getCurSDLoc()) 3106 .setChain(DAG.getEntryNode()) 3107 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 3108 getValue(GuardCheckFn), std::move(Args)); 3109 3110 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 3111 DAG.setRoot(Result.second); 3112 return; 3113 } 3114 3115 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 3116 // Otherwise, emit a volatile load to retrieve the stack guard value. 3117 SDValue Chain = DAG.getEntryNode(); 3118 if (TLI.useLoadStackGuardNode()) { 3119 Guard = getLoadStackGuard(DAG, dl, Chain); 3120 } else { 3121 const Value *IRGuard = TLI.getSDagStackGuard(M); 3122 SDValue GuardPtr = getValue(IRGuard); 3123 3124 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 3125 MachinePointerInfo(IRGuard, 0), Align, 3126 MachineMemOperand::MOVolatile); 3127 } 3128 3129 // Perform the comparison via a getsetcc. 3130 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 3131 *DAG.getContext(), 3132 Guard.getValueType()), 3133 Guard, GuardVal, ISD::SETNE); 3134 3135 // If the guard/stackslot do not equal, branch to failure MBB. 3136 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 3137 MVT::Other, GuardVal.getOperand(0), 3138 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 3139 // Otherwise branch to success MBB. 3140 SDValue Br = DAG.getNode(ISD::BR, dl, 3141 MVT::Other, BrCond, 3142 DAG.getBasicBlock(SPD.getSuccessMBB())); 3143 3144 DAG.setRoot(Br); 3145 } 3146 3147 /// Codegen the failure basic block for a stack protector check. 3148 /// 3149 /// A failure stack protector machine basic block consists simply of a call to 3150 /// __stack_chk_fail(). 3151 /// 3152 /// For a high level explanation of how this fits into the stack protector 3153 /// generation see the comment on the declaration of class 3154 /// StackProtectorDescriptor. 3155 void 3156 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 3157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3158 TargetLowering::MakeLibCallOptions CallOptions; 3159 CallOptions.setDiscardResult(true); 3160 SDValue Chain = 3161 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 3162 std::nullopt, CallOptions, getCurSDLoc()) 3163 .second; 3164 // On PS4/PS5, the "return address" must still be within the calling 3165 // function, even if it's at the very end, so emit an explicit TRAP here. 3166 // Passing 'true' for doesNotReturn above won't generate the trap for us. 3167 if (TM.getTargetTriple().isPS()) 3168 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3169 // WebAssembly needs an unreachable instruction after a non-returning call, 3170 // because the function return type can be different from __stack_chk_fail's 3171 // return type (void). 3172 if (TM.getTargetTriple().isWasm()) 3173 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 3174 3175 DAG.setRoot(Chain); 3176 } 3177 3178 /// visitBitTestHeader - This function emits necessary code to produce value 3179 /// suitable for "bit tests" 3180 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3181 MachineBasicBlock *SwitchBB) { 3182 SDLoc dl = getCurSDLoc(); 3183 3184 // Subtract the minimum value. 3185 SDValue SwitchOp = getValue(B.SValue); 3186 EVT VT = SwitchOp.getValueType(); 3187 SDValue RangeSub = 3188 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3189 3190 // Determine the type of the test operands. 3191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3192 bool UsePtrType = false; 3193 if (!TLI.isTypeLegal(VT)) { 3194 UsePtrType = true; 3195 } else { 3196 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3197 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3198 // Switch table case range are encoded into series of masks. 3199 // Just use pointer type, it's guaranteed to fit. 3200 UsePtrType = true; 3201 break; 3202 } 3203 } 3204 SDValue Sub = RangeSub; 3205 if (UsePtrType) { 3206 VT = TLI.getPointerTy(DAG.getDataLayout()); 3207 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3208 } 3209 3210 B.RegVT = VT.getSimpleVT(); 3211 B.Reg = FuncInfo.CreateReg(B.RegVT); 3212 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3213 3214 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3215 3216 if (!B.FallthroughUnreachable) 3217 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3218 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3219 SwitchBB->normalizeSuccProbs(); 3220 3221 SDValue Root = CopyTo; 3222 if (!B.FallthroughUnreachable) { 3223 // Conditional branch to the default block. 3224 SDValue RangeCmp = DAG.getSetCC(dl, 3225 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3226 RangeSub.getValueType()), 3227 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3228 ISD::SETUGT); 3229 3230 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3231 DAG.getBasicBlock(B.Default)); 3232 } 3233 3234 // Avoid emitting unnecessary branches to the next block. 3235 if (MBB != NextBlock(SwitchBB)) 3236 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3237 3238 DAG.setRoot(Root); 3239 } 3240 3241 /// visitBitTestCase - this function produces one "bit test" 3242 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3243 MachineBasicBlock* NextMBB, 3244 BranchProbability BranchProbToNext, 3245 unsigned Reg, 3246 BitTestCase &B, 3247 MachineBasicBlock *SwitchBB) { 3248 SDLoc dl = getCurSDLoc(); 3249 MVT VT = BB.RegVT; 3250 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3251 SDValue Cmp; 3252 unsigned PopCount = llvm::popcount(B.Mask); 3253 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3254 if (PopCount == 1) { 3255 // Testing for a single bit; just compare the shift count with what it 3256 // would need to be to shift a 1 bit in that position. 3257 Cmp = DAG.getSetCC( 3258 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3259 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3260 ISD::SETEQ); 3261 } else if (PopCount == BB.Range) { 3262 // There is only one zero bit in the range, test for it directly. 3263 Cmp = DAG.getSetCC( 3264 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3265 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3266 } else { 3267 // Make desired shift 3268 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3269 DAG.getConstant(1, dl, VT), ShiftOp); 3270 3271 // Emit bit tests and jumps 3272 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3273 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3274 Cmp = DAG.getSetCC( 3275 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3276 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3277 } 3278 3279 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3280 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3281 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3282 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3283 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3284 // one as they are relative probabilities (and thus work more like weights), 3285 // and hence we need to normalize them to let the sum of them become one. 3286 SwitchBB->normalizeSuccProbs(); 3287 3288 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3289 MVT::Other, getControlRoot(), 3290 Cmp, DAG.getBasicBlock(B.TargetBB)); 3291 3292 // Avoid emitting unnecessary branches to the next block. 3293 if (NextMBB != NextBlock(SwitchBB)) 3294 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3295 DAG.getBasicBlock(NextMBB)); 3296 3297 DAG.setRoot(BrAnd); 3298 } 3299 3300 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3301 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3302 3303 // Retrieve successors. Look through artificial IR level blocks like 3304 // catchswitch for successors. 3305 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3306 const BasicBlock *EHPadBB = I.getSuccessor(1); 3307 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3308 3309 // Deopt and ptrauth bundles are lowered in helper functions, and we don't 3310 // have to do anything here to lower funclet bundles. 3311 assert(!I.hasOperandBundlesOtherThan( 3312 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3313 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3314 LLVMContext::OB_cfguardtarget, LLVMContext::OB_ptrauth, 3315 LLVMContext::OB_clang_arc_attachedcall}) && 3316 "Cannot lower invokes with arbitrary operand bundles yet!"); 3317 3318 const Value *Callee(I.getCalledOperand()); 3319 const Function *Fn = dyn_cast<Function>(Callee); 3320 if (isa<InlineAsm>(Callee)) 3321 visitInlineAsm(I, EHPadBB); 3322 else if (Fn && Fn->isIntrinsic()) { 3323 switch (Fn->getIntrinsicID()) { 3324 default: 3325 llvm_unreachable("Cannot invoke this intrinsic"); 3326 case Intrinsic::donothing: 3327 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3328 case Intrinsic::seh_try_begin: 3329 case Intrinsic::seh_scope_begin: 3330 case Intrinsic::seh_try_end: 3331 case Intrinsic::seh_scope_end: 3332 if (EHPadMBB) 3333 // a block referenced by EH table 3334 // so dtor-funclet not removed by opts 3335 EHPadMBB->setMachineBlockAddressTaken(); 3336 break; 3337 case Intrinsic::experimental_patchpoint_void: 3338 case Intrinsic::experimental_patchpoint: 3339 visitPatchpoint(I, EHPadBB); 3340 break; 3341 case Intrinsic::experimental_gc_statepoint: 3342 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3343 break; 3344 case Intrinsic::wasm_rethrow: { 3345 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3346 // special because it can be invoked, so we manually lower it to a DAG 3347 // node here. 3348 SmallVector<SDValue, 8> Ops; 3349 Ops.push_back(getRoot()); // inchain 3350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3351 Ops.push_back( 3352 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3353 TLI.getPointerTy(DAG.getDataLayout()))); 3354 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3355 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3356 break; 3357 } 3358 } 3359 } else if (I.hasDeoptState()) { 3360 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3361 // Eventually we will support lowering the @llvm.experimental.deoptimize 3362 // intrinsic, and right now there are no plans to support other intrinsics 3363 // with deopt state. 3364 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3365 } else if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 3366 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), EHPadBB); 3367 } else { 3368 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3369 } 3370 3371 // If the value of the invoke is used outside of its defining block, make it 3372 // available as a virtual register. 3373 // We already took care of the exported value for the statepoint instruction 3374 // during call to the LowerStatepoint. 3375 if (!isa<GCStatepointInst>(I)) { 3376 CopyToExportRegsIfNeeded(&I); 3377 } 3378 3379 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3380 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3381 BranchProbability EHPadBBProb = 3382 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3383 : BranchProbability::getZero(); 3384 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3385 3386 // Update successor info. 3387 addSuccessorWithProb(InvokeMBB, Return); 3388 for (auto &UnwindDest : UnwindDests) { 3389 UnwindDest.first->setIsEHPad(); 3390 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3391 } 3392 InvokeMBB->normalizeSuccProbs(); 3393 3394 // Drop into normal successor. 3395 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3396 DAG.getBasicBlock(Return))); 3397 } 3398 3399 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3400 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3401 3402 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3403 // have to do anything here to lower funclet bundles. 3404 assert(!I.hasOperandBundlesOtherThan( 3405 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3406 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3407 3408 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3409 visitInlineAsm(I); 3410 CopyToExportRegsIfNeeded(&I); 3411 3412 // Retrieve successors. 3413 SmallPtrSet<BasicBlock *, 8> Dests; 3414 Dests.insert(I.getDefaultDest()); 3415 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3416 3417 // Update successor info. 3418 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3419 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3420 BasicBlock *Dest = I.getIndirectDest(i); 3421 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3422 Target->setIsInlineAsmBrIndirectTarget(); 3423 Target->setMachineBlockAddressTaken(); 3424 Target->setLabelMustBeEmitted(); 3425 // Don't add duplicate machine successors. 3426 if (Dests.insert(Dest).second) 3427 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3428 } 3429 CallBrMBB->normalizeSuccProbs(); 3430 3431 // Drop into default successor. 3432 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3433 MVT::Other, getControlRoot(), 3434 DAG.getBasicBlock(Return))); 3435 } 3436 3437 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3438 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3439 } 3440 3441 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3442 assert(FuncInfo.MBB->isEHPad() && 3443 "Call to landingpad not in landing pad!"); 3444 3445 // If there aren't registers to copy the values into (e.g., during SjLj 3446 // exceptions), then don't bother to create these DAG nodes. 3447 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3448 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3449 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3450 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3451 return; 3452 3453 // If landingpad's return type is token type, we don't create DAG nodes 3454 // for its exception pointer and selector value. The extraction of exception 3455 // pointer or selector value from token type landingpads is not currently 3456 // supported. 3457 if (LP.getType()->isTokenTy()) 3458 return; 3459 3460 SmallVector<EVT, 2> ValueVTs; 3461 SDLoc dl = getCurSDLoc(); 3462 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3463 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3464 3465 // Get the two live-in registers as SDValues. The physregs have already been 3466 // copied into virtual registers. 3467 SDValue Ops[2]; 3468 if (FuncInfo.ExceptionPointerVirtReg) { 3469 Ops[0] = DAG.getZExtOrTrunc( 3470 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3471 FuncInfo.ExceptionPointerVirtReg, 3472 TLI.getPointerTy(DAG.getDataLayout())), 3473 dl, ValueVTs[0]); 3474 } else { 3475 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3476 } 3477 Ops[1] = DAG.getZExtOrTrunc( 3478 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3479 FuncInfo.ExceptionSelectorVirtReg, 3480 TLI.getPointerTy(DAG.getDataLayout())), 3481 dl, ValueVTs[1]); 3482 3483 // Merge into one. 3484 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3485 DAG.getVTList(ValueVTs), Ops); 3486 setValue(&LP, Res); 3487 } 3488 3489 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3490 MachineBasicBlock *Last) { 3491 // Update JTCases. 3492 for (JumpTableBlock &JTB : SL->JTCases) 3493 if (JTB.first.HeaderBB == First) 3494 JTB.first.HeaderBB = Last; 3495 3496 // Update BitTestCases. 3497 for (BitTestBlock &BTB : SL->BitTestCases) 3498 if (BTB.Parent == First) 3499 BTB.Parent = Last; 3500 } 3501 3502 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3503 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3504 3505 // Update machine-CFG edges with unique successors. 3506 SmallSet<BasicBlock*, 32> Done; 3507 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3508 BasicBlock *BB = I.getSuccessor(i); 3509 bool Inserted = Done.insert(BB).second; 3510 if (!Inserted) 3511 continue; 3512 3513 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3514 addSuccessorWithProb(IndirectBrMBB, Succ); 3515 } 3516 IndirectBrMBB->normalizeSuccProbs(); 3517 3518 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3519 MVT::Other, getControlRoot(), 3520 getValue(I.getAddress()))); 3521 } 3522 3523 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3524 if (!DAG.getTarget().Options.TrapUnreachable) 3525 return; 3526 3527 // We may be able to ignore unreachable behind a noreturn call. 3528 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3529 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3530 if (Call->doesNotReturn()) 3531 return; 3532 } 3533 } 3534 3535 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3536 } 3537 3538 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3539 SDNodeFlags Flags; 3540 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3541 Flags.copyFMF(*FPOp); 3542 3543 SDValue Op = getValue(I.getOperand(0)); 3544 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3545 Op, Flags); 3546 setValue(&I, UnNodeValue); 3547 } 3548 3549 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3550 SDNodeFlags Flags; 3551 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3552 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3553 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3554 } 3555 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3556 Flags.setExact(ExactOp->isExact()); 3557 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3558 Flags.setDisjoint(DisjointOp->isDisjoint()); 3559 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3560 Flags.copyFMF(*FPOp); 3561 3562 SDValue Op1 = getValue(I.getOperand(0)); 3563 SDValue Op2 = getValue(I.getOperand(1)); 3564 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3565 Op1, Op2, Flags); 3566 setValue(&I, BinNodeValue); 3567 } 3568 3569 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3570 SDValue Op1 = getValue(I.getOperand(0)); 3571 SDValue Op2 = getValue(I.getOperand(1)); 3572 3573 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3574 Op1.getValueType(), DAG.getDataLayout()); 3575 3576 // Coerce the shift amount to the right type if we can. This exposes the 3577 // truncate or zext to optimization early. 3578 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3579 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3580 "Unexpected shift type"); 3581 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3582 } 3583 3584 bool nuw = false; 3585 bool nsw = false; 3586 bool exact = false; 3587 3588 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3589 3590 if (const OverflowingBinaryOperator *OFBinOp = 3591 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3592 nuw = OFBinOp->hasNoUnsignedWrap(); 3593 nsw = OFBinOp->hasNoSignedWrap(); 3594 } 3595 if (const PossiblyExactOperator *ExactOp = 3596 dyn_cast<const PossiblyExactOperator>(&I)) 3597 exact = ExactOp->isExact(); 3598 } 3599 SDNodeFlags Flags; 3600 Flags.setExact(exact); 3601 Flags.setNoSignedWrap(nsw); 3602 Flags.setNoUnsignedWrap(nuw); 3603 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3604 Flags); 3605 setValue(&I, Res); 3606 } 3607 3608 void SelectionDAGBuilder::visitSDiv(const User &I) { 3609 SDValue Op1 = getValue(I.getOperand(0)); 3610 SDValue Op2 = getValue(I.getOperand(1)); 3611 3612 SDNodeFlags Flags; 3613 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3614 cast<PossiblyExactOperator>(&I)->isExact()); 3615 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3616 Op2, Flags)); 3617 } 3618 3619 void SelectionDAGBuilder::visitICmp(const ICmpInst &I) { 3620 ICmpInst::Predicate predicate = I.getPredicate(); 3621 SDValue Op1 = getValue(I.getOperand(0)); 3622 SDValue Op2 = getValue(I.getOperand(1)); 3623 ISD::CondCode Opcode = getICmpCondCode(predicate); 3624 3625 auto &TLI = DAG.getTargetLoweringInfo(); 3626 EVT MemVT = 3627 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3628 3629 // If a pointer's DAG type is larger than its memory type then the DAG values 3630 // are zero-extended. This breaks signed comparisons so truncate back to the 3631 // underlying type before doing the compare. 3632 if (Op1.getValueType() != MemVT) { 3633 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3634 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3635 } 3636 3637 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3638 I.getType()); 3639 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3640 } 3641 3642 void SelectionDAGBuilder::visitFCmp(const FCmpInst &I) { 3643 FCmpInst::Predicate predicate = I.getPredicate(); 3644 SDValue Op1 = getValue(I.getOperand(0)); 3645 SDValue Op2 = getValue(I.getOperand(1)); 3646 3647 ISD::CondCode Condition = getFCmpCondCode(predicate); 3648 auto *FPMO = cast<FPMathOperator>(&I); 3649 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3650 Condition = getFCmpCodeWithoutNaN(Condition); 3651 3652 SDNodeFlags Flags; 3653 Flags.copyFMF(*FPMO); 3654 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3655 3656 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3657 I.getType()); 3658 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3659 } 3660 3661 // Check if the condition of the select has one use or two users that are both 3662 // selects with the same condition. 3663 static bool hasOnlySelectUsers(const Value *Cond) { 3664 return llvm::all_of(Cond->users(), [](const Value *V) { 3665 return isa<SelectInst>(V); 3666 }); 3667 } 3668 3669 void SelectionDAGBuilder::visitSelect(const User &I) { 3670 SmallVector<EVT, 4> ValueVTs; 3671 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3672 ValueVTs); 3673 unsigned NumValues = ValueVTs.size(); 3674 if (NumValues == 0) return; 3675 3676 SmallVector<SDValue, 4> Values(NumValues); 3677 SDValue Cond = getValue(I.getOperand(0)); 3678 SDValue LHSVal = getValue(I.getOperand(1)); 3679 SDValue RHSVal = getValue(I.getOperand(2)); 3680 SmallVector<SDValue, 1> BaseOps(1, Cond); 3681 ISD::NodeType OpCode = 3682 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3683 3684 bool IsUnaryAbs = false; 3685 bool Negate = false; 3686 3687 SDNodeFlags Flags; 3688 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3689 Flags.copyFMF(*FPOp); 3690 3691 Flags.setUnpredictable( 3692 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3693 3694 // Min/max matching is only viable if all output VTs are the same. 3695 if (all_equal(ValueVTs)) { 3696 EVT VT = ValueVTs[0]; 3697 LLVMContext &Ctx = *DAG.getContext(); 3698 auto &TLI = DAG.getTargetLoweringInfo(); 3699 3700 // We care about the legality of the operation after it has been type 3701 // legalized. 3702 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3703 VT = TLI.getTypeToTransformTo(Ctx, VT); 3704 3705 // If the vselect is legal, assume we want to leave this as a vector setcc + 3706 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3707 // min/max is legal on the scalar type. 3708 bool UseScalarMinMax = VT.isVector() && 3709 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3710 3711 // ValueTracking's select pattern matching does not account for -0.0, 3712 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3713 // -0.0 is less than +0.0. 3714 Value *LHS, *RHS; 3715 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3716 ISD::NodeType Opc = ISD::DELETED_NODE; 3717 switch (SPR.Flavor) { 3718 case SPF_UMAX: Opc = ISD::UMAX; break; 3719 case SPF_UMIN: Opc = ISD::UMIN; break; 3720 case SPF_SMAX: Opc = ISD::SMAX; break; 3721 case SPF_SMIN: Opc = ISD::SMIN; break; 3722 case SPF_FMINNUM: 3723 switch (SPR.NaNBehavior) { 3724 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3725 case SPNB_RETURNS_NAN: break; 3726 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3727 case SPNB_RETURNS_ANY: 3728 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3729 (UseScalarMinMax && 3730 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3731 Opc = ISD::FMINNUM; 3732 break; 3733 } 3734 break; 3735 case SPF_FMAXNUM: 3736 switch (SPR.NaNBehavior) { 3737 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3738 case SPNB_RETURNS_NAN: break; 3739 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3740 case SPNB_RETURNS_ANY: 3741 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3742 (UseScalarMinMax && 3743 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3744 Opc = ISD::FMAXNUM; 3745 break; 3746 } 3747 break; 3748 case SPF_NABS: 3749 Negate = true; 3750 [[fallthrough]]; 3751 case SPF_ABS: 3752 IsUnaryAbs = true; 3753 Opc = ISD::ABS; 3754 break; 3755 default: break; 3756 } 3757 3758 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3759 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3760 (UseScalarMinMax && 3761 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3762 // If the underlying comparison instruction is used by any other 3763 // instruction, the consumed instructions won't be destroyed, so it is 3764 // not profitable to convert to a min/max. 3765 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3766 OpCode = Opc; 3767 LHSVal = getValue(LHS); 3768 RHSVal = getValue(RHS); 3769 BaseOps.clear(); 3770 } 3771 3772 if (IsUnaryAbs) { 3773 OpCode = Opc; 3774 LHSVal = getValue(LHS); 3775 BaseOps.clear(); 3776 } 3777 } 3778 3779 if (IsUnaryAbs) { 3780 for (unsigned i = 0; i != NumValues; ++i) { 3781 SDLoc dl = getCurSDLoc(); 3782 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3783 Values[i] = 3784 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3785 if (Negate) 3786 Values[i] = DAG.getNegative(Values[i], dl, VT); 3787 } 3788 } else { 3789 for (unsigned i = 0; i != NumValues; ++i) { 3790 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3791 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3792 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3793 Values[i] = DAG.getNode( 3794 OpCode, getCurSDLoc(), 3795 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3796 } 3797 } 3798 3799 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3800 DAG.getVTList(ValueVTs), Values)); 3801 } 3802 3803 void SelectionDAGBuilder::visitTrunc(const User &I) { 3804 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3805 SDValue N = getValue(I.getOperand(0)); 3806 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3807 I.getType()); 3808 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3809 } 3810 3811 void SelectionDAGBuilder::visitZExt(const User &I) { 3812 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3813 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3814 SDValue N = getValue(I.getOperand(0)); 3815 auto &TLI = DAG.getTargetLoweringInfo(); 3816 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3817 3818 SDNodeFlags Flags; 3819 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3820 Flags.setNonNeg(PNI->hasNonNeg()); 3821 3822 // Eagerly use nonneg information to canonicalize towards sign_extend if 3823 // that is the target's preference. 3824 // TODO: Let the target do this later. 3825 if (Flags.hasNonNeg() && 3826 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3827 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3828 return; 3829 } 3830 3831 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3832 } 3833 3834 void SelectionDAGBuilder::visitSExt(const User &I) { 3835 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3836 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3837 SDValue N = getValue(I.getOperand(0)); 3838 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3839 I.getType()); 3840 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3841 } 3842 3843 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3844 // FPTrunc is never a no-op cast, no need to check 3845 SDValue N = getValue(I.getOperand(0)); 3846 SDLoc dl = getCurSDLoc(); 3847 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3848 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3849 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3850 DAG.getTargetConstant( 3851 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3852 } 3853 3854 void SelectionDAGBuilder::visitFPExt(const User &I) { 3855 // FPExt is never a no-op cast, no need to check 3856 SDValue N = getValue(I.getOperand(0)); 3857 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3858 I.getType()); 3859 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3860 } 3861 3862 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3863 // FPToUI is never a no-op cast, no need to check 3864 SDValue N = getValue(I.getOperand(0)); 3865 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3866 I.getType()); 3867 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3868 } 3869 3870 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3871 // FPToSI is never a no-op cast, no need to check 3872 SDValue N = getValue(I.getOperand(0)); 3873 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3874 I.getType()); 3875 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3876 } 3877 3878 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3879 // UIToFP is never a no-op cast, no need to check 3880 SDValue N = getValue(I.getOperand(0)); 3881 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3882 I.getType()); 3883 SDNodeFlags Flags; 3884 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3885 Flags.setNonNeg(PNI->hasNonNeg()); 3886 3887 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N, Flags)); 3888 } 3889 3890 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3891 // SIToFP is never a no-op cast, no need to check 3892 SDValue N = getValue(I.getOperand(0)); 3893 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3894 I.getType()); 3895 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3896 } 3897 3898 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3899 // What to do depends on the size of the integer and the size of the pointer. 3900 // We can either truncate, zero extend, or no-op, accordingly. 3901 SDValue N = getValue(I.getOperand(0)); 3902 auto &TLI = DAG.getTargetLoweringInfo(); 3903 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3904 I.getType()); 3905 EVT PtrMemVT = 3906 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3907 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3908 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3909 setValue(&I, N); 3910 } 3911 3912 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3913 // What to do depends on the size of the integer and the size of the pointer. 3914 // We can either truncate, zero extend, or no-op, accordingly. 3915 SDValue N = getValue(I.getOperand(0)); 3916 auto &TLI = DAG.getTargetLoweringInfo(); 3917 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3918 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3919 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3920 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3921 setValue(&I, N); 3922 } 3923 3924 void SelectionDAGBuilder::visitBitCast(const User &I) { 3925 SDValue N = getValue(I.getOperand(0)); 3926 SDLoc dl = getCurSDLoc(); 3927 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3928 I.getType()); 3929 3930 // BitCast assures us that source and destination are the same size so this is 3931 // either a BITCAST or a no-op. 3932 if (DestVT != N.getValueType()) 3933 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3934 DestVT, N)); // convert types. 3935 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3936 // might fold any kind of constant expression to an integer constant and that 3937 // is not what we are looking for. Only recognize a bitcast of a genuine 3938 // constant integer as an opaque constant. 3939 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3940 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3941 /*isOpaque*/true)); 3942 else 3943 setValue(&I, N); // noop cast. 3944 } 3945 3946 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 const Value *SV = I.getOperand(0); 3949 SDValue N = getValue(SV); 3950 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3951 3952 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3953 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3954 3955 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3956 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3957 3958 setValue(&I, N); 3959 } 3960 3961 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3963 SDValue InVec = getValue(I.getOperand(0)); 3964 SDValue InVal = getValue(I.getOperand(1)); 3965 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3966 TLI.getVectorIdxTy(DAG.getDataLayout())); 3967 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3968 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3969 InVec, InVal, InIdx)); 3970 } 3971 3972 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3974 SDValue InVec = getValue(I.getOperand(0)); 3975 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3976 TLI.getVectorIdxTy(DAG.getDataLayout())); 3977 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3978 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3979 InVec, InIdx)); 3980 } 3981 3982 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3983 SDValue Src1 = getValue(I.getOperand(0)); 3984 SDValue Src2 = getValue(I.getOperand(1)); 3985 ArrayRef<int> Mask; 3986 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3987 Mask = SVI->getShuffleMask(); 3988 else 3989 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3990 SDLoc DL = getCurSDLoc(); 3991 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3992 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3993 EVT SrcVT = Src1.getValueType(); 3994 3995 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3996 VT.isScalableVector()) { 3997 // Canonical splat form of first element of first input vector. 3998 SDValue FirstElt = 3999 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 4000 DAG.getVectorIdxConstant(0, DL)); 4001 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 4002 return; 4003 } 4004 4005 // For now, we only handle splats for scalable vectors. 4006 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 4007 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 4008 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 4009 4010 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 4011 unsigned MaskNumElts = Mask.size(); 4012 4013 if (SrcNumElts == MaskNumElts) { 4014 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 4015 return; 4016 } 4017 4018 // Normalize the shuffle vector since mask and vector length don't match. 4019 if (SrcNumElts < MaskNumElts) { 4020 // Mask is longer than the source vectors. We can use concatenate vector to 4021 // make the mask and vectors lengths match. 4022 4023 if (MaskNumElts % SrcNumElts == 0) { 4024 // Mask length is a multiple of the source vector length. 4025 // Check if the shuffle is some kind of concatenation of the input 4026 // vectors. 4027 unsigned NumConcat = MaskNumElts / SrcNumElts; 4028 bool IsConcat = true; 4029 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 4030 for (unsigned i = 0; i != MaskNumElts; ++i) { 4031 int Idx = Mask[i]; 4032 if (Idx < 0) 4033 continue; 4034 // Ensure the indices in each SrcVT sized piece are sequential and that 4035 // the same source is used for the whole piece. 4036 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 4037 (ConcatSrcs[i / SrcNumElts] >= 0 && 4038 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 4039 IsConcat = false; 4040 break; 4041 } 4042 // Remember which source this index came from. 4043 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 4044 } 4045 4046 // The shuffle is concatenating multiple vectors together. Just emit 4047 // a CONCAT_VECTORS operation. 4048 if (IsConcat) { 4049 SmallVector<SDValue, 8> ConcatOps; 4050 for (auto Src : ConcatSrcs) { 4051 if (Src < 0) 4052 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 4053 else if (Src == 0) 4054 ConcatOps.push_back(Src1); 4055 else 4056 ConcatOps.push_back(Src2); 4057 } 4058 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 4059 return; 4060 } 4061 } 4062 4063 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 4064 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 4065 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 4066 PaddedMaskNumElts); 4067 4068 // Pad both vectors with undefs to make them the same length as the mask. 4069 SDValue UndefVal = DAG.getUNDEF(SrcVT); 4070 4071 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 4072 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 4073 MOps1[0] = Src1; 4074 MOps2[0] = Src2; 4075 4076 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 4077 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 4078 4079 // Readjust mask for new input vector length. 4080 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 4081 for (unsigned i = 0; i != MaskNumElts; ++i) { 4082 int Idx = Mask[i]; 4083 if (Idx >= (int)SrcNumElts) 4084 Idx -= SrcNumElts - PaddedMaskNumElts; 4085 MappedOps[i] = Idx; 4086 } 4087 4088 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 4089 4090 // If the concatenated vector was padded, extract a subvector with the 4091 // correct number of elements. 4092 if (MaskNumElts != PaddedMaskNumElts) 4093 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 4094 DAG.getVectorIdxConstant(0, DL)); 4095 4096 setValue(&I, Result); 4097 return; 4098 } 4099 4100 if (SrcNumElts > MaskNumElts) { 4101 // Analyze the access pattern of the vector to see if we can extract 4102 // two subvectors and do the shuffle. 4103 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 4104 bool CanExtract = true; 4105 for (int Idx : Mask) { 4106 unsigned Input = 0; 4107 if (Idx < 0) 4108 continue; 4109 4110 if (Idx >= (int)SrcNumElts) { 4111 Input = 1; 4112 Idx -= SrcNumElts; 4113 } 4114 4115 // If all the indices come from the same MaskNumElts sized portion of 4116 // the sources we can use extract. Also make sure the extract wouldn't 4117 // extract past the end of the source. 4118 int NewStartIdx = alignDown(Idx, MaskNumElts); 4119 if (NewStartIdx + MaskNumElts > SrcNumElts || 4120 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 4121 CanExtract = false; 4122 // Make sure we always update StartIdx as we use it to track if all 4123 // elements are undef. 4124 StartIdx[Input] = NewStartIdx; 4125 } 4126 4127 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 4128 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 4129 return; 4130 } 4131 if (CanExtract) { 4132 // Extract appropriate subvector and generate a vector shuffle 4133 for (unsigned Input = 0; Input < 2; ++Input) { 4134 SDValue &Src = Input == 0 ? Src1 : Src2; 4135 if (StartIdx[Input] < 0) 4136 Src = DAG.getUNDEF(VT); 4137 else { 4138 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 4139 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 4140 } 4141 } 4142 4143 // Calculate new mask. 4144 SmallVector<int, 8> MappedOps(Mask); 4145 for (int &Idx : MappedOps) { 4146 if (Idx >= (int)SrcNumElts) 4147 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 4148 else if (Idx >= 0) 4149 Idx -= StartIdx[0]; 4150 } 4151 4152 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 4153 return; 4154 } 4155 } 4156 4157 // We can't use either concat vectors or extract subvectors so fall back to 4158 // replacing the shuffle with extract and build vector. 4159 // to insert and build vector. 4160 EVT EltVT = VT.getVectorElementType(); 4161 SmallVector<SDValue,8> Ops; 4162 for (int Idx : Mask) { 4163 SDValue Res; 4164 4165 if (Idx < 0) { 4166 Res = DAG.getUNDEF(EltVT); 4167 } else { 4168 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 4169 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 4170 4171 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 4172 DAG.getVectorIdxConstant(Idx, DL)); 4173 } 4174 4175 Ops.push_back(Res); 4176 } 4177 4178 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4179 } 4180 4181 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4182 ArrayRef<unsigned> Indices = I.getIndices(); 4183 const Value *Op0 = I.getOperand(0); 4184 const Value *Op1 = I.getOperand(1); 4185 Type *AggTy = I.getType(); 4186 Type *ValTy = Op1->getType(); 4187 bool IntoUndef = isa<UndefValue>(Op0); 4188 bool FromUndef = isa<UndefValue>(Op1); 4189 4190 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4191 4192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4193 SmallVector<EVT, 4> AggValueVTs; 4194 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4195 SmallVector<EVT, 4> ValValueVTs; 4196 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4197 4198 unsigned NumAggValues = AggValueVTs.size(); 4199 unsigned NumValValues = ValValueVTs.size(); 4200 SmallVector<SDValue, 4> Values(NumAggValues); 4201 4202 // Ignore an insertvalue that produces an empty object 4203 if (!NumAggValues) { 4204 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4205 return; 4206 } 4207 4208 SDValue Agg = getValue(Op0); 4209 unsigned i = 0; 4210 // Copy the beginning value(s) from the original aggregate. 4211 for (; i != LinearIndex; ++i) 4212 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4213 SDValue(Agg.getNode(), Agg.getResNo() + i); 4214 // Copy values from the inserted value(s). 4215 if (NumValValues) { 4216 SDValue Val = getValue(Op1); 4217 for (; i != LinearIndex + NumValValues; ++i) 4218 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4219 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4220 } 4221 // Copy remaining value(s) from the original aggregate. 4222 for (; i != NumAggValues; ++i) 4223 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4224 SDValue(Agg.getNode(), Agg.getResNo() + i); 4225 4226 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4227 DAG.getVTList(AggValueVTs), Values)); 4228 } 4229 4230 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4231 ArrayRef<unsigned> Indices = I.getIndices(); 4232 const Value *Op0 = I.getOperand(0); 4233 Type *AggTy = Op0->getType(); 4234 Type *ValTy = I.getType(); 4235 bool OutOfUndef = isa<UndefValue>(Op0); 4236 4237 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4238 4239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4240 SmallVector<EVT, 4> ValValueVTs; 4241 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4242 4243 unsigned NumValValues = ValValueVTs.size(); 4244 4245 // Ignore a extractvalue that produces an empty object 4246 if (!NumValValues) { 4247 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4248 return; 4249 } 4250 4251 SmallVector<SDValue, 4> Values(NumValValues); 4252 4253 SDValue Agg = getValue(Op0); 4254 // Copy out the selected value(s). 4255 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4256 Values[i - LinearIndex] = 4257 OutOfUndef ? 4258 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4259 SDValue(Agg.getNode(), Agg.getResNo() + i); 4260 4261 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4262 DAG.getVTList(ValValueVTs), Values)); 4263 } 4264 4265 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4266 Value *Op0 = I.getOperand(0); 4267 // Note that the pointer operand may be a vector of pointers. Take the scalar 4268 // element which holds a pointer. 4269 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4270 SDValue N = getValue(Op0); 4271 SDLoc dl = getCurSDLoc(); 4272 auto &TLI = DAG.getTargetLoweringInfo(); 4273 4274 // Normalize Vector GEP - all scalar operands should be converted to the 4275 // splat vector. 4276 bool IsVectorGEP = I.getType()->isVectorTy(); 4277 ElementCount VectorElementCount = 4278 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4279 : ElementCount::getFixed(0); 4280 4281 if (IsVectorGEP && !N.getValueType().isVector()) { 4282 LLVMContext &Context = *DAG.getContext(); 4283 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4284 N = DAG.getSplat(VT, dl, N); 4285 } 4286 4287 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4288 GTI != E; ++GTI) { 4289 const Value *Idx = GTI.getOperand(); 4290 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4291 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4292 if (Field) { 4293 // N = N + Offset 4294 uint64_t Offset = 4295 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4296 4297 // In an inbounds GEP with an offset that is nonnegative even when 4298 // interpreted as signed, assume there is no unsigned overflow. 4299 SDNodeFlags Flags; 4300 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4301 Flags.setNoUnsignedWrap(true); 4302 4303 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4304 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4305 } 4306 } else { 4307 // IdxSize is the width of the arithmetic according to IR semantics. 4308 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4309 // (and fix up the result later). 4310 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4311 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4312 TypeSize ElementSize = 4313 GTI.getSequentialElementStride(DAG.getDataLayout()); 4314 // We intentionally mask away the high bits here; ElementSize may not 4315 // fit in IdxTy. 4316 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4317 bool ElementScalable = ElementSize.isScalable(); 4318 4319 // If this is a scalar constant or a splat vector of constants, 4320 // handle it quickly. 4321 const auto *C = dyn_cast<Constant>(Idx); 4322 if (C && isa<VectorType>(C->getType())) 4323 C = C->getSplatValue(); 4324 4325 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4326 if (CI && CI->isZero()) 4327 continue; 4328 if (CI && !ElementScalable) { 4329 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4330 LLVMContext &Context = *DAG.getContext(); 4331 SDValue OffsVal; 4332 if (IsVectorGEP) 4333 OffsVal = DAG.getConstant( 4334 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4335 else 4336 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4337 4338 // In an inbounds GEP with an offset that is nonnegative even when 4339 // interpreted as signed, assume there is no unsigned overflow. 4340 SDNodeFlags Flags; 4341 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4342 Flags.setNoUnsignedWrap(true); 4343 4344 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4345 4346 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4347 continue; 4348 } 4349 4350 // N = N + Idx * ElementMul; 4351 SDValue IdxN = getValue(Idx); 4352 4353 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4354 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4355 VectorElementCount); 4356 IdxN = DAG.getSplat(VT, dl, IdxN); 4357 } 4358 4359 // If the index is smaller or larger than intptr_t, truncate or extend 4360 // it. 4361 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4362 4363 if (ElementScalable) { 4364 EVT VScaleTy = N.getValueType().getScalarType(); 4365 SDValue VScale = DAG.getNode( 4366 ISD::VSCALE, dl, VScaleTy, 4367 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4368 if (IsVectorGEP) 4369 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4370 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4371 } else { 4372 // If this is a multiply by a power of two, turn it into a shl 4373 // immediately. This is a very common case. 4374 if (ElementMul != 1) { 4375 if (ElementMul.isPowerOf2()) { 4376 unsigned Amt = ElementMul.logBase2(); 4377 IdxN = DAG.getNode(ISD::SHL, dl, 4378 N.getValueType(), IdxN, 4379 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4380 } else { 4381 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4382 IdxN.getValueType()); 4383 IdxN = DAG.getNode(ISD::MUL, dl, 4384 N.getValueType(), IdxN, Scale); 4385 } 4386 } 4387 } 4388 4389 N = DAG.getNode(ISD::ADD, dl, 4390 N.getValueType(), N, IdxN); 4391 } 4392 } 4393 4394 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4395 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4396 if (IsVectorGEP) { 4397 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4398 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4399 } 4400 4401 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4402 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4403 4404 setValue(&I, N); 4405 } 4406 4407 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4408 // If this is a fixed sized alloca in the entry block of the function, 4409 // allocate it statically on the stack. 4410 if (FuncInfo.StaticAllocaMap.count(&I)) 4411 return; // getValue will auto-populate this. 4412 4413 SDLoc dl = getCurSDLoc(); 4414 Type *Ty = I.getAllocatedType(); 4415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4416 auto &DL = DAG.getDataLayout(); 4417 TypeSize TySize = DL.getTypeAllocSize(Ty); 4418 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4419 4420 SDValue AllocSize = getValue(I.getArraySize()); 4421 4422 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4423 if (AllocSize.getValueType() != IntPtr) 4424 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4425 4426 if (TySize.isScalable()) 4427 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4428 DAG.getVScale(dl, IntPtr, 4429 APInt(IntPtr.getScalarSizeInBits(), 4430 TySize.getKnownMinValue()))); 4431 else { 4432 SDValue TySizeValue = 4433 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4434 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4435 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4436 } 4437 4438 // Handle alignment. If the requested alignment is less than or equal to 4439 // the stack alignment, ignore it. If the size is greater than or equal to 4440 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4441 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4442 if (*Alignment <= StackAlign) 4443 Alignment = std::nullopt; 4444 4445 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4446 // Round the size of the allocation up to the stack alignment size 4447 // by add SA-1 to the size. This doesn't overflow because we're computing 4448 // an address inside an alloca. 4449 SDNodeFlags Flags; 4450 Flags.setNoUnsignedWrap(true); 4451 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4452 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4453 4454 // Mask out the low bits for alignment purposes. 4455 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4456 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4457 4458 SDValue Ops[] = { 4459 getRoot(), AllocSize, 4460 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4461 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4462 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4463 setValue(&I, DSA); 4464 DAG.setRoot(DSA.getValue(1)); 4465 4466 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4467 } 4468 4469 static const MDNode *getRangeMetadata(const Instruction &I) { 4470 // If !noundef is not present, then !range violation results in a poison 4471 // value rather than immediate undefined behavior. In theory, transferring 4472 // these annotations to SDAG is fine, but in practice there are key SDAG 4473 // transforms that are known not to be poison-safe, such as folding logical 4474 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4475 // also present. 4476 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4477 return nullptr; 4478 return I.getMetadata(LLVMContext::MD_range); 4479 } 4480 4481 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4482 if (I.isAtomic()) 4483 return visitAtomicLoad(I); 4484 4485 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4486 const Value *SV = I.getOperand(0); 4487 if (TLI.supportSwiftError()) { 4488 // Swifterror values can come from either a function parameter with 4489 // swifterror attribute or an alloca with swifterror attribute. 4490 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4491 if (Arg->hasSwiftErrorAttr()) 4492 return visitLoadFromSwiftError(I); 4493 } 4494 4495 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4496 if (Alloca->isSwiftError()) 4497 return visitLoadFromSwiftError(I); 4498 } 4499 } 4500 4501 SDValue Ptr = getValue(SV); 4502 4503 Type *Ty = I.getType(); 4504 SmallVector<EVT, 4> ValueVTs, MemVTs; 4505 SmallVector<TypeSize, 4> Offsets; 4506 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4507 unsigned NumValues = ValueVTs.size(); 4508 if (NumValues == 0) 4509 return; 4510 4511 Align Alignment = I.getAlign(); 4512 AAMDNodes AAInfo = I.getAAMetadata(); 4513 const MDNode *Ranges = getRangeMetadata(I); 4514 bool isVolatile = I.isVolatile(); 4515 MachineMemOperand::Flags MMOFlags = 4516 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4517 4518 SDValue Root; 4519 bool ConstantMemory = false; 4520 if (isVolatile) 4521 // Serialize volatile loads with other side effects. 4522 Root = getRoot(); 4523 else if (NumValues > MaxParallelChains) 4524 Root = getMemoryRoot(); 4525 else if (AA && 4526 AA->pointsToConstantMemory(MemoryLocation( 4527 SV, 4528 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4529 AAInfo))) { 4530 // Do not serialize (non-volatile) loads of constant memory with anything. 4531 Root = DAG.getEntryNode(); 4532 ConstantMemory = true; 4533 MMOFlags |= MachineMemOperand::MOInvariant; 4534 } else { 4535 // Do not serialize non-volatile loads against each other. 4536 Root = DAG.getRoot(); 4537 } 4538 4539 SDLoc dl = getCurSDLoc(); 4540 4541 if (isVolatile) 4542 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4543 4544 SmallVector<SDValue, 4> Values(NumValues); 4545 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4546 4547 unsigned ChainI = 0; 4548 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4549 // Serializing loads here may result in excessive register pressure, and 4550 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4551 // could recover a bit by hoisting nodes upward in the chain by recognizing 4552 // they are side-effect free or do not alias. The optimizer should really 4553 // avoid this case by converting large object/array copies to llvm.memcpy 4554 // (MaxParallelChains should always remain as failsafe). 4555 if (ChainI == MaxParallelChains) { 4556 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4557 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4558 ArrayRef(Chains.data(), ChainI)); 4559 Root = Chain; 4560 ChainI = 0; 4561 } 4562 4563 // TODO: MachinePointerInfo only supports a fixed length offset. 4564 MachinePointerInfo PtrInfo = 4565 !Offsets[i].isScalable() || Offsets[i].isZero() 4566 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4567 : MachinePointerInfo(); 4568 4569 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4570 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4571 MMOFlags, AAInfo, Ranges); 4572 Chains[ChainI] = L.getValue(1); 4573 4574 if (MemVTs[i] != ValueVTs[i]) 4575 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4576 4577 Values[i] = L; 4578 } 4579 4580 if (!ConstantMemory) { 4581 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4582 ArrayRef(Chains.data(), ChainI)); 4583 if (isVolatile) 4584 DAG.setRoot(Chain); 4585 else 4586 PendingLoads.push_back(Chain); 4587 } 4588 4589 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4590 DAG.getVTList(ValueVTs), Values)); 4591 } 4592 4593 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4594 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4595 "call visitStoreToSwiftError when backend supports swifterror"); 4596 4597 SmallVector<EVT, 4> ValueVTs; 4598 SmallVector<uint64_t, 4> Offsets; 4599 const Value *SrcV = I.getOperand(0); 4600 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4601 SrcV->getType(), ValueVTs, &Offsets, 0); 4602 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4603 "expect a single EVT for swifterror"); 4604 4605 SDValue Src = getValue(SrcV); 4606 // Create a virtual register, then update the virtual register. 4607 Register VReg = 4608 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4609 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4610 // Chain can be getRoot or getControlRoot. 4611 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4612 SDValue(Src.getNode(), Src.getResNo())); 4613 DAG.setRoot(CopyNode); 4614 } 4615 4616 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4617 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4618 "call visitLoadFromSwiftError when backend supports swifterror"); 4619 4620 assert(!I.isVolatile() && 4621 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4622 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4623 "Support volatile, non temporal, invariant for load_from_swift_error"); 4624 4625 const Value *SV = I.getOperand(0); 4626 Type *Ty = I.getType(); 4627 assert( 4628 (!AA || 4629 !AA->pointsToConstantMemory(MemoryLocation( 4630 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4631 I.getAAMetadata()))) && 4632 "load_from_swift_error should not be constant memory"); 4633 4634 SmallVector<EVT, 4> ValueVTs; 4635 SmallVector<uint64_t, 4> Offsets; 4636 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4637 ValueVTs, &Offsets, 0); 4638 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4639 "expect a single EVT for swifterror"); 4640 4641 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4642 SDValue L = DAG.getCopyFromReg( 4643 getRoot(), getCurSDLoc(), 4644 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4645 4646 setValue(&I, L); 4647 } 4648 4649 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4650 if (I.isAtomic()) 4651 return visitAtomicStore(I); 4652 4653 const Value *SrcV = I.getOperand(0); 4654 const Value *PtrV = I.getOperand(1); 4655 4656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4657 if (TLI.supportSwiftError()) { 4658 // Swifterror values can come from either a function parameter with 4659 // swifterror attribute or an alloca with swifterror attribute. 4660 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4661 if (Arg->hasSwiftErrorAttr()) 4662 return visitStoreToSwiftError(I); 4663 } 4664 4665 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4666 if (Alloca->isSwiftError()) 4667 return visitStoreToSwiftError(I); 4668 } 4669 } 4670 4671 SmallVector<EVT, 4> ValueVTs, MemVTs; 4672 SmallVector<TypeSize, 4> Offsets; 4673 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4674 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4675 unsigned NumValues = ValueVTs.size(); 4676 if (NumValues == 0) 4677 return; 4678 4679 // Get the lowered operands. Note that we do this after 4680 // checking if NumResults is zero, because with zero results 4681 // the operands won't have values in the map. 4682 SDValue Src = getValue(SrcV); 4683 SDValue Ptr = getValue(PtrV); 4684 4685 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4686 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4687 SDLoc dl = getCurSDLoc(); 4688 Align Alignment = I.getAlign(); 4689 AAMDNodes AAInfo = I.getAAMetadata(); 4690 4691 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4692 4693 unsigned ChainI = 0; 4694 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4695 // See visitLoad comments. 4696 if (ChainI == MaxParallelChains) { 4697 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4698 ArrayRef(Chains.data(), ChainI)); 4699 Root = Chain; 4700 ChainI = 0; 4701 } 4702 4703 // TODO: MachinePointerInfo only supports a fixed length offset. 4704 MachinePointerInfo PtrInfo = 4705 !Offsets[i].isScalable() || Offsets[i].isZero() 4706 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4707 : MachinePointerInfo(); 4708 4709 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4710 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4711 if (MemVTs[i] != ValueVTs[i]) 4712 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4713 SDValue St = 4714 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4715 Chains[ChainI] = St; 4716 } 4717 4718 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4719 ArrayRef(Chains.data(), ChainI)); 4720 setValue(&I, StoreNode); 4721 DAG.setRoot(StoreNode); 4722 } 4723 4724 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4725 bool IsCompressing) { 4726 SDLoc sdl = getCurSDLoc(); 4727 4728 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4729 Align &Alignment) { 4730 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4731 Src0 = I.getArgOperand(0); 4732 Ptr = I.getArgOperand(1); 4733 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getAlignValue(); 4734 Mask = I.getArgOperand(3); 4735 }; 4736 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4737 Align &Alignment) { 4738 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4739 Src0 = I.getArgOperand(0); 4740 Ptr = I.getArgOperand(1); 4741 Mask = I.getArgOperand(2); 4742 Alignment = I.getParamAlign(1).valueOrOne(); 4743 }; 4744 4745 Value *PtrOperand, *MaskOperand, *Src0Operand; 4746 Align Alignment; 4747 if (IsCompressing) 4748 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4749 else 4750 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4751 4752 SDValue Ptr = getValue(PtrOperand); 4753 SDValue Src0 = getValue(Src0Operand); 4754 SDValue Mask = getValue(MaskOperand); 4755 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4756 4757 EVT VT = Src0.getValueType(); 4758 4759 auto MMOFlags = MachineMemOperand::MOStore; 4760 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4761 MMOFlags |= MachineMemOperand::MONonTemporal; 4762 4763 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4764 MachinePointerInfo(PtrOperand), MMOFlags, 4765 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4766 SDValue StoreNode = 4767 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4768 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4769 DAG.setRoot(StoreNode); 4770 setValue(&I, StoreNode); 4771 } 4772 4773 // Get a uniform base for the Gather/Scatter intrinsic. 4774 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4775 // We try to represent it as a base pointer + vector of indices. 4776 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4777 // The first operand of the GEP may be a single pointer or a vector of pointers 4778 // Example: 4779 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4780 // or 4781 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4782 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4783 // 4784 // When the first GEP operand is a single pointer - it is the uniform base we 4785 // are looking for. If first operand of the GEP is a splat vector - we 4786 // extract the splat value and use it as a uniform base. 4787 // In all other cases the function returns 'false'. 4788 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4789 ISD::MemIndexType &IndexType, SDValue &Scale, 4790 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4791 uint64_t ElemSize) { 4792 SelectionDAG& DAG = SDB->DAG; 4793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4794 const DataLayout &DL = DAG.getDataLayout(); 4795 4796 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4797 4798 // Handle splat constant pointer. 4799 if (auto *C = dyn_cast<Constant>(Ptr)) { 4800 C = C->getSplatValue(); 4801 if (!C) 4802 return false; 4803 4804 Base = SDB->getValue(C); 4805 4806 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4807 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4808 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4809 IndexType = ISD::SIGNED_SCALED; 4810 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4811 return true; 4812 } 4813 4814 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4815 if (!GEP || GEP->getParent() != CurBB) 4816 return false; 4817 4818 if (GEP->getNumOperands() != 2) 4819 return false; 4820 4821 const Value *BasePtr = GEP->getPointerOperand(); 4822 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4823 4824 // Make sure the base is scalar and the index is a vector. 4825 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4826 return false; 4827 4828 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4829 if (ScaleVal.isScalable()) 4830 return false; 4831 4832 // Target may not support the required addressing mode. 4833 if (ScaleVal != 1 && 4834 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4835 return false; 4836 4837 Base = SDB->getValue(BasePtr); 4838 Index = SDB->getValue(IndexVal); 4839 IndexType = ISD::SIGNED_SCALED; 4840 4841 Scale = 4842 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4843 return true; 4844 } 4845 4846 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4847 SDLoc sdl = getCurSDLoc(); 4848 4849 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4850 const Value *Ptr = I.getArgOperand(1); 4851 SDValue Src0 = getValue(I.getArgOperand(0)); 4852 SDValue Mask = getValue(I.getArgOperand(3)); 4853 EVT VT = Src0.getValueType(); 4854 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4855 ->getMaybeAlignValue() 4856 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4858 4859 SDValue Base; 4860 SDValue Index; 4861 ISD::MemIndexType IndexType; 4862 SDValue Scale; 4863 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4864 I.getParent(), VT.getScalarStoreSize()); 4865 4866 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4867 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4868 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4869 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata()); 4870 if (!UniformBase) { 4871 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4872 Index = getValue(Ptr); 4873 IndexType = ISD::SIGNED_SCALED; 4874 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4875 } 4876 4877 EVT IdxVT = Index.getValueType(); 4878 EVT EltTy = IdxVT.getVectorElementType(); 4879 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4880 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4881 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4882 } 4883 4884 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4885 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4886 Ops, MMO, IndexType, false); 4887 DAG.setRoot(Scatter); 4888 setValue(&I, Scatter); 4889 } 4890 4891 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4892 SDLoc sdl = getCurSDLoc(); 4893 4894 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4895 Align &Alignment) { 4896 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4897 Ptr = I.getArgOperand(0); 4898 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getAlignValue(); 4899 Mask = I.getArgOperand(2); 4900 Src0 = I.getArgOperand(3); 4901 }; 4902 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4903 Align &Alignment) { 4904 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4905 Ptr = I.getArgOperand(0); 4906 Alignment = I.getParamAlign(0).valueOrOne(); 4907 Mask = I.getArgOperand(1); 4908 Src0 = I.getArgOperand(2); 4909 }; 4910 4911 Value *PtrOperand, *MaskOperand, *Src0Operand; 4912 Align Alignment; 4913 if (IsExpanding) 4914 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4915 else 4916 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4917 4918 SDValue Ptr = getValue(PtrOperand); 4919 SDValue Src0 = getValue(Src0Operand); 4920 SDValue Mask = getValue(MaskOperand); 4921 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4922 4923 EVT VT = Src0.getValueType(); 4924 AAMDNodes AAInfo = I.getAAMetadata(); 4925 const MDNode *Ranges = getRangeMetadata(I); 4926 4927 // Do not serialize masked loads of constant memory with anything. 4928 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4929 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4930 4931 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4932 4933 auto MMOFlags = MachineMemOperand::MOLoad; 4934 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4935 MMOFlags |= MachineMemOperand::MONonTemporal; 4936 4937 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4938 MachinePointerInfo(PtrOperand), MMOFlags, 4939 LocationSize::beforeOrAfterPointer(), Alignment, AAInfo, Ranges); 4940 4941 SDValue Load = 4942 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4943 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4944 if (AddToChain) 4945 PendingLoads.push_back(Load.getValue(1)); 4946 setValue(&I, Load); 4947 } 4948 4949 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4950 SDLoc sdl = getCurSDLoc(); 4951 4952 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4953 const Value *Ptr = I.getArgOperand(0); 4954 SDValue Src0 = getValue(I.getArgOperand(3)); 4955 SDValue Mask = getValue(I.getArgOperand(2)); 4956 4957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4958 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4959 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4960 ->getMaybeAlignValue() 4961 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4962 4963 const MDNode *Ranges = getRangeMetadata(I); 4964 4965 SDValue Root = DAG.getRoot(); 4966 SDValue Base; 4967 SDValue Index; 4968 ISD::MemIndexType IndexType; 4969 SDValue Scale; 4970 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4971 I.getParent(), VT.getScalarStoreSize()); 4972 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4973 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4974 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4975 LocationSize::beforeOrAfterPointer(), Alignment, I.getAAMetadata(), 4976 Ranges); 4977 4978 if (!UniformBase) { 4979 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4980 Index = getValue(Ptr); 4981 IndexType = ISD::SIGNED_SCALED; 4982 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4983 } 4984 4985 EVT IdxVT = Index.getValueType(); 4986 EVT EltTy = IdxVT.getVectorElementType(); 4987 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4988 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4989 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4990 } 4991 4992 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4993 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4994 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4995 4996 PendingLoads.push_back(Gather.getValue(1)); 4997 setValue(&I, Gather); 4998 } 4999 5000 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 5001 SDLoc dl = getCurSDLoc(); 5002 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 5003 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 5004 SyncScope::ID SSID = I.getSyncScopeID(); 5005 5006 SDValue InChain = getRoot(); 5007 5008 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 5009 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 5010 5011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5012 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5013 5014 MachineFunction &MF = DAG.getMachineFunction(); 5015 MachineMemOperand *MMO = MF.getMachineMemOperand( 5016 MachinePointerInfo(I.getPointerOperand()), Flags, 5017 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5018 AAMDNodes(), nullptr, SSID, SuccessOrdering, FailureOrdering); 5019 5020 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 5021 dl, MemVT, VTs, InChain, 5022 getValue(I.getPointerOperand()), 5023 getValue(I.getCompareOperand()), 5024 getValue(I.getNewValOperand()), MMO); 5025 5026 SDValue OutChain = L.getValue(2); 5027 5028 setValue(&I, L); 5029 DAG.setRoot(OutChain); 5030 } 5031 5032 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 5033 SDLoc dl = getCurSDLoc(); 5034 ISD::NodeType NT; 5035 switch (I.getOperation()) { 5036 default: llvm_unreachable("Unknown atomicrmw operation"); 5037 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 5038 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 5039 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 5040 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 5041 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 5042 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 5043 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 5044 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 5045 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 5046 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 5047 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 5048 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 5049 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 5050 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 5051 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 5052 case AtomicRMWInst::UIncWrap: 5053 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 5054 break; 5055 case AtomicRMWInst::UDecWrap: 5056 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 5057 break; 5058 } 5059 AtomicOrdering Ordering = I.getOrdering(); 5060 SyncScope::ID SSID = I.getSyncScopeID(); 5061 5062 SDValue InChain = getRoot(); 5063 5064 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 5065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5066 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 5067 5068 MachineFunction &MF = DAG.getMachineFunction(); 5069 MachineMemOperand *MMO = MF.getMachineMemOperand( 5070 MachinePointerInfo(I.getPointerOperand()), Flags, 5071 LocationSize::precise(MemVT.getStoreSize()), DAG.getEVTAlign(MemVT), 5072 AAMDNodes(), nullptr, SSID, Ordering); 5073 5074 SDValue L = 5075 DAG.getAtomic(NT, dl, MemVT, InChain, 5076 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 5077 MMO); 5078 5079 SDValue OutChain = L.getValue(1); 5080 5081 setValue(&I, L); 5082 DAG.setRoot(OutChain); 5083 } 5084 5085 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 5086 SDLoc dl = getCurSDLoc(); 5087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5088 SDValue Ops[3]; 5089 Ops[0] = getRoot(); 5090 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 5091 TLI.getFenceOperandTy(DAG.getDataLayout())); 5092 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 5093 TLI.getFenceOperandTy(DAG.getDataLayout())); 5094 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 5095 setValue(&I, N); 5096 DAG.setRoot(N); 5097 } 5098 5099 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 5100 SDLoc dl = getCurSDLoc(); 5101 AtomicOrdering Order = I.getOrdering(); 5102 SyncScope::ID SSID = I.getSyncScopeID(); 5103 5104 SDValue InChain = getRoot(); 5105 5106 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5107 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5108 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 5109 5110 if (!TLI.supportsUnalignedAtomics() && 5111 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5112 report_fatal_error("Cannot generate unaligned atomic load"); 5113 5114 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 5115 5116 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 5117 MachinePointerInfo(I.getPointerOperand()), Flags, 5118 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5119 nullptr, SSID, Order); 5120 5121 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 5122 5123 SDValue Ptr = getValue(I.getPointerOperand()); 5124 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 5125 Ptr, MMO); 5126 5127 SDValue OutChain = L.getValue(1); 5128 if (MemVT != VT) 5129 L = DAG.getPtrExtOrTrunc(L, dl, VT); 5130 5131 setValue(&I, L); 5132 DAG.setRoot(OutChain); 5133 } 5134 5135 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 5136 SDLoc dl = getCurSDLoc(); 5137 5138 AtomicOrdering Ordering = I.getOrdering(); 5139 SyncScope::ID SSID = I.getSyncScopeID(); 5140 5141 SDValue InChain = getRoot(); 5142 5143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5144 EVT MemVT = 5145 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 5146 5147 if (!TLI.supportsUnalignedAtomics() && 5148 I.getAlign().value() < MemVT.getSizeInBits() / 8) 5149 report_fatal_error("Cannot generate unaligned atomic store"); 5150 5151 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 5152 5153 MachineFunction &MF = DAG.getMachineFunction(); 5154 MachineMemOperand *MMO = MF.getMachineMemOperand( 5155 MachinePointerInfo(I.getPointerOperand()), Flags, 5156 LocationSize::precise(MemVT.getStoreSize()), I.getAlign(), AAMDNodes(), 5157 nullptr, SSID, Ordering); 5158 5159 SDValue Val = getValue(I.getValueOperand()); 5160 if (Val.getValueType() != MemVT) 5161 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 5162 SDValue Ptr = getValue(I.getPointerOperand()); 5163 5164 SDValue OutChain = 5165 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 5166 5167 setValue(&I, OutChain); 5168 DAG.setRoot(OutChain); 5169 } 5170 5171 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 5172 /// node. 5173 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 5174 unsigned Intrinsic) { 5175 // Ignore the callsite's attributes. A specific call site may be marked with 5176 // readnone, but the lowering code will expect the chain based on the 5177 // definition. 5178 const Function *F = I.getCalledFunction(); 5179 bool HasChain = !F->doesNotAccessMemory(); 5180 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5181 5182 // Build the operand list. 5183 SmallVector<SDValue, 8> Ops; 5184 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5185 if (OnlyLoad) { 5186 // We don't need to serialize loads against other loads. 5187 Ops.push_back(DAG.getRoot()); 5188 } else { 5189 Ops.push_back(getRoot()); 5190 } 5191 } 5192 5193 // Info is set by getTgtMemIntrinsic 5194 TargetLowering::IntrinsicInfo Info; 5195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5196 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5197 DAG.getMachineFunction(), 5198 Intrinsic); 5199 5200 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5201 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5202 Info.opc == ISD::INTRINSIC_W_CHAIN) 5203 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5204 TLI.getPointerTy(DAG.getDataLayout()))); 5205 5206 // Add all operands of the call to the operand list. 5207 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5208 const Value *Arg = I.getArgOperand(i); 5209 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5210 Ops.push_back(getValue(Arg)); 5211 continue; 5212 } 5213 5214 // Use TargetConstant instead of a regular constant for immarg. 5215 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5216 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5217 assert(CI->getBitWidth() <= 64 && 5218 "large intrinsic immediates not handled"); 5219 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5220 } else { 5221 Ops.push_back( 5222 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5223 } 5224 } 5225 5226 SmallVector<EVT, 4> ValueVTs; 5227 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5228 5229 if (HasChain) 5230 ValueVTs.push_back(MVT::Other); 5231 5232 SDVTList VTs = DAG.getVTList(ValueVTs); 5233 5234 // Propagate fast-math-flags from IR to node(s). 5235 SDNodeFlags Flags; 5236 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5237 Flags.copyFMF(*FPMO); 5238 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5239 5240 // Create the node. 5241 SDValue Result; 5242 5243 if (auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl)) { 5244 auto *Token = Bundle->Inputs[0].get(); 5245 SDValue ConvControlToken = getValue(Token); 5246 assert(Ops.back().getValueType() != MVT::Glue && 5247 "Did not expected another glue node here."); 5248 ConvControlToken = 5249 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, {}, MVT::Glue, ConvControlToken); 5250 Ops.push_back(ConvControlToken); 5251 } 5252 5253 // In some cases, custom collection of operands from CallInst I may be needed. 5254 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5255 if (IsTgtIntrinsic) { 5256 // This is target intrinsic that touches memory 5257 // 5258 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5259 // didn't yield anything useful. 5260 MachinePointerInfo MPI; 5261 if (Info.ptrVal) 5262 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5263 else if (Info.fallbackAddressSpace) 5264 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5265 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5266 Info.memVT, MPI, Info.align, Info.flags, 5267 Info.size, I.getAAMetadata()); 5268 } else if (!HasChain) { 5269 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5270 } else if (!I.getType()->isVoidTy()) { 5271 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5272 } else { 5273 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5274 } 5275 5276 if (HasChain) { 5277 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5278 if (OnlyLoad) 5279 PendingLoads.push_back(Chain); 5280 else 5281 DAG.setRoot(Chain); 5282 } 5283 5284 if (!I.getType()->isVoidTy()) { 5285 if (!isa<VectorType>(I.getType())) 5286 Result = lowerRangeToAssertZExt(DAG, I, Result); 5287 5288 MaybeAlign Alignment = I.getRetAlign(); 5289 5290 // Insert `assertalign` node if there's an alignment. 5291 if (InsertAssertAlign && Alignment) { 5292 Result = 5293 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5294 } 5295 } 5296 5297 setValue(&I, Result); 5298 } 5299 5300 /// GetSignificand - Get the significand and build it into a floating-point 5301 /// number with exponent of 1: 5302 /// 5303 /// Op = (Op & 0x007fffff) | 0x3f800000; 5304 /// 5305 /// where Op is the hexadecimal representation of floating point value. 5306 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5307 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5308 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5309 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5310 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5311 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5312 } 5313 5314 /// GetExponent - Get the exponent: 5315 /// 5316 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5317 /// 5318 /// where Op is the hexadecimal representation of floating point value. 5319 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5320 const TargetLowering &TLI, const SDLoc &dl) { 5321 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5322 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5323 SDValue t1 = DAG.getNode( 5324 ISD::SRL, dl, MVT::i32, t0, 5325 DAG.getConstant(23, dl, 5326 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5327 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5328 DAG.getConstant(127, dl, MVT::i32)); 5329 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5330 } 5331 5332 /// getF32Constant - Get 32-bit floating point constant. 5333 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5334 const SDLoc &dl) { 5335 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5336 MVT::f32); 5337 } 5338 5339 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5340 SelectionDAG &DAG) { 5341 // TODO: What fast-math-flags should be set on the floating-point nodes? 5342 5343 // IntegerPartOfX = ((int32_t)(t0); 5344 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5345 5346 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5347 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5348 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5349 5350 // IntegerPartOfX <<= 23; 5351 IntegerPartOfX = 5352 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5353 DAG.getConstant(23, dl, 5354 DAG.getTargetLoweringInfo().getShiftAmountTy( 5355 MVT::i32, DAG.getDataLayout()))); 5356 5357 SDValue TwoToFractionalPartOfX; 5358 if (LimitFloatPrecision <= 6) { 5359 // For floating-point precision of 6: 5360 // 5361 // TwoToFractionalPartOfX = 5362 // 0.997535578f + 5363 // (0.735607626f + 0.252464424f * x) * x; 5364 // 5365 // error 0.0144103317, which is 6 bits 5366 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5367 getF32Constant(DAG, 0x3e814304, dl)); 5368 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5369 getF32Constant(DAG, 0x3f3c50c8, dl)); 5370 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5371 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5372 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5373 } else if (LimitFloatPrecision <= 12) { 5374 // For floating-point precision of 12: 5375 // 5376 // TwoToFractionalPartOfX = 5377 // 0.999892986f + 5378 // (0.696457318f + 5379 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5380 // 5381 // error 0.000107046256, which is 13 to 14 bits 5382 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5383 getF32Constant(DAG, 0x3da235e3, dl)); 5384 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5385 getF32Constant(DAG, 0x3e65b8f3, dl)); 5386 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5387 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5388 getF32Constant(DAG, 0x3f324b07, dl)); 5389 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5390 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5391 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5392 } else { // LimitFloatPrecision <= 18 5393 // For floating-point precision of 18: 5394 // 5395 // TwoToFractionalPartOfX = 5396 // 0.999999982f + 5397 // (0.693148872f + 5398 // (0.240227044f + 5399 // (0.554906021e-1f + 5400 // (0.961591928e-2f + 5401 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5402 // error 2.47208000*10^(-7), which is better than 18 bits 5403 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5404 getF32Constant(DAG, 0x3924b03e, dl)); 5405 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5406 getF32Constant(DAG, 0x3ab24b87, dl)); 5407 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5408 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5409 getF32Constant(DAG, 0x3c1d8c17, dl)); 5410 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5411 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5412 getF32Constant(DAG, 0x3d634a1d, dl)); 5413 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5414 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5415 getF32Constant(DAG, 0x3e75fe14, dl)); 5416 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5417 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5418 getF32Constant(DAG, 0x3f317234, dl)); 5419 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5420 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5421 getF32Constant(DAG, 0x3f800000, dl)); 5422 } 5423 5424 // Add the exponent into the result in integer domain. 5425 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5426 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5427 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5428 } 5429 5430 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5431 /// limited-precision mode. 5432 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5433 const TargetLowering &TLI, SDNodeFlags Flags) { 5434 if (Op.getValueType() == MVT::f32 && 5435 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5436 5437 // Put the exponent in the right bit position for later addition to the 5438 // final result: 5439 // 5440 // t0 = Op * log2(e) 5441 5442 // TODO: What fast-math-flags should be set here? 5443 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5444 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5445 return getLimitedPrecisionExp2(t0, dl, DAG); 5446 } 5447 5448 // No special expansion. 5449 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5450 } 5451 5452 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5453 /// limited-precision mode. 5454 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5455 const TargetLowering &TLI, SDNodeFlags Flags) { 5456 // TODO: What fast-math-flags should be set on the floating-point nodes? 5457 5458 if (Op.getValueType() == MVT::f32 && 5459 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5460 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5461 5462 // Scale the exponent by log(2). 5463 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5464 SDValue LogOfExponent = 5465 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5466 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5467 5468 // Get the significand and build it into a floating-point number with 5469 // exponent of 1. 5470 SDValue X = GetSignificand(DAG, Op1, dl); 5471 5472 SDValue LogOfMantissa; 5473 if (LimitFloatPrecision <= 6) { 5474 // For floating-point precision of 6: 5475 // 5476 // LogofMantissa = 5477 // -1.1609546f + 5478 // (1.4034025f - 0.23903021f * x) * x; 5479 // 5480 // error 0.0034276066, which is better than 8 bits 5481 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5482 getF32Constant(DAG, 0xbe74c456, dl)); 5483 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5484 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5485 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5486 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5487 getF32Constant(DAG, 0x3f949a29, dl)); 5488 } else if (LimitFloatPrecision <= 12) { 5489 // For floating-point precision of 12: 5490 // 5491 // LogOfMantissa = 5492 // -1.7417939f + 5493 // (2.8212026f + 5494 // (-1.4699568f + 5495 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5496 // 5497 // error 0.000061011436, which is 14 bits 5498 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5499 getF32Constant(DAG, 0xbd67b6d6, dl)); 5500 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5501 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5502 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5503 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5504 getF32Constant(DAG, 0x3fbc278b, dl)); 5505 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5506 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5507 getF32Constant(DAG, 0x40348e95, dl)); 5508 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5509 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5510 getF32Constant(DAG, 0x3fdef31a, dl)); 5511 } else { // LimitFloatPrecision <= 18 5512 // For floating-point precision of 18: 5513 // 5514 // LogOfMantissa = 5515 // -2.1072184f + 5516 // (4.2372794f + 5517 // (-3.7029485f + 5518 // (2.2781945f + 5519 // (-0.87823314f + 5520 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5521 // 5522 // error 0.0000023660568, which is better than 18 bits 5523 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5524 getF32Constant(DAG, 0xbc91e5ac, dl)); 5525 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5526 getF32Constant(DAG, 0x3e4350aa, dl)); 5527 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5528 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5529 getF32Constant(DAG, 0x3f60d3e3, dl)); 5530 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5531 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5532 getF32Constant(DAG, 0x4011cdf0, dl)); 5533 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5534 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5535 getF32Constant(DAG, 0x406cfd1c, dl)); 5536 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5537 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5538 getF32Constant(DAG, 0x408797cb, dl)); 5539 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5540 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5541 getF32Constant(DAG, 0x4006dcab, dl)); 5542 } 5543 5544 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5545 } 5546 5547 // No special expansion. 5548 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5549 } 5550 5551 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5552 /// limited-precision mode. 5553 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5554 const TargetLowering &TLI, SDNodeFlags Flags) { 5555 // TODO: What fast-math-flags should be set on the floating-point nodes? 5556 5557 if (Op.getValueType() == MVT::f32 && 5558 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5559 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5560 5561 // Get the exponent. 5562 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5563 5564 // Get the significand and build it into a floating-point number with 5565 // exponent of 1. 5566 SDValue X = GetSignificand(DAG, Op1, dl); 5567 5568 // Different possible minimax approximations of significand in 5569 // floating-point for various degrees of accuracy over [1,2]. 5570 SDValue Log2ofMantissa; 5571 if (LimitFloatPrecision <= 6) { 5572 // For floating-point precision of 6: 5573 // 5574 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5575 // 5576 // error 0.0049451742, which is more than 7 bits 5577 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5578 getF32Constant(DAG, 0xbeb08fe0, dl)); 5579 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5580 getF32Constant(DAG, 0x40019463, dl)); 5581 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5582 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5583 getF32Constant(DAG, 0x3fd6633d, dl)); 5584 } else if (LimitFloatPrecision <= 12) { 5585 // For floating-point precision of 12: 5586 // 5587 // Log2ofMantissa = 5588 // -2.51285454f + 5589 // (4.07009056f + 5590 // (-2.12067489f + 5591 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5592 // 5593 // error 0.0000876136000, which is better than 13 bits 5594 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5595 getF32Constant(DAG, 0xbda7262e, dl)); 5596 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5597 getF32Constant(DAG, 0x3f25280b, dl)); 5598 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5599 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5600 getF32Constant(DAG, 0x4007b923, dl)); 5601 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5602 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5603 getF32Constant(DAG, 0x40823e2f, dl)); 5604 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5605 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5606 getF32Constant(DAG, 0x4020d29c, dl)); 5607 } else { // LimitFloatPrecision <= 18 5608 // For floating-point precision of 18: 5609 // 5610 // Log2ofMantissa = 5611 // -3.0400495f + 5612 // (6.1129976f + 5613 // (-5.3420409f + 5614 // (3.2865683f + 5615 // (-1.2669343f + 5616 // (0.27515199f - 5617 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5618 // 5619 // error 0.0000018516, which is better than 18 bits 5620 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5621 getF32Constant(DAG, 0xbcd2769e, dl)); 5622 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5623 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5624 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5625 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5626 getF32Constant(DAG, 0x3fa22ae7, dl)); 5627 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5628 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5629 getF32Constant(DAG, 0x40525723, dl)); 5630 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5631 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5632 getF32Constant(DAG, 0x40aaf200, dl)); 5633 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5634 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5635 getF32Constant(DAG, 0x40c39dad, dl)); 5636 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5637 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5638 getF32Constant(DAG, 0x4042902c, dl)); 5639 } 5640 5641 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5642 } 5643 5644 // No special expansion. 5645 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5646 } 5647 5648 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5649 /// limited-precision mode. 5650 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5651 const TargetLowering &TLI, SDNodeFlags Flags) { 5652 // TODO: What fast-math-flags should be set on the floating-point nodes? 5653 5654 if (Op.getValueType() == MVT::f32 && 5655 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5656 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5657 5658 // Scale the exponent by log10(2) [0.30102999f]. 5659 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5660 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5661 getF32Constant(DAG, 0x3e9a209a, dl)); 5662 5663 // Get the significand and build it into a floating-point number with 5664 // exponent of 1. 5665 SDValue X = GetSignificand(DAG, Op1, dl); 5666 5667 SDValue Log10ofMantissa; 5668 if (LimitFloatPrecision <= 6) { 5669 // For floating-point precision of 6: 5670 // 5671 // Log10ofMantissa = 5672 // -0.50419619f + 5673 // (0.60948995f - 0.10380950f * x) * x; 5674 // 5675 // error 0.0014886165, which is 6 bits 5676 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5677 getF32Constant(DAG, 0xbdd49a13, dl)); 5678 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5679 getF32Constant(DAG, 0x3f1c0789, dl)); 5680 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5681 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5682 getF32Constant(DAG, 0x3f011300, dl)); 5683 } else if (LimitFloatPrecision <= 12) { 5684 // For floating-point precision of 12: 5685 // 5686 // Log10ofMantissa = 5687 // -0.64831180f + 5688 // (0.91751397f + 5689 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5690 // 5691 // error 0.00019228036, which is better than 12 bits 5692 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5693 getF32Constant(DAG, 0x3d431f31, dl)); 5694 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5695 getF32Constant(DAG, 0x3ea21fb2, dl)); 5696 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5697 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5698 getF32Constant(DAG, 0x3f6ae232, dl)); 5699 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5700 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5701 getF32Constant(DAG, 0x3f25f7c3, dl)); 5702 } else { // LimitFloatPrecision <= 18 5703 // For floating-point precision of 18: 5704 // 5705 // Log10ofMantissa = 5706 // -0.84299375f + 5707 // (1.5327582f + 5708 // (-1.0688956f + 5709 // (0.49102474f + 5710 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5711 // 5712 // error 0.0000037995730, which is better than 18 bits 5713 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5714 getF32Constant(DAG, 0x3c5d51ce, dl)); 5715 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5716 getF32Constant(DAG, 0x3e00685a, dl)); 5717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5718 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5719 getF32Constant(DAG, 0x3efb6798, dl)); 5720 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5721 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5722 getF32Constant(DAG, 0x3f88d192, dl)); 5723 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5724 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5725 getF32Constant(DAG, 0x3fc4316c, dl)); 5726 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5727 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5728 getF32Constant(DAG, 0x3f57ce70, dl)); 5729 } 5730 5731 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5732 } 5733 5734 // No special expansion. 5735 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5736 } 5737 5738 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5739 /// limited-precision mode. 5740 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5741 const TargetLowering &TLI, SDNodeFlags Flags) { 5742 if (Op.getValueType() == MVT::f32 && 5743 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5744 return getLimitedPrecisionExp2(Op, dl, DAG); 5745 5746 // No special expansion. 5747 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5748 } 5749 5750 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5751 /// limited-precision mode with x == 10.0f. 5752 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5753 SelectionDAG &DAG, const TargetLowering &TLI, 5754 SDNodeFlags Flags) { 5755 bool IsExp10 = false; 5756 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5757 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5758 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5759 APFloat Ten(10.0f); 5760 IsExp10 = LHSC->isExactlyValue(Ten); 5761 } 5762 } 5763 5764 // TODO: What fast-math-flags should be set on the FMUL node? 5765 if (IsExp10) { 5766 // Put the exponent in the right bit position for later addition to the 5767 // final result: 5768 // 5769 // #define LOG2OF10 3.3219281f 5770 // t0 = Op * LOG2OF10; 5771 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5772 getF32Constant(DAG, 0x40549a78, dl)); 5773 return getLimitedPrecisionExp2(t0, dl, DAG); 5774 } 5775 5776 // No special expansion. 5777 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5778 } 5779 5780 /// ExpandPowI - Expand a llvm.powi intrinsic. 5781 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5782 SelectionDAG &DAG) { 5783 // If RHS is a constant, we can expand this out to a multiplication tree if 5784 // it's beneficial on the target, otherwise we end up lowering to a call to 5785 // __powidf2 (for example). 5786 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5787 unsigned Val = RHSC->getSExtValue(); 5788 5789 // powi(x, 0) -> 1.0 5790 if (Val == 0) 5791 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5792 5793 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5794 Val, DAG.shouldOptForSize())) { 5795 // Get the exponent as a positive value. 5796 if ((int)Val < 0) 5797 Val = -Val; 5798 // We use the simple binary decomposition method to generate the multiply 5799 // sequence. There are more optimal ways to do this (for example, 5800 // powi(x,15) generates one more multiply than it should), but this has 5801 // the benefit of being both really simple and much better than a libcall. 5802 SDValue Res; // Logically starts equal to 1.0 5803 SDValue CurSquare = LHS; 5804 // TODO: Intrinsics should have fast-math-flags that propagate to these 5805 // nodes. 5806 while (Val) { 5807 if (Val & 1) { 5808 if (Res.getNode()) 5809 Res = 5810 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5811 else 5812 Res = CurSquare; // 1.0*CurSquare. 5813 } 5814 5815 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5816 CurSquare, CurSquare); 5817 Val >>= 1; 5818 } 5819 5820 // If the original was negative, invert the result, producing 1/(x*x*x). 5821 if (RHSC->getSExtValue() < 0) 5822 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5823 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5824 return Res; 5825 } 5826 } 5827 5828 // Otherwise, expand to a libcall. 5829 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5830 } 5831 5832 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5833 SDValue LHS, SDValue RHS, SDValue Scale, 5834 SelectionDAG &DAG, const TargetLowering &TLI) { 5835 EVT VT = LHS.getValueType(); 5836 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5837 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5838 LLVMContext &Ctx = *DAG.getContext(); 5839 5840 // If the type is legal but the operation isn't, this node might survive all 5841 // the way to operation legalization. If we end up there and we do not have 5842 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5843 // node. 5844 5845 // Coax the legalizer into expanding the node during type legalization instead 5846 // by bumping the size by one bit. This will force it to Promote, enabling the 5847 // early expansion and avoiding the need to expand later. 5848 5849 // We don't have to do this if Scale is 0; that can always be expanded, unless 5850 // it's a saturating signed operation. Those can experience true integer 5851 // division overflow, a case which we must avoid. 5852 5853 // FIXME: We wouldn't have to do this (or any of the early 5854 // expansion/promotion) if it was possible to expand a libcall of an 5855 // illegal type during operation legalization. But it's not, so things 5856 // get a bit hacky. 5857 unsigned ScaleInt = Scale->getAsZExtVal(); 5858 if ((ScaleInt > 0 || (Saturating && Signed)) && 5859 (TLI.isTypeLegal(VT) || 5860 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5861 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5862 Opcode, VT, ScaleInt); 5863 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5864 EVT PromVT; 5865 if (VT.isScalarInteger()) 5866 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5867 else if (VT.isVector()) { 5868 PromVT = VT.getVectorElementType(); 5869 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5870 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5871 } else 5872 llvm_unreachable("Wrong VT for DIVFIX?"); 5873 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5874 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5875 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5876 // For saturating operations, we need to shift up the LHS to get the 5877 // proper saturation width, and then shift down again afterwards. 5878 if (Saturating) 5879 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5880 DAG.getConstant(1, DL, ShiftTy)); 5881 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5882 if (Saturating) 5883 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5884 DAG.getConstant(1, DL, ShiftTy)); 5885 return DAG.getZExtOrTrunc(Res, DL, VT); 5886 } 5887 } 5888 5889 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5890 } 5891 5892 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5893 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5894 static void 5895 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5896 const SDValue &N) { 5897 switch (N.getOpcode()) { 5898 case ISD::CopyFromReg: { 5899 SDValue Op = N.getOperand(1); 5900 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5901 Op.getValueType().getSizeInBits()); 5902 return; 5903 } 5904 case ISD::BITCAST: 5905 case ISD::AssertZext: 5906 case ISD::AssertSext: 5907 case ISD::TRUNCATE: 5908 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5909 return; 5910 case ISD::BUILD_PAIR: 5911 case ISD::BUILD_VECTOR: 5912 case ISD::CONCAT_VECTORS: 5913 for (SDValue Op : N->op_values()) 5914 getUnderlyingArgRegs(Regs, Op); 5915 return; 5916 default: 5917 return; 5918 } 5919 } 5920 5921 /// If the DbgValueInst is a dbg_value of a function argument, create the 5922 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5923 /// instruction selection, they will be inserted to the entry BB. 5924 /// We don't currently support this for variadic dbg_values, as they shouldn't 5925 /// appear for function arguments or in the prologue. 5926 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5927 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5928 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5929 const Argument *Arg = dyn_cast<Argument>(V); 5930 if (!Arg) 5931 return false; 5932 5933 MachineFunction &MF = DAG.getMachineFunction(); 5934 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5935 5936 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5937 // we've been asked to pursue. 5938 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5939 bool Indirect) { 5940 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5941 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5942 // pointing at the VReg, which will be patched up later. 5943 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5944 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5945 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5946 /* isKill */ false, /* isDead */ false, 5947 /* isUndef */ false, /* isEarlyClobber */ false, 5948 /* SubReg */ 0, /* isDebug */ true)}); 5949 5950 auto *NewDIExpr = FragExpr; 5951 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5952 // the DIExpression. 5953 if (Indirect) 5954 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5955 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5956 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5957 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5958 } else { 5959 // Create a completely standard DBG_VALUE. 5960 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5961 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5962 } 5963 }; 5964 5965 if (Kind == FuncArgumentDbgValueKind::Value) { 5966 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5967 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5968 // the entry block. 5969 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5970 if (!IsInEntryBlock) 5971 return false; 5972 5973 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5974 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5975 // variable that also is a param. 5976 // 5977 // Although, if we are at the top of the entry block already, we can still 5978 // emit using ArgDbgValue. This might catch some situations when the 5979 // dbg.value refers to an argument that isn't used in the entry block, so 5980 // any CopyToReg node would be optimized out and the only way to express 5981 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5982 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5983 // we should only emit as ArgDbgValue if the Variable is an argument to the 5984 // current function, and the dbg.value intrinsic is found in the entry 5985 // block. 5986 bool VariableIsFunctionInputArg = Variable->isParameter() && 5987 !DL->getInlinedAt(); 5988 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5989 if (!IsInPrologue && !VariableIsFunctionInputArg) 5990 return false; 5991 5992 // Here we assume that a function argument on IR level only can be used to 5993 // describe one input parameter on source level. If we for example have 5994 // source code like this 5995 // 5996 // struct A { long x, y; }; 5997 // void foo(struct A a, long b) { 5998 // ... 5999 // b = a.x; 6000 // ... 6001 // } 6002 // 6003 // and IR like this 6004 // 6005 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 6006 // entry: 6007 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 6008 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 6009 // call void @llvm.dbg.value(metadata i32 %b, "b", 6010 // ... 6011 // call void @llvm.dbg.value(metadata i32 %a1, "b" 6012 // ... 6013 // 6014 // then the last dbg.value is describing a parameter "b" using a value that 6015 // is an argument. But since we already has used %a1 to describe a parameter 6016 // we should not handle that last dbg.value here (that would result in an 6017 // incorrect hoisting of the DBG_VALUE to the function entry). 6018 // Notice that we allow one dbg.value per IR level argument, to accommodate 6019 // for the situation with fragments above. 6020 // If there is no node for the value being handled, we return true to skip 6021 // the normal generation of debug info, as it would kill existing debug 6022 // info for the parameter in case of duplicates. 6023 if (VariableIsFunctionInputArg) { 6024 unsigned ArgNo = Arg->getArgNo(); 6025 if (ArgNo >= FuncInfo.DescribedArgs.size()) 6026 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 6027 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 6028 return !NodeMap[V].getNode(); 6029 FuncInfo.DescribedArgs.set(ArgNo); 6030 } 6031 } 6032 6033 bool IsIndirect = false; 6034 std::optional<MachineOperand> Op; 6035 // Some arguments' frame index is recorded during argument lowering. 6036 int FI = FuncInfo.getArgumentFrameIndex(Arg); 6037 if (FI != std::numeric_limits<int>::max()) 6038 Op = MachineOperand::CreateFI(FI); 6039 6040 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 6041 if (!Op && N.getNode()) { 6042 getUnderlyingArgRegs(ArgRegsAndSizes, N); 6043 Register Reg; 6044 if (ArgRegsAndSizes.size() == 1) 6045 Reg = ArgRegsAndSizes.front().first; 6046 6047 if (Reg && Reg.isVirtual()) { 6048 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6049 Register PR = RegInfo.getLiveInPhysReg(Reg); 6050 if (PR) 6051 Reg = PR; 6052 } 6053 if (Reg) { 6054 Op = MachineOperand::CreateReg(Reg, false); 6055 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6056 } 6057 } 6058 6059 if (!Op && N.getNode()) { 6060 // Check if frame index is available. 6061 SDValue LCandidate = peekThroughBitcasts(N); 6062 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 6063 if (FrameIndexSDNode *FINode = 6064 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6065 Op = MachineOperand::CreateFI(FINode->getIndex()); 6066 } 6067 6068 if (!Op) { 6069 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 6070 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 6071 SplitRegs) { 6072 unsigned Offset = 0; 6073 for (const auto &RegAndSize : SplitRegs) { 6074 // If the expression is already a fragment, the current register 6075 // offset+size might extend beyond the fragment. In this case, only 6076 // the register bits that are inside the fragment are relevant. 6077 int RegFragmentSizeInBits = RegAndSize.second; 6078 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 6079 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 6080 // The register is entirely outside the expression fragment, 6081 // so is irrelevant for debug info. 6082 if (Offset >= ExprFragmentSizeInBits) 6083 break; 6084 // The register is partially outside the expression fragment, only 6085 // the low bits within the fragment are relevant for debug info. 6086 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 6087 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 6088 } 6089 } 6090 6091 auto FragmentExpr = DIExpression::createFragmentExpression( 6092 Expr, Offset, RegFragmentSizeInBits); 6093 Offset += RegAndSize.second; 6094 // If a valid fragment expression cannot be created, the variable's 6095 // correct value cannot be determined and so it is set as Undef. 6096 if (!FragmentExpr) { 6097 SDDbgValue *SDV = DAG.getConstantDbgValue( 6098 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 6099 DAG.AddDbgValue(SDV, false); 6100 continue; 6101 } 6102 MachineInstr *NewMI = 6103 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 6104 Kind != FuncArgumentDbgValueKind::Value); 6105 FuncInfo.ArgDbgValues.push_back(NewMI); 6106 } 6107 }; 6108 6109 // Check if ValueMap has reg number. 6110 DenseMap<const Value *, Register>::const_iterator 6111 VMI = FuncInfo.ValueMap.find(V); 6112 if (VMI != FuncInfo.ValueMap.end()) { 6113 const auto &TLI = DAG.getTargetLoweringInfo(); 6114 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 6115 V->getType(), std::nullopt); 6116 if (RFV.occupiesMultipleRegs()) { 6117 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 6118 return true; 6119 } 6120 6121 Op = MachineOperand::CreateReg(VMI->second, false); 6122 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 6123 } else if (ArgRegsAndSizes.size() > 1) { 6124 // This was split due to the calling convention, and no virtual register 6125 // mapping exists for the value. 6126 splitMultiRegDbgValue(ArgRegsAndSizes); 6127 return true; 6128 } 6129 } 6130 6131 if (!Op) 6132 return false; 6133 6134 assert(Variable->isValidLocationForIntrinsic(DL) && 6135 "Expected inlined-at fields to agree"); 6136 MachineInstr *NewMI = nullptr; 6137 6138 if (Op->isReg()) 6139 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 6140 else 6141 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 6142 Variable, Expr); 6143 6144 // Otherwise, use ArgDbgValues. 6145 FuncInfo.ArgDbgValues.push_back(NewMI); 6146 return true; 6147 } 6148 6149 /// Return the appropriate SDDbgValue based on N. 6150 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 6151 DILocalVariable *Variable, 6152 DIExpression *Expr, 6153 const DebugLoc &dl, 6154 unsigned DbgSDNodeOrder) { 6155 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 6156 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 6157 // stack slot locations. 6158 // 6159 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 6160 // debug values here after optimization: 6161 // 6162 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 6163 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 6164 // 6165 // Both describe the direct values of their associated variables. 6166 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 6167 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6168 } 6169 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 6170 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 6171 } 6172 6173 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 6174 switch (Intrinsic) { 6175 case Intrinsic::smul_fix: 6176 return ISD::SMULFIX; 6177 case Intrinsic::umul_fix: 6178 return ISD::UMULFIX; 6179 case Intrinsic::smul_fix_sat: 6180 return ISD::SMULFIXSAT; 6181 case Intrinsic::umul_fix_sat: 6182 return ISD::UMULFIXSAT; 6183 case Intrinsic::sdiv_fix: 6184 return ISD::SDIVFIX; 6185 case Intrinsic::udiv_fix: 6186 return ISD::UDIVFIX; 6187 case Intrinsic::sdiv_fix_sat: 6188 return ISD::SDIVFIXSAT; 6189 case Intrinsic::udiv_fix_sat: 6190 return ISD::UDIVFIXSAT; 6191 default: 6192 llvm_unreachable("Unhandled fixed point intrinsic"); 6193 } 6194 } 6195 6196 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6197 const char *FunctionName) { 6198 assert(FunctionName && "FunctionName must not be nullptr"); 6199 SDValue Callee = DAG.getExternalSymbol( 6200 FunctionName, 6201 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6202 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6203 } 6204 6205 /// Given a @llvm.call.preallocated.setup, return the corresponding 6206 /// preallocated call. 6207 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6208 assert(cast<CallBase>(PreallocatedSetup) 6209 ->getCalledFunction() 6210 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6211 "expected call_preallocated_setup Value"); 6212 for (const auto *U : PreallocatedSetup->users()) { 6213 auto *UseCall = cast<CallBase>(U); 6214 const Function *Fn = UseCall->getCalledFunction(); 6215 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6216 return UseCall; 6217 } 6218 } 6219 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6220 } 6221 6222 /// If DI is a debug value with an EntryValue expression, lower it using the 6223 /// corresponding physical register of the associated Argument value 6224 /// (guaranteed to exist by the verifier). 6225 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6226 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6227 DIExpression *Expr, DebugLoc DbgLoc) { 6228 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6229 return false; 6230 6231 // These properties are guaranteed by the verifier. 6232 const Argument *Arg = cast<Argument>(Values[0]); 6233 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6234 6235 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6236 if (ArgIt == FuncInfo.ValueMap.end()) { 6237 LLVM_DEBUG( 6238 dbgs() << "Dropping dbg.value: expression is entry_value but " 6239 "couldn't find an associated register for the Argument\n"); 6240 return true; 6241 } 6242 Register ArgVReg = ArgIt->getSecond(); 6243 6244 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6245 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6246 SDDbgValue *SDV = DAG.getVRegDbgValue( 6247 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6248 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6249 return true; 6250 } 6251 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6252 "couldn't find a physical register\n"); 6253 return true; 6254 } 6255 6256 /// Lower the call to the specified intrinsic function. 6257 void SelectionDAGBuilder::visitConvergenceControl(const CallInst &I, 6258 unsigned Intrinsic) { 6259 SDLoc sdl = getCurSDLoc(); 6260 switch (Intrinsic) { 6261 case Intrinsic::experimental_convergence_anchor: 6262 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ANCHOR, sdl, MVT::Untyped)); 6263 break; 6264 case Intrinsic::experimental_convergence_entry: 6265 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_ENTRY, sdl, MVT::Untyped)); 6266 break; 6267 case Intrinsic::experimental_convergence_loop: { 6268 auto Bundle = I.getOperandBundle(LLVMContext::OB_convergencectrl); 6269 auto *Token = Bundle->Inputs[0].get(); 6270 setValue(&I, DAG.getNode(ISD::CONVERGENCECTRL_LOOP, sdl, MVT::Untyped, 6271 getValue(Token))); 6272 break; 6273 } 6274 } 6275 } 6276 6277 void SelectionDAGBuilder::visitVectorHistogram(const CallInst &I, 6278 unsigned IntrinsicID) { 6279 // For now, we're only lowering an 'add' histogram. 6280 // We can add others later, e.g. saturating adds, min/max. 6281 assert(IntrinsicID == Intrinsic::experimental_vector_histogram_add && 6282 "Tried to lower unsupported histogram type"); 6283 SDLoc sdl = getCurSDLoc(); 6284 Value *Ptr = I.getOperand(0); 6285 SDValue Inc = getValue(I.getOperand(1)); 6286 SDValue Mask = getValue(I.getOperand(2)); 6287 6288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6289 DataLayout TargetDL = DAG.getDataLayout(); 6290 EVT VT = Inc.getValueType(); 6291 Align Alignment = DAG.getEVTAlign(VT); 6292 6293 const MDNode *Ranges = getRangeMetadata(I); 6294 6295 SDValue Root = DAG.getRoot(); 6296 SDValue Base; 6297 SDValue Index; 6298 ISD::MemIndexType IndexType; 6299 SDValue Scale; 6300 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 6301 I.getParent(), VT.getScalarStoreSize()); 6302 6303 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 6304 6305 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6306 MachinePointerInfo(AS), 6307 MachineMemOperand::MOLoad | MachineMemOperand::MOStore, 6308 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 6309 6310 if (!UniformBase) { 6311 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6312 Index = getValue(Ptr); 6313 IndexType = ISD::SIGNED_SCALED; 6314 Scale = 6315 DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 6316 } 6317 6318 EVT IdxVT = Index.getValueType(); 6319 EVT EltTy = IdxVT.getVectorElementType(); 6320 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 6321 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 6322 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 6323 } 6324 6325 SDValue ID = DAG.getTargetConstant(IntrinsicID, sdl, MVT::i32); 6326 6327 SDValue Ops[] = {Root, Inc, Mask, Base, Index, Scale, ID}; 6328 SDValue Histogram = DAG.getMaskedHistogram(DAG.getVTList(MVT::Other), VT, sdl, 6329 Ops, MMO, IndexType); 6330 6331 setValue(&I, Histogram); 6332 DAG.setRoot(Histogram); 6333 } 6334 6335 /// Lower the call to the specified intrinsic function. 6336 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6337 unsigned Intrinsic) { 6338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6339 SDLoc sdl = getCurSDLoc(); 6340 DebugLoc dl = getCurDebugLoc(); 6341 SDValue Res; 6342 6343 SDNodeFlags Flags; 6344 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6345 Flags.copyFMF(*FPOp); 6346 6347 switch (Intrinsic) { 6348 default: 6349 // By default, turn this into a target intrinsic node. 6350 visitTargetIntrinsic(I, Intrinsic); 6351 return; 6352 case Intrinsic::vscale: { 6353 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6354 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6355 return; 6356 } 6357 case Intrinsic::vastart: visitVAStart(I); return; 6358 case Intrinsic::vaend: visitVAEnd(I); return; 6359 case Intrinsic::vacopy: visitVACopy(I); return; 6360 case Intrinsic::returnaddress: 6361 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6362 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6363 getValue(I.getArgOperand(0)))); 6364 return; 6365 case Intrinsic::addressofreturnaddress: 6366 setValue(&I, 6367 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6368 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6369 return; 6370 case Intrinsic::sponentry: 6371 setValue(&I, 6372 DAG.getNode(ISD::SPONENTRY, sdl, 6373 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6374 return; 6375 case Intrinsic::frameaddress: 6376 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6377 TLI.getFrameIndexTy(DAG.getDataLayout()), 6378 getValue(I.getArgOperand(0)))); 6379 return; 6380 case Intrinsic::read_volatile_register: 6381 case Intrinsic::read_register: { 6382 Value *Reg = I.getArgOperand(0); 6383 SDValue Chain = getRoot(); 6384 SDValue RegName = 6385 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6386 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6387 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6388 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6389 setValue(&I, Res); 6390 DAG.setRoot(Res.getValue(1)); 6391 return; 6392 } 6393 case Intrinsic::write_register: { 6394 Value *Reg = I.getArgOperand(0); 6395 Value *RegValue = I.getArgOperand(1); 6396 SDValue Chain = getRoot(); 6397 SDValue RegName = 6398 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6399 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6400 RegName, getValue(RegValue))); 6401 return; 6402 } 6403 case Intrinsic::memcpy: { 6404 const auto &MCI = cast<MemCpyInst>(I); 6405 SDValue Op1 = getValue(I.getArgOperand(0)); 6406 SDValue Op2 = getValue(I.getArgOperand(1)); 6407 SDValue Op3 = getValue(I.getArgOperand(2)); 6408 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6409 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6410 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6411 Align Alignment = std::min(DstAlign, SrcAlign); 6412 bool isVol = MCI.isVolatile(); 6413 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6414 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6415 // node. 6416 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6417 SDValue MC = DAG.getMemcpy( 6418 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6419 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6420 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6421 updateDAGForMaybeTailCall(MC); 6422 return; 6423 } 6424 case Intrinsic::memcpy_inline: { 6425 const auto &MCI = cast<MemCpyInlineInst>(I); 6426 SDValue Dst = getValue(I.getArgOperand(0)); 6427 SDValue Src = getValue(I.getArgOperand(1)); 6428 SDValue Size = getValue(I.getArgOperand(2)); 6429 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6430 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6431 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6432 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6433 Align Alignment = std::min(DstAlign, SrcAlign); 6434 bool isVol = MCI.isVolatile(); 6435 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6436 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6437 // node. 6438 SDValue MC = DAG.getMemcpy( 6439 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6440 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6441 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6442 updateDAGForMaybeTailCall(MC); 6443 return; 6444 } 6445 case Intrinsic::memset: { 6446 const auto &MSI = cast<MemSetInst>(I); 6447 SDValue Op1 = getValue(I.getArgOperand(0)); 6448 SDValue Op2 = getValue(I.getArgOperand(1)); 6449 SDValue Op3 = getValue(I.getArgOperand(2)); 6450 // @llvm.memset defines 0 and 1 to both mean no alignment. 6451 Align Alignment = MSI.getDestAlign().valueOrOne(); 6452 bool isVol = MSI.isVolatile(); 6453 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6454 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6455 SDValue MS = DAG.getMemset( 6456 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6457 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6458 updateDAGForMaybeTailCall(MS); 6459 return; 6460 } 6461 case Intrinsic::memset_inline: { 6462 const auto &MSII = cast<MemSetInlineInst>(I); 6463 SDValue Dst = getValue(I.getArgOperand(0)); 6464 SDValue Value = getValue(I.getArgOperand(1)); 6465 SDValue Size = getValue(I.getArgOperand(2)); 6466 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6467 // @llvm.memset defines 0 and 1 to both mean no alignment. 6468 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6469 bool isVol = MSII.isVolatile(); 6470 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6471 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6472 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6473 /* AlwaysInline */ true, isTC, 6474 MachinePointerInfo(I.getArgOperand(0)), 6475 I.getAAMetadata()); 6476 updateDAGForMaybeTailCall(MC); 6477 return; 6478 } 6479 case Intrinsic::memmove: { 6480 const auto &MMI = cast<MemMoveInst>(I); 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 SDValue Op3 = getValue(I.getArgOperand(2)); 6484 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6485 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6486 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6487 Align Alignment = std::min(DstAlign, SrcAlign); 6488 bool isVol = MMI.isVolatile(); 6489 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6490 // FIXME: Support passing different dest/src alignments to the memmove DAG 6491 // node. 6492 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6493 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6494 isTC, MachinePointerInfo(I.getArgOperand(0)), 6495 MachinePointerInfo(I.getArgOperand(1)), 6496 I.getAAMetadata(), AA); 6497 updateDAGForMaybeTailCall(MM); 6498 return; 6499 } 6500 case Intrinsic::memcpy_element_unordered_atomic: { 6501 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6502 SDValue Dst = getValue(MI.getRawDest()); 6503 SDValue Src = getValue(MI.getRawSource()); 6504 SDValue Length = getValue(MI.getLength()); 6505 6506 Type *LengthTy = MI.getLength()->getType(); 6507 unsigned ElemSz = MI.getElementSizeInBytes(); 6508 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6509 SDValue MC = 6510 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6511 isTC, MachinePointerInfo(MI.getRawDest()), 6512 MachinePointerInfo(MI.getRawSource())); 6513 updateDAGForMaybeTailCall(MC); 6514 return; 6515 } 6516 case Intrinsic::memmove_element_unordered_atomic: { 6517 auto &MI = cast<AtomicMemMoveInst>(I); 6518 SDValue Dst = getValue(MI.getRawDest()); 6519 SDValue Src = getValue(MI.getRawSource()); 6520 SDValue Length = getValue(MI.getLength()); 6521 6522 Type *LengthTy = MI.getLength()->getType(); 6523 unsigned ElemSz = MI.getElementSizeInBytes(); 6524 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6525 SDValue MC = 6526 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6527 isTC, MachinePointerInfo(MI.getRawDest()), 6528 MachinePointerInfo(MI.getRawSource())); 6529 updateDAGForMaybeTailCall(MC); 6530 return; 6531 } 6532 case Intrinsic::memset_element_unordered_atomic: { 6533 auto &MI = cast<AtomicMemSetInst>(I); 6534 SDValue Dst = getValue(MI.getRawDest()); 6535 SDValue Val = getValue(MI.getValue()); 6536 SDValue Length = getValue(MI.getLength()); 6537 6538 Type *LengthTy = MI.getLength()->getType(); 6539 unsigned ElemSz = MI.getElementSizeInBytes(); 6540 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6541 SDValue MC = 6542 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6543 isTC, MachinePointerInfo(MI.getRawDest())); 6544 updateDAGForMaybeTailCall(MC); 6545 return; 6546 } 6547 case Intrinsic::call_preallocated_setup: { 6548 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6549 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6550 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6551 getRoot(), SrcValue); 6552 setValue(&I, Res); 6553 DAG.setRoot(Res); 6554 return; 6555 } 6556 case Intrinsic::call_preallocated_arg: { 6557 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6558 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6559 SDValue Ops[3]; 6560 Ops[0] = getRoot(); 6561 Ops[1] = SrcValue; 6562 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6563 MVT::i32); // arg index 6564 SDValue Res = DAG.getNode( 6565 ISD::PREALLOCATED_ARG, sdl, 6566 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6567 setValue(&I, Res); 6568 DAG.setRoot(Res.getValue(1)); 6569 return; 6570 } 6571 case Intrinsic::dbg_declare: { 6572 const auto &DI = cast<DbgDeclareInst>(I); 6573 // Debug intrinsics are handled separately in assignment tracking mode. 6574 // Some intrinsics are handled right after Argument lowering. 6575 if (AssignmentTrackingEnabled || 6576 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6577 return; 6578 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6579 DILocalVariable *Variable = DI.getVariable(); 6580 DIExpression *Expression = DI.getExpression(); 6581 dropDanglingDebugInfo(Variable, Expression); 6582 // Assume dbg.declare can not currently use DIArgList, i.e. 6583 // it is non-variadic. 6584 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6585 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6586 DI.getDebugLoc()); 6587 return; 6588 } 6589 case Intrinsic::dbg_label: { 6590 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6591 DILabel *Label = DI.getLabel(); 6592 assert(Label && "Missing label"); 6593 6594 SDDbgLabel *SDV; 6595 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6596 DAG.AddDbgLabel(SDV); 6597 return; 6598 } 6599 case Intrinsic::dbg_assign: { 6600 // Debug intrinsics are handled seperately in assignment tracking mode. 6601 if (AssignmentTrackingEnabled) 6602 return; 6603 // If assignment tracking hasn't been enabled then fall through and treat 6604 // the dbg.assign as a dbg.value. 6605 [[fallthrough]]; 6606 } 6607 case Intrinsic::dbg_value: { 6608 // Debug intrinsics are handled seperately in assignment tracking mode. 6609 if (AssignmentTrackingEnabled) 6610 return; 6611 const DbgValueInst &DI = cast<DbgValueInst>(I); 6612 assert(DI.getVariable() && "Missing variable"); 6613 6614 DILocalVariable *Variable = DI.getVariable(); 6615 DIExpression *Expression = DI.getExpression(); 6616 dropDanglingDebugInfo(Variable, Expression); 6617 6618 if (DI.isKillLocation()) { 6619 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6620 return; 6621 } 6622 6623 SmallVector<Value *, 4> Values(DI.getValues()); 6624 if (Values.empty()) 6625 return; 6626 6627 bool IsVariadic = DI.hasArgList(); 6628 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6629 SDNodeOrder, IsVariadic)) 6630 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6631 DI.getDebugLoc(), SDNodeOrder); 6632 return; 6633 } 6634 6635 case Intrinsic::eh_typeid_for: { 6636 // Find the type id for the given typeinfo. 6637 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6638 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6639 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6640 setValue(&I, Res); 6641 return; 6642 } 6643 6644 case Intrinsic::eh_return_i32: 6645 case Intrinsic::eh_return_i64: 6646 DAG.getMachineFunction().setCallsEHReturn(true); 6647 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6648 MVT::Other, 6649 getControlRoot(), 6650 getValue(I.getArgOperand(0)), 6651 getValue(I.getArgOperand(1)))); 6652 return; 6653 case Intrinsic::eh_unwind_init: 6654 DAG.getMachineFunction().setCallsUnwindInit(true); 6655 return; 6656 case Intrinsic::eh_dwarf_cfa: 6657 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6658 TLI.getPointerTy(DAG.getDataLayout()), 6659 getValue(I.getArgOperand(0)))); 6660 return; 6661 case Intrinsic::eh_sjlj_callsite: { 6662 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6663 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6664 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6665 6666 MMI.setCurrentCallSite(CI->getZExtValue()); 6667 return; 6668 } 6669 case Intrinsic::eh_sjlj_functioncontext: { 6670 // Get and store the index of the function context. 6671 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6672 AllocaInst *FnCtx = 6673 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6674 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6675 MFI.setFunctionContextIndex(FI); 6676 return; 6677 } 6678 case Intrinsic::eh_sjlj_setjmp: { 6679 SDValue Ops[2]; 6680 Ops[0] = getRoot(); 6681 Ops[1] = getValue(I.getArgOperand(0)); 6682 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6683 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6684 setValue(&I, Op.getValue(0)); 6685 DAG.setRoot(Op.getValue(1)); 6686 return; 6687 } 6688 case Intrinsic::eh_sjlj_longjmp: 6689 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6690 getRoot(), getValue(I.getArgOperand(0)))); 6691 return; 6692 case Intrinsic::eh_sjlj_setup_dispatch: 6693 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6694 getRoot())); 6695 return; 6696 case Intrinsic::masked_gather: 6697 visitMaskedGather(I); 6698 return; 6699 case Intrinsic::masked_load: 6700 visitMaskedLoad(I); 6701 return; 6702 case Intrinsic::masked_scatter: 6703 visitMaskedScatter(I); 6704 return; 6705 case Intrinsic::masked_store: 6706 visitMaskedStore(I); 6707 return; 6708 case Intrinsic::masked_expandload: 6709 visitMaskedLoad(I, true /* IsExpanding */); 6710 return; 6711 case Intrinsic::masked_compressstore: 6712 visitMaskedStore(I, true /* IsCompressing */); 6713 return; 6714 case Intrinsic::powi: 6715 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6716 getValue(I.getArgOperand(1)), DAG)); 6717 return; 6718 case Intrinsic::log: 6719 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6720 return; 6721 case Intrinsic::log2: 6722 setValue(&I, 6723 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6724 return; 6725 case Intrinsic::log10: 6726 setValue(&I, 6727 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6728 return; 6729 case Intrinsic::exp: 6730 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6731 return; 6732 case Intrinsic::exp2: 6733 setValue(&I, 6734 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6735 return; 6736 case Intrinsic::pow: 6737 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6738 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6739 return; 6740 case Intrinsic::sqrt: 6741 case Intrinsic::fabs: 6742 case Intrinsic::sin: 6743 case Intrinsic::cos: 6744 case Intrinsic::tan: 6745 case Intrinsic::exp10: 6746 case Intrinsic::floor: 6747 case Intrinsic::ceil: 6748 case Intrinsic::trunc: 6749 case Intrinsic::rint: 6750 case Intrinsic::nearbyint: 6751 case Intrinsic::round: 6752 case Intrinsic::roundeven: 6753 case Intrinsic::canonicalize: { 6754 unsigned Opcode; 6755 // clang-format off 6756 switch (Intrinsic) { 6757 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6758 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6759 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6760 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6761 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6762 case Intrinsic::tan: Opcode = ISD::FTAN; break; 6763 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6764 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6765 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6766 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6767 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6768 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6769 case Intrinsic::round: Opcode = ISD::FROUND; break; 6770 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6771 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6772 } 6773 // clang-format on 6774 6775 setValue(&I, DAG.getNode(Opcode, sdl, 6776 getValue(I.getArgOperand(0)).getValueType(), 6777 getValue(I.getArgOperand(0)), Flags)); 6778 return; 6779 } 6780 case Intrinsic::lround: 6781 case Intrinsic::llround: 6782 case Intrinsic::lrint: 6783 case Intrinsic::llrint: { 6784 unsigned Opcode; 6785 // clang-format off 6786 switch (Intrinsic) { 6787 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6788 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6789 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6790 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6791 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6792 } 6793 // clang-format on 6794 6795 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6796 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6797 getValue(I.getArgOperand(0)))); 6798 return; 6799 } 6800 case Intrinsic::minnum: 6801 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6802 getValue(I.getArgOperand(0)).getValueType(), 6803 getValue(I.getArgOperand(0)), 6804 getValue(I.getArgOperand(1)), Flags)); 6805 return; 6806 case Intrinsic::maxnum: 6807 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6808 getValue(I.getArgOperand(0)).getValueType(), 6809 getValue(I.getArgOperand(0)), 6810 getValue(I.getArgOperand(1)), Flags)); 6811 return; 6812 case Intrinsic::minimum: 6813 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6814 getValue(I.getArgOperand(0)).getValueType(), 6815 getValue(I.getArgOperand(0)), 6816 getValue(I.getArgOperand(1)), Flags)); 6817 return; 6818 case Intrinsic::maximum: 6819 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6820 getValue(I.getArgOperand(0)).getValueType(), 6821 getValue(I.getArgOperand(0)), 6822 getValue(I.getArgOperand(1)), Flags)); 6823 return; 6824 case Intrinsic::copysign: 6825 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6826 getValue(I.getArgOperand(0)).getValueType(), 6827 getValue(I.getArgOperand(0)), 6828 getValue(I.getArgOperand(1)), Flags)); 6829 return; 6830 case Intrinsic::ldexp: 6831 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6832 getValue(I.getArgOperand(0)).getValueType(), 6833 getValue(I.getArgOperand(0)), 6834 getValue(I.getArgOperand(1)), Flags)); 6835 return; 6836 case Intrinsic::frexp: { 6837 SmallVector<EVT, 2> ValueVTs; 6838 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6839 SDVTList VTs = DAG.getVTList(ValueVTs); 6840 setValue(&I, 6841 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6842 return; 6843 } 6844 case Intrinsic::arithmetic_fence: { 6845 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6846 getValue(I.getArgOperand(0)).getValueType(), 6847 getValue(I.getArgOperand(0)), Flags)); 6848 return; 6849 } 6850 case Intrinsic::fma: 6851 setValue(&I, DAG.getNode( 6852 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6853 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6854 getValue(I.getArgOperand(2)), Flags)); 6855 return; 6856 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6857 case Intrinsic::INTRINSIC: 6858 #include "llvm/IR/ConstrainedOps.def" 6859 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6860 return; 6861 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6862 #include "llvm/IR/VPIntrinsics.def" 6863 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6864 return; 6865 case Intrinsic::fptrunc_round: { 6866 // Get the last argument, the metadata and convert it to an integer in the 6867 // call 6868 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6869 std::optional<RoundingMode> RoundMode = 6870 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6871 6872 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6873 6874 // Propagate fast-math-flags from IR to node(s). 6875 SDNodeFlags Flags; 6876 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6877 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6878 6879 SDValue Result; 6880 Result = DAG.getNode( 6881 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6882 DAG.getTargetConstant((int)*RoundMode, sdl, 6883 TLI.getPointerTy(DAG.getDataLayout()))); 6884 setValue(&I, Result); 6885 6886 return; 6887 } 6888 case Intrinsic::fmuladd: { 6889 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6890 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6891 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6892 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6893 getValue(I.getArgOperand(0)).getValueType(), 6894 getValue(I.getArgOperand(0)), 6895 getValue(I.getArgOperand(1)), 6896 getValue(I.getArgOperand(2)), Flags)); 6897 } else { 6898 // TODO: Intrinsic calls should have fast-math-flags. 6899 SDValue Mul = DAG.getNode( 6900 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6901 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6902 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6903 getValue(I.getArgOperand(0)).getValueType(), 6904 Mul, getValue(I.getArgOperand(2)), Flags); 6905 setValue(&I, Add); 6906 } 6907 return; 6908 } 6909 case Intrinsic::convert_to_fp16: 6910 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6911 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6912 getValue(I.getArgOperand(0)), 6913 DAG.getTargetConstant(0, sdl, 6914 MVT::i32)))); 6915 return; 6916 case Intrinsic::convert_from_fp16: 6917 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6918 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6919 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6920 getValue(I.getArgOperand(0))))); 6921 return; 6922 case Intrinsic::fptosi_sat: { 6923 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6924 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6925 getValue(I.getArgOperand(0)), 6926 DAG.getValueType(VT.getScalarType()))); 6927 return; 6928 } 6929 case Intrinsic::fptoui_sat: { 6930 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6931 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6932 getValue(I.getArgOperand(0)), 6933 DAG.getValueType(VT.getScalarType()))); 6934 return; 6935 } 6936 case Intrinsic::set_rounding: 6937 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6938 {getRoot(), getValue(I.getArgOperand(0))}); 6939 setValue(&I, Res); 6940 DAG.setRoot(Res.getValue(0)); 6941 return; 6942 case Intrinsic::is_fpclass: { 6943 const DataLayout DLayout = DAG.getDataLayout(); 6944 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6945 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6946 FPClassTest Test = static_cast<FPClassTest>( 6947 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6948 MachineFunction &MF = DAG.getMachineFunction(); 6949 const Function &F = MF.getFunction(); 6950 SDValue Op = getValue(I.getArgOperand(0)); 6951 SDNodeFlags Flags; 6952 Flags.setNoFPExcept( 6953 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6954 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6955 // expansion can use illegal types. Making expansion early allows 6956 // legalizing these types prior to selection. 6957 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6958 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6959 setValue(&I, Result); 6960 return; 6961 } 6962 6963 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6964 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6965 setValue(&I, V); 6966 return; 6967 } 6968 case Intrinsic::get_fpenv: { 6969 const DataLayout DLayout = DAG.getDataLayout(); 6970 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6971 Align TempAlign = DAG.getEVTAlign(EnvVT); 6972 SDValue Chain = getRoot(); 6973 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6974 // and temporary storage in stack. 6975 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6976 Res = DAG.getNode( 6977 ISD::GET_FPENV, sdl, 6978 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6979 MVT::Other), 6980 Chain); 6981 } else { 6982 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6983 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6984 auto MPI = 6985 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6986 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6987 MPI, MachineMemOperand::MOStore, LocationSize::beforeOrAfterPointer(), 6988 TempAlign); 6989 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6990 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6991 } 6992 setValue(&I, Res); 6993 DAG.setRoot(Res.getValue(1)); 6994 return; 6995 } 6996 case Intrinsic::set_fpenv: { 6997 const DataLayout DLayout = DAG.getDataLayout(); 6998 SDValue Env = getValue(I.getArgOperand(0)); 6999 EVT EnvVT = Env.getValueType(); 7000 Align TempAlign = DAG.getEVTAlign(EnvVT); 7001 SDValue Chain = getRoot(); 7002 // If SET_FPENV is custom or legal, use it. Otherwise use loading 7003 // environment from memory. 7004 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 7005 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 7006 } else { 7007 // Allocate space in stack, copy environment bits into it and use this 7008 // memory in SET_FPENV_MEM. 7009 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 7010 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 7011 auto MPI = 7012 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 7013 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 7014 MachineMemOperand::MOStore); 7015 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7016 MPI, MachineMemOperand::MOLoad, LocationSize::beforeOrAfterPointer(), 7017 TempAlign); 7018 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 7019 } 7020 DAG.setRoot(Chain); 7021 return; 7022 } 7023 case Intrinsic::reset_fpenv: 7024 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 7025 return; 7026 case Intrinsic::get_fpmode: 7027 Res = DAG.getNode( 7028 ISD::GET_FPMODE, sdl, 7029 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7030 MVT::Other), 7031 DAG.getRoot()); 7032 setValue(&I, Res); 7033 DAG.setRoot(Res.getValue(1)); 7034 return; 7035 case Intrinsic::set_fpmode: 7036 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 7037 getValue(I.getArgOperand(0))); 7038 DAG.setRoot(Res); 7039 return; 7040 case Intrinsic::reset_fpmode: { 7041 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 7042 DAG.setRoot(Res); 7043 return; 7044 } 7045 case Intrinsic::pcmarker: { 7046 SDValue Tmp = getValue(I.getArgOperand(0)); 7047 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 7048 return; 7049 } 7050 case Intrinsic::readcyclecounter: { 7051 SDValue Op = getRoot(); 7052 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 7053 DAG.getVTList(MVT::i64, MVT::Other), Op); 7054 setValue(&I, Res); 7055 DAG.setRoot(Res.getValue(1)); 7056 return; 7057 } 7058 case Intrinsic::readsteadycounter: { 7059 SDValue Op = getRoot(); 7060 Res = DAG.getNode(ISD::READSTEADYCOUNTER, sdl, 7061 DAG.getVTList(MVT::i64, MVT::Other), Op); 7062 setValue(&I, Res); 7063 DAG.setRoot(Res.getValue(1)); 7064 return; 7065 } 7066 case Intrinsic::bitreverse: 7067 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 7068 getValue(I.getArgOperand(0)).getValueType(), 7069 getValue(I.getArgOperand(0)))); 7070 return; 7071 case Intrinsic::bswap: 7072 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 7073 getValue(I.getArgOperand(0)).getValueType(), 7074 getValue(I.getArgOperand(0)))); 7075 return; 7076 case Intrinsic::cttz: { 7077 SDValue Arg = getValue(I.getArgOperand(0)); 7078 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7079 EVT Ty = Arg.getValueType(); 7080 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 7081 sdl, Ty, Arg)); 7082 return; 7083 } 7084 case Intrinsic::ctlz: { 7085 SDValue Arg = getValue(I.getArgOperand(0)); 7086 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 7087 EVT Ty = Arg.getValueType(); 7088 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 7089 sdl, Ty, Arg)); 7090 return; 7091 } 7092 case Intrinsic::ctpop: { 7093 SDValue Arg = getValue(I.getArgOperand(0)); 7094 EVT Ty = Arg.getValueType(); 7095 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 7096 return; 7097 } 7098 case Intrinsic::fshl: 7099 case Intrinsic::fshr: { 7100 bool IsFSHL = Intrinsic == Intrinsic::fshl; 7101 SDValue X = getValue(I.getArgOperand(0)); 7102 SDValue Y = getValue(I.getArgOperand(1)); 7103 SDValue Z = getValue(I.getArgOperand(2)); 7104 EVT VT = X.getValueType(); 7105 7106 if (X == Y) { 7107 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 7108 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 7109 } else { 7110 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 7111 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 7112 } 7113 return; 7114 } 7115 case Intrinsic::sadd_sat: { 7116 SDValue Op1 = getValue(I.getArgOperand(0)); 7117 SDValue Op2 = getValue(I.getArgOperand(1)); 7118 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7119 return; 7120 } 7121 case Intrinsic::uadd_sat: { 7122 SDValue Op1 = getValue(I.getArgOperand(0)); 7123 SDValue Op2 = getValue(I.getArgOperand(1)); 7124 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 7125 return; 7126 } 7127 case Intrinsic::ssub_sat: { 7128 SDValue Op1 = getValue(I.getArgOperand(0)); 7129 SDValue Op2 = getValue(I.getArgOperand(1)); 7130 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7131 return; 7132 } 7133 case Intrinsic::usub_sat: { 7134 SDValue Op1 = getValue(I.getArgOperand(0)); 7135 SDValue Op2 = getValue(I.getArgOperand(1)); 7136 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 7137 return; 7138 } 7139 case Intrinsic::sshl_sat: { 7140 SDValue Op1 = getValue(I.getArgOperand(0)); 7141 SDValue Op2 = getValue(I.getArgOperand(1)); 7142 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7143 return; 7144 } 7145 case Intrinsic::ushl_sat: { 7146 SDValue Op1 = getValue(I.getArgOperand(0)); 7147 SDValue Op2 = getValue(I.getArgOperand(1)); 7148 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 7149 return; 7150 } 7151 case Intrinsic::smul_fix: 7152 case Intrinsic::umul_fix: 7153 case Intrinsic::smul_fix_sat: 7154 case Intrinsic::umul_fix_sat: { 7155 SDValue Op1 = getValue(I.getArgOperand(0)); 7156 SDValue Op2 = getValue(I.getArgOperand(1)); 7157 SDValue Op3 = getValue(I.getArgOperand(2)); 7158 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7159 Op1.getValueType(), Op1, Op2, Op3)); 7160 return; 7161 } 7162 case Intrinsic::sdiv_fix: 7163 case Intrinsic::udiv_fix: 7164 case Intrinsic::sdiv_fix_sat: 7165 case Intrinsic::udiv_fix_sat: { 7166 SDValue Op1 = getValue(I.getArgOperand(0)); 7167 SDValue Op2 = getValue(I.getArgOperand(1)); 7168 SDValue Op3 = getValue(I.getArgOperand(2)); 7169 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 7170 Op1, Op2, Op3, DAG, TLI)); 7171 return; 7172 } 7173 case Intrinsic::smax: { 7174 SDValue Op1 = getValue(I.getArgOperand(0)); 7175 SDValue Op2 = getValue(I.getArgOperand(1)); 7176 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 7177 return; 7178 } 7179 case Intrinsic::smin: { 7180 SDValue Op1 = getValue(I.getArgOperand(0)); 7181 SDValue Op2 = getValue(I.getArgOperand(1)); 7182 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 7183 return; 7184 } 7185 case Intrinsic::umax: { 7186 SDValue Op1 = getValue(I.getArgOperand(0)); 7187 SDValue Op2 = getValue(I.getArgOperand(1)); 7188 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 7189 return; 7190 } 7191 case Intrinsic::umin: { 7192 SDValue Op1 = getValue(I.getArgOperand(0)); 7193 SDValue Op2 = getValue(I.getArgOperand(1)); 7194 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 7195 return; 7196 } 7197 case Intrinsic::abs: { 7198 // TODO: Preserve "int min is poison" arg in SDAG? 7199 SDValue Op1 = getValue(I.getArgOperand(0)); 7200 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 7201 return; 7202 } 7203 case Intrinsic::stacksave: { 7204 SDValue Op = getRoot(); 7205 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7206 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 7207 setValue(&I, Res); 7208 DAG.setRoot(Res.getValue(1)); 7209 return; 7210 } 7211 case Intrinsic::stackrestore: 7212 Res = getValue(I.getArgOperand(0)); 7213 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 7214 return; 7215 case Intrinsic::get_dynamic_area_offset: { 7216 SDValue Op = getRoot(); 7217 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7218 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7219 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 7220 // target. 7221 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 7222 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 7223 " intrinsic!"); 7224 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 7225 Op); 7226 DAG.setRoot(Op); 7227 setValue(&I, Res); 7228 return; 7229 } 7230 case Intrinsic::stackguard: { 7231 MachineFunction &MF = DAG.getMachineFunction(); 7232 const Module &M = *MF.getFunction().getParent(); 7233 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7234 SDValue Chain = getRoot(); 7235 if (TLI.useLoadStackGuardNode()) { 7236 Res = getLoadStackGuard(DAG, sdl, Chain); 7237 Res = DAG.getPtrExtOrTrunc(Res, sdl, PtrTy); 7238 } else { 7239 const Value *Global = TLI.getSDagStackGuard(M); 7240 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 7241 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 7242 MachinePointerInfo(Global, 0), Align, 7243 MachineMemOperand::MOVolatile); 7244 } 7245 if (TLI.useStackGuardXorFP()) 7246 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 7247 DAG.setRoot(Chain); 7248 setValue(&I, Res); 7249 return; 7250 } 7251 case Intrinsic::stackprotector: { 7252 // Emit code into the DAG to store the stack guard onto the stack. 7253 MachineFunction &MF = DAG.getMachineFunction(); 7254 MachineFrameInfo &MFI = MF.getFrameInfo(); 7255 SDValue Src, Chain = getRoot(); 7256 7257 if (TLI.useLoadStackGuardNode()) 7258 Src = getLoadStackGuard(DAG, sdl, Chain); 7259 else 7260 Src = getValue(I.getArgOperand(0)); // The guard's value. 7261 7262 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 7263 7264 int FI = FuncInfo.StaticAllocaMap[Slot]; 7265 MFI.setStackProtectorIndex(FI); 7266 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 7267 7268 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 7269 7270 // Store the stack protector onto the stack. 7271 Res = DAG.getStore( 7272 Chain, sdl, Src, FIN, 7273 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 7274 MaybeAlign(), MachineMemOperand::MOVolatile); 7275 setValue(&I, Res); 7276 DAG.setRoot(Res); 7277 return; 7278 } 7279 case Intrinsic::objectsize: 7280 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 7281 7282 case Intrinsic::is_constant: 7283 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 7284 7285 case Intrinsic::annotation: 7286 case Intrinsic::ptr_annotation: 7287 case Intrinsic::launder_invariant_group: 7288 case Intrinsic::strip_invariant_group: 7289 // Drop the intrinsic, but forward the value 7290 setValue(&I, getValue(I.getOperand(0))); 7291 return; 7292 7293 case Intrinsic::assume: 7294 case Intrinsic::experimental_noalias_scope_decl: 7295 case Intrinsic::var_annotation: 7296 case Intrinsic::sideeffect: 7297 // Discard annotate attributes, noalias scope declarations, assumptions, and 7298 // artificial side-effects. 7299 return; 7300 7301 case Intrinsic::codeview_annotation: { 7302 // Emit a label associated with this metadata. 7303 MachineFunction &MF = DAG.getMachineFunction(); 7304 MCSymbol *Label = 7305 MF.getMMI().getContext().createTempSymbol("annotation", true); 7306 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7307 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7308 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7309 DAG.setRoot(Res); 7310 return; 7311 } 7312 7313 case Intrinsic::init_trampoline: { 7314 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7315 7316 SDValue Ops[6]; 7317 Ops[0] = getRoot(); 7318 Ops[1] = getValue(I.getArgOperand(0)); 7319 Ops[2] = getValue(I.getArgOperand(1)); 7320 Ops[3] = getValue(I.getArgOperand(2)); 7321 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7322 Ops[5] = DAG.getSrcValue(F); 7323 7324 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7325 7326 DAG.setRoot(Res); 7327 return; 7328 } 7329 case Intrinsic::adjust_trampoline: 7330 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7331 TLI.getPointerTy(DAG.getDataLayout()), 7332 getValue(I.getArgOperand(0)))); 7333 return; 7334 case Intrinsic::gcroot: { 7335 assert(DAG.getMachineFunction().getFunction().hasGC() && 7336 "only valid in functions with gc specified, enforced by Verifier"); 7337 assert(GFI && "implied by previous"); 7338 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7339 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7340 7341 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7342 GFI->addStackRoot(FI->getIndex(), TypeMap); 7343 return; 7344 } 7345 case Intrinsic::gcread: 7346 case Intrinsic::gcwrite: 7347 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7348 case Intrinsic::get_rounding: 7349 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7350 setValue(&I, Res); 7351 DAG.setRoot(Res.getValue(1)); 7352 return; 7353 7354 case Intrinsic::expect: 7355 // Just replace __builtin_expect(exp, c) with EXP. 7356 setValue(&I, getValue(I.getArgOperand(0))); 7357 return; 7358 7359 case Intrinsic::ubsantrap: 7360 case Intrinsic::debugtrap: 7361 case Intrinsic::trap: { 7362 StringRef TrapFuncName = 7363 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7364 if (TrapFuncName.empty()) { 7365 switch (Intrinsic) { 7366 case Intrinsic::trap: 7367 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7368 break; 7369 case Intrinsic::debugtrap: 7370 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7371 break; 7372 case Intrinsic::ubsantrap: 7373 DAG.setRoot(DAG.getNode( 7374 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7375 DAG.getTargetConstant( 7376 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7377 MVT::i32))); 7378 break; 7379 default: llvm_unreachable("unknown trap intrinsic"); 7380 } 7381 return; 7382 } 7383 TargetLowering::ArgListTy Args; 7384 if (Intrinsic == Intrinsic::ubsantrap) { 7385 Args.push_back(TargetLoweringBase::ArgListEntry()); 7386 Args[0].Val = I.getArgOperand(0); 7387 Args[0].Node = getValue(Args[0].Val); 7388 Args[0].Ty = Args[0].Val->getType(); 7389 } 7390 7391 TargetLowering::CallLoweringInfo CLI(DAG); 7392 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7393 CallingConv::C, I.getType(), 7394 DAG.getExternalSymbol(TrapFuncName.data(), 7395 TLI.getPointerTy(DAG.getDataLayout())), 7396 std::move(Args)); 7397 7398 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7399 DAG.setRoot(Result.second); 7400 return; 7401 } 7402 7403 case Intrinsic::allow_runtime_check: 7404 case Intrinsic::allow_ubsan_check: 7405 setValue(&I, getValue(ConstantInt::getTrue(I.getType()))); 7406 return; 7407 7408 case Intrinsic::uadd_with_overflow: 7409 case Intrinsic::sadd_with_overflow: 7410 case Intrinsic::usub_with_overflow: 7411 case Intrinsic::ssub_with_overflow: 7412 case Intrinsic::umul_with_overflow: 7413 case Intrinsic::smul_with_overflow: { 7414 ISD::NodeType Op; 7415 switch (Intrinsic) { 7416 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7417 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7418 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7419 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7420 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7421 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7422 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7423 } 7424 SDValue Op1 = getValue(I.getArgOperand(0)); 7425 SDValue Op2 = getValue(I.getArgOperand(1)); 7426 7427 EVT ResultVT = Op1.getValueType(); 7428 EVT OverflowVT = MVT::i1; 7429 if (ResultVT.isVector()) 7430 OverflowVT = EVT::getVectorVT( 7431 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7432 7433 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7434 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7435 return; 7436 } 7437 case Intrinsic::prefetch: { 7438 SDValue Ops[5]; 7439 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7440 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7441 Ops[0] = DAG.getRoot(); 7442 Ops[1] = getValue(I.getArgOperand(0)); 7443 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7444 MVT::i32); 7445 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7446 MVT::i32); 7447 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7448 MVT::i32); 7449 SDValue Result = DAG.getMemIntrinsicNode( 7450 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7451 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7452 /* align */ std::nullopt, Flags); 7453 7454 // Chain the prefetch in parallel with any pending loads, to stay out of 7455 // the way of later optimizations. 7456 PendingLoads.push_back(Result); 7457 Result = getRoot(); 7458 DAG.setRoot(Result); 7459 return; 7460 } 7461 case Intrinsic::lifetime_start: 7462 case Intrinsic::lifetime_end: { 7463 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7464 // Stack coloring is not enabled in O0, discard region information. 7465 if (TM.getOptLevel() == CodeGenOptLevel::None) 7466 return; 7467 7468 const int64_t ObjectSize = 7469 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7470 Value *const ObjectPtr = I.getArgOperand(1); 7471 SmallVector<const Value *, 4> Allocas; 7472 getUnderlyingObjects(ObjectPtr, Allocas); 7473 7474 for (const Value *Alloca : Allocas) { 7475 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7476 7477 // Could not find an Alloca. 7478 if (!LifetimeObject) 7479 continue; 7480 7481 // First check that the Alloca is static, otherwise it won't have a 7482 // valid frame index. 7483 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7484 if (SI == FuncInfo.StaticAllocaMap.end()) 7485 return; 7486 7487 const int FrameIndex = SI->second; 7488 int64_t Offset; 7489 if (GetPointerBaseWithConstantOffset( 7490 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7491 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7492 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7493 Offset); 7494 DAG.setRoot(Res); 7495 } 7496 return; 7497 } 7498 case Intrinsic::pseudoprobe: { 7499 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7500 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7501 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7502 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7503 DAG.setRoot(Res); 7504 return; 7505 } 7506 case Intrinsic::invariant_start: 7507 // Discard region information. 7508 setValue(&I, 7509 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7510 return; 7511 case Intrinsic::invariant_end: 7512 // Discard region information. 7513 return; 7514 case Intrinsic::clear_cache: { 7515 SDValue InputChain = DAG.getRoot(); 7516 SDValue StartVal = getValue(I.getArgOperand(0)); 7517 SDValue EndVal = getValue(I.getArgOperand(1)); 7518 Res = DAG.getNode(ISD::CLEAR_CACHE, sdl, DAG.getVTList(MVT::Other), 7519 {InputChain, StartVal, EndVal}); 7520 setValue(&I, Res); 7521 DAG.setRoot(Res); 7522 return; 7523 } 7524 case Intrinsic::donothing: 7525 case Intrinsic::seh_try_begin: 7526 case Intrinsic::seh_scope_begin: 7527 case Intrinsic::seh_try_end: 7528 case Intrinsic::seh_scope_end: 7529 // ignore 7530 return; 7531 case Intrinsic::experimental_stackmap: 7532 visitStackmap(I); 7533 return; 7534 case Intrinsic::experimental_patchpoint_void: 7535 case Intrinsic::experimental_patchpoint: 7536 visitPatchpoint(I); 7537 return; 7538 case Intrinsic::experimental_gc_statepoint: 7539 LowerStatepoint(cast<GCStatepointInst>(I)); 7540 return; 7541 case Intrinsic::experimental_gc_result: 7542 visitGCResult(cast<GCResultInst>(I)); 7543 return; 7544 case Intrinsic::experimental_gc_relocate: 7545 visitGCRelocate(cast<GCRelocateInst>(I)); 7546 return; 7547 case Intrinsic::instrprof_cover: 7548 llvm_unreachable("instrprof failed to lower a cover"); 7549 case Intrinsic::instrprof_increment: 7550 llvm_unreachable("instrprof failed to lower an increment"); 7551 case Intrinsic::instrprof_timestamp: 7552 llvm_unreachable("instrprof failed to lower a timestamp"); 7553 case Intrinsic::instrprof_value_profile: 7554 llvm_unreachable("instrprof failed to lower a value profiling call"); 7555 case Intrinsic::instrprof_mcdc_parameters: 7556 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7557 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7558 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7559 case Intrinsic::instrprof_mcdc_condbitmap_update: 7560 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7561 case Intrinsic::localescape: { 7562 MachineFunction &MF = DAG.getMachineFunction(); 7563 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7564 7565 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7566 // is the same on all targets. 7567 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7568 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7569 if (isa<ConstantPointerNull>(Arg)) 7570 continue; // Skip null pointers. They represent a hole in index space. 7571 AllocaInst *Slot = cast<AllocaInst>(Arg); 7572 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7573 "can only escape static allocas"); 7574 int FI = FuncInfo.StaticAllocaMap[Slot]; 7575 MCSymbol *FrameAllocSym = 7576 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7577 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7578 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7579 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7580 .addSym(FrameAllocSym) 7581 .addFrameIndex(FI); 7582 } 7583 7584 return; 7585 } 7586 7587 case Intrinsic::localrecover: { 7588 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7589 MachineFunction &MF = DAG.getMachineFunction(); 7590 7591 // Get the symbol that defines the frame offset. 7592 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7593 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7594 unsigned IdxVal = 7595 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7596 MCSymbol *FrameAllocSym = 7597 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7598 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7599 7600 Value *FP = I.getArgOperand(1); 7601 SDValue FPVal = getValue(FP); 7602 EVT PtrVT = FPVal.getValueType(); 7603 7604 // Create a MCSymbol for the label to avoid any target lowering 7605 // that would make this PC relative. 7606 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7607 SDValue OffsetVal = 7608 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7609 7610 // Add the offset to the FP. 7611 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7612 setValue(&I, Add); 7613 7614 return; 7615 } 7616 7617 case Intrinsic::eh_exceptionpointer: 7618 case Intrinsic::eh_exceptioncode: { 7619 // Get the exception pointer vreg, copy from it, and resize it to fit. 7620 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7621 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7622 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7623 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7624 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7625 if (Intrinsic == Intrinsic::eh_exceptioncode) 7626 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7627 setValue(&I, N); 7628 return; 7629 } 7630 case Intrinsic::xray_customevent: { 7631 // Here we want to make sure that the intrinsic behaves as if it has a 7632 // specific calling convention. 7633 const auto &Triple = DAG.getTarget().getTargetTriple(); 7634 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7635 return; 7636 7637 SmallVector<SDValue, 8> Ops; 7638 7639 // We want to say that we always want the arguments in registers. 7640 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7641 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7642 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7643 SDValue Chain = getRoot(); 7644 Ops.push_back(LogEntryVal); 7645 Ops.push_back(StrSizeVal); 7646 Ops.push_back(Chain); 7647 7648 // We need to enforce the calling convention for the callsite, so that 7649 // argument ordering is enforced correctly, and that register allocation can 7650 // see that some registers may be assumed clobbered and have to preserve 7651 // them across calls to the intrinsic. 7652 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7653 sdl, NodeTys, Ops); 7654 SDValue patchableNode = SDValue(MN, 0); 7655 DAG.setRoot(patchableNode); 7656 setValue(&I, patchableNode); 7657 return; 7658 } 7659 case Intrinsic::xray_typedevent: { 7660 // Here we want to make sure that the intrinsic behaves as if it has a 7661 // specific calling convention. 7662 const auto &Triple = DAG.getTarget().getTargetTriple(); 7663 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7664 return; 7665 7666 SmallVector<SDValue, 8> Ops; 7667 7668 // We want to say that we always want the arguments in registers. 7669 // It's unclear to me how manipulating the selection DAG here forces callers 7670 // to provide arguments in registers instead of on the stack. 7671 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7672 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7673 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7674 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7675 SDValue Chain = getRoot(); 7676 Ops.push_back(LogTypeId); 7677 Ops.push_back(LogEntryVal); 7678 Ops.push_back(StrSizeVal); 7679 Ops.push_back(Chain); 7680 7681 // We need to enforce the calling convention for the callsite, so that 7682 // argument ordering is enforced correctly, and that register allocation can 7683 // see that some registers may be assumed clobbered and have to preserve 7684 // them across calls to the intrinsic. 7685 MachineSDNode *MN = DAG.getMachineNode( 7686 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7687 SDValue patchableNode = SDValue(MN, 0); 7688 DAG.setRoot(patchableNode); 7689 setValue(&I, patchableNode); 7690 return; 7691 } 7692 case Intrinsic::experimental_deoptimize: 7693 LowerDeoptimizeCall(&I); 7694 return; 7695 case Intrinsic::experimental_stepvector: 7696 visitStepVector(I); 7697 return; 7698 case Intrinsic::vector_reduce_fadd: 7699 case Intrinsic::vector_reduce_fmul: 7700 case Intrinsic::vector_reduce_add: 7701 case Intrinsic::vector_reduce_mul: 7702 case Intrinsic::vector_reduce_and: 7703 case Intrinsic::vector_reduce_or: 7704 case Intrinsic::vector_reduce_xor: 7705 case Intrinsic::vector_reduce_smax: 7706 case Intrinsic::vector_reduce_smin: 7707 case Intrinsic::vector_reduce_umax: 7708 case Intrinsic::vector_reduce_umin: 7709 case Intrinsic::vector_reduce_fmax: 7710 case Intrinsic::vector_reduce_fmin: 7711 case Intrinsic::vector_reduce_fmaximum: 7712 case Intrinsic::vector_reduce_fminimum: 7713 visitVectorReduce(I, Intrinsic); 7714 return; 7715 7716 case Intrinsic::icall_branch_funnel: { 7717 SmallVector<SDValue, 16> Ops; 7718 Ops.push_back(getValue(I.getArgOperand(0))); 7719 7720 int64_t Offset; 7721 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7722 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7723 if (!Base) 7724 report_fatal_error( 7725 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7726 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7727 7728 struct BranchFunnelTarget { 7729 int64_t Offset; 7730 SDValue Target; 7731 }; 7732 SmallVector<BranchFunnelTarget, 8> Targets; 7733 7734 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7735 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7736 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7737 if (ElemBase != Base) 7738 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7739 "to the same GlobalValue"); 7740 7741 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7742 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7743 if (!GA) 7744 report_fatal_error( 7745 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7746 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7747 GA->getGlobal(), sdl, Val.getValueType(), 7748 GA->getOffset())}); 7749 } 7750 llvm::sort(Targets, 7751 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7752 return T1.Offset < T2.Offset; 7753 }); 7754 7755 for (auto &T : Targets) { 7756 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7757 Ops.push_back(T.Target); 7758 } 7759 7760 Ops.push_back(DAG.getRoot()); // Chain 7761 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7762 MVT::Other, Ops), 7763 0); 7764 DAG.setRoot(N); 7765 setValue(&I, N); 7766 HasTailCall = true; 7767 return; 7768 } 7769 7770 case Intrinsic::wasm_landingpad_index: 7771 // Information this intrinsic contained has been transferred to 7772 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7773 // delete it now. 7774 return; 7775 7776 case Intrinsic::aarch64_settag: 7777 case Intrinsic::aarch64_settag_zero: { 7778 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7779 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7780 SDValue Val = TSI.EmitTargetCodeForSetTag( 7781 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7782 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7783 ZeroMemory); 7784 DAG.setRoot(Val); 7785 setValue(&I, Val); 7786 return; 7787 } 7788 case Intrinsic::amdgcn_cs_chain: { 7789 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7790 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7791 "Non-zero flags not supported yet"); 7792 7793 // At this point we don't care if it's amdgpu_cs_chain or 7794 // amdgpu_cs_chain_preserve. 7795 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7796 7797 Type *RetTy = I.getType(); 7798 assert(RetTy->isVoidTy() && "Should not return"); 7799 7800 SDValue Callee = getValue(I.getOperand(0)); 7801 7802 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7803 // We'll also tack the value of the EXEC mask at the end. 7804 TargetLowering::ArgListTy Args; 7805 Args.reserve(3); 7806 7807 for (unsigned Idx : {2, 3, 1}) { 7808 TargetLowering::ArgListEntry Arg; 7809 Arg.Node = getValue(I.getOperand(Idx)); 7810 Arg.Ty = I.getOperand(Idx)->getType(); 7811 Arg.setAttributes(&I, Idx); 7812 Args.push_back(Arg); 7813 } 7814 7815 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7816 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7817 Args[2].IsInReg = true; // EXEC should be inreg 7818 7819 TargetLowering::CallLoweringInfo CLI(DAG); 7820 CLI.setDebugLoc(getCurSDLoc()) 7821 .setChain(getRoot()) 7822 .setCallee(CC, RetTy, Callee, std::move(Args)) 7823 .setNoReturn(true) 7824 .setTailCall(true) 7825 .setConvergent(I.isConvergent()); 7826 CLI.CB = &I; 7827 std::pair<SDValue, SDValue> Result = 7828 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7829 (void)Result; 7830 assert(!Result.first.getNode() && !Result.second.getNode() && 7831 "Should've lowered as tail call"); 7832 7833 HasTailCall = true; 7834 return; 7835 } 7836 case Intrinsic::ptrmask: { 7837 SDValue Ptr = getValue(I.getOperand(0)); 7838 SDValue Mask = getValue(I.getOperand(1)); 7839 7840 // On arm64_32, pointers are 32 bits when stored in memory, but 7841 // zero-extended to 64 bits when in registers. Thus the mask is 32 bits to 7842 // match the index type, but the pointer is 64 bits, so the the mask must be 7843 // zero-extended up to 64 bits to match the pointer. 7844 EVT PtrVT = 7845 TLI.getValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7846 EVT MemVT = 7847 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 7848 assert(PtrVT == Ptr.getValueType()); 7849 assert(MemVT == Mask.getValueType()); 7850 if (MemVT != PtrVT) 7851 Mask = DAG.getPtrExtOrTrunc(Mask, sdl, PtrVT); 7852 7853 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7854 return; 7855 } 7856 case Intrinsic::threadlocal_address: { 7857 setValue(&I, getValue(I.getOperand(0))); 7858 return; 7859 } 7860 case Intrinsic::get_active_lane_mask: { 7861 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7862 SDValue Index = getValue(I.getOperand(0)); 7863 EVT ElementVT = Index.getValueType(); 7864 7865 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7866 visitTargetIntrinsic(I, Intrinsic); 7867 return; 7868 } 7869 7870 SDValue TripCount = getValue(I.getOperand(1)); 7871 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7872 CCVT.getVectorElementCount()); 7873 7874 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7875 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7876 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7877 SDValue VectorInduction = DAG.getNode( 7878 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7879 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7880 VectorTripCount, ISD::CondCode::SETULT); 7881 setValue(&I, SetCC); 7882 return; 7883 } 7884 case Intrinsic::experimental_get_vector_length: { 7885 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7886 "Expected positive VF"); 7887 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7888 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7889 7890 SDValue Count = getValue(I.getOperand(0)); 7891 EVT CountVT = Count.getValueType(); 7892 7893 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7894 visitTargetIntrinsic(I, Intrinsic); 7895 return; 7896 } 7897 7898 // Expand to a umin between the trip count and the maximum elements the type 7899 // can hold. 7900 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7901 7902 // Extend the trip count to at least the result VT. 7903 if (CountVT.bitsLT(VT)) { 7904 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7905 CountVT = VT; 7906 } 7907 7908 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7909 ElementCount::get(VF, IsScalable)); 7910 7911 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7912 // Clip to the result type if needed. 7913 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7914 7915 setValue(&I, Trunc); 7916 return; 7917 } 7918 case Intrinsic::experimental_cttz_elts: { 7919 auto DL = getCurSDLoc(); 7920 SDValue Op = getValue(I.getOperand(0)); 7921 EVT OpVT = Op.getValueType(); 7922 7923 if (!TLI.shouldExpandCttzElements(OpVT)) { 7924 visitTargetIntrinsic(I, Intrinsic); 7925 return; 7926 } 7927 7928 if (OpVT.getScalarType() != MVT::i1) { 7929 // Compare the input vector elements to zero & use to count trailing zeros 7930 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7931 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7932 OpVT.getVectorElementCount()); 7933 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7934 } 7935 7936 // If the zero-is-poison flag is set, we can assume the upper limit 7937 // of the result is VF-1. 7938 bool ZeroIsPoison = 7939 !cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero(); 7940 ConstantRange VScaleRange(1, true); // Dummy value. 7941 if (isa<ScalableVectorType>(I.getOperand(0)->getType())) 7942 VScaleRange = getVScaleRange(I.getCaller(), 64); 7943 unsigned EltWidth = TLI.getBitWidthForCttzElements( 7944 I.getType(), OpVT.getVectorElementCount(), ZeroIsPoison, &VScaleRange); 7945 7946 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7947 7948 // Create the new vector type & get the vector length 7949 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7950 OpVT.getVectorElementCount()); 7951 7952 SDValue VL = 7953 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7954 7955 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7956 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7957 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7958 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7959 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7960 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7961 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7962 7963 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7964 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7965 7966 setValue(&I, Ret); 7967 return; 7968 } 7969 case Intrinsic::vector_insert: { 7970 SDValue Vec = getValue(I.getOperand(0)); 7971 SDValue SubVec = getValue(I.getOperand(1)); 7972 SDValue Index = getValue(I.getOperand(2)); 7973 7974 // The intrinsic's index type is i64, but the SDNode requires an index type 7975 // suitable for the target. Convert the index as required. 7976 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7977 if (Index.getValueType() != VectorIdxTy) 7978 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7979 7980 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7981 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7982 Index)); 7983 return; 7984 } 7985 case Intrinsic::vector_extract: { 7986 SDValue Vec = getValue(I.getOperand(0)); 7987 SDValue Index = getValue(I.getOperand(1)); 7988 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7989 7990 // The intrinsic's index type is i64, but the SDNode requires an index type 7991 // suitable for the target. Convert the index as required. 7992 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7993 if (Index.getValueType() != VectorIdxTy) 7994 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7995 7996 setValue(&I, 7997 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7998 return; 7999 } 8000 case Intrinsic::vector_reverse: 8001 visitVectorReverse(I); 8002 return; 8003 case Intrinsic::vector_splice: 8004 visitVectorSplice(I); 8005 return; 8006 case Intrinsic::callbr_landingpad: 8007 visitCallBrLandingPad(I); 8008 return; 8009 case Intrinsic::vector_interleave2: 8010 visitVectorInterleave(I); 8011 return; 8012 case Intrinsic::vector_deinterleave2: 8013 visitVectorDeinterleave(I); 8014 return; 8015 case Intrinsic::experimental_convergence_anchor: 8016 case Intrinsic::experimental_convergence_entry: 8017 case Intrinsic::experimental_convergence_loop: 8018 visitConvergenceControl(I, Intrinsic); 8019 return; 8020 case Intrinsic::experimental_vector_histogram_add: { 8021 visitVectorHistogram(I, Intrinsic); 8022 return; 8023 } 8024 } 8025 } 8026 8027 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 8028 const ConstrainedFPIntrinsic &FPI) { 8029 SDLoc sdl = getCurSDLoc(); 8030 8031 // We do not need to serialize constrained FP intrinsics against 8032 // each other or against (nonvolatile) loads, so they can be 8033 // chained like loads. 8034 SDValue Chain = DAG.getRoot(); 8035 SmallVector<SDValue, 4> Opers; 8036 Opers.push_back(Chain); 8037 for (unsigned I = 0, E = FPI.getNonMetadataArgCount(); I != E; ++I) 8038 Opers.push_back(getValue(FPI.getArgOperand(I))); 8039 8040 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 8041 assert(Result.getNode()->getNumValues() == 2); 8042 8043 // Push node to the appropriate list so that future instructions can be 8044 // chained up correctly. 8045 SDValue OutChain = Result.getValue(1); 8046 switch (EB) { 8047 case fp::ExceptionBehavior::ebIgnore: 8048 // The only reason why ebIgnore nodes still need to be chained is that 8049 // they might depend on the current rounding mode, and therefore must 8050 // not be moved across instruction that may change that mode. 8051 [[fallthrough]]; 8052 case fp::ExceptionBehavior::ebMayTrap: 8053 // These must not be moved across calls or instructions that may change 8054 // floating-point exception masks. 8055 PendingConstrainedFP.push_back(OutChain); 8056 break; 8057 case fp::ExceptionBehavior::ebStrict: 8058 // These must not be moved across calls or instructions that may change 8059 // floating-point exception masks or read floating-point exception flags. 8060 // In addition, they cannot be optimized out even if unused. 8061 PendingConstrainedFPStrict.push_back(OutChain); 8062 break; 8063 } 8064 }; 8065 8066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8067 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 8068 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 8069 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 8070 8071 SDNodeFlags Flags; 8072 if (EB == fp::ExceptionBehavior::ebIgnore) 8073 Flags.setNoFPExcept(true); 8074 8075 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 8076 Flags.copyFMF(*FPOp); 8077 8078 unsigned Opcode; 8079 switch (FPI.getIntrinsicID()) { 8080 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 8081 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 8082 case Intrinsic::INTRINSIC: \ 8083 Opcode = ISD::STRICT_##DAGN; \ 8084 break; 8085 #include "llvm/IR/ConstrainedOps.def" 8086 case Intrinsic::experimental_constrained_fmuladd: { 8087 Opcode = ISD::STRICT_FMA; 8088 // Break fmuladd into fmul and fadd. 8089 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 8090 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 8091 Opers.pop_back(); 8092 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 8093 pushOutChain(Mul, EB); 8094 Opcode = ISD::STRICT_FADD; 8095 Opers.clear(); 8096 Opers.push_back(Mul.getValue(1)); 8097 Opers.push_back(Mul.getValue(0)); 8098 Opers.push_back(getValue(FPI.getArgOperand(2))); 8099 } 8100 break; 8101 } 8102 } 8103 8104 // A few strict DAG nodes carry additional operands that are not 8105 // set up by the default code above. 8106 switch (Opcode) { 8107 default: break; 8108 case ISD::STRICT_FP_ROUND: 8109 Opers.push_back( 8110 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 8111 break; 8112 case ISD::STRICT_FSETCC: 8113 case ISD::STRICT_FSETCCS: { 8114 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 8115 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 8116 if (TM.Options.NoNaNsFPMath) 8117 Condition = getFCmpCodeWithoutNaN(Condition); 8118 Opers.push_back(DAG.getCondCode(Condition)); 8119 break; 8120 } 8121 } 8122 8123 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 8124 pushOutChain(Result, EB); 8125 8126 SDValue FPResult = Result.getValue(0); 8127 setValue(&FPI, FPResult); 8128 } 8129 8130 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 8131 std::optional<unsigned> ResOPC; 8132 switch (VPIntrin.getIntrinsicID()) { 8133 case Intrinsic::vp_ctlz: { 8134 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8135 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 8136 break; 8137 } 8138 case Intrinsic::vp_cttz: { 8139 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8140 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 8141 break; 8142 } 8143 case Intrinsic::vp_cttz_elts: { 8144 bool IsZeroPoison = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 8145 ResOPC = IsZeroPoison ? ISD::VP_CTTZ_ELTS_ZERO_UNDEF : ISD::VP_CTTZ_ELTS; 8146 break; 8147 } 8148 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 8149 case Intrinsic::VPID: \ 8150 ResOPC = ISD::VPSD; \ 8151 break; 8152 #include "llvm/IR/VPIntrinsics.def" 8153 } 8154 8155 if (!ResOPC) 8156 llvm_unreachable( 8157 "Inconsistency: no SDNode available for this VPIntrinsic!"); 8158 8159 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 8160 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 8161 if (VPIntrin.getFastMathFlags().allowReassoc()) 8162 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 8163 : ISD::VP_REDUCE_FMUL; 8164 } 8165 8166 return *ResOPC; 8167 } 8168 8169 void SelectionDAGBuilder::visitVPLoad( 8170 const VPIntrinsic &VPIntrin, EVT VT, 8171 const SmallVectorImpl<SDValue> &OpValues) { 8172 SDLoc DL = getCurSDLoc(); 8173 Value *PtrOperand = VPIntrin.getArgOperand(0); 8174 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8175 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8176 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8177 SDValue LD; 8178 // Do not serialize variable-length loads of constant memory with 8179 // anything. 8180 if (!Alignment) 8181 Alignment = DAG.getEVTAlign(VT); 8182 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8183 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8184 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8185 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8186 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8187 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8188 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 8189 MMO, false /*IsExpanding */); 8190 if (AddToChain) 8191 PendingLoads.push_back(LD.getValue(1)); 8192 setValue(&VPIntrin, LD); 8193 } 8194 8195 void SelectionDAGBuilder::visitVPGather( 8196 const VPIntrinsic &VPIntrin, EVT VT, 8197 const SmallVectorImpl<SDValue> &OpValues) { 8198 SDLoc DL = getCurSDLoc(); 8199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8200 Value *PtrOperand = VPIntrin.getArgOperand(0); 8201 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8202 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8203 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8204 SDValue LD; 8205 if (!Alignment) 8206 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8207 unsigned AS = 8208 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8209 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8210 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8211 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8212 SDValue Base, Index, Scale; 8213 ISD::MemIndexType IndexType; 8214 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8215 this, VPIntrin.getParent(), 8216 VT.getScalarStoreSize()); 8217 if (!UniformBase) { 8218 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8219 Index = getValue(PtrOperand); 8220 IndexType = ISD::SIGNED_SCALED; 8221 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8222 } 8223 EVT IdxVT = Index.getValueType(); 8224 EVT EltTy = IdxVT.getVectorElementType(); 8225 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8226 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8227 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8228 } 8229 LD = DAG.getGatherVP( 8230 DAG.getVTList(VT, MVT::Other), VT, DL, 8231 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 8232 IndexType); 8233 PendingLoads.push_back(LD.getValue(1)); 8234 setValue(&VPIntrin, LD); 8235 } 8236 8237 void SelectionDAGBuilder::visitVPStore( 8238 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8239 SDLoc DL = getCurSDLoc(); 8240 Value *PtrOperand = VPIntrin.getArgOperand(1); 8241 EVT VT = OpValues[0].getValueType(); 8242 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8243 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8244 SDValue ST; 8245 if (!Alignment) 8246 Alignment = DAG.getEVTAlign(VT); 8247 SDValue Ptr = OpValues[1]; 8248 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 8249 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8250 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8251 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8252 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 8253 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 8254 /* IsTruncating */ false, /*IsCompressing*/ false); 8255 DAG.setRoot(ST); 8256 setValue(&VPIntrin, ST); 8257 } 8258 8259 void SelectionDAGBuilder::visitVPScatter( 8260 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8261 SDLoc DL = getCurSDLoc(); 8262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8263 Value *PtrOperand = VPIntrin.getArgOperand(1); 8264 EVT VT = OpValues[0].getValueType(); 8265 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8266 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8267 SDValue ST; 8268 if (!Alignment) 8269 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8270 unsigned AS = 8271 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 8272 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8273 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8274 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8275 SDValue Base, Index, Scale; 8276 ISD::MemIndexType IndexType; 8277 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 8278 this, VPIntrin.getParent(), 8279 VT.getScalarStoreSize()); 8280 if (!UniformBase) { 8281 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 8282 Index = getValue(PtrOperand); 8283 IndexType = ISD::SIGNED_SCALED; 8284 Scale = 8285 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 8286 } 8287 EVT IdxVT = Index.getValueType(); 8288 EVT EltTy = IdxVT.getVectorElementType(); 8289 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 8290 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 8291 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 8292 } 8293 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 8294 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 8295 OpValues[2], OpValues[3]}, 8296 MMO, IndexType); 8297 DAG.setRoot(ST); 8298 setValue(&VPIntrin, ST); 8299 } 8300 8301 void SelectionDAGBuilder::visitVPStridedLoad( 8302 const VPIntrinsic &VPIntrin, EVT VT, 8303 const SmallVectorImpl<SDValue> &OpValues) { 8304 SDLoc DL = getCurSDLoc(); 8305 Value *PtrOperand = VPIntrin.getArgOperand(0); 8306 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8307 if (!Alignment) 8308 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8309 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8310 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8311 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8312 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8313 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8314 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8315 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8316 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 8317 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo, Ranges); 8318 8319 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8320 OpValues[2], OpValues[3], MMO, 8321 false /*IsExpanding*/); 8322 8323 if (AddToChain) 8324 PendingLoads.push_back(LD.getValue(1)); 8325 setValue(&VPIntrin, LD); 8326 } 8327 8328 void SelectionDAGBuilder::visitVPStridedStore( 8329 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8330 SDLoc DL = getCurSDLoc(); 8331 Value *PtrOperand = VPIntrin.getArgOperand(1); 8332 EVT VT = OpValues[0].getValueType(); 8333 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8334 if (!Alignment) 8335 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8336 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8337 unsigned AS = PtrOperand->getType()->getPointerAddressSpace(); 8338 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8339 MachinePointerInfo(AS), MachineMemOperand::MOStore, 8340 LocationSize::beforeOrAfterPointer(), *Alignment, AAInfo); 8341 8342 SDValue ST = DAG.getStridedStoreVP( 8343 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8344 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8345 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8346 /*IsCompressing*/ false); 8347 8348 DAG.setRoot(ST); 8349 setValue(&VPIntrin, ST); 8350 } 8351 8352 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8354 SDLoc DL = getCurSDLoc(); 8355 8356 ISD::CondCode Condition; 8357 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8358 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8359 if (IsFP) { 8360 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8361 // flags, but calls that don't return floating-point types can't be 8362 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8363 Condition = getFCmpCondCode(CondCode); 8364 if (TM.Options.NoNaNsFPMath) 8365 Condition = getFCmpCodeWithoutNaN(Condition); 8366 } else { 8367 Condition = getICmpCondCode(CondCode); 8368 } 8369 8370 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8371 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8372 // #2 is the condition code 8373 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8374 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8375 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8376 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8377 "Unexpected target EVL type"); 8378 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8379 8380 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8381 VPIntrin.getType()); 8382 setValue(&VPIntrin, 8383 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8384 } 8385 8386 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8387 const VPIntrinsic &VPIntrin) { 8388 SDLoc DL = getCurSDLoc(); 8389 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8390 8391 auto IID = VPIntrin.getIntrinsicID(); 8392 8393 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8394 return visitVPCmp(*CmpI); 8395 8396 SmallVector<EVT, 4> ValueVTs; 8397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8398 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8399 SDVTList VTs = DAG.getVTList(ValueVTs); 8400 8401 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8402 8403 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8404 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8405 "Unexpected target EVL type"); 8406 8407 // Request operands. 8408 SmallVector<SDValue, 7> OpValues; 8409 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8410 auto Op = getValue(VPIntrin.getArgOperand(I)); 8411 if (I == EVLParamPos) 8412 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8413 OpValues.push_back(Op); 8414 } 8415 8416 switch (Opcode) { 8417 default: { 8418 SDNodeFlags SDFlags; 8419 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8420 SDFlags.copyFMF(*FPMO); 8421 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8422 setValue(&VPIntrin, Result); 8423 break; 8424 } 8425 case ISD::VP_LOAD: 8426 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8427 break; 8428 case ISD::VP_GATHER: 8429 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8430 break; 8431 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8432 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8433 break; 8434 case ISD::VP_STORE: 8435 visitVPStore(VPIntrin, OpValues); 8436 break; 8437 case ISD::VP_SCATTER: 8438 visitVPScatter(VPIntrin, OpValues); 8439 break; 8440 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8441 visitVPStridedStore(VPIntrin, OpValues); 8442 break; 8443 case ISD::VP_FMULADD: { 8444 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8445 SDNodeFlags SDFlags; 8446 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8447 SDFlags.copyFMF(*FPMO); 8448 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8449 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8450 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8451 } else { 8452 SDValue Mul = DAG.getNode( 8453 ISD::VP_FMUL, DL, VTs, 8454 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8455 SDValue Add = 8456 DAG.getNode(ISD::VP_FADD, DL, VTs, 8457 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8458 setValue(&VPIntrin, Add); 8459 } 8460 break; 8461 } 8462 case ISD::VP_IS_FPCLASS: { 8463 const DataLayout DLayout = DAG.getDataLayout(); 8464 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8465 auto Constant = OpValues[1]->getAsZExtVal(); 8466 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8467 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8468 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8469 setValue(&VPIntrin, V); 8470 return; 8471 } 8472 case ISD::VP_INTTOPTR: { 8473 SDValue N = OpValues[0]; 8474 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8475 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8476 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8477 OpValues[2]); 8478 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8479 OpValues[2]); 8480 setValue(&VPIntrin, N); 8481 break; 8482 } 8483 case ISD::VP_PTRTOINT: { 8484 SDValue N = OpValues[0]; 8485 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8486 VPIntrin.getType()); 8487 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8488 VPIntrin.getOperand(0)->getType()); 8489 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8490 OpValues[2]); 8491 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8492 OpValues[2]); 8493 setValue(&VPIntrin, N); 8494 break; 8495 } 8496 case ISD::VP_ABS: 8497 case ISD::VP_CTLZ: 8498 case ISD::VP_CTLZ_ZERO_UNDEF: 8499 case ISD::VP_CTTZ: 8500 case ISD::VP_CTTZ_ZERO_UNDEF: 8501 case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: 8502 case ISD::VP_CTTZ_ELTS: { 8503 SDValue Result = 8504 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8505 setValue(&VPIntrin, Result); 8506 break; 8507 } 8508 } 8509 } 8510 8511 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8512 const BasicBlock *EHPadBB, 8513 MCSymbol *&BeginLabel) { 8514 MachineFunction &MF = DAG.getMachineFunction(); 8515 MachineModuleInfo &MMI = MF.getMMI(); 8516 8517 // Insert a label before the invoke call to mark the try range. This can be 8518 // used to detect deletion of the invoke via the MachineModuleInfo. 8519 BeginLabel = MMI.getContext().createTempSymbol(); 8520 8521 // For SjLj, keep track of which landing pads go with which invokes 8522 // so as to maintain the ordering of pads in the LSDA. 8523 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8524 if (CallSiteIndex) { 8525 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8526 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8527 8528 // Now that the call site is handled, stop tracking it. 8529 MMI.setCurrentCallSite(0); 8530 } 8531 8532 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8533 } 8534 8535 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8536 const BasicBlock *EHPadBB, 8537 MCSymbol *BeginLabel) { 8538 assert(BeginLabel && "BeginLabel should've been set"); 8539 8540 MachineFunction &MF = DAG.getMachineFunction(); 8541 MachineModuleInfo &MMI = MF.getMMI(); 8542 8543 // Insert a label at the end of the invoke call to mark the try range. This 8544 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8545 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8546 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8547 8548 // Inform MachineModuleInfo of range. 8549 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8550 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8551 // actually use outlined funclets and their LSDA info style. 8552 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8553 assert(II && "II should've been set"); 8554 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8555 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8556 } else if (!isScopedEHPersonality(Pers)) { 8557 assert(EHPadBB); 8558 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8559 } 8560 8561 return Chain; 8562 } 8563 8564 std::pair<SDValue, SDValue> 8565 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8566 const BasicBlock *EHPadBB) { 8567 MCSymbol *BeginLabel = nullptr; 8568 8569 if (EHPadBB) { 8570 // Both PendingLoads and PendingExports must be flushed here; 8571 // this call might not return. 8572 (void)getRoot(); 8573 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8574 CLI.setChain(getRoot()); 8575 } 8576 8577 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8578 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8579 8580 assert((CLI.IsTailCall || Result.second.getNode()) && 8581 "Non-null chain expected with non-tail call!"); 8582 assert((Result.second.getNode() || !Result.first.getNode()) && 8583 "Null value expected with tail call!"); 8584 8585 if (!Result.second.getNode()) { 8586 // As a special case, a null chain means that a tail call has been emitted 8587 // and the DAG root is already updated. 8588 HasTailCall = true; 8589 8590 // Since there's no actual continuation from this block, nothing can be 8591 // relying on us setting vregs for them. 8592 PendingExports.clear(); 8593 } else { 8594 DAG.setRoot(Result.second); 8595 } 8596 8597 if (EHPadBB) { 8598 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8599 BeginLabel)); 8600 } 8601 8602 return Result; 8603 } 8604 8605 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8606 bool isTailCall, bool isMustTailCall, 8607 const BasicBlock *EHPadBB, 8608 const TargetLowering::PtrAuthInfo *PAI) { 8609 auto &DL = DAG.getDataLayout(); 8610 FunctionType *FTy = CB.getFunctionType(); 8611 Type *RetTy = CB.getType(); 8612 8613 TargetLowering::ArgListTy Args; 8614 Args.reserve(CB.arg_size()); 8615 8616 const Value *SwiftErrorVal = nullptr; 8617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8618 8619 if (isTailCall) { 8620 // Avoid emitting tail calls in functions with the disable-tail-calls 8621 // attribute. 8622 auto *Caller = CB.getParent()->getParent(); 8623 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8624 "true" && !isMustTailCall) 8625 isTailCall = false; 8626 8627 // We can't tail call inside a function with a swifterror argument. Lowering 8628 // does not support this yet. It would have to move into the swifterror 8629 // register before the call. 8630 if (TLI.supportSwiftError() && 8631 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8632 isTailCall = false; 8633 } 8634 8635 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8636 TargetLowering::ArgListEntry Entry; 8637 const Value *V = *I; 8638 8639 // Skip empty types 8640 if (V->getType()->isEmptyTy()) 8641 continue; 8642 8643 SDValue ArgNode = getValue(V); 8644 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8645 8646 Entry.setAttributes(&CB, I - CB.arg_begin()); 8647 8648 // Use swifterror virtual register as input to the call. 8649 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8650 SwiftErrorVal = V; 8651 // We find the virtual register for the actual swifterror argument. 8652 // Instead of using the Value, we use the virtual register instead. 8653 Entry.Node = 8654 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8655 EVT(TLI.getPointerTy(DL))); 8656 } 8657 8658 Args.push_back(Entry); 8659 8660 // If we have an explicit sret argument that is an Instruction, (i.e., it 8661 // might point to function-local memory), we can't meaningfully tail-call. 8662 if (Entry.IsSRet && isa<Instruction>(V)) 8663 isTailCall = false; 8664 } 8665 8666 // If call site has a cfguardtarget operand bundle, create and add an 8667 // additional ArgListEntry. 8668 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8669 TargetLowering::ArgListEntry Entry; 8670 Value *V = Bundle->Inputs[0]; 8671 SDValue ArgNode = getValue(V); 8672 Entry.Node = ArgNode; 8673 Entry.Ty = V->getType(); 8674 Entry.IsCFGuardTarget = true; 8675 Args.push_back(Entry); 8676 } 8677 8678 // Check if target-independent constraints permit a tail call here. 8679 // Target-dependent constraints are checked within TLI->LowerCallTo. 8680 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8681 isTailCall = false; 8682 8683 // Disable tail calls if there is an swifterror argument. Targets have not 8684 // been updated to support tail calls. 8685 if (TLI.supportSwiftError() && SwiftErrorVal) 8686 isTailCall = false; 8687 8688 ConstantInt *CFIType = nullptr; 8689 if (CB.isIndirectCall()) { 8690 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8691 if (!TLI.supportKCFIBundles()) 8692 report_fatal_error( 8693 "Target doesn't support calls with kcfi operand bundles."); 8694 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8695 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8696 } 8697 } 8698 8699 SDValue ConvControlToken; 8700 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_convergencectrl)) { 8701 auto *Token = Bundle->Inputs[0].get(); 8702 ConvControlToken = getValue(Token); 8703 } 8704 8705 TargetLowering::CallLoweringInfo CLI(DAG); 8706 CLI.setDebugLoc(getCurSDLoc()) 8707 .setChain(getRoot()) 8708 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8709 .setTailCall(isTailCall) 8710 .setConvergent(CB.isConvergent()) 8711 .setIsPreallocated( 8712 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8713 .setCFIType(CFIType) 8714 .setConvergenceControlToken(ConvControlToken); 8715 8716 // Set the pointer authentication info if we have it. 8717 if (PAI) { 8718 if (!TLI.supportPtrAuthBundles()) 8719 report_fatal_error( 8720 "This target doesn't support calls with ptrauth operand bundles."); 8721 CLI.setPtrAuth(*PAI); 8722 } 8723 8724 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8725 8726 if (Result.first.getNode()) { 8727 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8728 setValue(&CB, Result.first); 8729 } 8730 8731 // The last element of CLI.InVals has the SDValue for swifterror return. 8732 // Here we copy it to a virtual register and update SwiftErrorMap for 8733 // book-keeping. 8734 if (SwiftErrorVal && TLI.supportSwiftError()) { 8735 // Get the last element of InVals. 8736 SDValue Src = CLI.InVals.back(); 8737 Register VReg = 8738 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8739 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8740 DAG.setRoot(CopyNode); 8741 } 8742 } 8743 8744 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8745 SelectionDAGBuilder &Builder) { 8746 // Check to see if this load can be trivially constant folded, e.g. if the 8747 // input is from a string literal. 8748 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8749 // Cast pointer to the type we really want to load. 8750 Type *LoadTy = 8751 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8752 if (LoadVT.isVector()) 8753 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8754 8755 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8756 PointerType::getUnqual(LoadTy)); 8757 8758 if (const Constant *LoadCst = 8759 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8760 LoadTy, Builder.DAG.getDataLayout())) 8761 return Builder.getValue(LoadCst); 8762 } 8763 8764 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8765 // still constant memory, the input chain can be the entry node. 8766 SDValue Root; 8767 bool ConstantMemory = false; 8768 8769 // Do not serialize (non-volatile) loads of constant memory with anything. 8770 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8771 Root = Builder.DAG.getEntryNode(); 8772 ConstantMemory = true; 8773 } else { 8774 // Do not serialize non-volatile loads against each other. 8775 Root = Builder.DAG.getRoot(); 8776 } 8777 8778 SDValue Ptr = Builder.getValue(PtrVal); 8779 SDValue LoadVal = 8780 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8781 MachinePointerInfo(PtrVal), Align(1)); 8782 8783 if (!ConstantMemory) 8784 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8785 return LoadVal; 8786 } 8787 8788 /// Record the value for an instruction that produces an integer result, 8789 /// converting the type where necessary. 8790 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8791 SDValue Value, 8792 bool IsSigned) { 8793 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8794 I.getType(), true); 8795 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8796 setValue(&I, Value); 8797 } 8798 8799 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8800 /// true and lower it. Otherwise return false, and it will be lowered like a 8801 /// normal call. 8802 /// The caller already checked that \p I calls the appropriate LibFunc with a 8803 /// correct prototype. 8804 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8805 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8806 const Value *Size = I.getArgOperand(2); 8807 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8808 if (CSize && CSize->getZExtValue() == 0) { 8809 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8810 I.getType(), true); 8811 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8812 return true; 8813 } 8814 8815 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8816 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8817 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8818 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8819 if (Res.first.getNode()) { 8820 processIntegerCallValue(I, Res.first, true); 8821 PendingLoads.push_back(Res.second); 8822 return true; 8823 } 8824 8825 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8826 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8827 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8828 return false; 8829 8830 // If the target has a fast compare for the given size, it will return a 8831 // preferred load type for that size. Require that the load VT is legal and 8832 // that the target supports unaligned loads of that type. Otherwise, return 8833 // INVALID. 8834 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8836 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8837 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8838 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8839 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8840 // TODO: Check alignment of src and dest ptrs. 8841 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8842 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8843 if (!TLI.isTypeLegal(LVT) || 8844 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8845 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8846 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8847 } 8848 8849 return LVT; 8850 }; 8851 8852 // This turns into unaligned loads. We only do this if the target natively 8853 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8854 // we'll only produce a small number of byte loads. 8855 MVT LoadVT; 8856 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8857 switch (NumBitsToCompare) { 8858 default: 8859 return false; 8860 case 16: 8861 LoadVT = MVT::i16; 8862 break; 8863 case 32: 8864 LoadVT = MVT::i32; 8865 break; 8866 case 64: 8867 case 128: 8868 case 256: 8869 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8870 break; 8871 } 8872 8873 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8874 return false; 8875 8876 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8877 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8878 8879 // Bitcast to a wide integer type if the loads are vectors. 8880 if (LoadVT.isVector()) { 8881 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8882 LoadL = DAG.getBitcast(CmpVT, LoadL); 8883 LoadR = DAG.getBitcast(CmpVT, LoadR); 8884 } 8885 8886 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8887 processIntegerCallValue(I, Cmp, false); 8888 return true; 8889 } 8890 8891 /// See if we can lower a memchr call into an optimized form. If so, return 8892 /// true and lower it. Otherwise return false, and it will be lowered like a 8893 /// normal call. 8894 /// The caller already checked that \p I calls the appropriate LibFunc with a 8895 /// correct prototype. 8896 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8897 const Value *Src = I.getArgOperand(0); 8898 const Value *Char = I.getArgOperand(1); 8899 const Value *Length = I.getArgOperand(2); 8900 8901 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8902 std::pair<SDValue, SDValue> Res = 8903 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8904 getValue(Src), getValue(Char), getValue(Length), 8905 MachinePointerInfo(Src)); 8906 if (Res.first.getNode()) { 8907 setValue(&I, Res.first); 8908 PendingLoads.push_back(Res.second); 8909 return true; 8910 } 8911 8912 return false; 8913 } 8914 8915 /// See if we can lower a mempcpy call into an optimized form. If so, return 8916 /// true and lower it. Otherwise return false, and it will be lowered like a 8917 /// normal call. 8918 /// The caller already checked that \p I calls the appropriate LibFunc with a 8919 /// correct prototype. 8920 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8921 SDValue Dst = getValue(I.getArgOperand(0)); 8922 SDValue Src = getValue(I.getArgOperand(1)); 8923 SDValue Size = getValue(I.getArgOperand(2)); 8924 8925 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8926 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8927 // DAG::getMemcpy needs Alignment to be defined. 8928 Align Alignment = std::min(DstAlign, SrcAlign); 8929 8930 SDLoc sdl = getCurSDLoc(); 8931 8932 // In the mempcpy context we need to pass in a false value for isTailCall 8933 // because the return pointer needs to be adjusted by the size of 8934 // the copied memory. 8935 SDValue Root = getMemoryRoot(); 8936 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8937 /*isTailCall=*/false, 8938 MachinePointerInfo(I.getArgOperand(0)), 8939 MachinePointerInfo(I.getArgOperand(1)), 8940 I.getAAMetadata()); 8941 assert(MC.getNode() != nullptr && 8942 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8943 DAG.setRoot(MC); 8944 8945 // Check if Size needs to be truncated or extended. 8946 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8947 8948 // Adjust return pointer to point just past the last dst byte. 8949 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8950 Dst, Size); 8951 setValue(&I, DstPlusSize); 8952 return true; 8953 } 8954 8955 /// See if we can lower a strcpy call into an optimized form. If so, return 8956 /// true and lower it, otherwise return false and it will be lowered like a 8957 /// normal call. 8958 /// The caller already checked that \p I calls the appropriate LibFunc with a 8959 /// correct prototype. 8960 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8961 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8962 8963 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8964 std::pair<SDValue, SDValue> Res = 8965 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8966 getValue(Arg0), getValue(Arg1), 8967 MachinePointerInfo(Arg0), 8968 MachinePointerInfo(Arg1), isStpcpy); 8969 if (Res.first.getNode()) { 8970 setValue(&I, Res.first); 8971 DAG.setRoot(Res.second); 8972 return true; 8973 } 8974 8975 return false; 8976 } 8977 8978 /// See if we can lower a strcmp call into an optimized form. If so, return 8979 /// true and lower it, otherwise return false and it will be lowered like a 8980 /// normal call. 8981 /// The caller already checked that \p I calls the appropriate LibFunc with a 8982 /// correct prototype. 8983 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8984 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8985 8986 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8987 std::pair<SDValue, SDValue> Res = 8988 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8989 getValue(Arg0), getValue(Arg1), 8990 MachinePointerInfo(Arg0), 8991 MachinePointerInfo(Arg1)); 8992 if (Res.first.getNode()) { 8993 processIntegerCallValue(I, Res.first, true); 8994 PendingLoads.push_back(Res.second); 8995 return true; 8996 } 8997 8998 return false; 8999 } 9000 9001 /// See if we can lower a strlen call into an optimized form. If so, return 9002 /// true and lower it, otherwise return false and it will be lowered like a 9003 /// normal call. 9004 /// The caller already checked that \p I calls the appropriate LibFunc with a 9005 /// correct prototype. 9006 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 9007 const Value *Arg0 = I.getArgOperand(0); 9008 9009 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9010 std::pair<SDValue, SDValue> Res = 9011 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 9012 getValue(Arg0), MachinePointerInfo(Arg0)); 9013 if (Res.first.getNode()) { 9014 processIntegerCallValue(I, Res.first, false); 9015 PendingLoads.push_back(Res.second); 9016 return true; 9017 } 9018 9019 return false; 9020 } 9021 9022 /// See if we can lower a strnlen call into an optimized form. If so, return 9023 /// true and lower it, otherwise return false and it will be lowered like a 9024 /// normal call. 9025 /// The caller already checked that \p I calls the appropriate LibFunc with a 9026 /// correct prototype. 9027 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 9028 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 9029 9030 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 9031 std::pair<SDValue, SDValue> Res = 9032 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 9033 getValue(Arg0), getValue(Arg1), 9034 MachinePointerInfo(Arg0)); 9035 if (Res.first.getNode()) { 9036 processIntegerCallValue(I, Res.first, false); 9037 PendingLoads.push_back(Res.second); 9038 return true; 9039 } 9040 9041 return false; 9042 } 9043 9044 /// See if we can lower a unary floating-point operation into an SDNode with 9045 /// the specified Opcode. If so, return true and lower it, otherwise return 9046 /// false and it will be lowered like a normal call. 9047 /// The caller already checked that \p I calls the appropriate LibFunc with a 9048 /// correct prototype. 9049 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 9050 unsigned Opcode) { 9051 // We already checked this call's prototype; verify it doesn't modify errno. 9052 if (!I.onlyReadsMemory()) 9053 return false; 9054 9055 SDNodeFlags Flags; 9056 Flags.copyFMF(cast<FPMathOperator>(I)); 9057 9058 SDValue Tmp = getValue(I.getArgOperand(0)); 9059 setValue(&I, 9060 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 9061 return true; 9062 } 9063 9064 /// See if we can lower a binary floating-point operation into an SDNode with 9065 /// the specified Opcode. If so, return true and lower it. Otherwise return 9066 /// false, and it will be lowered like a normal call. 9067 /// The caller already checked that \p I calls the appropriate LibFunc with a 9068 /// correct prototype. 9069 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 9070 unsigned Opcode) { 9071 // We already checked this call's prototype; verify it doesn't modify errno. 9072 if (!I.onlyReadsMemory()) 9073 return false; 9074 9075 SDNodeFlags Flags; 9076 Flags.copyFMF(cast<FPMathOperator>(I)); 9077 9078 SDValue Tmp0 = getValue(I.getArgOperand(0)); 9079 SDValue Tmp1 = getValue(I.getArgOperand(1)); 9080 EVT VT = Tmp0.getValueType(); 9081 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 9082 return true; 9083 } 9084 9085 void SelectionDAGBuilder::visitCall(const CallInst &I) { 9086 // Handle inline assembly differently. 9087 if (I.isInlineAsm()) { 9088 visitInlineAsm(I); 9089 return; 9090 } 9091 9092 diagnoseDontCall(I); 9093 9094 if (Function *F = I.getCalledFunction()) { 9095 if (F->isDeclaration()) { 9096 // Is this an LLVM intrinsic or a target-specific intrinsic? 9097 unsigned IID = F->getIntrinsicID(); 9098 if (!IID) 9099 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 9100 IID = II->getIntrinsicID(F); 9101 9102 if (IID) { 9103 visitIntrinsicCall(I, IID); 9104 return; 9105 } 9106 } 9107 9108 // Check for well-known libc/libm calls. If the function is internal, it 9109 // can't be a library call. Don't do the check if marked as nobuiltin for 9110 // some reason or the call site requires strict floating point semantics. 9111 LibFunc Func; 9112 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 9113 F->hasName() && LibInfo->getLibFunc(*F, Func) && 9114 LibInfo->hasOptimizedCodeGen(Func)) { 9115 switch (Func) { 9116 default: break; 9117 case LibFunc_bcmp: 9118 if (visitMemCmpBCmpCall(I)) 9119 return; 9120 break; 9121 case LibFunc_copysign: 9122 case LibFunc_copysignf: 9123 case LibFunc_copysignl: 9124 // We already checked this call's prototype; verify it doesn't modify 9125 // errno. 9126 if (I.onlyReadsMemory()) { 9127 SDValue LHS = getValue(I.getArgOperand(0)); 9128 SDValue RHS = getValue(I.getArgOperand(1)); 9129 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 9130 LHS.getValueType(), LHS, RHS)); 9131 return; 9132 } 9133 break; 9134 case LibFunc_fabs: 9135 case LibFunc_fabsf: 9136 case LibFunc_fabsl: 9137 if (visitUnaryFloatCall(I, ISD::FABS)) 9138 return; 9139 break; 9140 case LibFunc_fmin: 9141 case LibFunc_fminf: 9142 case LibFunc_fminl: 9143 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 9144 return; 9145 break; 9146 case LibFunc_fmax: 9147 case LibFunc_fmaxf: 9148 case LibFunc_fmaxl: 9149 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 9150 return; 9151 break; 9152 case LibFunc_sin: 9153 case LibFunc_sinf: 9154 case LibFunc_sinl: 9155 if (visitUnaryFloatCall(I, ISD::FSIN)) 9156 return; 9157 break; 9158 case LibFunc_cos: 9159 case LibFunc_cosf: 9160 case LibFunc_cosl: 9161 if (visitUnaryFloatCall(I, ISD::FCOS)) 9162 return; 9163 break; 9164 case LibFunc_tan: 9165 case LibFunc_tanf: 9166 case LibFunc_tanl: 9167 if (visitUnaryFloatCall(I, ISD::FTAN)) 9168 return; 9169 break; 9170 case LibFunc_sqrt: 9171 case LibFunc_sqrtf: 9172 case LibFunc_sqrtl: 9173 case LibFunc_sqrt_finite: 9174 case LibFunc_sqrtf_finite: 9175 case LibFunc_sqrtl_finite: 9176 if (visitUnaryFloatCall(I, ISD::FSQRT)) 9177 return; 9178 break; 9179 case LibFunc_floor: 9180 case LibFunc_floorf: 9181 case LibFunc_floorl: 9182 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 9183 return; 9184 break; 9185 case LibFunc_nearbyint: 9186 case LibFunc_nearbyintf: 9187 case LibFunc_nearbyintl: 9188 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 9189 return; 9190 break; 9191 case LibFunc_ceil: 9192 case LibFunc_ceilf: 9193 case LibFunc_ceill: 9194 if (visitUnaryFloatCall(I, ISD::FCEIL)) 9195 return; 9196 break; 9197 case LibFunc_rint: 9198 case LibFunc_rintf: 9199 case LibFunc_rintl: 9200 if (visitUnaryFloatCall(I, ISD::FRINT)) 9201 return; 9202 break; 9203 case LibFunc_round: 9204 case LibFunc_roundf: 9205 case LibFunc_roundl: 9206 if (visitUnaryFloatCall(I, ISD::FROUND)) 9207 return; 9208 break; 9209 case LibFunc_trunc: 9210 case LibFunc_truncf: 9211 case LibFunc_truncl: 9212 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 9213 return; 9214 break; 9215 case LibFunc_log2: 9216 case LibFunc_log2f: 9217 case LibFunc_log2l: 9218 if (visitUnaryFloatCall(I, ISD::FLOG2)) 9219 return; 9220 break; 9221 case LibFunc_exp2: 9222 case LibFunc_exp2f: 9223 case LibFunc_exp2l: 9224 if (visitUnaryFloatCall(I, ISD::FEXP2)) 9225 return; 9226 break; 9227 case LibFunc_exp10: 9228 case LibFunc_exp10f: 9229 case LibFunc_exp10l: 9230 if (visitUnaryFloatCall(I, ISD::FEXP10)) 9231 return; 9232 break; 9233 case LibFunc_ldexp: 9234 case LibFunc_ldexpf: 9235 case LibFunc_ldexpl: 9236 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 9237 return; 9238 break; 9239 case LibFunc_memcmp: 9240 if (visitMemCmpBCmpCall(I)) 9241 return; 9242 break; 9243 case LibFunc_mempcpy: 9244 if (visitMemPCpyCall(I)) 9245 return; 9246 break; 9247 case LibFunc_memchr: 9248 if (visitMemChrCall(I)) 9249 return; 9250 break; 9251 case LibFunc_strcpy: 9252 if (visitStrCpyCall(I, false)) 9253 return; 9254 break; 9255 case LibFunc_stpcpy: 9256 if (visitStrCpyCall(I, true)) 9257 return; 9258 break; 9259 case LibFunc_strcmp: 9260 if (visitStrCmpCall(I)) 9261 return; 9262 break; 9263 case LibFunc_strlen: 9264 if (visitStrLenCall(I)) 9265 return; 9266 break; 9267 case LibFunc_strnlen: 9268 if (visitStrNLenCall(I)) 9269 return; 9270 break; 9271 } 9272 } 9273 } 9274 9275 if (I.countOperandBundlesOfType(LLVMContext::OB_ptrauth)) { 9276 LowerCallSiteWithPtrAuthBundle(cast<CallBase>(I), /*EHPadBB=*/nullptr); 9277 return; 9278 } 9279 9280 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 9281 // have to do anything here to lower funclet bundles. 9282 // CFGuardTarget bundles are lowered in LowerCallTo. 9283 assert(!I.hasOperandBundlesOtherThan( 9284 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 9285 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 9286 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi, 9287 LLVMContext::OB_convergencectrl}) && 9288 "Cannot lower calls with arbitrary operand bundles!"); 9289 9290 SDValue Callee = getValue(I.getCalledOperand()); 9291 9292 if (I.hasDeoptState()) 9293 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 9294 else 9295 // Check if we can potentially perform a tail call. More detailed checking 9296 // is be done within LowerCallTo, after more information about the call is 9297 // known. 9298 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 9299 } 9300 9301 void SelectionDAGBuilder::LowerCallSiteWithPtrAuthBundle( 9302 const CallBase &CB, const BasicBlock *EHPadBB) { 9303 auto PAB = CB.getOperandBundle("ptrauth"); 9304 const Value *CalleeV = CB.getCalledOperand(); 9305 9306 // Gather the call ptrauth data from the operand bundle: 9307 // [ i32 <key>, i64 <discriminator> ] 9308 const auto *Key = cast<ConstantInt>(PAB->Inputs[0]); 9309 const Value *Discriminator = PAB->Inputs[1]; 9310 9311 assert(Key->getType()->isIntegerTy(32) && "Invalid ptrauth key"); 9312 assert(Discriminator->getType()->isIntegerTy(64) && 9313 "Invalid ptrauth discriminator"); 9314 9315 // Functions should never be ptrauth-called directly. 9316 assert(!isa<Function>(CalleeV) && "invalid direct ptrauth call"); 9317 9318 // Otherwise, do an authenticated indirect call. 9319 TargetLowering::PtrAuthInfo PAI = {Key->getZExtValue(), 9320 getValue(Discriminator)}; 9321 9322 LowerCallTo(CB, getValue(CalleeV), CB.isTailCall(), CB.isMustTailCall(), 9323 EHPadBB, &PAI); 9324 } 9325 9326 namespace { 9327 9328 /// AsmOperandInfo - This contains information for each constraint that we are 9329 /// lowering. 9330 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 9331 public: 9332 /// CallOperand - If this is the result output operand or a clobber 9333 /// this is null, otherwise it is the incoming operand to the CallInst. 9334 /// This gets modified as the asm is processed. 9335 SDValue CallOperand; 9336 9337 /// AssignedRegs - If this is a register or register class operand, this 9338 /// contains the set of register corresponding to the operand. 9339 RegsForValue AssignedRegs; 9340 9341 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 9342 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 9343 } 9344 9345 /// Whether or not this operand accesses memory 9346 bool hasMemory(const TargetLowering &TLI) const { 9347 // Indirect operand accesses access memory. 9348 if (isIndirect) 9349 return true; 9350 9351 for (const auto &Code : Codes) 9352 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 9353 return true; 9354 9355 return false; 9356 } 9357 }; 9358 9359 9360 } // end anonymous namespace 9361 9362 /// Make sure that the output operand \p OpInfo and its corresponding input 9363 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 9364 /// out). 9365 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9366 SDISelAsmOperandInfo &MatchingOpInfo, 9367 SelectionDAG &DAG) { 9368 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9369 return; 9370 9371 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9372 const auto &TLI = DAG.getTargetLoweringInfo(); 9373 9374 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9375 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9376 OpInfo.ConstraintVT); 9377 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9378 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9379 MatchingOpInfo.ConstraintVT); 9380 if ((OpInfo.ConstraintVT.isInteger() != 9381 MatchingOpInfo.ConstraintVT.isInteger()) || 9382 (MatchRC.second != InputRC.second)) { 9383 // FIXME: error out in a more elegant fashion 9384 report_fatal_error("Unsupported asm: input constraint" 9385 " with a matching output constraint of" 9386 " incompatible type!"); 9387 } 9388 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9389 } 9390 9391 /// Get a direct memory input to behave well as an indirect operand. 9392 /// This may introduce stores, hence the need for a \p Chain. 9393 /// \return The (possibly updated) chain. 9394 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9395 SDISelAsmOperandInfo &OpInfo, 9396 SelectionDAG &DAG) { 9397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9398 9399 // If we don't have an indirect input, put it in the constpool if we can, 9400 // otherwise spill it to a stack slot. 9401 // TODO: This isn't quite right. We need to handle these according to 9402 // the addressing mode that the constraint wants. Also, this may take 9403 // an additional register for the computation and we don't want that 9404 // either. 9405 9406 // If the operand is a float, integer, or vector constant, spill to a 9407 // constant pool entry to get its address. 9408 const Value *OpVal = OpInfo.CallOperandVal; 9409 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9410 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9411 OpInfo.CallOperand = DAG.getConstantPool( 9412 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9413 return Chain; 9414 } 9415 9416 // Otherwise, create a stack slot and emit a store to it before the asm. 9417 Type *Ty = OpVal->getType(); 9418 auto &DL = DAG.getDataLayout(); 9419 uint64_t TySize = DL.getTypeAllocSize(Ty); 9420 MachineFunction &MF = DAG.getMachineFunction(); 9421 int SSFI = MF.getFrameInfo().CreateStackObject( 9422 TySize, DL.getPrefTypeAlign(Ty), false); 9423 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9424 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9425 MachinePointerInfo::getFixedStack(MF, SSFI), 9426 TLI.getMemValueType(DL, Ty)); 9427 OpInfo.CallOperand = StackSlot; 9428 9429 return Chain; 9430 } 9431 9432 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9433 /// specified operand. We prefer to assign virtual registers, to allow the 9434 /// register allocator to handle the assignment process. However, if the asm 9435 /// uses features that we can't model on machineinstrs, we have SDISel do the 9436 /// allocation. This produces generally horrible, but correct, code. 9437 /// 9438 /// OpInfo describes the operand 9439 /// RefOpInfo describes the matching operand if any, the operand otherwise 9440 static std::optional<unsigned> 9441 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9442 SDISelAsmOperandInfo &OpInfo, 9443 SDISelAsmOperandInfo &RefOpInfo) { 9444 LLVMContext &Context = *DAG.getContext(); 9445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9446 9447 MachineFunction &MF = DAG.getMachineFunction(); 9448 SmallVector<unsigned, 4> Regs; 9449 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9450 9451 // No work to do for memory/address operands. 9452 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9453 OpInfo.ConstraintType == TargetLowering::C_Address) 9454 return std::nullopt; 9455 9456 // If this is a constraint for a single physreg, or a constraint for a 9457 // register class, find it. 9458 unsigned AssignedReg; 9459 const TargetRegisterClass *RC; 9460 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9461 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9462 // RC is unset only on failure. Return immediately. 9463 if (!RC) 9464 return std::nullopt; 9465 9466 // Get the actual register value type. This is important, because the user 9467 // may have asked for (e.g.) the AX register in i32 type. We need to 9468 // remember that AX is actually i16 to get the right extension. 9469 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9470 9471 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9472 // If this is an FP operand in an integer register (or visa versa), or more 9473 // generally if the operand value disagrees with the register class we plan 9474 // to stick it in, fix the operand type. 9475 // 9476 // If this is an input value, the bitcast to the new type is done now. 9477 // Bitcast for output value is done at the end of visitInlineAsm(). 9478 if ((OpInfo.Type == InlineAsm::isOutput || 9479 OpInfo.Type == InlineAsm::isInput) && 9480 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9481 // Try to convert to the first EVT that the reg class contains. If the 9482 // types are identical size, use a bitcast to convert (e.g. two differing 9483 // vector types). Note: output bitcast is done at the end of 9484 // visitInlineAsm(). 9485 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9486 // Exclude indirect inputs while they are unsupported because the code 9487 // to perform the load is missing and thus OpInfo.CallOperand still 9488 // refers to the input address rather than the pointed-to value. 9489 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9490 OpInfo.CallOperand = 9491 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9492 OpInfo.ConstraintVT = RegVT; 9493 // If the operand is an FP value and we want it in integer registers, 9494 // use the corresponding integer type. This turns an f64 value into 9495 // i64, which can be passed with two i32 values on a 32-bit machine. 9496 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9497 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9498 if (OpInfo.Type == InlineAsm::isInput) 9499 OpInfo.CallOperand = 9500 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9501 OpInfo.ConstraintVT = VT; 9502 } 9503 } 9504 } 9505 9506 // No need to allocate a matching input constraint since the constraint it's 9507 // matching to has already been allocated. 9508 if (OpInfo.isMatchingInputConstraint()) 9509 return std::nullopt; 9510 9511 EVT ValueVT = OpInfo.ConstraintVT; 9512 if (OpInfo.ConstraintVT == MVT::Other) 9513 ValueVT = RegVT; 9514 9515 // Initialize NumRegs. 9516 unsigned NumRegs = 1; 9517 if (OpInfo.ConstraintVT != MVT::Other) 9518 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9519 9520 // If this is a constraint for a specific physical register, like {r17}, 9521 // assign it now. 9522 9523 // If this associated to a specific register, initialize iterator to correct 9524 // place. If virtual, make sure we have enough registers 9525 9526 // Initialize iterator if necessary 9527 TargetRegisterClass::iterator I = RC->begin(); 9528 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9529 9530 // Do not check for single registers. 9531 if (AssignedReg) { 9532 I = std::find(I, RC->end(), AssignedReg); 9533 if (I == RC->end()) { 9534 // RC does not contain the selected register, which indicates a 9535 // mismatch between the register and the required type/bitwidth. 9536 return {AssignedReg}; 9537 } 9538 } 9539 9540 for (; NumRegs; --NumRegs, ++I) { 9541 assert(I != RC->end() && "Ran out of registers to allocate!"); 9542 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9543 Regs.push_back(R); 9544 } 9545 9546 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9547 return std::nullopt; 9548 } 9549 9550 static unsigned 9551 findMatchingInlineAsmOperand(unsigned OperandNo, 9552 const std::vector<SDValue> &AsmNodeOperands) { 9553 // Scan until we find the definition we already emitted of this operand. 9554 unsigned CurOp = InlineAsm::Op_FirstOperand; 9555 for (; OperandNo; --OperandNo) { 9556 // Advance to the next operand. 9557 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9558 const InlineAsm::Flag F(OpFlag); 9559 assert( 9560 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9561 "Skipped past definitions?"); 9562 CurOp += F.getNumOperandRegisters() + 1; 9563 } 9564 return CurOp; 9565 } 9566 9567 namespace { 9568 9569 class ExtraFlags { 9570 unsigned Flags = 0; 9571 9572 public: 9573 explicit ExtraFlags(const CallBase &Call) { 9574 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9575 if (IA->hasSideEffects()) 9576 Flags |= InlineAsm::Extra_HasSideEffects; 9577 if (IA->isAlignStack()) 9578 Flags |= InlineAsm::Extra_IsAlignStack; 9579 if (Call.isConvergent()) 9580 Flags |= InlineAsm::Extra_IsConvergent; 9581 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9582 } 9583 9584 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9585 // Ideally, we would only check against memory constraints. However, the 9586 // meaning of an Other constraint can be target-specific and we can't easily 9587 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9588 // for Other constraints as well. 9589 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9590 OpInfo.ConstraintType == TargetLowering::C_Other) { 9591 if (OpInfo.Type == InlineAsm::isInput) 9592 Flags |= InlineAsm::Extra_MayLoad; 9593 else if (OpInfo.Type == InlineAsm::isOutput) 9594 Flags |= InlineAsm::Extra_MayStore; 9595 else if (OpInfo.Type == InlineAsm::isClobber) 9596 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9597 } 9598 } 9599 9600 unsigned get() const { return Flags; } 9601 }; 9602 9603 } // end anonymous namespace 9604 9605 static bool isFunction(SDValue Op) { 9606 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9607 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9608 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9609 9610 // In normal "call dllimport func" instruction (non-inlineasm) it force 9611 // indirect access by specifing call opcode. And usually specially print 9612 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9613 // not do in this way now. (In fact, this is similar with "Data Access" 9614 // action). So here we ignore dllimport function. 9615 if (Fn && !Fn->hasDLLImportStorageClass()) 9616 return true; 9617 } 9618 } 9619 return false; 9620 } 9621 9622 /// visitInlineAsm - Handle a call to an InlineAsm object. 9623 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9624 const BasicBlock *EHPadBB) { 9625 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9626 9627 /// ConstraintOperands - Information about all of the constraints. 9628 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9629 9630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9631 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9632 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9633 9634 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9635 // AsmDialect, MayLoad, MayStore). 9636 bool HasSideEffect = IA->hasSideEffects(); 9637 ExtraFlags ExtraInfo(Call); 9638 9639 for (auto &T : TargetConstraints) { 9640 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9641 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9642 9643 if (OpInfo.CallOperandVal) 9644 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9645 9646 if (!HasSideEffect) 9647 HasSideEffect = OpInfo.hasMemory(TLI); 9648 9649 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9650 // FIXME: Could we compute this on OpInfo rather than T? 9651 9652 // Compute the constraint code and ConstraintType to use. 9653 TLI.ComputeConstraintToUse(T, SDValue()); 9654 9655 if (T.ConstraintType == TargetLowering::C_Immediate && 9656 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9657 // We've delayed emitting a diagnostic like the "n" constraint because 9658 // inlining could cause an integer showing up. 9659 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9660 "' expects an integer constant " 9661 "expression"); 9662 9663 ExtraInfo.update(T); 9664 } 9665 9666 // We won't need to flush pending loads if this asm doesn't touch 9667 // memory and is nonvolatile. 9668 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9669 9670 bool EmitEHLabels = isa<InvokeInst>(Call); 9671 if (EmitEHLabels) { 9672 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9673 } 9674 bool IsCallBr = isa<CallBrInst>(Call); 9675 9676 if (IsCallBr || EmitEHLabels) { 9677 // If this is a callbr or invoke we need to flush pending exports since 9678 // inlineasm_br and invoke are terminators. 9679 // We need to do this before nodes are glued to the inlineasm_br node. 9680 Chain = getControlRoot(); 9681 } 9682 9683 MCSymbol *BeginLabel = nullptr; 9684 if (EmitEHLabels) { 9685 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9686 } 9687 9688 int OpNo = -1; 9689 SmallVector<StringRef> AsmStrs; 9690 IA->collectAsmStrs(AsmStrs); 9691 9692 // Second pass over the constraints: compute which constraint option to use. 9693 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9694 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9695 OpNo++; 9696 9697 // If this is an output operand with a matching input operand, look up the 9698 // matching input. If their types mismatch, e.g. one is an integer, the 9699 // other is floating point, or their sizes are different, flag it as an 9700 // error. 9701 if (OpInfo.hasMatchingInput()) { 9702 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9703 patchMatchingInput(OpInfo, Input, DAG); 9704 } 9705 9706 // Compute the constraint code and ConstraintType to use. 9707 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9708 9709 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9710 OpInfo.Type == InlineAsm::isClobber) || 9711 OpInfo.ConstraintType == TargetLowering::C_Address) 9712 continue; 9713 9714 // In Linux PIC model, there are 4 cases about value/label addressing: 9715 // 9716 // 1: Function call or Label jmp inside the module. 9717 // 2: Data access (such as global variable, static variable) inside module. 9718 // 3: Function call or Label jmp outside the module. 9719 // 4: Data access (such as global variable) outside the module. 9720 // 9721 // Due to current llvm inline asm architecture designed to not "recognize" 9722 // the asm code, there are quite troubles for us to treat mem addressing 9723 // differently for same value/adress used in different instuctions. 9724 // For example, in pic model, call a func may in plt way or direclty 9725 // pc-related, but lea/mov a function adress may use got. 9726 // 9727 // Here we try to "recognize" function call for the case 1 and case 3 in 9728 // inline asm. And try to adjust the constraint for them. 9729 // 9730 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9731 // label, so here we don't handle jmp function label now, but we need to 9732 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9733 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9734 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9735 TM.getCodeModel() != CodeModel::Large) { 9736 OpInfo.isIndirect = false; 9737 OpInfo.ConstraintType = TargetLowering::C_Address; 9738 } 9739 9740 // If this is a memory input, and if the operand is not indirect, do what we 9741 // need to provide an address for the memory input. 9742 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9743 !OpInfo.isIndirect) { 9744 assert((OpInfo.isMultipleAlternative || 9745 (OpInfo.Type == InlineAsm::isInput)) && 9746 "Can only indirectify direct input operands!"); 9747 9748 // Memory operands really want the address of the value. 9749 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9750 9751 // There is no longer a Value* corresponding to this operand. 9752 OpInfo.CallOperandVal = nullptr; 9753 9754 // It is now an indirect operand. 9755 OpInfo.isIndirect = true; 9756 } 9757 9758 } 9759 9760 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9761 std::vector<SDValue> AsmNodeOperands; 9762 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9763 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9764 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9765 9766 // If we have a !srcloc metadata node associated with it, we want to attach 9767 // this to the ultimately generated inline asm machineinstr. To do this, we 9768 // pass in the third operand as this (potentially null) inline asm MDNode. 9769 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9770 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9771 9772 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9773 // bits as operand 3. 9774 AsmNodeOperands.push_back(DAG.getTargetConstant( 9775 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9776 9777 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9778 // this, assign virtual and physical registers for inputs and otput. 9779 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9780 // Assign Registers. 9781 SDISelAsmOperandInfo &RefOpInfo = 9782 OpInfo.isMatchingInputConstraint() 9783 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9784 : OpInfo; 9785 const auto RegError = 9786 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9787 if (RegError) { 9788 const MachineFunction &MF = DAG.getMachineFunction(); 9789 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9790 const char *RegName = TRI.getName(*RegError); 9791 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9792 "' allocated for constraint '" + 9793 Twine(OpInfo.ConstraintCode) + 9794 "' does not match required type"); 9795 return; 9796 } 9797 9798 auto DetectWriteToReservedRegister = [&]() { 9799 const MachineFunction &MF = DAG.getMachineFunction(); 9800 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9801 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9802 if (Register::isPhysicalRegister(Reg) && 9803 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9804 const char *RegName = TRI.getName(Reg); 9805 emitInlineAsmError(Call, "write to reserved register '" + 9806 Twine(RegName) + "'"); 9807 return true; 9808 } 9809 } 9810 return false; 9811 }; 9812 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9813 (OpInfo.Type == InlineAsm::isInput && 9814 !OpInfo.isMatchingInputConstraint())) && 9815 "Only address as input operand is allowed."); 9816 9817 switch (OpInfo.Type) { 9818 case InlineAsm::isOutput: 9819 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9820 const InlineAsm::ConstraintCode ConstraintID = 9821 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9822 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9823 "Failed to convert memory constraint code to constraint id."); 9824 9825 // Add information to the INLINEASM node to know about this output. 9826 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9827 OpFlags.setMemConstraint(ConstraintID); 9828 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9829 MVT::i32)); 9830 AsmNodeOperands.push_back(OpInfo.CallOperand); 9831 } else { 9832 // Otherwise, this outputs to a register (directly for C_Register / 9833 // C_RegisterClass, and a target-defined fashion for 9834 // C_Immediate/C_Other). Find a register that we can use. 9835 if (OpInfo.AssignedRegs.Regs.empty()) { 9836 emitInlineAsmError( 9837 Call, "couldn't allocate output register for constraint '" + 9838 Twine(OpInfo.ConstraintCode) + "'"); 9839 return; 9840 } 9841 9842 if (DetectWriteToReservedRegister()) 9843 return; 9844 9845 // Add information to the INLINEASM node to know that this register is 9846 // set. 9847 OpInfo.AssignedRegs.AddInlineAsmOperands( 9848 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9849 : InlineAsm::Kind::RegDef, 9850 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9851 } 9852 break; 9853 9854 case InlineAsm::isInput: 9855 case InlineAsm::isLabel: { 9856 SDValue InOperandVal = OpInfo.CallOperand; 9857 9858 if (OpInfo.isMatchingInputConstraint()) { 9859 // If this is required to match an output register we have already set, 9860 // just use its register. 9861 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9862 AsmNodeOperands); 9863 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9864 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9865 if (OpInfo.isIndirect) { 9866 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9867 emitInlineAsmError(Call, "inline asm not supported yet: " 9868 "don't know how to handle tied " 9869 "indirect register inputs"); 9870 return; 9871 } 9872 9873 SmallVector<unsigned, 4> Regs; 9874 MachineFunction &MF = DAG.getMachineFunction(); 9875 MachineRegisterInfo &MRI = MF.getRegInfo(); 9876 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9877 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9878 Register TiedReg = R->getReg(); 9879 MVT RegVT = R->getSimpleValueType(0); 9880 const TargetRegisterClass *RC = 9881 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9882 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9883 : TRI.getMinimalPhysRegClass(TiedReg); 9884 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9885 Regs.push_back(MRI.createVirtualRegister(RC)); 9886 9887 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9888 9889 SDLoc dl = getCurSDLoc(); 9890 // Use the produced MatchedRegs object to 9891 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9892 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9893 OpInfo.getMatchedOperand(), dl, DAG, 9894 AsmNodeOperands); 9895 break; 9896 } 9897 9898 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9899 assert(Flag.getNumOperandRegisters() == 1 && 9900 "Unexpected number of operands"); 9901 // Add information to the INLINEASM node to know about this input. 9902 // See InlineAsm.h isUseOperandTiedToDef. 9903 Flag.clearMemConstraint(); 9904 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9905 AsmNodeOperands.push_back(DAG.getTargetConstant( 9906 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9907 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9908 break; 9909 } 9910 9911 // Treat indirect 'X' constraint as memory. 9912 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9913 OpInfo.isIndirect) 9914 OpInfo.ConstraintType = TargetLowering::C_Memory; 9915 9916 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9917 OpInfo.ConstraintType == TargetLowering::C_Other) { 9918 std::vector<SDValue> Ops; 9919 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9920 Ops, DAG); 9921 if (Ops.empty()) { 9922 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9923 if (isa<ConstantSDNode>(InOperandVal)) { 9924 emitInlineAsmError(Call, "value out of range for constraint '" + 9925 Twine(OpInfo.ConstraintCode) + "'"); 9926 return; 9927 } 9928 9929 emitInlineAsmError(Call, 9930 "invalid operand for inline asm constraint '" + 9931 Twine(OpInfo.ConstraintCode) + "'"); 9932 return; 9933 } 9934 9935 // Add information to the INLINEASM node to know about this input. 9936 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9937 AsmNodeOperands.push_back(DAG.getTargetConstant( 9938 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9939 llvm::append_range(AsmNodeOperands, Ops); 9940 break; 9941 } 9942 9943 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9944 assert((OpInfo.isIndirect || 9945 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9946 "Operand must be indirect to be a mem!"); 9947 assert(InOperandVal.getValueType() == 9948 TLI.getPointerTy(DAG.getDataLayout()) && 9949 "Memory operands expect pointer values"); 9950 9951 const InlineAsm::ConstraintCode ConstraintID = 9952 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9953 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9954 "Failed to convert memory constraint code to constraint id."); 9955 9956 // Add information to the INLINEASM node to know about this input. 9957 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9958 ResOpType.setMemConstraint(ConstraintID); 9959 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9960 getCurSDLoc(), 9961 MVT::i32)); 9962 AsmNodeOperands.push_back(InOperandVal); 9963 break; 9964 } 9965 9966 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9967 const InlineAsm::ConstraintCode ConstraintID = 9968 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9969 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9970 "Failed to convert memory constraint code to constraint id."); 9971 9972 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9973 9974 SDValue AsmOp = InOperandVal; 9975 if (isFunction(InOperandVal)) { 9976 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9977 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9978 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9979 InOperandVal.getValueType(), 9980 GA->getOffset()); 9981 } 9982 9983 // Add information to the INLINEASM node to know about this input. 9984 ResOpType.setMemConstraint(ConstraintID); 9985 9986 AsmNodeOperands.push_back( 9987 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9988 9989 AsmNodeOperands.push_back(AsmOp); 9990 break; 9991 } 9992 9993 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9994 OpInfo.ConstraintType == TargetLowering::C_Register) && 9995 "Unknown constraint type!"); 9996 9997 // TODO: Support this. 9998 if (OpInfo.isIndirect) { 9999 emitInlineAsmError( 10000 Call, "Don't know how to handle indirect register inputs yet " 10001 "for constraint '" + 10002 Twine(OpInfo.ConstraintCode) + "'"); 10003 return; 10004 } 10005 10006 // Copy the input into the appropriate registers. 10007 if (OpInfo.AssignedRegs.Regs.empty()) { 10008 emitInlineAsmError(Call, 10009 "couldn't allocate input reg for constraint '" + 10010 Twine(OpInfo.ConstraintCode) + "'"); 10011 return; 10012 } 10013 10014 if (DetectWriteToReservedRegister()) 10015 return; 10016 10017 SDLoc dl = getCurSDLoc(); 10018 10019 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 10020 &Call); 10021 10022 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 10023 0, dl, DAG, AsmNodeOperands); 10024 break; 10025 } 10026 case InlineAsm::isClobber: 10027 // Add the clobbered value to the operand list, so that the register 10028 // allocator is aware that the physreg got clobbered. 10029 if (!OpInfo.AssignedRegs.Regs.empty()) 10030 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 10031 false, 0, getCurSDLoc(), DAG, 10032 AsmNodeOperands); 10033 break; 10034 } 10035 } 10036 10037 // Finish up input operands. Set the input chain and add the flag last. 10038 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 10039 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 10040 10041 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 10042 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 10043 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 10044 Glue = Chain.getValue(1); 10045 10046 // Do additional work to generate outputs. 10047 10048 SmallVector<EVT, 1> ResultVTs; 10049 SmallVector<SDValue, 1> ResultValues; 10050 SmallVector<SDValue, 8> OutChains; 10051 10052 llvm::Type *CallResultType = Call.getType(); 10053 ArrayRef<Type *> ResultTypes; 10054 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 10055 ResultTypes = StructResult->elements(); 10056 else if (!CallResultType->isVoidTy()) 10057 ResultTypes = ArrayRef(CallResultType); 10058 10059 auto CurResultType = ResultTypes.begin(); 10060 auto handleRegAssign = [&](SDValue V) { 10061 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 10062 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 10063 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 10064 ++CurResultType; 10065 // If the type of the inline asm call site return value is different but has 10066 // same size as the type of the asm output bitcast it. One example of this 10067 // is for vectors with different width / number of elements. This can 10068 // happen for register classes that can contain multiple different value 10069 // types. The preg or vreg allocated may not have the same VT as was 10070 // expected. 10071 // 10072 // This can also happen for a return value that disagrees with the register 10073 // class it is put in, eg. a double in a general-purpose register on a 10074 // 32-bit machine. 10075 if (ResultVT != V.getValueType() && 10076 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 10077 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 10078 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 10079 V.getValueType().isInteger()) { 10080 // If a result value was tied to an input value, the computed result 10081 // may have a wider width than the expected result. Extract the 10082 // relevant portion. 10083 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 10084 } 10085 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 10086 ResultVTs.push_back(ResultVT); 10087 ResultValues.push_back(V); 10088 }; 10089 10090 // Deal with output operands. 10091 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 10092 if (OpInfo.Type == InlineAsm::isOutput) { 10093 SDValue Val; 10094 // Skip trivial output operands. 10095 if (OpInfo.AssignedRegs.Regs.empty()) 10096 continue; 10097 10098 switch (OpInfo.ConstraintType) { 10099 case TargetLowering::C_Register: 10100 case TargetLowering::C_RegisterClass: 10101 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 10102 Chain, &Glue, &Call); 10103 break; 10104 case TargetLowering::C_Immediate: 10105 case TargetLowering::C_Other: 10106 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 10107 OpInfo, DAG); 10108 break; 10109 case TargetLowering::C_Memory: 10110 break; // Already handled. 10111 case TargetLowering::C_Address: 10112 break; // Silence warning. 10113 case TargetLowering::C_Unknown: 10114 assert(false && "Unexpected unknown constraint"); 10115 } 10116 10117 // Indirect output manifest as stores. Record output chains. 10118 if (OpInfo.isIndirect) { 10119 const Value *Ptr = OpInfo.CallOperandVal; 10120 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 10121 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 10122 MachinePointerInfo(Ptr)); 10123 OutChains.push_back(Store); 10124 } else { 10125 // generate CopyFromRegs to associated registers. 10126 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 10127 if (Val.getOpcode() == ISD::MERGE_VALUES) { 10128 for (const SDValue &V : Val->op_values()) 10129 handleRegAssign(V); 10130 } else 10131 handleRegAssign(Val); 10132 } 10133 } 10134 } 10135 10136 // Set results. 10137 if (!ResultValues.empty()) { 10138 assert(CurResultType == ResultTypes.end() && 10139 "Mismatch in number of ResultTypes"); 10140 assert(ResultValues.size() == ResultTypes.size() && 10141 "Mismatch in number of output operands in asm result"); 10142 10143 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10144 DAG.getVTList(ResultVTs), ResultValues); 10145 setValue(&Call, V); 10146 } 10147 10148 // Collect store chains. 10149 if (!OutChains.empty()) 10150 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 10151 10152 if (EmitEHLabels) { 10153 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 10154 } 10155 10156 // Only Update Root if inline assembly has a memory effect. 10157 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 10158 EmitEHLabels) 10159 DAG.setRoot(Chain); 10160 } 10161 10162 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 10163 const Twine &Message) { 10164 LLVMContext &Ctx = *DAG.getContext(); 10165 Ctx.emitError(&Call, Message); 10166 10167 // Make sure we leave the DAG in a valid state 10168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10169 SmallVector<EVT, 1> ValueVTs; 10170 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 10171 10172 if (ValueVTs.empty()) 10173 return; 10174 10175 SmallVector<SDValue, 1> Ops; 10176 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 10177 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 10178 10179 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 10180 } 10181 10182 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 10183 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 10184 MVT::Other, getRoot(), 10185 getValue(I.getArgOperand(0)), 10186 DAG.getSrcValue(I.getArgOperand(0)))); 10187 } 10188 10189 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 10190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10191 const DataLayout &DL = DAG.getDataLayout(); 10192 SDValue V = DAG.getVAArg( 10193 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 10194 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 10195 DL.getABITypeAlign(I.getType()).value()); 10196 DAG.setRoot(V.getValue(1)); 10197 10198 if (I.getType()->isPointerTy()) 10199 V = DAG.getPtrExtOrTrunc( 10200 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 10201 setValue(&I, V); 10202 } 10203 10204 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 10205 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 10206 MVT::Other, getRoot(), 10207 getValue(I.getArgOperand(0)), 10208 DAG.getSrcValue(I.getArgOperand(0)))); 10209 } 10210 10211 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 10212 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 10213 MVT::Other, getRoot(), 10214 getValue(I.getArgOperand(0)), 10215 getValue(I.getArgOperand(1)), 10216 DAG.getSrcValue(I.getArgOperand(0)), 10217 DAG.getSrcValue(I.getArgOperand(1)))); 10218 } 10219 10220 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 10221 const Instruction &I, 10222 SDValue Op) { 10223 const MDNode *Range = getRangeMetadata(I); 10224 if (!Range) 10225 return Op; 10226 10227 ConstantRange CR = getConstantRangeFromMetadata(*Range); 10228 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 10229 return Op; 10230 10231 APInt Lo = CR.getUnsignedMin(); 10232 if (!Lo.isMinValue()) 10233 return Op; 10234 10235 APInt Hi = CR.getUnsignedMax(); 10236 unsigned Bits = std::max(Hi.getActiveBits(), 10237 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 10238 10239 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 10240 10241 SDLoc SL = getCurSDLoc(); 10242 10243 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 10244 DAG.getValueType(SmallVT)); 10245 unsigned NumVals = Op.getNode()->getNumValues(); 10246 if (NumVals == 1) 10247 return ZExt; 10248 10249 SmallVector<SDValue, 4> Ops; 10250 10251 Ops.push_back(ZExt); 10252 for (unsigned I = 1; I != NumVals; ++I) 10253 Ops.push_back(Op.getValue(I)); 10254 10255 return DAG.getMergeValues(Ops, SL); 10256 } 10257 10258 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 10259 /// the call being lowered. 10260 /// 10261 /// This is a helper for lowering intrinsics that follow a target calling 10262 /// convention or require stack pointer adjustment. Only a subset of the 10263 /// intrinsic's operands need to participate in the calling convention. 10264 void SelectionDAGBuilder::populateCallLoweringInfo( 10265 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 10266 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 10267 AttributeSet RetAttrs, bool IsPatchPoint) { 10268 TargetLowering::ArgListTy Args; 10269 Args.reserve(NumArgs); 10270 10271 // Populate the argument list. 10272 // Attributes for args start at offset 1, after the return attribute. 10273 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 10274 ArgI != ArgE; ++ArgI) { 10275 const Value *V = Call->getOperand(ArgI); 10276 10277 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 10278 10279 TargetLowering::ArgListEntry Entry; 10280 Entry.Node = getValue(V); 10281 Entry.Ty = V->getType(); 10282 Entry.setAttributes(Call, ArgI); 10283 Args.push_back(Entry); 10284 } 10285 10286 CLI.setDebugLoc(getCurSDLoc()) 10287 .setChain(getRoot()) 10288 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 10289 RetAttrs) 10290 .setDiscardResult(Call->use_empty()) 10291 .setIsPatchPoint(IsPatchPoint) 10292 .setIsPreallocated( 10293 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 10294 } 10295 10296 /// Add a stack map intrinsic call's live variable operands to a stackmap 10297 /// or patchpoint target node's operand list. 10298 /// 10299 /// Constants are converted to TargetConstants purely as an optimization to 10300 /// avoid constant materialization and register allocation. 10301 /// 10302 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 10303 /// generate addess computation nodes, and so FinalizeISel can convert the 10304 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 10305 /// address materialization and register allocation, but may also be required 10306 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 10307 /// alloca in the entry block, then the runtime may assume that the alloca's 10308 /// StackMap location can be read immediately after compilation and that the 10309 /// location is valid at any point during execution (this is similar to the 10310 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 10311 /// only available in a register, then the runtime would need to trap when 10312 /// execution reaches the StackMap in order to read the alloca's location. 10313 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 10314 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 10315 SelectionDAGBuilder &Builder) { 10316 SelectionDAG &DAG = Builder.DAG; 10317 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 10318 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 10319 10320 // Things on the stack are pointer-typed, meaning that they are already 10321 // legal and can be emitted directly to target nodes. 10322 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 10323 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 10324 } else { 10325 // Otherwise emit a target independent node to be legalised. 10326 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 10327 } 10328 } 10329 } 10330 10331 /// Lower llvm.experimental.stackmap. 10332 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 10333 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 10334 // [live variables...]) 10335 10336 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 10337 10338 SDValue Chain, InGlue, Callee; 10339 SmallVector<SDValue, 32> Ops; 10340 10341 SDLoc DL = getCurSDLoc(); 10342 Callee = getValue(CI.getCalledOperand()); 10343 10344 // The stackmap intrinsic only records the live variables (the arguments 10345 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 10346 // intrinsic, this won't be lowered to a function call. This means we don't 10347 // have to worry about calling conventions and target specific lowering code. 10348 // Instead we perform the call lowering right here. 10349 // 10350 // chain, flag = CALLSEQ_START(chain, 0, 0) 10351 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 10352 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 10353 // 10354 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 10355 InGlue = Chain.getValue(1); 10356 10357 // Add the STACKMAP operands, starting with DAG house-keeping. 10358 Ops.push_back(Chain); 10359 Ops.push_back(InGlue); 10360 10361 // Add the <id>, <numShadowBytes> operands. 10362 // 10363 // These do not require legalisation, and can be emitted directly to target 10364 // constant nodes. 10365 SDValue ID = getValue(CI.getArgOperand(0)); 10366 assert(ID.getValueType() == MVT::i64); 10367 SDValue IDConst = 10368 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10369 Ops.push_back(IDConst); 10370 10371 SDValue Shad = getValue(CI.getArgOperand(1)); 10372 assert(Shad.getValueType() == MVT::i32); 10373 SDValue ShadConst = 10374 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10375 Ops.push_back(ShadConst); 10376 10377 // Add the live variables. 10378 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10379 10380 // Create the STACKMAP node. 10381 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10382 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10383 InGlue = Chain.getValue(1); 10384 10385 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10386 10387 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10388 10389 // Set the root to the target-lowered call chain. 10390 DAG.setRoot(Chain); 10391 10392 // Inform the Frame Information that we have a stackmap in this function. 10393 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10394 } 10395 10396 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10397 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10398 const BasicBlock *EHPadBB) { 10399 // <ty> @llvm.experimental.patchpoint.<ty>(i64 <id>, 10400 // i32 <numBytes>, 10401 // i8* <target>, 10402 // i32 <numArgs>, 10403 // [Args...], 10404 // [live variables...]) 10405 10406 CallingConv::ID CC = CB.getCallingConv(); 10407 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10408 bool HasDef = !CB.getType()->isVoidTy(); 10409 SDLoc dl = getCurSDLoc(); 10410 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10411 10412 // Handle immediate and symbolic callees. 10413 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10414 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10415 /*isTarget=*/true); 10416 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10417 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10418 SDLoc(SymbolicCallee), 10419 SymbolicCallee->getValueType(0)); 10420 10421 // Get the real number of arguments participating in the call <numArgs> 10422 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10423 unsigned NumArgs = NArgVal->getAsZExtVal(); 10424 10425 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10426 // Intrinsics include all meta-operands up to but not including CC. 10427 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10428 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10429 "Not enough arguments provided to the patchpoint intrinsic"); 10430 10431 // For AnyRegCC the arguments are lowered later on manually. 10432 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10433 Type *ReturnTy = 10434 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10435 10436 TargetLowering::CallLoweringInfo CLI(DAG); 10437 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10438 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10439 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10440 10441 SDNode *CallEnd = Result.second.getNode(); 10442 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10443 CallEnd = CallEnd->getOperand(0).getNode(); 10444 10445 /// Get a call instruction from the call sequence chain. 10446 /// Tail calls are not allowed. 10447 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10448 "Expected a callseq node."); 10449 SDNode *Call = CallEnd->getOperand(0).getNode(); 10450 bool HasGlue = Call->getGluedNode(); 10451 10452 // Replace the target specific call node with the patchable intrinsic. 10453 SmallVector<SDValue, 8> Ops; 10454 10455 // Push the chain. 10456 Ops.push_back(*(Call->op_begin())); 10457 10458 // Optionally, push the glue (if any). 10459 if (HasGlue) 10460 Ops.push_back(*(Call->op_end() - 1)); 10461 10462 // Push the register mask info. 10463 if (HasGlue) 10464 Ops.push_back(*(Call->op_end() - 2)); 10465 else 10466 Ops.push_back(*(Call->op_end() - 1)); 10467 10468 // Add the <id> and <numBytes> constants. 10469 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10470 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10471 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10472 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10473 10474 // Add the callee. 10475 Ops.push_back(Callee); 10476 10477 // Adjust <numArgs> to account for any arguments that have been passed on the 10478 // stack instead. 10479 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10480 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10481 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10482 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10483 10484 // Add the calling convention 10485 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10486 10487 // Add the arguments we omitted previously. The register allocator should 10488 // place these in any free register. 10489 if (IsAnyRegCC) 10490 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10491 Ops.push_back(getValue(CB.getArgOperand(i))); 10492 10493 // Push the arguments from the call instruction. 10494 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10495 Ops.append(Call->op_begin() + 2, e); 10496 10497 // Push live variables for the stack map. 10498 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10499 10500 SDVTList NodeTys; 10501 if (IsAnyRegCC && HasDef) { 10502 // Create the return types based on the intrinsic definition 10503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10504 SmallVector<EVT, 3> ValueVTs; 10505 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10506 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10507 10508 // There is always a chain and a glue type at the end 10509 ValueVTs.push_back(MVT::Other); 10510 ValueVTs.push_back(MVT::Glue); 10511 NodeTys = DAG.getVTList(ValueVTs); 10512 } else 10513 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10514 10515 // Replace the target specific call node with a PATCHPOINT node. 10516 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10517 10518 // Update the NodeMap. 10519 if (HasDef) { 10520 if (IsAnyRegCC) 10521 setValue(&CB, SDValue(PPV.getNode(), 0)); 10522 else 10523 setValue(&CB, Result.first); 10524 } 10525 10526 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10527 // call sequence. Furthermore the location of the chain and glue can change 10528 // when the AnyReg calling convention is used and the intrinsic returns a 10529 // value. 10530 if (IsAnyRegCC && HasDef) { 10531 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10532 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10533 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10534 } else 10535 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10536 DAG.DeleteNode(Call); 10537 10538 // Inform the Frame Information that we have a patchpoint in this function. 10539 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10540 } 10541 10542 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10543 unsigned Intrinsic) { 10544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10545 SDValue Op1 = getValue(I.getArgOperand(0)); 10546 SDValue Op2; 10547 if (I.arg_size() > 1) 10548 Op2 = getValue(I.getArgOperand(1)); 10549 SDLoc dl = getCurSDLoc(); 10550 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10551 SDValue Res; 10552 SDNodeFlags SDFlags; 10553 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10554 SDFlags.copyFMF(*FPMO); 10555 10556 switch (Intrinsic) { 10557 case Intrinsic::vector_reduce_fadd: 10558 if (SDFlags.hasAllowReassociation()) 10559 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10560 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10561 SDFlags); 10562 else 10563 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10564 break; 10565 case Intrinsic::vector_reduce_fmul: 10566 if (SDFlags.hasAllowReassociation()) 10567 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10568 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10569 SDFlags); 10570 else 10571 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10572 break; 10573 case Intrinsic::vector_reduce_add: 10574 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10575 break; 10576 case Intrinsic::vector_reduce_mul: 10577 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10578 break; 10579 case Intrinsic::vector_reduce_and: 10580 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10581 break; 10582 case Intrinsic::vector_reduce_or: 10583 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10584 break; 10585 case Intrinsic::vector_reduce_xor: 10586 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10587 break; 10588 case Intrinsic::vector_reduce_smax: 10589 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10590 break; 10591 case Intrinsic::vector_reduce_smin: 10592 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10593 break; 10594 case Intrinsic::vector_reduce_umax: 10595 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10596 break; 10597 case Intrinsic::vector_reduce_umin: 10598 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10599 break; 10600 case Intrinsic::vector_reduce_fmax: 10601 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10602 break; 10603 case Intrinsic::vector_reduce_fmin: 10604 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10605 break; 10606 case Intrinsic::vector_reduce_fmaximum: 10607 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10608 break; 10609 case Intrinsic::vector_reduce_fminimum: 10610 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10611 break; 10612 default: 10613 llvm_unreachable("Unhandled vector reduce intrinsic"); 10614 } 10615 setValue(&I, Res); 10616 } 10617 10618 /// Returns an AttributeList representing the attributes applied to the return 10619 /// value of the given call. 10620 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10621 SmallVector<Attribute::AttrKind, 2> Attrs; 10622 if (CLI.RetSExt) 10623 Attrs.push_back(Attribute::SExt); 10624 if (CLI.RetZExt) 10625 Attrs.push_back(Attribute::ZExt); 10626 if (CLI.IsInReg) 10627 Attrs.push_back(Attribute::InReg); 10628 10629 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10630 Attrs); 10631 } 10632 10633 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10634 /// implementation, which just calls LowerCall. 10635 /// FIXME: When all targets are 10636 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10637 std::pair<SDValue, SDValue> 10638 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10639 // Handle the incoming return values from the call. 10640 CLI.Ins.clear(); 10641 Type *OrigRetTy = CLI.RetTy; 10642 SmallVector<EVT, 4> RetTys; 10643 SmallVector<TypeSize, 4> Offsets; 10644 auto &DL = CLI.DAG.getDataLayout(); 10645 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 10646 10647 if (CLI.IsPostTypeLegalization) { 10648 // If we are lowering a libcall after legalization, split the return type. 10649 SmallVector<EVT, 4> OldRetTys; 10650 SmallVector<TypeSize, 4> OldOffsets; 10651 RetTys.swap(OldRetTys); 10652 Offsets.swap(OldOffsets); 10653 10654 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10655 EVT RetVT = OldRetTys[i]; 10656 uint64_t Offset = OldOffsets[i]; 10657 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10658 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10659 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10660 RetTys.append(NumRegs, RegisterVT); 10661 for (unsigned j = 0; j != NumRegs; ++j) 10662 Offsets.push_back(TypeSize::getFixed(Offset + j * RegisterVTByteSZ)); 10663 } 10664 } 10665 10666 SmallVector<ISD::OutputArg, 4> Outs; 10667 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10668 10669 bool CanLowerReturn = 10670 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10671 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10672 10673 SDValue DemoteStackSlot; 10674 int DemoteStackIdx = -100; 10675 if (!CanLowerReturn) { 10676 // FIXME: equivalent assert? 10677 // assert(!CS.hasInAllocaArgument() && 10678 // "sret demotion is incompatible with inalloca"); 10679 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10680 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10681 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10682 DemoteStackIdx = 10683 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10684 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10685 DL.getAllocaAddrSpace()); 10686 10687 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10688 ArgListEntry Entry; 10689 Entry.Node = DemoteStackSlot; 10690 Entry.Ty = StackSlotPtrType; 10691 Entry.IsSExt = false; 10692 Entry.IsZExt = false; 10693 Entry.IsInReg = false; 10694 Entry.IsSRet = true; 10695 Entry.IsNest = false; 10696 Entry.IsByVal = false; 10697 Entry.IsByRef = false; 10698 Entry.IsReturned = false; 10699 Entry.IsSwiftSelf = false; 10700 Entry.IsSwiftAsync = false; 10701 Entry.IsSwiftError = false; 10702 Entry.IsCFGuardTarget = false; 10703 Entry.Alignment = Alignment; 10704 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10705 CLI.NumFixedArgs += 1; 10706 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10707 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10708 10709 // sret demotion isn't compatible with tail-calls, since the sret argument 10710 // points into the callers stack frame. 10711 CLI.IsTailCall = false; 10712 } else { 10713 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10714 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10715 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10716 ISD::ArgFlagsTy Flags; 10717 if (NeedsRegBlock) { 10718 Flags.setInConsecutiveRegs(); 10719 if (I == RetTys.size() - 1) 10720 Flags.setInConsecutiveRegsLast(); 10721 } 10722 EVT VT = RetTys[I]; 10723 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10724 CLI.CallConv, VT); 10725 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10726 CLI.CallConv, VT); 10727 for (unsigned i = 0; i != NumRegs; ++i) { 10728 ISD::InputArg MyFlags; 10729 MyFlags.Flags = Flags; 10730 MyFlags.VT = RegisterVT; 10731 MyFlags.ArgVT = VT; 10732 MyFlags.Used = CLI.IsReturnValueUsed; 10733 if (CLI.RetTy->isPointerTy()) { 10734 MyFlags.Flags.setPointer(); 10735 MyFlags.Flags.setPointerAddrSpace( 10736 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10737 } 10738 if (CLI.RetSExt) 10739 MyFlags.Flags.setSExt(); 10740 if (CLI.RetZExt) 10741 MyFlags.Flags.setZExt(); 10742 if (CLI.IsInReg) 10743 MyFlags.Flags.setInReg(); 10744 CLI.Ins.push_back(MyFlags); 10745 } 10746 } 10747 } 10748 10749 // We push in swifterror return as the last element of CLI.Ins. 10750 ArgListTy &Args = CLI.getArgs(); 10751 if (supportSwiftError()) { 10752 for (const ArgListEntry &Arg : Args) { 10753 if (Arg.IsSwiftError) { 10754 ISD::InputArg MyFlags; 10755 MyFlags.VT = getPointerTy(DL); 10756 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10757 MyFlags.Flags.setSwiftError(); 10758 CLI.Ins.push_back(MyFlags); 10759 } 10760 } 10761 } 10762 10763 // Handle all of the outgoing arguments. 10764 CLI.Outs.clear(); 10765 CLI.OutVals.clear(); 10766 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10767 SmallVector<EVT, 4> ValueVTs; 10768 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10769 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10770 Type *FinalType = Args[i].Ty; 10771 if (Args[i].IsByVal) 10772 FinalType = Args[i].IndirectType; 10773 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10774 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10775 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10776 ++Value) { 10777 EVT VT = ValueVTs[Value]; 10778 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10779 SDValue Op = SDValue(Args[i].Node.getNode(), 10780 Args[i].Node.getResNo() + Value); 10781 ISD::ArgFlagsTy Flags; 10782 10783 // Certain targets (such as MIPS), may have a different ABI alignment 10784 // for a type depending on the context. Give the target a chance to 10785 // specify the alignment it wants. 10786 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10787 Flags.setOrigAlign(OriginalAlignment); 10788 10789 if (Args[i].Ty->isPointerTy()) { 10790 Flags.setPointer(); 10791 Flags.setPointerAddrSpace( 10792 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10793 } 10794 if (Args[i].IsZExt) 10795 Flags.setZExt(); 10796 if (Args[i].IsSExt) 10797 Flags.setSExt(); 10798 if (Args[i].IsInReg) { 10799 // If we are using vectorcall calling convention, a structure that is 10800 // passed InReg - is surely an HVA 10801 if (CLI.CallConv == CallingConv::X86_VectorCall && 10802 isa<StructType>(FinalType)) { 10803 // The first value of a structure is marked 10804 if (0 == Value) 10805 Flags.setHvaStart(); 10806 Flags.setHva(); 10807 } 10808 // Set InReg Flag 10809 Flags.setInReg(); 10810 } 10811 if (Args[i].IsSRet) 10812 Flags.setSRet(); 10813 if (Args[i].IsSwiftSelf) 10814 Flags.setSwiftSelf(); 10815 if (Args[i].IsSwiftAsync) 10816 Flags.setSwiftAsync(); 10817 if (Args[i].IsSwiftError) 10818 Flags.setSwiftError(); 10819 if (Args[i].IsCFGuardTarget) 10820 Flags.setCFGuardTarget(); 10821 if (Args[i].IsByVal) 10822 Flags.setByVal(); 10823 if (Args[i].IsByRef) 10824 Flags.setByRef(); 10825 if (Args[i].IsPreallocated) { 10826 Flags.setPreallocated(); 10827 // Set the byval flag for CCAssignFn callbacks that don't know about 10828 // preallocated. This way we can know how many bytes we should've 10829 // allocated and how many bytes a callee cleanup function will pop. If 10830 // we port preallocated to more targets, we'll have to add custom 10831 // preallocated handling in the various CC lowering callbacks. 10832 Flags.setByVal(); 10833 } 10834 if (Args[i].IsInAlloca) { 10835 Flags.setInAlloca(); 10836 // Set the byval flag for CCAssignFn callbacks that don't know about 10837 // inalloca. This way we can know how many bytes we should've allocated 10838 // and how many bytes a callee cleanup function will pop. If we port 10839 // inalloca to more targets, we'll have to add custom inalloca handling 10840 // in the various CC lowering callbacks. 10841 Flags.setByVal(); 10842 } 10843 Align MemAlign; 10844 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10845 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10846 Flags.setByValSize(FrameSize); 10847 10848 // info is not there but there are cases it cannot get right. 10849 if (auto MA = Args[i].Alignment) 10850 MemAlign = *MA; 10851 else 10852 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10853 } else if (auto MA = Args[i].Alignment) { 10854 MemAlign = *MA; 10855 } else { 10856 MemAlign = OriginalAlignment; 10857 } 10858 Flags.setMemAlign(MemAlign); 10859 if (Args[i].IsNest) 10860 Flags.setNest(); 10861 if (NeedsRegBlock) 10862 Flags.setInConsecutiveRegs(); 10863 10864 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10865 CLI.CallConv, VT); 10866 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10867 CLI.CallConv, VT); 10868 SmallVector<SDValue, 4> Parts(NumParts); 10869 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10870 10871 if (Args[i].IsSExt) 10872 ExtendKind = ISD::SIGN_EXTEND; 10873 else if (Args[i].IsZExt) 10874 ExtendKind = ISD::ZERO_EXTEND; 10875 10876 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10877 // for now. 10878 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10879 CanLowerReturn) { 10880 assert((CLI.RetTy == Args[i].Ty || 10881 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10882 CLI.RetTy->getPointerAddressSpace() == 10883 Args[i].Ty->getPointerAddressSpace())) && 10884 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10885 // Before passing 'returned' to the target lowering code, ensure that 10886 // either the register MVT and the actual EVT are the same size or that 10887 // the return value and argument are extended in the same way; in these 10888 // cases it's safe to pass the argument register value unchanged as the 10889 // return register value (although it's at the target's option whether 10890 // to do so) 10891 // TODO: allow code generation to take advantage of partially preserved 10892 // registers rather than clobbering the entire register when the 10893 // parameter extension method is not compatible with the return 10894 // extension method 10895 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10896 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10897 CLI.RetZExt == Args[i].IsZExt)) 10898 Flags.setReturned(); 10899 } 10900 10901 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10902 CLI.CallConv, ExtendKind); 10903 10904 for (unsigned j = 0; j != NumParts; ++j) { 10905 // if it isn't first piece, alignment must be 1 10906 // For scalable vectors the scalable part is currently handled 10907 // by individual targets, so we just use the known minimum size here. 10908 ISD::OutputArg MyFlags( 10909 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10910 i < CLI.NumFixedArgs, i, 10911 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10912 if (NumParts > 1 && j == 0) 10913 MyFlags.Flags.setSplit(); 10914 else if (j != 0) { 10915 MyFlags.Flags.setOrigAlign(Align(1)); 10916 if (j == NumParts - 1) 10917 MyFlags.Flags.setSplitEnd(); 10918 } 10919 10920 CLI.Outs.push_back(MyFlags); 10921 CLI.OutVals.push_back(Parts[j]); 10922 } 10923 10924 if (NeedsRegBlock && Value == NumValues - 1) 10925 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10926 } 10927 } 10928 10929 SmallVector<SDValue, 4> InVals; 10930 CLI.Chain = LowerCall(CLI, InVals); 10931 10932 // Update CLI.InVals to use outside of this function. 10933 CLI.InVals = InVals; 10934 10935 // Verify that the target's LowerCall behaved as expected. 10936 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10937 "LowerCall didn't return a valid chain!"); 10938 assert((!CLI.IsTailCall || InVals.empty()) && 10939 "LowerCall emitted a return value for a tail call!"); 10940 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10941 "LowerCall didn't emit the correct number of values!"); 10942 10943 // For a tail call, the return value is merely live-out and there aren't 10944 // any nodes in the DAG representing it. Return a special value to 10945 // indicate that a tail call has been emitted and no more Instructions 10946 // should be processed in the current block. 10947 if (CLI.IsTailCall) { 10948 CLI.DAG.setRoot(CLI.Chain); 10949 return std::make_pair(SDValue(), SDValue()); 10950 } 10951 10952 #ifndef NDEBUG 10953 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10954 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10955 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10956 "LowerCall emitted a value with the wrong type!"); 10957 } 10958 #endif 10959 10960 SmallVector<SDValue, 4> ReturnValues; 10961 if (!CanLowerReturn) { 10962 // The instruction result is the result of loading from the 10963 // hidden sret parameter. 10964 SmallVector<EVT, 1> PVTs; 10965 Type *PtrRetTy = 10966 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10967 10968 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10969 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10970 EVT PtrVT = PVTs[0]; 10971 10972 unsigned NumValues = RetTys.size(); 10973 ReturnValues.resize(NumValues); 10974 SmallVector<SDValue, 4> Chains(NumValues); 10975 10976 // An aggregate return value cannot wrap around the address space, so 10977 // offsets to its parts don't wrap either. 10978 SDNodeFlags Flags; 10979 Flags.setNoUnsignedWrap(true); 10980 10981 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10982 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10983 for (unsigned i = 0; i < NumValues; ++i) { 10984 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10985 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10986 PtrVT), Flags); 10987 SDValue L = CLI.DAG.getLoad( 10988 RetTys[i], CLI.DL, CLI.Chain, Add, 10989 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10990 DemoteStackIdx, Offsets[i]), 10991 HiddenSRetAlign); 10992 ReturnValues[i] = L; 10993 Chains[i] = L.getValue(1); 10994 } 10995 10996 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10997 } else { 10998 // Collect the legal value parts into potentially illegal values 10999 // that correspond to the original function's return values. 11000 std::optional<ISD::NodeType> AssertOp; 11001 if (CLI.RetSExt) 11002 AssertOp = ISD::AssertSext; 11003 else if (CLI.RetZExt) 11004 AssertOp = ISD::AssertZext; 11005 unsigned CurReg = 0; 11006 for (EVT VT : RetTys) { 11007 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 11008 CLI.CallConv, VT); 11009 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 11010 CLI.CallConv, VT); 11011 11012 ReturnValues.push_back(getCopyFromParts( 11013 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 11014 CLI.Chain, CLI.CallConv, AssertOp)); 11015 CurReg += NumRegs; 11016 } 11017 11018 // For a function returning void, there is no return value. We can't create 11019 // such a node, so we just return a null return value in that case. In 11020 // that case, nothing will actually look at the value. 11021 if (ReturnValues.empty()) 11022 return std::make_pair(SDValue(), CLI.Chain); 11023 } 11024 11025 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 11026 CLI.DAG.getVTList(RetTys), ReturnValues); 11027 return std::make_pair(Res, CLI.Chain); 11028 } 11029 11030 /// Places new result values for the node in Results (their number 11031 /// and types must exactly match those of the original return values of 11032 /// the node), or leaves Results empty, which indicates that the node is not 11033 /// to be custom lowered after all. 11034 void TargetLowering::LowerOperationWrapper(SDNode *N, 11035 SmallVectorImpl<SDValue> &Results, 11036 SelectionDAG &DAG) const { 11037 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 11038 11039 if (!Res.getNode()) 11040 return; 11041 11042 // If the original node has one result, take the return value from 11043 // LowerOperation as is. It might not be result number 0. 11044 if (N->getNumValues() == 1) { 11045 Results.push_back(Res); 11046 return; 11047 } 11048 11049 // If the original node has multiple results, then the return node should 11050 // have the same number of results. 11051 assert((N->getNumValues() == Res->getNumValues()) && 11052 "Lowering returned the wrong number of results!"); 11053 11054 // Places new result values base on N result number. 11055 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 11056 Results.push_back(Res.getValue(I)); 11057 } 11058 11059 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 11060 llvm_unreachable("LowerOperation not implemented for this target!"); 11061 } 11062 11063 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 11064 unsigned Reg, 11065 ISD::NodeType ExtendType) { 11066 SDValue Op = getNonRegisterValue(V); 11067 assert((Op.getOpcode() != ISD::CopyFromReg || 11068 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 11069 "Copy from a reg to the same reg!"); 11070 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 11071 11072 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11073 // If this is an InlineAsm we have to match the registers required, not the 11074 // notional registers required by the type. 11075 11076 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 11077 std::nullopt); // This is not an ABI copy. 11078 SDValue Chain = DAG.getEntryNode(); 11079 11080 if (ExtendType == ISD::ANY_EXTEND) { 11081 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 11082 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 11083 ExtendType = PreferredExtendIt->second; 11084 } 11085 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 11086 PendingExports.push_back(Chain); 11087 } 11088 11089 #include "llvm/CodeGen/SelectionDAGISel.h" 11090 11091 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 11092 /// entry block, return true. This includes arguments used by switches, since 11093 /// the switch may expand into multiple basic blocks. 11094 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 11095 // With FastISel active, we may be splitting blocks, so force creation 11096 // of virtual registers for all non-dead arguments. 11097 if (FastISel) 11098 return A->use_empty(); 11099 11100 const BasicBlock &Entry = A->getParent()->front(); 11101 for (const User *U : A->users()) 11102 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 11103 return false; // Use not in entry block. 11104 11105 return true; 11106 } 11107 11108 using ArgCopyElisionMapTy = 11109 DenseMap<const Argument *, 11110 std::pair<const AllocaInst *, const StoreInst *>>; 11111 11112 /// Scan the entry block of the function in FuncInfo for arguments that look 11113 /// like copies into a local alloca. Record any copied arguments in 11114 /// ArgCopyElisionCandidates. 11115 static void 11116 findArgumentCopyElisionCandidates(const DataLayout &DL, 11117 FunctionLoweringInfo *FuncInfo, 11118 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 11119 // Record the state of every static alloca used in the entry block. Argument 11120 // allocas are all used in the entry block, so we need approximately as many 11121 // entries as we have arguments. 11122 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 11123 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 11124 unsigned NumArgs = FuncInfo->Fn->arg_size(); 11125 StaticAllocas.reserve(NumArgs * 2); 11126 11127 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 11128 if (!V) 11129 return nullptr; 11130 V = V->stripPointerCasts(); 11131 const auto *AI = dyn_cast<AllocaInst>(V); 11132 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 11133 return nullptr; 11134 auto Iter = StaticAllocas.insert({AI, Unknown}); 11135 return &Iter.first->second; 11136 }; 11137 11138 // Look for stores of arguments to static allocas. Look through bitcasts and 11139 // GEPs to handle type coercions, as long as the alloca is fully initialized 11140 // by the store. Any non-store use of an alloca escapes it and any subsequent 11141 // unanalyzed store might write it. 11142 // FIXME: Handle structs initialized with multiple stores. 11143 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 11144 // Look for stores, and handle non-store uses conservatively. 11145 const auto *SI = dyn_cast<StoreInst>(&I); 11146 if (!SI) { 11147 // We will look through cast uses, so ignore them completely. 11148 if (I.isCast()) 11149 continue; 11150 // Ignore debug info and pseudo op intrinsics, they don't escape or store 11151 // to allocas. 11152 if (I.isDebugOrPseudoInst()) 11153 continue; 11154 // This is an unknown instruction. Assume it escapes or writes to all 11155 // static alloca operands. 11156 for (const Use &U : I.operands()) { 11157 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 11158 *Info = StaticAllocaInfo::Clobbered; 11159 } 11160 continue; 11161 } 11162 11163 // If the stored value is a static alloca, mark it as escaped. 11164 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 11165 *Info = StaticAllocaInfo::Clobbered; 11166 11167 // Check if the destination is a static alloca. 11168 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 11169 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 11170 if (!Info) 11171 continue; 11172 const AllocaInst *AI = cast<AllocaInst>(Dst); 11173 11174 // Skip allocas that have been initialized or clobbered. 11175 if (*Info != StaticAllocaInfo::Unknown) 11176 continue; 11177 11178 // Check if the stored value is an argument, and that this store fully 11179 // initializes the alloca. 11180 // If the argument type has padding bits we can't directly forward a pointer 11181 // as the upper bits may contain garbage. 11182 // Don't elide copies from the same argument twice. 11183 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 11184 const auto *Arg = dyn_cast<Argument>(Val); 11185 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 11186 Arg->getType()->isEmptyTy() || 11187 DL.getTypeStoreSize(Arg->getType()) != 11188 DL.getTypeAllocSize(AI->getAllocatedType()) || 11189 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 11190 ArgCopyElisionCandidates.count(Arg)) { 11191 *Info = StaticAllocaInfo::Clobbered; 11192 continue; 11193 } 11194 11195 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 11196 << '\n'); 11197 11198 // Mark this alloca and store for argument copy elision. 11199 *Info = StaticAllocaInfo::Elidable; 11200 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 11201 11202 // Stop scanning if we've seen all arguments. This will happen early in -O0 11203 // builds, which is useful, because -O0 builds have large entry blocks and 11204 // many allocas. 11205 if (ArgCopyElisionCandidates.size() == NumArgs) 11206 break; 11207 } 11208 } 11209 11210 /// Try to elide argument copies from memory into a local alloca. Succeeds if 11211 /// ArgVal is a load from a suitable fixed stack object. 11212 static void tryToElideArgumentCopy( 11213 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 11214 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 11215 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 11216 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 11217 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 11218 // Check if this is a load from a fixed stack object. 11219 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 11220 if (!LNode) 11221 return; 11222 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 11223 if (!FINode) 11224 return; 11225 11226 // Check that the fixed stack object is the right size and alignment. 11227 // Look at the alignment that the user wrote on the alloca instead of looking 11228 // at the stack object. 11229 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 11230 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 11231 const AllocaInst *AI = ArgCopyIter->second.first; 11232 int FixedIndex = FINode->getIndex(); 11233 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 11234 int OldIndex = AllocaIndex; 11235 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 11236 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 11237 LLVM_DEBUG( 11238 dbgs() << " argument copy elision failed due to bad fixed stack " 11239 "object size\n"); 11240 return; 11241 } 11242 Align RequiredAlignment = AI->getAlign(); 11243 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 11244 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 11245 "greater than stack argument alignment (" 11246 << DebugStr(RequiredAlignment) << " vs " 11247 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 11248 return; 11249 } 11250 11251 // Perform the elision. Delete the old stack object and replace its only use 11252 // in the variable info map. Mark the stack object as mutable and aliased. 11253 LLVM_DEBUG({ 11254 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 11255 << " Replacing frame index " << OldIndex << " with " << FixedIndex 11256 << '\n'; 11257 }); 11258 MFI.RemoveStackObject(OldIndex); 11259 MFI.setIsImmutableObjectIndex(FixedIndex, false); 11260 MFI.setIsAliasedObjectIndex(FixedIndex, true); 11261 AllocaIndex = FixedIndex; 11262 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 11263 for (SDValue ArgVal : ArgVals) 11264 Chains.push_back(ArgVal.getValue(1)); 11265 11266 // Avoid emitting code for the store implementing the copy. 11267 const StoreInst *SI = ArgCopyIter->second.second; 11268 ElidedArgCopyInstrs.insert(SI); 11269 11270 // Check for uses of the argument again so that we can avoid exporting ArgVal 11271 // if it is't used by anything other than the store. 11272 for (const Value *U : Arg.users()) { 11273 if (U != SI) { 11274 ArgHasUses = true; 11275 break; 11276 } 11277 } 11278 } 11279 11280 void SelectionDAGISel::LowerArguments(const Function &F) { 11281 SelectionDAG &DAG = SDB->DAG; 11282 SDLoc dl = SDB->getCurSDLoc(); 11283 const DataLayout &DL = DAG.getDataLayout(); 11284 SmallVector<ISD::InputArg, 16> Ins; 11285 11286 // In Naked functions we aren't going to save any registers. 11287 if (F.hasFnAttribute(Attribute::Naked)) 11288 return; 11289 11290 if (!FuncInfo->CanLowerReturn) { 11291 // Put in an sret pointer parameter before all the other parameters. 11292 SmallVector<EVT, 1> ValueVTs; 11293 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11294 PointerType::get(F.getContext(), 11295 DAG.getDataLayout().getAllocaAddrSpace()), 11296 ValueVTs); 11297 11298 // NOTE: Assuming that a pointer will never break down to more than one VT 11299 // or one register. 11300 ISD::ArgFlagsTy Flags; 11301 Flags.setSRet(); 11302 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 11303 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 11304 ISD::InputArg::NoArgIndex, 0); 11305 Ins.push_back(RetArg); 11306 } 11307 11308 // Look for stores of arguments to static allocas. Mark such arguments with a 11309 // flag to ask the target to give us the memory location of that argument if 11310 // available. 11311 ArgCopyElisionMapTy ArgCopyElisionCandidates; 11312 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 11313 ArgCopyElisionCandidates); 11314 11315 // Set up the incoming argument description vector. 11316 for (const Argument &Arg : F.args()) { 11317 unsigned ArgNo = Arg.getArgNo(); 11318 SmallVector<EVT, 4> ValueVTs; 11319 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11320 bool isArgValueUsed = !Arg.use_empty(); 11321 unsigned PartBase = 0; 11322 Type *FinalType = Arg.getType(); 11323 if (Arg.hasAttribute(Attribute::ByVal)) 11324 FinalType = Arg.getParamByValType(); 11325 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 11326 FinalType, F.getCallingConv(), F.isVarArg(), DL); 11327 for (unsigned Value = 0, NumValues = ValueVTs.size(); 11328 Value != NumValues; ++Value) { 11329 EVT VT = ValueVTs[Value]; 11330 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 11331 ISD::ArgFlagsTy Flags; 11332 11333 11334 if (Arg.getType()->isPointerTy()) { 11335 Flags.setPointer(); 11336 Flags.setPointerAddrSpace( 11337 cast<PointerType>(Arg.getType())->getAddressSpace()); 11338 } 11339 if (Arg.hasAttribute(Attribute::ZExt)) 11340 Flags.setZExt(); 11341 if (Arg.hasAttribute(Attribute::SExt)) 11342 Flags.setSExt(); 11343 if (Arg.hasAttribute(Attribute::InReg)) { 11344 // If we are using vectorcall calling convention, a structure that is 11345 // passed InReg - is surely an HVA 11346 if (F.getCallingConv() == CallingConv::X86_VectorCall && 11347 isa<StructType>(Arg.getType())) { 11348 // The first value of a structure is marked 11349 if (0 == Value) 11350 Flags.setHvaStart(); 11351 Flags.setHva(); 11352 } 11353 // Set InReg Flag 11354 Flags.setInReg(); 11355 } 11356 if (Arg.hasAttribute(Attribute::StructRet)) 11357 Flags.setSRet(); 11358 if (Arg.hasAttribute(Attribute::SwiftSelf)) 11359 Flags.setSwiftSelf(); 11360 if (Arg.hasAttribute(Attribute::SwiftAsync)) 11361 Flags.setSwiftAsync(); 11362 if (Arg.hasAttribute(Attribute::SwiftError)) 11363 Flags.setSwiftError(); 11364 if (Arg.hasAttribute(Attribute::ByVal)) 11365 Flags.setByVal(); 11366 if (Arg.hasAttribute(Attribute::ByRef)) 11367 Flags.setByRef(); 11368 if (Arg.hasAttribute(Attribute::InAlloca)) { 11369 Flags.setInAlloca(); 11370 // Set the byval flag for CCAssignFn callbacks that don't know about 11371 // inalloca. This way we can know how many bytes we should've allocated 11372 // and how many bytes a callee cleanup function will pop. If we port 11373 // inalloca to more targets, we'll have to add custom inalloca handling 11374 // in the various CC lowering callbacks. 11375 Flags.setByVal(); 11376 } 11377 if (Arg.hasAttribute(Attribute::Preallocated)) { 11378 Flags.setPreallocated(); 11379 // Set the byval flag for CCAssignFn callbacks that don't know about 11380 // preallocated. This way we can know how many bytes we should've 11381 // allocated and how many bytes a callee cleanup function will pop. If 11382 // we port preallocated to more targets, we'll have to add custom 11383 // preallocated handling in the various CC lowering callbacks. 11384 Flags.setByVal(); 11385 } 11386 11387 // Certain targets (such as MIPS), may have a different ABI alignment 11388 // for a type depending on the context. Give the target a chance to 11389 // specify the alignment it wants. 11390 const Align OriginalAlignment( 11391 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11392 Flags.setOrigAlign(OriginalAlignment); 11393 11394 Align MemAlign; 11395 Type *ArgMemTy = nullptr; 11396 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11397 Flags.isByRef()) { 11398 if (!ArgMemTy) 11399 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11400 11401 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11402 11403 // For in-memory arguments, size and alignment should be passed from FE. 11404 // BE will guess if this info is not there but there are cases it cannot 11405 // get right. 11406 if (auto ParamAlign = Arg.getParamStackAlign()) 11407 MemAlign = *ParamAlign; 11408 else if ((ParamAlign = Arg.getParamAlign())) 11409 MemAlign = *ParamAlign; 11410 else 11411 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11412 if (Flags.isByRef()) 11413 Flags.setByRefSize(MemSize); 11414 else 11415 Flags.setByValSize(MemSize); 11416 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11417 MemAlign = *ParamAlign; 11418 } else { 11419 MemAlign = OriginalAlignment; 11420 } 11421 Flags.setMemAlign(MemAlign); 11422 11423 if (Arg.hasAttribute(Attribute::Nest)) 11424 Flags.setNest(); 11425 if (NeedsRegBlock) 11426 Flags.setInConsecutiveRegs(); 11427 if (ArgCopyElisionCandidates.count(&Arg)) 11428 Flags.setCopyElisionCandidate(); 11429 if (Arg.hasAttribute(Attribute::Returned)) 11430 Flags.setReturned(); 11431 11432 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11433 *CurDAG->getContext(), F.getCallingConv(), VT); 11434 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11435 *CurDAG->getContext(), F.getCallingConv(), VT); 11436 for (unsigned i = 0; i != NumRegs; ++i) { 11437 // For scalable vectors, use the minimum size; individual targets 11438 // are responsible for handling scalable vector arguments and 11439 // return values. 11440 ISD::InputArg MyFlags( 11441 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11442 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11443 if (NumRegs > 1 && i == 0) 11444 MyFlags.Flags.setSplit(); 11445 // if it isn't first piece, alignment must be 1 11446 else if (i > 0) { 11447 MyFlags.Flags.setOrigAlign(Align(1)); 11448 if (i == NumRegs - 1) 11449 MyFlags.Flags.setSplitEnd(); 11450 } 11451 Ins.push_back(MyFlags); 11452 } 11453 if (NeedsRegBlock && Value == NumValues - 1) 11454 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11455 PartBase += VT.getStoreSize().getKnownMinValue(); 11456 } 11457 } 11458 11459 // Call the target to set up the argument values. 11460 SmallVector<SDValue, 8> InVals; 11461 SDValue NewRoot = TLI->LowerFormalArguments( 11462 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11463 11464 // Verify that the target's LowerFormalArguments behaved as expected. 11465 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11466 "LowerFormalArguments didn't return a valid chain!"); 11467 assert(InVals.size() == Ins.size() && 11468 "LowerFormalArguments didn't emit the correct number of values!"); 11469 LLVM_DEBUG({ 11470 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11471 assert(InVals[i].getNode() && 11472 "LowerFormalArguments emitted a null value!"); 11473 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11474 "LowerFormalArguments emitted a value with the wrong type!"); 11475 } 11476 }); 11477 11478 // Update the DAG with the new chain value resulting from argument lowering. 11479 DAG.setRoot(NewRoot); 11480 11481 // Set up the argument values. 11482 unsigned i = 0; 11483 if (!FuncInfo->CanLowerReturn) { 11484 // Create a virtual register for the sret pointer, and put in a copy 11485 // from the sret argument into it. 11486 SmallVector<EVT, 1> ValueVTs; 11487 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11488 PointerType::get(F.getContext(), 11489 DAG.getDataLayout().getAllocaAddrSpace()), 11490 ValueVTs); 11491 MVT VT = ValueVTs[0].getSimpleVT(); 11492 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11493 std::optional<ISD::NodeType> AssertOp; 11494 SDValue ArgValue = 11495 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11496 F.getCallingConv(), AssertOp); 11497 11498 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11499 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11500 Register SRetReg = 11501 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11502 FuncInfo->DemoteRegister = SRetReg; 11503 NewRoot = 11504 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11505 DAG.setRoot(NewRoot); 11506 11507 // i indexes lowered arguments. Bump it past the hidden sret argument. 11508 ++i; 11509 } 11510 11511 SmallVector<SDValue, 4> Chains; 11512 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11513 for (const Argument &Arg : F.args()) { 11514 SmallVector<SDValue, 4> ArgValues; 11515 SmallVector<EVT, 4> ValueVTs; 11516 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11517 unsigned NumValues = ValueVTs.size(); 11518 if (NumValues == 0) 11519 continue; 11520 11521 bool ArgHasUses = !Arg.use_empty(); 11522 11523 // Elide the copying store if the target loaded this argument from a 11524 // suitable fixed stack object. 11525 if (Ins[i].Flags.isCopyElisionCandidate()) { 11526 unsigned NumParts = 0; 11527 for (EVT VT : ValueVTs) 11528 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11529 F.getCallingConv(), VT); 11530 11531 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11532 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11533 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11534 } 11535 11536 // If this argument is unused then remember its value. It is used to generate 11537 // debugging information. 11538 bool isSwiftErrorArg = 11539 TLI->supportSwiftError() && 11540 Arg.hasAttribute(Attribute::SwiftError); 11541 if (!ArgHasUses && !isSwiftErrorArg) { 11542 SDB->setUnusedArgValue(&Arg, InVals[i]); 11543 11544 // Also remember any frame index for use in FastISel. 11545 if (FrameIndexSDNode *FI = 11546 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11547 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11548 } 11549 11550 for (unsigned Val = 0; Val != NumValues; ++Val) { 11551 EVT VT = ValueVTs[Val]; 11552 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11553 F.getCallingConv(), VT); 11554 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11555 *CurDAG->getContext(), F.getCallingConv(), VT); 11556 11557 // Even an apparent 'unused' swifterror argument needs to be returned. So 11558 // we do generate a copy for it that can be used on return from the 11559 // function. 11560 if (ArgHasUses || isSwiftErrorArg) { 11561 std::optional<ISD::NodeType> AssertOp; 11562 if (Arg.hasAttribute(Attribute::SExt)) 11563 AssertOp = ISD::AssertSext; 11564 else if (Arg.hasAttribute(Attribute::ZExt)) 11565 AssertOp = ISD::AssertZext; 11566 11567 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11568 PartVT, VT, nullptr, NewRoot, 11569 F.getCallingConv(), AssertOp)); 11570 } 11571 11572 i += NumParts; 11573 } 11574 11575 // We don't need to do anything else for unused arguments. 11576 if (ArgValues.empty()) 11577 continue; 11578 11579 // Note down frame index. 11580 if (FrameIndexSDNode *FI = 11581 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11582 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11583 11584 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11585 SDB->getCurSDLoc()); 11586 11587 SDB->setValue(&Arg, Res); 11588 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11589 // We want to associate the argument with the frame index, among 11590 // involved operands, that correspond to the lowest address. The 11591 // getCopyFromParts function, called earlier, is swapping the order of 11592 // the operands to BUILD_PAIR depending on endianness. The result of 11593 // that swapping is that the least significant bits of the argument will 11594 // be in the first operand of the BUILD_PAIR node, and the most 11595 // significant bits will be in the second operand. 11596 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11597 if (LoadSDNode *LNode = 11598 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11599 if (FrameIndexSDNode *FI = 11600 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11601 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11602 } 11603 11604 // Analyses past this point are naive and don't expect an assertion. 11605 if (Res.getOpcode() == ISD::AssertZext) 11606 Res = Res.getOperand(0); 11607 11608 // Update the SwiftErrorVRegDefMap. 11609 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11610 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11611 if (Register::isVirtualRegister(Reg)) 11612 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11613 Reg); 11614 } 11615 11616 // If this argument is live outside of the entry block, insert a copy from 11617 // wherever we got it to the vreg that other BB's will reference it as. 11618 if (Res.getOpcode() == ISD::CopyFromReg) { 11619 // If we can, though, try to skip creating an unnecessary vreg. 11620 // FIXME: This isn't very clean... it would be nice to make this more 11621 // general. 11622 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11623 if (Register::isVirtualRegister(Reg)) { 11624 FuncInfo->ValueMap[&Arg] = Reg; 11625 continue; 11626 } 11627 } 11628 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11629 FuncInfo->InitializeRegForValue(&Arg); 11630 SDB->CopyToExportRegsIfNeeded(&Arg); 11631 } 11632 } 11633 11634 if (!Chains.empty()) { 11635 Chains.push_back(NewRoot); 11636 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11637 } 11638 11639 DAG.setRoot(NewRoot); 11640 11641 assert(i == InVals.size() && "Argument register count mismatch!"); 11642 11643 // If any argument copy elisions occurred and we have debug info, update the 11644 // stale frame indices used in the dbg.declare variable info table. 11645 if (!ArgCopyElisionFrameIndexMap.empty()) { 11646 for (MachineFunction::VariableDbgInfo &VI : 11647 MF->getInStackSlotVariableDbgInfo()) { 11648 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11649 if (I != ArgCopyElisionFrameIndexMap.end()) 11650 VI.updateStackSlot(I->second); 11651 } 11652 } 11653 11654 // Finally, if the target has anything special to do, allow it to do so. 11655 emitFunctionEntryCode(); 11656 } 11657 11658 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11659 /// ensure constants are generated when needed. Remember the virtual registers 11660 /// that need to be added to the Machine PHI nodes as input. We cannot just 11661 /// directly add them, because expansion might result in multiple MBB's for one 11662 /// BB. As such, the start of the BB might correspond to a different MBB than 11663 /// the end. 11664 void 11665 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11666 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11667 11668 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11669 11670 // Check PHI nodes in successors that expect a value to be available from this 11671 // block. 11672 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11673 if (!isa<PHINode>(SuccBB->begin())) continue; 11674 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11675 11676 // If this terminator has multiple identical successors (common for 11677 // switches), only handle each succ once. 11678 if (!SuccsHandled.insert(SuccMBB).second) 11679 continue; 11680 11681 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11682 11683 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11684 // nodes and Machine PHI nodes, but the incoming operands have not been 11685 // emitted yet. 11686 for (const PHINode &PN : SuccBB->phis()) { 11687 // Ignore dead phi's. 11688 if (PN.use_empty()) 11689 continue; 11690 11691 // Skip empty types 11692 if (PN.getType()->isEmptyTy()) 11693 continue; 11694 11695 unsigned Reg; 11696 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11697 11698 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11699 unsigned &RegOut = ConstantsOut[C]; 11700 if (RegOut == 0) { 11701 RegOut = FuncInfo.CreateRegs(C); 11702 // We need to zero/sign extend ConstantInt phi operands to match 11703 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11704 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11705 if (auto *CI = dyn_cast<ConstantInt>(C)) 11706 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11707 : ISD::ZERO_EXTEND; 11708 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11709 } 11710 Reg = RegOut; 11711 } else { 11712 DenseMap<const Value *, Register>::iterator I = 11713 FuncInfo.ValueMap.find(PHIOp); 11714 if (I != FuncInfo.ValueMap.end()) 11715 Reg = I->second; 11716 else { 11717 assert(isa<AllocaInst>(PHIOp) && 11718 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11719 "Didn't codegen value into a register!??"); 11720 Reg = FuncInfo.CreateRegs(PHIOp); 11721 CopyValueToVirtualRegister(PHIOp, Reg); 11722 } 11723 } 11724 11725 // Remember that this register needs to added to the machine PHI node as 11726 // the input for this MBB. 11727 SmallVector<EVT, 4> ValueVTs; 11728 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11729 for (EVT VT : ValueVTs) { 11730 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11731 for (unsigned i = 0; i != NumRegisters; ++i) 11732 FuncInfo.PHINodesToUpdate.push_back( 11733 std::make_pair(&*MBBI++, Reg + i)); 11734 Reg += NumRegisters; 11735 } 11736 } 11737 } 11738 11739 ConstantsOut.clear(); 11740 } 11741 11742 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11743 MachineFunction::iterator I(MBB); 11744 if (++I == FuncInfo.MF->end()) 11745 return nullptr; 11746 return &*I; 11747 } 11748 11749 /// During lowering new call nodes can be created (such as memset, etc.). 11750 /// Those will become new roots of the current DAG, but complications arise 11751 /// when they are tail calls. In such cases, the call lowering will update 11752 /// the root, but the builder still needs to know that a tail call has been 11753 /// lowered in order to avoid generating an additional return. 11754 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11755 // If the node is null, we do have a tail call. 11756 if (MaybeTC.getNode() != nullptr) 11757 DAG.setRoot(MaybeTC); 11758 else 11759 HasTailCall = true; 11760 } 11761 11762 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11763 MachineBasicBlock *SwitchMBB, 11764 MachineBasicBlock *DefaultMBB) { 11765 MachineFunction *CurMF = FuncInfo.MF; 11766 MachineBasicBlock *NextMBB = nullptr; 11767 MachineFunction::iterator BBI(W.MBB); 11768 if (++BBI != FuncInfo.MF->end()) 11769 NextMBB = &*BBI; 11770 11771 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11772 11773 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11774 11775 if (Size == 2 && W.MBB == SwitchMBB) { 11776 // If any two of the cases has the same destination, and if one value 11777 // is the same as the other, but has one bit unset that the other has set, 11778 // use bit manipulation to do two compares at once. For example: 11779 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11780 // TODO: This could be extended to merge any 2 cases in switches with 3 11781 // cases. 11782 // TODO: Handle cases where W.CaseBB != SwitchBB. 11783 CaseCluster &Small = *W.FirstCluster; 11784 CaseCluster &Big = *W.LastCluster; 11785 11786 if (Small.Low == Small.High && Big.Low == Big.High && 11787 Small.MBB == Big.MBB) { 11788 const APInt &SmallValue = Small.Low->getValue(); 11789 const APInt &BigValue = Big.Low->getValue(); 11790 11791 // Check that there is only one bit different. 11792 APInt CommonBit = BigValue ^ SmallValue; 11793 if (CommonBit.isPowerOf2()) { 11794 SDValue CondLHS = getValue(Cond); 11795 EVT VT = CondLHS.getValueType(); 11796 SDLoc DL = getCurSDLoc(); 11797 11798 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11799 DAG.getConstant(CommonBit, DL, VT)); 11800 SDValue Cond = DAG.getSetCC( 11801 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11802 ISD::SETEQ); 11803 11804 // Update successor info. 11805 // Both Small and Big will jump to Small.BB, so we sum up the 11806 // probabilities. 11807 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11808 if (BPI) 11809 addSuccessorWithProb( 11810 SwitchMBB, DefaultMBB, 11811 // The default destination is the first successor in IR. 11812 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11813 else 11814 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11815 11816 // Insert the true branch. 11817 SDValue BrCond = 11818 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11819 DAG.getBasicBlock(Small.MBB)); 11820 // Insert the false branch. 11821 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11822 DAG.getBasicBlock(DefaultMBB)); 11823 11824 DAG.setRoot(BrCond); 11825 return; 11826 } 11827 } 11828 } 11829 11830 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11831 // Here, we order cases by probability so the most likely case will be 11832 // checked first. However, two clusters can have the same probability in 11833 // which case their relative ordering is non-deterministic. So we use Low 11834 // as a tie-breaker as clusters are guaranteed to never overlap. 11835 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11836 [](const CaseCluster &a, const CaseCluster &b) { 11837 return a.Prob != b.Prob ? 11838 a.Prob > b.Prob : 11839 a.Low->getValue().slt(b.Low->getValue()); 11840 }); 11841 11842 // Rearrange the case blocks so that the last one falls through if possible 11843 // without changing the order of probabilities. 11844 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11845 --I; 11846 if (I->Prob > W.LastCluster->Prob) 11847 break; 11848 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11849 std::swap(*I, *W.LastCluster); 11850 break; 11851 } 11852 } 11853 } 11854 11855 // Compute total probability. 11856 BranchProbability DefaultProb = W.DefaultProb; 11857 BranchProbability UnhandledProbs = DefaultProb; 11858 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11859 UnhandledProbs += I->Prob; 11860 11861 MachineBasicBlock *CurMBB = W.MBB; 11862 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11863 bool FallthroughUnreachable = false; 11864 MachineBasicBlock *Fallthrough; 11865 if (I == W.LastCluster) { 11866 // For the last cluster, fall through to the default destination. 11867 Fallthrough = DefaultMBB; 11868 FallthroughUnreachable = isa<UnreachableInst>( 11869 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11870 } else { 11871 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11872 CurMF->insert(BBI, Fallthrough); 11873 // Put Cond in a virtual register to make it available from the new blocks. 11874 ExportFromCurrentBlock(Cond); 11875 } 11876 UnhandledProbs -= I->Prob; 11877 11878 switch (I->Kind) { 11879 case CC_JumpTable: { 11880 // FIXME: Optimize away range check based on pivot comparisons. 11881 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11882 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11883 11884 // The jump block hasn't been inserted yet; insert it here. 11885 MachineBasicBlock *JumpMBB = JT->MBB; 11886 CurMF->insert(BBI, JumpMBB); 11887 11888 auto JumpProb = I->Prob; 11889 auto FallthroughProb = UnhandledProbs; 11890 11891 // If the default statement is a target of the jump table, we evenly 11892 // distribute the default probability to successors of CurMBB. Also 11893 // update the probability on the edge from JumpMBB to Fallthrough. 11894 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11895 SE = JumpMBB->succ_end(); 11896 SI != SE; ++SI) { 11897 if (*SI == DefaultMBB) { 11898 JumpProb += DefaultProb / 2; 11899 FallthroughProb -= DefaultProb / 2; 11900 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11901 JumpMBB->normalizeSuccProbs(); 11902 break; 11903 } 11904 } 11905 11906 // If the default clause is unreachable, propagate that knowledge into 11907 // JTH->FallthroughUnreachable which will use it to suppress the range 11908 // check. 11909 // 11910 // However, don't do this if we're doing branch target enforcement, 11911 // because a table branch _without_ a range check can be a tempting JOP 11912 // gadget - out-of-bounds inputs that are impossible in correct 11913 // execution become possible again if an attacker can influence the 11914 // control flow. So if an attacker doesn't already have a BTI bypass 11915 // available, we don't want them to be able to get one out of this 11916 // table branch. 11917 if (FallthroughUnreachable) { 11918 Function &CurFunc = CurMF->getFunction(); 11919 bool HasBranchTargetEnforcement = false; 11920 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11921 HasBranchTargetEnforcement = 11922 CurFunc.getFnAttribute("branch-target-enforcement") 11923 .getValueAsBool(); 11924 } else { 11925 HasBranchTargetEnforcement = 11926 CurMF->getMMI().getModule()->getModuleFlag( 11927 "branch-target-enforcement"); 11928 } 11929 if (!HasBranchTargetEnforcement) 11930 JTH->FallthroughUnreachable = true; 11931 } 11932 11933 if (!JTH->FallthroughUnreachable) 11934 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11935 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11936 CurMBB->normalizeSuccProbs(); 11937 11938 // The jump table header will be inserted in our current block, do the 11939 // range check, and fall through to our fallthrough block. 11940 JTH->HeaderBB = CurMBB; 11941 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11942 11943 // If we're in the right place, emit the jump table header right now. 11944 if (CurMBB == SwitchMBB) { 11945 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11946 JTH->Emitted = true; 11947 } 11948 break; 11949 } 11950 case CC_BitTests: { 11951 // FIXME: Optimize away range check based on pivot comparisons. 11952 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11953 11954 // The bit test blocks haven't been inserted yet; insert them here. 11955 for (BitTestCase &BTC : BTB->Cases) 11956 CurMF->insert(BBI, BTC.ThisBB); 11957 11958 // Fill in fields of the BitTestBlock. 11959 BTB->Parent = CurMBB; 11960 BTB->Default = Fallthrough; 11961 11962 BTB->DefaultProb = UnhandledProbs; 11963 // If the cases in bit test don't form a contiguous range, we evenly 11964 // distribute the probability on the edge to Fallthrough to two 11965 // successors of CurMBB. 11966 if (!BTB->ContiguousRange) { 11967 BTB->Prob += DefaultProb / 2; 11968 BTB->DefaultProb -= DefaultProb / 2; 11969 } 11970 11971 if (FallthroughUnreachable) 11972 BTB->FallthroughUnreachable = true; 11973 11974 // If we're in the right place, emit the bit test header right now. 11975 if (CurMBB == SwitchMBB) { 11976 visitBitTestHeader(*BTB, SwitchMBB); 11977 BTB->Emitted = true; 11978 } 11979 break; 11980 } 11981 case CC_Range: { 11982 const Value *RHS, *LHS, *MHS; 11983 ISD::CondCode CC; 11984 if (I->Low == I->High) { 11985 // Check Cond == I->Low. 11986 CC = ISD::SETEQ; 11987 LHS = Cond; 11988 RHS=I->Low; 11989 MHS = nullptr; 11990 } else { 11991 // Check I->Low <= Cond <= I->High. 11992 CC = ISD::SETLE; 11993 LHS = I->Low; 11994 MHS = Cond; 11995 RHS = I->High; 11996 } 11997 11998 // If Fallthrough is unreachable, fold away the comparison. 11999 if (FallthroughUnreachable) 12000 CC = ISD::SETTRUE; 12001 12002 // The false probability is the sum of all unhandled cases. 12003 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 12004 getCurSDLoc(), I->Prob, UnhandledProbs); 12005 12006 if (CurMBB == SwitchMBB) 12007 visitSwitchCase(CB, SwitchMBB); 12008 else 12009 SL->SwitchCases.push_back(CB); 12010 12011 break; 12012 } 12013 } 12014 CurMBB = Fallthrough; 12015 } 12016 } 12017 12018 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 12019 const SwitchWorkListItem &W, 12020 Value *Cond, 12021 MachineBasicBlock *SwitchMBB) { 12022 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 12023 "Clusters not sorted?"); 12024 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 12025 12026 auto [LastLeft, FirstRight, LeftProb, RightProb] = 12027 SL->computeSplitWorkItemInfo(W); 12028 12029 // Use the first element on the right as pivot since we will make less-than 12030 // comparisons against it. 12031 CaseClusterIt PivotCluster = FirstRight; 12032 assert(PivotCluster > W.FirstCluster); 12033 assert(PivotCluster <= W.LastCluster); 12034 12035 CaseClusterIt FirstLeft = W.FirstCluster; 12036 CaseClusterIt LastRight = W.LastCluster; 12037 12038 const ConstantInt *Pivot = PivotCluster->Low; 12039 12040 // New blocks will be inserted immediately after the current one. 12041 MachineFunction::iterator BBI(W.MBB); 12042 ++BBI; 12043 12044 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 12045 // we can branch to its destination directly if it's squeezed exactly in 12046 // between the known lower bound and Pivot - 1. 12047 MachineBasicBlock *LeftMBB; 12048 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 12049 FirstLeft->Low == W.GE && 12050 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 12051 LeftMBB = FirstLeft->MBB; 12052 } else { 12053 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12054 FuncInfo.MF->insert(BBI, LeftMBB); 12055 WorkList.push_back( 12056 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 12057 // Put Cond in a virtual register to make it available from the new blocks. 12058 ExportFromCurrentBlock(Cond); 12059 } 12060 12061 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 12062 // single cluster, RHS.Low == Pivot, and we can branch to its destination 12063 // directly if RHS.High equals the current upper bound. 12064 MachineBasicBlock *RightMBB; 12065 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 12066 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 12067 RightMBB = FirstRight->MBB; 12068 } else { 12069 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 12070 FuncInfo.MF->insert(BBI, RightMBB); 12071 WorkList.push_back( 12072 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 12073 // Put Cond in a virtual register to make it available from the new blocks. 12074 ExportFromCurrentBlock(Cond); 12075 } 12076 12077 // Create the CaseBlock record that will be used to lower the branch. 12078 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 12079 getCurSDLoc(), LeftProb, RightProb); 12080 12081 if (W.MBB == SwitchMBB) 12082 visitSwitchCase(CB, SwitchMBB); 12083 else 12084 SL->SwitchCases.push_back(CB); 12085 } 12086 12087 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 12088 // from the swith statement. 12089 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 12090 BranchProbability PeeledCaseProb) { 12091 if (PeeledCaseProb == BranchProbability::getOne()) 12092 return BranchProbability::getZero(); 12093 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 12094 12095 uint32_t Numerator = CaseProb.getNumerator(); 12096 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 12097 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 12098 } 12099 12100 // Try to peel the top probability case if it exceeds the threshold. 12101 // Return current MachineBasicBlock for the switch statement if the peeling 12102 // does not occur. 12103 // If the peeling is performed, return the newly created MachineBasicBlock 12104 // for the peeled switch statement. Also update Clusters to remove the peeled 12105 // case. PeeledCaseProb is the BranchProbability for the peeled case. 12106 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 12107 const SwitchInst &SI, CaseClusterVector &Clusters, 12108 BranchProbability &PeeledCaseProb) { 12109 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12110 // Don't perform if there is only one cluster or optimizing for size. 12111 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 12112 TM.getOptLevel() == CodeGenOptLevel::None || 12113 SwitchMBB->getParent()->getFunction().hasMinSize()) 12114 return SwitchMBB; 12115 12116 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 12117 unsigned PeeledCaseIndex = 0; 12118 bool SwitchPeeled = false; 12119 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 12120 CaseCluster &CC = Clusters[Index]; 12121 if (CC.Prob < TopCaseProb) 12122 continue; 12123 TopCaseProb = CC.Prob; 12124 PeeledCaseIndex = Index; 12125 SwitchPeeled = true; 12126 } 12127 if (!SwitchPeeled) 12128 return SwitchMBB; 12129 12130 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 12131 << TopCaseProb << "\n"); 12132 12133 // Record the MBB for the peeled switch statement. 12134 MachineFunction::iterator BBI(SwitchMBB); 12135 ++BBI; 12136 MachineBasicBlock *PeeledSwitchMBB = 12137 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 12138 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 12139 12140 ExportFromCurrentBlock(SI.getCondition()); 12141 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 12142 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 12143 nullptr, nullptr, TopCaseProb.getCompl()}; 12144 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 12145 12146 Clusters.erase(PeeledCaseIt); 12147 for (CaseCluster &CC : Clusters) { 12148 LLVM_DEBUG( 12149 dbgs() << "Scale the probablity for one cluster, before scaling: " 12150 << CC.Prob << "\n"); 12151 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 12152 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 12153 } 12154 PeeledCaseProb = TopCaseProb; 12155 return PeeledSwitchMBB; 12156 } 12157 12158 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 12159 // Extract cases from the switch. 12160 BranchProbabilityInfo *BPI = FuncInfo.BPI; 12161 CaseClusterVector Clusters; 12162 Clusters.reserve(SI.getNumCases()); 12163 for (auto I : SI.cases()) { 12164 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 12165 const ConstantInt *CaseVal = I.getCaseValue(); 12166 BranchProbability Prob = 12167 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 12168 : BranchProbability(1, SI.getNumCases() + 1); 12169 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 12170 } 12171 12172 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 12173 12174 // Cluster adjacent cases with the same destination. We do this at all 12175 // optimization levels because it's cheap to do and will make codegen faster 12176 // if there are many clusters. 12177 sortAndRangeify(Clusters); 12178 12179 // The branch probablity of the peeled case. 12180 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 12181 MachineBasicBlock *PeeledSwitchMBB = 12182 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 12183 12184 // If there is only the default destination, jump there directly. 12185 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 12186 if (Clusters.empty()) { 12187 assert(PeeledSwitchMBB == SwitchMBB); 12188 SwitchMBB->addSuccessor(DefaultMBB); 12189 if (DefaultMBB != NextBlock(SwitchMBB)) { 12190 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 12191 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 12192 } 12193 return; 12194 } 12195 12196 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 12197 DAG.getBFI()); 12198 SL->findBitTestClusters(Clusters, &SI); 12199 12200 LLVM_DEBUG({ 12201 dbgs() << "Case clusters: "; 12202 for (const CaseCluster &C : Clusters) { 12203 if (C.Kind == CC_JumpTable) 12204 dbgs() << "JT:"; 12205 if (C.Kind == CC_BitTests) 12206 dbgs() << "BT:"; 12207 12208 C.Low->getValue().print(dbgs(), true); 12209 if (C.Low != C.High) { 12210 dbgs() << '-'; 12211 C.High->getValue().print(dbgs(), true); 12212 } 12213 dbgs() << ' '; 12214 } 12215 dbgs() << '\n'; 12216 }); 12217 12218 assert(!Clusters.empty()); 12219 SwitchWorkList WorkList; 12220 CaseClusterIt First = Clusters.begin(); 12221 CaseClusterIt Last = Clusters.end() - 1; 12222 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 12223 // Scale the branchprobability for DefaultMBB if the peel occurs and 12224 // DefaultMBB is not replaced. 12225 if (PeeledCaseProb != BranchProbability::getZero() && 12226 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 12227 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 12228 WorkList.push_back( 12229 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 12230 12231 while (!WorkList.empty()) { 12232 SwitchWorkListItem W = WorkList.pop_back_val(); 12233 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 12234 12235 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 12236 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 12237 // For optimized builds, lower large range as a balanced binary tree. 12238 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 12239 continue; 12240 } 12241 12242 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 12243 } 12244 } 12245 12246 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 12247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12248 auto DL = getCurSDLoc(); 12249 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12250 setValue(&I, DAG.getStepVector(DL, ResultVT)); 12251 } 12252 12253 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 12254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12255 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12256 12257 SDLoc DL = getCurSDLoc(); 12258 SDValue V = getValue(I.getOperand(0)); 12259 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 12260 12261 if (VT.isScalableVector()) { 12262 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 12263 return; 12264 } 12265 12266 // Use VECTOR_SHUFFLE for the fixed-length vector 12267 // to maintain existing behavior. 12268 SmallVector<int, 8> Mask; 12269 unsigned NumElts = VT.getVectorMinNumElements(); 12270 for (unsigned i = 0; i != NumElts; ++i) 12271 Mask.push_back(NumElts - 1 - i); 12272 12273 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 12274 } 12275 12276 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 12277 auto DL = getCurSDLoc(); 12278 SDValue InVec = getValue(I.getOperand(0)); 12279 EVT OutVT = 12280 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 12281 12282 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 12283 12284 // ISD Node needs the input vectors split into two equal parts 12285 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12286 DAG.getVectorIdxConstant(0, DL)); 12287 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 12288 DAG.getVectorIdxConstant(OutNumElts, DL)); 12289 12290 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12291 // legalisation and combines. 12292 if (OutVT.isFixedLengthVector()) { 12293 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12294 createStrideMask(0, 2, OutNumElts)); 12295 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 12296 createStrideMask(1, 2, OutNumElts)); 12297 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 12298 setValue(&I, Res); 12299 return; 12300 } 12301 12302 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 12303 DAG.getVTList(OutVT, OutVT), Lo, Hi); 12304 setValue(&I, Res); 12305 } 12306 12307 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 12308 auto DL = getCurSDLoc(); 12309 EVT InVT = getValue(I.getOperand(0)).getValueType(); 12310 SDValue InVec0 = getValue(I.getOperand(0)); 12311 SDValue InVec1 = getValue(I.getOperand(1)); 12312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12313 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12314 12315 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 12316 // legalisation and combines. 12317 if (OutVT.isFixedLengthVector()) { 12318 unsigned NumElts = InVT.getVectorMinNumElements(); 12319 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 12320 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 12321 createInterleaveMask(NumElts, 2))); 12322 return; 12323 } 12324 12325 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 12326 DAG.getVTList(InVT, InVT), InVec0, InVec1); 12327 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 12328 Res.getValue(1)); 12329 setValue(&I, Res); 12330 } 12331 12332 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 12333 SmallVector<EVT, 4> ValueVTs; 12334 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 12335 ValueVTs); 12336 unsigned NumValues = ValueVTs.size(); 12337 if (NumValues == 0) return; 12338 12339 SmallVector<SDValue, 4> Values(NumValues); 12340 SDValue Op = getValue(I.getOperand(0)); 12341 12342 for (unsigned i = 0; i != NumValues; ++i) 12343 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 12344 SDValue(Op.getNode(), Op.getResNo() + i)); 12345 12346 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12347 DAG.getVTList(ValueVTs), Values)); 12348 } 12349 12350 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 12351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12352 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 12353 12354 SDLoc DL = getCurSDLoc(); 12355 SDValue V1 = getValue(I.getOperand(0)); 12356 SDValue V2 = getValue(I.getOperand(1)); 12357 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 12358 12359 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 12360 if (VT.isScalableVector()) { 12361 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 12362 DAG.getVectorIdxConstant(Imm, DL))); 12363 return; 12364 } 12365 12366 unsigned NumElts = VT.getVectorNumElements(); 12367 12368 uint64_t Idx = (NumElts + Imm) % NumElts; 12369 12370 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12371 SmallVector<int, 8> Mask; 12372 for (unsigned i = 0; i < NumElts; ++i) 12373 Mask.push_back(Idx + i); 12374 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12375 } 12376 12377 // Consider the following MIR after SelectionDAG, which produces output in 12378 // phyregs in the first case or virtregs in the second case. 12379 // 12380 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12381 // %5:gr32 = COPY $ebx 12382 // %6:gr32 = COPY $edx 12383 // %1:gr32 = COPY %6:gr32 12384 // %0:gr32 = COPY %5:gr32 12385 // 12386 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12387 // %1:gr32 = COPY %6:gr32 12388 // %0:gr32 = COPY %5:gr32 12389 // 12390 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12391 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12392 // 12393 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12394 // to a single virtreg (such as %0). The remaining outputs monotonically 12395 // increase in virtreg number from there. If a callbr has no outputs, then it 12396 // should not have a corresponding callbr landingpad; in fact, the callbr 12397 // landingpad would not even be able to refer to such a callbr. 12398 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12399 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12400 // There is definitely at least one copy. 12401 assert(MI->getOpcode() == TargetOpcode::COPY && 12402 "start of copy chain MUST be COPY"); 12403 Reg = MI->getOperand(1).getReg(); 12404 MI = MRI.def_begin(Reg)->getParent(); 12405 // There may be an optional second copy. 12406 if (MI->getOpcode() == TargetOpcode::COPY) { 12407 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12408 Reg = MI->getOperand(1).getReg(); 12409 assert(Reg.isPhysical() && "expected COPY of physical register"); 12410 MI = MRI.def_begin(Reg)->getParent(); 12411 } 12412 // The start of the chain must be an INLINEASM_BR. 12413 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12414 "end of copy chain MUST be INLINEASM_BR"); 12415 return Reg; 12416 } 12417 12418 // We must do this walk rather than the simpler 12419 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12420 // otherwise we will end up with copies of virtregs only valid along direct 12421 // edges. 12422 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12423 SmallVector<EVT, 8> ResultVTs; 12424 SmallVector<SDValue, 8> ResultValues; 12425 const auto *CBR = 12426 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12427 12428 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12429 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12430 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12431 12432 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12433 SDValue Chain = DAG.getRoot(); 12434 12435 // Re-parse the asm constraints string. 12436 TargetLowering::AsmOperandInfoVector TargetConstraints = 12437 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12438 for (auto &T : TargetConstraints) { 12439 SDISelAsmOperandInfo OpInfo(T); 12440 if (OpInfo.Type != InlineAsm::isOutput) 12441 continue; 12442 12443 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12444 // individual constraint. 12445 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12446 12447 switch (OpInfo.ConstraintType) { 12448 case TargetLowering::C_Register: 12449 case TargetLowering::C_RegisterClass: { 12450 // Fill in OpInfo.AssignedRegs.Regs. 12451 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12452 12453 // getRegistersForValue may produce 1 to many registers based on whether 12454 // the OpInfo.ConstraintVT is legal on the target or not. 12455 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12456 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12457 if (Register::isPhysicalRegister(OriginalDef)) 12458 FuncInfo.MBB->addLiveIn(OriginalDef); 12459 // Update the assigned registers to use the original defs. 12460 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12461 } 12462 12463 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12464 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12465 ResultValues.push_back(V); 12466 ResultVTs.push_back(OpInfo.ConstraintVT); 12467 break; 12468 } 12469 case TargetLowering::C_Other: { 12470 SDValue Flag; 12471 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12472 OpInfo, DAG); 12473 ++InitialDef; 12474 ResultValues.push_back(V); 12475 ResultVTs.push_back(OpInfo.ConstraintVT); 12476 break; 12477 } 12478 default: 12479 break; 12480 } 12481 } 12482 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12483 DAG.getVTList(ResultVTs), ResultValues); 12484 setValue(&I, V); 12485 } 12486