1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Constants.h" 22 #include "llvm/CallingConv.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Function.h" 25 #include "llvm/GlobalVariable.h" 26 #include "llvm/InlineAsm.h" 27 #include "llvm/Instructions.h" 28 #include "llvm/Intrinsics.h" 29 #include "llvm/IntrinsicInst.h" 30 #include "llvm/LLVMContext.h" 31 #include "llvm/Module.h" 32 #include "llvm/CodeGen/Analysis.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineJumpTableInfo.h" 41 #include "llvm/CodeGen/MachineModuleInfo.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/PseudoSourceValue.h" 44 #include "llvm/CodeGen/SelectionDAG.h" 45 #include "llvm/Analysis/DebugInfo.h" 46 #include "llvm/Target/TargetRegisterInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameInfo.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 using namespace llvm; 61 62 /// LimitFloatPrecision - Generate low-precision inline sequences for 63 /// some float libcalls (6, 8 or 12 bits). 64 static unsigned LimitFloatPrecision; 65 66 static cl::opt<unsigned, true> 67 LimitFPPrecision("limit-float-precision", 68 cl::desc("Generate low-precision inline sequences " 69 "for some float libcalls"), 70 cl::location(LimitFloatPrecision), 71 cl::init(0)); 72 73 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 74 const SDValue *Parts, unsigned NumParts, 75 EVT PartVT, EVT ValueVT); 76 77 /// getCopyFromParts - Create a value that contains the specified legal parts 78 /// combined into the value they represent. If the parts combine to a type 79 /// larger then ValueVT then AssertOp can be used to specify whether the extra 80 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 81 /// (ISD::AssertSext). 82 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 83 const SDValue *Parts, 84 unsigned NumParts, EVT PartVT, EVT ValueVT, 85 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 86 if (ValueVT.isVector()) 87 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 88 89 assert(NumParts > 0 && "No parts to assemble!"); 90 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 91 SDValue Val = Parts[0]; 92 93 if (NumParts > 1) { 94 // Assemble the value from multiple parts. 95 if (ValueVT.isInteger()) { 96 unsigned PartBits = PartVT.getSizeInBits(); 97 unsigned ValueBits = ValueVT.getSizeInBits(); 98 99 // Assemble the power of 2 part. 100 unsigned RoundParts = NumParts & (NumParts - 1) ? 101 1 << Log2_32(NumParts) : NumParts; 102 unsigned RoundBits = PartBits * RoundParts; 103 EVT RoundVT = RoundBits == ValueBits ? 104 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 105 SDValue Lo, Hi; 106 107 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 108 109 if (RoundParts > 2) { 110 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 111 PartVT, HalfVT); 112 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 113 RoundParts / 2, PartVT, HalfVT); 114 } else { 115 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[0]); 116 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, HalfVT, Parts[1]); 117 } 118 119 if (TLI.isBigEndian()) 120 std::swap(Lo, Hi); 121 122 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 123 124 if (RoundParts < NumParts) { 125 // Assemble the trailing non-power-of-2 part. 126 unsigned OddParts = NumParts - RoundParts; 127 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 128 Hi = getCopyFromParts(DAG, DL, 129 Parts + RoundParts, OddParts, PartVT, OddVT); 130 131 // Combine the round and odd parts. 132 Lo = Val; 133 if (TLI.isBigEndian()) 134 std::swap(Lo, Hi); 135 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 136 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 137 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 138 DAG.getConstant(Lo.getValueType().getSizeInBits(), 139 TLI.getPointerTy())); 140 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 141 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 142 } 143 } else if (PartVT.isFloatingPoint()) { 144 // FP split into multiple FP parts (for ppcf128) 145 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 146 "Unexpected split"); 147 SDValue Lo, Hi; 148 Lo = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[0]); 149 Hi = DAG.getNode(ISD::BIT_CONVERT, DL, EVT(MVT::f64), Parts[1]); 150 if (TLI.isBigEndian()) 151 std::swap(Lo, Hi); 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 153 } else { 154 // FP split into integer parts (soft fp) 155 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 156 !PartVT.isVector() && "Unexpected split"); 157 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 158 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 159 } 160 } 161 162 // There is now one part, held in Val. Correct it to match ValueVT. 163 PartVT = Val.getValueType(); 164 165 if (PartVT == ValueVT) 166 return Val; 167 168 if (PartVT.isInteger() && ValueVT.isInteger()) { 169 if (ValueVT.bitsLT(PartVT)) { 170 // For a truncate, see if we have any information to 171 // indicate whether the truncated bits will always be 172 // zero or sign-extension. 173 if (AssertOp != ISD::DELETED_NODE) 174 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 175 DAG.getValueType(ValueVT)); 176 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 177 } 178 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 179 } 180 181 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 182 // FP_ROUND's are always exact here. 183 if (ValueVT.bitsLT(Val.getValueType())) 184 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 185 DAG.getIntPtrConstant(1)); 186 187 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 188 } 189 190 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 191 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 192 193 llvm_unreachable("Unknown mismatch!"); 194 return SDValue(); 195 } 196 197 /// getCopyFromParts - Create a value that contains the specified legal parts 198 /// combined into the value they represent. If the parts combine to a type 199 /// larger then ValueVT then AssertOp can be used to specify whether the extra 200 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 201 /// (ISD::AssertSext). 202 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 203 const SDValue *Parts, unsigned NumParts, 204 EVT PartVT, EVT ValueVT) { 205 assert(ValueVT.isVector() && "Not a vector value"); 206 assert(NumParts > 0 && "No parts to assemble!"); 207 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 208 SDValue Val = Parts[0]; 209 210 // Handle a multi-element vector. 211 if (NumParts > 1) { 212 EVT IntermediateVT, RegisterVT; 213 unsigned NumIntermediates; 214 unsigned NumRegs = 215 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 216 NumIntermediates, RegisterVT); 217 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 218 NumParts = NumRegs; // Silence a compiler warning. 219 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 220 assert(RegisterVT == Parts[0].getValueType() && 221 "Part type doesn't match part!"); 222 223 // Assemble the parts into intermediate operands. 224 SmallVector<SDValue, 8> Ops(NumIntermediates); 225 if (NumIntermediates == NumParts) { 226 // If the register was not expanded, truncate or copy the value, 227 // as appropriate. 228 for (unsigned i = 0; i != NumParts; ++i) 229 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 230 PartVT, IntermediateVT); 231 } else if (NumParts > 0) { 232 // If the intermediate type was expanded, build the intermediate 233 // operands from the parts. 234 assert(NumParts % NumIntermediates == 0 && 235 "Must expand into a divisible number of parts!"); 236 unsigned Factor = NumParts / NumIntermediates; 237 for (unsigned i = 0; i != NumIntermediates; ++i) 238 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 239 PartVT, IntermediateVT); 240 } 241 242 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 243 // intermediate operands. 244 Val = DAG.getNode(IntermediateVT.isVector() ? 245 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 246 ValueVT, &Ops[0], NumIntermediates); 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 PartVT = Val.getValueType(); 251 252 if (PartVT == ValueVT) 253 return Val; 254 255 if (PartVT.isVector()) { 256 // If the element type of the source/dest vectors are the same, but the 257 // parts vector has more elements than the value vector, then we have a 258 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 259 // elements we want. 260 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 261 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 262 "Cannot narrow, it would be a lossy transformation"); 263 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 264 DAG.getIntPtrConstant(0)); 265 } 266 267 // Vector/Vector bitcast. 268 return DAG.getNode(ISD::BIT_CONVERT, DL, ValueVT, Val); 269 } 270 271 assert(ValueVT.getVectorElementType() == PartVT && 272 ValueVT.getVectorNumElements() == 1 && 273 "Only trivial scalar-to-vector conversions should get here!"); 274 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 275 } 276 277 278 279 280 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 281 SDValue Val, SDValue *Parts, unsigned NumParts, 282 EVT PartVT); 283 284 /// getCopyToParts - Create a series of nodes that contain the specified value 285 /// split into legal parts. If the parts contain more bits than Val, then, for 286 /// integers, ExtendKind can be used to specify how to generate the extra bits. 287 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 288 SDValue Val, SDValue *Parts, unsigned NumParts, 289 EVT PartVT, 290 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 291 EVT ValueVT = Val.getValueType(); 292 293 // Handle the vector case separately. 294 if (ValueVT.isVector()) 295 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 296 297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 298 unsigned PartBits = PartVT.getSizeInBits(); 299 unsigned OrigNumParts = NumParts; 300 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 301 302 if (NumParts == 0) 303 return; 304 305 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 306 if (PartVT == ValueVT) { 307 assert(NumParts == 1 && "No-op copy with multiple parts!"); 308 Parts[0] = Val; 309 return; 310 } 311 312 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 313 // If the parts cover more bits than the value has, promote the value. 314 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 315 assert(NumParts == 1 && "Do not know what to promote to!"); 316 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 317 } else { 318 assert(PartVT.isInteger() && ValueVT.isInteger() && 319 "Unknown mismatch!"); 320 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 321 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 322 } 323 } else if (PartBits == ValueVT.getSizeInBits()) { 324 // Different types of the same size. 325 assert(NumParts == 1 && PartVT != ValueVT); 326 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 327 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 328 // If the parts cover less bits than value has, truncate the value. 329 assert(PartVT.isInteger() && ValueVT.isInteger() && 330 "Unknown mismatch!"); 331 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 332 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 // The value may have changed - recompute ValueVT. 336 ValueVT = Val.getValueType(); 337 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 338 "Failed to tile the value with PartVT!"); 339 340 if (NumParts == 1) { 341 assert(PartVT == ValueVT && "Type conversion failed!"); 342 Parts[0] = Val; 343 return; 344 } 345 346 // Expand the value into multiple parts. 347 if (NumParts & (NumParts - 1)) { 348 // The number of parts is not a power of 2. Split off and copy the tail. 349 assert(PartVT.isInteger() && ValueVT.isInteger() && 350 "Do not know what to expand to!"); 351 unsigned RoundParts = 1 << Log2_32(NumParts); 352 unsigned RoundBits = RoundParts * PartBits; 353 unsigned OddParts = NumParts - RoundParts; 354 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 355 DAG.getIntPtrConstant(RoundBits)); 356 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 357 358 if (TLI.isBigEndian()) 359 // The odd parts were reversed by getCopyToParts - unreverse them. 360 std::reverse(Parts + RoundParts, Parts + NumParts); 361 362 NumParts = RoundParts; 363 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 364 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 365 } 366 367 // The number of parts is a power of 2. Repeatedly bisect the value using 368 // EXTRACT_ELEMENT. 369 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, DL, 370 EVT::getIntegerVT(*DAG.getContext(), 371 ValueVT.getSizeInBits()), 372 Val); 373 374 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 375 for (unsigned i = 0; i < NumParts; i += StepSize) { 376 unsigned ThisBits = StepSize * PartBits / 2; 377 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 378 SDValue &Part0 = Parts[i]; 379 SDValue &Part1 = Parts[i+StepSize/2]; 380 381 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 382 ThisVT, Part0, DAG.getIntPtrConstant(1)); 383 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 384 ThisVT, Part0, DAG.getIntPtrConstant(0)); 385 386 if (ThisBits == PartBits && ThisVT != PartVT) { 387 Part0 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part0); 388 Part1 = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Part1); 389 } 390 } 391 } 392 393 if (TLI.isBigEndian()) 394 std::reverse(Parts, Parts + OrigNumParts); 395 } 396 397 398 /// getCopyToPartsVector - Create a series of nodes that contain the specified 399 /// value split into legal parts. 400 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 401 SDValue Val, SDValue *Parts, unsigned NumParts, 402 EVT PartVT) { 403 EVT ValueVT = Val.getValueType(); 404 assert(ValueVT.isVector() && "Not a vector"); 405 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 406 407 if (NumParts == 1) { 408 if (PartVT == ValueVT) { 409 // Nothing to do. 410 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 411 // Bitconvert vector->vector case. 412 Val = DAG.getNode(ISD::BIT_CONVERT, DL, PartVT, Val); 413 } else if (PartVT.isVector() && 414 PartVT.getVectorElementType() == ValueVT.getVectorElementType()&& 415 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 416 EVT ElementVT = PartVT.getVectorElementType(); 417 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 418 // undef elements. 419 SmallVector<SDValue, 16> Ops; 420 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 421 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 422 ElementVT, Val, DAG.getIntPtrConstant(i))); 423 424 for (unsigned i = ValueVT.getVectorNumElements(), 425 e = PartVT.getVectorNumElements(); i != e; ++i) 426 Ops.push_back(DAG.getUNDEF(ElementVT)); 427 428 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 429 430 // FIXME: Use CONCAT for 2x -> 4x. 431 432 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 433 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 434 } else { 435 // Vector -> scalar conversion. 436 assert(ValueVT.getVectorElementType() == PartVT && 437 ValueVT.getVectorNumElements() == 1 && 438 "Only trivial vector-to-scalar conversions should get here!"); 439 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 440 PartVT, Val, DAG.getIntPtrConstant(0)); 441 } 442 443 Parts[0] = Val; 444 return; 445 } 446 447 // Handle a multi-element vector. 448 EVT IntermediateVT, RegisterVT; 449 unsigned NumIntermediates; 450 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 451 IntermediateVT, 452 NumIntermediates, RegisterVT); 453 unsigned NumElements = ValueVT.getVectorNumElements(); 454 455 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 456 NumParts = NumRegs; // Silence a compiler warning. 457 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 458 459 // Split the vector into intermediate operands. 460 SmallVector<SDValue, 8> Ops(NumIntermediates); 461 for (unsigned i = 0; i != NumIntermediates; ++i) { 462 if (IntermediateVT.isVector()) 463 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 464 IntermediateVT, Val, 465 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 466 else 467 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 468 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 469 } 470 471 // Split the intermediate operands into legal parts. 472 if (NumParts == NumIntermediates) { 473 // If the register was not expanded, promote or copy the value, 474 // as appropriate. 475 for (unsigned i = 0; i != NumParts; ++i) 476 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 477 } else if (NumParts > 0) { 478 // If the intermediate type was expanded, split each the value into 479 // legal parts. 480 assert(NumParts % NumIntermediates == 0 && 481 "Must expand into a divisible number of parts!"); 482 unsigned Factor = NumParts / NumIntermediates; 483 for (unsigned i = 0; i != NumIntermediates; ++i) 484 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 485 } 486 } 487 488 489 490 491 namespace { 492 /// RegsForValue - This struct represents the registers (physical or virtual) 493 /// that a particular set of values is assigned, and the type information 494 /// about the value. The most common situation is to represent one value at a 495 /// time, but struct or array values are handled element-wise as multiple 496 /// values. The splitting of aggregates is performed recursively, so that we 497 /// never have aggregate-typed registers. The values at this point do not 498 /// necessarily have legal types, so each value may require one or more 499 /// registers of some legal type. 500 /// 501 struct RegsForValue { 502 /// ValueVTs - The value types of the values, which may not be legal, and 503 /// may need be promoted or synthesized from one or more registers. 504 /// 505 SmallVector<EVT, 4> ValueVTs; 506 507 /// RegVTs - The value types of the registers. This is the same size as 508 /// ValueVTs and it records, for each value, what the type of the assigned 509 /// register or registers are. (Individual values are never synthesized 510 /// from more than one type of register.) 511 /// 512 /// With virtual registers, the contents of RegVTs is redundant with TLI's 513 /// getRegisterType member function, however when with physical registers 514 /// it is necessary to have a separate record of the types. 515 /// 516 SmallVector<EVT, 4> RegVTs; 517 518 /// Regs - This list holds the registers assigned to the values. 519 /// Each legal or promoted value requires one register, and each 520 /// expanded value requires multiple registers. 521 /// 522 SmallVector<unsigned, 4> Regs; 523 524 RegsForValue() {} 525 526 RegsForValue(const SmallVector<unsigned, 4> ®s, 527 EVT regvt, EVT valuevt) 528 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 529 530 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 531 unsigned Reg, const Type *Ty) { 532 ComputeValueVTs(tli, Ty, ValueVTs); 533 534 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 535 EVT ValueVT = ValueVTs[Value]; 536 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 537 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 538 for (unsigned i = 0; i != NumRegs; ++i) 539 Regs.push_back(Reg + i); 540 RegVTs.push_back(RegisterVT); 541 Reg += NumRegs; 542 } 543 } 544 545 /// areValueTypesLegal - Return true if types of all the values are legal. 546 bool areValueTypesLegal(const TargetLowering &TLI) { 547 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 548 EVT RegisterVT = RegVTs[Value]; 549 if (!TLI.isTypeLegal(RegisterVT)) 550 return false; 551 } 552 return true; 553 } 554 555 /// append - Add the specified values to this one. 556 void append(const RegsForValue &RHS) { 557 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 558 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 559 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 560 } 561 562 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 563 /// this value and returns the result as a ValueVTs value. This uses 564 /// Chain/Flag as the input and updates them for the output Chain/Flag. 565 /// If the Flag pointer is NULL, no flag is used. 566 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 567 DebugLoc dl, 568 SDValue &Chain, SDValue *Flag) const; 569 570 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 571 /// specified value into the registers specified by this object. This uses 572 /// Chain/Flag as the input and updates them for the output Chain/Flag. 573 /// If the Flag pointer is NULL, no flag is used. 574 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 575 SDValue &Chain, SDValue *Flag) const; 576 577 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 578 /// operand list. This adds the code marker, matching input operand index 579 /// (if applicable), and includes the number of values added into it. 580 void AddInlineAsmOperands(unsigned Kind, 581 bool HasMatching, unsigned MatchingIdx, 582 SelectionDAG &DAG, 583 std::vector<SDValue> &Ops) const; 584 }; 585 } 586 587 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 588 /// this value and returns the result as a ValueVT value. This uses 589 /// Chain/Flag as the input and updates them for the output Chain/Flag. 590 /// If the Flag pointer is NULL, no flag is used. 591 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 592 FunctionLoweringInfo &FuncInfo, 593 DebugLoc dl, 594 SDValue &Chain, SDValue *Flag) const { 595 // A Value with type {} or [0 x %t] needs no registers. 596 if (ValueVTs.empty()) 597 return SDValue(); 598 599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 600 601 // Assemble the legal parts into the final values. 602 SmallVector<SDValue, 4> Values(ValueVTs.size()); 603 SmallVector<SDValue, 8> Parts; 604 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 605 // Copy the legal parts from the registers. 606 EVT ValueVT = ValueVTs[Value]; 607 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 608 EVT RegisterVT = RegVTs[Value]; 609 610 Parts.resize(NumRegs); 611 for (unsigned i = 0; i != NumRegs; ++i) { 612 SDValue P; 613 if (Flag == 0) { 614 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 615 } else { 616 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 617 *Flag = P.getValue(2); 618 } 619 620 Chain = P.getValue(1); 621 622 // If the source register was virtual and if we know something about it, 623 // add an assert node. 624 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 625 RegisterVT.isInteger() && !RegisterVT.isVector()) { 626 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 627 if (FuncInfo.LiveOutRegInfo.size() > SlotNo) { 628 const FunctionLoweringInfo::LiveOutInfo &LOI = 629 FuncInfo.LiveOutRegInfo[SlotNo]; 630 631 unsigned RegSize = RegisterVT.getSizeInBits(); 632 unsigned NumSignBits = LOI.NumSignBits; 633 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 634 635 // FIXME: We capture more information than the dag can represent. For 636 // now, just use the tightest assertzext/assertsext possible. 637 bool isSExt = true; 638 EVT FromVT(MVT::Other); 639 if (NumSignBits == RegSize) 640 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 641 else if (NumZeroBits >= RegSize-1) 642 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 643 else if (NumSignBits > RegSize-8) 644 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 645 else if (NumZeroBits >= RegSize-8) 646 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 647 else if (NumSignBits > RegSize-16) 648 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 649 else if (NumZeroBits >= RegSize-16) 650 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 651 else if (NumSignBits > RegSize-32) 652 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 653 else if (NumZeroBits >= RegSize-32) 654 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 655 656 if (FromVT != MVT::Other) 657 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 658 RegisterVT, P, DAG.getValueType(FromVT)); 659 } 660 } 661 662 Parts[i] = P; 663 } 664 665 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 666 NumRegs, RegisterVT, ValueVT); 667 Part += NumRegs; 668 Parts.clear(); 669 } 670 671 return DAG.getNode(ISD::MERGE_VALUES, dl, 672 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 673 &Values[0], ValueVTs.size()); 674 } 675 676 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 677 /// specified value into the registers specified by this object. This uses 678 /// Chain/Flag as the input and updates them for the output Chain/Flag. 679 /// If the Flag pointer is NULL, no flag is used. 680 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 681 SDValue &Chain, SDValue *Flag) const { 682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 683 684 // Get the list of the values's legal parts. 685 unsigned NumRegs = Regs.size(); 686 SmallVector<SDValue, 8> Parts(NumRegs); 687 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 EVT RegisterVT = RegVTs[Value]; 691 692 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 693 &Parts[Part], NumParts, RegisterVT); 694 Part += NumParts; 695 } 696 697 // Copy the parts into the registers. 698 SmallVector<SDValue, 8> Chains(NumRegs); 699 for (unsigned i = 0; i != NumRegs; ++i) { 700 SDValue Part; 701 if (Flag == 0) { 702 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 703 } else { 704 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 705 *Flag = Part.getValue(1); 706 } 707 708 Chains[i] = Part.getValue(0); 709 } 710 711 if (NumRegs == 1 || Flag) 712 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 713 // flagged to it. That is the CopyToReg nodes and the user are considered 714 // a single scheduling unit. If we create a TokenFactor and return it as 715 // chain, then the TokenFactor is both a predecessor (operand) of the 716 // user as well as a successor (the TF operands are flagged to the user). 717 // c1, f1 = CopyToReg 718 // c2, f2 = CopyToReg 719 // c3 = TokenFactor c1, c2 720 // ... 721 // = op c3, ..., f2 722 Chain = Chains[NumRegs-1]; 723 else 724 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 725 } 726 727 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 728 /// operand list. This adds the code marker and includes the number of 729 /// values added into it. 730 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 731 unsigned MatchingIdx, 732 SelectionDAG &DAG, 733 std::vector<SDValue> &Ops) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 737 if (HasMatching) 738 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 739 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 740 Ops.push_back(Res); 741 742 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 743 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 744 EVT RegisterVT = RegVTs[Value]; 745 for (unsigned i = 0; i != NumRegs; ++i) { 746 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 747 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 748 } 749 } 750 } 751 752 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 753 AA = &aa; 754 GFI = gfi; 755 TD = DAG.getTarget().getTargetData(); 756 } 757 758 /// clear - Clear out the current SelectionDAG and the associated 759 /// state and prepare this SelectionDAGBuilder object to be used 760 /// for a new block. This doesn't clear out information about 761 /// additional blocks that are needed to complete switch lowering 762 /// or PHI node updating; that information is cleared out as it is 763 /// consumed. 764 void SelectionDAGBuilder::clear() { 765 NodeMap.clear(); 766 UnusedArgNodeMap.clear(); 767 PendingLoads.clear(); 768 PendingExports.clear(); 769 DanglingDebugInfoMap.clear(); 770 CurDebugLoc = DebugLoc(); 771 HasTailCall = false; 772 } 773 774 /// getRoot - Return the current virtual root of the Selection DAG, 775 /// flushing any PendingLoad items. This must be done before emitting 776 /// a store or any other node that may need to be ordered after any 777 /// prior load instructions. 778 /// 779 SDValue SelectionDAGBuilder::getRoot() { 780 if (PendingLoads.empty()) 781 return DAG.getRoot(); 782 783 if (PendingLoads.size() == 1) { 784 SDValue Root = PendingLoads[0]; 785 DAG.setRoot(Root); 786 PendingLoads.clear(); 787 return Root; 788 } 789 790 // Otherwise, we have to make a token factor node. 791 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 792 &PendingLoads[0], PendingLoads.size()); 793 PendingLoads.clear(); 794 DAG.setRoot(Root); 795 return Root; 796 } 797 798 /// getControlRoot - Similar to getRoot, but instead of flushing all the 799 /// PendingLoad items, flush all the PendingExports items. It is necessary 800 /// to do this before emitting a terminator instruction. 801 /// 802 SDValue SelectionDAGBuilder::getControlRoot() { 803 SDValue Root = DAG.getRoot(); 804 805 if (PendingExports.empty()) 806 return Root; 807 808 // Turn all of the CopyToReg chains into one factored node. 809 if (Root.getOpcode() != ISD::EntryToken) { 810 unsigned i = 0, e = PendingExports.size(); 811 for (; i != e; ++i) { 812 assert(PendingExports[i].getNode()->getNumOperands() > 1); 813 if (PendingExports[i].getNode()->getOperand(0) == Root) 814 break; // Don't add the root if we already indirectly depend on it. 815 } 816 817 if (i == e) 818 PendingExports.push_back(Root); 819 } 820 821 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 822 &PendingExports[0], 823 PendingExports.size()); 824 PendingExports.clear(); 825 DAG.setRoot(Root); 826 return Root; 827 } 828 829 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 830 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 831 DAG.AssignOrdering(Node, SDNodeOrder); 832 833 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 834 AssignOrderingToNode(Node->getOperand(I).getNode()); 835 } 836 837 void SelectionDAGBuilder::visit(const Instruction &I) { 838 // Set up outgoing PHI node register values before emitting the terminator. 839 if (isa<TerminatorInst>(&I)) 840 HandlePHINodesInSuccessorBlocks(I.getParent()); 841 842 CurDebugLoc = I.getDebugLoc(); 843 844 visit(I.getOpcode(), I); 845 846 if (!isa<TerminatorInst>(&I) && !HasTailCall) 847 CopyToExportRegsIfNeeded(&I); 848 849 CurDebugLoc = DebugLoc(); 850 } 851 852 void SelectionDAGBuilder::visitPHI(const PHINode &) { 853 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 854 } 855 856 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 857 // Note: this doesn't use InstVisitor, because it has to work with 858 // ConstantExpr's in addition to instructions. 859 switch (Opcode) { 860 default: llvm_unreachable("Unknown instruction type encountered!"); 861 // Build the switch statement using the Instruction.def file. 862 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 863 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 864 #include "llvm/Instruction.def" 865 } 866 867 // Assign the ordering to the freshly created DAG nodes. 868 if (NodeMap.count(&I)) { 869 ++SDNodeOrder; 870 AssignOrderingToNode(getValue(&I).getNode()); 871 } 872 } 873 874 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 875 // generate the debug data structures now that we've seen its definition. 876 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 877 SDValue Val) { 878 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 879 MDNode *Variable = NULL; 880 uint64_t Offset = 0; 881 882 if (const DbgValueInst *DI = dyn_cast_or_null<DbgValueInst>(DDI.getDI())) { 883 Variable = DI->getVariable(); 884 Offset = DI->getOffset(); 885 } else if (const DbgDeclareInst *DI = 886 dyn_cast_or_null<DbgDeclareInst>(DDI.getDI())) 887 Variable = DI->getVariable(); 888 else { 889 assert (DDI.getDI() == NULL && "Invalid debug info intrinsic!"); 890 return; 891 } 892 893 if (Variable) { 894 DebugLoc dl = DDI.getdl(); 895 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 896 SDDbgValue *SDV; 897 if (Val.getNode()) { 898 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 899 SDV = DAG.getDbgValue(Variable, Val.getNode(), 900 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 901 DAG.AddDbgValue(SDV, Val.getNode(), false); 902 } 903 } else { 904 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 905 Offset, dl, SDNodeOrder); 906 DAG.AddDbgValue(SDV, 0, false); 907 } 908 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 909 } 910 } 911 912 // getValue - Return an SDValue for the given Value. 913 SDValue SelectionDAGBuilder::getValue(const Value *V) { 914 // If we already have an SDValue for this value, use it. It's important 915 // to do this first, so that we don't create a CopyFromReg if we already 916 // have a regular SDValue. 917 SDValue &N = NodeMap[V]; 918 if (N.getNode()) return N; 919 920 // If there's a virtual register allocated and initialized for this 921 // value, use it. 922 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 923 if (It != FuncInfo.ValueMap.end()) { 924 unsigned InReg = It->second; 925 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 926 SDValue Chain = DAG.getEntryNode(); 927 return N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain,NULL); 928 } 929 930 // Otherwise create a new SDValue and remember it. 931 SDValue Val = getValueImpl(V); 932 NodeMap[V] = Val; 933 resolveDanglingDebugInfo(V, Val); 934 return Val; 935 } 936 937 /// getNonRegisterValue - Return an SDValue for the given Value, but 938 /// don't look in FuncInfo.ValueMap for a virtual register. 939 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 940 // If we already have an SDValue for this value, use it. 941 SDValue &N = NodeMap[V]; 942 if (N.getNode()) return N; 943 944 // Otherwise create a new SDValue and remember it. 945 SDValue Val = getValueImpl(V); 946 NodeMap[V] = Val; 947 resolveDanglingDebugInfo(V, Val); 948 return Val; 949 } 950 951 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 952 /// Create an SDValue for the given value. 953 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 954 if (const Constant *C = dyn_cast<Constant>(V)) { 955 EVT VT = TLI.getValueType(V->getType(), true); 956 957 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 958 return DAG.getConstant(*CI, VT); 959 960 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 961 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 962 963 if (isa<ConstantPointerNull>(C)) 964 return DAG.getConstant(0, TLI.getPointerTy()); 965 966 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 967 return DAG.getConstantFP(*CFP, VT); 968 969 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 970 return DAG.getUNDEF(VT); 971 972 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 973 visit(CE->getOpcode(), *CE); 974 SDValue N1 = NodeMap[V]; 975 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 976 return N1; 977 } 978 979 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 980 SmallVector<SDValue, 4> Constants; 981 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 982 OI != OE; ++OI) { 983 SDNode *Val = getValue(*OI).getNode(); 984 // If the operand is an empty aggregate, there are no values. 985 if (!Val) continue; 986 // Add each leaf value from the operand to the Constants list 987 // to form a flattened list of all the values. 988 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 989 Constants.push_back(SDValue(Val, i)); 990 } 991 992 return DAG.getMergeValues(&Constants[0], Constants.size(), 993 getCurDebugLoc()); 994 } 995 996 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 997 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 998 "Unknown struct or array constant!"); 999 1000 SmallVector<EVT, 4> ValueVTs; 1001 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1002 unsigned NumElts = ValueVTs.size(); 1003 if (NumElts == 0) 1004 return SDValue(); // empty struct 1005 SmallVector<SDValue, 4> Constants(NumElts); 1006 for (unsigned i = 0; i != NumElts; ++i) { 1007 EVT EltVT = ValueVTs[i]; 1008 if (isa<UndefValue>(C)) 1009 Constants[i] = DAG.getUNDEF(EltVT); 1010 else if (EltVT.isFloatingPoint()) 1011 Constants[i] = DAG.getConstantFP(0, EltVT); 1012 else 1013 Constants[i] = DAG.getConstant(0, EltVT); 1014 } 1015 1016 return DAG.getMergeValues(&Constants[0], NumElts, 1017 getCurDebugLoc()); 1018 } 1019 1020 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1021 return DAG.getBlockAddress(BA, VT); 1022 1023 const VectorType *VecTy = cast<VectorType>(V->getType()); 1024 unsigned NumElements = VecTy->getNumElements(); 1025 1026 // Now that we know the number and type of the elements, get that number of 1027 // elements into the Ops array based on what kind of constant it is. 1028 SmallVector<SDValue, 16> Ops; 1029 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1030 for (unsigned i = 0; i != NumElements; ++i) 1031 Ops.push_back(getValue(CP->getOperand(i))); 1032 } else { 1033 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1034 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1035 1036 SDValue Op; 1037 if (EltVT.isFloatingPoint()) 1038 Op = DAG.getConstantFP(0, EltVT); 1039 else 1040 Op = DAG.getConstant(0, EltVT); 1041 Ops.assign(NumElements, Op); 1042 } 1043 1044 // Create a BUILD_VECTOR node. 1045 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1046 VT, &Ops[0], Ops.size()); 1047 } 1048 1049 // If this is a static alloca, generate it as the frameindex instead of 1050 // computation. 1051 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1052 DenseMap<const AllocaInst*, int>::iterator SI = 1053 FuncInfo.StaticAllocaMap.find(AI); 1054 if (SI != FuncInfo.StaticAllocaMap.end()) 1055 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1056 } 1057 1058 // If this is an instruction which fast-isel has deferred, select it now. 1059 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1060 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1061 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1062 SDValue Chain = DAG.getEntryNode(); 1063 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1064 } 1065 1066 llvm_unreachable("Can't get register for value!"); 1067 return SDValue(); 1068 } 1069 1070 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1071 SDValue Chain = getControlRoot(); 1072 SmallVector<ISD::OutputArg, 8> Outs; 1073 SmallVector<SDValue, 8> OutVals; 1074 1075 if (!FuncInfo.CanLowerReturn) { 1076 unsigned DemoteReg = FuncInfo.DemoteRegister; 1077 const Function *F = I.getParent()->getParent(); 1078 1079 // Emit a store of the return value through the virtual register. 1080 // Leave Outs empty so that LowerReturn won't try to load return 1081 // registers the usual way. 1082 SmallVector<EVT, 1> PtrValueVTs; 1083 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1084 PtrValueVTs); 1085 1086 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1087 SDValue RetOp = getValue(I.getOperand(0)); 1088 1089 SmallVector<EVT, 4> ValueVTs; 1090 SmallVector<uint64_t, 4> Offsets; 1091 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1092 unsigned NumValues = ValueVTs.size(); 1093 1094 SmallVector<SDValue, 4> Chains(NumValues); 1095 for (unsigned i = 0; i != NumValues; ++i) { 1096 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1097 RetPtr.getValueType(), RetPtr, 1098 DAG.getIntPtrConstant(Offsets[i])); 1099 Chains[i] = 1100 DAG.getStore(Chain, getCurDebugLoc(), 1101 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1102 Add, NULL, Offsets[i], false, false, 0); 1103 } 1104 1105 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1106 MVT::Other, &Chains[0], NumValues); 1107 } else if (I.getNumOperands() != 0) { 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1110 unsigned NumValues = ValueVTs.size(); 1111 if (NumValues) { 1112 SDValue RetOp = getValue(I.getOperand(0)); 1113 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1114 EVT VT = ValueVTs[j]; 1115 1116 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1117 1118 const Function *F = I.getParent()->getParent(); 1119 if (F->paramHasAttr(0, Attribute::SExt)) 1120 ExtendKind = ISD::SIGN_EXTEND; 1121 else if (F->paramHasAttr(0, Attribute::ZExt)) 1122 ExtendKind = ISD::ZERO_EXTEND; 1123 1124 // FIXME: C calling convention requires the return type to be promoted 1125 // to at least 32-bit. But this is not necessary for non-C calling 1126 // conventions. The frontend should mark functions whose return values 1127 // require promoting with signext or zeroext attributes. 1128 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1129 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 1130 if (VT.bitsLT(MinVT)) 1131 VT = MinVT; 1132 } 1133 1134 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1135 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1136 SmallVector<SDValue, 4> Parts(NumParts); 1137 getCopyToParts(DAG, getCurDebugLoc(), 1138 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1139 &Parts[0], NumParts, PartVT, ExtendKind); 1140 1141 // 'inreg' on function refers to return value 1142 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1143 if (F->paramHasAttr(0, Attribute::InReg)) 1144 Flags.setInReg(); 1145 1146 // Propagate extension type if any 1147 if (F->paramHasAttr(0, Attribute::SExt)) 1148 Flags.setSExt(); 1149 else if (F->paramHasAttr(0, Attribute::ZExt)) 1150 Flags.setZExt(); 1151 1152 for (unsigned i = 0; i < NumParts; ++i) { 1153 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1154 /*isfixed=*/true)); 1155 OutVals.push_back(Parts[i]); 1156 } 1157 } 1158 } 1159 } 1160 1161 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1162 CallingConv::ID CallConv = 1163 DAG.getMachineFunction().getFunction()->getCallingConv(); 1164 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1165 Outs, OutVals, getCurDebugLoc(), DAG); 1166 1167 // Verify that the target's LowerReturn behaved as expected. 1168 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1169 "LowerReturn didn't return a valid chain!"); 1170 1171 // Update the DAG with the new chain value resulting from return lowering. 1172 DAG.setRoot(Chain); 1173 } 1174 1175 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1176 /// created for it, emit nodes to copy the value into the virtual 1177 /// registers. 1178 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1179 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1180 if (VMI != FuncInfo.ValueMap.end()) { 1181 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1182 CopyValueToVirtualRegister(V, VMI->second); 1183 } 1184 } 1185 1186 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1187 /// the current basic block, add it to ValueMap now so that we'll get a 1188 /// CopyTo/FromReg. 1189 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1190 // No need to export constants. 1191 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1192 1193 // Already exported? 1194 if (FuncInfo.isExportedInst(V)) return; 1195 1196 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1197 CopyValueToVirtualRegister(V, Reg); 1198 } 1199 1200 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1201 const BasicBlock *FromBB) { 1202 // The operands of the setcc have to be in this block. We don't know 1203 // how to export them from some other block. 1204 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1205 // Can export from current BB. 1206 if (VI->getParent() == FromBB) 1207 return true; 1208 1209 // Is already exported, noop. 1210 return FuncInfo.isExportedInst(V); 1211 } 1212 1213 // If this is an argument, we can export it if the BB is the entry block or 1214 // if it is already exported. 1215 if (isa<Argument>(V)) { 1216 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1217 return true; 1218 1219 // Otherwise, can only export this if it is already exported. 1220 return FuncInfo.isExportedInst(V); 1221 } 1222 1223 // Otherwise, constants can always be exported. 1224 return true; 1225 } 1226 1227 static bool InBlock(const Value *V, const BasicBlock *BB) { 1228 if (const Instruction *I = dyn_cast<Instruction>(V)) 1229 return I->getParent() == BB; 1230 return true; 1231 } 1232 1233 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1234 /// This function emits a branch and is used at the leaves of an OR or an 1235 /// AND operator tree. 1236 /// 1237 void 1238 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1239 MachineBasicBlock *TBB, 1240 MachineBasicBlock *FBB, 1241 MachineBasicBlock *CurBB, 1242 MachineBasicBlock *SwitchBB) { 1243 const BasicBlock *BB = CurBB->getBasicBlock(); 1244 1245 // If the leaf of the tree is a comparison, merge the condition into 1246 // the caseblock. 1247 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1248 // The operands of the cmp have to be in this block. We don't know 1249 // how to export them from some other block. If this is the first block 1250 // of the sequence, no exporting is needed. 1251 if (CurBB == SwitchBB || 1252 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1253 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1254 ISD::CondCode Condition; 1255 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1256 Condition = getICmpCondCode(IC->getPredicate()); 1257 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1258 Condition = getFCmpCondCode(FC->getPredicate()); 1259 } else { 1260 Condition = ISD::SETEQ; // silence warning. 1261 llvm_unreachable("Unknown compare instruction"); 1262 } 1263 1264 CaseBlock CB(Condition, BOp->getOperand(0), 1265 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1266 SwitchCases.push_back(CB); 1267 return; 1268 } 1269 } 1270 1271 // Create a CaseBlock record representing this branch. 1272 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1273 NULL, TBB, FBB, CurBB); 1274 SwitchCases.push_back(CB); 1275 } 1276 1277 /// FindMergedConditions - If Cond is an expression like 1278 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1279 MachineBasicBlock *TBB, 1280 MachineBasicBlock *FBB, 1281 MachineBasicBlock *CurBB, 1282 MachineBasicBlock *SwitchBB, 1283 unsigned Opc) { 1284 // If this node is not part of the or/and tree, emit it as a branch. 1285 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1286 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1287 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1288 BOp->getParent() != CurBB->getBasicBlock() || 1289 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1290 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1291 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1292 return; 1293 } 1294 1295 // Create TmpBB after CurBB. 1296 MachineFunction::iterator BBI = CurBB; 1297 MachineFunction &MF = DAG.getMachineFunction(); 1298 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1299 CurBB->getParent()->insert(++BBI, TmpBB); 1300 1301 if (Opc == Instruction::Or) { 1302 // Codegen X | Y as: 1303 // jmp_if_X TBB 1304 // jmp TmpBB 1305 // TmpBB: 1306 // jmp_if_Y TBB 1307 // jmp FBB 1308 // 1309 1310 // Emit the LHS condition. 1311 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1312 1313 // Emit the RHS condition into TmpBB. 1314 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1315 } else { 1316 assert(Opc == Instruction::And && "Unknown merge op!"); 1317 // Codegen X & Y as: 1318 // jmp_if_X TmpBB 1319 // jmp FBB 1320 // TmpBB: 1321 // jmp_if_Y TBB 1322 // jmp FBB 1323 // 1324 // This requires creation of TmpBB after CurBB. 1325 1326 // Emit the LHS condition. 1327 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1328 1329 // Emit the RHS condition into TmpBB. 1330 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1331 } 1332 } 1333 1334 /// If the set of cases should be emitted as a series of branches, return true. 1335 /// If we should emit this as a bunch of and/or'd together conditions, return 1336 /// false. 1337 bool 1338 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1339 if (Cases.size() != 2) return true; 1340 1341 // If this is two comparisons of the same values or'd or and'd together, they 1342 // will get folded into a single comparison, so don't emit two blocks. 1343 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1344 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1345 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1346 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1347 return false; 1348 } 1349 1350 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1351 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1352 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1353 Cases[0].CC == Cases[1].CC && 1354 isa<Constant>(Cases[0].CmpRHS) && 1355 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1356 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1357 return false; 1358 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1359 return false; 1360 } 1361 1362 return true; 1363 } 1364 1365 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1366 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1367 1368 // Update machine-CFG edges. 1369 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1370 1371 // Figure out which block is immediately after the current one. 1372 MachineBasicBlock *NextBlock = 0; 1373 MachineFunction::iterator BBI = BrMBB; 1374 if (++BBI != FuncInfo.MF->end()) 1375 NextBlock = BBI; 1376 1377 if (I.isUnconditional()) { 1378 // Update machine-CFG edges. 1379 BrMBB->addSuccessor(Succ0MBB); 1380 1381 // If this is not a fall-through branch, emit the branch. 1382 if (Succ0MBB != NextBlock) 1383 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1384 MVT::Other, getControlRoot(), 1385 DAG.getBasicBlock(Succ0MBB))); 1386 1387 return; 1388 } 1389 1390 // If this condition is one of the special cases we handle, do special stuff 1391 // now. 1392 const Value *CondVal = I.getCondition(); 1393 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1394 1395 // If this is a series of conditions that are or'd or and'd together, emit 1396 // this as a sequence of branches instead of setcc's with and/or operations. 1397 // For example, instead of something like: 1398 // cmp A, B 1399 // C = seteq 1400 // cmp D, E 1401 // F = setle 1402 // or C, F 1403 // jnz foo 1404 // Emit: 1405 // cmp A, B 1406 // je foo 1407 // cmp D, E 1408 // jle foo 1409 // 1410 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1411 if (BOp->hasOneUse() && 1412 (BOp->getOpcode() == Instruction::And || 1413 BOp->getOpcode() == Instruction::Or)) { 1414 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1415 BOp->getOpcode()); 1416 // If the compares in later blocks need to use values not currently 1417 // exported from this block, export them now. This block should always 1418 // be the first entry. 1419 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1420 1421 // Allow some cases to be rejected. 1422 if (ShouldEmitAsBranches(SwitchCases)) { 1423 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1424 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1425 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1426 } 1427 1428 // Emit the branch for this block. 1429 visitSwitchCase(SwitchCases[0], BrMBB); 1430 SwitchCases.erase(SwitchCases.begin()); 1431 return; 1432 } 1433 1434 // Okay, we decided not to do this, remove any inserted MBB's and clear 1435 // SwitchCases. 1436 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1437 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1438 1439 SwitchCases.clear(); 1440 } 1441 } 1442 1443 // Create a CaseBlock record representing this branch. 1444 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1445 NULL, Succ0MBB, Succ1MBB, BrMBB); 1446 1447 // Use visitSwitchCase to actually insert the fast branch sequence for this 1448 // cond branch. 1449 visitSwitchCase(CB, BrMBB); 1450 } 1451 1452 /// visitSwitchCase - Emits the necessary code to represent a single node in 1453 /// the binary search tree resulting from lowering a switch instruction. 1454 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1455 MachineBasicBlock *SwitchBB) { 1456 SDValue Cond; 1457 SDValue CondLHS = getValue(CB.CmpLHS); 1458 DebugLoc dl = getCurDebugLoc(); 1459 1460 // Build the setcc now. 1461 if (CB.CmpMHS == NULL) { 1462 // Fold "(X == true)" to X and "(X == false)" to !X to 1463 // handle common cases produced by branch lowering. 1464 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1465 CB.CC == ISD::SETEQ) 1466 Cond = CondLHS; 1467 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1468 CB.CC == ISD::SETEQ) { 1469 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1470 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1471 } else 1472 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1473 } else { 1474 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1475 1476 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1477 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1478 1479 SDValue CmpOp = getValue(CB.CmpMHS); 1480 EVT VT = CmpOp.getValueType(); 1481 1482 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1483 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1484 ISD::SETLE); 1485 } else { 1486 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1487 VT, CmpOp, DAG.getConstant(Low, VT)); 1488 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1489 DAG.getConstant(High-Low, VT), ISD::SETULE); 1490 } 1491 } 1492 1493 // Update successor info 1494 SwitchBB->addSuccessor(CB.TrueBB); 1495 SwitchBB->addSuccessor(CB.FalseBB); 1496 1497 // Set NextBlock to be the MBB immediately after the current one, if any. 1498 // This is used to avoid emitting unnecessary branches to the next block. 1499 MachineBasicBlock *NextBlock = 0; 1500 MachineFunction::iterator BBI = SwitchBB; 1501 if (++BBI != FuncInfo.MF->end()) 1502 NextBlock = BBI; 1503 1504 // If the lhs block is the next block, invert the condition so that we can 1505 // fall through to the lhs instead of the rhs block. 1506 if (CB.TrueBB == NextBlock) { 1507 std::swap(CB.TrueBB, CB.FalseBB); 1508 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1509 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1510 } 1511 1512 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1513 MVT::Other, getControlRoot(), Cond, 1514 DAG.getBasicBlock(CB.TrueBB)); 1515 1516 // Insert the false branch. 1517 if (CB.FalseBB != NextBlock) 1518 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1519 DAG.getBasicBlock(CB.FalseBB)); 1520 1521 DAG.setRoot(BrCond); 1522 } 1523 1524 /// visitJumpTable - Emit JumpTable node in the current MBB 1525 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1526 // Emit the code for the jump table 1527 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1528 EVT PTy = TLI.getPointerTy(); 1529 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1530 JT.Reg, PTy); 1531 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1532 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1533 MVT::Other, Index.getValue(1), 1534 Table, Index); 1535 DAG.setRoot(BrJumpTable); 1536 } 1537 1538 /// visitJumpTableHeader - This function emits necessary code to produce index 1539 /// in the JumpTable from switch case. 1540 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1541 JumpTableHeader &JTH, 1542 MachineBasicBlock *SwitchBB) { 1543 // Subtract the lowest switch case value from the value being switched on and 1544 // conditional branch to default mbb if the result is greater than the 1545 // difference between smallest and largest cases. 1546 SDValue SwitchOp = getValue(JTH.SValue); 1547 EVT VT = SwitchOp.getValueType(); 1548 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1549 DAG.getConstant(JTH.First, VT)); 1550 1551 // The SDNode we just created, which holds the value being switched on minus 1552 // the smallest case value, needs to be copied to a virtual register so it 1553 // can be used as an index into the jump table in a subsequent basic block. 1554 // This value may be smaller or larger than the target's pointer type, and 1555 // therefore require extension or truncating. 1556 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1557 1558 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1559 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1560 JumpTableReg, SwitchOp); 1561 JT.Reg = JumpTableReg; 1562 1563 // Emit the range check for the jump table, and branch to the default block 1564 // for the switch statement if the value being switched on exceeds the largest 1565 // case in the switch. 1566 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1567 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1568 DAG.getConstant(JTH.Last-JTH.First,VT), 1569 ISD::SETUGT); 1570 1571 // Set NextBlock to be the MBB immediately after the current one, if any. 1572 // This is used to avoid emitting unnecessary branches to the next block. 1573 MachineBasicBlock *NextBlock = 0; 1574 MachineFunction::iterator BBI = SwitchBB; 1575 1576 if (++BBI != FuncInfo.MF->end()) 1577 NextBlock = BBI; 1578 1579 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1580 MVT::Other, CopyTo, CMP, 1581 DAG.getBasicBlock(JT.Default)); 1582 1583 if (JT.MBB != NextBlock) 1584 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1585 DAG.getBasicBlock(JT.MBB)); 1586 1587 DAG.setRoot(BrCond); 1588 } 1589 1590 /// visitBitTestHeader - This function emits necessary code to produce value 1591 /// suitable for "bit tests" 1592 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1593 MachineBasicBlock *SwitchBB) { 1594 // Subtract the minimum value 1595 SDValue SwitchOp = getValue(B.SValue); 1596 EVT VT = SwitchOp.getValueType(); 1597 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1598 DAG.getConstant(B.First, VT)); 1599 1600 // Check range 1601 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1602 TLI.getSetCCResultType(Sub.getValueType()), 1603 Sub, DAG.getConstant(B.Range, VT), 1604 ISD::SETUGT); 1605 1606 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1607 TLI.getPointerTy()); 1608 1609 B.Reg = FuncInfo.CreateReg(TLI.getPointerTy()); 1610 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1611 B.Reg, ShiftOp); 1612 1613 // Set NextBlock to be the MBB immediately after the current one, if any. 1614 // This is used to avoid emitting unnecessary branches to the next block. 1615 MachineBasicBlock *NextBlock = 0; 1616 MachineFunction::iterator BBI = SwitchBB; 1617 if (++BBI != FuncInfo.MF->end()) 1618 NextBlock = BBI; 1619 1620 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1621 1622 SwitchBB->addSuccessor(B.Default); 1623 SwitchBB->addSuccessor(MBB); 1624 1625 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1626 MVT::Other, CopyTo, RangeCmp, 1627 DAG.getBasicBlock(B.Default)); 1628 1629 if (MBB != NextBlock) 1630 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1631 DAG.getBasicBlock(MBB)); 1632 1633 DAG.setRoot(BrRange); 1634 } 1635 1636 /// visitBitTestCase - this function produces one "bit test" 1637 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1638 unsigned Reg, 1639 BitTestCase &B, 1640 MachineBasicBlock *SwitchBB) { 1641 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1642 TLI.getPointerTy()); 1643 SDValue Cmp; 1644 if (CountPopulation_64(B.Mask) == 1) { 1645 // Testing for a single bit; just compare the shift count with what it 1646 // would need to be to shift a 1 bit in that position. 1647 Cmp = DAG.getSetCC(getCurDebugLoc(), 1648 TLI.getSetCCResultType(ShiftOp.getValueType()), 1649 ShiftOp, 1650 DAG.getConstant(CountTrailingZeros_64(B.Mask), 1651 TLI.getPointerTy()), 1652 ISD::SETEQ); 1653 } else { 1654 // Make desired shift 1655 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1656 TLI.getPointerTy(), 1657 DAG.getConstant(1, TLI.getPointerTy()), 1658 ShiftOp); 1659 1660 // Emit bit tests and jumps 1661 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1662 TLI.getPointerTy(), SwitchVal, 1663 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1664 Cmp = DAG.getSetCC(getCurDebugLoc(), 1665 TLI.getSetCCResultType(AndOp.getValueType()), 1666 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1667 ISD::SETNE); 1668 } 1669 1670 SwitchBB->addSuccessor(B.TargetBB); 1671 SwitchBB->addSuccessor(NextMBB); 1672 1673 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1674 MVT::Other, getControlRoot(), 1675 Cmp, DAG.getBasicBlock(B.TargetBB)); 1676 1677 // Set NextBlock to be the MBB immediately after the current one, if any. 1678 // This is used to avoid emitting unnecessary branches to the next block. 1679 MachineBasicBlock *NextBlock = 0; 1680 MachineFunction::iterator BBI = SwitchBB; 1681 if (++BBI != FuncInfo.MF->end()) 1682 NextBlock = BBI; 1683 1684 if (NextMBB != NextBlock) 1685 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1686 DAG.getBasicBlock(NextMBB)); 1687 1688 DAG.setRoot(BrAnd); 1689 } 1690 1691 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1692 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1693 1694 // Retrieve successors. 1695 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1696 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1697 1698 const Value *Callee(I.getCalledValue()); 1699 if (isa<InlineAsm>(Callee)) 1700 visitInlineAsm(&I); 1701 else 1702 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1703 1704 // If the value of the invoke is used outside of its defining block, make it 1705 // available as a virtual register. 1706 CopyToExportRegsIfNeeded(&I); 1707 1708 // Update successor info 1709 InvokeMBB->addSuccessor(Return); 1710 InvokeMBB->addSuccessor(LandingPad); 1711 1712 // Drop into normal successor. 1713 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1714 MVT::Other, getControlRoot(), 1715 DAG.getBasicBlock(Return))); 1716 } 1717 1718 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1719 } 1720 1721 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1722 /// small case ranges). 1723 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1724 CaseRecVector& WorkList, 1725 const Value* SV, 1726 MachineBasicBlock *Default, 1727 MachineBasicBlock *SwitchBB) { 1728 Case& BackCase = *(CR.Range.second-1); 1729 1730 // Size is the number of Cases represented by this range. 1731 size_t Size = CR.Range.second - CR.Range.first; 1732 if (Size > 3) 1733 return false; 1734 1735 // Get the MachineFunction which holds the current MBB. This is used when 1736 // inserting any additional MBBs necessary to represent the switch. 1737 MachineFunction *CurMF = FuncInfo.MF; 1738 1739 // Figure out which block is immediately after the current one. 1740 MachineBasicBlock *NextBlock = 0; 1741 MachineFunction::iterator BBI = CR.CaseBB; 1742 1743 if (++BBI != FuncInfo.MF->end()) 1744 NextBlock = BBI; 1745 1746 // TODO: If any two of the cases has the same destination, and if one value 1747 // is the same as the other, but has one bit unset that the other has set, 1748 // use bit manipulation to do two compares at once. For example: 1749 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1750 1751 // Rearrange the case blocks so that the last one falls through if possible. 1752 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1753 // The last case block won't fall through into 'NextBlock' if we emit the 1754 // branches in this order. See if rearranging a case value would help. 1755 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1756 if (I->BB == NextBlock) { 1757 std::swap(*I, BackCase); 1758 break; 1759 } 1760 } 1761 } 1762 1763 // Create a CaseBlock record representing a conditional branch to 1764 // the Case's target mbb if the value being switched on SV is equal 1765 // to C. 1766 MachineBasicBlock *CurBlock = CR.CaseBB; 1767 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1768 MachineBasicBlock *FallThrough; 1769 if (I != E-1) { 1770 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1771 CurMF->insert(BBI, FallThrough); 1772 1773 // Put SV in a virtual register to make it available from the new blocks. 1774 ExportFromCurrentBlock(SV); 1775 } else { 1776 // If the last case doesn't match, go to the default block. 1777 FallThrough = Default; 1778 } 1779 1780 const Value *RHS, *LHS, *MHS; 1781 ISD::CondCode CC; 1782 if (I->High == I->Low) { 1783 // This is just small small case range :) containing exactly 1 case 1784 CC = ISD::SETEQ; 1785 LHS = SV; RHS = I->High; MHS = NULL; 1786 } else { 1787 CC = ISD::SETLE; 1788 LHS = I->Low; MHS = SV; RHS = I->High; 1789 } 1790 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1791 1792 // If emitting the first comparison, just call visitSwitchCase to emit the 1793 // code into the current block. Otherwise, push the CaseBlock onto the 1794 // vector to be later processed by SDISel, and insert the node's MBB 1795 // before the next MBB. 1796 if (CurBlock == SwitchBB) 1797 visitSwitchCase(CB, SwitchBB); 1798 else 1799 SwitchCases.push_back(CB); 1800 1801 CurBlock = FallThrough; 1802 } 1803 1804 return true; 1805 } 1806 1807 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1808 return !DisableJumpTables && 1809 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1810 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1811 } 1812 1813 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1814 APInt LastExt(Last), FirstExt(First); 1815 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1816 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1817 return (LastExt - FirstExt + 1ULL); 1818 } 1819 1820 /// handleJTSwitchCase - Emit jumptable for current switch case range 1821 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1822 CaseRecVector& WorkList, 1823 const Value* SV, 1824 MachineBasicBlock* Default, 1825 MachineBasicBlock *SwitchBB) { 1826 Case& FrontCase = *CR.Range.first; 1827 Case& BackCase = *(CR.Range.second-1); 1828 1829 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1830 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1831 1832 APInt TSize(First.getBitWidth(), 0); 1833 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1834 I!=E; ++I) 1835 TSize += I->size(); 1836 1837 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1838 return false; 1839 1840 APInt Range = ComputeRange(First, Last); 1841 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1842 if (Density < 0.4) 1843 return false; 1844 1845 DEBUG(dbgs() << "Lowering jump table\n" 1846 << "First entry: " << First << ". Last entry: " << Last << '\n' 1847 << "Range: " << Range 1848 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1849 1850 // Get the MachineFunction which holds the current MBB. This is used when 1851 // inserting any additional MBBs necessary to represent the switch. 1852 MachineFunction *CurMF = FuncInfo.MF; 1853 1854 // Figure out which block is immediately after the current one. 1855 MachineFunction::iterator BBI = CR.CaseBB; 1856 ++BBI; 1857 1858 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1859 1860 // Create a new basic block to hold the code for loading the address 1861 // of the jump table, and jumping to it. Update successor information; 1862 // we will either branch to the default case for the switch, or the jump 1863 // table. 1864 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1865 CurMF->insert(BBI, JumpTableBB); 1866 CR.CaseBB->addSuccessor(Default); 1867 CR.CaseBB->addSuccessor(JumpTableBB); 1868 1869 // Build a vector of destination BBs, corresponding to each target 1870 // of the jump table. If the value of the jump table slot corresponds to 1871 // a case statement, push the case's BB onto the vector, otherwise, push 1872 // the default BB. 1873 std::vector<MachineBasicBlock*> DestBBs; 1874 APInt TEI = First; 1875 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1876 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1877 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1878 1879 if (Low.sle(TEI) && TEI.sle(High)) { 1880 DestBBs.push_back(I->BB); 1881 if (TEI==High) 1882 ++I; 1883 } else { 1884 DestBBs.push_back(Default); 1885 } 1886 } 1887 1888 // Update successor info. Add one edge to each unique successor. 1889 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1890 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1891 E = DestBBs.end(); I != E; ++I) { 1892 if (!SuccsHandled[(*I)->getNumber()]) { 1893 SuccsHandled[(*I)->getNumber()] = true; 1894 JumpTableBB->addSuccessor(*I); 1895 } 1896 } 1897 1898 // Create a jump table index for this jump table. 1899 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1900 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1901 ->createJumpTableIndex(DestBBs); 1902 1903 // Set the jump table information so that we can codegen it as a second 1904 // MachineBasicBlock 1905 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1906 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1907 if (CR.CaseBB == SwitchBB) 1908 visitJumpTableHeader(JT, JTH, SwitchBB); 1909 1910 JTCases.push_back(JumpTableBlock(JTH, JT)); 1911 1912 return true; 1913 } 1914 1915 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1916 /// 2 subtrees. 1917 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1918 CaseRecVector& WorkList, 1919 const Value* SV, 1920 MachineBasicBlock *Default, 1921 MachineBasicBlock *SwitchBB) { 1922 // Get the MachineFunction which holds the current MBB. This is used when 1923 // inserting any additional MBBs necessary to represent the switch. 1924 MachineFunction *CurMF = FuncInfo.MF; 1925 1926 // Figure out which block is immediately after the current one. 1927 MachineFunction::iterator BBI = CR.CaseBB; 1928 ++BBI; 1929 1930 Case& FrontCase = *CR.Range.first; 1931 Case& BackCase = *(CR.Range.second-1); 1932 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1933 1934 // Size is the number of Cases represented by this range. 1935 unsigned Size = CR.Range.second - CR.Range.first; 1936 1937 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1938 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1939 double FMetric = 0; 1940 CaseItr Pivot = CR.Range.first + Size/2; 1941 1942 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1943 // (heuristically) allow us to emit JumpTable's later. 1944 APInt TSize(First.getBitWidth(), 0); 1945 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1946 I!=E; ++I) 1947 TSize += I->size(); 1948 1949 APInt LSize = FrontCase.size(); 1950 APInt RSize = TSize-LSize; 1951 DEBUG(dbgs() << "Selecting best pivot: \n" 1952 << "First: " << First << ", Last: " << Last <<'\n' 1953 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1954 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1955 J!=E; ++I, ++J) { 1956 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1957 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1958 APInt Range = ComputeRange(LEnd, RBegin); 1959 assert((Range - 2ULL).isNonNegative() && 1960 "Invalid case distance"); 1961 double LDensity = (double)LSize.roundToDouble() / 1962 (LEnd - First + 1ULL).roundToDouble(); 1963 double RDensity = (double)RSize.roundToDouble() / 1964 (Last - RBegin + 1ULL).roundToDouble(); 1965 double Metric = Range.logBase2()*(LDensity+RDensity); 1966 // Should always split in some non-trivial place 1967 DEBUG(dbgs() <<"=>Step\n" 1968 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1969 << "LDensity: " << LDensity 1970 << ", RDensity: " << RDensity << '\n' 1971 << "Metric: " << Metric << '\n'); 1972 if (FMetric < Metric) { 1973 Pivot = J; 1974 FMetric = Metric; 1975 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1976 } 1977 1978 LSize += J->size(); 1979 RSize -= J->size(); 1980 } 1981 if (areJTsAllowed(TLI)) { 1982 // If our case is dense we *really* should handle it earlier! 1983 assert((FMetric > 0) && "Should handle dense range earlier!"); 1984 } else { 1985 Pivot = CR.Range.first + Size/2; 1986 } 1987 1988 CaseRange LHSR(CR.Range.first, Pivot); 1989 CaseRange RHSR(Pivot, CR.Range.second); 1990 Constant *C = Pivot->Low; 1991 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1992 1993 // We know that we branch to the LHS if the Value being switched on is 1994 // less than the Pivot value, C. We use this to optimize our binary 1995 // tree a bit, by recognizing that if SV is greater than or equal to the 1996 // LHS's Case Value, and that Case Value is exactly one less than the 1997 // Pivot's Value, then we can branch directly to the LHS's Target, 1998 // rather than creating a leaf node for it. 1999 if ((LHSR.second - LHSR.first) == 1 && 2000 LHSR.first->High == CR.GE && 2001 cast<ConstantInt>(C)->getValue() == 2002 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2003 TrueBB = LHSR.first->BB; 2004 } else { 2005 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2006 CurMF->insert(BBI, TrueBB); 2007 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2008 2009 // Put SV in a virtual register to make it available from the new blocks. 2010 ExportFromCurrentBlock(SV); 2011 } 2012 2013 // Similar to the optimization above, if the Value being switched on is 2014 // known to be less than the Constant CR.LT, and the current Case Value 2015 // is CR.LT - 1, then we can branch directly to the target block for 2016 // the current Case Value, rather than emitting a RHS leaf node for it. 2017 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2018 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2019 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2020 FalseBB = RHSR.first->BB; 2021 } else { 2022 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2023 CurMF->insert(BBI, FalseBB); 2024 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2025 2026 // Put SV in a virtual register to make it available from the new blocks. 2027 ExportFromCurrentBlock(SV); 2028 } 2029 2030 // Create a CaseBlock record representing a conditional branch to 2031 // the LHS node if the value being switched on SV is less than C. 2032 // Otherwise, branch to LHS. 2033 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2034 2035 if (CR.CaseBB == SwitchBB) 2036 visitSwitchCase(CB, SwitchBB); 2037 else 2038 SwitchCases.push_back(CB); 2039 2040 return true; 2041 } 2042 2043 /// handleBitTestsSwitchCase - if current case range has few destination and 2044 /// range span less, than machine word bitwidth, encode case range into series 2045 /// of masks and emit bit tests with these masks. 2046 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2047 CaseRecVector& WorkList, 2048 const Value* SV, 2049 MachineBasicBlock* Default, 2050 MachineBasicBlock *SwitchBB){ 2051 EVT PTy = TLI.getPointerTy(); 2052 unsigned IntPtrBits = PTy.getSizeInBits(); 2053 2054 Case& FrontCase = *CR.Range.first; 2055 Case& BackCase = *(CR.Range.second-1); 2056 2057 // Get the MachineFunction which holds the current MBB. This is used when 2058 // inserting any additional MBBs necessary to represent the switch. 2059 MachineFunction *CurMF = FuncInfo.MF; 2060 2061 // If target does not have legal shift left, do not emit bit tests at all. 2062 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2063 return false; 2064 2065 size_t numCmps = 0; 2066 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2067 I!=E; ++I) { 2068 // Single case counts one, case range - two. 2069 numCmps += (I->Low == I->High ? 1 : 2); 2070 } 2071 2072 // Count unique destinations 2073 SmallSet<MachineBasicBlock*, 4> Dests; 2074 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2075 Dests.insert(I->BB); 2076 if (Dests.size() > 3) 2077 // Don't bother the code below, if there are too much unique destinations 2078 return false; 2079 } 2080 DEBUG(dbgs() << "Total number of unique destinations: " 2081 << Dests.size() << '\n' 2082 << "Total number of comparisons: " << numCmps << '\n'); 2083 2084 // Compute span of values. 2085 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2086 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2087 APInt cmpRange = maxValue - minValue; 2088 2089 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2090 << "Low bound: " << minValue << '\n' 2091 << "High bound: " << maxValue << '\n'); 2092 2093 if (cmpRange.uge(IntPtrBits) || 2094 (!(Dests.size() == 1 && numCmps >= 3) && 2095 !(Dests.size() == 2 && numCmps >= 5) && 2096 !(Dests.size() >= 3 && numCmps >= 6))) 2097 return false; 2098 2099 DEBUG(dbgs() << "Emitting bit tests\n"); 2100 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2101 2102 // Optimize the case where all the case values fit in a 2103 // word without having to subtract minValue. In this case, 2104 // we can optimize away the subtraction. 2105 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2106 cmpRange = maxValue; 2107 } else { 2108 lowBound = minValue; 2109 } 2110 2111 CaseBitsVector CasesBits; 2112 unsigned i, count = 0; 2113 2114 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2115 MachineBasicBlock* Dest = I->BB; 2116 for (i = 0; i < count; ++i) 2117 if (Dest == CasesBits[i].BB) 2118 break; 2119 2120 if (i == count) { 2121 assert((count < 3) && "Too much destinations to test!"); 2122 CasesBits.push_back(CaseBits(0, Dest, 0)); 2123 count++; 2124 } 2125 2126 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2127 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2128 2129 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2130 uint64_t hi = (highValue - lowBound).getZExtValue(); 2131 2132 for (uint64_t j = lo; j <= hi; j++) { 2133 CasesBits[i].Mask |= 1ULL << j; 2134 CasesBits[i].Bits++; 2135 } 2136 2137 } 2138 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2139 2140 BitTestInfo BTC; 2141 2142 // Figure out which block is immediately after the current one. 2143 MachineFunction::iterator BBI = CR.CaseBB; 2144 ++BBI; 2145 2146 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2147 2148 DEBUG(dbgs() << "Cases:\n"); 2149 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2150 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2151 << ", Bits: " << CasesBits[i].Bits 2152 << ", BB: " << CasesBits[i].BB << '\n'); 2153 2154 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2155 CurMF->insert(BBI, CaseBB); 2156 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2157 CaseBB, 2158 CasesBits[i].BB)); 2159 2160 // Put SV in a virtual register to make it available from the new blocks. 2161 ExportFromCurrentBlock(SV); 2162 } 2163 2164 BitTestBlock BTB(lowBound, cmpRange, SV, 2165 -1U, (CR.CaseBB == SwitchBB), 2166 CR.CaseBB, Default, BTC); 2167 2168 if (CR.CaseBB == SwitchBB) 2169 visitBitTestHeader(BTB, SwitchBB); 2170 2171 BitTestCases.push_back(BTB); 2172 2173 return true; 2174 } 2175 2176 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2177 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2178 const SwitchInst& SI) { 2179 size_t numCmps = 0; 2180 2181 // Start with "simple" cases 2182 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2183 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 2184 Cases.push_back(Case(SI.getSuccessorValue(i), 2185 SI.getSuccessorValue(i), 2186 SMBB)); 2187 } 2188 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2189 2190 // Merge case into clusters 2191 if (Cases.size() >= 2) 2192 // Must recompute end() each iteration because it may be 2193 // invalidated by erase if we hold on to it 2194 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 2195 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2196 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2197 MachineBasicBlock* nextBB = J->BB; 2198 MachineBasicBlock* currentBB = I->BB; 2199 2200 // If the two neighboring cases go to the same destination, merge them 2201 // into a single case. 2202 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2203 I->High = J->High; 2204 J = Cases.erase(J); 2205 } else { 2206 I = J++; 2207 } 2208 } 2209 2210 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2211 if (I->Low != I->High) 2212 // A range counts double, since it requires two compares. 2213 ++numCmps; 2214 } 2215 2216 return numCmps; 2217 } 2218 2219 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2220 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2221 2222 // Figure out which block is immediately after the current one. 2223 MachineBasicBlock *NextBlock = 0; 2224 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2225 2226 // If there is only the default destination, branch to it if it is not the 2227 // next basic block. Otherwise, just fall through. 2228 if (SI.getNumOperands() == 2) { 2229 // Update machine-CFG edges. 2230 2231 // If this is not a fall-through branch, emit the branch. 2232 SwitchMBB->addSuccessor(Default); 2233 if (Default != NextBlock) 2234 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2235 MVT::Other, getControlRoot(), 2236 DAG.getBasicBlock(Default))); 2237 2238 return; 2239 } 2240 2241 // If there are any non-default case statements, create a vector of Cases 2242 // representing each one, and sort the vector so that we can efficiently 2243 // create a binary search tree from them. 2244 CaseVector Cases; 2245 size_t numCmps = Clusterify(Cases, SI); 2246 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2247 << ". Total compares: " << numCmps << '\n'); 2248 numCmps = 0; 2249 2250 // Get the Value to be switched on and default basic blocks, which will be 2251 // inserted into CaseBlock records, representing basic blocks in the binary 2252 // search tree. 2253 const Value *SV = SI.getOperand(0); 2254 2255 // Push the initial CaseRec onto the worklist 2256 CaseRecVector WorkList; 2257 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2258 CaseRange(Cases.begin(),Cases.end()))); 2259 2260 while (!WorkList.empty()) { 2261 // Grab a record representing a case range to process off the worklist 2262 CaseRec CR = WorkList.back(); 2263 WorkList.pop_back(); 2264 2265 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2266 continue; 2267 2268 // If the range has few cases (two or less) emit a series of specific 2269 // tests. 2270 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2271 continue; 2272 2273 // If the switch has more than 5 blocks, and at least 40% dense, and the 2274 // target supports indirect branches, then emit a jump table rather than 2275 // lowering the switch to a binary tree of conditional branches. 2276 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2277 continue; 2278 2279 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2280 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2281 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2282 } 2283 } 2284 2285 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2286 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2287 2288 // Update machine-CFG edges with unique successors. 2289 SmallVector<BasicBlock*, 32> succs; 2290 succs.reserve(I.getNumSuccessors()); 2291 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2292 succs.push_back(I.getSuccessor(i)); 2293 array_pod_sort(succs.begin(), succs.end()); 2294 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2295 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2296 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2297 2298 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2299 MVT::Other, getControlRoot(), 2300 getValue(I.getAddress()))); 2301 } 2302 2303 void SelectionDAGBuilder::visitFSub(const User &I) { 2304 // -0.0 - X --> fneg 2305 const Type *Ty = I.getType(); 2306 if (Ty->isVectorTy()) { 2307 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2308 const VectorType *DestTy = cast<VectorType>(I.getType()); 2309 const Type *ElTy = DestTy->getElementType(); 2310 unsigned VL = DestTy->getNumElements(); 2311 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2312 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2313 if (CV == CNZ) { 2314 SDValue Op2 = getValue(I.getOperand(1)); 2315 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2316 Op2.getValueType(), Op2)); 2317 return; 2318 } 2319 } 2320 } 2321 2322 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2323 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2324 SDValue Op2 = getValue(I.getOperand(1)); 2325 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2326 Op2.getValueType(), Op2)); 2327 return; 2328 } 2329 2330 visitBinary(I, ISD::FSUB); 2331 } 2332 2333 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2334 SDValue Op1 = getValue(I.getOperand(0)); 2335 SDValue Op2 = getValue(I.getOperand(1)); 2336 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2337 Op1.getValueType(), Op1, Op2)); 2338 } 2339 2340 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2341 SDValue Op1 = getValue(I.getOperand(0)); 2342 SDValue Op2 = getValue(I.getOperand(1)); 2343 if (!I.getType()->isVectorTy() && 2344 Op2.getValueType() != TLI.getShiftAmountTy()) { 2345 // If the operand is smaller than the shift count type, promote it. 2346 EVT PTy = TLI.getPointerTy(); 2347 EVT STy = TLI.getShiftAmountTy(); 2348 if (STy.bitsGT(Op2.getValueType())) 2349 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2350 TLI.getShiftAmountTy(), Op2); 2351 // If the operand is larger than the shift count type but the shift 2352 // count type has enough bits to represent any shift value, truncate 2353 // it now. This is a common case and it exposes the truncate to 2354 // optimization early. 2355 else if (STy.getSizeInBits() >= 2356 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2357 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2358 TLI.getShiftAmountTy(), Op2); 2359 // Otherwise we'll need to temporarily settle for some other 2360 // convenient type; type legalization will make adjustments as 2361 // needed. 2362 else if (PTy.bitsLT(Op2.getValueType())) 2363 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2364 TLI.getPointerTy(), Op2); 2365 else if (PTy.bitsGT(Op2.getValueType())) 2366 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2367 TLI.getPointerTy(), Op2); 2368 } 2369 2370 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2371 Op1.getValueType(), Op1, Op2)); 2372 } 2373 2374 void SelectionDAGBuilder::visitICmp(const User &I) { 2375 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2376 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2377 predicate = IC->getPredicate(); 2378 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2379 predicate = ICmpInst::Predicate(IC->getPredicate()); 2380 SDValue Op1 = getValue(I.getOperand(0)); 2381 SDValue Op2 = getValue(I.getOperand(1)); 2382 ISD::CondCode Opcode = getICmpCondCode(predicate); 2383 2384 EVT DestVT = TLI.getValueType(I.getType()); 2385 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2386 } 2387 2388 void SelectionDAGBuilder::visitFCmp(const User &I) { 2389 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2390 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2391 predicate = FC->getPredicate(); 2392 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2393 predicate = FCmpInst::Predicate(FC->getPredicate()); 2394 SDValue Op1 = getValue(I.getOperand(0)); 2395 SDValue Op2 = getValue(I.getOperand(1)); 2396 ISD::CondCode Condition = getFCmpCondCode(predicate); 2397 EVT DestVT = TLI.getValueType(I.getType()); 2398 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2399 } 2400 2401 void SelectionDAGBuilder::visitSelect(const User &I) { 2402 SmallVector<EVT, 4> ValueVTs; 2403 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2404 unsigned NumValues = ValueVTs.size(); 2405 if (NumValues == 0) return; 2406 2407 SmallVector<SDValue, 4> Values(NumValues); 2408 SDValue Cond = getValue(I.getOperand(0)); 2409 SDValue TrueVal = getValue(I.getOperand(1)); 2410 SDValue FalseVal = getValue(I.getOperand(2)); 2411 2412 for (unsigned i = 0; i != NumValues; ++i) 2413 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2414 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2415 Cond, 2416 SDValue(TrueVal.getNode(), 2417 TrueVal.getResNo() + i), 2418 SDValue(FalseVal.getNode(), 2419 FalseVal.getResNo() + i)); 2420 2421 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2422 DAG.getVTList(&ValueVTs[0], NumValues), 2423 &Values[0], NumValues)); 2424 } 2425 2426 void SelectionDAGBuilder::visitTrunc(const User &I) { 2427 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2428 SDValue N = getValue(I.getOperand(0)); 2429 EVT DestVT = TLI.getValueType(I.getType()); 2430 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2431 } 2432 2433 void SelectionDAGBuilder::visitZExt(const User &I) { 2434 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2435 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2436 SDValue N = getValue(I.getOperand(0)); 2437 EVT DestVT = TLI.getValueType(I.getType()); 2438 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2439 } 2440 2441 void SelectionDAGBuilder::visitSExt(const User &I) { 2442 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2443 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2444 SDValue N = getValue(I.getOperand(0)); 2445 EVT DestVT = TLI.getValueType(I.getType()); 2446 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2447 } 2448 2449 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2450 // FPTrunc is never a no-op cast, no need to check 2451 SDValue N = getValue(I.getOperand(0)); 2452 EVT DestVT = TLI.getValueType(I.getType()); 2453 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2454 DestVT, N, DAG.getIntPtrConstant(0))); 2455 } 2456 2457 void SelectionDAGBuilder::visitFPExt(const User &I){ 2458 // FPTrunc is never a no-op cast, no need to check 2459 SDValue N = getValue(I.getOperand(0)); 2460 EVT DestVT = TLI.getValueType(I.getType()); 2461 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2462 } 2463 2464 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2465 // FPToUI is never a no-op cast, no need to check 2466 SDValue N = getValue(I.getOperand(0)); 2467 EVT DestVT = TLI.getValueType(I.getType()); 2468 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2469 } 2470 2471 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2472 // FPToSI is never a no-op cast, no need to check 2473 SDValue N = getValue(I.getOperand(0)); 2474 EVT DestVT = TLI.getValueType(I.getType()); 2475 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2476 } 2477 2478 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2479 // UIToFP is never a no-op cast, no need to check 2480 SDValue N = getValue(I.getOperand(0)); 2481 EVT DestVT = TLI.getValueType(I.getType()); 2482 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2483 } 2484 2485 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2486 // SIToFP is never a no-op cast, no need to check 2487 SDValue N = getValue(I.getOperand(0)); 2488 EVT DestVT = TLI.getValueType(I.getType()); 2489 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2490 } 2491 2492 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2493 // What to do depends on the size of the integer and the size of the pointer. 2494 // We can either truncate, zero extend, or no-op, accordingly. 2495 SDValue N = getValue(I.getOperand(0)); 2496 EVT DestVT = TLI.getValueType(I.getType()); 2497 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2498 } 2499 2500 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2501 // What to do depends on the size of the integer and the size of the pointer. 2502 // We can either truncate, zero extend, or no-op, accordingly. 2503 SDValue N = getValue(I.getOperand(0)); 2504 EVT DestVT = TLI.getValueType(I.getType()); 2505 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2506 } 2507 2508 void SelectionDAGBuilder::visitBitCast(const User &I) { 2509 SDValue N = getValue(I.getOperand(0)); 2510 EVT DestVT = TLI.getValueType(I.getType()); 2511 2512 // BitCast assures us that source and destination are the same size so this is 2513 // either a BIT_CONVERT or a no-op. 2514 if (DestVT != N.getValueType()) 2515 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2516 DestVT, N)); // convert types. 2517 else 2518 setValue(&I, N); // noop cast. 2519 } 2520 2521 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2522 SDValue InVec = getValue(I.getOperand(0)); 2523 SDValue InVal = getValue(I.getOperand(1)); 2524 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2525 TLI.getPointerTy(), 2526 getValue(I.getOperand(2))); 2527 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2528 TLI.getValueType(I.getType()), 2529 InVec, InVal, InIdx)); 2530 } 2531 2532 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2533 SDValue InVec = getValue(I.getOperand(0)); 2534 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2535 TLI.getPointerTy(), 2536 getValue(I.getOperand(1))); 2537 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2538 TLI.getValueType(I.getType()), InVec, InIdx)); 2539 } 2540 2541 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2542 // from SIndx and increasing to the element length (undefs are allowed). 2543 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2544 unsigned MaskNumElts = Mask.size(); 2545 for (unsigned i = 0; i != MaskNumElts; ++i) 2546 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2547 return false; 2548 return true; 2549 } 2550 2551 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2552 SmallVector<int, 8> Mask; 2553 SDValue Src1 = getValue(I.getOperand(0)); 2554 SDValue Src2 = getValue(I.getOperand(1)); 2555 2556 // Convert the ConstantVector mask operand into an array of ints, with -1 2557 // representing undef values. 2558 SmallVector<Constant*, 8> MaskElts; 2559 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2560 unsigned MaskNumElts = MaskElts.size(); 2561 for (unsigned i = 0; i != MaskNumElts; ++i) { 2562 if (isa<UndefValue>(MaskElts[i])) 2563 Mask.push_back(-1); 2564 else 2565 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2566 } 2567 2568 EVT VT = TLI.getValueType(I.getType()); 2569 EVT SrcVT = Src1.getValueType(); 2570 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2571 2572 if (SrcNumElts == MaskNumElts) { 2573 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2574 &Mask[0])); 2575 return; 2576 } 2577 2578 // Normalize the shuffle vector since mask and vector length don't match. 2579 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2580 // Mask is longer than the source vectors and is a multiple of the source 2581 // vectors. We can use concatenate vector to make the mask and vectors 2582 // lengths match. 2583 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2584 // The shuffle is concatenating two vectors together. 2585 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2586 VT, Src1, Src2)); 2587 return; 2588 } 2589 2590 // Pad both vectors with undefs to make them the same length as the mask. 2591 unsigned NumConcat = MaskNumElts / SrcNumElts; 2592 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2593 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2594 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2595 2596 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2597 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2598 MOps1[0] = Src1; 2599 MOps2[0] = Src2; 2600 2601 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2602 getCurDebugLoc(), VT, 2603 &MOps1[0], NumConcat); 2604 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2605 getCurDebugLoc(), VT, 2606 &MOps2[0], NumConcat); 2607 2608 // Readjust mask for new input vector length. 2609 SmallVector<int, 8> MappedOps; 2610 for (unsigned i = 0; i != MaskNumElts; ++i) { 2611 int Idx = Mask[i]; 2612 if (Idx < (int)SrcNumElts) 2613 MappedOps.push_back(Idx); 2614 else 2615 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2616 } 2617 2618 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2619 &MappedOps[0])); 2620 return; 2621 } 2622 2623 if (SrcNumElts > MaskNumElts) { 2624 // Analyze the access pattern of the vector to see if we can extract 2625 // two subvectors and do the shuffle. The analysis is done by calculating 2626 // the range of elements the mask access on both vectors. 2627 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2628 int MaxRange[2] = {-1, -1}; 2629 2630 for (unsigned i = 0; i != MaskNumElts; ++i) { 2631 int Idx = Mask[i]; 2632 int Input = 0; 2633 if (Idx < 0) 2634 continue; 2635 2636 if (Idx >= (int)SrcNumElts) { 2637 Input = 1; 2638 Idx -= SrcNumElts; 2639 } 2640 if (Idx > MaxRange[Input]) 2641 MaxRange[Input] = Idx; 2642 if (Idx < MinRange[Input]) 2643 MinRange[Input] = Idx; 2644 } 2645 2646 // Check if the access is smaller than the vector size and can we find 2647 // a reasonable extract index. 2648 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2649 // Extract. 2650 int StartIdx[2]; // StartIdx to extract from 2651 for (int Input=0; Input < 2; ++Input) { 2652 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2653 RangeUse[Input] = 0; // Unused 2654 StartIdx[Input] = 0; 2655 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2656 // Fits within range but we should see if we can find a good 2657 // start index that is a multiple of the mask length. 2658 if (MaxRange[Input] < (int)MaskNumElts) { 2659 RangeUse[Input] = 1; // Extract from beginning of the vector 2660 StartIdx[Input] = 0; 2661 } else { 2662 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2663 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2664 StartIdx[Input] + MaskNumElts < SrcNumElts) 2665 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2666 } 2667 } 2668 } 2669 2670 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2671 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2672 return; 2673 } 2674 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2675 // Extract appropriate subvector and generate a vector shuffle 2676 for (int Input=0; Input < 2; ++Input) { 2677 SDValue &Src = Input == 0 ? Src1 : Src2; 2678 if (RangeUse[Input] == 0) 2679 Src = DAG.getUNDEF(VT); 2680 else 2681 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2682 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2683 } 2684 2685 // Calculate new mask. 2686 SmallVector<int, 8> MappedOps; 2687 for (unsigned i = 0; i != MaskNumElts; ++i) { 2688 int Idx = Mask[i]; 2689 if (Idx < 0) 2690 MappedOps.push_back(Idx); 2691 else if (Idx < (int)SrcNumElts) 2692 MappedOps.push_back(Idx - StartIdx[0]); 2693 else 2694 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2695 } 2696 2697 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2698 &MappedOps[0])); 2699 return; 2700 } 2701 } 2702 2703 // We can't use either concat vectors or extract subvectors so fall back to 2704 // replacing the shuffle with extract and build vector. 2705 // to insert and build vector. 2706 EVT EltVT = VT.getVectorElementType(); 2707 EVT PtrVT = TLI.getPointerTy(); 2708 SmallVector<SDValue,8> Ops; 2709 for (unsigned i = 0; i != MaskNumElts; ++i) { 2710 if (Mask[i] < 0) { 2711 Ops.push_back(DAG.getUNDEF(EltVT)); 2712 } else { 2713 int Idx = Mask[i]; 2714 SDValue Res; 2715 2716 if (Idx < (int)SrcNumElts) 2717 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2718 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2719 else 2720 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2721 EltVT, Src2, 2722 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2723 2724 Ops.push_back(Res); 2725 } 2726 } 2727 2728 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2729 VT, &Ops[0], Ops.size())); 2730 } 2731 2732 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2733 const Value *Op0 = I.getOperand(0); 2734 const Value *Op1 = I.getOperand(1); 2735 const Type *AggTy = I.getType(); 2736 const Type *ValTy = Op1->getType(); 2737 bool IntoUndef = isa<UndefValue>(Op0); 2738 bool FromUndef = isa<UndefValue>(Op1); 2739 2740 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2741 I.idx_begin(), I.idx_end()); 2742 2743 SmallVector<EVT, 4> AggValueVTs; 2744 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2745 SmallVector<EVT, 4> ValValueVTs; 2746 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2747 2748 unsigned NumAggValues = AggValueVTs.size(); 2749 unsigned NumValValues = ValValueVTs.size(); 2750 SmallVector<SDValue, 4> Values(NumAggValues); 2751 2752 SDValue Agg = getValue(Op0); 2753 SDValue Val = getValue(Op1); 2754 unsigned i = 0; 2755 // Copy the beginning value(s) from the original aggregate. 2756 for (; i != LinearIndex; ++i) 2757 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2758 SDValue(Agg.getNode(), Agg.getResNo() + i); 2759 // Copy values from the inserted value(s). 2760 for (; i != LinearIndex + NumValValues; ++i) 2761 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2762 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2763 // Copy remaining value(s) from the original aggregate. 2764 for (; i != NumAggValues; ++i) 2765 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2766 SDValue(Agg.getNode(), Agg.getResNo() + i); 2767 2768 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2769 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2770 &Values[0], NumAggValues)); 2771 } 2772 2773 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2774 const Value *Op0 = I.getOperand(0); 2775 const Type *AggTy = Op0->getType(); 2776 const Type *ValTy = I.getType(); 2777 bool OutOfUndef = isa<UndefValue>(Op0); 2778 2779 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2780 I.idx_begin(), I.idx_end()); 2781 2782 SmallVector<EVT, 4> ValValueVTs; 2783 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2784 2785 unsigned NumValValues = ValValueVTs.size(); 2786 SmallVector<SDValue, 4> Values(NumValValues); 2787 2788 SDValue Agg = getValue(Op0); 2789 // Copy out the selected value(s). 2790 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2791 Values[i - LinearIndex] = 2792 OutOfUndef ? 2793 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2794 SDValue(Agg.getNode(), Agg.getResNo() + i); 2795 2796 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2797 DAG.getVTList(&ValValueVTs[0], NumValValues), 2798 &Values[0], NumValValues)); 2799 } 2800 2801 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2802 SDValue N = getValue(I.getOperand(0)); 2803 const Type *Ty = I.getOperand(0)->getType(); 2804 2805 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2806 OI != E; ++OI) { 2807 const Value *Idx = *OI; 2808 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2809 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2810 if (Field) { 2811 // N = N + Offset 2812 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2813 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2814 DAG.getIntPtrConstant(Offset)); 2815 } 2816 2817 Ty = StTy->getElementType(Field); 2818 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2819 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2820 2821 // Offset canonically 0 for unions, but type changes 2822 Ty = UnTy->getElementType(Field); 2823 } else { 2824 Ty = cast<SequentialType>(Ty)->getElementType(); 2825 2826 // If this is a constant subscript, handle it quickly. 2827 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2828 if (CI->isZero()) continue; 2829 uint64_t Offs = 2830 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2831 SDValue OffsVal; 2832 EVT PTy = TLI.getPointerTy(); 2833 unsigned PtrBits = PTy.getSizeInBits(); 2834 if (PtrBits < 64) 2835 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2836 TLI.getPointerTy(), 2837 DAG.getConstant(Offs, MVT::i64)); 2838 else 2839 OffsVal = DAG.getIntPtrConstant(Offs); 2840 2841 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2842 OffsVal); 2843 continue; 2844 } 2845 2846 // N = N + Idx * ElementSize; 2847 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2848 TD->getTypeAllocSize(Ty)); 2849 SDValue IdxN = getValue(Idx); 2850 2851 // If the index is smaller or larger than intptr_t, truncate or extend 2852 // it. 2853 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2854 2855 // If this is a multiply by a power of two, turn it into a shl 2856 // immediately. This is a very common case. 2857 if (ElementSize != 1) { 2858 if (ElementSize.isPowerOf2()) { 2859 unsigned Amt = ElementSize.logBase2(); 2860 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2861 N.getValueType(), IdxN, 2862 DAG.getConstant(Amt, TLI.getPointerTy())); 2863 } else { 2864 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2865 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2866 N.getValueType(), IdxN, Scale); 2867 } 2868 } 2869 2870 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2871 N.getValueType(), N, IdxN); 2872 } 2873 } 2874 2875 setValue(&I, N); 2876 } 2877 2878 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2879 // If this is a fixed sized alloca in the entry block of the function, 2880 // allocate it statically on the stack. 2881 if (FuncInfo.StaticAllocaMap.count(&I)) 2882 return; // getValue will auto-populate this. 2883 2884 const Type *Ty = I.getAllocatedType(); 2885 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2886 unsigned Align = 2887 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2888 I.getAlignment()); 2889 2890 SDValue AllocSize = getValue(I.getArraySize()); 2891 2892 EVT IntPtr = TLI.getPointerTy(); 2893 if (AllocSize.getValueType() != IntPtr) 2894 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2895 2896 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 2897 AllocSize, 2898 DAG.getConstant(TySize, IntPtr)); 2899 2900 // Handle alignment. If the requested alignment is less than or equal to 2901 // the stack alignment, ignore it. If the size is greater than or equal to 2902 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2903 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2904 if (Align <= StackAlign) 2905 Align = 0; 2906 2907 // Round the size of the allocation up to the stack alignment size 2908 // by add SA-1 to the size. 2909 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2910 AllocSize.getValueType(), AllocSize, 2911 DAG.getIntPtrConstant(StackAlign-1)); 2912 2913 // Mask out the low bits for alignment purposes. 2914 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2915 AllocSize.getValueType(), AllocSize, 2916 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2917 2918 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2919 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2920 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2921 VTs, Ops, 3); 2922 setValue(&I, DSA); 2923 DAG.setRoot(DSA.getValue(1)); 2924 2925 // Inform the Frame Information that we have just allocated a variable-sized 2926 // object. 2927 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 2928 } 2929 2930 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2931 const Value *SV = I.getOperand(0); 2932 SDValue Ptr = getValue(SV); 2933 2934 const Type *Ty = I.getType(); 2935 2936 bool isVolatile = I.isVolatile(); 2937 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2938 unsigned Alignment = I.getAlignment(); 2939 2940 SmallVector<EVT, 4> ValueVTs; 2941 SmallVector<uint64_t, 4> Offsets; 2942 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2943 unsigned NumValues = ValueVTs.size(); 2944 if (NumValues == 0) 2945 return; 2946 2947 SDValue Root; 2948 bool ConstantMemory = false; 2949 if (I.isVolatile()) 2950 // Serialize volatile loads with other side effects. 2951 Root = getRoot(); 2952 else if (AA->pointsToConstantMemory(SV)) { 2953 // Do not serialize (non-volatile) loads of constant memory with anything. 2954 Root = DAG.getEntryNode(); 2955 ConstantMemory = true; 2956 } else { 2957 // Do not serialize non-volatile loads against each other. 2958 Root = DAG.getRoot(); 2959 } 2960 2961 SmallVector<SDValue, 4> Values(NumValues); 2962 SmallVector<SDValue, 4> Chains(NumValues); 2963 EVT PtrVT = Ptr.getValueType(); 2964 for (unsigned i = 0; i != NumValues; ++i) { 2965 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2966 PtrVT, Ptr, 2967 DAG.getConstant(Offsets[i], PtrVT)); 2968 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2969 A, SV, Offsets[i], isVolatile, 2970 isNonTemporal, Alignment); 2971 2972 Values[i] = L; 2973 Chains[i] = L.getValue(1); 2974 } 2975 2976 if (!ConstantMemory) { 2977 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2978 MVT::Other, &Chains[0], NumValues); 2979 if (isVolatile) 2980 DAG.setRoot(Chain); 2981 else 2982 PendingLoads.push_back(Chain); 2983 } 2984 2985 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2986 DAG.getVTList(&ValueVTs[0], NumValues), 2987 &Values[0], NumValues)); 2988 } 2989 2990 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2991 const Value *SrcV = I.getOperand(0); 2992 const Value *PtrV = I.getOperand(1); 2993 2994 SmallVector<EVT, 4> ValueVTs; 2995 SmallVector<uint64_t, 4> Offsets; 2996 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2997 unsigned NumValues = ValueVTs.size(); 2998 if (NumValues == 0) 2999 return; 3000 3001 // Get the lowered operands. Note that we do this after 3002 // checking if NumResults is zero, because with zero results 3003 // the operands won't have values in the map. 3004 SDValue Src = getValue(SrcV); 3005 SDValue Ptr = getValue(PtrV); 3006 3007 SDValue Root = getRoot(); 3008 SmallVector<SDValue, 4> Chains(NumValues); 3009 EVT PtrVT = Ptr.getValueType(); 3010 bool isVolatile = I.isVolatile(); 3011 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3012 unsigned Alignment = I.getAlignment(); 3013 3014 for (unsigned i = 0; i != NumValues; ++i) { 3015 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3016 DAG.getConstant(Offsets[i], PtrVT)); 3017 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 3018 SDValue(Src.getNode(), Src.getResNo() + i), 3019 Add, PtrV, Offsets[i], isVolatile, 3020 isNonTemporal, Alignment); 3021 } 3022 3023 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3024 MVT::Other, &Chains[0], NumValues)); 3025 } 3026 3027 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3028 /// node. 3029 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3030 unsigned Intrinsic) { 3031 bool HasChain = !I.doesNotAccessMemory(); 3032 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3033 3034 // Build the operand list. 3035 SmallVector<SDValue, 8> Ops; 3036 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3037 if (OnlyLoad) { 3038 // We don't need to serialize loads against other loads. 3039 Ops.push_back(DAG.getRoot()); 3040 } else { 3041 Ops.push_back(getRoot()); 3042 } 3043 } 3044 3045 // Info is set by getTgtMemInstrinsic 3046 TargetLowering::IntrinsicInfo Info; 3047 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3048 3049 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3050 if (!IsTgtIntrinsic) 3051 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3052 3053 // Add all operands of the call to the operand list. 3054 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3055 SDValue Op = getValue(I.getArgOperand(i)); 3056 assert(TLI.isTypeLegal(Op.getValueType()) && 3057 "Intrinsic uses a non-legal type?"); 3058 Ops.push_back(Op); 3059 } 3060 3061 SmallVector<EVT, 4> ValueVTs; 3062 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3063 #ifndef NDEBUG 3064 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3065 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3066 "Intrinsic uses a non-legal type?"); 3067 } 3068 #endif // NDEBUG 3069 3070 if (HasChain) 3071 ValueVTs.push_back(MVT::Other); 3072 3073 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3074 3075 // Create the node. 3076 SDValue Result; 3077 if (IsTgtIntrinsic) { 3078 // This is target intrinsic that touches memory 3079 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3080 VTs, &Ops[0], Ops.size(), 3081 Info.memVT, Info.ptrVal, Info.offset, 3082 Info.align, Info.vol, 3083 Info.readMem, Info.writeMem); 3084 } else if (!HasChain) { 3085 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3086 VTs, &Ops[0], Ops.size()); 3087 } else if (!I.getType()->isVoidTy()) { 3088 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3089 VTs, &Ops[0], Ops.size()); 3090 } else { 3091 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3092 VTs, &Ops[0], Ops.size()); 3093 } 3094 3095 if (HasChain) { 3096 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3097 if (OnlyLoad) 3098 PendingLoads.push_back(Chain); 3099 else 3100 DAG.setRoot(Chain); 3101 } 3102 3103 if (!I.getType()->isVoidTy()) { 3104 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3105 EVT VT = TLI.getValueType(PTy); 3106 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 3107 } 3108 3109 setValue(&I, Result); 3110 } 3111 } 3112 3113 /// GetSignificand - Get the significand and build it into a floating-point 3114 /// number with exponent of 1: 3115 /// 3116 /// Op = (Op & 0x007fffff) | 0x3f800000; 3117 /// 3118 /// where Op is the hexidecimal representation of floating point value. 3119 static SDValue 3120 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3121 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3122 DAG.getConstant(0x007fffff, MVT::i32)); 3123 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3124 DAG.getConstant(0x3f800000, MVT::i32)); 3125 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 3126 } 3127 3128 /// GetExponent - Get the exponent: 3129 /// 3130 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3131 /// 3132 /// where Op is the hexidecimal representation of floating point value. 3133 static SDValue 3134 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3135 DebugLoc dl) { 3136 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3137 DAG.getConstant(0x7f800000, MVT::i32)); 3138 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3139 DAG.getConstant(23, TLI.getPointerTy())); 3140 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3141 DAG.getConstant(127, MVT::i32)); 3142 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3143 } 3144 3145 /// getF32Constant - Get 32-bit floating point constant. 3146 static SDValue 3147 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3148 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3149 } 3150 3151 /// Inlined utility function to implement binary input atomic intrinsics for 3152 /// visitIntrinsicCall: I is a call instruction 3153 /// Op is the associated NodeType for I 3154 const char * 3155 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 3156 ISD::NodeType Op) { 3157 SDValue Root = getRoot(); 3158 SDValue L = 3159 DAG.getAtomic(Op, getCurDebugLoc(), 3160 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 3161 Root, 3162 getValue(I.getArgOperand(0)), 3163 getValue(I.getArgOperand(1)), 3164 I.getArgOperand(0)); 3165 setValue(&I, L); 3166 DAG.setRoot(L.getValue(1)); 3167 return 0; 3168 } 3169 3170 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3171 const char * 3172 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3173 SDValue Op1 = getValue(I.getArgOperand(0)); 3174 SDValue Op2 = getValue(I.getArgOperand(1)); 3175 3176 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3177 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3178 return 0; 3179 } 3180 3181 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3182 /// limited-precision mode. 3183 void 3184 SelectionDAGBuilder::visitExp(const CallInst &I) { 3185 SDValue result; 3186 DebugLoc dl = getCurDebugLoc(); 3187 3188 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3189 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3190 SDValue Op = getValue(I.getArgOperand(0)); 3191 3192 // Put the exponent in the right bit position for later addition to the 3193 // final result: 3194 // 3195 // #define LOG2OFe 1.4426950f 3196 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3197 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3198 getF32Constant(DAG, 0x3fb8aa3b)); 3199 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3200 3201 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3202 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3203 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3204 3205 // IntegerPartOfX <<= 23; 3206 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3207 DAG.getConstant(23, TLI.getPointerTy())); 3208 3209 if (LimitFloatPrecision <= 6) { 3210 // For floating-point precision of 6: 3211 // 3212 // TwoToFractionalPartOfX = 3213 // 0.997535578f + 3214 // (0.735607626f + 0.252464424f * x) * x; 3215 // 3216 // error 0.0144103317, which is 6 bits 3217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3218 getF32Constant(DAG, 0x3e814304)); 3219 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3220 getF32Constant(DAG, 0x3f3c50c8)); 3221 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3222 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3223 getF32Constant(DAG, 0x3f7f5e7e)); 3224 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 3225 3226 // Add the exponent into the result in integer domain. 3227 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3228 TwoToFracPartOfX, IntegerPartOfX); 3229 3230 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 3231 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3232 // For floating-point precision of 12: 3233 // 3234 // TwoToFractionalPartOfX = 3235 // 0.999892986f + 3236 // (0.696457318f + 3237 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3238 // 3239 // 0.000107046256 error, which is 13 to 14 bits 3240 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3241 getF32Constant(DAG, 0x3da235e3)); 3242 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3243 getF32Constant(DAG, 0x3e65b8f3)); 3244 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3245 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3246 getF32Constant(DAG, 0x3f324b07)); 3247 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3248 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3249 getF32Constant(DAG, 0x3f7ff8fd)); 3250 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 3251 3252 // Add the exponent into the result in integer domain. 3253 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3254 TwoToFracPartOfX, IntegerPartOfX); 3255 3256 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3257 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3258 // For floating-point precision of 18: 3259 // 3260 // TwoToFractionalPartOfX = 3261 // 0.999999982f + 3262 // (0.693148872f + 3263 // (0.240227044f + 3264 // (0.554906021e-1f + 3265 // (0.961591928e-2f + 3266 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3267 // 3268 // error 2.47208000*10^(-7), which is better than 18 bits 3269 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3270 getF32Constant(DAG, 0x3924b03e)); 3271 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3272 getF32Constant(DAG, 0x3ab24b87)); 3273 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3274 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3275 getF32Constant(DAG, 0x3c1d8c17)); 3276 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3277 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3278 getF32Constant(DAG, 0x3d634a1d)); 3279 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3280 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3281 getF32Constant(DAG, 0x3e75fe14)); 3282 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3283 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3284 getF32Constant(DAG, 0x3f317234)); 3285 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3286 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3287 getF32Constant(DAG, 0x3f800000)); 3288 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3289 MVT::i32, t13); 3290 3291 // Add the exponent into the result in integer domain. 3292 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3293 TwoToFracPartOfX, IntegerPartOfX); 3294 3295 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3296 } 3297 } else { 3298 // No special expansion. 3299 result = DAG.getNode(ISD::FEXP, dl, 3300 getValue(I.getArgOperand(0)).getValueType(), 3301 getValue(I.getArgOperand(0))); 3302 } 3303 3304 setValue(&I, result); 3305 } 3306 3307 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3308 /// limited-precision mode. 3309 void 3310 SelectionDAGBuilder::visitLog(const CallInst &I) { 3311 SDValue result; 3312 DebugLoc dl = getCurDebugLoc(); 3313 3314 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3315 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3316 SDValue Op = getValue(I.getArgOperand(0)); 3317 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3318 3319 // Scale the exponent by log(2) [0.69314718f]. 3320 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3321 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3322 getF32Constant(DAG, 0x3f317218)); 3323 3324 // Get the significand and build it into a floating-point number with 3325 // exponent of 1. 3326 SDValue X = GetSignificand(DAG, Op1, dl); 3327 3328 if (LimitFloatPrecision <= 6) { 3329 // For floating-point precision of 6: 3330 // 3331 // LogofMantissa = 3332 // -1.1609546f + 3333 // (1.4034025f - 0.23903021f * x) * x; 3334 // 3335 // error 0.0034276066, which is better than 8 bits 3336 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3337 getF32Constant(DAG, 0xbe74c456)); 3338 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3339 getF32Constant(DAG, 0x3fb3a2b1)); 3340 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3341 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3342 getF32Constant(DAG, 0x3f949a29)); 3343 3344 result = DAG.getNode(ISD::FADD, dl, 3345 MVT::f32, LogOfExponent, LogOfMantissa); 3346 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3347 // For floating-point precision of 12: 3348 // 3349 // LogOfMantissa = 3350 // -1.7417939f + 3351 // (2.8212026f + 3352 // (-1.4699568f + 3353 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3354 // 3355 // error 0.000061011436, which is 14 bits 3356 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3357 getF32Constant(DAG, 0xbd67b6d6)); 3358 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3359 getF32Constant(DAG, 0x3ee4f4b8)); 3360 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3361 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3362 getF32Constant(DAG, 0x3fbc278b)); 3363 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3364 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3365 getF32Constant(DAG, 0x40348e95)); 3366 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3367 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3368 getF32Constant(DAG, 0x3fdef31a)); 3369 3370 result = DAG.getNode(ISD::FADD, dl, 3371 MVT::f32, LogOfExponent, LogOfMantissa); 3372 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3373 // For floating-point precision of 18: 3374 // 3375 // LogOfMantissa = 3376 // -2.1072184f + 3377 // (4.2372794f + 3378 // (-3.7029485f + 3379 // (2.2781945f + 3380 // (-0.87823314f + 3381 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3382 // 3383 // error 0.0000023660568, which is better than 18 bits 3384 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3385 getF32Constant(DAG, 0xbc91e5ac)); 3386 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3387 getF32Constant(DAG, 0x3e4350aa)); 3388 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3389 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3390 getF32Constant(DAG, 0x3f60d3e3)); 3391 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3392 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3393 getF32Constant(DAG, 0x4011cdf0)); 3394 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3395 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3396 getF32Constant(DAG, 0x406cfd1c)); 3397 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3398 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3399 getF32Constant(DAG, 0x408797cb)); 3400 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3401 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3402 getF32Constant(DAG, 0x4006dcab)); 3403 3404 result = DAG.getNode(ISD::FADD, dl, 3405 MVT::f32, LogOfExponent, LogOfMantissa); 3406 } 3407 } else { 3408 // No special expansion. 3409 result = DAG.getNode(ISD::FLOG, dl, 3410 getValue(I.getArgOperand(0)).getValueType(), 3411 getValue(I.getArgOperand(0))); 3412 } 3413 3414 setValue(&I, result); 3415 } 3416 3417 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3418 /// limited-precision mode. 3419 void 3420 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3421 SDValue result; 3422 DebugLoc dl = getCurDebugLoc(); 3423 3424 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3425 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3426 SDValue Op = getValue(I.getArgOperand(0)); 3427 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3428 3429 // Get the exponent. 3430 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3431 3432 // Get the significand and build it into a floating-point number with 3433 // exponent of 1. 3434 SDValue X = GetSignificand(DAG, Op1, dl); 3435 3436 // Different possible minimax approximations of significand in 3437 // floating-point for various degrees of accuracy over [1,2]. 3438 if (LimitFloatPrecision <= 6) { 3439 // For floating-point precision of 6: 3440 // 3441 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3442 // 3443 // error 0.0049451742, which is more than 7 bits 3444 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3445 getF32Constant(DAG, 0xbeb08fe0)); 3446 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3447 getF32Constant(DAG, 0x40019463)); 3448 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3449 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3450 getF32Constant(DAG, 0x3fd6633d)); 3451 3452 result = DAG.getNode(ISD::FADD, dl, 3453 MVT::f32, LogOfExponent, Log2ofMantissa); 3454 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3455 // For floating-point precision of 12: 3456 // 3457 // Log2ofMantissa = 3458 // -2.51285454f + 3459 // (4.07009056f + 3460 // (-2.12067489f + 3461 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3462 // 3463 // error 0.0000876136000, which is better than 13 bits 3464 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3465 getF32Constant(DAG, 0xbda7262e)); 3466 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3467 getF32Constant(DAG, 0x3f25280b)); 3468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3469 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3470 getF32Constant(DAG, 0x4007b923)); 3471 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3472 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3473 getF32Constant(DAG, 0x40823e2f)); 3474 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3475 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3476 getF32Constant(DAG, 0x4020d29c)); 3477 3478 result = DAG.getNode(ISD::FADD, dl, 3479 MVT::f32, LogOfExponent, Log2ofMantissa); 3480 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3481 // For floating-point precision of 18: 3482 // 3483 // Log2ofMantissa = 3484 // -3.0400495f + 3485 // (6.1129976f + 3486 // (-5.3420409f + 3487 // (3.2865683f + 3488 // (-1.2669343f + 3489 // (0.27515199f - 3490 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3491 // 3492 // error 0.0000018516, which is better than 18 bits 3493 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3494 getF32Constant(DAG, 0xbcd2769e)); 3495 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3496 getF32Constant(DAG, 0x3e8ce0b9)); 3497 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3498 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3499 getF32Constant(DAG, 0x3fa22ae7)); 3500 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3501 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3502 getF32Constant(DAG, 0x40525723)); 3503 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3504 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3505 getF32Constant(DAG, 0x40aaf200)); 3506 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3507 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3508 getF32Constant(DAG, 0x40c39dad)); 3509 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3510 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3511 getF32Constant(DAG, 0x4042902c)); 3512 3513 result = DAG.getNode(ISD::FADD, dl, 3514 MVT::f32, LogOfExponent, Log2ofMantissa); 3515 } 3516 } else { 3517 // No special expansion. 3518 result = DAG.getNode(ISD::FLOG2, dl, 3519 getValue(I.getArgOperand(0)).getValueType(), 3520 getValue(I.getArgOperand(0))); 3521 } 3522 3523 setValue(&I, result); 3524 } 3525 3526 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3527 /// limited-precision mode. 3528 void 3529 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3530 SDValue result; 3531 DebugLoc dl = getCurDebugLoc(); 3532 3533 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3534 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3535 SDValue Op = getValue(I.getArgOperand(0)); 3536 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3537 3538 // Scale the exponent by log10(2) [0.30102999f]. 3539 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3540 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3541 getF32Constant(DAG, 0x3e9a209a)); 3542 3543 // Get the significand and build it into a floating-point number with 3544 // exponent of 1. 3545 SDValue X = GetSignificand(DAG, Op1, dl); 3546 3547 if (LimitFloatPrecision <= 6) { 3548 // For floating-point precision of 6: 3549 // 3550 // Log10ofMantissa = 3551 // -0.50419619f + 3552 // (0.60948995f - 0.10380950f * x) * x; 3553 // 3554 // error 0.0014886165, which is 6 bits 3555 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3556 getF32Constant(DAG, 0xbdd49a13)); 3557 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3558 getF32Constant(DAG, 0x3f1c0789)); 3559 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3560 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3561 getF32Constant(DAG, 0x3f011300)); 3562 3563 result = DAG.getNode(ISD::FADD, dl, 3564 MVT::f32, LogOfExponent, Log10ofMantissa); 3565 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3566 // For floating-point precision of 12: 3567 // 3568 // Log10ofMantissa = 3569 // -0.64831180f + 3570 // (0.91751397f + 3571 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3572 // 3573 // error 0.00019228036, which is better than 12 bits 3574 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3575 getF32Constant(DAG, 0x3d431f31)); 3576 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3577 getF32Constant(DAG, 0x3ea21fb2)); 3578 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3579 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3580 getF32Constant(DAG, 0x3f6ae232)); 3581 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3582 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3583 getF32Constant(DAG, 0x3f25f7c3)); 3584 3585 result = DAG.getNode(ISD::FADD, dl, 3586 MVT::f32, LogOfExponent, Log10ofMantissa); 3587 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3588 // For floating-point precision of 18: 3589 // 3590 // Log10ofMantissa = 3591 // -0.84299375f + 3592 // (1.5327582f + 3593 // (-1.0688956f + 3594 // (0.49102474f + 3595 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3596 // 3597 // error 0.0000037995730, which is better than 18 bits 3598 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3599 getF32Constant(DAG, 0x3c5d51ce)); 3600 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3601 getF32Constant(DAG, 0x3e00685a)); 3602 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3603 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3604 getF32Constant(DAG, 0x3efb6798)); 3605 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3606 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3607 getF32Constant(DAG, 0x3f88d192)); 3608 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3609 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3610 getF32Constant(DAG, 0x3fc4316c)); 3611 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3612 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3613 getF32Constant(DAG, 0x3f57ce70)); 3614 3615 result = DAG.getNode(ISD::FADD, dl, 3616 MVT::f32, LogOfExponent, Log10ofMantissa); 3617 } 3618 } else { 3619 // No special expansion. 3620 result = DAG.getNode(ISD::FLOG10, dl, 3621 getValue(I.getArgOperand(0)).getValueType(), 3622 getValue(I.getArgOperand(0))); 3623 } 3624 3625 setValue(&I, result); 3626 } 3627 3628 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3629 /// limited-precision mode. 3630 void 3631 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3632 SDValue result; 3633 DebugLoc dl = getCurDebugLoc(); 3634 3635 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3636 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3637 SDValue Op = getValue(I.getArgOperand(0)); 3638 3639 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3640 3641 // FractionalPartOfX = x - (float)IntegerPartOfX; 3642 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3643 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3644 3645 // IntegerPartOfX <<= 23; 3646 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3647 DAG.getConstant(23, TLI.getPointerTy())); 3648 3649 if (LimitFloatPrecision <= 6) { 3650 // For floating-point precision of 6: 3651 // 3652 // TwoToFractionalPartOfX = 3653 // 0.997535578f + 3654 // (0.735607626f + 0.252464424f * x) * x; 3655 // 3656 // error 0.0144103317, which is 6 bits 3657 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3658 getF32Constant(DAG, 0x3e814304)); 3659 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3660 getF32Constant(DAG, 0x3f3c50c8)); 3661 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3662 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3663 getF32Constant(DAG, 0x3f7f5e7e)); 3664 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3665 SDValue TwoToFractionalPartOfX = 3666 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3667 3668 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3669 MVT::f32, TwoToFractionalPartOfX); 3670 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3671 // For floating-point precision of 12: 3672 // 3673 // TwoToFractionalPartOfX = 3674 // 0.999892986f + 3675 // (0.696457318f + 3676 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3677 // 3678 // error 0.000107046256, which is 13 to 14 bits 3679 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3680 getF32Constant(DAG, 0x3da235e3)); 3681 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3682 getF32Constant(DAG, 0x3e65b8f3)); 3683 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3684 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3685 getF32Constant(DAG, 0x3f324b07)); 3686 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3687 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3688 getF32Constant(DAG, 0x3f7ff8fd)); 3689 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3690 SDValue TwoToFractionalPartOfX = 3691 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3692 3693 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3694 MVT::f32, TwoToFractionalPartOfX); 3695 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3696 // For floating-point precision of 18: 3697 // 3698 // TwoToFractionalPartOfX = 3699 // 0.999999982f + 3700 // (0.693148872f + 3701 // (0.240227044f + 3702 // (0.554906021e-1f + 3703 // (0.961591928e-2f + 3704 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3705 // error 2.47208000*10^(-7), which is better than 18 bits 3706 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3707 getF32Constant(DAG, 0x3924b03e)); 3708 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3709 getF32Constant(DAG, 0x3ab24b87)); 3710 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3711 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3712 getF32Constant(DAG, 0x3c1d8c17)); 3713 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3714 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3715 getF32Constant(DAG, 0x3d634a1d)); 3716 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3717 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3718 getF32Constant(DAG, 0x3e75fe14)); 3719 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3720 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3721 getF32Constant(DAG, 0x3f317234)); 3722 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3723 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3724 getF32Constant(DAG, 0x3f800000)); 3725 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3726 SDValue TwoToFractionalPartOfX = 3727 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3728 3729 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3730 MVT::f32, TwoToFractionalPartOfX); 3731 } 3732 } else { 3733 // No special expansion. 3734 result = DAG.getNode(ISD::FEXP2, dl, 3735 getValue(I.getArgOperand(0)).getValueType(), 3736 getValue(I.getArgOperand(0))); 3737 } 3738 3739 setValue(&I, result); 3740 } 3741 3742 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3743 /// limited-precision mode with x == 10.0f. 3744 void 3745 SelectionDAGBuilder::visitPow(const CallInst &I) { 3746 SDValue result; 3747 const Value *Val = I.getArgOperand(0); 3748 DebugLoc dl = getCurDebugLoc(); 3749 bool IsExp10 = false; 3750 3751 if (getValue(Val).getValueType() == MVT::f32 && 3752 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 3753 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3754 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3755 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3756 APFloat Ten(10.0f); 3757 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3758 } 3759 } 3760 } 3761 3762 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3763 SDValue Op = getValue(I.getArgOperand(1)); 3764 3765 // Put the exponent in the right bit position for later addition to the 3766 // final result: 3767 // 3768 // #define LOG2OF10 3.3219281f 3769 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3770 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3771 getF32Constant(DAG, 0x40549a78)); 3772 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3773 3774 // FractionalPartOfX = x - (float)IntegerPartOfX; 3775 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3776 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3777 3778 // IntegerPartOfX <<= 23; 3779 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3780 DAG.getConstant(23, TLI.getPointerTy())); 3781 3782 if (LimitFloatPrecision <= 6) { 3783 // For floating-point precision of 6: 3784 // 3785 // twoToFractionalPartOfX = 3786 // 0.997535578f + 3787 // (0.735607626f + 0.252464424f * x) * x; 3788 // 3789 // error 0.0144103317, which is 6 bits 3790 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3791 getF32Constant(DAG, 0x3e814304)); 3792 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3793 getF32Constant(DAG, 0x3f3c50c8)); 3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3795 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3796 getF32Constant(DAG, 0x3f7f5e7e)); 3797 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3798 SDValue TwoToFractionalPartOfX = 3799 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3800 3801 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3802 MVT::f32, TwoToFractionalPartOfX); 3803 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3804 // For floating-point precision of 12: 3805 // 3806 // TwoToFractionalPartOfX = 3807 // 0.999892986f + 3808 // (0.696457318f + 3809 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3810 // 3811 // error 0.000107046256, which is 13 to 14 bits 3812 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3813 getF32Constant(DAG, 0x3da235e3)); 3814 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3815 getF32Constant(DAG, 0x3e65b8f3)); 3816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3817 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3818 getF32Constant(DAG, 0x3f324b07)); 3819 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3820 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3821 getF32Constant(DAG, 0x3f7ff8fd)); 3822 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3823 SDValue TwoToFractionalPartOfX = 3824 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3825 3826 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3827 MVT::f32, TwoToFractionalPartOfX); 3828 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3829 // For floating-point precision of 18: 3830 // 3831 // TwoToFractionalPartOfX = 3832 // 0.999999982f + 3833 // (0.693148872f + 3834 // (0.240227044f + 3835 // (0.554906021e-1f + 3836 // (0.961591928e-2f + 3837 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3838 // error 2.47208000*10^(-7), which is better than 18 bits 3839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3840 getF32Constant(DAG, 0x3924b03e)); 3841 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3842 getF32Constant(DAG, 0x3ab24b87)); 3843 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3844 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3845 getF32Constant(DAG, 0x3c1d8c17)); 3846 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3847 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3848 getF32Constant(DAG, 0x3d634a1d)); 3849 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3850 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3851 getF32Constant(DAG, 0x3e75fe14)); 3852 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3853 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3854 getF32Constant(DAG, 0x3f317234)); 3855 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3856 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3857 getF32Constant(DAG, 0x3f800000)); 3858 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3859 SDValue TwoToFractionalPartOfX = 3860 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3861 3862 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3863 MVT::f32, TwoToFractionalPartOfX); 3864 } 3865 } else { 3866 // No special expansion. 3867 result = DAG.getNode(ISD::FPOW, dl, 3868 getValue(I.getArgOperand(0)).getValueType(), 3869 getValue(I.getArgOperand(0)), 3870 getValue(I.getArgOperand(1))); 3871 } 3872 3873 setValue(&I, result); 3874 } 3875 3876 3877 /// ExpandPowI - Expand a llvm.powi intrinsic. 3878 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3879 SelectionDAG &DAG) { 3880 // If RHS is a constant, we can expand this out to a multiplication tree, 3881 // otherwise we end up lowering to a call to __powidf2 (for example). When 3882 // optimizing for size, we only want to do this if the expansion would produce 3883 // a small number of multiplies, otherwise we do the full expansion. 3884 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3885 // Get the exponent as a positive value. 3886 unsigned Val = RHSC->getSExtValue(); 3887 if ((int)Val < 0) Val = -Val; 3888 3889 // powi(x, 0) -> 1.0 3890 if (Val == 0) 3891 return DAG.getConstantFP(1.0, LHS.getValueType()); 3892 3893 const Function *F = DAG.getMachineFunction().getFunction(); 3894 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3895 // If optimizing for size, don't insert too many multiplies. This 3896 // inserts up to 5 multiplies. 3897 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3898 // We use the simple binary decomposition method to generate the multiply 3899 // sequence. There are more optimal ways to do this (for example, 3900 // powi(x,15) generates one more multiply than it should), but this has 3901 // the benefit of being both really simple and much better than a libcall. 3902 SDValue Res; // Logically starts equal to 1.0 3903 SDValue CurSquare = LHS; 3904 while (Val) { 3905 if (Val & 1) { 3906 if (Res.getNode()) 3907 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3908 else 3909 Res = CurSquare; // 1.0*CurSquare. 3910 } 3911 3912 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3913 CurSquare, CurSquare); 3914 Val >>= 1; 3915 } 3916 3917 // If the original was negative, invert the result, producing 1/(x*x*x). 3918 if (RHSC->getSExtValue() < 0) 3919 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3920 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3921 return Res; 3922 } 3923 } 3924 3925 // Otherwise, expand to a libcall. 3926 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3927 } 3928 3929 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3930 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3931 /// At the end of instruction selection, they will be inserted to the entry BB. 3932 bool 3933 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 3934 uint64_t Offset, 3935 const SDValue &N) { 3936 if (!isa<Argument>(V)) 3937 return false; 3938 3939 MachineFunction &MF = DAG.getMachineFunction(); 3940 // Ignore inlined function arguments here. 3941 DIVariable DV(Variable); 3942 if (DV.isInlinedFnArgument(MF.getFunction())) 3943 return false; 3944 3945 MachineBasicBlock *MBB = FuncInfo.MBB; 3946 if (MBB != &MF.front()) 3947 return false; 3948 3949 unsigned Reg = 0; 3950 if (N.getNode() && N.getOpcode() == ISD::CopyFromReg) { 3951 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 3952 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 3953 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 3954 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 3955 if (PR) 3956 Reg = PR; 3957 } 3958 } 3959 3960 if (!Reg) { 3961 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 3962 if (VMI == FuncInfo.ValueMap.end()) 3963 return false; 3964 Reg = VMI->second; 3965 } 3966 3967 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 3968 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 3969 TII->get(TargetOpcode::DBG_VALUE)) 3970 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 3971 FuncInfo.ArgDbgValues.push_back(&*MIB); 3972 return true; 3973 } 3974 3975 // VisualStudio defines setjmp as _setjmp 3976 #if defined(_MSC_VER) && defined(setjmp) 3977 #define setjmp_undefined_for_visual_studio 3978 #undef setjmp 3979 #endif 3980 3981 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3982 /// we want to emit this as a call to a named external function, return the name 3983 /// otherwise lower it and return null. 3984 const char * 3985 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3986 DebugLoc dl = getCurDebugLoc(); 3987 SDValue Res; 3988 3989 switch (Intrinsic) { 3990 default: 3991 // By default, turn this into a target intrinsic node. 3992 visitTargetIntrinsic(I, Intrinsic); 3993 return 0; 3994 case Intrinsic::vastart: visitVAStart(I); return 0; 3995 case Intrinsic::vaend: visitVAEnd(I); return 0; 3996 case Intrinsic::vacopy: visitVACopy(I); return 0; 3997 case Intrinsic::returnaddress: 3998 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3999 getValue(I.getArgOperand(0)))); 4000 return 0; 4001 case Intrinsic::frameaddress: 4002 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4003 getValue(I.getArgOperand(0)))); 4004 return 0; 4005 case Intrinsic::setjmp: 4006 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4007 case Intrinsic::longjmp: 4008 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4009 case Intrinsic::memcpy: { 4010 // Assert for address < 256 since we support only user defined address 4011 // spaces. 4012 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4013 < 256 && 4014 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4015 < 256 && 4016 "Unknown address space"); 4017 SDValue Op1 = getValue(I.getArgOperand(0)); 4018 SDValue Op2 = getValue(I.getArgOperand(1)); 4019 SDValue Op3 = getValue(I.getArgOperand(2)); 4020 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4021 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4022 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4023 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4024 return 0; 4025 } 4026 case Intrinsic::memset: { 4027 // Assert for address < 256 since we support only user defined address 4028 // spaces. 4029 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4030 < 256 && 4031 "Unknown address space"); 4032 SDValue Op1 = getValue(I.getArgOperand(0)); 4033 SDValue Op2 = getValue(I.getArgOperand(1)); 4034 SDValue Op3 = getValue(I.getArgOperand(2)); 4035 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4036 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4037 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4038 I.getArgOperand(0), 0)); 4039 return 0; 4040 } 4041 case Intrinsic::memmove: { 4042 // Assert for address < 256 since we support only user defined address 4043 // spaces. 4044 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4045 < 256 && 4046 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4047 < 256 && 4048 "Unknown address space"); 4049 SDValue Op1 = getValue(I.getArgOperand(0)); 4050 SDValue Op2 = getValue(I.getArgOperand(1)); 4051 SDValue Op3 = getValue(I.getArgOperand(2)); 4052 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4053 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4054 4055 // If the source and destination are known to not be aliases, we can 4056 // lower memmove as memcpy. 4057 uint64_t Size = -1ULL; 4058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 4059 Size = C->getZExtValue(); 4060 if (AA->alias(I.getArgOperand(0), Size, I.getArgOperand(1), Size) == 4061 AliasAnalysis::NoAlias) { 4062 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4063 false, I.getArgOperand(0), 0, 4064 I.getArgOperand(1), 0)); 4065 return 0; 4066 } 4067 4068 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4069 I.getArgOperand(0), 0, I.getArgOperand(1), 0)); 4070 return 0; 4071 } 4072 case Intrinsic::dbg_declare: { 4073 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4074 if (!DIVariable(DI.getVariable()).Verify()) 4075 return 0; 4076 4077 MDNode *Variable = DI.getVariable(); 4078 // Parameters are handled specially. 4079 bool isParameter = 4080 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4081 const Value *Address = DI.getAddress(); 4082 if (!Address) 4083 return 0; 4084 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4085 Address = BCI->getOperand(0); 4086 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4087 4088 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4089 // but do not always have a corresponding SDNode built. The SDNodeOrder 4090 // absolute, but not relative, values are different depending on whether 4091 // debug info exists. 4092 ++SDNodeOrder; 4093 SDValue &N = NodeMap[Address]; 4094 SDDbgValue *SDV; 4095 if (N.getNode()) { 4096 if (isParameter && !AI) { 4097 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4098 if (FINode) 4099 // Byval parameter. We have a frame index at this point. 4100 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4101 0, dl, SDNodeOrder); 4102 else 4103 // Can't do anything with other non-AI cases yet. This might be a 4104 // parameter of a callee function that got inlined, for example. 4105 return 0; 4106 } else if (AI) 4107 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4108 0, dl, SDNodeOrder); 4109 else 4110 // Can't do anything with other non-AI cases yet. 4111 return 0; 4112 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4113 } else { 4114 // If Address is an arugment then try to emits its dbg value using 4115 // virtual register info from the FuncInfo.ValueMap. Otherwise add undef 4116 // to help track missing debug info. 4117 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4118 SDV = DAG.getDbgValue(Variable, UndefValue::get(Address->getType()), 4119 0, dl, SDNodeOrder); 4120 DAG.AddDbgValue(SDV, 0, isParameter); 4121 } 4122 } 4123 return 0; 4124 } 4125 case Intrinsic::dbg_value: { 4126 const DbgValueInst &DI = cast<DbgValueInst>(I); 4127 if (!DIVariable(DI.getVariable()).Verify()) 4128 return 0; 4129 4130 MDNode *Variable = DI.getVariable(); 4131 uint64_t Offset = DI.getOffset(); 4132 const Value *V = DI.getValue(); 4133 if (!V) 4134 return 0; 4135 4136 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4137 // but do not always have a corresponding SDNode built. The SDNodeOrder 4138 // absolute, but not relative, values are different depending on whether 4139 // debug info exists. 4140 ++SDNodeOrder; 4141 SDDbgValue *SDV; 4142 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 4143 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4144 DAG.AddDbgValue(SDV, 0, false); 4145 } else { 4146 bool createUndef = false; 4147 // Do not use getValue() in here; we don't want to generate code at 4148 // this point if it hasn't been done yet. 4149 SDValue N = NodeMap[V]; 4150 if (!N.getNode() && isa<Argument>(V)) 4151 // Check unused arguments map. 4152 N = UnusedArgNodeMap[V]; 4153 if (N.getNode()) { 4154 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4155 SDV = DAG.getDbgValue(Variable, N.getNode(), 4156 N.getResNo(), Offset, dl, SDNodeOrder); 4157 DAG.AddDbgValue(SDV, N.getNode(), false); 4158 } 4159 } else if (isa<PHINode>(V) && !V->use_empty() ) { 4160 // Do not call getValue(V) yet, as we don't want to generate code. 4161 // Remember it for later. 4162 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4163 DanglingDebugInfoMap[V] = DDI; 4164 } else 4165 createUndef = true; 4166 if (createUndef) { 4167 // We may expand this to cover more cases. One case where we have no 4168 // data available is an unreferenced parameter; we need this fallback. 4169 SDV = DAG.getDbgValue(Variable, UndefValue::get(V->getType()), 4170 Offset, dl, SDNodeOrder); 4171 DAG.AddDbgValue(SDV, 0, false); 4172 } 4173 } 4174 4175 // Build a debug info table entry. 4176 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4177 V = BCI->getOperand(0); 4178 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4179 // Don't handle byval struct arguments or VLAs, for example. 4180 if (!AI) 4181 return 0; 4182 DenseMap<const AllocaInst*, int>::iterator SI = 4183 FuncInfo.StaticAllocaMap.find(AI); 4184 if (SI == FuncInfo.StaticAllocaMap.end()) 4185 return 0; // VLAs. 4186 int FI = SI->second; 4187 4188 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4189 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4190 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4191 return 0; 4192 } 4193 case Intrinsic::eh_exception: { 4194 // Insert the EXCEPTIONADDR instruction. 4195 assert(FuncInfo.MBB->isLandingPad() && 4196 "Call to eh.exception not in landing pad!"); 4197 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4198 SDValue Ops[1]; 4199 Ops[0] = DAG.getRoot(); 4200 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4201 setValue(&I, Op); 4202 DAG.setRoot(Op.getValue(1)); 4203 return 0; 4204 } 4205 4206 case Intrinsic::eh_selector: { 4207 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4208 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4209 if (CallMBB->isLandingPad()) 4210 AddCatchInfo(I, &MMI, CallMBB); 4211 else { 4212 #ifndef NDEBUG 4213 FuncInfo.CatchInfoLost.insert(&I); 4214 #endif 4215 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4216 unsigned Reg = TLI.getExceptionSelectorRegister(); 4217 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4218 } 4219 4220 // Insert the EHSELECTION instruction. 4221 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4222 SDValue Ops[2]; 4223 Ops[0] = getValue(I.getArgOperand(0)); 4224 Ops[1] = getRoot(); 4225 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4226 DAG.setRoot(Op.getValue(1)); 4227 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4228 return 0; 4229 } 4230 4231 case Intrinsic::eh_typeid_for: { 4232 // Find the type id for the given typeinfo. 4233 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4234 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4235 Res = DAG.getConstant(TypeID, MVT::i32); 4236 setValue(&I, Res); 4237 return 0; 4238 } 4239 4240 case Intrinsic::eh_return_i32: 4241 case Intrinsic::eh_return_i64: 4242 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4243 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4244 MVT::Other, 4245 getControlRoot(), 4246 getValue(I.getArgOperand(0)), 4247 getValue(I.getArgOperand(1)))); 4248 return 0; 4249 case Intrinsic::eh_unwind_init: 4250 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4251 return 0; 4252 case Intrinsic::eh_dwarf_cfa: { 4253 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4254 TLI.getPointerTy()); 4255 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4256 TLI.getPointerTy(), 4257 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4258 TLI.getPointerTy()), 4259 CfaArg); 4260 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4261 TLI.getPointerTy(), 4262 DAG.getConstant(0, TLI.getPointerTy())); 4263 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4264 FA, Offset)); 4265 return 0; 4266 } 4267 case Intrinsic::eh_sjlj_callsite: { 4268 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4269 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4270 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4271 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4272 4273 MMI.setCurrentCallSite(CI->getZExtValue()); 4274 return 0; 4275 } 4276 case Intrinsic::eh_sjlj_setjmp: { 4277 setValue(&I, DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, MVT::i32, getRoot(), 4278 getValue(I.getArgOperand(0)))); 4279 return 0; 4280 } 4281 case Intrinsic::eh_sjlj_longjmp: { 4282 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4283 getRoot(), 4284 getValue(I.getArgOperand(0)))); 4285 return 0; 4286 } 4287 4288 case Intrinsic::convertff: 4289 case Intrinsic::convertfsi: 4290 case Intrinsic::convertfui: 4291 case Intrinsic::convertsif: 4292 case Intrinsic::convertuif: 4293 case Intrinsic::convertss: 4294 case Intrinsic::convertsu: 4295 case Intrinsic::convertus: 4296 case Intrinsic::convertuu: { 4297 ISD::CvtCode Code = ISD::CVT_INVALID; 4298 switch (Intrinsic) { 4299 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4300 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4301 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4302 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4303 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4304 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4305 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4306 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4307 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4308 } 4309 EVT DestVT = TLI.getValueType(I.getType()); 4310 const Value *Op1 = I.getArgOperand(0); 4311 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4312 DAG.getValueType(DestVT), 4313 DAG.getValueType(getValue(Op1).getValueType()), 4314 getValue(I.getArgOperand(1)), 4315 getValue(I.getArgOperand(2)), 4316 Code); 4317 setValue(&I, Res); 4318 return 0; 4319 } 4320 case Intrinsic::sqrt: 4321 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4322 getValue(I.getArgOperand(0)).getValueType(), 4323 getValue(I.getArgOperand(0)))); 4324 return 0; 4325 case Intrinsic::powi: 4326 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4327 getValue(I.getArgOperand(1)), DAG)); 4328 return 0; 4329 case Intrinsic::sin: 4330 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4331 getValue(I.getArgOperand(0)).getValueType(), 4332 getValue(I.getArgOperand(0)))); 4333 return 0; 4334 case Intrinsic::cos: 4335 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4336 getValue(I.getArgOperand(0)).getValueType(), 4337 getValue(I.getArgOperand(0)))); 4338 return 0; 4339 case Intrinsic::log: 4340 visitLog(I); 4341 return 0; 4342 case Intrinsic::log2: 4343 visitLog2(I); 4344 return 0; 4345 case Intrinsic::log10: 4346 visitLog10(I); 4347 return 0; 4348 case Intrinsic::exp: 4349 visitExp(I); 4350 return 0; 4351 case Intrinsic::exp2: 4352 visitExp2(I); 4353 return 0; 4354 case Intrinsic::pow: 4355 visitPow(I); 4356 return 0; 4357 case Intrinsic::convert_to_fp16: 4358 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4359 MVT::i16, getValue(I.getArgOperand(0)))); 4360 return 0; 4361 case Intrinsic::convert_from_fp16: 4362 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4363 MVT::f32, getValue(I.getArgOperand(0)))); 4364 return 0; 4365 case Intrinsic::pcmarker: { 4366 SDValue Tmp = getValue(I.getArgOperand(0)); 4367 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4368 return 0; 4369 } 4370 case Intrinsic::readcyclecounter: { 4371 SDValue Op = getRoot(); 4372 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4373 DAG.getVTList(MVT::i64, MVT::Other), 4374 &Op, 1); 4375 setValue(&I, Res); 4376 DAG.setRoot(Res.getValue(1)); 4377 return 0; 4378 } 4379 case Intrinsic::bswap: 4380 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4381 getValue(I.getArgOperand(0)).getValueType(), 4382 getValue(I.getArgOperand(0)))); 4383 return 0; 4384 case Intrinsic::cttz: { 4385 SDValue Arg = getValue(I.getArgOperand(0)); 4386 EVT Ty = Arg.getValueType(); 4387 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4388 return 0; 4389 } 4390 case Intrinsic::ctlz: { 4391 SDValue Arg = getValue(I.getArgOperand(0)); 4392 EVT Ty = Arg.getValueType(); 4393 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4394 return 0; 4395 } 4396 case Intrinsic::ctpop: { 4397 SDValue Arg = getValue(I.getArgOperand(0)); 4398 EVT Ty = Arg.getValueType(); 4399 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4400 return 0; 4401 } 4402 case Intrinsic::stacksave: { 4403 SDValue Op = getRoot(); 4404 Res = DAG.getNode(ISD::STACKSAVE, dl, 4405 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4406 setValue(&I, Res); 4407 DAG.setRoot(Res.getValue(1)); 4408 return 0; 4409 } 4410 case Intrinsic::stackrestore: { 4411 Res = getValue(I.getArgOperand(0)); 4412 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4413 return 0; 4414 } 4415 case Intrinsic::stackprotector: { 4416 // Emit code into the DAG to store the stack guard onto the stack. 4417 MachineFunction &MF = DAG.getMachineFunction(); 4418 MachineFrameInfo *MFI = MF.getFrameInfo(); 4419 EVT PtrTy = TLI.getPointerTy(); 4420 4421 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4422 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4423 4424 int FI = FuncInfo.StaticAllocaMap[Slot]; 4425 MFI->setStackProtectorIndex(FI); 4426 4427 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4428 4429 // Store the stack protector onto the stack. 4430 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4431 PseudoSourceValue::getFixedStack(FI), 4432 0, true, false, 0); 4433 setValue(&I, Res); 4434 DAG.setRoot(Res); 4435 return 0; 4436 } 4437 case Intrinsic::objectsize: { 4438 // If we don't know by now, we're never going to know. 4439 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4440 4441 assert(CI && "Non-constant type in __builtin_object_size?"); 4442 4443 SDValue Arg = getValue(I.getCalledValue()); 4444 EVT Ty = Arg.getValueType(); 4445 4446 if (CI->isZero()) 4447 Res = DAG.getConstant(-1ULL, Ty); 4448 else 4449 Res = DAG.getConstant(0, Ty); 4450 4451 setValue(&I, Res); 4452 return 0; 4453 } 4454 case Intrinsic::var_annotation: 4455 // Discard annotate attributes 4456 return 0; 4457 4458 case Intrinsic::init_trampoline: { 4459 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4460 4461 SDValue Ops[6]; 4462 Ops[0] = getRoot(); 4463 Ops[1] = getValue(I.getArgOperand(0)); 4464 Ops[2] = getValue(I.getArgOperand(1)); 4465 Ops[3] = getValue(I.getArgOperand(2)); 4466 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4467 Ops[5] = DAG.getSrcValue(F); 4468 4469 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4470 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4471 Ops, 6); 4472 4473 setValue(&I, Res); 4474 DAG.setRoot(Res.getValue(1)); 4475 return 0; 4476 } 4477 case Intrinsic::gcroot: 4478 if (GFI) { 4479 const Value *Alloca = I.getArgOperand(0); 4480 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4481 4482 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4483 GFI->addStackRoot(FI->getIndex(), TypeMap); 4484 } 4485 return 0; 4486 case Intrinsic::gcread: 4487 case Intrinsic::gcwrite: 4488 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4489 return 0; 4490 case Intrinsic::flt_rounds: 4491 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4492 return 0; 4493 case Intrinsic::trap: 4494 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4495 return 0; 4496 case Intrinsic::uadd_with_overflow: 4497 return implVisitAluOverflow(I, ISD::UADDO); 4498 case Intrinsic::sadd_with_overflow: 4499 return implVisitAluOverflow(I, ISD::SADDO); 4500 case Intrinsic::usub_with_overflow: 4501 return implVisitAluOverflow(I, ISD::USUBO); 4502 case Intrinsic::ssub_with_overflow: 4503 return implVisitAluOverflow(I, ISD::SSUBO); 4504 case Intrinsic::umul_with_overflow: 4505 return implVisitAluOverflow(I, ISD::UMULO); 4506 case Intrinsic::smul_with_overflow: 4507 return implVisitAluOverflow(I, ISD::SMULO); 4508 4509 case Intrinsic::prefetch: { 4510 SDValue Ops[4]; 4511 Ops[0] = getRoot(); 4512 Ops[1] = getValue(I.getArgOperand(0)); 4513 Ops[2] = getValue(I.getArgOperand(1)); 4514 Ops[3] = getValue(I.getArgOperand(2)); 4515 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4516 return 0; 4517 } 4518 4519 case Intrinsic::memory_barrier: { 4520 SDValue Ops[6]; 4521 Ops[0] = getRoot(); 4522 for (int x = 1; x < 6; ++x) 4523 Ops[x] = getValue(I.getArgOperand(x - 1)); 4524 4525 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4526 return 0; 4527 } 4528 case Intrinsic::atomic_cmp_swap: { 4529 SDValue Root = getRoot(); 4530 SDValue L = 4531 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4532 getValue(I.getArgOperand(1)).getValueType().getSimpleVT(), 4533 Root, 4534 getValue(I.getArgOperand(0)), 4535 getValue(I.getArgOperand(1)), 4536 getValue(I.getArgOperand(2)), 4537 I.getArgOperand(0)); 4538 setValue(&I, L); 4539 DAG.setRoot(L.getValue(1)); 4540 return 0; 4541 } 4542 case Intrinsic::atomic_load_add: 4543 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4544 case Intrinsic::atomic_load_sub: 4545 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4546 case Intrinsic::atomic_load_or: 4547 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4548 case Intrinsic::atomic_load_xor: 4549 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4550 case Intrinsic::atomic_load_and: 4551 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4552 case Intrinsic::atomic_load_nand: 4553 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4554 case Intrinsic::atomic_load_max: 4555 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4556 case Intrinsic::atomic_load_min: 4557 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4558 case Intrinsic::atomic_load_umin: 4559 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4560 case Intrinsic::atomic_load_umax: 4561 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4562 case Intrinsic::atomic_swap: 4563 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4564 4565 case Intrinsic::invariant_start: 4566 case Intrinsic::lifetime_start: 4567 // Discard region information. 4568 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4569 return 0; 4570 case Intrinsic::invariant_end: 4571 case Intrinsic::lifetime_end: 4572 // Discard region information. 4573 return 0; 4574 } 4575 } 4576 4577 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4578 bool isTailCall, 4579 MachineBasicBlock *LandingPad) { 4580 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4581 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4582 const Type *RetTy = FTy->getReturnType(); 4583 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4584 MCSymbol *BeginLabel = 0; 4585 4586 TargetLowering::ArgListTy Args; 4587 TargetLowering::ArgListEntry Entry; 4588 Args.reserve(CS.arg_size()); 4589 4590 // Check whether the function can return without sret-demotion. 4591 SmallVector<ISD::OutputArg, 4> Outs; 4592 SmallVector<uint64_t, 4> Offsets; 4593 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4594 Outs, TLI, &Offsets); 4595 4596 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4597 FTy->isVarArg(), Outs, FTy->getContext()); 4598 4599 SDValue DemoteStackSlot; 4600 4601 if (!CanLowerReturn) { 4602 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4603 FTy->getReturnType()); 4604 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4605 FTy->getReturnType()); 4606 MachineFunction &MF = DAG.getMachineFunction(); 4607 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4608 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4609 4610 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4611 Entry.Node = DemoteStackSlot; 4612 Entry.Ty = StackSlotPtrType; 4613 Entry.isSExt = false; 4614 Entry.isZExt = false; 4615 Entry.isInReg = false; 4616 Entry.isSRet = true; 4617 Entry.isNest = false; 4618 Entry.isByVal = false; 4619 Entry.Alignment = Align; 4620 Args.push_back(Entry); 4621 RetTy = Type::getVoidTy(FTy->getContext()); 4622 } 4623 4624 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4625 i != e; ++i) { 4626 SDValue ArgNode = getValue(*i); 4627 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4628 4629 unsigned attrInd = i - CS.arg_begin() + 1; 4630 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4631 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4632 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4633 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4634 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4635 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4636 Entry.Alignment = CS.getParamAlignment(attrInd); 4637 Args.push_back(Entry); 4638 } 4639 4640 if (LandingPad) { 4641 // Insert a label before the invoke call to mark the try range. This can be 4642 // used to detect deletion of the invoke via the MachineModuleInfo. 4643 BeginLabel = MMI.getContext().CreateTempSymbol(); 4644 4645 // For SjLj, keep track of which landing pads go with which invokes 4646 // so as to maintain the ordering of pads in the LSDA. 4647 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4648 if (CallSiteIndex) { 4649 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4650 // Now that the call site is handled, stop tracking it. 4651 MMI.setCurrentCallSite(0); 4652 } 4653 4654 // Both PendingLoads and PendingExports must be flushed here; 4655 // this call might not return. 4656 (void)getRoot(); 4657 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4658 } 4659 4660 // Check if target-independent constraints permit a tail call here. 4661 // Target-dependent constraints are checked within TLI.LowerCallTo. 4662 if (isTailCall && 4663 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4664 isTailCall = false; 4665 4666 std::pair<SDValue,SDValue> Result = 4667 TLI.LowerCallTo(getRoot(), RetTy, 4668 CS.paramHasAttr(0, Attribute::SExt), 4669 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4670 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4671 CS.getCallingConv(), 4672 isTailCall, 4673 !CS.getInstruction()->use_empty(), 4674 Callee, Args, DAG, getCurDebugLoc()); 4675 assert((isTailCall || Result.second.getNode()) && 4676 "Non-null chain expected with non-tail call!"); 4677 assert((Result.second.getNode() || !Result.first.getNode()) && 4678 "Null value expected with tail call!"); 4679 if (Result.first.getNode()) { 4680 setValue(CS.getInstruction(), Result.first); 4681 } else if (!CanLowerReturn && Result.second.getNode()) { 4682 // The instruction result is the result of loading from the 4683 // hidden sret parameter. 4684 SmallVector<EVT, 1> PVTs; 4685 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4686 4687 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4688 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4689 EVT PtrVT = PVTs[0]; 4690 unsigned NumValues = Outs.size(); 4691 SmallVector<SDValue, 4> Values(NumValues); 4692 SmallVector<SDValue, 4> Chains(NumValues); 4693 4694 for (unsigned i = 0; i < NumValues; ++i) { 4695 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4696 DemoteStackSlot, 4697 DAG.getConstant(Offsets[i], PtrVT)); 4698 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 4699 Add, NULL, Offsets[i], false, false, 1); 4700 Values[i] = L; 4701 Chains[i] = L.getValue(1); 4702 } 4703 4704 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4705 MVT::Other, &Chains[0], NumValues); 4706 PendingLoads.push_back(Chain); 4707 4708 // Collect the legal value parts into potentially illegal values 4709 // that correspond to the original function's return values. 4710 SmallVector<EVT, 4> RetTys; 4711 RetTy = FTy->getReturnType(); 4712 ComputeValueVTs(TLI, RetTy, RetTys); 4713 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4714 SmallVector<SDValue, 4> ReturnValues; 4715 unsigned CurReg = 0; 4716 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4717 EVT VT = RetTys[I]; 4718 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4719 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4720 4721 SDValue ReturnValue = 4722 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4723 RegisterVT, VT, AssertOp); 4724 ReturnValues.push_back(ReturnValue); 4725 CurReg += NumRegs; 4726 } 4727 4728 setValue(CS.getInstruction(), 4729 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4730 DAG.getVTList(&RetTys[0], RetTys.size()), 4731 &ReturnValues[0], ReturnValues.size())); 4732 4733 } 4734 4735 // As a special case, a null chain means that a tail call has been emitted and 4736 // the DAG root is already updated. 4737 if (Result.second.getNode()) 4738 DAG.setRoot(Result.second); 4739 else 4740 HasTailCall = true; 4741 4742 if (LandingPad) { 4743 // Insert a label at the end of the invoke call to mark the try range. This 4744 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4745 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4746 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4747 4748 // Inform MachineModuleInfo of range. 4749 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4750 } 4751 } 4752 4753 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4754 /// value is equal or not-equal to zero. 4755 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4756 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4757 UI != E; ++UI) { 4758 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4759 if (IC->isEquality()) 4760 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4761 if (C->isNullValue()) 4762 continue; 4763 // Unknown instruction. 4764 return false; 4765 } 4766 return true; 4767 } 4768 4769 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4770 const Type *LoadTy, 4771 SelectionDAGBuilder &Builder) { 4772 4773 // Check to see if this load can be trivially constant folded, e.g. if the 4774 // input is from a string literal. 4775 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4776 // Cast pointer to the type we really want to load. 4777 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4778 PointerType::getUnqual(LoadTy)); 4779 4780 if (const Constant *LoadCst = 4781 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4782 Builder.TD)) 4783 return Builder.getValue(LoadCst); 4784 } 4785 4786 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4787 // still constant memory, the input chain can be the entry node. 4788 SDValue Root; 4789 bool ConstantMemory = false; 4790 4791 // Do not serialize (non-volatile) loads of constant memory with anything. 4792 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4793 Root = Builder.DAG.getEntryNode(); 4794 ConstantMemory = true; 4795 } else { 4796 // Do not serialize non-volatile loads against each other. 4797 Root = Builder.DAG.getRoot(); 4798 } 4799 4800 SDValue Ptr = Builder.getValue(PtrVal); 4801 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4802 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4803 false /*volatile*/, 4804 false /*nontemporal*/, 1 /* align=1 */); 4805 4806 if (!ConstantMemory) 4807 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4808 return LoadVal; 4809 } 4810 4811 4812 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4813 /// If so, return true and lower it, otherwise return false and it will be 4814 /// lowered like a normal call. 4815 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4816 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4817 if (I.getNumArgOperands() != 3) 4818 return false; 4819 4820 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 4821 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4822 !I.getArgOperand(2)->getType()->isIntegerTy() || 4823 !I.getType()->isIntegerTy()) 4824 return false; 4825 4826 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 4827 4828 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4829 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4830 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4831 bool ActuallyDoIt = true; 4832 MVT LoadVT; 4833 const Type *LoadTy; 4834 switch (Size->getZExtValue()) { 4835 default: 4836 LoadVT = MVT::Other; 4837 LoadTy = 0; 4838 ActuallyDoIt = false; 4839 break; 4840 case 2: 4841 LoadVT = MVT::i16; 4842 LoadTy = Type::getInt16Ty(Size->getContext()); 4843 break; 4844 case 4: 4845 LoadVT = MVT::i32; 4846 LoadTy = Type::getInt32Ty(Size->getContext()); 4847 break; 4848 case 8: 4849 LoadVT = MVT::i64; 4850 LoadTy = Type::getInt64Ty(Size->getContext()); 4851 break; 4852 /* 4853 case 16: 4854 LoadVT = MVT::v4i32; 4855 LoadTy = Type::getInt32Ty(Size->getContext()); 4856 LoadTy = VectorType::get(LoadTy, 4); 4857 break; 4858 */ 4859 } 4860 4861 // This turns into unaligned loads. We only do this if the target natively 4862 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4863 // we'll only produce a small number of byte loads. 4864 4865 // Require that we can find a legal MVT, and only do this if the target 4866 // supports unaligned loads of that type. Expanding into byte loads would 4867 // bloat the code. 4868 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4869 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4870 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4871 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4872 ActuallyDoIt = false; 4873 } 4874 4875 if (ActuallyDoIt) { 4876 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4877 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4878 4879 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4880 ISD::SETNE); 4881 EVT CallVT = TLI.getValueType(I.getType(), true); 4882 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4883 return true; 4884 } 4885 } 4886 4887 4888 return false; 4889 } 4890 4891 4892 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4893 // Handle inline assembly differently. 4894 if (isa<InlineAsm>(I.getCalledValue())) { 4895 visitInlineAsm(&I); 4896 return; 4897 } 4898 4899 const char *RenameFn = 0; 4900 if (Function *F = I.getCalledFunction()) { 4901 if (F->isDeclaration()) { 4902 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 4903 if (unsigned IID = II->getIntrinsicID(F)) { 4904 RenameFn = visitIntrinsicCall(I, IID); 4905 if (!RenameFn) 4906 return; 4907 } 4908 } 4909 if (unsigned IID = F->getIntrinsicID()) { 4910 RenameFn = visitIntrinsicCall(I, IID); 4911 if (!RenameFn) 4912 return; 4913 } 4914 } 4915 4916 // Check for well-known libc/libm calls. If the function is internal, it 4917 // can't be a library call. 4918 if (!F->hasLocalLinkage() && F->hasName()) { 4919 StringRef Name = F->getName(); 4920 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4921 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 4922 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4923 I.getType() == I.getArgOperand(0)->getType() && 4924 I.getType() == I.getArgOperand(1)->getType()) { 4925 SDValue LHS = getValue(I.getArgOperand(0)); 4926 SDValue RHS = getValue(I.getArgOperand(1)); 4927 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4928 LHS.getValueType(), LHS, RHS)); 4929 return; 4930 } 4931 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4932 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4933 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4934 I.getType() == I.getArgOperand(0)->getType()) { 4935 SDValue Tmp = getValue(I.getArgOperand(0)); 4936 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4937 Tmp.getValueType(), Tmp)); 4938 return; 4939 } 4940 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4941 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4942 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4943 I.getType() == I.getArgOperand(0)->getType() && 4944 I.onlyReadsMemory()) { 4945 SDValue Tmp = getValue(I.getArgOperand(0)); 4946 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4947 Tmp.getValueType(), Tmp)); 4948 return; 4949 } 4950 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4951 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4952 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4953 I.getType() == I.getArgOperand(0)->getType() && 4954 I.onlyReadsMemory()) { 4955 SDValue Tmp = getValue(I.getArgOperand(0)); 4956 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4957 Tmp.getValueType(), Tmp)); 4958 return; 4959 } 4960 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4961 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 4962 I.getArgOperand(0)->getType()->isFloatingPointTy() && 4963 I.getType() == I.getArgOperand(0)->getType() && 4964 I.onlyReadsMemory()) { 4965 SDValue Tmp = getValue(I.getArgOperand(0)); 4966 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4967 Tmp.getValueType(), Tmp)); 4968 return; 4969 } 4970 } else if (Name == "memcmp") { 4971 if (visitMemCmpCall(I)) 4972 return; 4973 } 4974 } 4975 } 4976 4977 SDValue Callee; 4978 if (!RenameFn) 4979 Callee = getValue(I.getCalledValue()); 4980 else 4981 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4982 4983 // Check if we can potentially perform a tail call. More detailed checking is 4984 // be done within LowerCallTo, after more information about the call is known. 4985 LowerCallTo(&I, Callee, I.isTailCall()); 4986 } 4987 4988 namespace llvm { 4989 4990 /// AsmOperandInfo - This contains information for each constraint that we are 4991 /// lowering. 4992 class LLVM_LIBRARY_VISIBILITY SDISelAsmOperandInfo : 4993 public TargetLowering::AsmOperandInfo { 4994 public: 4995 /// CallOperand - If this is the result output operand or a clobber 4996 /// this is null, otherwise it is the incoming operand to the CallInst. 4997 /// This gets modified as the asm is processed. 4998 SDValue CallOperand; 4999 5000 /// AssignedRegs - If this is a register or register class operand, this 5001 /// contains the set of register corresponding to the operand. 5002 RegsForValue AssignedRegs; 5003 5004 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 5005 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5006 } 5007 5008 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5009 /// busy in OutputRegs/InputRegs. 5010 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5011 std::set<unsigned> &OutputRegs, 5012 std::set<unsigned> &InputRegs, 5013 const TargetRegisterInfo &TRI) const { 5014 if (isOutReg) { 5015 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5016 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5017 } 5018 if (isInReg) { 5019 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5020 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5021 } 5022 } 5023 5024 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5025 /// corresponds to. If there is no Value* for this operand, it returns 5026 /// MVT::Other. 5027 EVT getCallOperandValEVT(LLVMContext &Context, 5028 const TargetLowering &TLI, 5029 const TargetData *TD) const { 5030 if (CallOperandVal == 0) return MVT::Other; 5031 5032 if (isa<BasicBlock>(CallOperandVal)) 5033 return TLI.getPointerTy(); 5034 5035 const llvm::Type *OpTy = CallOperandVal->getType(); 5036 5037 // If this is an indirect operand, the operand is a pointer to the 5038 // accessed type. 5039 if (isIndirect) { 5040 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5041 if (!PtrTy) 5042 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5043 OpTy = PtrTy->getElementType(); 5044 } 5045 5046 // If OpTy is not a single value, it may be a struct/union that we 5047 // can tile with integers. 5048 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5049 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5050 switch (BitSize) { 5051 default: break; 5052 case 1: 5053 case 8: 5054 case 16: 5055 case 32: 5056 case 64: 5057 case 128: 5058 OpTy = IntegerType::get(Context, BitSize); 5059 break; 5060 } 5061 } 5062 5063 return TLI.getValueType(OpTy, true); 5064 } 5065 5066 private: 5067 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5068 /// specified set. 5069 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5070 const TargetRegisterInfo &TRI) { 5071 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5072 Regs.insert(Reg); 5073 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5074 for (; *Aliases; ++Aliases) 5075 Regs.insert(*Aliases); 5076 } 5077 }; 5078 5079 } // end llvm namespace. 5080 5081 /// isAllocatableRegister - If the specified register is safe to allocate, 5082 /// i.e. it isn't a stack pointer or some other special register, return the 5083 /// register class for the register. Otherwise, return null. 5084 static const TargetRegisterClass * 5085 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 5086 const TargetLowering &TLI, 5087 const TargetRegisterInfo *TRI) { 5088 EVT FoundVT = MVT::Other; 5089 const TargetRegisterClass *FoundRC = 0; 5090 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 5091 E = TRI->regclass_end(); RCI != E; ++RCI) { 5092 EVT ThisVT = MVT::Other; 5093 5094 const TargetRegisterClass *RC = *RCI; 5095 // If none of the value types for this register class are valid, we 5096 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5097 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 5098 I != E; ++I) { 5099 if (TLI.isTypeLegal(*I)) { 5100 // If we have already found this register in a different register class, 5101 // choose the one with the largest VT specified. For example, on 5102 // PowerPC, we favor f64 register classes over f32. 5103 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 5104 ThisVT = *I; 5105 break; 5106 } 5107 } 5108 } 5109 5110 if (ThisVT == MVT::Other) continue; 5111 5112 // NOTE: This isn't ideal. In particular, this might allocate the 5113 // frame pointer in functions that need it (due to them not being taken 5114 // out of allocation, because a variable sized allocation hasn't been seen 5115 // yet). This is a slight code pessimization, but should still work. 5116 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 5117 E = RC->allocation_order_end(MF); I != E; ++I) 5118 if (*I == Reg) { 5119 // We found a matching register class. Keep looking at others in case 5120 // we find one with larger registers that this physreg is also in. 5121 FoundRC = RC; 5122 FoundVT = ThisVT; 5123 break; 5124 } 5125 } 5126 return FoundRC; 5127 } 5128 5129 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5130 /// specified operand. We prefer to assign virtual registers, to allow the 5131 /// register allocator to handle the assignment process. However, if the asm 5132 /// uses features that we can't model on machineinstrs, we have SDISel do the 5133 /// allocation. This produces generally horrible, but correct, code. 5134 /// 5135 /// OpInfo describes the operand. 5136 /// Input and OutputRegs are the set of already allocated physical registers. 5137 /// 5138 void SelectionDAGBuilder:: 5139 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 5140 std::set<unsigned> &OutputRegs, 5141 std::set<unsigned> &InputRegs) { 5142 LLVMContext &Context = FuncInfo.Fn->getContext(); 5143 5144 // Compute whether this value requires an input register, an output register, 5145 // or both. 5146 bool isOutReg = false; 5147 bool isInReg = false; 5148 switch (OpInfo.Type) { 5149 case InlineAsm::isOutput: 5150 isOutReg = true; 5151 5152 // If there is an input constraint that matches this, we need to reserve 5153 // the input register so no other inputs allocate to it. 5154 isInReg = OpInfo.hasMatchingInput(); 5155 break; 5156 case InlineAsm::isInput: 5157 isInReg = true; 5158 isOutReg = false; 5159 break; 5160 case InlineAsm::isClobber: 5161 isOutReg = true; 5162 isInReg = true; 5163 break; 5164 } 5165 5166 5167 MachineFunction &MF = DAG.getMachineFunction(); 5168 SmallVector<unsigned, 4> Regs; 5169 5170 // If this is a constraint for a single physreg, or a constraint for a 5171 // register class, find it. 5172 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5173 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5174 OpInfo.ConstraintVT); 5175 5176 unsigned NumRegs = 1; 5177 if (OpInfo.ConstraintVT != MVT::Other) { 5178 // If this is a FP input in an integer register (or visa versa) insert a bit 5179 // cast of the input value. More generally, handle any case where the input 5180 // value disagrees with the register class we plan to stick this in. 5181 if (OpInfo.Type == InlineAsm::isInput && 5182 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5183 // Try to convert to the first EVT that the reg class contains. If the 5184 // types are identical size, use a bitcast to convert (e.g. two differing 5185 // vector types). 5186 EVT RegVT = *PhysReg.second->vt_begin(); 5187 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5188 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5189 RegVT, OpInfo.CallOperand); 5190 OpInfo.ConstraintVT = RegVT; 5191 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5192 // If the input is a FP value and we want it in FP registers, do a 5193 // bitcast to the corresponding integer type. This turns an f64 value 5194 // into i64, which can be passed with two i32 values on a 32-bit 5195 // machine. 5196 RegVT = EVT::getIntegerVT(Context, 5197 OpInfo.ConstraintVT.getSizeInBits()); 5198 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5199 RegVT, OpInfo.CallOperand); 5200 OpInfo.ConstraintVT = RegVT; 5201 } 5202 } 5203 5204 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5205 } 5206 5207 EVT RegVT; 5208 EVT ValueVT = OpInfo.ConstraintVT; 5209 5210 // If this is a constraint for a specific physical register, like {r17}, 5211 // assign it now. 5212 if (unsigned AssignedReg = PhysReg.first) { 5213 const TargetRegisterClass *RC = PhysReg.second; 5214 if (OpInfo.ConstraintVT == MVT::Other) 5215 ValueVT = *RC->vt_begin(); 5216 5217 // Get the actual register value type. This is important, because the user 5218 // may have asked for (e.g.) the AX register in i32 type. We need to 5219 // remember that AX is actually i16 to get the right extension. 5220 RegVT = *RC->vt_begin(); 5221 5222 // This is a explicit reference to a physical register. 5223 Regs.push_back(AssignedReg); 5224 5225 // If this is an expanded reference, add the rest of the regs to Regs. 5226 if (NumRegs != 1) { 5227 TargetRegisterClass::iterator I = RC->begin(); 5228 for (; *I != AssignedReg; ++I) 5229 assert(I != RC->end() && "Didn't find reg!"); 5230 5231 // Already added the first reg. 5232 --NumRegs; ++I; 5233 for (; NumRegs; --NumRegs, ++I) { 5234 assert(I != RC->end() && "Ran out of registers to allocate!"); 5235 Regs.push_back(*I); 5236 } 5237 } 5238 5239 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5240 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5241 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5242 return; 5243 } 5244 5245 // Otherwise, if this was a reference to an LLVM register class, create vregs 5246 // for this reference. 5247 if (const TargetRegisterClass *RC = PhysReg.second) { 5248 RegVT = *RC->vt_begin(); 5249 if (OpInfo.ConstraintVT == MVT::Other) 5250 ValueVT = RegVT; 5251 5252 // Create the appropriate number of virtual registers. 5253 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5254 for (; NumRegs; --NumRegs) 5255 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5256 5257 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5258 return; 5259 } 5260 5261 // This is a reference to a register class that doesn't directly correspond 5262 // to an LLVM register class. Allocate NumRegs consecutive, available, 5263 // registers from the class. 5264 std::vector<unsigned> RegClassRegs 5265 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5266 OpInfo.ConstraintVT); 5267 5268 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5269 unsigned NumAllocated = 0; 5270 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5271 unsigned Reg = RegClassRegs[i]; 5272 // See if this register is available. 5273 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5274 (isInReg && InputRegs.count(Reg))) { // Already used. 5275 // Make sure we find consecutive registers. 5276 NumAllocated = 0; 5277 continue; 5278 } 5279 5280 // Check to see if this register is allocatable (i.e. don't give out the 5281 // stack pointer). 5282 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5283 if (!RC) { // Couldn't allocate this register. 5284 // Reset NumAllocated to make sure we return consecutive registers. 5285 NumAllocated = 0; 5286 continue; 5287 } 5288 5289 // Okay, this register is good, we can use it. 5290 ++NumAllocated; 5291 5292 // If we allocated enough consecutive registers, succeed. 5293 if (NumAllocated == NumRegs) { 5294 unsigned RegStart = (i-NumAllocated)+1; 5295 unsigned RegEnd = i+1; 5296 // Mark all of the allocated registers used. 5297 for (unsigned i = RegStart; i != RegEnd; ++i) 5298 Regs.push_back(RegClassRegs[i]); 5299 5300 OpInfo.AssignedRegs = RegsForValue(Regs, *RC->vt_begin(), 5301 OpInfo.ConstraintVT); 5302 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5303 return; 5304 } 5305 } 5306 5307 // Otherwise, we couldn't allocate enough registers for this. 5308 } 5309 5310 /// visitInlineAsm - Handle a call to an InlineAsm object. 5311 /// 5312 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5313 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5314 5315 /// ConstraintOperands - Information about all of the constraints. 5316 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5317 5318 std::set<unsigned> OutputRegs, InputRegs; 5319 5320 // Do a prepass over the constraints, canonicalizing them, and building up the 5321 // ConstraintOperands list. 5322 std::vector<InlineAsm::ConstraintInfo> 5323 ConstraintInfos = IA->ParseConstraints(); 5324 5325 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5326 5327 SDValue Chain, Flag; 5328 5329 // We won't need to flush pending loads if this asm doesn't touch 5330 // memory and is nonvolatile. 5331 if (hasMemory || IA->hasSideEffects()) 5332 Chain = getRoot(); 5333 else 5334 Chain = DAG.getRoot(); 5335 5336 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5337 unsigned ResNo = 0; // ResNo - The result number of the next output. 5338 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5339 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5340 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5341 5342 EVT OpVT = MVT::Other; 5343 5344 // Compute the value type for each operand. 5345 switch (OpInfo.Type) { 5346 case InlineAsm::isOutput: 5347 // Indirect outputs just consume an argument. 5348 if (OpInfo.isIndirect) { 5349 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5350 break; 5351 } 5352 5353 // The return value of the call is this value. As such, there is no 5354 // corresponding argument. 5355 assert(!CS.getType()->isVoidTy() && 5356 "Bad inline asm!"); 5357 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5358 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5359 } else { 5360 assert(ResNo == 0 && "Asm only has one result!"); 5361 OpVT = TLI.getValueType(CS.getType()); 5362 } 5363 ++ResNo; 5364 break; 5365 case InlineAsm::isInput: 5366 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5367 break; 5368 case InlineAsm::isClobber: 5369 // Nothing to do. 5370 break; 5371 } 5372 5373 // If this is an input or an indirect output, process the call argument. 5374 // BasicBlocks are labels, currently appearing only in asm's. 5375 if (OpInfo.CallOperandVal) { 5376 // Strip bitcasts, if any. This mostly comes up for functions. 5377 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5378 5379 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5380 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5381 } else { 5382 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5383 } 5384 5385 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5386 } 5387 5388 OpInfo.ConstraintVT = OpVT; 5389 } 5390 5391 // Second pass over the constraints: compute which constraint option to use 5392 // and assign registers to constraints that want a specific physreg. 5393 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5394 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5395 5396 // If this is an output operand with a matching input operand, look up the 5397 // matching input. If their types mismatch, e.g. one is an integer, the 5398 // other is floating point, or their sizes are different, flag it as an 5399 // error. 5400 if (OpInfo.hasMatchingInput()) { 5401 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5402 5403 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5404 if ((OpInfo.ConstraintVT.isInteger() != 5405 Input.ConstraintVT.isInteger()) || 5406 (OpInfo.ConstraintVT.getSizeInBits() != 5407 Input.ConstraintVT.getSizeInBits())) { 5408 report_fatal_error("Unsupported asm: input constraint" 5409 " with a matching output constraint of" 5410 " incompatible type!"); 5411 } 5412 Input.ConstraintVT = OpInfo.ConstraintVT; 5413 } 5414 } 5415 5416 // Compute the constraint code and ConstraintType to use. 5417 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5418 5419 // If this is a memory input, and if the operand is not indirect, do what we 5420 // need to to provide an address for the memory input. 5421 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5422 !OpInfo.isIndirect) { 5423 assert(OpInfo.Type == InlineAsm::isInput && 5424 "Can only indirectify direct input operands!"); 5425 5426 // Memory operands really want the address of the value. If we don't have 5427 // an indirect input, put it in the constpool if we can, otherwise spill 5428 // it to a stack slot. 5429 5430 // If the operand is a float, integer, or vector constant, spill to a 5431 // constant pool entry to get its address. 5432 const Value *OpVal = OpInfo.CallOperandVal; 5433 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5434 isa<ConstantVector>(OpVal)) { 5435 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5436 TLI.getPointerTy()); 5437 } else { 5438 // Otherwise, create a stack slot and emit a store to it before the 5439 // asm. 5440 const Type *Ty = OpVal->getType(); 5441 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5442 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5443 MachineFunction &MF = DAG.getMachineFunction(); 5444 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5445 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5446 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5447 OpInfo.CallOperand, StackSlot, NULL, 0, 5448 false, false, 0); 5449 OpInfo.CallOperand = StackSlot; 5450 } 5451 5452 // There is no longer a Value* corresponding to this operand. 5453 OpInfo.CallOperandVal = 0; 5454 5455 // It is now an indirect operand. 5456 OpInfo.isIndirect = true; 5457 } 5458 5459 // If this constraint is for a specific register, allocate it before 5460 // anything else. 5461 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5462 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5463 } 5464 5465 ConstraintInfos.clear(); 5466 5467 // Second pass - Loop over all of the operands, assigning virtual or physregs 5468 // to register class operands. 5469 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5470 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5471 5472 // C_Register operands have already been allocated, Other/Memory don't need 5473 // to be. 5474 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5475 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5476 } 5477 5478 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5479 std::vector<SDValue> AsmNodeOperands; 5480 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5481 AsmNodeOperands.push_back( 5482 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5483 TLI.getPointerTy())); 5484 5485 // If we have a !srcloc metadata node associated with it, we want to attach 5486 // this to the ultimately generated inline asm machineinstr. To do this, we 5487 // pass in the third operand as this (potentially null) inline asm MDNode. 5488 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5489 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5490 5491 // Remember the AlignStack bit as operand 3. 5492 AsmNodeOperands.push_back(DAG.getTargetConstant(IA->isAlignStack() ? 1 : 0, 5493 MVT::i1)); 5494 5495 // Loop over all of the inputs, copying the operand values into the 5496 // appropriate registers and processing the output regs. 5497 RegsForValue RetValRegs; 5498 5499 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5500 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5501 5502 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5503 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5504 5505 switch (OpInfo.Type) { 5506 case InlineAsm::isOutput: { 5507 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5508 OpInfo.ConstraintType != TargetLowering::C_Register) { 5509 // Memory output, or 'other' output (e.g. 'X' constraint). 5510 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5511 5512 // Add information to the INLINEASM node to know about this output. 5513 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5514 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5515 TLI.getPointerTy())); 5516 AsmNodeOperands.push_back(OpInfo.CallOperand); 5517 break; 5518 } 5519 5520 // Otherwise, this is a register or register class output. 5521 5522 // Copy the output from the appropriate register. Find a register that 5523 // we can use. 5524 if (OpInfo.AssignedRegs.Regs.empty()) 5525 report_fatal_error("Couldn't allocate output reg for constraint '" + 5526 Twine(OpInfo.ConstraintCode) + "'!"); 5527 5528 // If this is an indirect operand, store through the pointer after the 5529 // asm. 5530 if (OpInfo.isIndirect) { 5531 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5532 OpInfo.CallOperandVal)); 5533 } else { 5534 // This is the result value of the call. 5535 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5536 // Concatenate this output onto the outputs list. 5537 RetValRegs.append(OpInfo.AssignedRegs); 5538 } 5539 5540 // Add information to the INLINEASM node to know that this register is 5541 // set. 5542 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5543 InlineAsm::Kind_RegDefEarlyClobber : 5544 InlineAsm::Kind_RegDef, 5545 false, 5546 0, 5547 DAG, 5548 AsmNodeOperands); 5549 break; 5550 } 5551 case InlineAsm::isInput: { 5552 SDValue InOperandVal = OpInfo.CallOperand; 5553 5554 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5555 // If this is required to match an output register we have already set, 5556 // just use its register. 5557 unsigned OperandNo = OpInfo.getMatchedOperand(); 5558 5559 // Scan until we find the definition we already emitted of this operand. 5560 // When we find it, create a RegsForValue operand. 5561 unsigned CurOp = InlineAsm::Op_FirstOperand; 5562 for (; OperandNo; --OperandNo) { 5563 // Advance to the next operand. 5564 unsigned OpFlag = 5565 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5566 assert((InlineAsm::isRegDefKind(OpFlag) || 5567 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5568 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5569 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5570 } 5571 5572 unsigned OpFlag = 5573 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5574 if (InlineAsm::isRegDefKind(OpFlag) || 5575 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5576 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5577 if (OpInfo.isIndirect) { 5578 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5579 LLVMContext &Ctx = *DAG.getContext(); 5580 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5581 " don't know how to handle tied " 5582 "indirect register inputs"); 5583 } 5584 5585 RegsForValue MatchedRegs; 5586 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5587 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5588 MatchedRegs.RegVTs.push_back(RegVT); 5589 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5590 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5591 i != e; ++i) 5592 MatchedRegs.Regs.push_back 5593 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5594 5595 // Use the produced MatchedRegs object to 5596 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5597 Chain, &Flag); 5598 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5599 true, OpInfo.getMatchedOperand(), 5600 DAG, AsmNodeOperands); 5601 break; 5602 } 5603 5604 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5605 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5606 "Unexpected number of operands"); 5607 // Add information to the INLINEASM node to know about this input. 5608 // See InlineAsm.h isUseOperandTiedToDef. 5609 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5610 OpInfo.getMatchedOperand()); 5611 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5612 TLI.getPointerTy())); 5613 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5614 break; 5615 } 5616 5617 // Treat indirect 'X' constraint as memory. 5618 if (OpInfo.ConstraintType == TargetLowering::C_Other && 5619 OpInfo.isIndirect) 5620 OpInfo.ConstraintType = TargetLowering::C_Memory; 5621 5622 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5623 std::vector<SDValue> Ops; 5624 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5625 Ops, DAG); 5626 if (Ops.empty()) 5627 report_fatal_error("Invalid operand for inline asm constraint '" + 5628 Twine(OpInfo.ConstraintCode) + "'!"); 5629 5630 // Add information to the INLINEASM node to know about this input. 5631 unsigned ResOpType = 5632 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5633 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5634 TLI.getPointerTy())); 5635 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5636 break; 5637 } 5638 5639 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5640 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5641 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5642 "Memory operands expect pointer values"); 5643 5644 // Add information to the INLINEASM node to know about this input. 5645 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5646 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5647 TLI.getPointerTy())); 5648 AsmNodeOperands.push_back(InOperandVal); 5649 break; 5650 } 5651 5652 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5653 OpInfo.ConstraintType == TargetLowering::C_Register) && 5654 "Unknown constraint type!"); 5655 assert(!OpInfo.isIndirect && 5656 "Don't know how to handle indirect register inputs yet!"); 5657 5658 // Copy the input into the appropriate registers. 5659 if (OpInfo.AssignedRegs.Regs.empty() || 5660 !OpInfo.AssignedRegs.areValueTypesLegal(TLI)) 5661 report_fatal_error("Couldn't allocate input reg for constraint '" + 5662 Twine(OpInfo.ConstraintCode) + "'!"); 5663 5664 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5665 Chain, &Flag); 5666 5667 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5668 DAG, AsmNodeOperands); 5669 break; 5670 } 5671 case InlineAsm::isClobber: { 5672 // Add the clobbered value to the operand list, so that the register 5673 // allocator is aware that the physreg got clobbered. 5674 if (!OpInfo.AssignedRegs.Regs.empty()) 5675 OpInfo.AssignedRegs.AddInlineAsmOperands( 5676 InlineAsm::Kind_RegDefEarlyClobber, 5677 false, 0, DAG, 5678 AsmNodeOperands); 5679 break; 5680 } 5681 } 5682 } 5683 5684 // Finish up input operands. Set the input chain and add the flag last. 5685 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 5686 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5687 5688 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5689 DAG.getVTList(MVT::Other, MVT::Flag), 5690 &AsmNodeOperands[0], AsmNodeOperands.size()); 5691 Flag = Chain.getValue(1); 5692 5693 // If this asm returns a register value, copy the result from that register 5694 // and set it as the value of the call. 5695 if (!RetValRegs.Regs.empty()) { 5696 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5697 Chain, &Flag); 5698 5699 // FIXME: Why don't we do this for inline asms with MRVs? 5700 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5701 EVT ResultType = TLI.getValueType(CS.getType()); 5702 5703 // If any of the results of the inline asm is a vector, it may have the 5704 // wrong width/num elts. This can happen for register classes that can 5705 // contain multiple different value types. The preg or vreg allocated may 5706 // not have the same VT as was expected. Convert it to the right type 5707 // with bit_convert. 5708 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5709 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5710 ResultType, Val); 5711 5712 } else if (ResultType != Val.getValueType() && 5713 ResultType.isInteger() && Val.getValueType().isInteger()) { 5714 // If a result value was tied to an input value, the computed result may 5715 // have a wider width than the expected result. Extract the relevant 5716 // portion. 5717 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5718 } 5719 5720 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5721 } 5722 5723 setValue(CS.getInstruction(), Val); 5724 // Don't need to use this as a chain in this case. 5725 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5726 return; 5727 } 5728 5729 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5730 5731 // Process indirect outputs, first output all of the flagged copies out of 5732 // physregs. 5733 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5734 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5735 const Value *Ptr = IndirectStoresToEmit[i].second; 5736 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 5737 Chain, &Flag); 5738 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5739 } 5740 5741 // Emit the non-flagged stores from the physregs. 5742 SmallVector<SDValue, 8> OutChains; 5743 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5744 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5745 StoresToEmit[i].first, 5746 getValue(StoresToEmit[i].second), 5747 StoresToEmit[i].second, 0, 5748 false, false, 0); 5749 OutChains.push_back(Val); 5750 } 5751 5752 if (!OutChains.empty()) 5753 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5754 &OutChains[0], OutChains.size()); 5755 5756 DAG.setRoot(Chain); 5757 } 5758 5759 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5760 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5761 MVT::Other, getRoot(), 5762 getValue(I.getArgOperand(0)), 5763 DAG.getSrcValue(I.getArgOperand(0)))); 5764 } 5765 5766 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5767 const TargetData &TD = *TLI.getTargetData(); 5768 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5769 getRoot(), getValue(I.getOperand(0)), 5770 DAG.getSrcValue(I.getOperand(0)), 5771 TD.getABITypeAlignment(I.getType())); 5772 setValue(&I, V); 5773 DAG.setRoot(V.getValue(1)); 5774 } 5775 5776 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5777 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5778 MVT::Other, getRoot(), 5779 getValue(I.getArgOperand(0)), 5780 DAG.getSrcValue(I.getArgOperand(0)))); 5781 } 5782 5783 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5784 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5785 MVT::Other, getRoot(), 5786 getValue(I.getArgOperand(0)), 5787 getValue(I.getArgOperand(1)), 5788 DAG.getSrcValue(I.getArgOperand(0)), 5789 DAG.getSrcValue(I.getArgOperand(1)))); 5790 } 5791 5792 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5793 /// implementation, which just calls LowerCall. 5794 /// FIXME: When all targets are 5795 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5796 std::pair<SDValue, SDValue> 5797 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5798 bool RetSExt, bool RetZExt, bool isVarArg, 5799 bool isInreg, unsigned NumFixedArgs, 5800 CallingConv::ID CallConv, bool isTailCall, 5801 bool isReturnValueUsed, 5802 SDValue Callee, 5803 ArgListTy &Args, SelectionDAG &DAG, 5804 DebugLoc dl) const { 5805 // Handle all of the outgoing arguments. 5806 SmallVector<ISD::OutputArg, 32> Outs; 5807 SmallVector<SDValue, 32> OutVals; 5808 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5809 SmallVector<EVT, 4> ValueVTs; 5810 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5811 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5812 Value != NumValues; ++Value) { 5813 EVT VT = ValueVTs[Value]; 5814 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5815 SDValue Op = SDValue(Args[i].Node.getNode(), 5816 Args[i].Node.getResNo() + Value); 5817 ISD::ArgFlagsTy Flags; 5818 unsigned OriginalAlignment = 5819 getTargetData()->getABITypeAlignment(ArgTy); 5820 5821 if (Args[i].isZExt) 5822 Flags.setZExt(); 5823 if (Args[i].isSExt) 5824 Flags.setSExt(); 5825 if (Args[i].isInReg) 5826 Flags.setInReg(); 5827 if (Args[i].isSRet) 5828 Flags.setSRet(); 5829 if (Args[i].isByVal) { 5830 Flags.setByVal(); 5831 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5832 const Type *ElementTy = Ty->getElementType(); 5833 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5834 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5835 // For ByVal, alignment should come from FE. BE will guess if this 5836 // info is not there but there are cases it cannot get right. 5837 if (Args[i].Alignment) 5838 FrameAlign = Args[i].Alignment; 5839 Flags.setByValAlign(FrameAlign); 5840 Flags.setByValSize(FrameSize); 5841 } 5842 if (Args[i].isNest) 5843 Flags.setNest(); 5844 Flags.setOrigAlign(OriginalAlignment); 5845 5846 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5847 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5848 SmallVector<SDValue, 4> Parts(NumParts); 5849 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5850 5851 if (Args[i].isSExt) 5852 ExtendKind = ISD::SIGN_EXTEND; 5853 else if (Args[i].isZExt) 5854 ExtendKind = ISD::ZERO_EXTEND; 5855 5856 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5857 PartVT, ExtendKind); 5858 5859 for (unsigned j = 0; j != NumParts; ++j) { 5860 // if it isn't first piece, alignment must be 1 5861 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 5862 i < NumFixedArgs); 5863 if (NumParts > 1 && j == 0) 5864 MyFlags.Flags.setSplit(); 5865 else if (j != 0) 5866 MyFlags.Flags.setOrigAlign(1); 5867 5868 Outs.push_back(MyFlags); 5869 OutVals.push_back(Parts[j]); 5870 } 5871 } 5872 } 5873 5874 // Handle the incoming return values from the call. 5875 SmallVector<ISD::InputArg, 32> Ins; 5876 SmallVector<EVT, 4> RetTys; 5877 ComputeValueVTs(*this, RetTy, RetTys); 5878 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5879 EVT VT = RetTys[I]; 5880 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5881 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5882 for (unsigned i = 0; i != NumRegs; ++i) { 5883 ISD::InputArg MyFlags; 5884 MyFlags.VT = RegisterVT; 5885 MyFlags.Used = isReturnValueUsed; 5886 if (RetSExt) 5887 MyFlags.Flags.setSExt(); 5888 if (RetZExt) 5889 MyFlags.Flags.setZExt(); 5890 if (isInreg) 5891 MyFlags.Flags.setInReg(); 5892 Ins.push_back(MyFlags); 5893 } 5894 } 5895 5896 SmallVector<SDValue, 4> InVals; 5897 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5898 Outs, OutVals, Ins, dl, DAG, InVals); 5899 5900 // Verify that the target's LowerCall behaved as expected. 5901 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5902 "LowerCall didn't return a valid chain!"); 5903 assert((!isTailCall || InVals.empty()) && 5904 "LowerCall emitted a return value for a tail call!"); 5905 assert((isTailCall || InVals.size() == Ins.size()) && 5906 "LowerCall didn't emit the correct number of values!"); 5907 5908 // For a tail call, the return value is merely live-out and there aren't 5909 // any nodes in the DAG representing it. Return a special value to 5910 // indicate that a tail call has been emitted and no more Instructions 5911 // should be processed in the current block. 5912 if (isTailCall) { 5913 DAG.setRoot(Chain); 5914 return std::make_pair(SDValue(), SDValue()); 5915 } 5916 5917 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5918 assert(InVals[i].getNode() && 5919 "LowerCall emitted a null value!"); 5920 assert(Ins[i].VT == InVals[i].getValueType() && 5921 "LowerCall emitted a value with the wrong type!"); 5922 }); 5923 5924 // Collect the legal value parts into potentially illegal values 5925 // that correspond to the original function's return values. 5926 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5927 if (RetSExt) 5928 AssertOp = ISD::AssertSext; 5929 else if (RetZExt) 5930 AssertOp = ISD::AssertZext; 5931 SmallVector<SDValue, 4> ReturnValues; 5932 unsigned CurReg = 0; 5933 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5934 EVT VT = RetTys[I]; 5935 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5936 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5937 5938 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5939 NumRegs, RegisterVT, VT, 5940 AssertOp)); 5941 CurReg += NumRegs; 5942 } 5943 5944 // For a function returning void, there is no return value. We can't create 5945 // such a node, so we just return a null return value in that case. In 5946 // that case, nothing will actualy look at the value. 5947 if (ReturnValues.empty()) 5948 return std::make_pair(SDValue(), Chain); 5949 5950 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5951 DAG.getVTList(&RetTys[0], RetTys.size()), 5952 &ReturnValues[0], ReturnValues.size()); 5953 return std::make_pair(Res, Chain); 5954 } 5955 5956 void TargetLowering::LowerOperationWrapper(SDNode *N, 5957 SmallVectorImpl<SDValue> &Results, 5958 SelectionDAG &DAG) const { 5959 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5960 if (Res.getNode()) 5961 Results.push_back(Res); 5962 } 5963 5964 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5965 llvm_unreachable("LowerOperation not implemented for this target!"); 5966 return SDValue(); 5967 } 5968 5969 void 5970 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5971 SDValue Op = getNonRegisterValue(V); 5972 assert((Op.getOpcode() != ISD::CopyFromReg || 5973 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5974 "Copy from a reg to the same reg!"); 5975 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5976 5977 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5978 SDValue Chain = DAG.getEntryNode(); 5979 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5980 PendingExports.push_back(Chain); 5981 } 5982 5983 #include "llvm/CodeGen/SelectionDAGISel.h" 5984 5985 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5986 // If this is the entry block, emit arguments. 5987 const Function &F = *LLVMBB->getParent(); 5988 SelectionDAG &DAG = SDB->DAG; 5989 DebugLoc dl = SDB->getCurDebugLoc(); 5990 const TargetData *TD = TLI.getTargetData(); 5991 SmallVector<ISD::InputArg, 16> Ins; 5992 5993 // Check whether the function can return without sret-demotion. 5994 SmallVector<ISD::OutputArg, 4> Outs; 5995 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5996 Outs, TLI); 5997 5998 if (!FuncInfo->CanLowerReturn) { 5999 // Put in an sret pointer parameter before all the other parameters. 6000 SmallVector<EVT, 1> ValueVTs; 6001 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6002 6003 // NOTE: Assuming that a pointer will never break down to more than one VT 6004 // or one register. 6005 ISD::ArgFlagsTy Flags; 6006 Flags.setSRet(); 6007 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6008 ISD::InputArg RetArg(Flags, RegisterVT, true); 6009 Ins.push_back(RetArg); 6010 } 6011 6012 // Set up the incoming argument description vector. 6013 unsigned Idx = 1; 6014 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6015 I != E; ++I, ++Idx) { 6016 SmallVector<EVT, 4> ValueVTs; 6017 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6018 bool isArgValueUsed = !I->use_empty(); 6019 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6020 Value != NumValues; ++Value) { 6021 EVT VT = ValueVTs[Value]; 6022 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6023 ISD::ArgFlagsTy Flags; 6024 unsigned OriginalAlignment = 6025 TD->getABITypeAlignment(ArgTy); 6026 6027 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6028 Flags.setZExt(); 6029 if (F.paramHasAttr(Idx, Attribute::SExt)) 6030 Flags.setSExt(); 6031 if (F.paramHasAttr(Idx, Attribute::InReg)) 6032 Flags.setInReg(); 6033 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6034 Flags.setSRet(); 6035 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6036 Flags.setByVal(); 6037 const PointerType *Ty = cast<PointerType>(I->getType()); 6038 const Type *ElementTy = Ty->getElementType(); 6039 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6040 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 6041 // For ByVal, alignment should be passed from FE. BE will guess if 6042 // this info is not there but there are cases it cannot get right. 6043 if (F.getParamAlignment(Idx)) 6044 FrameAlign = F.getParamAlignment(Idx); 6045 Flags.setByValAlign(FrameAlign); 6046 Flags.setByValSize(FrameSize); 6047 } 6048 if (F.paramHasAttr(Idx, Attribute::Nest)) 6049 Flags.setNest(); 6050 Flags.setOrigAlign(OriginalAlignment); 6051 6052 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6053 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6054 for (unsigned i = 0; i != NumRegs; ++i) { 6055 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6056 if (NumRegs > 1 && i == 0) 6057 MyFlags.Flags.setSplit(); 6058 // if it isn't first piece, alignment must be 1 6059 else if (i > 0) 6060 MyFlags.Flags.setOrigAlign(1); 6061 Ins.push_back(MyFlags); 6062 } 6063 } 6064 } 6065 6066 // Call the target to set up the argument values. 6067 SmallVector<SDValue, 8> InVals; 6068 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6069 F.isVarArg(), Ins, 6070 dl, DAG, InVals); 6071 6072 // Verify that the target's LowerFormalArguments behaved as expected. 6073 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6074 "LowerFormalArguments didn't return a valid chain!"); 6075 assert(InVals.size() == Ins.size() && 6076 "LowerFormalArguments didn't emit the correct number of values!"); 6077 DEBUG({ 6078 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6079 assert(InVals[i].getNode() && 6080 "LowerFormalArguments emitted a null value!"); 6081 assert(Ins[i].VT == InVals[i].getValueType() && 6082 "LowerFormalArguments emitted a value with the wrong type!"); 6083 } 6084 }); 6085 6086 // Update the DAG with the new chain value resulting from argument lowering. 6087 DAG.setRoot(NewRoot); 6088 6089 // Set up the argument values. 6090 unsigned i = 0; 6091 Idx = 1; 6092 if (!FuncInfo->CanLowerReturn) { 6093 // Create a virtual register for the sret pointer, and put in a copy 6094 // from the sret argument into it. 6095 SmallVector<EVT, 1> ValueVTs; 6096 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6097 EVT VT = ValueVTs[0]; 6098 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6099 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6100 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6101 RegVT, VT, AssertOp); 6102 6103 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6104 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6105 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6106 FuncInfo->DemoteRegister = SRetReg; 6107 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6108 SRetReg, ArgValue); 6109 DAG.setRoot(NewRoot); 6110 6111 // i indexes lowered arguments. Bump it past the hidden sret argument. 6112 // Idx indexes LLVM arguments. Don't touch it. 6113 ++i; 6114 } 6115 6116 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6117 ++I, ++Idx) { 6118 SmallVector<SDValue, 4> ArgValues; 6119 SmallVector<EVT, 4> ValueVTs; 6120 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6121 unsigned NumValues = ValueVTs.size(); 6122 6123 // If this argument is unused then remember its value. It is used to generate 6124 // debugging information. 6125 if (I->use_empty() && NumValues) 6126 SDB->setUnusedArgValue(I, InVals[i]); 6127 6128 for (unsigned Value = 0; Value != NumValues; ++Value) { 6129 EVT VT = ValueVTs[Value]; 6130 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6131 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6132 6133 if (!I->use_empty()) { 6134 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6135 if (F.paramHasAttr(Idx, Attribute::SExt)) 6136 AssertOp = ISD::AssertSext; 6137 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6138 AssertOp = ISD::AssertZext; 6139 6140 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6141 NumParts, PartVT, VT, 6142 AssertOp)); 6143 } 6144 6145 i += NumParts; 6146 } 6147 6148 if (!I->use_empty()) { 6149 SDValue Res; 6150 if (!ArgValues.empty()) 6151 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6152 SDB->getCurDebugLoc()); 6153 SDB->setValue(I, Res); 6154 6155 // If this argument is live outside of the entry block, insert a copy from 6156 // whereever we got it to the vreg that other BB's will reference it as. 6157 SDB->CopyToExportRegsIfNeeded(I); 6158 } 6159 } 6160 6161 assert(i == InVals.size() && "Argument register count mismatch!"); 6162 6163 // Finally, if the target has anything special to do, allow it to do so. 6164 // FIXME: this should insert code into the DAG! 6165 EmitFunctionEntryCode(); 6166 } 6167 6168 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6169 /// ensure constants are generated when needed. Remember the virtual registers 6170 /// that need to be added to the Machine PHI nodes as input. We cannot just 6171 /// directly add them, because expansion might result in multiple MBB's for one 6172 /// BB. As such, the start of the BB might correspond to a different MBB than 6173 /// the end. 6174 /// 6175 void 6176 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6177 const TerminatorInst *TI = LLVMBB->getTerminator(); 6178 6179 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6180 6181 // Check successor nodes' PHI nodes that expect a constant to be available 6182 // from this block. 6183 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6184 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6185 if (!isa<PHINode>(SuccBB->begin())) continue; 6186 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6187 6188 // If this terminator has multiple identical successors (common for 6189 // switches), only handle each succ once. 6190 if (!SuccsHandled.insert(SuccMBB)) continue; 6191 6192 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6193 6194 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6195 // nodes and Machine PHI nodes, but the incoming operands have not been 6196 // emitted yet. 6197 for (BasicBlock::const_iterator I = SuccBB->begin(); 6198 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6199 // Ignore dead phi's. 6200 if (PN->use_empty()) continue; 6201 6202 unsigned Reg; 6203 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6204 6205 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6206 unsigned &RegOut = ConstantsOut[C]; 6207 if (RegOut == 0) { 6208 RegOut = FuncInfo.CreateRegs(C->getType()); 6209 CopyValueToVirtualRegister(C, RegOut); 6210 } 6211 Reg = RegOut; 6212 } else { 6213 DenseMap<const Value *, unsigned>::iterator I = 6214 FuncInfo.ValueMap.find(PHIOp); 6215 if (I != FuncInfo.ValueMap.end()) 6216 Reg = I->second; 6217 else { 6218 assert(isa<AllocaInst>(PHIOp) && 6219 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6220 "Didn't codegen value into a register!??"); 6221 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6222 CopyValueToVirtualRegister(PHIOp, Reg); 6223 } 6224 } 6225 6226 // Remember that this register needs to added to the machine PHI node as 6227 // the input for this MBB. 6228 SmallVector<EVT, 4> ValueVTs; 6229 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6230 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6231 EVT VT = ValueVTs[vti]; 6232 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6233 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6234 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6235 Reg += NumRegisters; 6236 } 6237 } 6238 } 6239 ConstantsOut.clear(); 6240 } 6241