xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e885d5e4d3fffc40173a8d0c82a6d30b2400bdec)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/FastISel.h"
28 #include "llvm/CodeGen/FunctionLoweringInfo.h"
29 #include "llvm/CodeGen/GCMetadata.h"
30 #include "llvm/CodeGen/GCStrategy.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineJumpTableInfo.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
39 #include "llvm/CodeGen/StackMaps.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/IR/CallingConv.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Statepoint.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MathExtras.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetFrameLowering.h"
63 #include "llvm/Target/TargetInstrInfo.h"
64 #include "llvm/Target/TargetIntrinsicInfo.h"
65 #include "llvm/Target/TargetLowering.h"
66 #include "llvm/Target/TargetOptions.h"
67 #include "llvm/Target/TargetSubtargetInfo.h"
68 #include <algorithm>
69 #include <utility>
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "isel"
73 
74 /// LimitFloatPrecision - Generate low-precision inline sequences for
75 /// some float libcalls (6, 8 or 12 bits).
76 static unsigned LimitFloatPrecision;
77 
78 static cl::opt<unsigned, true>
79 LimitFPPrecision("limit-float-precision",
80                  cl::desc("Generate low-precision inline sequences "
81                           "for some float libcalls"),
82                  cl::location(LimitFloatPrecision),
83                  cl::init(0));
84 
85 static cl::opt<bool>
86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
87                 cl::desc("Enable fast-math-flags for DAG nodes"));
88 
89 /// Minimum jump table density for normal functions.
90 static cl::opt<unsigned>
91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
92                  cl::desc("Minimum density for building a jump table in "
93                           "a normal function"));
94 
95 /// Minimum jump table density for -Os or -Oz functions.
96 static cl::opt<unsigned>
97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
98                         cl::desc("Minimum density for building a jump table in "
99                                  "an optsize function"));
100 
101 
102 // Limit the width of DAG chains. This is important in general to prevent
103 // DAG-based analysis from blowing up. For example, alias analysis and
104 // load clustering may not complete in reasonable time. It is difficult to
105 // recognize and avoid this situation within each individual analysis, and
106 // future analyses are likely to have the same behavior. Limiting DAG width is
107 // the safe approach and will be especially important with global DAGs.
108 //
109 // MaxParallelChains default is arbitrarily high to avoid affecting
110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
111 // sequence over this should have been converted to llvm.memcpy by the
112 // frontend. It easy to induce this behavior with .ll code such as:
113 // %buffer = alloca [4096 x i8]
114 // %data = load [4096 x i8]* %argPtr
115 // store [4096 x i8] %data, [4096 x i8]* %buffer
116 static const unsigned MaxParallelChains = 64;
117 
118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
119                                       const SDValue *Parts, unsigned NumParts,
120                                       MVT PartVT, EVT ValueVT, const Value *V);
121 
122 /// getCopyFromParts - Create a value that contains the specified legal parts
123 /// combined into the value they represent.  If the parts combine to a type
124 /// larger then ValueVT then AssertOp can be used to specify whether the extra
125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
126 /// (ISD::AssertSext).
127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
128                                 const SDValue *Parts,
129                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
130                                 const Value *V,
131                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
132   if (ValueVT.isVector())
133     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
134                                   PartVT, ValueVT, V);
135 
136   assert(NumParts > 0 && "No parts to assemble!");
137   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
138   SDValue Val = Parts[0];
139 
140   if (NumParts > 1) {
141     // Assemble the value from multiple parts.
142     if (ValueVT.isInteger()) {
143       unsigned PartBits = PartVT.getSizeInBits();
144       unsigned ValueBits = ValueVT.getSizeInBits();
145 
146       // Assemble the power of 2 part.
147       unsigned RoundParts = NumParts & (NumParts - 1) ?
148         1 << Log2_32(NumParts) : NumParts;
149       unsigned RoundBits = PartBits * RoundParts;
150       EVT RoundVT = RoundBits == ValueBits ?
151         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
152       SDValue Lo, Hi;
153 
154       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
155 
156       if (RoundParts > 2) {
157         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
158                               PartVT, HalfVT, V);
159         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
160                               RoundParts / 2, PartVT, HalfVT, V);
161       } else {
162         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
163         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
164       }
165 
166       if (DAG.getDataLayout().isBigEndian())
167         std::swap(Lo, Hi);
168 
169       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
170 
171       if (RoundParts < NumParts) {
172         // Assemble the trailing non-power-of-2 part.
173         unsigned OddParts = NumParts - RoundParts;
174         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
175         Hi = getCopyFromParts(DAG, DL,
176                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
177 
178         // Combine the round and odd parts.
179         Lo = Val;
180         if (DAG.getDataLayout().isBigEndian())
181           std::swap(Lo, Hi);
182         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
183         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
184         Hi =
185             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
186                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
187                                         TLI.getPointerTy(DAG.getDataLayout())));
188         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
189         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
190       }
191     } else if (PartVT.isFloatingPoint()) {
192       // FP split into multiple FP parts (for ppcf128)
193       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
194              "Unexpected split");
195       SDValue Lo, Hi;
196       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
197       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
198       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
199         std::swap(Lo, Hi);
200       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
201     } else {
202       // FP split into integer parts (soft fp)
203       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
204              !PartVT.isVector() && "Unexpected split");
205       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
206       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
207     }
208   }
209 
210   // There is now one part, held in Val.  Correct it to match ValueVT.
211   // PartEVT is the type of the register class that holds the value.
212   // ValueVT is the type of the inline asm operation.
213   EVT PartEVT = Val.getValueType();
214 
215   if (PartEVT == ValueVT)
216     return Val;
217 
218   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
219       ValueVT.bitsLT(PartEVT)) {
220     // For an FP value in an integer part, we need to truncate to the right
221     // width first.
222     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
223     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
224   }
225 
226   // Handle types that have the same size.
227   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
228     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
229 
230   // Handle types with different sizes.
231   if (PartEVT.isInteger() && ValueVT.isInteger()) {
232     if (ValueVT.bitsLT(PartEVT)) {
233       // For a truncate, see if we have any information to
234       // indicate whether the truncated bits will always be
235       // zero or sign-extension.
236       if (AssertOp != ISD::DELETED_NODE)
237         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
238                           DAG.getValueType(ValueVT));
239       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
240     }
241     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
242   }
243 
244   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
245     // FP_ROUND's are always exact here.
246     if (ValueVT.bitsLT(Val.getValueType()))
247       return DAG.getNode(
248           ISD::FP_ROUND, DL, ValueVT, Val,
249           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
250 
251     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
252   }
253 
254   llvm_unreachable("Unknown mismatch!");
255 }
256 
257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
258                                               const Twine &ErrMsg) {
259   const Instruction *I = dyn_cast_or_null<Instruction>(V);
260   if (!V)
261     return Ctx.emitError(ErrMsg);
262 
263   const char *AsmError = ", possible invalid constraint for vector type";
264   if (const CallInst *CI = dyn_cast<CallInst>(I))
265     if (isa<InlineAsm>(CI->getCalledValue()))
266       return Ctx.emitError(I, ErrMsg + AsmError);
267 
268   return Ctx.emitError(I, ErrMsg);
269 }
270 
271 /// getCopyFromPartsVector - Create a value that contains the specified legal
272 /// parts combined into the value they represent.  If the parts combine to a
273 /// type larger then ValueVT then AssertOp can be used to specify whether the
274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
275 /// ValueVT (ISD::AssertSext).
276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
277                                       const SDValue *Parts, unsigned NumParts,
278                                       MVT PartVT, EVT ValueVT, const Value *V) {
279   assert(ValueVT.isVector() && "Not a vector value");
280   assert(NumParts > 0 && "No parts to assemble!");
281   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
282   SDValue Val = Parts[0];
283 
284   // Handle a multi-element vector.
285   if (NumParts > 1) {
286     EVT IntermediateVT;
287     MVT RegisterVT;
288     unsigned NumIntermediates;
289     unsigned NumRegs =
290     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
291                                NumIntermediates, RegisterVT);
292     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
293     NumParts = NumRegs; // Silence a compiler warning.
294     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
295     assert(RegisterVT.getSizeInBits() ==
296            Parts[0].getSimpleValueType().getSizeInBits() &&
297            "Part type sizes don't match!");
298 
299     // Assemble the parts into intermediate operands.
300     SmallVector<SDValue, 8> Ops(NumIntermediates);
301     if (NumIntermediates == NumParts) {
302       // If the register was not expanded, truncate or copy the value,
303       // as appropriate.
304       for (unsigned i = 0; i != NumParts; ++i)
305         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
306                                   PartVT, IntermediateVT, V);
307     } else if (NumParts > 0) {
308       // If the intermediate type was expanded, build the intermediate
309       // operands from the parts.
310       assert(NumParts % NumIntermediates == 0 &&
311              "Must expand into a divisible number of parts!");
312       unsigned Factor = NumParts / NumIntermediates;
313       for (unsigned i = 0; i != NumIntermediates; ++i)
314         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
315                                   PartVT, IntermediateVT, V);
316     }
317 
318     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
319     // intermediate operands.
320     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
321                                                 : ISD::BUILD_VECTOR,
322                       DL, ValueVT, Ops);
323   }
324 
325   // There is now one part, held in Val.  Correct it to match ValueVT.
326   EVT PartEVT = Val.getValueType();
327 
328   if (PartEVT == ValueVT)
329     return Val;
330 
331   if (PartEVT.isVector()) {
332     // If the element type of the source/dest vectors are the same, but the
333     // parts vector has more elements than the value vector, then we have a
334     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
335     // elements we want.
336     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
337       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
338              "Cannot narrow, it would be a lossy transformation");
339       return DAG.getNode(
340           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
341           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
342     }
343 
344     // Vector/Vector bitcast.
345     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
346       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
347 
348     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
349       "Cannot handle this kind of promotion");
350     // Promoted vector extract
351     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
352 
353   }
354 
355   // Trivial bitcast if the types are the same size and the destination
356   // vector type is legal.
357   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
358       TLI.isTypeLegal(ValueVT))
359     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
360 
361   // Handle cases such as i8 -> <1 x i1>
362   if (ValueVT.getVectorNumElements() != 1) {
363     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
364                                       "non-trivial scalar-to-vector conversion");
365     return DAG.getUNDEF(ValueVT);
366   }
367 
368   if (ValueVT.getVectorNumElements() == 1 &&
369       ValueVT.getVectorElementType() != PartEVT)
370     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
371 
372   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
373 }
374 
375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
376                                  SDValue Val, SDValue *Parts, unsigned NumParts,
377                                  MVT PartVT, const Value *V);
378 
379 /// getCopyToParts - Create a series of nodes that contain the specified value
380 /// split into legal parts.  If the parts contain more bits than Val, then, for
381 /// integers, ExtendKind can be used to specify how to generate the extra bits.
382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
383                            SDValue Val, SDValue *Parts, unsigned NumParts,
384                            MVT PartVT, const Value *V,
385                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
386   EVT ValueVT = Val.getValueType();
387 
388   // Handle the vector case separately.
389   if (ValueVT.isVector())
390     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
391 
392   unsigned PartBits = PartVT.getSizeInBits();
393   unsigned OrigNumParts = NumParts;
394   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
395          "Copying to an illegal type!");
396 
397   if (NumParts == 0)
398     return;
399 
400   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
401   EVT PartEVT = PartVT;
402   if (PartEVT == ValueVT) {
403     assert(NumParts == 1 && "No-op copy with multiple parts!");
404     Parts[0] = Val;
405     return;
406   }
407 
408   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
409     // If the parts cover more bits than the value has, promote the value.
410     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
411       assert(NumParts == 1 && "Do not know what to promote to!");
412       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
413     } else {
414       if (ValueVT.isFloatingPoint()) {
415         // FP values need to be bitcast, then extended if they are being put
416         // into a larger container.
417         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
418         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
419       }
420       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
421              ValueVT.isInteger() &&
422              "Unknown mismatch!");
423       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
424       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
425       if (PartVT == MVT::x86mmx)
426         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
427     }
428   } else if (PartBits == ValueVT.getSizeInBits()) {
429     // Different types of the same size.
430     assert(NumParts == 1 && PartEVT != ValueVT);
431     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
432   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
433     // If the parts cover less bits than value has, truncate the value.
434     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
435            ValueVT.isInteger() &&
436            "Unknown mismatch!");
437     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
438     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
439     if (PartVT == MVT::x86mmx)
440       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
441   }
442 
443   // The value may have changed - recompute ValueVT.
444   ValueVT = Val.getValueType();
445   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
446          "Failed to tile the value with PartVT!");
447 
448   if (NumParts == 1) {
449     if (PartEVT != ValueVT)
450       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
451                                         "scalar-to-vector conversion failed");
452 
453     Parts[0] = Val;
454     return;
455   }
456 
457   // Expand the value into multiple parts.
458   if (NumParts & (NumParts - 1)) {
459     // The number of parts is not a power of 2.  Split off and copy the tail.
460     assert(PartVT.isInteger() && ValueVT.isInteger() &&
461            "Do not know what to expand to!");
462     unsigned RoundParts = 1 << Log2_32(NumParts);
463     unsigned RoundBits = RoundParts * PartBits;
464     unsigned OddParts = NumParts - RoundParts;
465     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
466                                  DAG.getIntPtrConstant(RoundBits, DL));
467     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
468 
469     if (DAG.getDataLayout().isBigEndian())
470       // The odd parts were reversed by getCopyToParts - unreverse them.
471       std::reverse(Parts + RoundParts, Parts + NumParts);
472 
473     NumParts = RoundParts;
474     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
475     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
476   }
477 
478   // The number of parts is a power of 2.  Repeatedly bisect the value using
479   // EXTRACT_ELEMENT.
480   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
481                          EVT::getIntegerVT(*DAG.getContext(),
482                                            ValueVT.getSizeInBits()),
483                          Val);
484 
485   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
486     for (unsigned i = 0; i < NumParts; i += StepSize) {
487       unsigned ThisBits = StepSize * PartBits / 2;
488       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
489       SDValue &Part0 = Parts[i];
490       SDValue &Part1 = Parts[i+StepSize/2];
491 
492       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
493                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
494       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
495                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
496 
497       if (ThisBits == PartBits && ThisVT != PartVT) {
498         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
499         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
500       }
501     }
502   }
503 
504   if (DAG.getDataLayout().isBigEndian())
505     std::reverse(Parts, Parts + OrigNumParts);
506 }
507 
508 
509 /// getCopyToPartsVector - Create a series of nodes that contain the specified
510 /// value split into legal parts.
511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
512                                  SDValue Val, SDValue *Parts, unsigned NumParts,
513                                  MVT PartVT, const Value *V) {
514   EVT ValueVT = Val.getValueType();
515   assert(ValueVT.isVector() && "Not a vector");
516   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
517 
518   if (NumParts == 1) {
519     EVT PartEVT = PartVT;
520     if (PartEVT == ValueVT) {
521       // Nothing to do.
522     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
523       // Bitconvert vector->vector case.
524       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525     } else if (PartVT.isVector() &&
526                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
527                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
528       EVT ElementVT = PartVT.getVectorElementType();
529       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
530       // undef elements.
531       SmallVector<SDValue, 16> Ops;
532       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
533         Ops.push_back(DAG.getNode(
534             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
535             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
536 
537       for (unsigned i = ValueVT.getVectorNumElements(),
538            e = PartVT.getVectorNumElements(); i != e; ++i)
539         Ops.push_back(DAG.getUNDEF(ElementVT));
540 
541       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
542 
543       // FIXME: Use CONCAT for 2x -> 4x.
544 
545       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
546       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
547     } else if (PartVT.isVector() &&
548                PartEVT.getVectorElementType().bitsGE(
549                  ValueVT.getVectorElementType()) &&
550                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
551 
552       // Promoted vector extract
553       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
554     } else{
555       // Vector -> scalar conversion.
556       assert(ValueVT.getVectorNumElements() == 1 &&
557              "Only trivial vector-to-scalar conversions should get here!");
558       Val = DAG.getNode(
559           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
560           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
561 
562       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
563     }
564 
565     Parts[0] = Val;
566     return;
567   }
568 
569   // Handle a multi-element vector.
570   EVT IntermediateVT;
571   MVT RegisterVT;
572   unsigned NumIntermediates;
573   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
574                                                 IntermediateVT,
575                                                 NumIntermediates, RegisterVT);
576   unsigned NumElements = ValueVT.getVectorNumElements();
577 
578   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
579   NumParts = NumRegs; // Silence a compiler warning.
580   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
581 
582   // Split the vector into intermediate operands.
583   SmallVector<SDValue, 8> Ops(NumIntermediates);
584   for (unsigned i = 0; i != NumIntermediates; ++i) {
585     if (IntermediateVT.isVector())
586       Ops[i] =
587           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
588                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
589                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
590     else
591       Ops[i] = DAG.getNode(
592           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
593           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
594   }
595 
596   // Split the intermediate operands into legal parts.
597   if (NumParts == NumIntermediates) {
598     // If the register was not expanded, promote or copy the value,
599     // as appropriate.
600     for (unsigned i = 0; i != NumParts; ++i)
601       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
602   } else if (NumParts > 0) {
603     // If the intermediate type was expanded, split each the value into
604     // legal parts.
605     assert(NumIntermediates != 0 && "division by zero");
606     assert(NumParts % NumIntermediates == 0 &&
607            "Must expand into a divisible number of parts!");
608     unsigned Factor = NumParts / NumIntermediates;
609     for (unsigned i = 0; i != NumIntermediates; ++i)
610       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
611   }
612 }
613 
614 RegsForValue::RegsForValue() {}
615 
616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
617                            EVT valuevt)
618     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
619 
620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
621                            const DataLayout &DL, unsigned Reg, Type *Ty) {
622   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
623 
624   for (EVT ValueVT : ValueVTs) {
625     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
626     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
627     for (unsigned i = 0; i != NumRegs; ++i)
628       Regs.push_back(Reg + i);
629     RegVTs.push_back(RegisterVT);
630     Reg += NumRegs;
631   }
632 }
633 
634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
635 /// this value and returns the result as a ValueVT value.  This uses
636 /// Chain/Flag as the input and updates them for the output Chain/Flag.
637 /// If the Flag pointer is NULL, no flag is used.
638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
639                                       FunctionLoweringInfo &FuncInfo,
640                                       SDLoc dl,
641                                       SDValue &Chain, SDValue *Flag,
642                                       const Value *V) const {
643   // A Value with type {} or [0 x %t] needs no registers.
644   if (ValueVTs.empty())
645     return SDValue();
646 
647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
648 
649   // Assemble the legal parts into the final values.
650   SmallVector<SDValue, 4> Values(ValueVTs.size());
651   SmallVector<SDValue, 8> Parts;
652   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
653     // Copy the legal parts from the registers.
654     EVT ValueVT = ValueVTs[Value];
655     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
656     MVT RegisterVT = RegVTs[Value];
657 
658     Parts.resize(NumRegs);
659     for (unsigned i = 0; i != NumRegs; ++i) {
660       SDValue P;
661       if (!Flag) {
662         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
663       } else {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
665         *Flag = P.getValue(2);
666       }
667 
668       Chain = P.getValue(1);
669       Parts[i] = P;
670 
671       // If the source register was virtual and if we know something about it,
672       // add an assert node.
673       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
674           !RegisterVT.isInteger() || RegisterVT.isVector())
675         continue;
676 
677       const FunctionLoweringInfo::LiveOutInfo *LOI =
678         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
679       if (!LOI)
680         continue;
681 
682       unsigned RegSize = RegisterVT.getSizeInBits();
683       unsigned NumSignBits = LOI->NumSignBits;
684       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
685 
686       if (NumZeroBits == RegSize) {
687         // The current value is a zero.
688         // Explicitly express that as it would be easier for
689         // optimizations to kick in.
690         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
691         continue;
692       }
693 
694       // FIXME: We capture more information than the dag can represent.  For
695       // now, just use the tightest assertzext/assertsext possible.
696       bool isSExt = true;
697       EVT FromVT(MVT::Other);
698       if (NumSignBits == RegSize) {
699         isSExt = true;   // ASSERT SEXT 1
700         FromVT = MVT::i1;
701       } else if (NumZeroBits >= RegSize - 1) {
702         isSExt = false;  // ASSERT ZEXT 1
703         FromVT = MVT::i1;
704       } else if (NumSignBits > RegSize - 8) {
705         isSExt = true;   // ASSERT SEXT 8
706         FromVT = MVT::i8;
707       } else if (NumZeroBits >= RegSize - 8) {
708         isSExt = false;  // ASSERT ZEXT 8
709         FromVT = MVT::i8;
710       } else if (NumSignBits > RegSize - 16) {
711         isSExt = true;   // ASSERT SEXT 16
712         FromVT = MVT::i16;
713       } else if (NumZeroBits >= RegSize - 16) {
714         isSExt = false;  // ASSERT ZEXT 16
715         FromVT = MVT::i16;
716       } else if (NumSignBits > RegSize - 32) {
717         isSExt = true;   // ASSERT SEXT 32
718         FromVT = MVT::i32;
719       } else if (NumZeroBits >= RegSize - 32) {
720         isSExt = false;  // ASSERT ZEXT 32
721         FromVT = MVT::i32;
722       } else {
723         continue;
724       }
725       // Add an assertion node.
726       assert(FromVT != MVT::Other);
727       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
728                              RegisterVT, P, DAG.getValueType(FromVT));
729     }
730 
731     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
732                                      NumRegs, RegisterVT, ValueVT, V);
733     Part += NumRegs;
734     Parts.clear();
735   }
736 
737   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
738 }
739 
740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
741 /// specified value into the registers specified by this object.  This uses
742 /// Chain/Flag as the input and updates them for the output Chain/Flag.
743 /// If the Flag pointer is NULL, no flag is used.
744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
745                                  SDValue &Chain, SDValue *Flag, const Value *V,
746                                  ISD::NodeType PreferredExtendType) const {
747   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
748   ISD::NodeType ExtendKind = PreferredExtendType;
749 
750   // Get the list of the values's legal parts.
751   unsigned NumRegs = Regs.size();
752   SmallVector<SDValue, 8> Parts(NumRegs);
753   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
754     EVT ValueVT = ValueVTs[Value];
755     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
756     MVT RegisterVT = RegVTs[Value];
757 
758     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
759       ExtendKind = ISD::ZERO_EXTEND;
760 
761     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
762                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
763     Part += NumParts;
764   }
765 
766   // Copy the parts into the registers.
767   SmallVector<SDValue, 8> Chains(NumRegs);
768   for (unsigned i = 0; i != NumRegs; ++i) {
769     SDValue Part;
770     if (!Flag) {
771       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
772     } else {
773       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
774       *Flag = Part.getValue(1);
775     }
776 
777     Chains[i] = Part.getValue(0);
778   }
779 
780   if (NumRegs == 1 || Flag)
781     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
782     // flagged to it. That is the CopyToReg nodes and the user are considered
783     // a single scheduling unit. If we create a TokenFactor and return it as
784     // chain, then the TokenFactor is both a predecessor (operand) of the
785     // user as well as a successor (the TF operands are flagged to the user).
786     // c1, f1 = CopyToReg
787     // c2, f2 = CopyToReg
788     // c3     = TokenFactor c1, c2
789     // ...
790     //        = op c3, ..., f2
791     Chain = Chains[NumRegs-1];
792   else
793     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
794 }
795 
796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
797 /// operand list.  This adds the code marker and includes the number of
798 /// values added into it.
799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
800                                         unsigned MatchingIdx, SDLoc dl,
801                                         SelectionDAG &DAG,
802                                         std::vector<SDValue> &Ops) const {
803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
804 
805   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
806   if (HasMatching)
807     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
808   else if (!Regs.empty() &&
809            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
810     // Put the register class of the virtual registers in the flag word.  That
811     // way, later passes can recompute register class constraints for inline
812     // assembly as well as normal instructions.
813     // Don't do this for tied operands that can use the regclass information
814     // from the def.
815     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
816     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
817     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
818   }
819 
820   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
821   Ops.push_back(Res);
822 
823   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
824   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
825     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
826     MVT RegisterVT = RegVTs[Value];
827     for (unsigned i = 0; i != NumRegs; ++i) {
828       assert(Reg < Regs.size() && "Mismatch in # registers expected");
829       unsigned TheReg = Regs[Reg++];
830       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
831 
832       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
833         // If we clobbered the stack pointer, MFI should know about it.
834         assert(DAG.getMachineFunction().getFrameInfo()->
835             hasOpaqueSPAdjustment());
836       }
837     }
838   }
839 }
840 
841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
842                                const TargetLibraryInfo *li) {
843   AA = &aa;
844   GFI = gfi;
845   LibInfo = li;
846   DL = &DAG.getDataLayout();
847   Context = DAG.getContext();
848   LPadToCallSiteMap.clear();
849 }
850 
851 /// clear - Clear out the current SelectionDAG and the associated
852 /// state and prepare this SelectionDAGBuilder object to be used
853 /// for a new block. This doesn't clear out information about
854 /// additional blocks that are needed to complete switch lowering
855 /// or PHI node updating; that information is cleared out as it is
856 /// consumed.
857 void SelectionDAGBuilder::clear() {
858   NodeMap.clear();
859   UnusedArgNodeMap.clear();
860   PendingLoads.clear();
861   PendingExports.clear();
862   CurInst = nullptr;
863   HasTailCall = false;
864   SDNodeOrder = LowestSDNodeOrder;
865   StatepointLowering.clear();
866 }
867 
868 /// clearDanglingDebugInfo - Clear the dangling debug information
869 /// map. This function is separated from the clear so that debug
870 /// information that is dangling in a basic block can be properly
871 /// resolved in a different basic block. This allows the
872 /// SelectionDAG to resolve dangling debug information attached
873 /// to PHI nodes.
874 void SelectionDAGBuilder::clearDanglingDebugInfo() {
875   DanglingDebugInfoMap.clear();
876 }
877 
878 /// getRoot - Return the current virtual root of the Selection DAG,
879 /// flushing any PendingLoad items. This must be done before emitting
880 /// a store or any other node that may need to be ordered after any
881 /// prior load instructions.
882 ///
883 SDValue SelectionDAGBuilder::getRoot() {
884   if (PendingLoads.empty())
885     return DAG.getRoot();
886 
887   if (PendingLoads.size() == 1) {
888     SDValue Root = PendingLoads[0];
889     DAG.setRoot(Root);
890     PendingLoads.clear();
891     return Root;
892   }
893 
894   // Otherwise, we have to make a token factor node.
895   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
896                              PendingLoads);
897   PendingLoads.clear();
898   DAG.setRoot(Root);
899   return Root;
900 }
901 
902 /// getControlRoot - Similar to getRoot, but instead of flushing all the
903 /// PendingLoad items, flush all the PendingExports items. It is necessary
904 /// to do this before emitting a terminator instruction.
905 ///
906 SDValue SelectionDAGBuilder::getControlRoot() {
907   SDValue Root = DAG.getRoot();
908 
909   if (PendingExports.empty())
910     return Root;
911 
912   // Turn all of the CopyToReg chains into one factored node.
913   if (Root.getOpcode() != ISD::EntryToken) {
914     unsigned i = 0, e = PendingExports.size();
915     for (; i != e; ++i) {
916       assert(PendingExports[i].getNode()->getNumOperands() > 1);
917       if (PendingExports[i].getNode()->getOperand(0) == Root)
918         break;  // Don't add the root if we already indirectly depend on it.
919     }
920 
921     if (i == e)
922       PendingExports.push_back(Root);
923   }
924 
925   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
926                      PendingExports);
927   PendingExports.clear();
928   DAG.setRoot(Root);
929   return Root;
930 }
931 
932 /// Copy swift error to the final virtual register at end of a basic block, as
933 /// specified by SwiftErrorWorklist, if necessary.
934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) {
935   const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo();
936   if (!TLI.supportSwiftError())
937     return;
938 
939   if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB))
940     return;
941 
942   // Go through entries in SwiftErrorWorklist, and create copy as necessary.
943   FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry =
944       SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB];
945   FunctionLoweringInfo::SwiftErrorVRegs &MapEntry =
946       SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB];
947   for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) {
948     unsigned WorkReg = WorklistEntry[I];
949 
950     // Find the swifterror virtual register for the value in SwiftErrorMap.
951     unsigned MapReg = MapEntry[I];
952     assert(TargetRegisterInfo::isVirtualRegister(MapReg) &&
953            "Entries in SwiftErrorMap should be virtual registers");
954 
955     if (WorkReg == MapReg)
956       continue;
957 
958     // Create copy from SwiftErrorMap to SwiftWorklist.
959     auto &DL = SDB.DAG.getDataLayout();
960     SDValue CopyNode = SDB.DAG.getCopyToReg(
961         SDB.getRoot(), SDB.getCurSDLoc(), WorkReg,
962         SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL))));
963     MapEntry[I] = WorkReg;
964     SDB.DAG.setRoot(CopyNode);
965   }
966 }
967 
968 void SelectionDAGBuilder::visit(const Instruction &I) {
969   // Set up outgoing PHI node register values before emitting the terminator.
970   if (isa<TerminatorInst>(&I)) {
971     copySwiftErrorsToFinalVRegs(*this);
972     HandlePHINodesInSuccessorBlocks(I.getParent());
973   }
974 
975   ++SDNodeOrder;
976 
977   CurInst = &I;
978 
979   visit(I.getOpcode(), I);
980 
981   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
982       !isStatepoint(&I)) // statepoints handle their exports internally
983     CopyToExportRegsIfNeeded(&I);
984 
985   CurInst = nullptr;
986 }
987 
988 void SelectionDAGBuilder::visitPHI(const PHINode &) {
989   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
990 }
991 
992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
993   // Note: this doesn't use InstVisitor, because it has to work with
994   // ConstantExpr's in addition to instructions.
995   switch (Opcode) {
996   default: llvm_unreachable("Unknown instruction type encountered!");
997     // Build the switch statement using the Instruction.def file.
998 #define HANDLE_INST(NUM, OPCODE, CLASS) \
999     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1000 #include "llvm/IR/Instruction.def"
1001   }
1002 }
1003 
1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1005 // generate the debug data structures now that we've seen its definition.
1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1007                                                    SDValue Val) {
1008   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
1009   if (DDI.getDI()) {
1010     const DbgValueInst *DI = DDI.getDI();
1011     DebugLoc dl = DDI.getdl();
1012     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1013     DILocalVariable *Variable = DI->getVariable();
1014     DIExpression *Expr = DI->getExpression();
1015     assert(Variable->isValidLocationForIntrinsic(dl) &&
1016            "Expected inlined-at fields to agree");
1017     uint64_t Offset = DI->getOffset();
1018     SDDbgValue *SDV;
1019     if (Val.getNode()) {
1020       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
1021                                     Val)) {
1022         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1023                               false, Offset, dl, DbgSDNodeOrder);
1024         DAG.AddDbgValue(SDV, Val.getNode(), false);
1025       }
1026     } else
1027       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1028     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1029   }
1030 }
1031 
1032 /// getCopyFromRegs - If there was virtual register allocated for the value V
1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1035   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1036   SDValue Result;
1037 
1038   if (It != FuncInfo.ValueMap.end()) {
1039     unsigned InReg = It->second;
1040     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1041                      DAG.getDataLayout(), InReg, Ty);
1042     SDValue Chain = DAG.getEntryNode();
1043     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1044     resolveDanglingDebugInfo(V, Result);
1045   }
1046 
1047   return Result;
1048 }
1049 
1050 /// getValue - Return an SDValue for the given Value.
1051 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1052   // If we already have an SDValue for this value, use it. It's important
1053   // to do this first, so that we don't create a CopyFromReg if we already
1054   // have a regular SDValue.
1055   SDValue &N = NodeMap[V];
1056   if (N.getNode()) return N;
1057 
1058   // If there's a virtual register allocated and initialized for this
1059   // value, use it.
1060   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1061     return copyFromReg;
1062 
1063   // Otherwise create a new SDValue and remember it.
1064   SDValue Val = getValueImpl(V);
1065   NodeMap[V] = Val;
1066   resolveDanglingDebugInfo(V, Val);
1067   return Val;
1068 }
1069 
1070 // Return true if SDValue exists for the given Value
1071 bool SelectionDAGBuilder::findValue(const Value *V) const {
1072   return (NodeMap.find(V) != NodeMap.end()) ||
1073     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1074 }
1075 
1076 /// getNonRegisterValue - Return an SDValue for the given Value, but
1077 /// don't look in FuncInfo.ValueMap for a virtual register.
1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1079   // If we already have an SDValue for this value, use it.
1080   SDValue &N = NodeMap[V];
1081   if (N.getNode()) {
1082     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1083       // Remove the debug location from the node as the node is about to be used
1084       // in a location which may differ from the original debug location.  This
1085       // is relevant to Constant and ConstantFP nodes because they can appear
1086       // as constant expressions inside PHI nodes.
1087       N->setDebugLoc(DebugLoc());
1088     }
1089     return N;
1090   }
1091 
1092   // Otherwise create a new SDValue and remember it.
1093   SDValue Val = getValueImpl(V);
1094   NodeMap[V] = Val;
1095   resolveDanglingDebugInfo(V, Val);
1096   return Val;
1097 }
1098 
1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1100 /// Create an SDValue for the given value.
1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1102   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103 
1104   if (const Constant *C = dyn_cast<Constant>(V)) {
1105     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1106 
1107     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1108       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1109 
1110     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1111       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1112 
1113     if (isa<ConstantPointerNull>(C)) {
1114       unsigned AS = V->getType()->getPointerAddressSpace();
1115       return DAG.getConstant(0, getCurSDLoc(),
1116                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1117     }
1118 
1119     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1120       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1121 
1122     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1123       return DAG.getUNDEF(VT);
1124 
1125     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1126       visit(CE->getOpcode(), *CE);
1127       SDValue N1 = NodeMap[V];
1128       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1129       return N1;
1130     }
1131 
1132     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1133       SmallVector<SDValue, 4> Constants;
1134       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1135            OI != OE; ++OI) {
1136         SDNode *Val = getValue(*OI).getNode();
1137         // If the operand is an empty aggregate, there are no values.
1138         if (!Val) continue;
1139         // Add each leaf value from the operand to the Constants list
1140         // to form a flattened list of all the values.
1141         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1142           Constants.push_back(SDValue(Val, i));
1143       }
1144 
1145       return DAG.getMergeValues(Constants, getCurSDLoc());
1146     }
1147 
1148     if (const ConstantDataSequential *CDS =
1149           dyn_cast<ConstantDataSequential>(C)) {
1150       SmallVector<SDValue, 4> Ops;
1151       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1152         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1153         // Add each leaf value from the operand to the Constants list
1154         // to form a flattened list of all the values.
1155         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1156           Ops.push_back(SDValue(Val, i));
1157       }
1158 
1159       if (isa<ArrayType>(CDS->getType()))
1160         return DAG.getMergeValues(Ops, getCurSDLoc());
1161       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1162                                       VT, Ops);
1163     }
1164 
1165     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1166       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1167              "Unknown struct or array constant!");
1168 
1169       SmallVector<EVT, 4> ValueVTs;
1170       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1171       unsigned NumElts = ValueVTs.size();
1172       if (NumElts == 0)
1173         return SDValue(); // empty struct
1174       SmallVector<SDValue, 4> Constants(NumElts);
1175       for (unsigned i = 0; i != NumElts; ++i) {
1176         EVT EltVT = ValueVTs[i];
1177         if (isa<UndefValue>(C))
1178           Constants[i] = DAG.getUNDEF(EltVT);
1179         else if (EltVT.isFloatingPoint())
1180           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1181         else
1182           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1183       }
1184 
1185       return DAG.getMergeValues(Constants, getCurSDLoc());
1186     }
1187 
1188     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1189       return DAG.getBlockAddress(BA, VT);
1190 
1191     VectorType *VecTy = cast<VectorType>(V->getType());
1192     unsigned NumElements = VecTy->getNumElements();
1193 
1194     // Now that we know the number and type of the elements, get that number of
1195     // elements into the Ops array based on what kind of constant it is.
1196     SmallVector<SDValue, 16> Ops;
1197     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1198       for (unsigned i = 0; i != NumElements; ++i)
1199         Ops.push_back(getValue(CV->getOperand(i)));
1200     } else {
1201       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1202       EVT EltVT =
1203           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1204 
1205       SDValue Op;
1206       if (EltVT.isFloatingPoint())
1207         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1208       else
1209         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1210       Ops.assign(NumElements, Op);
1211     }
1212 
1213     // Create a BUILD_VECTOR node.
1214     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1215   }
1216 
1217   // If this is a static alloca, generate it as the frameindex instead of
1218   // computation.
1219   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1220     DenseMap<const AllocaInst*, int>::iterator SI =
1221       FuncInfo.StaticAllocaMap.find(AI);
1222     if (SI != FuncInfo.StaticAllocaMap.end())
1223       return DAG.getFrameIndex(SI->second,
1224                                TLI.getPointerTy(DAG.getDataLayout()));
1225   }
1226 
1227   // If this is an instruction which fast-isel has deferred, select it now.
1228   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1229     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1230     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1231                      Inst->getType());
1232     SDValue Chain = DAG.getEntryNode();
1233     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1234   }
1235 
1236   llvm_unreachable("Can't get register for value!");
1237 }
1238 
1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1240   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1241   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1242   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1243   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1244   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1245   if (IsMSVCCXX || IsCoreCLR)
1246     CatchPadMBB->setIsEHFuncletEntry();
1247 
1248   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1249 }
1250 
1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1252   // Update machine-CFG edge.
1253   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1254   FuncInfo.MBB->addSuccessor(TargetMBB);
1255 
1256   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1257   bool IsSEH = isAsynchronousEHPersonality(Pers);
1258   if (IsSEH) {
1259     // If this is not a fall-through branch or optimizations are switched off,
1260     // emit the branch.
1261     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1262         TM.getOptLevel() == CodeGenOpt::None)
1263       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1264                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1265     return;
1266   }
1267 
1268   // Figure out the funclet membership for the catchret's successor.
1269   // This will be used by the FuncletLayout pass to determine how to order the
1270   // BB's.
1271   // A 'catchret' returns to the outer scope's color.
1272   Value *ParentPad = I.getCatchSwitchParentPad();
1273   const BasicBlock *SuccessorColor;
1274   if (isa<ConstantTokenNone>(ParentPad))
1275     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1276   else
1277     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1278   assert(SuccessorColor && "No parent funclet for catchret!");
1279   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1280   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1281 
1282   // Create the terminator node.
1283   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1284                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1285                             DAG.getBasicBlock(SuccessorColorMBB));
1286   DAG.setRoot(Ret);
1287 }
1288 
1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1290   // Don't emit any special code for the cleanuppad instruction. It just marks
1291   // the start of a funclet.
1292   FuncInfo.MBB->setIsEHFuncletEntry();
1293   FuncInfo.MBB->setIsCleanupFuncletEntry();
1294 }
1295 
1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1297 /// many places it could ultimately go. In the IR, we have a single unwind
1298 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1299 /// This function skips over imaginary basic blocks that hold catchswitch
1300 /// instructions, and finds all the "real" machine
1301 /// basic block destinations. As those destinations may not be successors of
1302 /// EHPadBB, here we also calculate the edge probability to those destinations.
1303 /// The passed-in Prob is the edge probability to EHPadBB.
1304 static void findUnwindDestinations(
1305     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1306     BranchProbability Prob,
1307     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1308         &UnwindDests) {
1309   EHPersonality Personality =
1310     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1311   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1312   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1313 
1314   while (EHPadBB) {
1315     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1316     BasicBlock *NewEHPadBB = nullptr;
1317     if (isa<LandingPadInst>(Pad)) {
1318       // Stop on landingpads. They are not funclets.
1319       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1320       break;
1321     } else if (isa<CleanupPadInst>(Pad)) {
1322       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1323       // personalities.
1324       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1325       UnwindDests.back().first->setIsEHFuncletEntry();
1326       break;
1327     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1328       // Add the catchpad handlers to the possible destinations.
1329       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1330         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1331         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1332         if (IsMSVCCXX || IsCoreCLR)
1333           UnwindDests.back().first->setIsEHFuncletEntry();
1334       }
1335       NewEHPadBB = CatchSwitch->getUnwindDest();
1336     } else {
1337       continue;
1338     }
1339 
1340     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1341     if (BPI && NewEHPadBB)
1342       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1343     EHPadBB = NewEHPadBB;
1344   }
1345 }
1346 
1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1348   // Update successor info.
1349   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1350   auto UnwindDest = I.getUnwindDest();
1351   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1352   BranchProbability UnwindDestProb =
1353       (BPI && UnwindDest)
1354           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1355           : BranchProbability::getZero();
1356   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1357   for (auto &UnwindDest : UnwindDests) {
1358     UnwindDest.first->setIsEHPad();
1359     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1360   }
1361   FuncInfo.MBB->normalizeSuccProbs();
1362 
1363   // Create the terminator node.
1364   SDValue Ret =
1365       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1366   DAG.setRoot(Ret);
1367 }
1368 
1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1370   report_fatal_error("visitCatchSwitch not yet implemented!");
1371 }
1372 
1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1374   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1375   auto &DL = DAG.getDataLayout();
1376   SDValue Chain = getControlRoot();
1377   SmallVector<ISD::OutputArg, 8> Outs;
1378   SmallVector<SDValue, 8> OutVals;
1379 
1380   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1381   // lower
1382   //
1383   //   %val = call <ty> @llvm.experimental.deoptimize()
1384   //   ret <ty> %val
1385   //
1386   // differently.
1387   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1388     LowerDeoptimizingReturn();
1389     return;
1390   }
1391 
1392   if (!FuncInfo.CanLowerReturn) {
1393     unsigned DemoteReg = FuncInfo.DemoteRegister;
1394     const Function *F = I.getParent()->getParent();
1395 
1396     // Emit a store of the return value through the virtual register.
1397     // Leave Outs empty so that LowerReturn won't try to load return
1398     // registers the usual way.
1399     SmallVector<EVT, 1> PtrValueVTs;
1400     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1401                     PtrValueVTs);
1402 
1403     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1404                                         DemoteReg, PtrValueVTs[0]);
1405     SDValue RetOp = getValue(I.getOperand(0));
1406 
1407     SmallVector<EVT, 4> ValueVTs;
1408     SmallVector<uint64_t, 4> Offsets;
1409     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1410     unsigned NumValues = ValueVTs.size();
1411 
1412     // An aggregate return value cannot wrap around the address space, so
1413     // offsets to its parts don't wrap either.
1414     SDNodeFlags Flags;
1415     Flags.setNoUnsignedWrap(true);
1416 
1417     SmallVector<SDValue, 4> Chains(NumValues);
1418     for (unsigned i = 0; i != NumValues; ++i) {
1419       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1420                                 RetPtr.getValueType(), RetPtr,
1421                                 DAG.getIntPtrConstant(Offsets[i],
1422                                                       getCurSDLoc()),
1423                                 &Flags);
1424       Chains[i] =
1425         DAG.getStore(Chain, getCurSDLoc(),
1426                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1427                      // FIXME: better loc info would be nice.
1428                      Add, MachinePointerInfo(), false, false, 0);
1429     }
1430 
1431     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1432                         MVT::Other, Chains);
1433   } else if (I.getNumOperands() != 0) {
1434     SmallVector<EVT, 4> ValueVTs;
1435     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1436     unsigned NumValues = ValueVTs.size();
1437     if (NumValues) {
1438       SDValue RetOp = getValue(I.getOperand(0));
1439 
1440       const Function *F = I.getParent()->getParent();
1441 
1442       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1443       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1444                                           Attribute::SExt))
1445         ExtendKind = ISD::SIGN_EXTEND;
1446       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1447                                                Attribute::ZExt))
1448         ExtendKind = ISD::ZERO_EXTEND;
1449 
1450       LLVMContext &Context = F->getContext();
1451       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1452                                                       Attribute::InReg);
1453 
1454       for (unsigned j = 0; j != NumValues; ++j) {
1455         EVT VT = ValueVTs[j];
1456 
1457         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1458           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1459 
1460         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1461         MVT PartVT = TLI.getRegisterType(Context, VT);
1462         SmallVector<SDValue, 4> Parts(NumParts);
1463         getCopyToParts(DAG, getCurSDLoc(),
1464                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1465                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1466 
1467         // 'inreg' on function refers to return value
1468         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1469         if (RetInReg)
1470           Flags.setInReg();
1471 
1472         // Propagate extension type if any
1473         if (ExtendKind == ISD::SIGN_EXTEND)
1474           Flags.setSExt();
1475         else if (ExtendKind == ISD::ZERO_EXTEND)
1476           Flags.setZExt();
1477 
1478         for (unsigned i = 0; i < NumParts; ++i) {
1479           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1480                                         VT, /*isfixed=*/true, 0, 0));
1481           OutVals.push_back(Parts[i]);
1482         }
1483       }
1484     }
1485   }
1486 
1487   // Push in swifterror virtual register as the last element of Outs. This makes
1488   // sure swifterror virtual register will be returned in the swifterror
1489   // physical register.
1490   const Function *F = I.getParent()->getParent();
1491   if (TLI.supportSwiftError() &&
1492       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1493     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1494     Flags.setSwiftError();
1495     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1496                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1497                                   true /*isfixed*/, 1 /*origidx*/,
1498                                   0 /*partOffs*/));
1499     // Create SDNode for the swifterror virtual register.
1500     OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0],
1501                                       EVT(TLI.getPointerTy(DL))));
1502   }
1503 
1504   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1505   CallingConv::ID CallConv =
1506     DAG.getMachineFunction().getFunction()->getCallingConv();
1507   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1508       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1509 
1510   // Verify that the target's LowerReturn behaved as expected.
1511   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1512          "LowerReturn didn't return a valid chain!");
1513 
1514   // Update the DAG with the new chain value resulting from return lowering.
1515   DAG.setRoot(Chain);
1516 }
1517 
1518 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1519 /// created for it, emit nodes to copy the value into the virtual
1520 /// registers.
1521 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1522   // Skip empty types
1523   if (V->getType()->isEmptyTy())
1524     return;
1525 
1526   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1527   if (VMI != FuncInfo.ValueMap.end()) {
1528     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1529     CopyValueToVirtualRegister(V, VMI->second);
1530   }
1531 }
1532 
1533 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1534 /// the current basic block, add it to ValueMap now so that we'll get a
1535 /// CopyTo/FromReg.
1536 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1537   // No need to export constants.
1538   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1539 
1540   // Already exported?
1541   if (FuncInfo.isExportedInst(V)) return;
1542 
1543   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1544   CopyValueToVirtualRegister(V, Reg);
1545 }
1546 
1547 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1548                                                      const BasicBlock *FromBB) {
1549   // The operands of the setcc have to be in this block.  We don't know
1550   // how to export them from some other block.
1551   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1552     // Can export from current BB.
1553     if (VI->getParent() == FromBB)
1554       return true;
1555 
1556     // Is already exported, noop.
1557     return FuncInfo.isExportedInst(V);
1558   }
1559 
1560   // If this is an argument, we can export it if the BB is the entry block or
1561   // if it is already exported.
1562   if (isa<Argument>(V)) {
1563     if (FromBB == &FromBB->getParent()->getEntryBlock())
1564       return true;
1565 
1566     // Otherwise, can only export this if it is already exported.
1567     return FuncInfo.isExportedInst(V);
1568   }
1569 
1570   // Otherwise, constants can always be exported.
1571   return true;
1572 }
1573 
1574 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1575 BranchProbability
1576 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1577                                         const MachineBasicBlock *Dst) const {
1578   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1579   const BasicBlock *SrcBB = Src->getBasicBlock();
1580   const BasicBlock *DstBB = Dst->getBasicBlock();
1581   if (!BPI) {
1582     // If BPI is not available, set the default probability as 1 / N, where N is
1583     // the number of successors.
1584     auto SuccSize = std::max<uint32_t>(
1585         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1586     return BranchProbability(1, SuccSize);
1587   }
1588   return BPI->getEdgeProbability(SrcBB, DstBB);
1589 }
1590 
1591 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1592                                                MachineBasicBlock *Dst,
1593                                                BranchProbability Prob) {
1594   if (!FuncInfo.BPI)
1595     Src->addSuccessorWithoutProb(Dst);
1596   else {
1597     if (Prob.isUnknown())
1598       Prob = getEdgeProbability(Src, Dst);
1599     Src->addSuccessor(Dst, Prob);
1600   }
1601 }
1602 
1603 static bool InBlock(const Value *V, const BasicBlock *BB) {
1604   if (const Instruction *I = dyn_cast<Instruction>(V))
1605     return I->getParent() == BB;
1606   return true;
1607 }
1608 
1609 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1610 /// This function emits a branch and is used at the leaves of an OR or an
1611 /// AND operator tree.
1612 ///
1613 void
1614 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1615                                                   MachineBasicBlock *TBB,
1616                                                   MachineBasicBlock *FBB,
1617                                                   MachineBasicBlock *CurBB,
1618                                                   MachineBasicBlock *SwitchBB,
1619                                                   BranchProbability TProb,
1620                                                   BranchProbability FProb) {
1621   const BasicBlock *BB = CurBB->getBasicBlock();
1622 
1623   // If the leaf of the tree is a comparison, merge the condition into
1624   // the caseblock.
1625   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1626     // The operands of the cmp have to be in this block.  We don't know
1627     // how to export them from some other block.  If this is the first block
1628     // of the sequence, no exporting is needed.
1629     if (CurBB == SwitchBB ||
1630         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1631          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1632       ISD::CondCode Condition;
1633       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1634         Condition = getICmpCondCode(IC->getPredicate());
1635       } else {
1636         const FCmpInst *FC = cast<FCmpInst>(Cond);
1637         Condition = getFCmpCondCode(FC->getPredicate());
1638         if (TM.Options.NoNaNsFPMath)
1639           Condition = getFCmpCodeWithoutNaN(Condition);
1640       }
1641 
1642       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1643                    TBB, FBB, CurBB, TProb, FProb);
1644       SwitchCases.push_back(CB);
1645       return;
1646     }
1647   }
1648 
1649   // Create a CaseBlock record representing this branch.
1650   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1651                nullptr, TBB, FBB, CurBB, TProb, FProb);
1652   SwitchCases.push_back(CB);
1653 }
1654 
1655 /// FindMergedConditions - If Cond is an expression like
1656 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1657                                                MachineBasicBlock *TBB,
1658                                                MachineBasicBlock *FBB,
1659                                                MachineBasicBlock *CurBB,
1660                                                MachineBasicBlock *SwitchBB,
1661                                                Instruction::BinaryOps Opc,
1662                                                BranchProbability TProb,
1663                                                BranchProbability FProb) {
1664   // If this node is not part of the or/and tree, emit it as a branch.
1665   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1666   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1667       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1668       BOp->getParent() != CurBB->getBasicBlock() ||
1669       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1670       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1671     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1672                                  TProb, FProb);
1673     return;
1674   }
1675 
1676   //  Create TmpBB after CurBB.
1677   MachineFunction::iterator BBI(CurBB);
1678   MachineFunction &MF = DAG.getMachineFunction();
1679   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1680   CurBB->getParent()->insert(++BBI, TmpBB);
1681 
1682   if (Opc == Instruction::Or) {
1683     // Codegen X | Y as:
1684     // BB1:
1685     //   jmp_if_X TBB
1686     //   jmp TmpBB
1687     // TmpBB:
1688     //   jmp_if_Y TBB
1689     //   jmp FBB
1690     //
1691 
1692     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1693     // The requirement is that
1694     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1695     //     = TrueProb for original BB.
1696     // Assuming the original probabilities are A and B, one choice is to set
1697     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1698     // A/(1+B) and 2B/(1+B). This choice assumes that
1699     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1700     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1701     // TmpBB, but the math is more complicated.
1702 
1703     auto NewTrueProb = TProb / 2;
1704     auto NewFalseProb = TProb / 2 + FProb;
1705     // Emit the LHS condition.
1706     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1707                          NewTrueProb, NewFalseProb);
1708 
1709     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1710     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1711     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1712     // Emit the RHS condition into TmpBB.
1713     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1714                          Probs[0], Probs[1]);
1715   } else {
1716     assert(Opc == Instruction::And && "Unknown merge op!");
1717     // Codegen X & Y as:
1718     // BB1:
1719     //   jmp_if_X TmpBB
1720     //   jmp FBB
1721     // TmpBB:
1722     //   jmp_if_Y TBB
1723     //   jmp FBB
1724     //
1725     //  This requires creation of TmpBB after CurBB.
1726 
1727     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1728     // The requirement is that
1729     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1730     //     = FalseProb for original BB.
1731     // Assuming the original probabilities are A and B, one choice is to set
1732     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1733     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1734     // TrueProb for BB1 * FalseProb for TmpBB.
1735 
1736     auto NewTrueProb = TProb + FProb / 2;
1737     auto NewFalseProb = FProb / 2;
1738     // Emit the LHS condition.
1739     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1740                          NewTrueProb, NewFalseProb);
1741 
1742     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1743     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1744     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1745     // Emit the RHS condition into TmpBB.
1746     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1747                          Probs[0], Probs[1]);
1748   }
1749 }
1750 
1751 /// If the set of cases should be emitted as a series of branches, return true.
1752 /// If we should emit this as a bunch of and/or'd together conditions, return
1753 /// false.
1754 bool
1755 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1756   if (Cases.size() != 2) return true;
1757 
1758   // If this is two comparisons of the same values or'd or and'd together, they
1759   // will get folded into a single comparison, so don't emit two blocks.
1760   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1761        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1762       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1763        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1764     return false;
1765   }
1766 
1767   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1768   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1769   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1770       Cases[0].CC == Cases[1].CC &&
1771       isa<Constant>(Cases[0].CmpRHS) &&
1772       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1773     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1774       return false;
1775     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1776       return false;
1777   }
1778 
1779   return true;
1780 }
1781 
1782 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1783   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1784 
1785   // Update machine-CFG edges.
1786   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1787 
1788   if (I.isUnconditional()) {
1789     // Update machine-CFG edges.
1790     BrMBB->addSuccessor(Succ0MBB);
1791 
1792     // If this is not a fall-through branch or optimizations are switched off,
1793     // emit the branch.
1794     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1795       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1796                               MVT::Other, getControlRoot(),
1797                               DAG.getBasicBlock(Succ0MBB)));
1798 
1799     return;
1800   }
1801 
1802   // If this condition is one of the special cases we handle, do special stuff
1803   // now.
1804   const Value *CondVal = I.getCondition();
1805   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1806 
1807   // If this is a series of conditions that are or'd or and'd together, emit
1808   // this as a sequence of branches instead of setcc's with and/or operations.
1809   // As long as jumps are not expensive, this should improve performance.
1810   // For example, instead of something like:
1811   //     cmp A, B
1812   //     C = seteq
1813   //     cmp D, E
1814   //     F = setle
1815   //     or C, F
1816   //     jnz foo
1817   // Emit:
1818   //     cmp A, B
1819   //     je foo
1820   //     cmp D, E
1821   //     jle foo
1822   //
1823   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1824     Instruction::BinaryOps Opcode = BOp->getOpcode();
1825     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1826         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1827         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1828       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1829                            Opcode,
1830                            getEdgeProbability(BrMBB, Succ0MBB),
1831                            getEdgeProbability(BrMBB, Succ1MBB));
1832       // If the compares in later blocks need to use values not currently
1833       // exported from this block, export them now.  This block should always
1834       // be the first entry.
1835       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1836 
1837       // Allow some cases to be rejected.
1838       if (ShouldEmitAsBranches(SwitchCases)) {
1839         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1840           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1841           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1842         }
1843 
1844         // Emit the branch for this block.
1845         visitSwitchCase(SwitchCases[0], BrMBB);
1846         SwitchCases.erase(SwitchCases.begin());
1847         return;
1848       }
1849 
1850       // Okay, we decided not to do this, remove any inserted MBB's and clear
1851       // SwitchCases.
1852       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1853         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1854 
1855       SwitchCases.clear();
1856     }
1857   }
1858 
1859   // Create a CaseBlock record representing this branch.
1860   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1861                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1862 
1863   // Use visitSwitchCase to actually insert the fast branch sequence for this
1864   // cond branch.
1865   visitSwitchCase(CB, BrMBB);
1866 }
1867 
1868 /// visitSwitchCase - Emits the necessary code to represent a single node in
1869 /// the binary search tree resulting from lowering a switch instruction.
1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1871                                           MachineBasicBlock *SwitchBB) {
1872   SDValue Cond;
1873   SDValue CondLHS = getValue(CB.CmpLHS);
1874   SDLoc dl = getCurSDLoc();
1875 
1876   // Build the setcc now.
1877   if (!CB.CmpMHS) {
1878     // Fold "(X == true)" to X and "(X == false)" to !X to
1879     // handle common cases produced by branch lowering.
1880     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1881         CB.CC == ISD::SETEQ)
1882       Cond = CondLHS;
1883     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1884              CB.CC == ISD::SETEQ) {
1885       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1886       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1887     } else
1888       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1889   } else {
1890     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1891 
1892     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1893     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1894 
1895     SDValue CmpOp = getValue(CB.CmpMHS);
1896     EVT VT = CmpOp.getValueType();
1897 
1898     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1899       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1900                           ISD::SETLE);
1901     } else {
1902       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1903                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1904       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1905                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1906     }
1907   }
1908 
1909   // Update successor info
1910   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1911   // TrueBB and FalseBB are always different unless the incoming IR is
1912   // degenerate. This only happens when running llc on weird IR.
1913   if (CB.TrueBB != CB.FalseBB)
1914     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1915   SwitchBB->normalizeSuccProbs();
1916 
1917   // If the lhs block is the next block, invert the condition so that we can
1918   // fall through to the lhs instead of the rhs block.
1919   if (CB.TrueBB == NextBlock(SwitchBB)) {
1920     std::swap(CB.TrueBB, CB.FalseBB);
1921     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1922     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1923   }
1924 
1925   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1926                                MVT::Other, getControlRoot(), Cond,
1927                                DAG.getBasicBlock(CB.TrueBB));
1928 
1929   // Insert the false branch. Do this even if it's a fall through branch,
1930   // this makes it easier to do DAG optimizations which require inverting
1931   // the branch condition.
1932   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1933                        DAG.getBasicBlock(CB.FalseBB));
1934 
1935   DAG.setRoot(BrCond);
1936 }
1937 
1938 /// visitJumpTable - Emit JumpTable node in the current MBB
1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1940   // Emit the code for the jump table
1941   assert(JT.Reg != -1U && "Should lower JT Header first!");
1942   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1943   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1944                                      JT.Reg, PTy);
1945   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1946   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1947                                     MVT::Other, Index.getValue(1),
1948                                     Table, Index);
1949   DAG.setRoot(BrJumpTable);
1950 }
1951 
1952 /// visitJumpTableHeader - This function emits necessary code to produce index
1953 /// in the JumpTable from switch case.
1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1955                                                JumpTableHeader &JTH,
1956                                                MachineBasicBlock *SwitchBB) {
1957   SDLoc dl = getCurSDLoc();
1958 
1959   // Subtract the lowest switch case value from the value being switched on and
1960   // conditional branch to default mbb if the result is greater than the
1961   // difference between smallest and largest cases.
1962   SDValue SwitchOp = getValue(JTH.SValue);
1963   EVT VT = SwitchOp.getValueType();
1964   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1965                             DAG.getConstant(JTH.First, dl, VT));
1966 
1967   // The SDNode we just created, which holds the value being switched on minus
1968   // the smallest case value, needs to be copied to a virtual register so it
1969   // can be used as an index into the jump table in a subsequent basic block.
1970   // This value may be smaller or larger than the target's pointer type, and
1971   // therefore require extension or truncating.
1972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1973   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1974 
1975   unsigned JumpTableReg =
1976       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1977   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1978                                     JumpTableReg, SwitchOp);
1979   JT.Reg = JumpTableReg;
1980 
1981   // Emit the range check for the jump table, and branch to the default block
1982   // for the switch statement if the value being switched on exceeds the largest
1983   // case in the switch.
1984   SDValue CMP = DAG.getSetCC(
1985       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1986                                  Sub.getValueType()),
1987       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1988 
1989   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1990                                MVT::Other, CopyTo, CMP,
1991                                DAG.getBasicBlock(JT.Default));
1992 
1993   // Avoid emitting unnecessary branches to the next block.
1994   if (JT.MBB != NextBlock(SwitchBB))
1995     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1996                          DAG.getBasicBlock(JT.MBB));
1997 
1998   DAG.setRoot(BrCond);
1999 }
2000 
2001 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2002 /// variable if there exists one.
2003 static SDValue getLoadStackGuard(SelectionDAG &DAG, SDLoc DL, SDValue &Chain) {
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2006   MachineFunction &MF = DAG.getMachineFunction();
2007   Value *Global = TLI.getSDStackGuard(*MF.getFunction()->getParent());
2008   MachineSDNode *Node =
2009       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2010   if (Global) {
2011     MachinePointerInfo MPInfo(Global);
2012     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2013     unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
2014     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2015                                        DAG.getEVTAlignment(PtrTy));
2016     Node->setMemRefs(MemRefs, MemRefs + 1);
2017   }
2018   return SDValue(Node, 0);
2019 }
2020 
2021 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2022 /// tail spliced into a stack protector check success bb.
2023 ///
2024 /// For a high level explanation of how this fits into the stack protector
2025 /// generation see the comment on the declaration of class
2026 /// StackProtectorDescriptor.
2027 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2028                                                   MachineBasicBlock *ParentBB) {
2029 
2030   // First create the loads to the guard/stack slot for the comparison.
2031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2032   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2033 
2034   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
2035   int FI = MFI->getStackProtectorIndex();
2036 
2037   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2038   const Value *IRGuard = TLI.getSDStackGuard(M);
2039   assert(IRGuard && "Currently there must be an IR guard in order to use "
2040                     "SelectionDAG SSP");
2041   SDValue GuardPtr = getValue(IRGuard);
2042   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2043 
2044   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
2045 
2046   SDValue Guard;
2047   SDLoc dl = getCurSDLoc();
2048 
2049   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2050   // Otherwise, emit a volatile load to retrieve the stack guard value.
2051   SDValue Chain = DAG.getEntryNode();
2052   if (TLI.useLoadStackGuardNode())
2053     Guard = getLoadStackGuard(DAG, dl, Chain);
2054   else
2055     Guard =
2056         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2057                     true, false, false, Align);
2058 
2059   SDValue StackSlot = DAG.getLoad(
2060       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2061       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
2062       false, false, Align);
2063 
2064   // Perform the comparison via a subtract/getsetcc.
2065   EVT VT = Guard.getValueType();
2066   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2067 
2068   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2069                                                         *DAG.getContext(),
2070                                                         Sub.getValueType()),
2071                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2072 
2073   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2074   // branch to failure MBB.
2075   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2076                                MVT::Other, StackSlot.getOperand(0),
2077                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2078   // Otherwise branch to success MBB.
2079   SDValue Br = DAG.getNode(ISD::BR, dl,
2080                            MVT::Other, BrCond,
2081                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2082 
2083   DAG.setRoot(Br);
2084 }
2085 
2086 /// Codegen the failure basic block for a stack protector check.
2087 ///
2088 /// A failure stack protector machine basic block consists simply of a call to
2089 /// __stack_chk_fail().
2090 ///
2091 /// For a high level explanation of how this fits into the stack protector
2092 /// generation see the comment on the declaration of class
2093 /// StackProtectorDescriptor.
2094 void
2095 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2096   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2097   SDValue Chain =
2098       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2099                       None, false, getCurSDLoc(), false, false).second;
2100   DAG.setRoot(Chain);
2101 }
2102 
2103 /// visitBitTestHeader - This function emits necessary code to produce value
2104 /// suitable for "bit tests"
2105 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2106                                              MachineBasicBlock *SwitchBB) {
2107   SDLoc dl = getCurSDLoc();
2108 
2109   // Subtract the minimum value
2110   SDValue SwitchOp = getValue(B.SValue);
2111   EVT VT = SwitchOp.getValueType();
2112   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2113                             DAG.getConstant(B.First, dl, VT));
2114 
2115   // Check range
2116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2117   SDValue RangeCmp = DAG.getSetCC(
2118       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2119                                  Sub.getValueType()),
2120       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2121 
2122   // Determine the type of the test operands.
2123   bool UsePtrType = false;
2124   if (!TLI.isTypeLegal(VT))
2125     UsePtrType = true;
2126   else {
2127     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2128       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2129         // Switch table case range are encoded into series of masks.
2130         // Just use pointer type, it's guaranteed to fit.
2131         UsePtrType = true;
2132         break;
2133       }
2134   }
2135   if (UsePtrType) {
2136     VT = TLI.getPointerTy(DAG.getDataLayout());
2137     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2138   }
2139 
2140   B.RegVT = VT.getSimpleVT();
2141   B.Reg = FuncInfo.CreateReg(B.RegVT);
2142   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2143 
2144   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2145 
2146   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2147   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2148   SwitchBB->normalizeSuccProbs();
2149 
2150   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2151                                 MVT::Other, CopyTo, RangeCmp,
2152                                 DAG.getBasicBlock(B.Default));
2153 
2154   // Avoid emitting unnecessary branches to the next block.
2155   if (MBB != NextBlock(SwitchBB))
2156     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2157                           DAG.getBasicBlock(MBB));
2158 
2159   DAG.setRoot(BrRange);
2160 }
2161 
2162 /// visitBitTestCase - this function produces one "bit test"
2163 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2164                                            MachineBasicBlock* NextMBB,
2165                                            BranchProbability BranchProbToNext,
2166                                            unsigned Reg,
2167                                            BitTestCase &B,
2168                                            MachineBasicBlock *SwitchBB) {
2169   SDLoc dl = getCurSDLoc();
2170   MVT VT = BB.RegVT;
2171   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2172   SDValue Cmp;
2173   unsigned PopCount = countPopulation(B.Mask);
2174   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2175   if (PopCount == 1) {
2176     // Testing for a single bit; just compare the shift count with what it
2177     // would need to be to shift a 1 bit in that position.
2178     Cmp = DAG.getSetCC(
2179         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2180         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2181         ISD::SETEQ);
2182   } else if (PopCount == BB.Range) {
2183     // There is only one zero bit in the range, test for it directly.
2184     Cmp = DAG.getSetCC(
2185         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2186         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2187         ISD::SETNE);
2188   } else {
2189     // Make desired shift
2190     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2191                                     DAG.getConstant(1, dl, VT), ShiftOp);
2192 
2193     // Emit bit tests and jumps
2194     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2195                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2196     Cmp = DAG.getSetCC(
2197         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2198         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2199   }
2200 
2201   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2202   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2203   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2204   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2205   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2206   // one as they are relative probabilities (and thus work more like weights),
2207   // and hence we need to normalize them to let the sum of them become one.
2208   SwitchBB->normalizeSuccProbs();
2209 
2210   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2211                               MVT::Other, getControlRoot(),
2212                               Cmp, DAG.getBasicBlock(B.TargetBB));
2213 
2214   // Avoid emitting unnecessary branches to the next block.
2215   if (NextMBB != NextBlock(SwitchBB))
2216     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2217                         DAG.getBasicBlock(NextMBB));
2218 
2219   DAG.setRoot(BrAnd);
2220 }
2221 
2222 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2223   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2224 
2225   // Retrieve successors. Look through artificial IR level blocks like
2226   // catchswitch for successors.
2227   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2228   const BasicBlock *EHPadBB = I.getSuccessor(1);
2229 
2230   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2231   // have to do anything here to lower funclet bundles.
2232   assert(!I.hasOperandBundlesOtherThan(
2233              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2234          "Cannot lower invokes with arbitrary operand bundles yet!");
2235 
2236   const Value *Callee(I.getCalledValue());
2237   const Function *Fn = dyn_cast<Function>(Callee);
2238   if (isa<InlineAsm>(Callee))
2239     visitInlineAsm(&I);
2240   else if (Fn && Fn->isIntrinsic()) {
2241     switch (Fn->getIntrinsicID()) {
2242     default:
2243       llvm_unreachable("Cannot invoke this intrinsic");
2244     case Intrinsic::donothing:
2245       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2246       break;
2247     case Intrinsic::experimental_patchpoint_void:
2248     case Intrinsic::experimental_patchpoint_i64:
2249       visitPatchpoint(&I, EHPadBB);
2250       break;
2251     case Intrinsic::experimental_gc_statepoint:
2252       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2253       break;
2254     }
2255   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2256     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2257     // Eventually we will support lowering the @llvm.experimental.deoptimize
2258     // intrinsic, and right now there are no plans to support other intrinsics
2259     // with deopt state.
2260     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2261   } else {
2262     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2263   }
2264 
2265   // If the value of the invoke is used outside of its defining block, make it
2266   // available as a virtual register.
2267   // We already took care of the exported value for the statepoint instruction
2268   // during call to the LowerStatepoint.
2269   if (!isStatepoint(I)) {
2270     CopyToExportRegsIfNeeded(&I);
2271   }
2272 
2273   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2274   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2275   BranchProbability EHPadBBProb =
2276       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2277           : BranchProbability::getZero();
2278   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2279 
2280   // Update successor info.
2281   addSuccessorWithProb(InvokeMBB, Return);
2282   for (auto &UnwindDest : UnwindDests) {
2283     UnwindDest.first->setIsEHPad();
2284     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2285   }
2286   InvokeMBB->normalizeSuccProbs();
2287 
2288   // Drop into normal successor.
2289   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2290                           MVT::Other, getControlRoot(),
2291                           DAG.getBasicBlock(Return)));
2292 }
2293 
2294 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2295   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2296 }
2297 
2298 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2299   assert(FuncInfo.MBB->isEHPad() &&
2300          "Call to landingpad not in landing pad!");
2301 
2302   MachineBasicBlock *MBB = FuncInfo.MBB;
2303   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2304   AddLandingPadInfo(LP, MMI, MBB);
2305 
2306   // If there aren't registers to copy the values into (e.g., during SjLj
2307   // exceptions), then don't bother to create these DAG nodes.
2308   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2309   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2310   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2311       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2312     return;
2313 
2314   // If landingpad's return type is token type, we don't create DAG nodes
2315   // for its exception pointer and selector value. The extraction of exception
2316   // pointer or selector value from token type landingpads is not currently
2317   // supported.
2318   if (LP.getType()->isTokenTy())
2319     return;
2320 
2321   SmallVector<EVT, 2> ValueVTs;
2322   SDLoc dl = getCurSDLoc();
2323   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2324   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2325 
2326   // Get the two live-in registers as SDValues. The physregs have already been
2327   // copied into virtual registers.
2328   SDValue Ops[2];
2329   if (FuncInfo.ExceptionPointerVirtReg) {
2330     Ops[0] = DAG.getZExtOrTrunc(
2331         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2332                            FuncInfo.ExceptionPointerVirtReg,
2333                            TLI.getPointerTy(DAG.getDataLayout())),
2334         dl, ValueVTs[0]);
2335   } else {
2336     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2337   }
2338   Ops[1] = DAG.getZExtOrTrunc(
2339       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2340                          FuncInfo.ExceptionSelectorVirtReg,
2341                          TLI.getPointerTy(DAG.getDataLayout())),
2342       dl, ValueVTs[1]);
2343 
2344   // Merge into one.
2345   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2346                             DAG.getVTList(ValueVTs), Ops);
2347   setValue(&LP, Res);
2348 }
2349 
2350 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2351 #ifndef NDEBUG
2352   for (const CaseCluster &CC : Clusters)
2353     assert(CC.Low == CC.High && "Input clusters must be single-case");
2354 #endif
2355 
2356   std::sort(Clusters.begin(), Clusters.end(),
2357             [](const CaseCluster &a, const CaseCluster &b) {
2358     return a.Low->getValue().slt(b.Low->getValue());
2359   });
2360 
2361   // Merge adjacent clusters with the same destination.
2362   const unsigned N = Clusters.size();
2363   unsigned DstIndex = 0;
2364   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2365     CaseCluster &CC = Clusters[SrcIndex];
2366     const ConstantInt *CaseVal = CC.Low;
2367     MachineBasicBlock *Succ = CC.MBB;
2368 
2369     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2370         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2371       // If this case has the same successor and is a neighbour, merge it into
2372       // the previous cluster.
2373       Clusters[DstIndex - 1].High = CaseVal;
2374       Clusters[DstIndex - 1].Prob += CC.Prob;
2375     } else {
2376       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2377                    sizeof(Clusters[SrcIndex]));
2378     }
2379   }
2380   Clusters.resize(DstIndex);
2381 }
2382 
2383 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2384                                            MachineBasicBlock *Last) {
2385   // Update JTCases.
2386   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2387     if (JTCases[i].first.HeaderBB == First)
2388       JTCases[i].first.HeaderBB = Last;
2389 
2390   // Update BitTestCases.
2391   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2392     if (BitTestCases[i].Parent == First)
2393       BitTestCases[i].Parent = Last;
2394 }
2395 
2396 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2397   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2398 
2399   // Update machine-CFG edges with unique successors.
2400   SmallSet<BasicBlock*, 32> Done;
2401   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2402     BasicBlock *BB = I.getSuccessor(i);
2403     bool Inserted = Done.insert(BB).second;
2404     if (!Inserted)
2405         continue;
2406 
2407     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2408     addSuccessorWithProb(IndirectBrMBB, Succ);
2409   }
2410   IndirectBrMBB->normalizeSuccProbs();
2411 
2412   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2413                           MVT::Other, getControlRoot(),
2414                           getValue(I.getAddress())));
2415 }
2416 
2417 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2418   if (DAG.getTarget().Options.TrapUnreachable)
2419     DAG.setRoot(
2420         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2421 }
2422 
2423 void SelectionDAGBuilder::visitFSub(const User &I) {
2424   // -0.0 - X --> fneg
2425   Type *Ty = I.getType();
2426   if (isa<Constant>(I.getOperand(0)) &&
2427       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2428     SDValue Op2 = getValue(I.getOperand(1));
2429     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2430                              Op2.getValueType(), Op2));
2431     return;
2432   }
2433 
2434   visitBinary(I, ISD::FSUB);
2435 }
2436 
2437 /// Checks if the given instruction performs a vector reduction, in which case
2438 /// we have the freedom to alter the elements in the result as long as the
2439 /// reduction of them stays unchanged.
2440 static bool isVectorReductionOp(const User *I) {
2441   const Instruction *Inst = dyn_cast<Instruction>(I);
2442   if (!Inst || !Inst->getType()->isVectorTy())
2443     return false;
2444 
2445   auto OpCode = Inst->getOpcode();
2446   switch (OpCode) {
2447   case Instruction::Add:
2448   case Instruction::Mul:
2449   case Instruction::And:
2450   case Instruction::Or:
2451   case Instruction::Xor:
2452     break;
2453   case Instruction::FAdd:
2454   case Instruction::FMul:
2455     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2456       if (FPOp->getFastMathFlags().unsafeAlgebra())
2457         break;
2458     // Fall through.
2459   default:
2460     return false;
2461   }
2462 
2463   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2464   unsigned ElemNumToReduce = ElemNum;
2465 
2466   // Do DFS search on the def-use chain from the given instruction. We only
2467   // allow four kinds of operations during the search until we reach the
2468   // instruction that extracts the first element from the vector:
2469   //
2470   //   1. The reduction operation of the same opcode as the given instruction.
2471   //
2472   //   2. PHI node.
2473   //
2474   //   3. ShuffleVector instruction together with a reduction operation that
2475   //      does a partial reduction.
2476   //
2477   //   4. ExtractElement that extracts the first element from the vector, and we
2478   //      stop searching the def-use chain here.
2479   //
2480   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2481   // from 1-3 to the stack to continue the DFS. The given instruction is not
2482   // a reduction operation if we meet any other instructions other than those
2483   // listed above.
2484 
2485   SmallVector<const User *, 16> UsersToVisit{Inst};
2486   SmallPtrSet<const User *, 16> Visited;
2487   bool ReduxExtracted = false;
2488 
2489   while (!UsersToVisit.empty()) {
2490     auto User = UsersToVisit.back();
2491     UsersToVisit.pop_back();
2492     if (!Visited.insert(User).second)
2493       continue;
2494 
2495     for (const auto &U : User->users()) {
2496       auto Inst = dyn_cast<Instruction>(U);
2497       if (!Inst)
2498         return false;
2499 
2500       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2501         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2502           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2503             return false;
2504         UsersToVisit.push_back(U);
2505       } else if (const ShuffleVectorInst *ShufInst =
2506                      dyn_cast<ShuffleVectorInst>(U)) {
2507         // Detect the following pattern: A ShuffleVector instruction together
2508         // with a reduction that do partial reduction on the first and second
2509         // ElemNumToReduce / 2 elements, and store the result in
2510         // ElemNumToReduce / 2 elements in another vector.
2511 
2512         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2513         if (ResultElements < ElemNum)
2514           return false;
2515 
2516         if (ElemNumToReduce == 1)
2517           return false;
2518         if (!isa<UndefValue>(U->getOperand(1)))
2519           return false;
2520         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2521           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2522             return false;
2523         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2524           if (ShufInst->getMaskValue(i) != -1)
2525             return false;
2526 
2527         // There is only one user of this ShuffleVector instruction, which
2528         // must be a reduction operation.
2529         if (!U->hasOneUse())
2530           return false;
2531 
2532         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2533         if (!U2 || U2->getOpcode() != OpCode)
2534           return false;
2535 
2536         // Check operands of the reduction operation.
2537         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2538             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2539           UsersToVisit.push_back(U2);
2540           ElemNumToReduce /= 2;
2541         } else
2542           return false;
2543       } else if (isa<ExtractElementInst>(U)) {
2544         // At this moment we should have reduced all elements in the vector.
2545         if (ElemNumToReduce != 1)
2546           return false;
2547 
2548         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2549         if (!Val || Val->getZExtValue() != 0)
2550           return false;
2551 
2552         ReduxExtracted = true;
2553       } else
2554         return false;
2555     }
2556   }
2557   return ReduxExtracted;
2558 }
2559 
2560 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2561   SDValue Op1 = getValue(I.getOperand(0));
2562   SDValue Op2 = getValue(I.getOperand(1));
2563 
2564   bool nuw = false;
2565   bool nsw = false;
2566   bool exact = false;
2567   bool vec_redux = false;
2568   FastMathFlags FMF;
2569 
2570   if (const OverflowingBinaryOperator *OFBinOp =
2571           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2572     nuw = OFBinOp->hasNoUnsignedWrap();
2573     nsw = OFBinOp->hasNoSignedWrap();
2574   }
2575   if (const PossiblyExactOperator *ExactOp =
2576           dyn_cast<const PossiblyExactOperator>(&I))
2577     exact = ExactOp->isExact();
2578   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2579     FMF = FPOp->getFastMathFlags();
2580 
2581   if (isVectorReductionOp(&I)) {
2582     vec_redux = true;
2583     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2584   }
2585 
2586   SDNodeFlags Flags;
2587   Flags.setExact(exact);
2588   Flags.setNoSignedWrap(nsw);
2589   Flags.setNoUnsignedWrap(nuw);
2590   Flags.setVectorReduction(vec_redux);
2591   if (EnableFMFInDAG) {
2592     Flags.setAllowReciprocal(FMF.allowReciprocal());
2593     Flags.setNoInfs(FMF.noInfs());
2594     Flags.setNoNaNs(FMF.noNaNs());
2595     Flags.setNoSignedZeros(FMF.noSignedZeros());
2596     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2597   }
2598   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2599                                      Op1, Op2, &Flags);
2600   setValue(&I, BinNodeValue);
2601 }
2602 
2603 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2604   SDValue Op1 = getValue(I.getOperand(0));
2605   SDValue Op2 = getValue(I.getOperand(1));
2606 
2607   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2608       Op2.getValueType(), DAG.getDataLayout());
2609 
2610   // Coerce the shift amount to the right type if we can.
2611   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2612     unsigned ShiftSize = ShiftTy.getSizeInBits();
2613     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2614     SDLoc DL = getCurSDLoc();
2615 
2616     // If the operand is smaller than the shift count type, promote it.
2617     if (ShiftSize > Op2Size)
2618       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2619 
2620     // If the operand is larger than the shift count type but the shift
2621     // count type has enough bits to represent any shift value, truncate
2622     // it now. This is a common case and it exposes the truncate to
2623     // optimization early.
2624     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2625       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2626     // Otherwise we'll need to temporarily settle for some other convenient
2627     // type.  Type legalization will make adjustments once the shiftee is split.
2628     else
2629       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2630   }
2631 
2632   bool nuw = false;
2633   bool nsw = false;
2634   bool exact = false;
2635 
2636   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2637 
2638     if (const OverflowingBinaryOperator *OFBinOp =
2639             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2640       nuw = OFBinOp->hasNoUnsignedWrap();
2641       nsw = OFBinOp->hasNoSignedWrap();
2642     }
2643     if (const PossiblyExactOperator *ExactOp =
2644             dyn_cast<const PossiblyExactOperator>(&I))
2645       exact = ExactOp->isExact();
2646   }
2647   SDNodeFlags Flags;
2648   Flags.setExact(exact);
2649   Flags.setNoSignedWrap(nsw);
2650   Flags.setNoUnsignedWrap(nuw);
2651   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2652                             &Flags);
2653   setValue(&I, Res);
2654 }
2655 
2656 void SelectionDAGBuilder::visitSDiv(const User &I) {
2657   SDValue Op1 = getValue(I.getOperand(0));
2658   SDValue Op2 = getValue(I.getOperand(1));
2659 
2660   SDNodeFlags Flags;
2661   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2662                  cast<PossiblyExactOperator>(&I)->isExact());
2663   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2664                            Op2, &Flags));
2665 }
2666 
2667 void SelectionDAGBuilder::visitICmp(const User &I) {
2668   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2669   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2670     predicate = IC->getPredicate();
2671   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2672     predicate = ICmpInst::Predicate(IC->getPredicate());
2673   SDValue Op1 = getValue(I.getOperand(0));
2674   SDValue Op2 = getValue(I.getOperand(1));
2675   ISD::CondCode Opcode = getICmpCondCode(predicate);
2676 
2677   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2678                                                         I.getType());
2679   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2680 }
2681 
2682 void SelectionDAGBuilder::visitFCmp(const User &I) {
2683   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2684   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2685     predicate = FC->getPredicate();
2686   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2687     predicate = FCmpInst::Predicate(FC->getPredicate());
2688   SDValue Op1 = getValue(I.getOperand(0));
2689   SDValue Op2 = getValue(I.getOperand(1));
2690   ISD::CondCode Condition = getFCmpCondCode(predicate);
2691 
2692   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2693   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2694   // further optimization, but currently FMF is only applicable to binary nodes.
2695   if (TM.Options.NoNaNsFPMath)
2696     Condition = getFCmpCodeWithoutNaN(Condition);
2697   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2698                                                         I.getType());
2699   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2700 }
2701 
2702 void SelectionDAGBuilder::visitSelect(const User &I) {
2703   SmallVector<EVT, 4> ValueVTs;
2704   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2705                   ValueVTs);
2706   unsigned NumValues = ValueVTs.size();
2707   if (NumValues == 0) return;
2708 
2709   SmallVector<SDValue, 4> Values(NumValues);
2710   SDValue Cond     = getValue(I.getOperand(0));
2711   SDValue LHSVal   = getValue(I.getOperand(1));
2712   SDValue RHSVal   = getValue(I.getOperand(2));
2713   auto BaseOps = {Cond};
2714   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2715     ISD::VSELECT : ISD::SELECT;
2716 
2717   // Min/max matching is only viable if all output VTs are the same.
2718   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2719     EVT VT = ValueVTs[0];
2720     LLVMContext &Ctx = *DAG.getContext();
2721     auto &TLI = DAG.getTargetLoweringInfo();
2722 
2723     // We care about the legality of the operation after it has been type
2724     // legalized.
2725     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2726            VT != TLI.getTypeToTransformTo(Ctx, VT))
2727       VT = TLI.getTypeToTransformTo(Ctx, VT);
2728 
2729     // If the vselect is legal, assume we want to leave this as a vector setcc +
2730     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2731     // min/max is legal on the scalar type.
2732     bool UseScalarMinMax = VT.isVector() &&
2733       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2734 
2735     Value *LHS, *RHS;
2736     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2737     ISD::NodeType Opc = ISD::DELETED_NODE;
2738     switch (SPR.Flavor) {
2739     case SPF_UMAX:    Opc = ISD::UMAX; break;
2740     case SPF_UMIN:    Opc = ISD::UMIN; break;
2741     case SPF_SMAX:    Opc = ISD::SMAX; break;
2742     case SPF_SMIN:    Opc = ISD::SMIN; break;
2743     case SPF_FMINNUM:
2744       switch (SPR.NaNBehavior) {
2745       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2746       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2747       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2748       case SPNB_RETURNS_ANY: {
2749         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2750           Opc = ISD::FMINNUM;
2751         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2752           Opc = ISD::FMINNAN;
2753         else if (UseScalarMinMax)
2754           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2755             ISD::FMINNUM : ISD::FMINNAN;
2756         break;
2757       }
2758       }
2759       break;
2760     case SPF_FMAXNUM:
2761       switch (SPR.NaNBehavior) {
2762       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2763       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2764       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2765       case SPNB_RETURNS_ANY:
2766 
2767         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2768           Opc = ISD::FMAXNUM;
2769         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2770           Opc = ISD::FMAXNAN;
2771         else if (UseScalarMinMax)
2772           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2773             ISD::FMAXNUM : ISD::FMAXNAN;
2774         break;
2775       }
2776       break;
2777     default: break;
2778     }
2779 
2780     if (Opc != ISD::DELETED_NODE &&
2781         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2782          (UseScalarMinMax &&
2783           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2784         // If the underlying comparison instruction is used by any other
2785         // instruction, the consumed instructions won't be destroyed, so it is
2786         // not profitable to convert to a min/max.
2787         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2788       OpCode = Opc;
2789       LHSVal = getValue(LHS);
2790       RHSVal = getValue(RHS);
2791       BaseOps = {};
2792     }
2793   }
2794 
2795   for (unsigned i = 0; i != NumValues; ++i) {
2796     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2797     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2798     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2799     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2800                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2801                             Ops);
2802   }
2803 
2804   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2805                            DAG.getVTList(ValueVTs), Values));
2806 }
2807 
2808 void SelectionDAGBuilder::visitTrunc(const User &I) {
2809   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2810   SDValue N = getValue(I.getOperand(0));
2811   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2812                                                         I.getType());
2813   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2814 }
2815 
2816 void SelectionDAGBuilder::visitZExt(const User &I) {
2817   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2818   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2819   SDValue N = getValue(I.getOperand(0));
2820   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2821                                                         I.getType());
2822   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2823 }
2824 
2825 void SelectionDAGBuilder::visitSExt(const User &I) {
2826   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2827   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2828   SDValue N = getValue(I.getOperand(0));
2829   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2830                                                         I.getType());
2831   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2832 }
2833 
2834 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2835   // FPTrunc is never a no-op cast, no need to check
2836   SDValue N = getValue(I.getOperand(0));
2837   SDLoc dl = getCurSDLoc();
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2840   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2841                            DAG.getTargetConstant(
2842                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2843 }
2844 
2845 void SelectionDAGBuilder::visitFPExt(const User &I) {
2846   // FPExt is never a no-op cast, no need to check
2847   SDValue N = getValue(I.getOperand(0));
2848   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2849                                                         I.getType());
2850   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2851 }
2852 
2853 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2854   // FPToUI is never a no-op cast, no need to check
2855   SDValue N = getValue(I.getOperand(0));
2856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2857                                                         I.getType());
2858   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2859 }
2860 
2861 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2862   // FPToSI is never a no-op cast, no need to check
2863   SDValue N = getValue(I.getOperand(0));
2864   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2865                                                         I.getType());
2866   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2867 }
2868 
2869 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2870   // UIToFP is never a no-op cast, no need to check
2871   SDValue N = getValue(I.getOperand(0));
2872   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2873                                                         I.getType());
2874   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2875 }
2876 
2877 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2878   // SIToFP is never a no-op cast, no need to check
2879   SDValue N = getValue(I.getOperand(0));
2880   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2881                                                         I.getType());
2882   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2883 }
2884 
2885 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2886   // What to do depends on the size of the integer and the size of the pointer.
2887   // We can either truncate, zero extend, or no-op, accordingly.
2888   SDValue N = getValue(I.getOperand(0));
2889   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2890                                                         I.getType());
2891   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2892 }
2893 
2894 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2895   // What to do depends on the size of the integer and the size of the pointer.
2896   // We can either truncate, zero extend, or no-op, accordingly.
2897   SDValue N = getValue(I.getOperand(0));
2898   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2899                                                         I.getType());
2900   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2901 }
2902 
2903 void SelectionDAGBuilder::visitBitCast(const User &I) {
2904   SDValue N = getValue(I.getOperand(0));
2905   SDLoc dl = getCurSDLoc();
2906   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2907                                                         I.getType());
2908 
2909   // BitCast assures us that source and destination are the same size so this is
2910   // either a BITCAST or a no-op.
2911   if (DestVT != N.getValueType())
2912     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2913                              DestVT, N)); // convert types.
2914   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2915   // might fold any kind of constant expression to an integer constant and that
2916   // is not what we are looking for. Only regcognize a bitcast of a genuine
2917   // constant integer as an opaque constant.
2918   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2919     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2920                                  /*isOpaque*/true));
2921   else
2922     setValue(&I, N);            // noop cast.
2923 }
2924 
2925 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2926   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2927   const Value *SV = I.getOperand(0);
2928   SDValue N = getValue(SV);
2929   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2930 
2931   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2932   unsigned DestAS = I.getType()->getPointerAddressSpace();
2933 
2934   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2935     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2936 
2937   setValue(&I, N);
2938 }
2939 
2940 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2941   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2942   SDValue InVec = getValue(I.getOperand(0));
2943   SDValue InVal = getValue(I.getOperand(1));
2944   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2945                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2946   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2947                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2948                            InVec, InVal, InIdx));
2949 }
2950 
2951 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2953   SDValue InVec = getValue(I.getOperand(0));
2954   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2955                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2956   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2957                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2958                            InVec, InIdx));
2959 }
2960 
2961 // Utility for visitShuffleVector - Return true if every element in Mask,
2962 // beginning from position Pos and ending in Pos+Size, falls within the
2963 // specified sequential range [L, L+Pos). or is undef.
2964 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2965                                 unsigned Pos, unsigned Size, int Low) {
2966   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2967     if (Mask[i] >= 0 && Mask[i] != Low)
2968       return false;
2969   return true;
2970 }
2971 
2972 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2973   SDValue Src1 = getValue(I.getOperand(0));
2974   SDValue Src2 = getValue(I.getOperand(1));
2975 
2976   SmallVector<int, 8> Mask;
2977   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2978   unsigned MaskNumElts = Mask.size();
2979 
2980   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2981   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2982   EVT SrcVT = Src1.getValueType();
2983   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2984 
2985   if (SrcNumElts == MaskNumElts) {
2986     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2987                                       &Mask[0]));
2988     return;
2989   }
2990 
2991   // Normalize the shuffle vector since mask and vector length don't match.
2992   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2993     // Mask is longer than the source vectors and is a multiple of the source
2994     // vectors.  We can use concatenate vector to make the mask and vectors
2995     // lengths match.
2996     if (SrcNumElts*2 == MaskNumElts) {
2997       // First check for Src1 in low and Src2 in high
2998       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2999           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3000         // The shuffle is concatenating two vectors together.
3001         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3002                                  VT, Src1, Src2));
3003         return;
3004       }
3005       // Then check for Src2 in low and Src1 in high
3006       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3007           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3008         // The shuffle is concatenating two vectors together.
3009         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3010                                  VT, Src2, Src1));
3011         return;
3012       }
3013     }
3014 
3015     // Pad both vectors with undefs to make them the same length as the mask.
3016     unsigned NumConcat = MaskNumElts / SrcNumElts;
3017     bool Src1U = Src1.isUndef();
3018     bool Src2U = Src2.isUndef();
3019     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3020 
3021     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3022     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3023     MOps1[0] = Src1;
3024     MOps2[0] = Src2;
3025 
3026     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3027                                                   getCurSDLoc(), VT, MOps1);
3028     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3029                                                   getCurSDLoc(), VT, MOps2);
3030 
3031     // Readjust mask for new input vector length.
3032     SmallVector<int, 8> MappedOps;
3033     for (unsigned i = 0; i != MaskNumElts; ++i) {
3034       int Idx = Mask[i];
3035       if (Idx >= (int)SrcNumElts)
3036         Idx -= SrcNumElts - MaskNumElts;
3037       MappedOps.push_back(Idx);
3038     }
3039 
3040     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3041                                       &MappedOps[0]));
3042     return;
3043   }
3044 
3045   if (SrcNumElts > MaskNumElts) {
3046     // Analyze the access pattern of the vector to see if we can extract
3047     // two subvectors and do the shuffle. The analysis is done by calculating
3048     // the range of elements the mask access on both vectors.
3049     int MinRange[2] = { static_cast<int>(SrcNumElts),
3050                         static_cast<int>(SrcNumElts)};
3051     int MaxRange[2] = {-1, -1};
3052 
3053     for (unsigned i = 0; i != MaskNumElts; ++i) {
3054       int Idx = Mask[i];
3055       unsigned Input = 0;
3056       if (Idx < 0)
3057         continue;
3058 
3059       if (Idx >= (int)SrcNumElts) {
3060         Input = 1;
3061         Idx -= SrcNumElts;
3062       }
3063       if (Idx > MaxRange[Input])
3064         MaxRange[Input] = Idx;
3065       if (Idx < MinRange[Input])
3066         MinRange[Input] = Idx;
3067     }
3068 
3069     // Check if the access is smaller than the vector size and can we find
3070     // a reasonable extract index.
3071     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3072                                    // Extract.
3073     int StartIdx[2];  // StartIdx to extract from
3074     for (unsigned Input = 0; Input < 2; ++Input) {
3075       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3076         RangeUse[Input] = 0; // Unused
3077         StartIdx[Input] = 0;
3078         continue;
3079       }
3080 
3081       // Find a good start index that is a multiple of the mask length. Then
3082       // see if the rest of the elements are in range.
3083       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3084       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3085           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3086         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3087     }
3088 
3089     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3090       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3091       return;
3092     }
3093     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3094       // Extract appropriate subvector and generate a vector shuffle
3095       for (unsigned Input = 0; Input < 2; ++Input) {
3096         SDValue &Src = Input == 0 ? Src1 : Src2;
3097         if (RangeUse[Input] == 0)
3098           Src = DAG.getUNDEF(VT);
3099         else {
3100           SDLoc dl = getCurSDLoc();
3101           Src = DAG.getNode(
3102               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
3103               DAG.getConstant(StartIdx[Input], dl,
3104                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3105         }
3106       }
3107 
3108       // Calculate new mask.
3109       SmallVector<int, 8> MappedOps;
3110       for (unsigned i = 0; i != MaskNumElts; ++i) {
3111         int Idx = Mask[i];
3112         if (Idx >= 0) {
3113           if (Idx < (int)SrcNumElts)
3114             Idx -= StartIdx[0];
3115           else
3116             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3117         }
3118         MappedOps.push_back(Idx);
3119       }
3120 
3121       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3122                                         &MappedOps[0]));
3123       return;
3124     }
3125   }
3126 
3127   // We can't use either concat vectors or extract subvectors so fall back to
3128   // replacing the shuffle with extract and build vector.
3129   // to insert and build vector.
3130   EVT EltVT = VT.getVectorElementType();
3131   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3132   SDLoc dl = getCurSDLoc();
3133   SmallVector<SDValue,8> Ops;
3134   for (unsigned i = 0; i != MaskNumElts; ++i) {
3135     int Idx = Mask[i];
3136     SDValue Res;
3137 
3138     if (Idx < 0) {
3139       Res = DAG.getUNDEF(EltVT);
3140     } else {
3141       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3142       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3143 
3144       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3145                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
3146     }
3147 
3148     Ops.push_back(Res);
3149   }
3150 
3151   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
3152 }
3153 
3154 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3155   const Value *Op0 = I.getOperand(0);
3156   const Value *Op1 = I.getOperand(1);
3157   Type *AggTy = I.getType();
3158   Type *ValTy = Op1->getType();
3159   bool IntoUndef = isa<UndefValue>(Op0);
3160   bool FromUndef = isa<UndefValue>(Op1);
3161 
3162   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3163 
3164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3165   SmallVector<EVT, 4> AggValueVTs;
3166   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3167   SmallVector<EVT, 4> ValValueVTs;
3168   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3169 
3170   unsigned NumAggValues = AggValueVTs.size();
3171   unsigned NumValValues = ValValueVTs.size();
3172   SmallVector<SDValue, 4> Values(NumAggValues);
3173 
3174   // Ignore an insertvalue that produces an empty object
3175   if (!NumAggValues) {
3176     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3177     return;
3178   }
3179 
3180   SDValue Agg = getValue(Op0);
3181   unsigned i = 0;
3182   // Copy the beginning value(s) from the original aggregate.
3183   for (; i != LinearIndex; ++i)
3184     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3185                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3186   // Copy values from the inserted value(s).
3187   if (NumValValues) {
3188     SDValue Val = getValue(Op1);
3189     for (; i != LinearIndex + NumValValues; ++i)
3190       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3191                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3192   }
3193   // Copy remaining value(s) from the original aggregate.
3194   for (; i != NumAggValues; ++i)
3195     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3196                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3197 
3198   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3199                            DAG.getVTList(AggValueVTs), Values));
3200 }
3201 
3202 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3203   const Value *Op0 = I.getOperand(0);
3204   Type *AggTy = Op0->getType();
3205   Type *ValTy = I.getType();
3206   bool OutOfUndef = isa<UndefValue>(Op0);
3207 
3208   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3209 
3210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3211   SmallVector<EVT, 4> ValValueVTs;
3212   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3213 
3214   unsigned NumValValues = ValValueVTs.size();
3215 
3216   // Ignore a extractvalue that produces an empty object
3217   if (!NumValValues) {
3218     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3219     return;
3220   }
3221 
3222   SmallVector<SDValue, 4> Values(NumValValues);
3223 
3224   SDValue Agg = getValue(Op0);
3225   // Copy out the selected value(s).
3226   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3227     Values[i - LinearIndex] =
3228       OutOfUndef ?
3229         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3230         SDValue(Agg.getNode(), Agg.getResNo() + i);
3231 
3232   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3233                            DAG.getVTList(ValValueVTs), Values));
3234 }
3235 
3236 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3237   Value *Op0 = I.getOperand(0);
3238   // Note that the pointer operand may be a vector of pointers. Take the scalar
3239   // element which holds a pointer.
3240   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3241   SDValue N = getValue(Op0);
3242   SDLoc dl = getCurSDLoc();
3243 
3244   // Normalize Vector GEP - all scalar operands should be converted to the
3245   // splat vector.
3246   unsigned VectorWidth = I.getType()->isVectorTy() ?
3247     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3248 
3249   if (VectorWidth && !N.getValueType().isVector()) {
3250     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
3251     SmallVector<SDValue, 16> Ops(VectorWidth, N);
3252     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3253   }
3254   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3255        GTI != E; ++GTI) {
3256     const Value *Idx = GTI.getOperand();
3257     if (StructType *StTy = dyn_cast<StructType>(*GTI)) {
3258       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3259       if (Field) {
3260         // N = N + Offset
3261         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3262 
3263         // In an inbouds GEP with an offset that is nonnegative even when
3264         // interpreted as signed, assume there is no unsigned overflow.
3265         SDNodeFlags Flags;
3266         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3267           Flags.setNoUnsignedWrap(true);
3268 
3269         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3270                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3271       }
3272     } else {
3273       MVT PtrTy =
3274           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3275       unsigned PtrSize = PtrTy.getSizeInBits();
3276       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3277 
3278       // If this is a scalar constant or a splat vector of constants,
3279       // handle it quickly.
3280       const auto *CI = dyn_cast<ConstantInt>(Idx);
3281       if (!CI && isa<ConstantDataVector>(Idx) &&
3282           cast<ConstantDataVector>(Idx)->getSplatValue())
3283         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3284 
3285       if (CI) {
3286         if (CI->isZero())
3287           continue;
3288         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3289         SDValue OffsVal = VectorWidth ?
3290           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3291           DAG.getConstant(Offs, dl, PtrTy);
3292 
3293         // In an inbouds GEP with an offset that is nonnegative even when
3294         // interpreted as signed, assume there is no unsigned overflow.
3295         SDNodeFlags Flags;
3296         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3297           Flags.setNoUnsignedWrap(true);
3298 
3299         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3300         continue;
3301       }
3302 
3303       // N = N + Idx * ElementSize;
3304       SDValue IdxN = getValue(Idx);
3305 
3306       if (!IdxN.getValueType().isVector() && VectorWidth) {
3307         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3308         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3309         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3310       }
3311       // If the index is smaller or larger than intptr_t, truncate or extend
3312       // it.
3313       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3314 
3315       // If this is a multiply by a power of two, turn it into a shl
3316       // immediately.  This is a very common case.
3317       if (ElementSize != 1) {
3318         if (ElementSize.isPowerOf2()) {
3319           unsigned Amt = ElementSize.logBase2();
3320           IdxN = DAG.getNode(ISD::SHL, dl,
3321                              N.getValueType(), IdxN,
3322                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3323         } else {
3324           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3325           IdxN = DAG.getNode(ISD::MUL, dl,
3326                              N.getValueType(), IdxN, Scale);
3327         }
3328       }
3329 
3330       N = DAG.getNode(ISD::ADD, dl,
3331                       N.getValueType(), N, IdxN);
3332     }
3333   }
3334 
3335   setValue(&I, N);
3336 }
3337 
3338 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3339   // If this is a fixed sized alloca in the entry block of the function,
3340   // allocate it statically on the stack.
3341   if (FuncInfo.StaticAllocaMap.count(&I))
3342     return;   // getValue will auto-populate this.
3343 
3344   SDLoc dl = getCurSDLoc();
3345   Type *Ty = I.getAllocatedType();
3346   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3347   auto &DL = DAG.getDataLayout();
3348   uint64_t TySize = DL.getTypeAllocSize(Ty);
3349   unsigned Align =
3350       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3351 
3352   SDValue AllocSize = getValue(I.getArraySize());
3353 
3354   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3355   if (AllocSize.getValueType() != IntPtr)
3356     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3357 
3358   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3359                           AllocSize,
3360                           DAG.getConstant(TySize, dl, IntPtr));
3361 
3362   // Handle alignment.  If the requested alignment is less than or equal to
3363   // the stack alignment, ignore it.  If the size is greater than or equal to
3364   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3365   unsigned StackAlign =
3366       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3367   if (Align <= StackAlign)
3368     Align = 0;
3369 
3370   // Round the size of the allocation up to the stack alignment size
3371   // by add SA-1 to the size. This doesn't overflow because we're computing
3372   // an address inside an alloca.
3373   SDNodeFlags Flags;
3374   Flags.setNoUnsignedWrap(true);
3375   AllocSize = DAG.getNode(ISD::ADD, dl,
3376                           AllocSize.getValueType(), AllocSize,
3377                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3378 
3379   // Mask out the low bits for alignment purposes.
3380   AllocSize = DAG.getNode(ISD::AND, dl,
3381                           AllocSize.getValueType(), AllocSize,
3382                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3383                                                 dl));
3384 
3385   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3386   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3387   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3388   setValue(&I, DSA);
3389   DAG.setRoot(DSA.getValue(1));
3390 
3391   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3392 }
3393 
3394 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3395   if (I.isAtomic())
3396     return visitAtomicLoad(I);
3397 
3398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3399   const Value *SV = I.getOperand(0);
3400   if (TLI.supportSwiftError()) {
3401     // Swifterror values can come from either a function parameter with
3402     // swifterror attribute or an alloca with swifterror attribute.
3403     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3404       if (Arg->hasSwiftErrorAttr())
3405         return visitLoadFromSwiftError(I);
3406     }
3407 
3408     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3409       if (Alloca->isSwiftError())
3410         return visitLoadFromSwiftError(I);
3411     }
3412   }
3413 
3414   SDValue Ptr = getValue(SV);
3415 
3416   Type *Ty = I.getType();
3417 
3418   bool isVolatile = I.isVolatile();
3419   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3420 
3421   // The IR notion of invariant_load only guarantees that all *non-faulting*
3422   // invariant loads result in the same value.  The MI notion of invariant load
3423   // guarantees that the load can be legally moved to any location within its
3424   // containing function.  The MI notion of invariant_load is stronger than the
3425   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3426   // with a guarantee that the location being loaded from is dereferenceable
3427   // throughout the function's lifetime.
3428 
3429   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3430                      isDereferenceablePointer(SV, DAG.getDataLayout());
3431   unsigned Alignment = I.getAlignment();
3432 
3433   AAMDNodes AAInfo;
3434   I.getAAMetadata(AAInfo);
3435   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3436 
3437   SmallVector<EVT, 4> ValueVTs;
3438   SmallVector<uint64_t, 4> Offsets;
3439   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3440   unsigned NumValues = ValueVTs.size();
3441   if (NumValues == 0)
3442     return;
3443 
3444   SDValue Root;
3445   bool ConstantMemory = false;
3446   if (isVolatile || NumValues > MaxParallelChains)
3447     // Serialize volatile loads with other side effects.
3448     Root = getRoot();
3449   else if (AA->pointsToConstantMemory(MemoryLocation(
3450                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3451     // Do not serialize (non-volatile) loads of constant memory with anything.
3452     Root = DAG.getEntryNode();
3453     ConstantMemory = true;
3454   } else {
3455     // Do not serialize non-volatile loads against each other.
3456     Root = DAG.getRoot();
3457   }
3458 
3459   SDLoc dl = getCurSDLoc();
3460 
3461   if (isVolatile)
3462     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3463 
3464   // An aggregate load cannot wrap around the address space, so offsets to its
3465   // parts don't wrap either.
3466   SDNodeFlags Flags;
3467   Flags.setNoUnsignedWrap(true);
3468 
3469   SmallVector<SDValue, 4> Values(NumValues);
3470   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3471   EVT PtrVT = Ptr.getValueType();
3472   unsigned ChainI = 0;
3473   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3474     // Serializing loads here may result in excessive register pressure, and
3475     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3476     // could recover a bit by hoisting nodes upward in the chain by recognizing
3477     // they are side-effect free or do not alias. The optimizer should really
3478     // avoid this case by converting large object/array copies to llvm.memcpy
3479     // (MaxParallelChains should always remain as failsafe).
3480     if (ChainI == MaxParallelChains) {
3481       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3482       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3483                                   makeArrayRef(Chains.data(), ChainI));
3484       Root = Chain;
3485       ChainI = 0;
3486     }
3487     SDValue A = DAG.getNode(ISD::ADD, dl,
3488                             PtrVT, Ptr,
3489                             DAG.getConstant(Offsets[i], dl, PtrVT),
3490                             &Flags);
3491     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3492                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3493                             isNonTemporal, isInvariant, Alignment, AAInfo,
3494                             Ranges);
3495 
3496     Values[i] = L;
3497     Chains[ChainI] = L.getValue(1);
3498   }
3499 
3500   if (!ConstantMemory) {
3501     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3502                                 makeArrayRef(Chains.data(), ChainI));
3503     if (isVolatile)
3504       DAG.setRoot(Chain);
3505     else
3506       PendingLoads.push_back(Chain);
3507   }
3508 
3509   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3510                            DAG.getVTList(ValueVTs), Values));
3511 }
3512 
3513 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3514   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3515   assert(TLI.supportSwiftError() &&
3516          "call visitStoreToSwiftError when backend supports swifterror");
3517 
3518   SmallVector<EVT, 4> ValueVTs;
3519   SmallVector<uint64_t, 4> Offsets;
3520   const Value *SrcV = I.getOperand(0);
3521   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3522                   SrcV->getType(), ValueVTs, &Offsets);
3523   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3524          "expect a single EVT for swifterror");
3525 
3526   SDValue Src = getValue(SrcV);
3527   // Create a virtual register, then update the virtual register.
3528   auto &DL = DAG.getDataLayout();
3529   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3530   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3531   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3532   // Chain can be getRoot or getControlRoot.
3533   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3534                                       SDValue(Src.getNode(), Src.getResNo()));
3535   DAG.setRoot(CopyNode);
3536   FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3537 }
3538 
3539 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3540   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3541          "call visitLoadFromSwiftError when backend supports swifterror");
3542 
3543   assert(!I.isVolatile() &&
3544          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3545          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3546          "Support volatile, non temporal, invariant for load_from_swift_error");
3547 
3548   const Value *SV = I.getOperand(0);
3549   Type *Ty = I.getType();
3550   AAMDNodes AAInfo;
3551   I.getAAMetadata(AAInfo);
3552   assert(!AA->pointsToConstantMemory(MemoryLocation(
3553              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3554          "load_from_swift_error should not be constant memory");
3555 
3556   SmallVector<EVT, 4> ValueVTs;
3557   SmallVector<uint64_t, 4> Offsets;
3558   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3559                   ValueVTs, &Offsets);
3560   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3561          "expect a single EVT for swifterror");
3562 
3563   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3564   SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(),
3565                                  FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV),
3566                                  ValueVTs[0]);
3567 
3568   setValue(&I, L);
3569 }
3570 
3571 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3572   if (I.isAtomic())
3573     return visitAtomicStore(I);
3574 
3575   const Value *SrcV = I.getOperand(0);
3576   const Value *PtrV = I.getOperand(1);
3577 
3578   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3579   if (TLI.supportSwiftError()) {
3580     // Swifterror values can come from either a function parameter with
3581     // swifterror attribute or an alloca with swifterror attribute.
3582     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3583       if (Arg->hasSwiftErrorAttr())
3584         return visitStoreToSwiftError(I);
3585     }
3586 
3587     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3588       if (Alloca->isSwiftError())
3589         return visitStoreToSwiftError(I);
3590     }
3591   }
3592 
3593   SmallVector<EVT, 4> ValueVTs;
3594   SmallVector<uint64_t, 4> Offsets;
3595   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3596                   SrcV->getType(), ValueVTs, &Offsets);
3597   unsigned NumValues = ValueVTs.size();
3598   if (NumValues == 0)
3599     return;
3600 
3601   // Get the lowered operands. Note that we do this after
3602   // checking if NumResults is zero, because with zero results
3603   // the operands won't have values in the map.
3604   SDValue Src = getValue(SrcV);
3605   SDValue Ptr = getValue(PtrV);
3606 
3607   SDValue Root = getRoot();
3608   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3609   EVT PtrVT = Ptr.getValueType();
3610   bool isVolatile = I.isVolatile();
3611   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3612   unsigned Alignment = I.getAlignment();
3613   SDLoc dl = getCurSDLoc();
3614 
3615   AAMDNodes AAInfo;
3616   I.getAAMetadata(AAInfo);
3617 
3618   // An aggregate load cannot wrap around the address space, so offsets to its
3619   // parts don't wrap either.
3620   SDNodeFlags Flags;
3621   Flags.setNoUnsignedWrap(true);
3622 
3623   unsigned ChainI = 0;
3624   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3625     // See visitLoad comments.
3626     if (ChainI == MaxParallelChains) {
3627       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3628                                   makeArrayRef(Chains.data(), ChainI));
3629       Root = Chain;
3630       ChainI = 0;
3631     }
3632     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3633                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3634     SDValue St = DAG.getStore(Root, dl,
3635                               SDValue(Src.getNode(), Src.getResNo() + i),
3636                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3637                               isVolatile, isNonTemporal, Alignment, AAInfo);
3638     Chains[ChainI] = St;
3639   }
3640 
3641   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3642                                   makeArrayRef(Chains.data(), ChainI));
3643   DAG.setRoot(StoreNode);
3644 }
3645 
3646 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3647   SDLoc sdl = getCurSDLoc();
3648 
3649   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3650   Value  *PtrOperand = I.getArgOperand(1);
3651   SDValue Ptr = getValue(PtrOperand);
3652   SDValue Src0 = getValue(I.getArgOperand(0));
3653   SDValue Mask = getValue(I.getArgOperand(3));
3654   EVT VT = Src0.getValueType();
3655   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3656   if (!Alignment)
3657     Alignment = DAG.getEVTAlignment(VT);
3658 
3659   AAMDNodes AAInfo;
3660   I.getAAMetadata(AAInfo);
3661 
3662   MachineMemOperand *MMO =
3663     DAG.getMachineFunction().
3664     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3665                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3666                           Alignment, AAInfo);
3667   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3668                                          MMO, false);
3669   DAG.setRoot(StoreNode);
3670   setValue(&I, StoreNode);
3671 }
3672 
3673 // Get a uniform base for the Gather/Scatter intrinsic.
3674 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3675 // We try to represent it as a base pointer + vector of indices.
3676 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3677 // The first operand of the GEP may be a single pointer or a vector of pointers
3678 // Example:
3679 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3680 //  or
3681 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3682 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3683 //
3684 // When the first GEP operand is a single pointer - it is the uniform base we
3685 // are looking for. If first operand of the GEP is a splat vector - we
3686 // extract the spalt value and use it as a uniform base.
3687 // In all other cases the function returns 'false'.
3688 //
3689 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3690                            SelectionDAGBuilder* SDB) {
3691 
3692   SelectionDAG& DAG = SDB->DAG;
3693   LLVMContext &Context = *DAG.getContext();
3694 
3695   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3696   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3697   if (!GEP || GEP->getNumOperands() > 2)
3698     return false;
3699 
3700   const Value *GEPPtr = GEP->getPointerOperand();
3701   if (!GEPPtr->getType()->isVectorTy())
3702     Ptr = GEPPtr;
3703   else if (!(Ptr = getSplatValue(GEPPtr)))
3704     return false;
3705 
3706   Value *IndexVal = GEP->getOperand(1);
3707 
3708   // The operands of the GEP may be defined in another basic block.
3709   // In this case we'll not find nodes for the operands.
3710   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3711     return false;
3712 
3713   Base = SDB->getValue(Ptr);
3714   Index = SDB->getValue(IndexVal);
3715 
3716   // Suppress sign extension.
3717   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3718     if (SDB->findValue(Sext->getOperand(0))) {
3719       IndexVal = Sext->getOperand(0);
3720       Index = SDB->getValue(IndexVal);
3721     }
3722   }
3723   if (!Index.getValueType().isVector()) {
3724     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3725     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3726     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3727     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3728   }
3729   return true;
3730 }
3731 
3732 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3733   SDLoc sdl = getCurSDLoc();
3734 
3735   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3736   const Value *Ptr = I.getArgOperand(1);
3737   SDValue Src0 = getValue(I.getArgOperand(0));
3738   SDValue Mask = getValue(I.getArgOperand(3));
3739   EVT VT = Src0.getValueType();
3740   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3741   if (!Alignment)
3742     Alignment = DAG.getEVTAlignment(VT);
3743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3744 
3745   AAMDNodes AAInfo;
3746   I.getAAMetadata(AAInfo);
3747 
3748   SDValue Base;
3749   SDValue Index;
3750   const Value *BasePtr = Ptr;
3751   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3752 
3753   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3754   MachineMemOperand *MMO = DAG.getMachineFunction().
3755     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3756                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3757                          Alignment, AAInfo);
3758   if (!UniformBase) {
3759     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3760     Index = getValue(Ptr);
3761   }
3762   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3763   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3764                                          Ops, MMO);
3765   DAG.setRoot(Scatter);
3766   setValue(&I, Scatter);
3767 }
3768 
3769 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3770   SDLoc sdl = getCurSDLoc();
3771 
3772   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3773   Value  *PtrOperand = I.getArgOperand(0);
3774   SDValue Ptr = getValue(PtrOperand);
3775   SDValue Src0 = getValue(I.getArgOperand(3));
3776   SDValue Mask = getValue(I.getArgOperand(2));
3777 
3778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3779   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3780   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3781   if (!Alignment)
3782     Alignment = DAG.getEVTAlignment(VT);
3783 
3784   AAMDNodes AAInfo;
3785   I.getAAMetadata(AAInfo);
3786   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3787 
3788   SDValue InChain = DAG.getRoot();
3789   if (AA->pointsToConstantMemory(MemoryLocation(
3790           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3791           AAInfo))) {
3792     // Do not serialize (non-volatile) loads of constant memory with anything.
3793     InChain = DAG.getEntryNode();
3794   }
3795 
3796   MachineMemOperand *MMO =
3797     DAG.getMachineFunction().
3798     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3799                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3800                           Alignment, AAInfo, Ranges);
3801 
3802   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3803                                    ISD::NON_EXTLOAD);
3804   SDValue OutChain = Load.getValue(1);
3805   DAG.setRoot(OutChain);
3806   setValue(&I, Load);
3807 }
3808 
3809 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3810   SDLoc sdl = getCurSDLoc();
3811 
3812   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3813   const Value *Ptr = I.getArgOperand(0);
3814   SDValue Src0 = getValue(I.getArgOperand(3));
3815   SDValue Mask = getValue(I.getArgOperand(2));
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3819   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3820   if (!Alignment)
3821     Alignment = DAG.getEVTAlignment(VT);
3822 
3823   AAMDNodes AAInfo;
3824   I.getAAMetadata(AAInfo);
3825   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3826 
3827   SDValue Root = DAG.getRoot();
3828   SDValue Base;
3829   SDValue Index;
3830   const Value *BasePtr = Ptr;
3831   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3832   bool ConstantMemory = false;
3833   if (UniformBase &&
3834       AA->pointsToConstantMemory(MemoryLocation(
3835           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3836           AAInfo))) {
3837     // Do not serialize (non-volatile) loads of constant memory with anything.
3838     Root = DAG.getEntryNode();
3839     ConstantMemory = true;
3840   }
3841 
3842   MachineMemOperand *MMO =
3843     DAG.getMachineFunction().
3844     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3845                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3846                          Alignment, AAInfo, Ranges);
3847 
3848   if (!UniformBase) {
3849     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3850     Index = getValue(Ptr);
3851   }
3852   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3853   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3854                                        Ops, MMO);
3855 
3856   SDValue OutChain = Gather.getValue(1);
3857   if (!ConstantMemory)
3858     PendingLoads.push_back(OutChain);
3859   setValue(&I, Gather);
3860 }
3861 
3862 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3863   SDLoc dl = getCurSDLoc();
3864   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3865   AtomicOrdering FailureOrder = I.getFailureOrdering();
3866   SynchronizationScope Scope = I.getSynchScope();
3867 
3868   SDValue InChain = getRoot();
3869 
3870   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3871   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3872   SDValue L = DAG.getAtomicCmpSwap(
3873       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3874       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3875       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3876       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3877 
3878   SDValue OutChain = L.getValue(2);
3879 
3880   setValue(&I, L);
3881   DAG.setRoot(OutChain);
3882 }
3883 
3884 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3885   SDLoc dl = getCurSDLoc();
3886   ISD::NodeType NT;
3887   switch (I.getOperation()) {
3888   default: llvm_unreachable("Unknown atomicrmw operation");
3889   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3890   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3891   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3892   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3893   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3894   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3895   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3896   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3897   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3898   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3899   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3900   }
3901   AtomicOrdering Order = I.getOrdering();
3902   SynchronizationScope Scope = I.getSynchScope();
3903 
3904   SDValue InChain = getRoot();
3905 
3906   SDValue L =
3907     DAG.getAtomic(NT, dl,
3908                   getValue(I.getValOperand()).getSimpleValueType(),
3909                   InChain,
3910                   getValue(I.getPointerOperand()),
3911                   getValue(I.getValOperand()),
3912                   I.getPointerOperand(),
3913                   /* Alignment=*/ 0, Order, Scope);
3914 
3915   SDValue OutChain = L.getValue(1);
3916 
3917   setValue(&I, L);
3918   DAG.setRoot(OutChain);
3919 }
3920 
3921 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3922   SDLoc dl = getCurSDLoc();
3923   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3924   SDValue Ops[3];
3925   Ops[0] = getRoot();
3926   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
3927                            TLI.getPointerTy(DAG.getDataLayout()));
3928   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3929                            TLI.getPointerTy(DAG.getDataLayout()));
3930   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3931 }
3932 
3933 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3934   SDLoc dl = getCurSDLoc();
3935   AtomicOrdering Order = I.getOrdering();
3936   SynchronizationScope Scope = I.getSynchScope();
3937 
3938   SDValue InChain = getRoot();
3939 
3940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3941   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3942 
3943   if (I.getAlignment() < VT.getSizeInBits() / 8)
3944     report_fatal_error("Cannot generate unaligned atomic load");
3945 
3946   MachineMemOperand *MMO =
3947       DAG.getMachineFunction().
3948       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3949                            MachineMemOperand::MOVolatile |
3950                            MachineMemOperand::MOLoad,
3951                            VT.getStoreSize(),
3952                            I.getAlignment() ? I.getAlignment() :
3953                                               DAG.getEVTAlignment(VT));
3954 
3955   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3956   SDValue L =
3957       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3958                     getValue(I.getPointerOperand()), MMO,
3959                     Order, Scope);
3960 
3961   SDValue OutChain = L.getValue(1);
3962 
3963   setValue(&I, L);
3964   DAG.setRoot(OutChain);
3965 }
3966 
3967 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3968   SDLoc dl = getCurSDLoc();
3969 
3970   AtomicOrdering Order = I.getOrdering();
3971   SynchronizationScope Scope = I.getSynchScope();
3972 
3973   SDValue InChain = getRoot();
3974 
3975   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3976   EVT VT =
3977       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3978 
3979   if (I.getAlignment() < VT.getSizeInBits() / 8)
3980     report_fatal_error("Cannot generate unaligned atomic store");
3981 
3982   SDValue OutChain =
3983     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3984                   InChain,
3985                   getValue(I.getPointerOperand()),
3986                   getValue(I.getValueOperand()),
3987                   I.getPointerOperand(), I.getAlignment(),
3988                   Order, Scope);
3989 
3990   DAG.setRoot(OutChain);
3991 }
3992 
3993 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3994 /// node.
3995 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3996                                                unsigned Intrinsic) {
3997   bool HasChain = !I.doesNotAccessMemory();
3998   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3999 
4000   // Build the operand list.
4001   SmallVector<SDValue, 8> Ops;
4002   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4003     if (OnlyLoad) {
4004       // We don't need to serialize loads against other loads.
4005       Ops.push_back(DAG.getRoot());
4006     } else {
4007       Ops.push_back(getRoot());
4008     }
4009   }
4010 
4011   // Info is set by getTgtMemInstrinsic
4012   TargetLowering::IntrinsicInfo Info;
4013   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4014   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4015 
4016   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4017   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4018       Info.opc == ISD::INTRINSIC_W_CHAIN)
4019     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4020                                         TLI.getPointerTy(DAG.getDataLayout())));
4021 
4022   // Add all operands of the call to the operand list.
4023   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4024     SDValue Op = getValue(I.getArgOperand(i));
4025     Ops.push_back(Op);
4026   }
4027 
4028   SmallVector<EVT, 4> ValueVTs;
4029   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4030 
4031   if (HasChain)
4032     ValueVTs.push_back(MVT::Other);
4033 
4034   SDVTList VTs = DAG.getVTList(ValueVTs);
4035 
4036   // Create the node.
4037   SDValue Result;
4038   if (IsTgtIntrinsic) {
4039     // This is target intrinsic that touches memory
4040     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4041                                      VTs, Ops, Info.memVT,
4042                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4043                                      Info.align, Info.vol,
4044                                      Info.readMem, Info.writeMem, Info.size);
4045   } else if (!HasChain) {
4046     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4047   } else if (!I.getType()->isVoidTy()) {
4048     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4049   } else {
4050     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4051   }
4052 
4053   if (HasChain) {
4054     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4055     if (OnlyLoad)
4056       PendingLoads.push_back(Chain);
4057     else
4058       DAG.setRoot(Chain);
4059   }
4060 
4061   if (!I.getType()->isVoidTy()) {
4062     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4063       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4064       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4065     } else
4066       Result = lowerRangeToAssertZExt(DAG, I, Result);
4067 
4068     setValue(&I, Result);
4069   }
4070 }
4071 
4072 /// GetSignificand - Get the significand and build it into a floating-point
4073 /// number with exponent of 1:
4074 ///
4075 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4076 ///
4077 /// where Op is the hexadecimal representation of floating point value.
4078 static SDValue
4079 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
4080   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4081                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4082   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4083                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4084   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4085 }
4086 
4087 /// GetExponent - Get the exponent:
4088 ///
4089 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4090 ///
4091 /// where Op is the hexadecimal representation of floating point value.
4092 static SDValue
4093 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
4094             SDLoc dl) {
4095   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4096                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4097   SDValue t1 = DAG.getNode(
4098       ISD::SRL, dl, MVT::i32, t0,
4099       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4100   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4101                            DAG.getConstant(127, dl, MVT::i32));
4102   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4103 }
4104 
4105 /// getF32Constant - Get 32-bit floating point constant.
4106 static SDValue
4107 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
4108   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
4109                            MVT::f32);
4110 }
4111 
4112 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
4113                                        SelectionDAG &DAG) {
4114   // TODO: What fast-math-flags should be set on the floating-point nodes?
4115 
4116   //   IntegerPartOfX = ((int32_t)(t0);
4117   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4118 
4119   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4120   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4121   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4122 
4123   //   IntegerPartOfX <<= 23;
4124   IntegerPartOfX = DAG.getNode(
4125       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4126       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4127                                   DAG.getDataLayout())));
4128 
4129   SDValue TwoToFractionalPartOfX;
4130   if (LimitFloatPrecision <= 6) {
4131     // For floating-point precision of 6:
4132     //
4133     //   TwoToFractionalPartOfX =
4134     //     0.997535578f +
4135     //       (0.735607626f + 0.252464424f * x) * x;
4136     //
4137     // error 0.0144103317, which is 6 bits
4138     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4139                              getF32Constant(DAG, 0x3e814304, dl));
4140     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4141                              getF32Constant(DAG, 0x3f3c50c8, dl));
4142     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4143     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4144                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4145   } else if (LimitFloatPrecision <= 12) {
4146     // For floating-point precision of 12:
4147     //
4148     //   TwoToFractionalPartOfX =
4149     //     0.999892986f +
4150     //       (0.696457318f +
4151     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4152     //
4153     // error 0.000107046256, which is 13 to 14 bits
4154     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4155                              getF32Constant(DAG, 0x3da235e3, dl));
4156     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4157                              getF32Constant(DAG, 0x3e65b8f3, dl));
4158     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4159     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4160                              getF32Constant(DAG, 0x3f324b07, dl));
4161     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4162     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4163                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4164   } else { // LimitFloatPrecision <= 18
4165     // For floating-point precision of 18:
4166     //
4167     //   TwoToFractionalPartOfX =
4168     //     0.999999982f +
4169     //       (0.693148872f +
4170     //         (0.240227044f +
4171     //           (0.554906021e-1f +
4172     //             (0.961591928e-2f +
4173     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4174     // error 2.47208000*10^(-7), which is better than 18 bits
4175     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4176                              getF32Constant(DAG, 0x3924b03e, dl));
4177     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4178                              getF32Constant(DAG, 0x3ab24b87, dl));
4179     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4180     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4181                              getF32Constant(DAG, 0x3c1d8c17, dl));
4182     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4183     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4184                              getF32Constant(DAG, 0x3d634a1d, dl));
4185     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4186     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4187                              getF32Constant(DAG, 0x3e75fe14, dl));
4188     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4189     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4190                               getF32Constant(DAG, 0x3f317234, dl));
4191     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4192     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4193                                          getF32Constant(DAG, 0x3f800000, dl));
4194   }
4195 
4196   // Add the exponent into the result in integer domain.
4197   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4198   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4199                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4200 }
4201 
4202 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4203 /// limited-precision mode.
4204 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4205                          const TargetLowering &TLI) {
4206   if (Op.getValueType() == MVT::f32 &&
4207       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4208 
4209     // Put the exponent in the right bit position for later addition to the
4210     // final result:
4211     //
4212     //   #define LOG2OFe 1.4426950f
4213     //   t0 = Op * LOG2OFe
4214 
4215     // TODO: What fast-math-flags should be set here?
4216     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4217                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4218     return getLimitedPrecisionExp2(t0, dl, DAG);
4219   }
4220 
4221   // No special expansion.
4222   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4223 }
4224 
4225 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4226 /// limited-precision mode.
4227 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4228                          const TargetLowering &TLI) {
4229 
4230   // TODO: What fast-math-flags should be set on the floating-point nodes?
4231 
4232   if (Op.getValueType() == MVT::f32 &&
4233       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4234     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4235 
4236     // Scale the exponent by log(2) [0.69314718f].
4237     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4238     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4239                                         getF32Constant(DAG, 0x3f317218, dl));
4240 
4241     // Get the significand and build it into a floating-point number with
4242     // exponent of 1.
4243     SDValue X = GetSignificand(DAG, Op1, dl);
4244 
4245     SDValue LogOfMantissa;
4246     if (LimitFloatPrecision <= 6) {
4247       // For floating-point precision of 6:
4248       //
4249       //   LogofMantissa =
4250       //     -1.1609546f +
4251       //       (1.4034025f - 0.23903021f * x) * x;
4252       //
4253       // error 0.0034276066, which is better than 8 bits
4254       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4255                                getF32Constant(DAG, 0xbe74c456, dl));
4256       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4257                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4258       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4259       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4260                                   getF32Constant(DAG, 0x3f949a29, dl));
4261     } else if (LimitFloatPrecision <= 12) {
4262       // For floating-point precision of 12:
4263       //
4264       //   LogOfMantissa =
4265       //     -1.7417939f +
4266       //       (2.8212026f +
4267       //         (-1.4699568f +
4268       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4269       //
4270       // error 0.000061011436, which is 14 bits
4271       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4272                                getF32Constant(DAG, 0xbd67b6d6, dl));
4273       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4274                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4275       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4276       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4277                                getF32Constant(DAG, 0x3fbc278b, dl));
4278       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4279       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4280                                getF32Constant(DAG, 0x40348e95, dl));
4281       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4282       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4283                                   getF32Constant(DAG, 0x3fdef31a, dl));
4284     } else { // LimitFloatPrecision <= 18
4285       // For floating-point precision of 18:
4286       //
4287       //   LogOfMantissa =
4288       //     -2.1072184f +
4289       //       (4.2372794f +
4290       //         (-3.7029485f +
4291       //           (2.2781945f +
4292       //             (-0.87823314f +
4293       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4294       //
4295       // error 0.0000023660568, which is better than 18 bits
4296       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4297                                getF32Constant(DAG, 0xbc91e5ac, dl));
4298       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4299                                getF32Constant(DAG, 0x3e4350aa, dl));
4300       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4301       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4302                                getF32Constant(DAG, 0x3f60d3e3, dl));
4303       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4304       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4305                                getF32Constant(DAG, 0x4011cdf0, dl));
4306       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4307       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4308                                getF32Constant(DAG, 0x406cfd1c, dl));
4309       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4310       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4311                                getF32Constant(DAG, 0x408797cb, dl));
4312       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4313       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4314                                   getF32Constant(DAG, 0x4006dcab, dl));
4315     }
4316 
4317     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4318   }
4319 
4320   // No special expansion.
4321   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4322 }
4323 
4324 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4325 /// limited-precision mode.
4326 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4327                           const TargetLowering &TLI) {
4328 
4329   // TODO: What fast-math-flags should be set on the floating-point nodes?
4330 
4331   if (Op.getValueType() == MVT::f32 &&
4332       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4333     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4334 
4335     // Get the exponent.
4336     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4337 
4338     // Get the significand and build it into a floating-point number with
4339     // exponent of 1.
4340     SDValue X = GetSignificand(DAG, Op1, dl);
4341 
4342     // Different possible minimax approximations of significand in
4343     // floating-point for various degrees of accuracy over [1,2].
4344     SDValue Log2ofMantissa;
4345     if (LimitFloatPrecision <= 6) {
4346       // For floating-point precision of 6:
4347       //
4348       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4349       //
4350       // error 0.0049451742, which is more than 7 bits
4351       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4352                                getF32Constant(DAG, 0xbeb08fe0, dl));
4353       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4354                                getF32Constant(DAG, 0x40019463, dl));
4355       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4356       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4357                                    getF32Constant(DAG, 0x3fd6633d, dl));
4358     } else if (LimitFloatPrecision <= 12) {
4359       // For floating-point precision of 12:
4360       //
4361       //   Log2ofMantissa =
4362       //     -2.51285454f +
4363       //       (4.07009056f +
4364       //         (-2.12067489f +
4365       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4366       //
4367       // error 0.0000876136000, which is better than 13 bits
4368       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4369                                getF32Constant(DAG, 0xbda7262e, dl));
4370       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4371                                getF32Constant(DAG, 0x3f25280b, dl));
4372       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4373       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4374                                getF32Constant(DAG, 0x4007b923, dl));
4375       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4376       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4377                                getF32Constant(DAG, 0x40823e2f, dl));
4378       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4379       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4380                                    getF32Constant(DAG, 0x4020d29c, dl));
4381     } else { // LimitFloatPrecision <= 18
4382       // For floating-point precision of 18:
4383       //
4384       //   Log2ofMantissa =
4385       //     -3.0400495f +
4386       //       (6.1129976f +
4387       //         (-5.3420409f +
4388       //           (3.2865683f +
4389       //             (-1.2669343f +
4390       //               (0.27515199f -
4391       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4392       //
4393       // error 0.0000018516, which is better than 18 bits
4394       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4395                                getF32Constant(DAG, 0xbcd2769e, dl));
4396       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4397                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4398       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4399       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4400                                getF32Constant(DAG, 0x3fa22ae7, dl));
4401       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4402       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4403                                getF32Constant(DAG, 0x40525723, dl));
4404       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4405       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4406                                getF32Constant(DAG, 0x40aaf200, dl));
4407       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4408       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4409                                getF32Constant(DAG, 0x40c39dad, dl));
4410       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4411       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4412                                    getF32Constant(DAG, 0x4042902c, dl));
4413     }
4414 
4415     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4416   }
4417 
4418   // No special expansion.
4419   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4420 }
4421 
4422 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4423 /// limited-precision mode.
4424 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4425                            const TargetLowering &TLI) {
4426 
4427   // TODO: What fast-math-flags should be set on the floating-point nodes?
4428 
4429   if (Op.getValueType() == MVT::f32 &&
4430       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4431     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4432 
4433     // Scale the exponent by log10(2) [0.30102999f].
4434     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4435     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4436                                         getF32Constant(DAG, 0x3e9a209a, dl));
4437 
4438     // Get the significand and build it into a floating-point number with
4439     // exponent of 1.
4440     SDValue X = GetSignificand(DAG, Op1, dl);
4441 
4442     SDValue Log10ofMantissa;
4443     if (LimitFloatPrecision <= 6) {
4444       // For floating-point precision of 6:
4445       //
4446       //   Log10ofMantissa =
4447       //     -0.50419619f +
4448       //       (0.60948995f - 0.10380950f * x) * x;
4449       //
4450       // error 0.0014886165, which is 6 bits
4451       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4452                                getF32Constant(DAG, 0xbdd49a13, dl));
4453       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4454                                getF32Constant(DAG, 0x3f1c0789, dl));
4455       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4456       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4457                                     getF32Constant(DAG, 0x3f011300, dl));
4458     } else if (LimitFloatPrecision <= 12) {
4459       // For floating-point precision of 12:
4460       //
4461       //   Log10ofMantissa =
4462       //     -0.64831180f +
4463       //       (0.91751397f +
4464       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4465       //
4466       // error 0.00019228036, which is better than 12 bits
4467       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4468                                getF32Constant(DAG, 0x3d431f31, dl));
4469       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4470                                getF32Constant(DAG, 0x3ea21fb2, dl));
4471       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4472       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4473                                getF32Constant(DAG, 0x3f6ae232, dl));
4474       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4475       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4476                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4477     } else { // LimitFloatPrecision <= 18
4478       // For floating-point precision of 18:
4479       //
4480       //   Log10ofMantissa =
4481       //     -0.84299375f +
4482       //       (1.5327582f +
4483       //         (-1.0688956f +
4484       //           (0.49102474f +
4485       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4486       //
4487       // error 0.0000037995730, which is better than 18 bits
4488       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4489                                getF32Constant(DAG, 0x3c5d51ce, dl));
4490       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4491                                getF32Constant(DAG, 0x3e00685a, dl));
4492       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4493       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4494                                getF32Constant(DAG, 0x3efb6798, dl));
4495       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4496       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4497                                getF32Constant(DAG, 0x3f88d192, dl));
4498       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4499       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4500                                getF32Constant(DAG, 0x3fc4316c, dl));
4501       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4502       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4503                                     getF32Constant(DAG, 0x3f57ce70, dl));
4504     }
4505 
4506     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4507   }
4508 
4509   // No special expansion.
4510   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4511 }
4512 
4513 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4514 /// limited-precision mode.
4515 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4516                           const TargetLowering &TLI) {
4517   if (Op.getValueType() == MVT::f32 &&
4518       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4519     return getLimitedPrecisionExp2(Op, dl, DAG);
4520 
4521   // No special expansion.
4522   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4523 }
4524 
4525 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4526 /// limited-precision mode with x == 10.0f.
4527 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4528                          SelectionDAG &DAG, const TargetLowering &TLI) {
4529   bool IsExp10 = false;
4530   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4531       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4532     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4533       APFloat Ten(10.0f);
4534       IsExp10 = LHSC->isExactlyValue(Ten);
4535     }
4536   }
4537 
4538   // TODO: What fast-math-flags should be set on the FMUL node?
4539   if (IsExp10) {
4540     // Put the exponent in the right bit position for later addition to the
4541     // final result:
4542     //
4543     //   #define LOG2OF10 3.3219281f
4544     //   t0 = Op * LOG2OF10;
4545     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4546                              getF32Constant(DAG, 0x40549a78, dl));
4547     return getLimitedPrecisionExp2(t0, dl, DAG);
4548   }
4549 
4550   // No special expansion.
4551   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4552 }
4553 
4554 
4555 /// ExpandPowI - Expand a llvm.powi intrinsic.
4556 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4557                           SelectionDAG &DAG) {
4558   // If RHS is a constant, we can expand this out to a multiplication tree,
4559   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4560   // optimizing for size, we only want to do this if the expansion would produce
4561   // a small number of multiplies, otherwise we do the full expansion.
4562   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4563     // Get the exponent as a positive value.
4564     unsigned Val = RHSC->getSExtValue();
4565     if ((int)Val < 0) Val = -Val;
4566 
4567     // powi(x, 0) -> 1.0
4568     if (Val == 0)
4569       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4570 
4571     const Function *F = DAG.getMachineFunction().getFunction();
4572     if (!F->optForSize() ||
4573         // If optimizing for size, don't insert too many multiplies.
4574         // This inserts up to 5 multiplies.
4575         countPopulation(Val) + Log2_32(Val) < 7) {
4576       // We use the simple binary decomposition method to generate the multiply
4577       // sequence.  There are more optimal ways to do this (for example,
4578       // powi(x,15) generates one more multiply than it should), but this has
4579       // the benefit of being both really simple and much better than a libcall.
4580       SDValue Res;  // Logically starts equal to 1.0
4581       SDValue CurSquare = LHS;
4582       // TODO: Intrinsics should have fast-math-flags that propagate to these
4583       // nodes.
4584       while (Val) {
4585         if (Val & 1) {
4586           if (Res.getNode())
4587             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4588           else
4589             Res = CurSquare;  // 1.0*CurSquare.
4590         }
4591 
4592         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4593                                 CurSquare, CurSquare);
4594         Val >>= 1;
4595       }
4596 
4597       // If the original was negative, invert the result, producing 1/(x*x*x).
4598       if (RHSC->getSExtValue() < 0)
4599         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4600                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4601       return Res;
4602     }
4603   }
4604 
4605   // Otherwise, expand to a libcall.
4606   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4607 }
4608 
4609 // getUnderlyingArgReg - Find underlying register used for a truncated or
4610 // bitcasted argument.
4611 static unsigned getUnderlyingArgReg(const SDValue &N) {
4612   switch (N.getOpcode()) {
4613   case ISD::CopyFromReg:
4614     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4615   case ISD::BITCAST:
4616   case ISD::AssertZext:
4617   case ISD::AssertSext:
4618   case ISD::TRUNCATE:
4619     return getUnderlyingArgReg(N.getOperand(0));
4620   default:
4621     return 0;
4622   }
4623 }
4624 
4625 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4626 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4627 /// At the end of instruction selection, they will be inserted to the entry BB.
4628 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4629     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4630     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4631   const Argument *Arg = dyn_cast<Argument>(V);
4632   if (!Arg)
4633     return false;
4634 
4635   MachineFunction &MF = DAG.getMachineFunction();
4636   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4637 
4638   // Ignore inlined function arguments here.
4639   //
4640   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4641   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4642     return false;
4643 
4644   Optional<MachineOperand> Op;
4645   // Some arguments' frame index is recorded during argument lowering.
4646   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4647     Op = MachineOperand::CreateFI(FI);
4648 
4649   if (!Op && N.getNode()) {
4650     unsigned Reg = getUnderlyingArgReg(N);
4651     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4652       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4653       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4654       if (PR)
4655         Reg = PR;
4656     }
4657     if (Reg)
4658       Op = MachineOperand::CreateReg(Reg, false);
4659   }
4660 
4661   if (!Op) {
4662     // Check if ValueMap has reg number.
4663     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4664     if (VMI != FuncInfo.ValueMap.end())
4665       Op = MachineOperand::CreateReg(VMI->second, false);
4666   }
4667 
4668   if (!Op && N.getNode())
4669     // Check if frame index is available.
4670     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4671       if (FrameIndexSDNode *FINode =
4672           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4673         Op = MachineOperand::CreateFI(FINode->getIndex());
4674 
4675   if (!Op)
4676     return false;
4677 
4678   assert(Variable->isValidLocationForIntrinsic(DL) &&
4679          "Expected inlined-at fields to agree");
4680   if (Op->isReg())
4681     FuncInfo.ArgDbgValues.push_back(
4682         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4683                 Op->getReg(), Offset, Variable, Expr));
4684   else
4685     FuncInfo.ArgDbgValues.push_back(
4686         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4687             .addOperand(*Op)
4688             .addImm(Offset)
4689             .addMetadata(Variable)
4690             .addMetadata(Expr));
4691 
4692   return true;
4693 }
4694 
4695 // VisualStudio defines setjmp as _setjmp
4696 #if defined(_MSC_VER) && defined(setjmp) && \
4697                          !defined(setjmp_undefined_for_msvc)
4698 #  pragma push_macro("setjmp")
4699 #  undef setjmp
4700 #  define setjmp_undefined_for_msvc
4701 #endif
4702 
4703 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4704 /// we want to emit this as a call to a named external function, return the name
4705 /// otherwise lower it and return null.
4706 const char *
4707 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4708   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4709   SDLoc sdl = getCurSDLoc();
4710   DebugLoc dl = getCurDebugLoc();
4711   SDValue Res;
4712 
4713   switch (Intrinsic) {
4714   default:
4715     // By default, turn this into a target intrinsic node.
4716     visitTargetIntrinsic(I, Intrinsic);
4717     return nullptr;
4718   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4719   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4720   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4721   case Intrinsic::returnaddress:
4722     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4723                              TLI.getPointerTy(DAG.getDataLayout()),
4724                              getValue(I.getArgOperand(0))));
4725     return nullptr;
4726   case Intrinsic::frameaddress:
4727     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4728                              TLI.getPointerTy(DAG.getDataLayout()),
4729                              getValue(I.getArgOperand(0))));
4730     return nullptr;
4731   case Intrinsic::read_register: {
4732     Value *Reg = I.getArgOperand(0);
4733     SDValue Chain = getRoot();
4734     SDValue RegName =
4735         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4736     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4737     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4738       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4739     setValue(&I, Res);
4740     DAG.setRoot(Res.getValue(1));
4741     return nullptr;
4742   }
4743   case Intrinsic::write_register: {
4744     Value *Reg = I.getArgOperand(0);
4745     Value *RegValue = I.getArgOperand(1);
4746     SDValue Chain = getRoot();
4747     SDValue RegName =
4748         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4749     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4750                             RegName, getValue(RegValue)));
4751     return nullptr;
4752   }
4753   case Intrinsic::setjmp:
4754     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4755   case Intrinsic::longjmp:
4756     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4757   case Intrinsic::memcpy: {
4758     SDValue Op1 = getValue(I.getArgOperand(0));
4759     SDValue Op2 = getValue(I.getArgOperand(1));
4760     SDValue Op3 = getValue(I.getArgOperand(2));
4761     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4762     if (!Align)
4763       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4764     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4765     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4766     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4767                                false, isTC,
4768                                MachinePointerInfo(I.getArgOperand(0)),
4769                                MachinePointerInfo(I.getArgOperand(1)));
4770     updateDAGForMaybeTailCall(MC);
4771     return nullptr;
4772   }
4773   case Intrinsic::memset: {
4774     SDValue Op1 = getValue(I.getArgOperand(0));
4775     SDValue Op2 = getValue(I.getArgOperand(1));
4776     SDValue Op3 = getValue(I.getArgOperand(2));
4777     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4778     if (!Align)
4779       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4780     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4781     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4782     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4783                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4784     updateDAGForMaybeTailCall(MS);
4785     return nullptr;
4786   }
4787   case Intrinsic::memmove: {
4788     SDValue Op1 = getValue(I.getArgOperand(0));
4789     SDValue Op2 = getValue(I.getArgOperand(1));
4790     SDValue Op3 = getValue(I.getArgOperand(2));
4791     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4792     if (!Align)
4793       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4794     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4795     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4796     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4797                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4798                                 MachinePointerInfo(I.getArgOperand(1)));
4799     updateDAGForMaybeTailCall(MM);
4800     return nullptr;
4801   }
4802   case Intrinsic::dbg_declare: {
4803     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4804     DILocalVariable *Variable = DI.getVariable();
4805     DIExpression *Expression = DI.getExpression();
4806     const Value *Address = DI.getAddress();
4807     assert(Variable && "Missing variable");
4808     if (!Address) {
4809       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4810       return nullptr;
4811     }
4812 
4813     // Check if address has undef value.
4814     if (isa<UndefValue>(Address) ||
4815         (Address->use_empty() && !isa<Argument>(Address))) {
4816       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4817       return nullptr;
4818     }
4819 
4820     SDValue &N = NodeMap[Address];
4821     if (!N.getNode() && isa<Argument>(Address))
4822       // Check unused arguments map.
4823       N = UnusedArgNodeMap[Address];
4824     SDDbgValue *SDV;
4825     if (N.getNode()) {
4826       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4827         Address = BCI->getOperand(0);
4828       // Parameters are handled specially.
4829       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4830       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4831       if (isParameter && FINode) {
4832         // Byval parameter. We have a frame index at this point.
4833         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4834                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4835       } else if (isa<Argument>(Address)) {
4836         // Address is an argument, so try to emit its dbg value using
4837         // virtual register info from the FuncInfo.ValueMap.
4838         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4839                                  N);
4840         return nullptr;
4841       } else {
4842         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4843                               true, 0, dl, SDNodeOrder);
4844       }
4845       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4846     } else {
4847       // If Address is an argument then try to emit its dbg value using
4848       // virtual register info from the FuncInfo.ValueMap.
4849       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4850                                     N)) {
4851         // If variable is pinned by a alloca in dominating bb then
4852         // use StaticAllocaMap.
4853         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4854           if (AI->getParent() != DI.getParent()) {
4855             DenseMap<const AllocaInst*, int>::iterator SI =
4856               FuncInfo.StaticAllocaMap.find(AI);
4857             if (SI != FuncInfo.StaticAllocaMap.end()) {
4858               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4859                                               0, dl, SDNodeOrder);
4860               DAG.AddDbgValue(SDV, nullptr, false);
4861               return nullptr;
4862             }
4863           }
4864         }
4865         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4866       }
4867     }
4868     return nullptr;
4869   }
4870   case Intrinsic::dbg_value: {
4871     const DbgValueInst &DI = cast<DbgValueInst>(I);
4872     assert(DI.getVariable() && "Missing variable");
4873 
4874     DILocalVariable *Variable = DI.getVariable();
4875     DIExpression *Expression = DI.getExpression();
4876     uint64_t Offset = DI.getOffset();
4877     const Value *V = DI.getValue();
4878     if (!V)
4879       return nullptr;
4880 
4881     SDDbgValue *SDV;
4882     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4883       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4884                                     SDNodeOrder);
4885       DAG.AddDbgValue(SDV, nullptr, false);
4886     } else {
4887       // Do not use getValue() in here; we don't want to generate code at
4888       // this point if it hasn't been done yet.
4889       SDValue N = NodeMap[V];
4890       if (!N.getNode() && isa<Argument>(V))
4891         // Check unused arguments map.
4892         N = UnusedArgNodeMap[V];
4893       if (N.getNode()) {
4894         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4895                                       false, N)) {
4896           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4897                                 false, Offset, dl, SDNodeOrder);
4898           DAG.AddDbgValue(SDV, N.getNode(), false);
4899         }
4900       } else if (!V->use_empty() ) {
4901         // Do not call getValue(V) yet, as we don't want to generate code.
4902         // Remember it for later.
4903         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4904         DanglingDebugInfoMap[V] = DDI;
4905       } else {
4906         // We may expand this to cover more cases.  One case where we have no
4907         // data available is an unreferenced parameter.
4908         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4909       }
4910     }
4911 
4912     // Build a debug info table entry.
4913     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4914       V = BCI->getOperand(0);
4915     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4916     // Don't handle byval struct arguments or VLAs, for example.
4917     if (!AI) {
4918       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4919       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4920       return nullptr;
4921     }
4922     DenseMap<const AllocaInst*, int>::iterator SI =
4923       FuncInfo.StaticAllocaMap.find(AI);
4924     if (SI == FuncInfo.StaticAllocaMap.end())
4925       return nullptr; // VLAs.
4926     return nullptr;
4927   }
4928 
4929   case Intrinsic::eh_typeid_for: {
4930     // Find the type id for the given typeinfo.
4931     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4932     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4933     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4934     setValue(&I, Res);
4935     return nullptr;
4936   }
4937 
4938   case Intrinsic::eh_return_i32:
4939   case Intrinsic::eh_return_i64:
4940     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4941     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4942                             MVT::Other,
4943                             getControlRoot(),
4944                             getValue(I.getArgOperand(0)),
4945                             getValue(I.getArgOperand(1))));
4946     return nullptr;
4947   case Intrinsic::eh_unwind_init:
4948     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4949     return nullptr;
4950   case Intrinsic::eh_dwarf_cfa: {
4951     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4952                                         TLI.getPointerTy(DAG.getDataLayout()));
4953     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4954                                  CfaArg.getValueType(),
4955                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4956                                              CfaArg.getValueType()),
4957                                  CfaArg);
4958     SDValue FA = DAG.getNode(
4959         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4960         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4961     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4962                              FA, Offset));
4963     return nullptr;
4964   }
4965   case Intrinsic::eh_sjlj_callsite: {
4966     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4967     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4968     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4969     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4970 
4971     MMI.setCurrentCallSite(CI->getZExtValue());
4972     return nullptr;
4973   }
4974   case Intrinsic::eh_sjlj_functioncontext: {
4975     // Get and store the index of the function context.
4976     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4977     AllocaInst *FnCtx =
4978       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4979     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4980     MFI->setFunctionContextIndex(FI);
4981     return nullptr;
4982   }
4983   case Intrinsic::eh_sjlj_setjmp: {
4984     SDValue Ops[2];
4985     Ops[0] = getRoot();
4986     Ops[1] = getValue(I.getArgOperand(0));
4987     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4988                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4989     setValue(&I, Op.getValue(0));
4990     DAG.setRoot(Op.getValue(1));
4991     return nullptr;
4992   }
4993   case Intrinsic::eh_sjlj_longjmp: {
4994     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4995                             getRoot(), getValue(I.getArgOperand(0))));
4996     return nullptr;
4997   }
4998   case Intrinsic::eh_sjlj_setup_dispatch: {
4999     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5000                             getRoot()));
5001     return nullptr;
5002   }
5003 
5004   case Intrinsic::masked_gather:
5005     visitMaskedGather(I);
5006     return nullptr;
5007   case Intrinsic::masked_load:
5008     visitMaskedLoad(I);
5009     return nullptr;
5010   case Intrinsic::masked_scatter:
5011     visitMaskedScatter(I);
5012     return nullptr;
5013   case Intrinsic::masked_store:
5014     visitMaskedStore(I);
5015     return nullptr;
5016   case Intrinsic::x86_mmx_pslli_w:
5017   case Intrinsic::x86_mmx_pslli_d:
5018   case Intrinsic::x86_mmx_pslli_q:
5019   case Intrinsic::x86_mmx_psrli_w:
5020   case Intrinsic::x86_mmx_psrli_d:
5021   case Intrinsic::x86_mmx_psrli_q:
5022   case Intrinsic::x86_mmx_psrai_w:
5023   case Intrinsic::x86_mmx_psrai_d: {
5024     SDValue ShAmt = getValue(I.getArgOperand(1));
5025     if (isa<ConstantSDNode>(ShAmt)) {
5026       visitTargetIntrinsic(I, Intrinsic);
5027       return nullptr;
5028     }
5029     unsigned NewIntrinsic = 0;
5030     EVT ShAmtVT = MVT::v2i32;
5031     switch (Intrinsic) {
5032     case Intrinsic::x86_mmx_pslli_w:
5033       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5034       break;
5035     case Intrinsic::x86_mmx_pslli_d:
5036       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5037       break;
5038     case Intrinsic::x86_mmx_pslli_q:
5039       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5040       break;
5041     case Intrinsic::x86_mmx_psrli_w:
5042       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5043       break;
5044     case Intrinsic::x86_mmx_psrli_d:
5045       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5046       break;
5047     case Intrinsic::x86_mmx_psrli_q:
5048       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5049       break;
5050     case Intrinsic::x86_mmx_psrai_w:
5051       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5052       break;
5053     case Intrinsic::x86_mmx_psrai_d:
5054       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5055       break;
5056     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5057     }
5058 
5059     // The vector shift intrinsics with scalars uses 32b shift amounts but
5060     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5061     // to be zero.
5062     // We must do this early because v2i32 is not a legal type.
5063     SDValue ShOps[2];
5064     ShOps[0] = ShAmt;
5065     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5066     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5067     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5068     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5069     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5070                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5071                        getValue(I.getArgOperand(0)), ShAmt);
5072     setValue(&I, Res);
5073     return nullptr;
5074   }
5075   case Intrinsic::convertff:
5076   case Intrinsic::convertfsi:
5077   case Intrinsic::convertfui:
5078   case Intrinsic::convertsif:
5079   case Intrinsic::convertuif:
5080   case Intrinsic::convertss:
5081   case Intrinsic::convertsu:
5082   case Intrinsic::convertus:
5083   case Intrinsic::convertuu: {
5084     ISD::CvtCode Code = ISD::CVT_INVALID;
5085     switch (Intrinsic) {
5086     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5087     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5088     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5089     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5090     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5091     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5092     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5093     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5094     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5095     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5096     }
5097     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5098     const Value *Op1 = I.getArgOperand(0);
5099     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5100                                DAG.getValueType(DestVT),
5101                                DAG.getValueType(getValue(Op1).getValueType()),
5102                                getValue(I.getArgOperand(1)),
5103                                getValue(I.getArgOperand(2)),
5104                                Code);
5105     setValue(&I, Res);
5106     return nullptr;
5107   }
5108   case Intrinsic::powi:
5109     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5110                             getValue(I.getArgOperand(1)), DAG));
5111     return nullptr;
5112   case Intrinsic::log:
5113     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5114     return nullptr;
5115   case Intrinsic::log2:
5116     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5117     return nullptr;
5118   case Intrinsic::log10:
5119     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5120     return nullptr;
5121   case Intrinsic::exp:
5122     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5123     return nullptr;
5124   case Intrinsic::exp2:
5125     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5126     return nullptr;
5127   case Intrinsic::pow:
5128     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5129                            getValue(I.getArgOperand(1)), DAG, TLI));
5130     return nullptr;
5131   case Intrinsic::sqrt:
5132   case Intrinsic::fabs:
5133   case Intrinsic::sin:
5134   case Intrinsic::cos:
5135   case Intrinsic::floor:
5136   case Intrinsic::ceil:
5137   case Intrinsic::trunc:
5138   case Intrinsic::rint:
5139   case Intrinsic::nearbyint:
5140   case Intrinsic::round:
5141   case Intrinsic::canonicalize: {
5142     unsigned Opcode;
5143     switch (Intrinsic) {
5144     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5145     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5146     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5147     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5148     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5149     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5150     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5151     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5152     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5153     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5154     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5155     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5156     }
5157 
5158     setValue(&I, DAG.getNode(Opcode, sdl,
5159                              getValue(I.getArgOperand(0)).getValueType(),
5160                              getValue(I.getArgOperand(0))));
5161     return nullptr;
5162   }
5163   case Intrinsic::minnum: {
5164     auto VT = getValue(I.getArgOperand(0)).getValueType();
5165     unsigned Opc =
5166         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5167             ? ISD::FMINNAN
5168             : ISD::FMINNUM;
5169     setValue(&I, DAG.getNode(Opc, sdl, VT,
5170                              getValue(I.getArgOperand(0)),
5171                              getValue(I.getArgOperand(1))));
5172     return nullptr;
5173   }
5174   case Intrinsic::maxnum: {
5175     auto VT = getValue(I.getArgOperand(0)).getValueType();
5176     unsigned Opc =
5177         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5178             ? ISD::FMAXNAN
5179             : ISD::FMAXNUM;
5180     setValue(&I, DAG.getNode(Opc, sdl, VT,
5181                              getValue(I.getArgOperand(0)),
5182                              getValue(I.getArgOperand(1))));
5183     return nullptr;
5184   }
5185   case Intrinsic::copysign:
5186     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5187                              getValue(I.getArgOperand(0)).getValueType(),
5188                              getValue(I.getArgOperand(0)),
5189                              getValue(I.getArgOperand(1))));
5190     return nullptr;
5191   case Intrinsic::fma:
5192     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5193                              getValue(I.getArgOperand(0)).getValueType(),
5194                              getValue(I.getArgOperand(0)),
5195                              getValue(I.getArgOperand(1)),
5196                              getValue(I.getArgOperand(2))));
5197     return nullptr;
5198   case Intrinsic::fmuladd: {
5199     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5200     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5201         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5202       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5203                                getValue(I.getArgOperand(0)).getValueType(),
5204                                getValue(I.getArgOperand(0)),
5205                                getValue(I.getArgOperand(1)),
5206                                getValue(I.getArgOperand(2))));
5207     } else {
5208       // TODO: Intrinsic calls should have fast-math-flags.
5209       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5210                                 getValue(I.getArgOperand(0)).getValueType(),
5211                                 getValue(I.getArgOperand(0)),
5212                                 getValue(I.getArgOperand(1)));
5213       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5214                                 getValue(I.getArgOperand(0)).getValueType(),
5215                                 Mul,
5216                                 getValue(I.getArgOperand(2)));
5217       setValue(&I, Add);
5218     }
5219     return nullptr;
5220   }
5221   case Intrinsic::convert_to_fp16:
5222     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5223                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5224                                          getValue(I.getArgOperand(0)),
5225                                          DAG.getTargetConstant(0, sdl,
5226                                                                MVT::i32))));
5227     return nullptr;
5228   case Intrinsic::convert_from_fp16:
5229     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5230                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5231                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5232                                          getValue(I.getArgOperand(0)))));
5233     return nullptr;
5234   case Intrinsic::pcmarker: {
5235     SDValue Tmp = getValue(I.getArgOperand(0));
5236     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5237     return nullptr;
5238   }
5239   case Intrinsic::readcyclecounter: {
5240     SDValue Op = getRoot();
5241     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5242                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5243     setValue(&I, Res);
5244     DAG.setRoot(Res.getValue(1));
5245     return nullptr;
5246   }
5247   case Intrinsic::bitreverse:
5248     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5249                              getValue(I.getArgOperand(0)).getValueType(),
5250                              getValue(I.getArgOperand(0))));
5251     return nullptr;
5252   case Intrinsic::bswap:
5253     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5254                              getValue(I.getArgOperand(0)).getValueType(),
5255                              getValue(I.getArgOperand(0))));
5256     return nullptr;
5257   case Intrinsic::cttz: {
5258     SDValue Arg = getValue(I.getArgOperand(0));
5259     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5260     EVT Ty = Arg.getValueType();
5261     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5262                              sdl, Ty, Arg));
5263     return nullptr;
5264   }
5265   case Intrinsic::ctlz: {
5266     SDValue Arg = getValue(I.getArgOperand(0));
5267     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5268     EVT Ty = Arg.getValueType();
5269     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5270                              sdl, Ty, Arg));
5271     return nullptr;
5272   }
5273   case Intrinsic::ctpop: {
5274     SDValue Arg = getValue(I.getArgOperand(0));
5275     EVT Ty = Arg.getValueType();
5276     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5277     return nullptr;
5278   }
5279   case Intrinsic::stacksave: {
5280     SDValue Op = getRoot();
5281     Res = DAG.getNode(
5282         ISD::STACKSAVE, sdl,
5283         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5284     setValue(&I, Res);
5285     DAG.setRoot(Res.getValue(1));
5286     return nullptr;
5287   }
5288   case Intrinsic::stackrestore: {
5289     Res = getValue(I.getArgOperand(0));
5290     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5291     return nullptr;
5292   }
5293   case Intrinsic::get_dynamic_area_offset: {
5294     SDValue Op = getRoot();
5295     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5296     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5297     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5298     // target.
5299     if (PtrTy != ResTy)
5300       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5301                          " intrinsic!");
5302     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5303                       Op);
5304     DAG.setRoot(Op);
5305     setValue(&I, Res);
5306     return nullptr;
5307   }
5308   case Intrinsic::stackguard: {
5309     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5310     MachineFunction &MF = DAG.getMachineFunction();
5311     const Module &M = *MF.getFunction()->getParent();
5312     SDValue Chain = getRoot();
5313     if (TLI.useLoadStackGuardNode()) {
5314       Res = getLoadStackGuard(DAG, sdl, Chain);
5315     } else {
5316       const Value *Global = TLI.getSDStackGuard(M);
5317       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5318       Res =
5319           DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5320                       MachinePointerInfo(Global, 0), true, false, false, Align);
5321     }
5322     DAG.setRoot(Chain);
5323     setValue(&I, Res);
5324     return nullptr;
5325   }
5326   case Intrinsic::stackprotector: {
5327     // Emit code into the DAG to store the stack guard onto the stack.
5328     MachineFunction &MF = DAG.getMachineFunction();
5329     MachineFrameInfo *MFI = MF.getFrameInfo();
5330     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5331     SDValue Src, Chain = getRoot();
5332 
5333     if (TLI.useLoadStackGuardNode())
5334       Src = getLoadStackGuard(DAG, sdl, Chain);
5335     else
5336       Src = getValue(I.getArgOperand(0));   // The guard's value.
5337 
5338     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5339 
5340     int FI = FuncInfo.StaticAllocaMap[Slot];
5341     MFI->setStackProtectorIndex(FI);
5342 
5343     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5344 
5345     // Store the stack protector onto the stack.
5346     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5347                                                  DAG.getMachineFunction(), FI),
5348                        true, false, 0);
5349     setValue(&I, Res);
5350     DAG.setRoot(Res);
5351     return nullptr;
5352   }
5353   case Intrinsic::objectsize: {
5354     // If we don't know by now, we're never going to know.
5355     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5356 
5357     assert(CI && "Non-constant type in __builtin_object_size?");
5358 
5359     SDValue Arg = getValue(I.getCalledValue());
5360     EVT Ty = Arg.getValueType();
5361 
5362     if (CI->isZero())
5363       Res = DAG.getConstant(-1ULL, sdl, Ty);
5364     else
5365       Res = DAG.getConstant(0, sdl, Ty);
5366 
5367     setValue(&I, Res);
5368     return nullptr;
5369   }
5370   case Intrinsic::annotation:
5371   case Intrinsic::ptr_annotation:
5372     // Drop the intrinsic, but forward the value
5373     setValue(&I, getValue(I.getOperand(0)));
5374     return nullptr;
5375   case Intrinsic::assume:
5376   case Intrinsic::var_annotation:
5377     // Discard annotate attributes and assumptions
5378     return nullptr;
5379 
5380   case Intrinsic::init_trampoline: {
5381     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5382 
5383     SDValue Ops[6];
5384     Ops[0] = getRoot();
5385     Ops[1] = getValue(I.getArgOperand(0));
5386     Ops[2] = getValue(I.getArgOperand(1));
5387     Ops[3] = getValue(I.getArgOperand(2));
5388     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5389     Ops[5] = DAG.getSrcValue(F);
5390 
5391     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5392 
5393     DAG.setRoot(Res);
5394     return nullptr;
5395   }
5396   case Intrinsic::adjust_trampoline: {
5397     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5398                              TLI.getPointerTy(DAG.getDataLayout()),
5399                              getValue(I.getArgOperand(0))));
5400     return nullptr;
5401   }
5402   case Intrinsic::gcroot: {
5403     MachineFunction &MF = DAG.getMachineFunction();
5404     const Function *F = MF.getFunction();
5405     (void)F;
5406     assert(F->hasGC() &&
5407            "only valid in functions with gc specified, enforced by Verifier");
5408     assert(GFI && "implied by previous");
5409     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5410     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5411 
5412     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5413     GFI->addStackRoot(FI->getIndex(), TypeMap);
5414     return nullptr;
5415   }
5416   case Intrinsic::gcread:
5417   case Intrinsic::gcwrite:
5418     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5419   case Intrinsic::flt_rounds:
5420     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5421     return nullptr;
5422 
5423   case Intrinsic::expect: {
5424     // Just replace __builtin_expect(exp, c) with EXP.
5425     setValue(&I, getValue(I.getArgOperand(0)));
5426     return nullptr;
5427   }
5428 
5429   case Intrinsic::debugtrap:
5430   case Intrinsic::trap: {
5431     StringRef TrapFuncName =
5432         I.getAttributes()
5433             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5434             .getValueAsString();
5435     if (TrapFuncName.empty()) {
5436       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5437         ISD::TRAP : ISD::DEBUGTRAP;
5438       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5439       return nullptr;
5440     }
5441     TargetLowering::ArgListTy Args;
5442 
5443     TargetLowering::CallLoweringInfo CLI(DAG);
5444     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5445         CallingConv::C, I.getType(),
5446         DAG.getExternalSymbol(TrapFuncName.data(),
5447                               TLI.getPointerTy(DAG.getDataLayout())),
5448         std::move(Args), 0);
5449 
5450     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5451     DAG.setRoot(Result.second);
5452     return nullptr;
5453   }
5454 
5455   case Intrinsic::uadd_with_overflow:
5456   case Intrinsic::sadd_with_overflow:
5457   case Intrinsic::usub_with_overflow:
5458   case Intrinsic::ssub_with_overflow:
5459   case Intrinsic::umul_with_overflow:
5460   case Intrinsic::smul_with_overflow: {
5461     ISD::NodeType Op;
5462     switch (Intrinsic) {
5463     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5464     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5465     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5466     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5467     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5468     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5469     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5470     }
5471     SDValue Op1 = getValue(I.getArgOperand(0));
5472     SDValue Op2 = getValue(I.getArgOperand(1));
5473 
5474     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5475     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5476     return nullptr;
5477   }
5478   case Intrinsic::prefetch: {
5479     SDValue Ops[5];
5480     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5481     Ops[0] = getRoot();
5482     Ops[1] = getValue(I.getArgOperand(0));
5483     Ops[2] = getValue(I.getArgOperand(1));
5484     Ops[3] = getValue(I.getArgOperand(2));
5485     Ops[4] = getValue(I.getArgOperand(3));
5486     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5487                                         DAG.getVTList(MVT::Other), Ops,
5488                                         EVT::getIntegerVT(*Context, 8),
5489                                         MachinePointerInfo(I.getArgOperand(0)),
5490                                         0, /* align */
5491                                         false, /* volatile */
5492                                         rw==0, /* read */
5493                                         rw==1)); /* write */
5494     return nullptr;
5495   }
5496   case Intrinsic::lifetime_start:
5497   case Intrinsic::lifetime_end: {
5498     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5499     // Stack coloring is not enabled in O0, discard region information.
5500     if (TM.getOptLevel() == CodeGenOpt::None)
5501       return nullptr;
5502 
5503     SmallVector<Value *, 4> Allocas;
5504     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5505 
5506     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5507            E = Allocas.end(); Object != E; ++Object) {
5508       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5509 
5510       // Could not find an Alloca.
5511       if (!LifetimeObject)
5512         continue;
5513 
5514       // First check that the Alloca is static, otherwise it won't have a
5515       // valid frame index.
5516       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5517       if (SI == FuncInfo.StaticAllocaMap.end())
5518         return nullptr;
5519 
5520       int FI = SI->second;
5521 
5522       SDValue Ops[2];
5523       Ops[0] = getRoot();
5524       Ops[1] =
5525           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5526       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5527 
5528       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5529       DAG.setRoot(Res);
5530     }
5531     return nullptr;
5532   }
5533   case Intrinsic::invariant_start:
5534     // Discard region information.
5535     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5536     return nullptr;
5537   case Intrinsic::invariant_end:
5538     // Discard region information.
5539     return nullptr;
5540   case Intrinsic::clear_cache:
5541     return TLI.getClearCacheBuiltinName();
5542   case Intrinsic::donothing:
5543     // ignore
5544     return nullptr;
5545   case Intrinsic::experimental_stackmap: {
5546     visitStackmap(I);
5547     return nullptr;
5548   }
5549   case Intrinsic::experimental_patchpoint_void:
5550   case Intrinsic::experimental_patchpoint_i64: {
5551     visitPatchpoint(&I);
5552     return nullptr;
5553   }
5554   case Intrinsic::experimental_gc_statepoint: {
5555     LowerStatepoint(ImmutableStatepoint(&I));
5556     return nullptr;
5557   }
5558   case Intrinsic::experimental_gc_result: {
5559     visitGCResult(cast<GCResultInst>(I));
5560     return nullptr;
5561   }
5562   case Intrinsic::experimental_gc_relocate: {
5563     visitGCRelocate(cast<GCRelocateInst>(I));
5564     return nullptr;
5565   }
5566   case Intrinsic::instrprof_increment:
5567     llvm_unreachable("instrprof failed to lower an increment");
5568   case Intrinsic::instrprof_value_profile:
5569     llvm_unreachable("instrprof failed to lower a value profiling call");
5570   case Intrinsic::localescape: {
5571     MachineFunction &MF = DAG.getMachineFunction();
5572     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5573 
5574     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5575     // is the same on all targets.
5576     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5577       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5578       if (isa<ConstantPointerNull>(Arg))
5579         continue; // Skip null pointers. They represent a hole in index space.
5580       AllocaInst *Slot = cast<AllocaInst>(Arg);
5581       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5582              "can only escape static allocas");
5583       int FI = FuncInfo.StaticAllocaMap[Slot];
5584       MCSymbol *FrameAllocSym =
5585           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5586               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5587       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5588               TII->get(TargetOpcode::LOCAL_ESCAPE))
5589           .addSym(FrameAllocSym)
5590           .addFrameIndex(FI);
5591     }
5592 
5593     return nullptr;
5594   }
5595 
5596   case Intrinsic::localrecover: {
5597     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5598     MachineFunction &MF = DAG.getMachineFunction();
5599     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5600 
5601     // Get the symbol that defines the frame offset.
5602     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5603     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5604     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5605     MCSymbol *FrameAllocSym =
5606         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5607             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5608 
5609     // Create a MCSymbol for the label to avoid any target lowering
5610     // that would make this PC relative.
5611     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5612     SDValue OffsetVal =
5613         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5614 
5615     // Add the offset to the FP.
5616     Value *FP = I.getArgOperand(1);
5617     SDValue FPVal = getValue(FP);
5618     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5619     setValue(&I, Add);
5620 
5621     return nullptr;
5622   }
5623 
5624   case Intrinsic::eh_exceptionpointer:
5625   case Intrinsic::eh_exceptioncode: {
5626     // Get the exception pointer vreg, copy from it, and resize it to fit.
5627     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5628     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5629     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5630     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5631     SDValue N =
5632         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5633     if (Intrinsic == Intrinsic::eh_exceptioncode)
5634       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5635     setValue(&I, N);
5636     return nullptr;
5637   }
5638 
5639   case Intrinsic::experimental_deoptimize:
5640     LowerDeoptimizeCall(&I);
5641     return nullptr;
5642   }
5643 }
5644 
5645 std::pair<SDValue, SDValue>
5646 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5647                                     const BasicBlock *EHPadBB) {
5648   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5649   MCSymbol *BeginLabel = nullptr;
5650 
5651   if (EHPadBB) {
5652     // Insert a label before the invoke call to mark the try range.  This can be
5653     // used to detect deletion of the invoke via the MachineModuleInfo.
5654     BeginLabel = MMI.getContext().createTempSymbol();
5655 
5656     // For SjLj, keep track of which landing pads go with which invokes
5657     // so as to maintain the ordering of pads in the LSDA.
5658     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5659     if (CallSiteIndex) {
5660       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5661       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5662 
5663       // Now that the call site is handled, stop tracking it.
5664       MMI.setCurrentCallSite(0);
5665     }
5666 
5667     // Both PendingLoads and PendingExports must be flushed here;
5668     // this call might not return.
5669     (void)getRoot();
5670     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5671 
5672     CLI.setChain(getRoot());
5673   }
5674   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5675   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5676 
5677   assert((CLI.IsTailCall || Result.second.getNode()) &&
5678          "Non-null chain expected with non-tail call!");
5679   assert((Result.second.getNode() || !Result.first.getNode()) &&
5680          "Null value expected with tail call!");
5681 
5682   if (!Result.second.getNode()) {
5683     // As a special case, a null chain means that a tail call has been emitted
5684     // and the DAG root is already updated.
5685     HasTailCall = true;
5686 
5687     // Since there's no actual continuation from this block, nothing can be
5688     // relying on us setting vregs for them.
5689     PendingExports.clear();
5690   } else {
5691     DAG.setRoot(Result.second);
5692   }
5693 
5694   if (EHPadBB) {
5695     // Insert a label at the end of the invoke call to mark the try range.  This
5696     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5697     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5698     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5699 
5700     // Inform MachineModuleInfo of range.
5701     if (MMI.hasEHFunclets()) {
5702       assert(CLI.CS);
5703       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5704       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5705                                 BeginLabel, EndLabel);
5706     } else {
5707       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5708     }
5709   }
5710 
5711   return Result;
5712 }
5713 
5714 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5715                                       bool isTailCall,
5716                                       const BasicBlock *EHPadBB) {
5717   auto &DL = DAG.getDataLayout();
5718   FunctionType *FTy = CS.getFunctionType();
5719   Type *RetTy = CS.getType();
5720 
5721   TargetLowering::ArgListTy Args;
5722   TargetLowering::ArgListEntry Entry;
5723   Args.reserve(CS.arg_size());
5724 
5725   const Value *SwiftErrorVal = nullptr;
5726   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5727   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5728        i != e; ++i) {
5729     const Value *V = *i;
5730 
5731     // Skip empty types
5732     if (V->getType()->isEmptyTy())
5733       continue;
5734 
5735     SDValue ArgNode = getValue(V);
5736     Entry.Node = ArgNode; Entry.Ty = V->getType();
5737 
5738     // Skip the first return-type Attribute to get to params.
5739     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5740 
5741     // Use swifterror virtual register as input to the call.
5742     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5743       SwiftErrorVal = V;
5744       // We find the virtual register for the actual swifterror argument.
5745       // Instead of using the Value, we use the virtual register instead.
5746       Entry.Node = DAG.getRegister(
5747           FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V),
5748           EVT(TLI.getPointerTy(DL)));
5749     }
5750 
5751     Args.push_back(Entry);
5752 
5753     // If we have an explicit sret argument that is an Instruction, (i.e., it
5754     // might point to function-local memory), we can't meaningfully tail-call.
5755     if (Entry.isSRet && isa<Instruction>(V))
5756       isTailCall = false;
5757   }
5758 
5759   // Check if target-independent constraints permit a tail call here.
5760   // Target-dependent constraints are checked within TLI->LowerCallTo.
5761   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5762     isTailCall = false;
5763 
5764   TargetLowering::CallLoweringInfo CLI(DAG);
5765   CLI.setDebugLoc(getCurSDLoc())
5766       .setChain(getRoot())
5767       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5768       .setTailCall(isTailCall)
5769       .setConvergent(CS.isConvergent());
5770   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5771 
5772   if (Result.first.getNode()) {
5773     const Instruction *Inst = CS.getInstruction();
5774     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5775     setValue(Inst, Result.first);
5776   }
5777 
5778   // The last element of CLI.InVals has the SDValue for swifterror return.
5779   // Here we copy it to a virtual register and update SwiftErrorMap for
5780   // book-keeping.
5781   if (SwiftErrorVal && TLI.supportSwiftError()) {
5782     // Get the last element of InVals.
5783     SDValue Src = CLI.InVals.back();
5784     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5785     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5786     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5787     // We update the virtual register for the actual swifterror argument.
5788     FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5789     DAG.setRoot(CopyNode);
5790   }
5791 }
5792 
5793 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5794 /// value is equal or not-equal to zero.
5795 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5796   for (const User *U : V->users()) {
5797     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5798       if (IC->isEquality())
5799         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5800           if (C->isNullValue())
5801             continue;
5802     // Unknown instruction.
5803     return false;
5804   }
5805   return true;
5806 }
5807 
5808 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5809                              Type *LoadTy,
5810                              SelectionDAGBuilder &Builder) {
5811 
5812   // Check to see if this load can be trivially constant folded, e.g. if the
5813   // input is from a string literal.
5814   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5815     // Cast pointer to the type we really want to load.
5816     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5817                                          PointerType::getUnqual(LoadTy));
5818 
5819     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5820             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5821       return Builder.getValue(LoadCst);
5822   }
5823 
5824   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5825   // still constant memory, the input chain can be the entry node.
5826   SDValue Root;
5827   bool ConstantMemory = false;
5828 
5829   // Do not serialize (non-volatile) loads of constant memory with anything.
5830   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5831     Root = Builder.DAG.getEntryNode();
5832     ConstantMemory = true;
5833   } else {
5834     // Do not serialize non-volatile loads against each other.
5835     Root = Builder.DAG.getRoot();
5836   }
5837 
5838   SDValue Ptr = Builder.getValue(PtrVal);
5839   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5840                                         Ptr, MachinePointerInfo(PtrVal),
5841                                         false /*volatile*/,
5842                                         false /*nontemporal*/,
5843                                         false /*isinvariant*/, 1 /* align=1 */);
5844 
5845   if (!ConstantMemory)
5846     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5847   return LoadVal;
5848 }
5849 
5850 /// processIntegerCallValue - Record the value for an instruction that
5851 /// produces an integer result, converting the type where necessary.
5852 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5853                                                   SDValue Value,
5854                                                   bool IsSigned) {
5855   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5856                                                     I.getType(), true);
5857   if (IsSigned)
5858     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5859   else
5860     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5861   setValue(&I, Value);
5862 }
5863 
5864 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5865 /// If so, return true and lower it, otherwise return false and it will be
5866 /// lowered like a normal call.
5867 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5868   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5869   if (I.getNumArgOperands() != 3)
5870     return false;
5871 
5872   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5873   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5874       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5875       !I.getType()->isIntegerTy())
5876     return false;
5877 
5878   const Value *Size = I.getArgOperand(2);
5879   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5880   if (CSize && CSize->getZExtValue() == 0) {
5881     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5882                                                           I.getType(), true);
5883     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5884     return true;
5885   }
5886 
5887   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5888   std::pair<SDValue, SDValue> Res =
5889     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5890                                 getValue(LHS), getValue(RHS), getValue(Size),
5891                                 MachinePointerInfo(LHS),
5892                                 MachinePointerInfo(RHS));
5893   if (Res.first.getNode()) {
5894     processIntegerCallValue(I, Res.first, true);
5895     PendingLoads.push_back(Res.second);
5896     return true;
5897   }
5898 
5899   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5900   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5901   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5902     bool ActuallyDoIt = true;
5903     MVT LoadVT;
5904     Type *LoadTy;
5905     switch (CSize->getZExtValue()) {
5906     default:
5907       LoadVT = MVT::Other;
5908       LoadTy = nullptr;
5909       ActuallyDoIt = false;
5910       break;
5911     case 2:
5912       LoadVT = MVT::i16;
5913       LoadTy = Type::getInt16Ty(CSize->getContext());
5914       break;
5915     case 4:
5916       LoadVT = MVT::i32;
5917       LoadTy = Type::getInt32Ty(CSize->getContext());
5918       break;
5919     case 8:
5920       LoadVT = MVT::i64;
5921       LoadTy = Type::getInt64Ty(CSize->getContext());
5922       break;
5923         /*
5924     case 16:
5925       LoadVT = MVT::v4i32;
5926       LoadTy = Type::getInt32Ty(CSize->getContext());
5927       LoadTy = VectorType::get(LoadTy, 4);
5928       break;
5929          */
5930     }
5931 
5932     // This turns into unaligned loads.  We only do this if the target natively
5933     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5934     // we'll only produce a small number of byte loads.
5935 
5936     // Require that we can find a legal MVT, and only do this if the target
5937     // supports unaligned loads of that type.  Expanding into byte loads would
5938     // bloat the code.
5939     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5940     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5941       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5942       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5943       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5944       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5945       // TODO: Check alignment of src and dest ptrs.
5946       if (!TLI.isTypeLegal(LoadVT) ||
5947           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5948           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5949         ActuallyDoIt = false;
5950     }
5951 
5952     if (ActuallyDoIt) {
5953       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5954       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5955 
5956       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5957                                  ISD::SETNE);
5958       processIntegerCallValue(I, Res, false);
5959       return true;
5960     }
5961   }
5962 
5963 
5964   return false;
5965 }
5966 
5967 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5968 /// form.  If so, return true and lower it, otherwise return false and it
5969 /// will be lowered like a normal call.
5970 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5971   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5972   if (I.getNumArgOperands() != 3)
5973     return false;
5974 
5975   const Value *Src = I.getArgOperand(0);
5976   const Value *Char = I.getArgOperand(1);
5977   const Value *Length = I.getArgOperand(2);
5978   if (!Src->getType()->isPointerTy() ||
5979       !Char->getType()->isIntegerTy() ||
5980       !Length->getType()->isIntegerTy() ||
5981       !I.getType()->isPointerTy())
5982     return false;
5983 
5984   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
5985   std::pair<SDValue, SDValue> Res =
5986     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5987                                 getValue(Src), getValue(Char), getValue(Length),
5988                                 MachinePointerInfo(Src));
5989   if (Res.first.getNode()) {
5990     setValue(&I, Res.first);
5991     PendingLoads.push_back(Res.second);
5992     return true;
5993   }
5994 
5995   return false;
5996 }
5997 
5998 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5999 /// optimized form.  If so, return true and lower it, otherwise return false
6000 /// and it will be lowered like a normal call.
6001 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6002   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6003   if (I.getNumArgOperands() != 2)
6004     return false;
6005 
6006   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6007   if (!Arg0->getType()->isPointerTy() ||
6008       !Arg1->getType()->isPointerTy() ||
6009       !I.getType()->isPointerTy())
6010     return false;
6011 
6012   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6013   std::pair<SDValue, SDValue> Res =
6014     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6015                                 getValue(Arg0), getValue(Arg1),
6016                                 MachinePointerInfo(Arg0),
6017                                 MachinePointerInfo(Arg1), isStpcpy);
6018   if (Res.first.getNode()) {
6019     setValue(&I, Res.first);
6020     DAG.setRoot(Res.second);
6021     return true;
6022   }
6023 
6024   return false;
6025 }
6026 
6027 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6028 /// If so, return true and lower it, otherwise return false and it will be
6029 /// lowered like a normal call.
6030 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6031   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6032   if (I.getNumArgOperands() != 2)
6033     return false;
6034 
6035   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6036   if (!Arg0->getType()->isPointerTy() ||
6037       !Arg1->getType()->isPointerTy() ||
6038       !I.getType()->isIntegerTy())
6039     return false;
6040 
6041   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6042   std::pair<SDValue, SDValue> Res =
6043     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6044                                 getValue(Arg0), getValue(Arg1),
6045                                 MachinePointerInfo(Arg0),
6046                                 MachinePointerInfo(Arg1));
6047   if (Res.first.getNode()) {
6048     processIntegerCallValue(I, Res.first, true);
6049     PendingLoads.push_back(Res.second);
6050     return true;
6051   }
6052 
6053   return false;
6054 }
6055 
6056 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6057 /// form.  If so, return true and lower it, otherwise return false and it
6058 /// will be lowered like a normal call.
6059 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6060   // Verify that the prototype makes sense.  size_t strlen(char *)
6061   if (I.getNumArgOperands() != 1)
6062     return false;
6063 
6064   const Value *Arg0 = I.getArgOperand(0);
6065   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6066     return false;
6067 
6068   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6069   std::pair<SDValue, SDValue> Res =
6070     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6071                                 getValue(Arg0), MachinePointerInfo(Arg0));
6072   if (Res.first.getNode()) {
6073     processIntegerCallValue(I, Res.first, false);
6074     PendingLoads.push_back(Res.second);
6075     return true;
6076   }
6077 
6078   return false;
6079 }
6080 
6081 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6082 /// form.  If so, return true and lower it, otherwise return false and it
6083 /// will be lowered like a normal call.
6084 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6085   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6086   if (I.getNumArgOperands() != 2)
6087     return false;
6088 
6089   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6090   if (!Arg0->getType()->isPointerTy() ||
6091       !Arg1->getType()->isIntegerTy() ||
6092       !I.getType()->isIntegerTy())
6093     return false;
6094 
6095   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6096   std::pair<SDValue, SDValue> Res =
6097     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6098                                  getValue(Arg0), getValue(Arg1),
6099                                  MachinePointerInfo(Arg0));
6100   if (Res.first.getNode()) {
6101     processIntegerCallValue(I, Res.first, false);
6102     PendingLoads.push_back(Res.second);
6103     return true;
6104   }
6105 
6106   return false;
6107 }
6108 
6109 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6110 /// operation (as expected), translate it to an SDNode with the specified opcode
6111 /// and return true.
6112 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6113                                               unsigned Opcode) {
6114   // Sanity check that it really is a unary floating-point call.
6115   if (I.getNumArgOperands() != 1 ||
6116       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6117       I.getType() != I.getArgOperand(0)->getType() ||
6118       !I.onlyReadsMemory())
6119     return false;
6120 
6121   SDValue Tmp = getValue(I.getArgOperand(0));
6122   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6123   return true;
6124 }
6125 
6126 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6127 /// operation (as expected), translate it to an SDNode with the specified opcode
6128 /// and return true.
6129 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6130                                                unsigned Opcode) {
6131   // Sanity check that it really is a binary floating-point call.
6132   if (I.getNumArgOperands() != 2 ||
6133       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6134       I.getType() != I.getArgOperand(0)->getType() ||
6135       I.getType() != I.getArgOperand(1)->getType() ||
6136       !I.onlyReadsMemory())
6137     return false;
6138 
6139   SDValue Tmp0 = getValue(I.getArgOperand(0));
6140   SDValue Tmp1 = getValue(I.getArgOperand(1));
6141   EVT VT = Tmp0.getValueType();
6142   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6143   return true;
6144 }
6145 
6146 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6147   // Handle inline assembly differently.
6148   if (isa<InlineAsm>(I.getCalledValue())) {
6149     visitInlineAsm(&I);
6150     return;
6151   }
6152 
6153   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6154   ComputeUsesVAFloatArgument(I, &MMI);
6155 
6156   const char *RenameFn = nullptr;
6157   if (Function *F = I.getCalledFunction()) {
6158     if (F->isDeclaration()) {
6159       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6160         if (unsigned IID = II->getIntrinsicID(F)) {
6161           RenameFn = visitIntrinsicCall(I, IID);
6162           if (!RenameFn)
6163             return;
6164         }
6165       }
6166       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6167         RenameFn = visitIntrinsicCall(I, IID);
6168         if (!RenameFn)
6169           return;
6170       }
6171     }
6172 
6173     // Check for well-known libc/libm calls.  If the function is internal, it
6174     // can't be a library call.
6175     LibFunc::Func Func;
6176     if (!F->hasLocalLinkage() && F->hasName() &&
6177         LibInfo->getLibFunc(F->getName(), Func) &&
6178         LibInfo->hasOptimizedCodeGen(Func)) {
6179       switch (Func) {
6180       default: break;
6181       case LibFunc::copysign:
6182       case LibFunc::copysignf:
6183       case LibFunc::copysignl:
6184         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6185             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6186             I.getType() == I.getArgOperand(0)->getType() &&
6187             I.getType() == I.getArgOperand(1)->getType() &&
6188             I.onlyReadsMemory()) {
6189           SDValue LHS = getValue(I.getArgOperand(0));
6190           SDValue RHS = getValue(I.getArgOperand(1));
6191           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6192                                    LHS.getValueType(), LHS, RHS));
6193           return;
6194         }
6195         break;
6196       case LibFunc::fabs:
6197       case LibFunc::fabsf:
6198       case LibFunc::fabsl:
6199         if (visitUnaryFloatCall(I, ISD::FABS))
6200           return;
6201         break;
6202       case LibFunc::fmin:
6203       case LibFunc::fminf:
6204       case LibFunc::fminl:
6205         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6206           return;
6207         break;
6208       case LibFunc::fmax:
6209       case LibFunc::fmaxf:
6210       case LibFunc::fmaxl:
6211         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6212           return;
6213         break;
6214       case LibFunc::sin:
6215       case LibFunc::sinf:
6216       case LibFunc::sinl:
6217         if (visitUnaryFloatCall(I, ISD::FSIN))
6218           return;
6219         break;
6220       case LibFunc::cos:
6221       case LibFunc::cosf:
6222       case LibFunc::cosl:
6223         if (visitUnaryFloatCall(I, ISD::FCOS))
6224           return;
6225         break;
6226       case LibFunc::sqrt:
6227       case LibFunc::sqrtf:
6228       case LibFunc::sqrtl:
6229       case LibFunc::sqrt_finite:
6230       case LibFunc::sqrtf_finite:
6231       case LibFunc::sqrtl_finite:
6232         if (visitUnaryFloatCall(I, ISD::FSQRT))
6233           return;
6234         break;
6235       case LibFunc::floor:
6236       case LibFunc::floorf:
6237       case LibFunc::floorl:
6238         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6239           return;
6240         break;
6241       case LibFunc::nearbyint:
6242       case LibFunc::nearbyintf:
6243       case LibFunc::nearbyintl:
6244         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6245           return;
6246         break;
6247       case LibFunc::ceil:
6248       case LibFunc::ceilf:
6249       case LibFunc::ceill:
6250         if (visitUnaryFloatCall(I, ISD::FCEIL))
6251           return;
6252         break;
6253       case LibFunc::rint:
6254       case LibFunc::rintf:
6255       case LibFunc::rintl:
6256         if (visitUnaryFloatCall(I, ISD::FRINT))
6257           return;
6258         break;
6259       case LibFunc::round:
6260       case LibFunc::roundf:
6261       case LibFunc::roundl:
6262         if (visitUnaryFloatCall(I, ISD::FROUND))
6263           return;
6264         break;
6265       case LibFunc::trunc:
6266       case LibFunc::truncf:
6267       case LibFunc::truncl:
6268         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6269           return;
6270         break;
6271       case LibFunc::log2:
6272       case LibFunc::log2f:
6273       case LibFunc::log2l:
6274         if (visitUnaryFloatCall(I, ISD::FLOG2))
6275           return;
6276         break;
6277       case LibFunc::exp2:
6278       case LibFunc::exp2f:
6279       case LibFunc::exp2l:
6280         if (visitUnaryFloatCall(I, ISD::FEXP2))
6281           return;
6282         break;
6283       case LibFunc::memcmp:
6284         if (visitMemCmpCall(I))
6285           return;
6286         break;
6287       case LibFunc::memchr:
6288         if (visitMemChrCall(I))
6289           return;
6290         break;
6291       case LibFunc::strcpy:
6292         if (visitStrCpyCall(I, false))
6293           return;
6294         break;
6295       case LibFunc::stpcpy:
6296         if (visitStrCpyCall(I, true))
6297           return;
6298         break;
6299       case LibFunc::strcmp:
6300         if (visitStrCmpCall(I))
6301           return;
6302         break;
6303       case LibFunc::strlen:
6304         if (visitStrLenCall(I))
6305           return;
6306         break;
6307       case LibFunc::strnlen:
6308         if (visitStrNLenCall(I))
6309           return;
6310         break;
6311       }
6312     }
6313   }
6314 
6315   SDValue Callee;
6316   if (!RenameFn)
6317     Callee = getValue(I.getCalledValue());
6318   else
6319     Callee = DAG.getExternalSymbol(
6320         RenameFn,
6321         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6322 
6323   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6324   // have to do anything here to lower funclet bundles.
6325   assert(!I.hasOperandBundlesOtherThan(
6326              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6327          "Cannot lower calls with arbitrary operand bundles!");
6328 
6329   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6330     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6331   else
6332     // Check if we can potentially perform a tail call. More detailed checking
6333     // is be done within LowerCallTo, after more information about the call is
6334     // known.
6335     LowerCallTo(&I, Callee, I.isTailCall());
6336 }
6337 
6338 namespace {
6339 
6340 /// AsmOperandInfo - This contains information for each constraint that we are
6341 /// lowering.
6342 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6343 public:
6344   /// CallOperand - If this is the result output operand or a clobber
6345   /// this is null, otherwise it is the incoming operand to the CallInst.
6346   /// This gets modified as the asm is processed.
6347   SDValue CallOperand;
6348 
6349   /// AssignedRegs - If this is a register or register class operand, this
6350   /// contains the set of register corresponding to the operand.
6351   RegsForValue AssignedRegs;
6352 
6353   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6354     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6355   }
6356 
6357   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6358   /// corresponds to.  If there is no Value* for this operand, it returns
6359   /// MVT::Other.
6360   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6361                            const DataLayout &DL) const {
6362     if (!CallOperandVal) return MVT::Other;
6363 
6364     if (isa<BasicBlock>(CallOperandVal))
6365       return TLI.getPointerTy(DL);
6366 
6367     llvm::Type *OpTy = CallOperandVal->getType();
6368 
6369     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6370     // If this is an indirect operand, the operand is a pointer to the
6371     // accessed type.
6372     if (isIndirect) {
6373       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6374       if (!PtrTy)
6375         report_fatal_error("Indirect operand for inline asm not a pointer!");
6376       OpTy = PtrTy->getElementType();
6377     }
6378 
6379     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6380     if (StructType *STy = dyn_cast<StructType>(OpTy))
6381       if (STy->getNumElements() == 1)
6382         OpTy = STy->getElementType(0);
6383 
6384     // If OpTy is not a single value, it may be a struct/union that we
6385     // can tile with integers.
6386     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6387       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6388       switch (BitSize) {
6389       default: break;
6390       case 1:
6391       case 8:
6392       case 16:
6393       case 32:
6394       case 64:
6395       case 128:
6396         OpTy = IntegerType::get(Context, BitSize);
6397         break;
6398       }
6399     }
6400 
6401     return TLI.getValueType(DL, OpTy, true);
6402   }
6403 };
6404 
6405 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6406 
6407 } // end anonymous namespace
6408 
6409 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6410 /// specified operand.  We prefer to assign virtual registers, to allow the
6411 /// register allocator to handle the assignment process.  However, if the asm
6412 /// uses features that we can't model on machineinstrs, we have SDISel do the
6413 /// allocation.  This produces generally horrible, but correct, code.
6414 ///
6415 ///   OpInfo describes the operand.
6416 ///
6417 static void GetRegistersForValue(SelectionDAG &DAG,
6418                                  const TargetLowering &TLI,
6419                                  SDLoc DL,
6420                                  SDISelAsmOperandInfo &OpInfo) {
6421   LLVMContext &Context = *DAG.getContext();
6422 
6423   MachineFunction &MF = DAG.getMachineFunction();
6424   SmallVector<unsigned, 4> Regs;
6425 
6426   // If this is a constraint for a single physreg, or a constraint for a
6427   // register class, find it.
6428   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6429       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6430                                        OpInfo.ConstraintCode,
6431                                        OpInfo.ConstraintVT);
6432 
6433   unsigned NumRegs = 1;
6434   if (OpInfo.ConstraintVT != MVT::Other) {
6435     // If this is a FP input in an integer register (or visa versa) insert a bit
6436     // cast of the input value.  More generally, handle any case where the input
6437     // value disagrees with the register class we plan to stick this in.
6438     if (OpInfo.Type == InlineAsm::isInput &&
6439         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6440       // Try to convert to the first EVT that the reg class contains.  If the
6441       // types are identical size, use a bitcast to convert (e.g. two differing
6442       // vector types).
6443       MVT RegVT = *PhysReg.second->vt_begin();
6444       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6445         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6446                                          RegVT, OpInfo.CallOperand);
6447         OpInfo.ConstraintVT = RegVT;
6448       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6449         // If the input is a FP value and we want it in FP registers, do a
6450         // bitcast to the corresponding integer type.  This turns an f64 value
6451         // into i64, which can be passed with two i32 values on a 32-bit
6452         // machine.
6453         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6454         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6455                                          RegVT, OpInfo.CallOperand);
6456         OpInfo.ConstraintVT = RegVT;
6457       }
6458     }
6459 
6460     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6461   }
6462 
6463   MVT RegVT;
6464   EVT ValueVT = OpInfo.ConstraintVT;
6465 
6466   // If this is a constraint for a specific physical register, like {r17},
6467   // assign it now.
6468   if (unsigned AssignedReg = PhysReg.first) {
6469     const TargetRegisterClass *RC = PhysReg.second;
6470     if (OpInfo.ConstraintVT == MVT::Other)
6471       ValueVT = *RC->vt_begin();
6472 
6473     // Get the actual register value type.  This is important, because the user
6474     // may have asked for (e.g.) the AX register in i32 type.  We need to
6475     // remember that AX is actually i16 to get the right extension.
6476     RegVT = *RC->vt_begin();
6477 
6478     // This is a explicit reference to a physical register.
6479     Regs.push_back(AssignedReg);
6480 
6481     // If this is an expanded reference, add the rest of the regs to Regs.
6482     if (NumRegs != 1) {
6483       TargetRegisterClass::iterator I = RC->begin();
6484       for (; *I != AssignedReg; ++I)
6485         assert(I != RC->end() && "Didn't find reg!");
6486 
6487       // Already added the first reg.
6488       --NumRegs; ++I;
6489       for (; NumRegs; --NumRegs, ++I) {
6490         assert(I != RC->end() && "Ran out of registers to allocate!");
6491         Regs.push_back(*I);
6492       }
6493     }
6494 
6495     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6496     return;
6497   }
6498 
6499   // Otherwise, if this was a reference to an LLVM register class, create vregs
6500   // for this reference.
6501   if (const TargetRegisterClass *RC = PhysReg.second) {
6502     RegVT = *RC->vt_begin();
6503     if (OpInfo.ConstraintVT == MVT::Other)
6504       ValueVT = RegVT;
6505 
6506     // Create the appropriate number of virtual registers.
6507     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6508     for (; NumRegs; --NumRegs)
6509       Regs.push_back(RegInfo.createVirtualRegister(RC));
6510 
6511     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6512     return;
6513   }
6514 
6515   // Otherwise, we couldn't allocate enough registers for this.
6516 }
6517 
6518 /// visitInlineAsm - Handle a call to an InlineAsm object.
6519 ///
6520 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6521   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6522 
6523   /// ConstraintOperands - Information about all of the constraints.
6524   SDISelAsmOperandInfoVector ConstraintOperands;
6525 
6526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6527   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6528       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6529 
6530   bool hasMemory = false;
6531 
6532   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6533   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6534   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6535     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6536     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6537 
6538     MVT OpVT = MVT::Other;
6539 
6540     // Compute the value type for each operand.
6541     switch (OpInfo.Type) {
6542     case InlineAsm::isOutput:
6543       // Indirect outputs just consume an argument.
6544       if (OpInfo.isIndirect) {
6545         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6546         break;
6547       }
6548 
6549       // The return value of the call is this value.  As such, there is no
6550       // corresponding argument.
6551       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6552       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6553         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6554                                       STy->getElementType(ResNo));
6555       } else {
6556         assert(ResNo == 0 && "Asm only has one result!");
6557         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6558       }
6559       ++ResNo;
6560       break;
6561     case InlineAsm::isInput:
6562       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6563       break;
6564     case InlineAsm::isClobber:
6565       // Nothing to do.
6566       break;
6567     }
6568 
6569     // If this is an input or an indirect output, process the call argument.
6570     // BasicBlocks are labels, currently appearing only in asm's.
6571     if (OpInfo.CallOperandVal) {
6572       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6573         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6574       } else {
6575         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6576       }
6577 
6578       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6579                                          DAG.getDataLayout()).getSimpleVT();
6580     }
6581 
6582     OpInfo.ConstraintVT = OpVT;
6583 
6584     // Indirect operand accesses access memory.
6585     if (OpInfo.isIndirect)
6586       hasMemory = true;
6587     else {
6588       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6589         TargetLowering::ConstraintType
6590           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6591         if (CType == TargetLowering::C_Memory) {
6592           hasMemory = true;
6593           break;
6594         }
6595       }
6596     }
6597   }
6598 
6599   SDValue Chain, Flag;
6600 
6601   // We won't need to flush pending loads if this asm doesn't touch
6602   // memory and is nonvolatile.
6603   if (hasMemory || IA->hasSideEffects())
6604     Chain = getRoot();
6605   else
6606     Chain = DAG.getRoot();
6607 
6608   // Second pass over the constraints: compute which constraint option to use
6609   // and assign registers to constraints that want a specific physreg.
6610   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6611     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6612 
6613     // If this is an output operand with a matching input operand, look up the
6614     // matching input. If their types mismatch, e.g. one is an integer, the
6615     // other is floating point, or their sizes are different, flag it as an
6616     // error.
6617     if (OpInfo.hasMatchingInput()) {
6618       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6619 
6620       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6621         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6622         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6623             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6624                                              OpInfo.ConstraintVT);
6625         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6626             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6627                                              Input.ConstraintVT);
6628         if ((OpInfo.ConstraintVT.isInteger() !=
6629              Input.ConstraintVT.isInteger()) ||
6630             (MatchRC.second != InputRC.second)) {
6631           report_fatal_error("Unsupported asm: input constraint"
6632                              " with a matching output constraint of"
6633                              " incompatible type!");
6634         }
6635         Input.ConstraintVT = OpInfo.ConstraintVT;
6636       }
6637     }
6638 
6639     // Compute the constraint code and ConstraintType to use.
6640     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6641 
6642     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6643         OpInfo.Type == InlineAsm::isClobber)
6644       continue;
6645 
6646     // If this is a memory input, and if the operand is not indirect, do what we
6647     // need to to provide an address for the memory input.
6648     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6649         !OpInfo.isIndirect) {
6650       assert((OpInfo.isMultipleAlternative ||
6651               (OpInfo.Type == InlineAsm::isInput)) &&
6652              "Can only indirectify direct input operands!");
6653 
6654       // Memory operands really want the address of the value.  If we don't have
6655       // an indirect input, put it in the constpool if we can, otherwise spill
6656       // it to a stack slot.
6657       // TODO: This isn't quite right. We need to handle these according to
6658       // the addressing mode that the constraint wants. Also, this may take
6659       // an additional register for the computation and we don't want that
6660       // either.
6661 
6662       // If the operand is a float, integer, or vector constant, spill to a
6663       // constant pool entry to get its address.
6664       const Value *OpVal = OpInfo.CallOperandVal;
6665       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6666           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6667         OpInfo.CallOperand = DAG.getConstantPool(
6668             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6669       } else {
6670         // Otherwise, create a stack slot and emit a store to it before the
6671         // asm.
6672         Type *Ty = OpVal->getType();
6673         auto &DL = DAG.getDataLayout();
6674         uint64_t TySize = DL.getTypeAllocSize(Ty);
6675         unsigned Align = DL.getPrefTypeAlignment(Ty);
6676         MachineFunction &MF = DAG.getMachineFunction();
6677         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6678         SDValue StackSlot =
6679             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6680         Chain = DAG.getStore(
6681             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6682             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6683             false, false, 0);
6684         OpInfo.CallOperand = StackSlot;
6685       }
6686 
6687       // There is no longer a Value* corresponding to this operand.
6688       OpInfo.CallOperandVal = nullptr;
6689 
6690       // It is now an indirect operand.
6691       OpInfo.isIndirect = true;
6692     }
6693 
6694     // If this constraint is for a specific register, allocate it before
6695     // anything else.
6696     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6697       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6698   }
6699 
6700   // Second pass - Loop over all of the operands, assigning virtual or physregs
6701   // to register class operands.
6702   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6703     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6704 
6705     // C_Register operands have already been allocated, Other/Memory don't need
6706     // to be.
6707     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6708       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6709   }
6710 
6711   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6712   std::vector<SDValue> AsmNodeOperands;
6713   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6714   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6715       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6716 
6717   // If we have a !srcloc metadata node associated with it, we want to attach
6718   // this to the ultimately generated inline asm machineinstr.  To do this, we
6719   // pass in the third operand as this (potentially null) inline asm MDNode.
6720   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6721   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6722 
6723   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6724   // bits as operand 3.
6725   unsigned ExtraInfo = 0;
6726   if (IA->hasSideEffects())
6727     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6728   if (IA->isAlignStack())
6729     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6730   // Set the asm dialect.
6731   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6732 
6733   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6734   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6735     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6736 
6737     // Compute the constraint code and ConstraintType to use.
6738     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6739 
6740     // Ideally, we would only check against memory constraints.  However, the
6741     // meaning of an other constraint can be target-specific and we can't easily
6742     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6743     // for other constriants as well.
6744     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6745         OpInfo.ConstraintType == TargetLowering::C_Other) {
6746       if (OpInfo.Type == InlineAsm::isInput)
6747         ExtraInfo |= InlineAsm::Extra_MayLoad;
6748       else if (OpInfo.Type == InlineAsm::isOutput)
6749         ExtraInfo |= InlineAsm::Extra_MayStore;
6750       else if (OpInfo.Type == InlineAsm::isClobber)
6751         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6752     }
6753   }
6754 
6755   AsmNodeOperands.push_back(DAG.getTargetConstant(
6756       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6757 
6758   // Loop over all of the inputs, copying the operand values into the
6759   // appropriate registers and processing the output regs.
6760   RegsForValue RetValRegs;
6761 
6762   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6763   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6764 
6765   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6766     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6767 
6768     switch (OpInfo.Type) {
6769     case InlineAsm::isOutput: {
6770       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6771           OpInfo.ConstraintType != TargetLowering::C_Register) {
6772         // Memory output, or 'other' output (e.g. 'X' constraint).
6773         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6774 
6775         unsigned ConstraintID =
6776             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6777         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6778                "Failed to convert memory constraint code to constraint id.");
6779 
6780         // Add information to the INLINEASM node to know about this output.
6781         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6782         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6783         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6784                                                         MVT::i32));
6785         AsmNodeOperands.push_back(OpInfo.CallOperand);
6786         break;
6787       }
6788 
6789       // Otherwise, this is a register or register class output.
6790 
6791       // Copy the output from the appropriate register.  Find a register that
6792       // we can use.
6793       if (OpInfo.AssignedRegs.Regs.empty()) {
6794         LLVMContext &Ctx = *DAG.getContext();
6795         Ctx.emitError(CS.getInstruction(),
6796                       "couldn't allocate output register for constraint '" +
6797                           Twine(OpInfo.ConstraintCode) + "'");
6798         return;
6799       }
6800 
6801       // If this is an indirect operand, store through the pointer after the
6802       // asm.
6803       if (OpInfo.isIndirect) {
6804         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6805                                                       OpInfo.CallOperandVal));
6806       } else {
6807         // This is the result value of the call.
6808         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6809         // Concatenate this output onto the outputs list.
6810         RetValRegs.append(OpInfo.AssignedRegs);
6811       }
6812 
6813       // Add information to the INLINEASM node to know that this register is
6814       // set.
6815       OpInfo.AssignedRegs
6816           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6817                                     ? InlineAsm::Kind_RegDefEarlyClobber
6818                                     : InlineAsm::Kind_RegDef,
6819                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6820       break;
6821     }
6822     case InlineAsm::isInput: {
6823       SDValue InOperandVal = OpInfo.CallOperand;
6824 
6825       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6826         // If this is required to match an output register we have already set,
6827         // just use its register.
6828         unsigned OperandNo = OpInfo.getMatchedOperand();
6829 
6830         // Scan until we find the definition we already emitted of this operand.
6831         // When we find it, create a RegsForValue operand.
6832         unsigned CurOp = InlineAsm::Op_FirstOperand;
6833         for (; OperandNo; --OperandNo) {
6834           // Advance to the next operand.
6835           unsigned OpFlag =
6836             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6837           assert((InlineAsm::isRegDefKind(OpFlag) ||
6838                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6839                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6840           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6841         }
6842 
6843         unsigned OpFlag =
6844           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6845         if (InlineAsm::isRegDefKind(OpFlag) ||
6846             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6847           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6848           if (OpInfo.isIndirect) {
6849             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6850             LLVMContext &Ctx = *DAG.getContext();
6851             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6852                                                " don't know how to handle tied "
6853                                                "indirect register inputs");
6854             return;
6855           }
6856 
6857           RegsForValue MatchedRegs;
6858           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6859           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6860           MatchedRegs.RegVTs.push_back(RegVT);
6861           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6862           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6863                i != e; ++i) {
6864             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6865               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6866             else {
6867               LLVMContext &Ctx = *DAG.getContext();
6868               Ctx.emitError(CS.getInstruction(),
6869                             "inline asm error: This value"
6870                             " type register class is not natively supported!");
6871               return;
6872             }
6873           }
6874           SDLoc dl = getCurSDLoc();
6875           // Use the produced MatchedRegs object to
6876           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6877                                     Chain, &Flag, CS.getInstruction());
6878           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6879                                            true, OpInfo.getMatchedOperand(), dl,
6880                                            DAG, AsmNodeOperands);
6881           break;
6882         }
6883 
6884         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6885         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6886                "Unexpected number of operands");
6887         // Add information to the INLINEASM node to know about this input.
6888         // See InlineAsm.h isUseOperandTiedToDef.
6889         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6890         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6891                                                     OpInfo.getMatchedOperand());
6892         AsmNodeOperands.push_back(DAG.getTargetConstant(
6893             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6894         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6895         break;
6896       }
6897 
6898       // Treat indirect 'X' constraint as memory.
6899       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6900           OpInfo.isIndirect)
6901         OpInfo.ConstraintType = TargetLowering::C_Memory;
6902 
6903       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6904         std::vector<SDValue> Ops;
6905         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6906                                           Ops, DAG);
6907         if (Ops.empty()) {
6908           LLVMContext &Ctx = *DAG.getContext();
6909           Ctx.emitError(CS.getInstruction(),
6910                         "invalid operand for inline asm constraint '" +
6911                             Twine(OpInfo.ConstraintCode) + "'");
6912           return;
6913         }
6914 
6915         // Add information to the INLINEASM node to know about this input.
6916         unsigned ResOpType =
6917           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6918         AsmNodeOperands.push_back(DAG.getTargetConstant(
6919             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6920         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6921         break;
6922       }
6923 
6924       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6925         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6926         assert(InOperandVal.getValueType() ==
6927                    TLI.getPointerTy(DAG.getDataLayout()) &&
6928                "Memory operands expect pointer values");
6929 
6930         unsigned ConstraintID =
6931             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6932         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6933                "Failed to convert memory constraint code to constraint id.");
6934 
6935         // Add information to the INLINEASM node to know about this input.
6936         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6937         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6938         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6939                                                         getCurSDLoc(),
6940                                                         MVT::i32));
6941         AsmNodeOperands.push_back(InOperandVal);
6942         break;
6943       }
6944 
6945       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6946               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6947              "Unknown constraint type!");
6948 
6949       // TODO: Support this.
6950       if (OpInfo.isIndirect) {
6951         LLVMContext &Ctx = *DAG.getContext();
6952         Ctx.emitError(CS.getInstruction(),
6953                       "Don't know how to handle indirect register inputs yet "
6954                       "for constraint '" +
6955                           Twine(OpInfo.ConstraintCode) + "'");
6956         return;
6957       }
6958 
6959       // Copy the input into the appropriate registers.
6960       if (OpInfo.AssignedRegs.Regs.empty()) {
6961         LLVMContext &Ctx = *DAG.getContext();
6962         Ctx.emitError(CS.getInstruction(),
6963                       "couldn't allocate input reg for constraint '" +
6964                           Twine(OpInfo.ConstraintCode) + "'");
6965         return;
6966       }
6967 
6968       SDLoc dl = getCurSDLoc();
6969 
6970       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6971                                         Chain, &Flag, CS.getInstruction());
6972 
6973       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6974                                                dl, DAG, AsmNodeOperands);
6975       break;
6976     }
6977     case InlineAsm::isClobber: {
6978       // Add the clobbered value to the operand list, so that the register
6979       // allocator is aware that the physreg got clobbered.
6980       if (!OpInfo.AssignedRegs.Regs.empty())
6981         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6982                                                  false, 0, getCurSDLoc(), DAG,
6983                                                  AsmNodeOperands);
6984       break;
6985     }
6986     }
6987   }
6988 
6989   // Finish up input operands.  Set the input chain and add the flag last.
6990   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6991   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6992 
6993   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6994                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6995   Flag = Chain.getValue(1);
6996 
6997   // If this asm returns a register value, copy the result from that register
6998   // and set it as the value of the call.
6999   if (!RetValRegs.Regs.empty()) {
7000     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7001                                              Chain, &Flag, CS.getInstruction());
7002 
7003     // FIXME: Why don't we do this for inline asms with MRVs?
7004     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7005       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7006 
7007       // If any of the results of the inline asm is a vector, it may have the
7008       // wrong width/num elts.  This can happen for register classes that can
7009       // contain multiple different value types.  The preg or vreg allocated may
7010       // not have the same VT as was expected.  Convert it to the right type
7011       // with bit_convert.
7012       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7013         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7014                           ResultType, Val);
7015 
7016       } else if (ResultType != Val.getValueType() &&
7017                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7018         // If a result value was tied to an input value, the computed result may
7019         // have a wider width than the expected result.  Extract the relevant
7020         // portion.
7021         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7022       }
7023 
7024       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7025     }
7026 
7027     setValue(CS.getInstruction(), Val);
7028     // Don't need to use this as a chain in this case.
7029     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7030       return;
7031   }
7032 
7033   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7034 
7035   // Process indirect outputs, first output all of the flagged copies out of
7036   // physregs.
7037   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7038     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7039     const Value *Ptr = IndirectStoresToEmit[i].second;
7040     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7041                                              Chain, &Flag, IA);
7042     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7043   }
7044 
7045   // Emit the non-flagged stores from the physregs.
7046   SmallVector<SDValue, 8> OutChains;
7047   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7048     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
7049                                StoresToEmit[i].first,
7050                                getValue(StoresToEmit[i].second),
7051                                MachinePointerInfo(StoresToEmit[i].second),
7052                                false, false, 0);
7053     OutChains.push_back(Val);
7054   }
7055 
7056   if (!OutChains.empty())
7057     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7058 
7059   DAG.setRoot(Chain);
7060 }
7061 
7062 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7063   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7064                           MVT::Other, getRoot(),
7065                           getValue(I.getArgOperand(0)),
7066                           DAG.getSrcValue(I.getArgOperand(0))));
7067 }
7068 
7069 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7071   const DataLayout &DL = DAG.getDataLayout();
7072   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7073                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7074                            DAG.getSrcValue(I.getOperand(0)),
7075                            DL.getABITypeAlignment(I.getType()));
7076   setValue(&I, V);
7077   DAG.setRoot(V.getValue(1));
7078 }
7079 
7080 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7081   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7082                           MVT::Other, getRoot(),
7083                           getValue(I.getArgOperand(0)),
7084                           DAG.getSrcValue(I.getArgOperand(0))));
7085 }
7086 
7087 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7088   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7089                           MVT::Other, getRoot(),
7090                           getValue(I.getArgOperand(0)),
7091                           getValue(I.getArgOperand(1)),
7092                           DAG.getSrcValue(I.getArgOperand(0)),
7093                           DAG.getSrcValue(I.getArgOperand(1))));
7094 }
7095 
7096 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7097                                                     const Instruction &I,
7098                                                     SDValue Op) {
7099   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7100   if (!Range)
7101     return Op;
7102 
7103   Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue();
7104   if (!Lo->isNullValue())
7105     return Op;
7106 
7107   Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue();
7108   unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2();
7109 
7110   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7111 
7112   SDLoc SL = getCurSDLoc();
7113 
7114   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(),
7115                              Op, DAG.getValueType(SmallVT));
7116   unsigned NumVals = Op.getNode()->getNumValues();
7117   if (NumVals == 1)
7118     return ZExt;
7119 
7120   SmallVector<SDValue, 4> Ops;
7121 
7122   Ops.push_back(ZExt);
7123   for (unsigned I = 1; I != NumVals; ++I)
7124     Ops.push_back(Op.getValue(I));
7125 
7126   return DAG.getMergeValues(Ops, SL);
7127 }
7128 
7129 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7130 /// the call being lowered.
7131 ///
7132 /// This is a helper for lowering intrinsics that follow a target calling
7133 /// convention or require stack pointer adjustment. Only a subset of the
7134 /// intrinsic's operands need to participate in the calling convention.
7135 void SelectionDAGBuilder::populateCallLoweringInfo(
7136     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7137     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7138     bool IsPatchPoint) {
7139   TargetLowering::ArgListTy Args;
7140   Args.reserve(NumArgs);
7141 
7142   // Populate the argument list.
7143   // Attributes for args start at offset 1, after the return attribute.
7144   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7145        ArgI != ArgE; ++ArgI) {
7146     const Value *V = CS->getOperand(ArgI);
7147 
7148     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7149 
7150     TargetLowering::ArgListEntry Entry;
7151     Entry.Node = getValue(V);
7152     Entry.Ty = V->getType();
7153     Entry.setAttributes(&CS, AttrI);
7154     Args.push_back(Entry);
7155   }
7156 
7157   CLI.setDebugLoc(getCurSDLoc())
7158       .setChain(getRoot())
7159       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args),
7160                  NumArgs)
7161       .setDiscardResult(CS->use_empty())
7162       .setIsPatchPoint(IsPatchPoint);
7163 }
7164 
7165 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7166 /// or patchpoint target node's operand list.
7167 ///
7168 /// Constants are converted to TargetConstants purely as an optimization to
7169 /// avoid constant materialization and register allocation.
7170 ///
7171 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7172 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7173 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7174 /// address materialization and register allocation, but may also be required
7175 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7176 /// alloca in the entry block, then the runtime may assume that the alloca's
7177 /// StackMap location can be read immediately after compilation and that the
7178 /// location is valid at any point during execution (this is similar to the
7179 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7180 /// only available in a register, then the runtime would need to trap when
7181 /// execution reaches the StackMap in order to read the alloca's location.
7182 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7183                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
7184                                 SelectionDAGBuilder &Builder) {
7185   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7186     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7187     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7188       Ops.push_back(
7189         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7190       Ops.push_back(
7191         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7192     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7193       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7194       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7195           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7196     } else
7197       Ops.push_back(OpVal);
7198   }
7199 }
7200 
7201 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7202 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7203   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7204   //                                  [live variables...])
7205 
7206   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7207 
7208   SDValue Chain, InFlag, Callee, NullPtr;
7209   SmallVector<SDValue, 32> Ops;
7210 
7211   SDLoc DL = getCurSDLoc();
7212   Callee = getValue(CI.getCalledValue());
7213   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7214 
7215   // The stackmap intrinsic only records the live variables (the arguemnts
7216   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7217   // intrinsic, this won't be lowered to a function call. This means we don't
7218   // have to worry about calling conventions and target specific lowering code.
7219   // Instead we perform the call lowering right here.
7220   //
7221   // chain, flag = CALLSEQ_START(chain, 0)
7222   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7223   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7224   //
7225   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7226   InFlag = Chain.getValue(1);
7227 
7228   // Add the <id> and <numBytes> constants.
7229   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7230   Ops.push_back(DAG.getTargetConstant(
7231                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7232   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7233   Ops.push_back(DAG.getTargetConstant(
7234                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7235                   MVT::i32));
7236 
7237   // Push live variables for the stack map.
7238   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7239 
7240   // We are not pushing any register mask info here on the operands list,
7241   // because the stackmap doesn't clobber anything.
7242 
7243   // Push the chain and the glue flag.
7244   Ops.push_back(Chain);
7245   Ops.push_back(InFlag);
7246 
7247   // Create the STACKMAP node.
7248   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7249   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7250   Chain = SDValue(SM, 0);
7251   InFlag = Chain.getValue(1);
7252 
7253   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7254 
7255   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7256 
7257   // Set the root to the target-lowered call chain.
7258   DAG.setRoot(Chain);
7259 
7260   // Inform the Frame Information that we have a stackmap in this function.
7261   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7262 }
7263 
7264 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7265 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7266                                           const BasicBlock *EHPadBB) {
7267   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7268   //                                                 i32 <numBytes>,
7269   //                                                 i8* <target>,
7270   //                                                 i32 <numArgs>,
7271   //                                                 [Args...],
7272   //                                                 [live variables...])
7273 
7274   CallingConv::ID CC = CS.getCallingConv();
7275   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7276   bool HasDef = !CS->getType()->isVoidTy();
7277   SDLoc dl = getCurSDLoc();
7278   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7279 
7280   // Handle immediate and symbolic callees.
7281   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7282     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7283                                    /*isTarget=*/true);
7284   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7285     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7286                                          SDLoc(SymbolicCallee),
7287                                          SymbolicCallee->getValueType(0));
7288 
7289   // Get the real number of arguments participating in the call <numArgs>
7290   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7291   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7292 
7293   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7294   // Intrinsics include all meta-operands up to but not including CC.
7295   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7296   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7297          "Not enough arguments provided to the patchpoint intrinsic");
7298 
7299   // For AnyRegCC the arguments are lowered later on manually.
7300   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7301   Type *ReturnTy =
7302     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7303 
7304   TargetLowering::CallLoweringInfo CLI(DAG);
7305   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7306                            true);
7307   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7308 
7309   SDNode *CallEnd = Result.second.getNode();
7310   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7311     CallEnd = CallEnd->getOperand(0).getNode();
7312 
7313   /// Get a call instruction from the call sequence chain.
7314   /// Tail calls are not allowed.
7315   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7316          "Expected a callseq node.");
7317   SDNode *Call = CallEnd->getOperand(0).getNode();
7318   bool HasGlue = Call->getGluedNode();
7319 
7320   // Replace the target specific call node with the patchable intrinsic.
7321   SmallVector<SDValue, 8> Ops;
7322 
7323   // Add the <id> and <numBytes> constants.
7324   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7325   Ops.push_back(DAG.getTargetConstant(
7326                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7327   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7328   Ops.push_back(DAG.getTargetConstant(
7329                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7330                   MVT::i32));
7331 
7332   // Add the callee.
7333   Ops.push_back(Callee);
7334 
7335   // Adjust <numArgs> to account for any arguments that have been passed on the
7336   // stack instead.
7337   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7338   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7339   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7340   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7341 
7342   // Add the calling convention
7343   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7344 
7345   // Add the arguments we omitted previously. The register allocator should
7346   // place these in any free register.
7347   if (IsAnyRegCC)
7348     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7349       Ops.push_back(getValue(CS.getArgument(i)));
7350 
7351   // Push the arguments from the call instruction up to the register mask.
7352   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7353   Ops.append(Call->op_begin() + 2, e);
7354 
7355   // Push live variables for the stack map.
7356   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7357 
7358   // Push the register mask info.
7359   if (HasGlue)
7360     Ops.push_back(*(Call->op_end()-2));
7361   else
7362     Ops.push_back(*(Call->op_end()-1));
7363 
7364   // Push the chain (this is originally the first operand of the call, but
7365   // becomes now the last or second to last operand).
7366   Ops.push_back(*(Call->op_begin()));
7367 
7368   // Push the glue flag (last operand).
7369   if (HasGlue)
7370     Ops.push_back(*(Call->op_end()-1));
7371 
7372   SDVTList NodeTys;
7373   if (IsAnyRegCC && HasDef) {
7374     // Create the return types based on the intrinsic definition
7375     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7376     SmallVector<EVT, 3> ValueVTs;
7377     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7378     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7379 
7380     // There is always a chain and a glue type at the end
7381     ValueVTs.push_back(MVT::Other);
7382     ValueVTs.push_back(MVT::Glue);
7383     NodeTys = DAG.getVTList(ValueVTs);
7384   } else
7385     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7386 
7387   // Replace the target specific call node with a PATCHPOINT node.
7388   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7389                                          dl, NodeTys, Ops);
7390 
7391   // Update the NodeMap.
7392   if (HasDef) {
7393     if (IsAnyRegCC)
7394       setValue(CS.getInstruction(), SDValue(MN, 0));
7395     else
7396       setValue(CS.getInstruction(), Result.first);
7397   }
7398 
7399   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7400   // call sequence. Furthermore the location of the chain and glue can change
7401   // when the AnyReg calling convention is used and the intrinsic returns a
7402   // value.
7403   if (IsAnyRegCC && HasDef) {
7404     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7405     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7406     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7407   } else
7408     DAG.ReplaceAllUsesWith(Call, MN);
7409   DAG.DeleteNode(Call);
7410 
7411   // Inform the Frame Information that we have a patchpoint in this function.
7412   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7413 }
7414 
7415 /// Returns an AttributeSet representing the attributes applied to the return
7416 /// value of the given call.
7417 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7418   SmallVector<Attribute::AttrKind, 2> Attrs;
7419   if (CLI.RetSExt)
7420     Attrs.push_back(Attribute::SExt);
7421   if (CLI.RetZExt)
7422     Attrs.push_back(Attribute::ZExt);
7423   if (CLI.IsInReg)
7424     Attrs.push_back(Attribute::InReg);
7425 
7426   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7427                            Attrs);
7428 }
7429 
7430 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7431 /// implementation, which just calls LowerCall.
7432 /// FIXME: When all targets are
7433 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7434 std::pair<SDValue, SDValue>
7435 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7436   // Handle the incoming return values from the call.
7437   CLI.Ins.clear();
7438   Type *OrigRetTy = CLI.RetTy;
7439   SmallVector<EVT, 4> RetTys;
7440   SmallVector<uint64_t, 4> Offsets;
7441   auto &DL = CLI.DAG.getDataLayout();
7442   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7443 
7444   SmallVector<ISD::OutputArg, 4> Outs;
7445   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7446 
7447   bool CanLowerReturn =
7448       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7449                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7450 
7451   SDValue DemoteStackSlot;
7452   int DemoteStackIdx = -100;
7453   if (!CanLowerReturn) {
7454     // FIXME: equivalent assert?
7455     // assert(!CS.hasInAllocaArgument() &&
7456     //        "sret demotion is incompatible with inalloca");
7457     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7458     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7459     MachineFunction &MF = CLI.DAG.getMachineFunction();
7460     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7461     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7462 
7463     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7464     ArgListEntry Entry;
7465     Entry.Node = DemoteStackSlot;
7466     Entry.Ty = StackSlotPtrType;
7467     Entry.isSExt = false;
7468     Entry.isZExt = false;
7469     Entry.isInReg = false;
7470     Entry.isSRet = true;
7471     Entry.isNest = false;
7472     Entry.isByVal = false;
7473     Entry.isReturned = false;
7474     Entry.isSwiftSelf = false;
7475     Entry.isSwiftError = false;
7476     Entry.Alignment = Align;
7477     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7478     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7479 
7480     // sret demotion isn't compatible with tail-calls, since the sret argument
7481     // points into the callers stack frame.
7482     CLI.IsTailCall = false;
7483   } else {
7484     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7485       EVT VT = RetTys[I];
7486       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7487       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7488       for (unsigned i = 0; i != NumRegs; ++i) {
7489         ISD::InputArg MyFlags;
7490         MyFlags.VT = RegisterVT;
7491         MyFlags.ArgVT = VT;
7492         MyFlags.Used = CLI.IsReturnValueUsed;
7493         if (CLI.RetSExt)
7494           MyFlags.Flags.setSExt();
7495         if (CLI.RetZExt)
7496           MyFlags.Flags.setZExt();
7497         if (CLI.IsInReg)
7498           MyFlags.Flags.setInReg();
7499         CLI.Ins.push_back(MyFlags);
7500       }
7501     }
7502   }
7503 
7504   // We push in swifterror return as the last element of CLI.Ins.
7505   ArgListTy &Args = CLI.getArgs();
7506   if (supportSwiftError()) {
7507     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7508       if (Args[i].isSwiftError) {
7509         ISD::InputArg MyFlags;
7510         MyFlags.VT = getPointerTy(DL);
7511         MyFlags.ArgVT = EVT(getPointerTy(DL));
7512         MyFlags.Flags.setSwiftError();
7513         CLI.Ins.push_back(MyFlags);
7514       }
7515     }
7516   }
7517 
7518   // Handle all of the outgoing arguments.
7519   CLI.Outs.clear();
7520   CLI.OutVals.clear();
7521   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7522     SmallVector<EVT, 4> ValueVTs;
7523     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7524     Type *FinalType = Args[i].Ty;
7525     if (Args[i].isByVal)
7526       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7527     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7528         FinalType, CLI.CallConv, CLI.IsVarArg);
7529     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7530          ++Value) {
7531       EVT VT = ValueVTs[Value];
7532       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7533       SDValue Op = SDValue(Args[i].Node.getNode(),
7534                            Args[i].Node.getResNo() + Value);
7535       ISD::ArgFlagsTy Flags;
7536       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7537 
7538       if (Args[i].isZExt)
7539         Flags.setZExt();
7540       if (Args[i].isSExt)
7541         Flags.setSExt();
7542       if (Args[i].isInReg)
7543         Flags.setInReg();
7544       if (Args[i].isSRet)
7545         Flags.setSRet();
7546       if (Args[i].isSwiftSelf)
7547         Flags.setSwiftSelf();
7548       if (Args[i].isSwiftError)
7549         Flags.setSwiftError();
7550       if (Args[i].isByVal)
7551         Flags.setByVal();
7552       if (Args[i].isInAlloca) {
7553         Flags.setInAlloca();
7554         // Set the byval flag for CCAssignFn callbacks that don't know about
7555         // inalloca.  This way we can know how many bytes we should've allocated
7556         // and how many bytes a callee cleanup function will pop.  If we port
7557         // inalloca to more targets, we'll have to add custom inalloca handling
7558         // in the various CC lowering callbacks.
7559         Flags.setByVal();
7560       }
7561       if (Args[i].isByVal || Args[i].isInAlloca) {
7562         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7563         Type *ElementTy = Ty->getElementType();
7564         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7565         // For ByVal, alignment should come from FE.  BE will guess if this
7566         // info is not there but there are cases it cannot get right.
7567         unsigned FrameAlign;
7568         if (Args[i].Alignment)
7569           FrameAlign = Args[i].Alignment;
7570         else
7571           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7572         Flags.setByValAlign(FrameAlign);
7573       }
7574       if (Args[i].isNest)
7575         Flags.setNest();
7576       if (NeedsRegBlock)
7577         Flags.setInConsecutiveRegs();
7578       Flags.setOrigAlign(OriginalAlignment);
7579 
7580       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7581       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7582       SmallVector<SDValue, 4> Parts(NumParts);
7583       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7584 
7585       if (Args[i].isSExt)
7586         ExtendKind = ISD::SIGN_EXTEND;
7587       else if (Args[i].isZExt)
7588         ExtendKind = ISD::ZERO_EXTEND;
7589 
7590       // Conservatively only handle 'returned' on non-vectors for now
7591       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7592         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7593                "unexpected use of 'returned'");
7594         // Before passing 'returned' to the target lowering code, ensure that
7595         // either the register MVT and the actual EVT are the same size or that
7596         // the return value and argument are extended in the same way; in these
7597         // cases it's safe to pass the argument register value unchanged as the
7598         // return register value (although it's at the target's option whether
7599         // to do so)
7600         // TODO: allow code generation to take advantage of partially preserved
7601         // registers rather than clobbering the entire register when the
7602         // parameter extension method is not compatible with the return
7603         // extension method
7604         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7605             (ExtendKind != ISD::ANY_EXTEND &&
7606              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7607         Flags.setReturned();
7608       }
7609 
7610       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7611                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7612 
7613       for (unsigned j = 0; j != NumParts; ++j) {
7614         // if it isn't first piece, alignment must be 1
7615         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7616                                i < CLI.NumFixedArgs,
7617                                i, j*Parts[j].getValueType().getStoreSize());
7618         if (NumParts > 1 && j == 0)
7619           MyFlags.Flags.setSplit();
7620         else if (j != 0) {
7621           MyFlags.Flags.setOrigAlign(1);
7622           if (j == NumParts - 1)
7623             MyFlags.Flags.setSplitEnd();
7624         }
7625 
7626         CLI.Outs.push_back(MyFlags);
7627         CLI.OutVals.push_back(Parts[j]);
7628       }
7629 
7630       if (NeedsRegBlock && Value == NumValues - 1)
7631         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7632     }
7633   }
7634 
7635   SmallVector<SDValue, 4> InVals;
7636   CLI.Chain = LowerCall(CLI, InVals);
7637 
7638   // Update CLI.InVals to use outside of this function.
7639   CLI.InVals = InVals;
7640 
7641   // Verify that the target's LowerCall behaved as expected.
7642   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7643          "LowerCall didn't return a valid chain!");
7644   assert((!CLI.IsTailCall || InVals.empty()) &&
7645          "LowerCall emitted a return value for a tail call!");
7646   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7647          "LowerCall didn't emit the correct number of values!");
7648 
7649   // For a tail call, the return value is merely live-out and there aren't
7650   // any nodes in the DAG representing it. Return a special value to
7651   // indicate that a tail call has been emitted and no more Instructions
7652   // should be processed in the current block.
7653   if (CLI.IsTailCall) {
7654     CLI.DAG.setRoot(CLI.Chain);
7655     return std::make_pair(SDValue(), SDValue());
7656   }
7657 
7658 #ifndef NDEBUG
7659   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7660     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7661     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7662            "LowerCall emitted a value with the wrong type!");
7663   }
7664 #endif
7665 
7666   SmallVector<SDValue, 4> ReturnValues;
7667   if (!CanLowerReturn) {
7668     // The instruction result is the result of loading from the
7669     // hidden sret parameter.
7670     SmallVector<EVT, 1> PVTs;
7671     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7672 
7673     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7674     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7675     EVT PtrVT = PVTs[0];
7676 
7677     unsigned NumValues = RetTys.size();
7678     ReturnValues.resize(NumValues);
7679     SmallVector<SDValue, 4> Chains(NumValues);
7680 
7681     // An aggregate return value cannot wrap around the address space, so
7682     // offsets to its parts don't wrap either.
7683     SDNodeFlags Flags;
7684     Flags.setNoUnsignedWrap(true);
7685 
7686     for (unsigned i = 0; i < NumValues; ++i) {
7687       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7688                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7689                                                         PtrVT), &Flags);
7690       SDValue L = CLI.DAG.getLoad(
7691           RetTys[i], CLI.DL, CLI.Chain, Add,
7692           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7693                                             DemoteStackIdx, Offsets[i]),
7694           false, false, false, 1);
7695       ReturnValues[i] = L;
7696       Chains[i] = L.getValue(1);
7697     }
7698 
7699     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7700   } else {
7701     // Collect the legal value parts into potentially illegal values
7702     // that correspond to the original function's return values.
7703     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7704     if (CLI.RetSExt)
7705       AssertOp = ISD::AssertSext;
7706     else if (CLI.RetZExt)
7707       AssertOp = ISD::AssertZext;
7708     unsigned CurReg = 0;
7709     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7710       EVT VT = RetTys[I];
7711       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7712       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7713 
7714       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7715                                               NumRegs, RegisterVT, VT, nullptr,
7716                                               AssertOp));
7717       CurReg += NumRegs;
7718     }
7719 
7720     // For a function returning void, there is no return value. We can't create
7721     // such a node, so we just return a null return value in that case. In
7722     // that case, nothing will actually look at the value.
7723     if (ReturnValues.empty())
7724       return std::make_pair(SDValue(), CLI.Chain);
7725   }
7726 
7727   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7728                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7729   return std::make_pair(Res, CLI.Chain);
7730 }
7731 
7732 void TargetLowering::LowerOperationWrapper(SDNode *N,
7733                                            SmallVectorImpl<SDValue> &Results,
7734                                            SelectionDAG &DAG) const {
7735   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7736     Results.push_back(Res);
7737 }
7738 
7739 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7740   llvm_unreachable("LowerOperation not implemented for this target!");
7741 }
7742 
7743 void
7744 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7745   SDValue Op = getNonRegisterValue(V);
7746   assert((Op.getOpcode() != ISD::CopyFromReg ||
7747           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7748          "Copy from a reg to the same reg!");
7749   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7750 
7751   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7752   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7753                    V->getType());
7754   SDValue Chain = DAG.getEntryNode();
7755 
7756   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7757                               FuncInfo.PreferredExtendType.end())
7758                                  ? ISD::ANY_EXTEND
7759                                  : FuncInfo.PreferredExtendType[V];
7760   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7761   PendingExports.push_back(Chain);
7762 }
7763 
7764 #include "llvm/CodeGen/SelectionDAGISel.h"
7765 
7766 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7767 /// entry block, return true.  This includes arguments used by switches, since
7768 /// the switch may expand into multiple basic blocks.
7769 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7770   // With FastISel active, we may be splitting blocks, so force creation
7771   // of virtual registers for all non-dead arguments.
7772   if (FastISel)
7773     return A->use_empty();
7774 
7775   const BasicBlock &Entry = A->getParent()->front();
7776   for (const User *U : A->users())
7777     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7778       return false;  // Use not in entry block.
7779 
7780   return true;
7781 }
7782 
7783 void SelectionDAGISel::LowerArguments(const Function &F) {
7784   SelectionDAG &DAG = SDB->DAG;
7785   SDLoc dl = SDB->getCurSDLoc();
7786   const DataLayout &DL = DAG.getDataLayout();
7787   SmallVector<ISD::InputArg, 16> Ins;
7788 
7789   if (!FuncInfo->CanLowerReturn) {
7790     // Put in an sret pointer parameter before all the other parameters.
7791     SmallVector<EVT, 1> ValueVTs;
7792     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7793                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7794 
7795     // NOTE: Assuming that a pointer will never break down to more than one VT
7796     // or one register.
7797     ISD::ArgFlagsTy Flags;
7798     Flags.setSRet();
7799     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7800     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7801                          ISD::InputArg::NoArgIndex, 0);
7802     Ins.push_back(RetArg);
7803   }
7804 
7805   // Set up the incoming argument description vector.
7806   unsigned Idx = 1;
7807   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7808        I != E; ++I, ++Idx) {
7809     SmallVector<EVT, 4> ValueVTs;
7810     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7811     bool isArgValueUsed = !I->use_empty();
7812     unsigned PartBase = 0;
7813     Type *FinalType = I->getType();
7814     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7815       FinalType = cast<PointerType>(FinalType)->getElementType();
7816     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7817         FinalType, F.getCallingConv(), F.isVarArg());
7818     for (unsigned Value = 0, NumValues = ValueVTs.size();
7819          Value != NumValues; ++Value) {
7820       EVT VT = ValueVTs[Value];
7821       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7822       ISD::ArgFlagsTy Flags;
7823       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7824 
7825       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7826         Flags.setZExt();
7827       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7828         Flags.setSExt();
7829       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7830         Flags.setInReg();
7831       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7832         Flags.setSRet();
7833       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
7834         Flags.setSwiftSelf();
7835       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
7836         Flags.setSwiftError();
7837       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7838         Flags.setByVal();
7839       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7840         Flags.setInAlloca();
7841         // Set the byval flag for CCAssignFn callbacks that don't know about
7842         // inalloca.  This way we can know how many bytes we should've allocated
7843         // and how many bytes a callee cleanup function will pop.  If we port
7844         // inalloca to more targets, we'll have to add custom inalloca handling
7845         // in the various CC lowering callbacks.
7846         Flags.setByVal();
7847       }
7848       if (F.getCallingConv() == CallingConv::X86_INTR) {
7849         // IA Interrupt passes frame (1st parameter) by value in the stack.
7850         if (Idx == 1)
7851           Flags.setByVal();
7852       }
7853       if (Flags.isByVal() || Flags.isInAlloca()) {
7854         PointerType *Ty = cast<PointerType>(I->getType());
7855         Type *ElementTy = Ty->getElementType();
7856         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7857         // For ByVal, alignment should be passed from FE.  BE will guess if
7858         // this info is not there but there are cases it cannot get right.
7859         unsigned FrameAlign;
7860         if (F.getParamAlignment(Idx))
7861           FrameAlign = F.getParamAlignment(Idx);
7862         else
7863           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7864         Flags.setByValAlign(FrameAlign);
7865       }
7866       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7867         Flags.setNest();
7868       if (NeedsRegBlock)
7869         Flags.setInConsecutiveRegs();
7870       Flags.setOrigAlign(OriginalAlignment);
7871 
7872       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7873       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7874       for (unsigned i = 0; i != NumRegs; ++i) {
7875         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7876                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7877         if (NumRegs > 1 && i == 0)
7878           MyFlags.Flags.setSplit();
7879         // if it isn't first piece, alignment must be 1
7880         else if (i > 0) {
7881           MyFlags.Flags.setOrigAlign(1);
7882           if (i == NumRegs - 1)
7883             MyFlags.Flags.setSplitEnd();
7884         }
7885         Ins.push_back(MyFlags);
7886       }
7887       if (NeedsRegBlock && Value == NumValues - 1)
7888         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7889       PartBase += VT.getStoreSize();
7890     }
7891   }
7892 
7893   // Call the target to set up the argument values.
7894   SmallVector<SDValue, 8> InVals;
7895   SDValue NewRoot = TLI->LowerFormalArguments(
7896       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7897 
7898   // Verify that the target's LowerFormalArguments behaved as expected.
7899   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7900          "LowerFormalArguments didn't return a valid chain!");
7901   assert(InVals.size() == Ins.size() &&
7902          "LowerFormalArguments didn't emit the correct number of values!");
7903   DEBUG({
7904       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7905         assert(InVals[i].getNode() &&
7906                "LowerFormalArguments emitted a null value!");
7907         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7908                "LowerFormalArguments emitted a value with the wrong type!");
7909       }
7910     });
7911 
7912   // Update the DAG with the new chain value resulting from argument lowering.
7913   DAG.setRoot(NewRoot);
7914 
7915   // Set up the argument values.
7916   unsigned i = 0;
7917   Idx = 1;
7918   if (!FuncInfo->CanLowerReturn) {
7919     // Create a virtual register for the sret pointer, and put in a copy
7920     // from the sret argument into it.
7921     SmallVector<EVT, 1> ValueVTs;
7922     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7923                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7924     MVT VT = ValueVTs[0].getSimpleVT();
7925     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7926     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7927     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7928                                         RegVT, VT, nullptr, AssertOp);
7929 
7930     MachineFunction& MF = SDB->DAG.getMachineFunction();
7931     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7932     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7933     FuncInfo->DemoteRegister = SRetReg;
7934     NewRoot =
7935         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7936     DAG.setRoot(NewRoot);
7937 
7938     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7939     // Idx indexes LLVM arguments.  Don't touch it.
7940     ++i;
7941   }
7942 
7943   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7944       ++I, ++Idx) {
7945     SmallVector<SDValue, 4> ArgValues;
7946     SmallVector<EVT, 4> ValueVTs;
7947     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7948     unsigned NumValues = ValueVTs.size();
7949 
7950     // If this argument is unused then remember its value. It is used to generate
7951     // debugging information.
7952     if (I->use_empty() && NumValues) {
7953       SDB->setUnusedArgValue(&*I, InVals[i]);
7954 
7955       // Also remember any frame index for use in FastISel.
7956       if (FrameIndexSDNode *FI =
7957           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7958         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7959     }
7960 
7961     for (unsigned Val = 0; Val != NumValues; ++Val) {
7962       EVT VT = ValueVTs[Val];
7963       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7964       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7965 
7966       if (!I->use_empty()) {
7967         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7968         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7969           AssertOp = ISD::AssertSext;
7970         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7971           AssertOp = ISD::AssertZext;
7972 
7973         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7974                                              NumParts, PartVT, VT,
7975                                              nullptr, AssertOp));
7976       }
7977 
7978       i += NumParts;
7979     }
7980 
7981     // We don't need to do anything else for unused arguments.
7982     if (ArgValues.empty())
7983       continue;
7984 
7985     // Note down frame index.
7986     if (FrameIndexSDNode *FI =
7987         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7988       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7989 
7990     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7991                                      SDB->getCurSDLoc());
7992 
7993     SDB->setValue(&*I, Res);
7994     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7995       if (LoadSDNode *LNode =
7996           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7997         if (FrameIndexSDNode *FI =
7998             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7999         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8000     }
8001 
8002     // Update SwiftErrorMap.
8003     if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() &&
8004         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) {
8005       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8006       if (TargetRegisterInfo::isVirtualRegister(Reg))
8007         FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg;
8008     }
8009 
8010     // If this argument is live outside of the entry block, insert a copy from
8011     // wherever we got it to the vreg that other BB's will reference it as.
8012     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8013       // If we can, though, try to skip creating an unnecessary vreg.
8014       // FIXME: This isn't very clean... it would be nice to make this more
8015       // general.  It's also subtly incompatible with the hacks FastISel
8016       // uses with vregs.
8017       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8018       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8019         FuncInfo->ValueMap[&*I] = Reg;
8020         continue;
8021       }
8022     }
8023     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8024       FuncInfo->InitializeRegForValue(&*I);
8025       SDB->CopyToExportRegsIfNeeded(&*I);
8026     }
8027   }
8028 
8029   assert(i == InVals.size() && "Argument register count mismatch!");
8030 
8031   // Finally, if the target has anything special to do, allow it to do so.
8032   EmitFunctionEntryCode();
8033 }
8034 
8035 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8036 /// ensure constants are generated when needed.  Remember the virtual registers
8037 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8038 /// directly add them, because expansion might result in multiple MBB's for one
8039 /// BB.  As such, the start of the BB might correspond to a different MBB than
8040 /// the end.
8041 ///
8042 void
8043 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8044   const TerminatorInst *TI = LLVMBB->getTerminator();
8045 
8046   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8047 
8048   // Check PHI nodes in successors that expect a value to be available from this
8049   // block.
8050   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8051     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8052     if (!isa<PHINode>(SuccBB->begin())) continue;
8053     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8054 
8055     // If this terminator has multiple identical successors (common for
8056     // switches), only handle each succ once.
8057     if (!SuccsHandled.insert(SuccMBB).second)
8058       continue;
8059 
8060     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8061 
8062     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8063     // nodes and Machine PHI nodes, but the incoming operands have not been
8064     // emitted yet.
8065     for (BasicBlock::const_iterator I = SuccBB->begin();
8066          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8067       // Ignore dead phi's.
8068       if (PN->use_empty()) continue;
8069 
8070       // Skip empty types
8071       if (PN->getType()->isEmptyTy())
8072         continue;
8073 
8074       unsigned Reg;
8075       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8076 
8077       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8078         unsigned &RegOut = ConstantsOut[C];
8079         if (RegOut == 0) {
8080           RegOut = FuncInfo.CreateRegs(C->getType());
8081           CopyValueToVirtualRegister(C, RegOut);
8082         }
8083         Reg = RegOut;
8084       } else {
8085         DenseMap<const Value *, unsigned>::iterator I =
8086           FuncInfo.ValueMap.find(PHIOp);
8087         if (I != FuncInfo.ValueMap.end())
8088           Reg = I->second;
8089         else {
8090           assert(isa<AllocaInst>(PHIOp) &&
8091                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8092                  "Didn't codegen value into a register!??");
8093           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8094           CopyValueToVirtualRegister(PHIOp, Reg);
8095         }
8096       }
8097 
8098       // Remember that this register needs to added to the machine PHI node as
8099       // the input for this MBB.
8100       SmallVector<EVT, 4> ValueVTs;
8101       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8102       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8103       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8104         EVT VT = ValueVTs[vti];
8105         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8106         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8107           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
8108         Reg += NumRegisters;
8109       }
8110     }
8111   }
8112 
8113   ConstantsOut.clear();
8114 }
8115 
8116 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8117 /// is 0.
8118 MachineBasicBlock *
8119 SelectionDAGBuilder::StackProtectorDescriptor::
8120 AddSuccessorMBB(const BasicBlock *BB,
8121                 MachineBasicBlock *ParentMBB,
8122                 bool IsLikely,
8123                 MachineBasicBlock *SuccMBB) {
8124   // If SuccBB has not been created yet, create it.
8125   if (!SuccMBB) {
8126     MachineFunction *MF = ParentMBB->getParent();
8127     MachineFunction::iterator BBI(ParentMBB);
8128     SuccMBB = MF->CreateMachineBasicBlock(BB);
8129     MF->insert(++BBI, SuccMBB);
8130   }
8131   // Add it as a successor of ParentMBB.
8132   ParentMBB->addSuccessor(
8133       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8134   return SuccMBB;
8135 }
8136 
8137 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8138   MachineFunction::iterator I(MBB);
8139   if (++I == FuncInfo.MF->end())
8140     return nullptr;
8141   return &*I;
8142 }
8143 
8144 /// During lowering new call nodes can be created (such as memset, etc.).
8145 /// Those will become new roots of the current DAG, but complications arise
8146 /// when they are tail calls. In such cases, the call lowering will update
8147 /// the root, but the builder still needs to know that a tail call has been
8148 /// lowered in order to avoid generating an additional return.
8149 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8150   // If the node is null, we do have a tail call.
8151   if (MaybeTC.getNode() != nullptr)
8152     DAG.setRoot(MaybeTC);
8153   else
8154     HasTailCall = true;
8155 }
8156 
8157 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8158                                   unsigned *TotalCases, unsigned First,
8159                                   unsigned Last,
8160                                   unsigned Density) {
8161   assert(Last >= First);
8162   assert(TotalCases[Last] >= TotalCases[First]);
8163 
8164   APInt LowCase = Clusters[First].Low->getValue();
8165   APInt HighCase = Clusters[Last].High->getValue();
8166   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8167 
8168   // FIXME: A range of consecutive cases has 100% density, but only requires one
8169   // comparison to lower. We should discriminate against such consecutive ranges
8170   // in jump tables.
8171 
8172   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8173   uint64_t Range = Diff + 1;
8174 
8175   uint64_t NumCases =
8176       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8177 
8178   assert(NumCases < UINT64_MAX / 100);
8179   assert(Range >= NumCases);
8180 
8181   return NumCases * 100 >= Range * Density;
8182 }
8183 
8184 static inline bool areJTsAllowed(const TargetLowering &TLI,
8185                                  const SwitchInst *SI) {
8186   const Function *Fn = SI->getParent()->getParent();
8187   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8188     return false;
8189 
8190   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8191          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8192 }
8193 
8194 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
8195                                          unsigned First, unsigned Last,
8196                                          const SwitchInst *SI,
8197                                          MachineBasicBlock *DefaultMBB,
8198                                          CaseCluster &JTCluster) {
8199   assert(First <= Last);
8200 
8201   auto Prob = BranchProbability::getZero();
8202   unsigned NumCmps = 0;
8203   std::vector<MachineBasicBlock*> Table;
8204   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8205 
8206   // Initialize probabilities in JTProbs.
8207   for (unsigned I = First; I <= Last; ++I)
8208     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8209 
8210   for (unsigned I = First; I <= Last; ++I) {
8211     assert(Clusters[I].Kind == CC_Range);
8212     Prob += Clusters[I].Prob;
8213     APInt Low = Clusters[I].Low->getValue();
8214     APInt High = Clusters[I].High->getValue();
8215     NumCmps += (Low == High) ? 1 : 2;
8216     if (I != First) {
8217       // Fill the gap between this and the previous cluster.
8218       APInt PreviousHigh = Clusters[I - 1].High->getValue();
8219       assert(PreviousHigh.slt(Low));
8220       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8221       for (uint64_t J = 0; J < Gap; J++)
8222         Table.push_back(DefaultMBB);
8223     }
8224     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8225     for (uint64_t J = 0; J < ClusterSize; ++J)
8226       Table.push_back(Clusters[I].MBB);
8227     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8228   }
8229 
8230   unsigned NumDests = JTProbs.size();
8231   if (isSuitableForBitTests(NumDests, NumCmps,
8232                             Clusters[First].Low->getValue(),
8233                             Clusters[Last].High->getValue())) {
8234     // Clusters[First..Last] should be lowered as bit tests instead.
8235     return false;
8236   }
8237 
8238   // Create the MBB that will load from and jump through the table.
8239   // Note: We create it here, but it's not inserted into the function yet.
8240   MachineFunction *CurMF = FuncInfo.MF;
8241   MachineBasicBlock *JumpTableMBB =
8242       CurMF->CreateMachineBasicBlock(SI->getParent());
8243 
8244   // Add successors. Note: use table order for determinism.
8245   SmallPtrSet<MachineBasicBlock *, 8> Done;
8246   for (MachineBasicBlock *Succ : Table) {
8247     if (Done.count(Succ))
8248       continue;
8249     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8250     Done.insert(Succ);
8251   }
8252   JumpTableMBB->normalizeSuccProbs();
8253 
8254   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8255   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8256                      ->createJumpTableIndex(Table);
8257 
8258   // Set up the jump table info.
8259   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8260   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8261                       Clusters[Last].High->getValue(), SI->getCondition(),
8262                       nullptr, false);
8263   JTCases.emplace_back(std::move(JTH), std::move(JT));
8264 
8265   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8266                                      JTCases.size() - 1, Prob);
8267   return true;
8268 }
8269 
8270 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8271                                          const SwitchInst *SI,
8272                                          MachineBasicBlock *DefaultMBB) {
8273 #ifndef NDEBUG
8274   // Clusters must be non-empty, sorted, and only contain Range clusters.
8275   assert(!Clusters.empty());
8276   for (CaseCluster &C : Clusters)
8277     assert(C.Kind == CC_Range);
8278   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8279     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8280 #endif
8281 
8282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8283   if (!areJTsAllowed(TLI, SI))
8284     return;
8285 
8286   const int64_t N = Clusters.size();
8287   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
8288 
8289   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8290   SmallVector<unsigned, 8> TotalCases(N);
8291 
8292   for (unsigned i = 0; i < N; ++i) {
8293     APInt Hi = Clusters[i].High->getValue();
8294     APInt Lo = Clusters[i].Low->getValue();
8295     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8296     if (i != 0)
8297       TotalCases[i] += TotalCases[i - 1];
8298   }
8299 
8300   unsigned MinDensity = JumpTableDensity;
8301   if (DefaultMBB->getParent()->getFunction()->optForSize())
8302     MinDensity = OptsizeJumpTableDensity;
8303   if (N >= MinJumpTableSize
8304       && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) {
8305     // Cheap case: the whole range might be suitable for jump table.
8306     CaseCluster JTCluster;
8307     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8308       Clusters[0] = JTCluster;
8309       Clusters.resize(1);
8310       return;
8311     }
8312   }
8313 
8314   // The algorithm below is not suitable for -O0.
8315   if (TM.getOptLevel() == CodeGenOpt::None)
8316     return;
8317 
8318   // Split Clusters into minimum number of dense partitions. The algorithm uses
8319   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8320   // for the Case Statement'" (1994), but builds the MinPartitions array in
8321   // reverse order to make it easier to reconstruct the partitions in ascending
8322   // order. In the choice between two optimal partitionings, it picks the one
8323   // which yields more jump tables.
8324 
8325   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8326   SmallVector<unsigned, 8> MinPartitions(N);
8327   // LastElement[i] is the last element of the partition starting at i.
8328   SmallVector<unsigned, 8> LastElement(N);
8329   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
8330   SmallVector<unsigned, 8> NumTables(N);
8331 
8332   // Base case: There is only one way to partition Clusters[N-1].
8333   MinPartitions[N - 1] = 1;
8334   LastElement[N - 1] = N - 1;
8335   assert(MinJumpTableSize > 1);
8336   NumTables[N - 1] = 0;
8337 
8338   // Note: loop indexes are signed to avoid underflow.
8339   for (int64_t i = N - 2; i >= 0; i--) {
8340     // Find optimal partitioning of Clusters[i..N-1].
8341     // Baseline: Put Clusters[i] into a partition on its own.
8342     MinPartitions[i] = MinPartitions[i + 1] + 1;
8343     LastElement[i] = i;
8344     NumTables[i] = NumTables[i + 1];
8345 
8346     // Search for a solution that results in fewer partitions.
8347     for (int64_t j = N - 1; j > i; j--) {
8348       // Try building a partition from Clusters[i..j].
8349       if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) {
8350         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8351         bool IsTable = j - i + 1 >= MinJumpTableSize;
8352         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
8353 
8354         // If this j leads to fewer partitions, or same number of partitions
8355         // with more lookup tables, it is a better partitioning.
8356         if (NumPartitions < MinPartitions[i] ||
8357             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
8358           MinPartitions[i] = NumPartitions;
8359           LastElement[i] = j;
8360           NumTables[i] = Tables;
8361         }
8362       }
8363     }
8364   }
8365 
8366   // Iterate over the partitions, replacing some with jump tables in-place.
8367   unsigned DstIndex = 0;
8368   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8369     Last = LastElement[First];
8370     assert(Last >= First);
8371     assert(DstIndex <= First);
8372     unsigned NumClusters = Last - First + 1;
8373 
8374     CaseCluster JTCluster;
8375     if (NumClusters >= MinJumpTableSize &&
8376         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8377       Clusters[DstIndex++] = JTCluster;
8378     } else {
8379       for (unsigned I = First; I <= Last; ++I)
8380         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8381     }
8382   }
8383   Clusters.resize(DstIndex);
8384 }
8385 
8386 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8387   // FIXME: Using the pointer type doesn't seem ideal.
8388   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8389   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8390   return Range <= BW;
8391 }
8392 
8393 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8394                                                 unsigned NumCmps,
8395                                                 const APInt &Low,
8396                                                 const APInt &High) {
8397   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8398   // range of cases both require only one branch to lower. Just looking at the
8399   // number of clusters and destinations should be enough to decide whether to
8400   // build bit tests.
8401 
8402   // To lower a range with bit tests, the range must fit the bitwidth of a
8403   // machine word.
8404   if (!rangeFitsInWord(Low, High))
8405     return false;
8406 
8407   // Decide whether it's profitable to lower this range with bit tests. Each
8408   // destination requires a bit test and branch, and there is an overall range
8409   // check branch. For a small number of clusters, separate comparisons might be
8410   // cheaper, and for many destinations, splitting the range might be better.
8411   return (NumDests == 1 && NumCmps >= 3) ||
8412          (NumDests == 2 && NumCmps >= 5) ||
8413          (NumDests == 3 && NumCmps >= 6);
8414 }
8415 
8416 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8417                                         unsigned First, unsigned Last,
8418                                         const SwitchInst *SI,
8419                                         CaseCluster &BTCluster) {
8420   assert(First <= Last);
8421   if (First == Last)
8422     return false;
8423 
8424   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8425   unsigned NumCmps = 0;
8426   for (int64_t I = First; I <= Last; ++I) {
8427     assert(Clusters[I].Kind == CC_Range);
8428     Dests.set(Clusters[I].MBB->getNumber());
8429     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8430   }
8431   unsigned NumDests = Dests.count();
8432 
8433   APInt Low = Clusters[First].Low->getValue();
8434   APInt High = Clusters[Last].High->getValue();
8435   assert(Low.slt(High));
8436 
8437   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8438     return false;
8439 
8440   APInt LowBound;
8441   APInt CmpRange;
8442 
8443   const int BitWidth = DAG.getTargetLoweringInfo()
8444                            .getPointerTy(DAG.getDataLayout())
8445                            .getSizeInBits();
8446   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8447 
8448   // Check if the clusters cover a contiguous range such that no value in the
8449   // range will jump to the default statement.
8450   bool ContiguousRange = true;
8451   for (int64_t I = First + 1; I <= Last; ++I) {
8452     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8453       ContiguousRange = false;
8454       break;
8455     }
8456   }
8457 
8458   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8459     // Optimize the case where all the case values fit in a word without having
8460     // to subtract minValue. In this case, we can optimize away the subtraction.
8461     LowBound = APInt::getNullValue(Low.getBitWidth());
8462     CmpRange = High;
8463     ContiguousRange = false;
8464   } else {
8465     LowBound = Low;
8466     CmpRange = High - Low;
8467   }
8468 
8469   CaseBitsVector CBV;
8470   auto TotalProb = BranchProbability::getZero();
8471   for (unsigned i = First; i <= Last; ++i) {
8472     // Find the CaseBits for this destination.
8473     unsigned j;
8474     for (j = 0; j < CBV.size(); ++j)
8475       if (CBV[j].BB == Clusters[i].MBB)
8476         break;
8477     if (j == CBV.size())
8478       CBV.push_back(
8479           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8480     CaseBits *CB = &CBV[j];
8481 
8482     // Update Mask, Bits and ExtraProb.
8483     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8484     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8485     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8486     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8487     CB->Bits += Hi - Lo + 1;
8488     CB->ExtraProb += Clusters[i].Prob;
8489     TotalProb += Clusters[i].Prob;
8490   }
8491 
8492   BitTestInfo BTI;
8493   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8494     // Sort by probability first, number of bits second.
8495     if (a.ExtraProb != b.ExtraProb)
8496       return a.ExtraProb > b.ExtraProb;
8497     return a.Bits > b.Bits;
8498   });
8499 
8500   for (auto &CB : CBV) {
8501     MachineBasicBlock *BitTestBB =
8502         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8503     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8504   }
8505   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8506                             SI->getCondition(), -1U, MVT::Other, false,
8507                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8508                             TotalProb);
8509 
8510   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8511                                     BitTestCases.size() - 1, TotalProb);
8512   return true;
8513 }
8514 
8515 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8516                                               const SwitchInst *SI) {
8517 // Partition Clusters into as few subsets as possible, where each subset has a
8518 // range that fits in a machine word and has <= 3 unique destinations.
8519 
8520 #ifndef NDEBUG
8521   // Clusters must be sorted and contain Range or JumpTable clusters.
8522   assert(!Clusters.empty());
8523   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8524   for (const CaseCluster &C : Clusters)
8525     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8526   for (unsigned i = 1; i < Clusters.size(); ++i)
8527     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8528 #endif
8529 
8530   // The algorithm below is not suitable for -O0.
8531   if (TM.getOptLevel() == CodeGenOpt::None)
8532     return;
8533 
8534   // If target does not have legal shift left, do not emit bit tests at all.
8535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8536   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8537   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8538     return;
8539 
8540   int BitWidth = PTy.getSizeInBits();
8541   const int64_t N = Clusters.size();
8542 
8543   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8544   SmallVector<unsigned, 8> MinPartitions(N);
8545   // LastElement[i] is the last element of the partition starting at i.
8546   SmallVector<unsigned, 8> LastElement(N);
8547 
8548   // FIXME: This might not be the best algorithm for finding bit test clusters.
8549 
8550   // Base case: There is only one way to partition Clusters[N-1].
8551   MinPartitions[N - 1] = 1;
8552   LastElement[N - 1] = N - 1;
8553 
8554   // Note: loop indexes are signed to avoid underflow.
8555   for (int64_t i = N - 2; i >= 0; --i) {
8556     // Find optimal partitioning of Clusters[i..N-1].
8557     // Baseline: Put Clusters[i] into a partition on its own.
8558     MinPartitions[i] = MinPartitions[i + 1] + 1;
8559     LastElement[i] = i;
8560 
8561     // Search for a solution that results in fewer partitions.
8562     // Note: the search is limited by BitWidth, reducing time complexity.
8563     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8564       // Try building a partition from Clusters[i..j].
8565 
8566       // Check the range.
8567       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8568                            Clusters[j].High->getValue()))
8569         continue;
8570 
8571       // Check nbr of destinations and cluster types.
8572       // FIXME: This works, but doesn't seem very efficient.
8573       bool RangesOnly = true;
8574       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8575       for (int64_t k = i; k <= j; k++) {
8576         if (Clusters[k].Kind != CC_Range) {
8577           RangesOnly = false;
8578           break;
8579         }
8580         Dests.set(Clusters[k].MBB->getNumber());
8581       }
8582       if (!RangesOnly || Dests.count() > 3)
8583         break;
8584 
8585       // Check if it's a better partition.
8586       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8587       if (NumPartitions < MinPartitions[i]) {
8588         // Found a better partition.
8589         MinPartitions[i] = NumPartitions;
8590         LastElement[i] = j;
8591       }
8592     }
8593   }
8594 
8595   // Iterate over the partitions, replacing with bit-test clusters in-place.
8596   unsigned DstIndex = 0;
8597   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8598     Last = LastElement[First];
8599     assert(First <= Last);
8600     assert(DstIndex <= First);
8601 
8602     CaseCluster BitTestCluster;
8603     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8604       Clusters[DstIndex++] = BitTestCluster;
8605     } else {
8606       size_t NumClusters = Last - First + 1;
8607       std::memmove(&Clusters[DstIndex], &Clusters[First],
8608                    sizeof(Clusters[0]) * NumClusters);
8609       DstIndex += NumClusters;
8610     }
8611   }
8612   Clusters.resize(DstIndex);
8613 }
8614 
8615 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8616                                         MachineBasicBlock *SwitchMBB,
8617                                         MachineBasicBlock *DefaultMBB) {
8618   MachineFunction *CurMF = FuncInfo.MF;
8619   MachineBasicBlock *NextMBB = nullptr;
8620   MachineFunction::iterator BBI(W.MBB);
8621   if (++BBI != FuncInfo.MF->end())
8622     NextMBB = &*BBI;
8623 
8624   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8625 
8626   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8627 
8628   if (Size == 2 && W.MBB == SwitchMBB) {
8629     // If any two of the cases has the same destination, and if one value
8630     // is the same as the other, but has one bit unset that the other has set,
8631     // use bit manipulation to do two compares at once.  For example:
8632     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8633     // TODO: This could be extended to merge any 2 cases in switches with 3
8634     // cases.
8635     // TODO: Handle cases where W.CaseBB != SwitchBB.
8636     CaseCluster &Small = *W.FirstCluster;
8637     CaseCluster &Big = *W.LastCluster;
8638 
8639     if (Small.Low == Small.High && Big.Low == Big.High &&
8640         Small.MBB == Big.MBB) {
8641       const APInt &SmallValue = Small.Low->getValue();
8642       const APInt &BigValue = Big.Low->getValue();
8643 
8644       // Check that there is only one bit different.
8645       APInt CommonBit = BigValue ^ SmallValue;
8646       if (CommonBit.isPowerOf2()) {
8647         SDValue CondLHS = getValue(Cond);
8648         EVT VT = CondLHS.getValueType();
8649         SDLoc DL = getCurSDLoc();
8650 
8651         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8652                                  DAG.getConstant(CommonBit, DL, VT));
8653         SDValue Cond = DAG.getSetCC(
8654             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8655             ISD::SETEQ);
8656 
8657         // Update successor info.
8658         // Both Small and Big will jump to Small.BB, so we sum up the
8659         // probabilities.
8660         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8661         if (BPI)
8662           addSuccessorWithProb(
8663               SwitchMBB, DefaultMBB,
8664               // The default destination is the first successor in IR.
8665               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8666         else
8667           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8668 
8669         // Insert the true branch.
8670         SDValue BrCond =
8671             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8672                         DAG.getBasicBlock(Small.MBB));
8673         // Insert the false branch.
8674         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8675                              DAG.getBasicBlock(DefaultMBB));
8676 
8677         DAG.setRoot(BrCond);
8678         return;
8679       }
8680     }
8681   }
8682 
8683   if (TM.getOptLevel() != CodeGenOpt::None) {
8684     // Order cases by probability so the most likely case will be checked first.
8685     std::sort(W.FirstCluster, W.LastCluster + 1,
8686               [](const CaseCluster &a, const CaseCluster &b) {
8687       return a.Prob > b.Prob;
8688     });
8689 
8690     // Rearrange the case blocks so that the last one falls through if possible
8691     // without without changing the order of probabilities.
8692     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8693       --I;
8694       if (I->Prob > W.LastCluster->Prob)
8695         break;
8696       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8697         std::swap(*I, *W.LastCluster);
8698         break;
8699       }
8700     }
8701   }
8702 
8703   // Compute total probability.
8704   BranchProbability DefaultProb = W.DefaultProb;
8705   BranchProbability UnhandledProbs = DefaultProb;
8706   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8707     UnhandledProbs += I->Prob;
8708 
8709   MachineBasicBlock *CurMBB = W.MBB;
8710   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8711     MachineBasicBlock *Fallthrough;
8712     if (I == W.LastCluster) {
8713       // For the last cluster, fall through to the default destination.
8714       Fallthrough = DefaultMBB;
8715     } else {
8716       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8717       CurMF->insert(BBI, Fallthrough);
8718       // Put Cond in a virtual register to make it available from the new blocks.
8719       ExportFromCurrentBlock(Cond);
8720     }
8721     UnhandledProbs -= I->Prob;
8722 
8723     switch (I->Kind) {
8724       case CC_JumpTable: {
8725         // FIXME: Optimize away range check based on pivot comparisons.
8726         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8727         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8728 
8729         // The jump block hasn't been inserted yet; insert it here.
8730         MachineBasicBlock *JumpMBB = JT->MBB;
8731         CurMF->insert(BBI, JumpMBB);
8732 
8733         auto JumpProb = I->Prob;
8734         auto FallthroughProb = UnhandledProbs;
8735 
8736         // If the default statement is a target of the jump table, we evenly
8737         // distribute the default probability to successors of CurMBB. Also
8738         // update the probability on the edge from JumpMBB to Fallthrough.
8739         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8740                                               SE = JumpMBB->succ_end();
8741              SI != SE; ++SI) {
8742           if (*SI == DefaultMBB) {
8743             JumpProb += DefaultProb / 2;
8744             FallthroughProb -= DefaultProb / 2;
8745             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8746             JumpMBB->normalizeSuccProbs();
8747             break;
8748           }
8749         }
8750 
8751         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8752         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8753         CurMBB->normalizeSuccProbs();
8754 
8755         // The jump table header will be inserted in our current block, do the
8756         // range check, and fall through to our fallthrough block.
8757         JTH->HeaderBB = CurMBB;
8758         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8759 
8760         // If we're in the right place, emit the jump table header right now.
8761         if (CurMBB == SwitchMBB) {
8762           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8763           JTH->Emitted = true;
8764         }
8765         break;
8766       }
8767       case CC_BitTests: {
8768         // FIXME: Optimize away range check based on pivot comparisons.
8769         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8770 
8771         // The bit test blocks haven't been inserted yet; insert them here.
8772         for (BitTestCase &BTC : BTB->Cases)
8773           CurMF->insert(BBI, BTC.ThisBB);
8774 
8775         // Fill in fields of the BitTestBlock.
8776         BTB->Parent = CurMBB;
8777         BTB->Default = Fallthrough;
8778 
8779         BTB->DefaultProb = UnhandledProbs;
8780         // If the cases in bit test don't form a contiguous range, we evenly
8781         // distribute the probability on the edge to Fallthrough to two
8782         // successors of CurMBB.
8783         if (!BTB->ContiguousRange) {
8784           BTB->Prob += DefaultProb / 2;
8785           BTB->DefaultProb -= DefaultProb / 2;
8786         }
8787 
8788         // If we're in the right place, emit the bit test header right now.
8789         if (CurMBB == SwitchMBB) {
8790           visitBitTestHeader(*BTB, SwitchMBB);
8791           BTB->Emitted = true;
8792         }
8793         break;
8794       }
8795       case CC_Range: {
8796         const Value *RHS, *LHS, *MHS;
8797         ISD::CondCode CC;
8798         if (I->Low == I->High) {
8799           // Check Cond == I->Low.
8800           CC = ISD::SETEQ;
8801           LHS = Cond;
8802           RHS=I->Low;
8803           MHS = nullptr;
8804         } else {
8805           // Check I->Low <= Cond <= I->High.
8806           CC = ISD::SETLE;
8807           LHS = I->Low;
8808           MHS = Cond;
8809           RHS = I->High;
8810         }
8811 
8812         // The false probability is the sum of all unhandled cases.
8813         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8814                      UnhandledProbs);
8815 
8816         if (CurMBB == SwitchMBB)
8817           visitSwitchCase(CB, SwitchMBB);
8818         else
8819           SwitchCases.push_back(CB);
8820 
8821         break;
8822       }
8823     }
8824     CurMBB = Fallthrough;
8825   }
8826 }
8827 
8828 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8829                                               CaseClusterIt First,
8830                                               CaseClusterIt Last) {
8831   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8832     if (X.Prob != CC.Prob)
8833       return X.Prob > CC.Prob;
8834 
8835     // Ties are broken by comparing the case value.
8836     return X.Low->getValue().slt(CC.Low->getValue());
8837   });
8838 }
8839 
8840 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8841                                         const SwitchWorkListItem &W,
8842                                         Value *Cond,
8843                                         MachineBasicBlock *SwitchMBB) {
8844   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8845          "Clusters not sorted?");
8846 
8847   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8848 
8849   // Balance the tree based on branch probabilities to create a near-optimal (in
8850   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8851   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8852   CaseClusterIt LastLeft = W.FirstCluster;
8853   CaseClusterIt FirstRight = W.LastCluster;
8854   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8855   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8856 
8857   // Move LastLeft and FirstRight towards each other from opposite directions to
8858   // find a partitioning of the clusters which balances the probability on both
8859   // sides. If LeftProb and RightProb are equal, alternate which side is
8860   // taken to ensure 0-probability nodes are distributed evenly.
8861   unsigned I = 0;
8862   while (LastLeft + 1 < FirstRight) {
8863     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8864       LeftProb += (++LastLeft)->Prob;
8865     else
8866       RightProb += (--FirstRight)->Prob;
8867     I++;
8868   }
8869 
8870   for (;;) {
8871     // Our binary search tree differs from a typical BST in that ours can have up
8872     // to three values in each leaf. The pivot selection above doesn't take that
8873     // into account, which means the tree might require more nodes and be less
8874     // efficient. We compensate for this here.
8875 
8876     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8877     unsigned NumRight = W.LastCluster - FirstRight + 1;
8878 
8879     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8880       // If one side has less than 3 clusters, and the other has more than 3,
8881       // consider taking a cluster from the other side.
8882 
8883       if (NumLeft < NumRight) {
8884         // Consider moving the first cluster on the right to the left side.
8885         CaseCluster &CC = *FirstRight;
8886         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8887         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8888         if (LeftSideRank <= RightSideRank) {
8889           // Moving the cluster to the left does not demote it.
8890           ++LastLeft;
8891           ++FirstRight;
8892           continue;
8893         }
8894       } else {
8895         assert(NumRight < NumLeft);
8896         // Consider moving the last element on the left to the right side.
8897         CaseCluster &CC = *LastLeft;
8898         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8899         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8900         if (RightSideRank <= LeftSideRank) {
8901           // Moving the cluster to the right does not demot it.
8902           --LastLeft;
8903           --FirstRight;
8904           continue;
8905         }
8906       }
8907     }
8908     break;
8909   }
8910 
8911   assert(LastLeft + 1 == FirstRight);
8912   assert(LastLeft >= W.FirstCluster);
8913   assert(FirstRight <= W.LastCluster);
8914 
8915   // Use the first element on the right as pivot since we will make less-than
8916   // comparisons against it.
8917   CaseClusterIt PivotCluster = FirstRight;
8918   assert(PivotCluster > W.FirstCluster);
8919   assert(PivotCluster <= W.LastCluster);
8920 
8921   CaseClusterIt FirstLeft = W.FirstCluster;
8922   CaseClusterIt LastRight = W.LastCluster;
8923 
8924   const ConstantInt *Pivot = PivotCluster->Low;
8925 
8926   // New blocks will be inserted immediately after the current one.
8927   MachineFunction::iterator BBI(W.MBB);
8928   ++BBI;
8929 
8930   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8931   // we can branch to its destination directly if it's squeezed exactly in
8932   // between the known lower bound and Pivot - 1.
8933   MachineBasicBlock *LeftMBB;
8934   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8935       FirstLeft->Low == W.GE &&
8936       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8937     LeftMBB = FirstLeft->MBB;
8938   } else {
8939     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8940     FuncInfo.MF->insert(BBI, LeftMBB);
8941     WorkList.push_back(
8942         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8943     // Put Cond in a virtual register to make it available from the new blocks.
8944     ExportFromCurrentBlock(Cond);
8945   }
8946 
8947   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8948   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8949   // directly if RHS.High equals the current upper bound.
8950   MachineBasicBlock *RightMBB;
8951   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8952       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8953     RightMBB = FirstRight->MBB;
8954   } else {
8955     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8956     FuncInfo.MF->insert(BBI, RightMBB);
8957     WorkList.push_back(
8958         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8959     // Put Cond in a virtual register to make it available from the new blocks.
8960     ExportFromCurrentBlock(Cond);
8961   }
8962 
8963   // Create the CaseBlock record that will be used to lower the branch.
8964   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8965                LeftProb, RightProb);
8966 
8967   if (W.MBB == SwitchMBB)
8968     visitSwitchCase(CB, SwitchMBB);
8969   else
8970     SwitchCases.push_back(CB);
8971 }
8972 
8973 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8974   // Extract cases from the switch.
8975   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8976   CaseClusterVector Clusters;
8977   Clusters.reserve(SI.getNumCases());
8978   for (auto I : SI.cases()) {
8979     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8980     const ConstantInt *CaseVal = I.getCaseValue();
8981     BranchProbability Prob =
8982         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8983             : BranchProbability(1, SI.getNumCases() + 1);
8984     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8985   }
8986 
8987   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8988 
8989   // Cluster adjacent cases with the same destination. We do this at all
8990   // optimization levels because it's cheap to do and will make codegen faster
8991   // if there are many clusters.
8992   sortAndRangeify(Clusters);
8993 
8994   if (TM.getOptLevel() != CodeGenOpt::None) {
8995     // Replace an unreachable default with the most popular destination.
8996     // FIXME: Exploit unreachable default more aggressively.
8997     bool UnreachableDefault =
8998         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8999     if (UnreachableDefault && !Clusters.empty()) {
9000       DenseMap<const BasicBlock *, unsigned> Popularity;
9001       unsigned MaxPop = 0;
9002       const BasicBlock *MaxBB = nullptr;
9003       for (auto I : SI.cases()) {
9004         const BasicBlock *BB = I.getCaseSuccessor();
9005         if (++Popularity[BB] > MaxPop) {
9006           MaxPop = Popularity[BB];
9007           MaxBB = BB;
9008         }
9009       }
9010       // Set new default.
9011       assert(MaxPop > 0 && MaxBB);
9012       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9013 
9014       // Remove cases that were pointing to the destination that is now the
9015       // default.
9016       CaseClusterVector New;
9017       New.reserve(Clusters.size());
9018       for (CaseCluster &CC : Clusters) {
9019         if (CC.MBB != DefaultMBB)
9020           New.push_back(CC);
9021       }
9022       Clusters = std::move(New);
9023     }
9024   }
9025 
9026   // If there is only the default destination, jump there directly.
9027   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9028   if (Clusters.empty()) {
9029     SwitchMBB->addSuccessor(DefaultMBB);
9030     if (DefaultMBB != NextBlock(SwitchMBB)) {
9031       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9032                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9033     }
9034     return;
9035   }
9036 
9037   findJumpTables(Clusters, &SI, DefaultMBB);
9038   findBitTestClusters(Clusters, &SI);
9039 
9040   DEBUG({
9041     dbgs() << "Case clusters: ";
9042     for (const CaseCluster &C : Clusters) {
9043       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9044       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9045 
9046       C.Low->getValue().print(dbgs(), true);
9047       if (C.Low != C.High) {
9048         dbgs() << '-';
9049         C.High->getValue().print(dbgs(), true);
9050       }
9051       dbgs() << ' ';
9052     }
9053     dbgs() << '\n';
9054   });
9055 
9056   assert(!Clusters.empty());
9057   SwitchWorkList WorkList;
9058   CaseClusterIt First = Clusters.begin();
9059   CaseClusterIt Last = Clusters.end() - 1;
9060   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9061   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9062 
9063   while (!WorkList.empty()) {
9064     SwitchWorkListItem W = WorkList.back();
9065     WorkList.pop_back();
9066     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9067 
9068     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
9069       // For optimized builds, lower large range as a balanced binary tree.
9070       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9071       continue;
9072     }
9073 
9074     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9075   }
9076 }
9077