xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e7ea06b7d27b830e76be4c65498b54288daed05c)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstddef>
116 #include <cstdint>
117 #include <cstring>
118 #include <iterator>
119 #include <limits>
120 #include <numeric>
121 #include <tuple>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 using namespace PatternMatch;
127 using namespace SwitchCG;
128 
129 #define DEBUG_TYPE "isel"
130 
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision;
134 
135 static cl::opt<unsigned, true>
136     LimitFPPrecision("limit-float-precision",
137                      cl::desc("Generate low-precision inline sequences "
138                               "for some float libcalls"),
139                      cl::location(LimitFloatPrecision), cl::Hidden,
140                      cl::init(0));
141 
142 static cl::opt<unsigned> SwitchPeelThreshold(
143     "switch-peel-threshold", cl::Hidden, cl::init(66),
144     cl::desc("Set the case probability threshold for peeling the case from a "
145              "switch statement. A value greater than 100 will void this "
146              "optimization"));
147 
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
154 //
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains = 64;
163 
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
166 // an intrinsic.
167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
168   if (auto *R = dyn_cast<ReturnInst>(V))
169     return R->getParent()->getParent()->getCallingConv();
170 
171   if (auto *CI = dyn_cast<CallInst>(V)) {
172     const bool IsInlineAsm = CI->isInlineAsm();
173     const bool IsIndirectFunctionCall =
174         !IsInlineAsm && !CI->getCalledFunction();
175 
176     // It is possible that the call instruction is an inline asm statement or an
177     // indirect function call in which case the return value of
178     // getCalledFunction() would be nullptr.
179     const bool IsInstrinsicCall =
180         !IsInlineAsm && !IsIndirectFunctionCall &&
181         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
182 
183     if (!IsInlineAsm && !IsInstrinsicCall)
184       return CI->getCallingConv();
185   }
186 
187   return None;
188 }
189 
190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
191                                       const SDValue *Parts, unsigned NumParts,
192                                       MVT PartVT, EVT ValueVT, const Value *V,
193                                       Optional<CallingConv::ID> CC);
194 
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent.  If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
201                                 const SDValue *Parts, unsigned NumParts,
202                                 MVT PartVT, EVT ValueVT, const Value *V,
203                                 Optional<CallingConv::ID> CC = None,
204                                 Optional<ISD::NodeType> AssertOp = None) {
205   if (ValueVT.isVector())
206     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
207                                   CC);
208 
209   assert(NumParts > 0 && "No parts to assemble!");
210   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
211   SDValue Val = Parts[0];
212 
213   if (NumParts > 1) {
214     // Assemble the value from multiple parts.
215     if (ValueVT.isInteger()) {
216       unsigned PartBits = PartVT.getSizeInBits();
217       unsigned ValueBits = ValueVT.getSizeInBits();
218 
219       // Assemble the power of 2 part.
220       unsigned RoundParts =
221           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
222       unsigned RoundBits = PartBits * RoundParts;
223       EVT RoundVT = RoundBits == ValueBits ?
224         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
225       SDValue Lo, Hi;
226 
227       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
228 
229       if (RoundParts > 2) {
230         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
231                               PartVT, HalfVT, V);
232         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
233                               RoundParts / 2, PartVT, HalfVT, V);
234       } else {
235         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
236         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237       }
238 
239       if (DAG.getDataLayout().isBigEndian())
240         std::swap(Lo, Hi);
241 
242       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
243 
244       if (RoundParts < NumParts) {
245         // Assemble the trailing non-power-of-2 part.
246         unsigned OddParts = NumParts - RoundParts;
247         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
248         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
249                               OddVT, V, CC);
250 
251         // Combine the round and odd parts.
252         Lo = Val;
253         if (DAG.getDataLayout().isBigEndian())
254           std::swap(Lo, Hi);
255         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
256         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
257         Hi =
258             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
259                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
260                                         TLI.getPointerTy(DAG.getDataLayout())));
261         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
262         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
263       }
264     } else if (PartVT.isFloatingPoint()) {
265       // FP split into multiple FP parts (for ppcf128)
266       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
267              "Unexpected split");
268       SDValue Lo, Hi;
269       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
270       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
271       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
272         std::swap(Lo, Hi);
273       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
274     } else {
275       // FP split into integer parts (soft fp)
276       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
277              !PartVT.isVector() && "Unexpected split");
278       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
279       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
280     }
281   }
282 
283   // There is now one part, held in Val.  Correct it to match ValueVT.
284   // PartEVT is the type of the register class that holds the value.
285   // ValueVT is the type of the inline asm operation.
286   EVT PartEVT = Val.getValueType();
287 
288   if (PartEVT == ValueVT)
289     return Val;
290 
291   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
292       ValueVT.bitsLT(PartEVT)) {
293     // For an FP value in an integer part, we need to truncate to the right
294     // width first.
295     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
296     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297   }
298 
299   // Handle types that have the same size.
300   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
301     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
302 
303   // Handle types with different sizes.
304   if (PartEVT.isInteger() && ValueVT.isInteger()) {
305     if (ValueVT.bitsLT(PartEVT)) {
306       // For a truncate, see if we have any information to
307       // indicate whether the truncated bits will always be
308       // zero or sign-extension.
309       if (AssertOp.hasValue())
310         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
311                           DAG.getValueType(ValueVT));
312       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
313     }
314     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315   }
316 
317   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
318     // FP_ROUND's are always exact here.
319     if (ValueVT.bitsLT(Val.getValueType()))
320       return DAG.getNode(
321           ISD::FP_ROUND, DL, ValueVT, Val,
322           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
323 
324     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325   }
326 
327   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
328   // then truncating.
329   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
330       ValueVT.bitsLT(PartEVT)) {
331     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
332     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333   }
334 
335   report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 }
337 
338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
339                                               const Twine &ErrMsg) {
340   const Instruction *I = dyn_cast_or_null<Instruction>(V);
341   if (!V)
342     return Ctx.emitError(ErrMsg);
343 
344   const char *AsmError = ", possible invalid constraint for vector type";
345   if (const CallInst *CI = dyn_cast<CallInst>(I))
346     if (isa<InlineAsm>(CI->getCalledValue()))
347       return Ctx.emitError(I, ErrMsg + AsmError);
348 
349   return Ctx.emitError(I, ErrMsg);
350 }
351 
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent.  If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
358                                       const SDValue *Parts, unsigned NumParts,
359                                       MVT PartVT, EVT ValueVT, const Value *V,
360                                       Optional<CallingConv::ID> CallConv) {
361   assert(ValueVT.isVector() && "Not a vector value");
362   assert(NumParts > 0 && "No parts to assemble!");
363   const bool IsABIRegCopy = CallConv.hasValue();
364 
365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
366   SDValue Val = Parts[0];
367 
368   // Handle a multi-element vector.
369   if (NumParts > 1) {
370     EVT IntermediateVT;
371     MVT RegisterVT;
372     unsigned NumIntermediates;
373     unsigned NumRegs;
374 
375     if (IsABIRegCopy) {
376       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
377           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
378           NumIntermediates, RegisterVT);
379     } else {
380       NumRegs =
381           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
382                                      NumIntermediates, RegisterVT);
383     }
384 
385     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
386     NumParts = NumRegs; // Silence a compiler warning.
387     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
388     assert(RegisterVT.getSizeInBits() ==
389            Parts[0].getSimpleValueType().getSizeInBits() &&
390            "Part type sizes don't match!");
391 
392     // Assemble the parts into intermediate operands.
393     SmallVector<SDValue, 8> Ops(NumIntermediates);
394     if (NumIntermediates == NumParts) {
395       // If the register was not expanded, truncate or copy the value,
396       // as appropriate.
397       for (unsigned i = 0; i != NumParts; ++i)
398         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
399                                   PartVT, IntermediateVT, V);
400     } else if (NumParts > 0) {
401       // If the intermediate type was expanded, build the intermediate
402       // operands from the parts.
403       assert(NumParts % NumIntermediates == 0 &&
404              "Must expand into a divisible number of parts!");
405       unsigned Factor = NumParts / NumIntermediates;
406       for (unsigned i = 0; i != NumIntermediates; ++i)
407         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
408                                   PartVT, IntermediateVT, V);
409     }
410 
411     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412     // intermediate operands.
413     EVT BuiltVectorTy =
414         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
415                          (IntermediateVT.isVector()
416                               ? IntermediateVT.getVectorNumElements() * NumParts
417                               : NumIntermediates));
418     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
419                                                 : ISD::BUILD_VECTOR,
420                       DL, BuiltVectorTy, Ops);
421   }
422 
423   // There is now one part, held in Val.  Correct it to match ValueVT.
424   EVT PartEVT = Val.getValueType();
425 
426   if (PartEVT == ValueVT)
427     return Val;
428 
429   if (PartEVT.isVector()) {
430     // If the element type of the source/dest vectors are the same, but the
431     // parts vector has more elements than the value vector, then we have a
432     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
433     // elements we want.
434     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
435       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
436              "Cannot narrow, it would be a lossy transformation");
437       return DAG.getNode(
438           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
439           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
440     }
441 
442     // Vector/Vector bitcast.
443     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
444       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
445 
446     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
447       "Cannot handle this kind of promotion");
448     // Promoted vector extract
449     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
450 
451   }
452 
453   // Trivial bitcast if the types are the same size and the destination
454   // vector type is legal.
455   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
456       TLI.isTypeLegal(ValueVT))
457     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
458 
459   if (ValueVT.getVectorNumElements() != 1) {
460      // Certain ABIs require that vectors are passed as integers. For vectors
461      // are the same size, this is an obvious bitcast.
462      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
463        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
464      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
465        // Bitcast Val back the original type and extract the corresponding
466        // vector we want.
467        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
468        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
469                                            ValueVT.getVectorElementType(), Elts);
470        Val = DAG.getBitcast(WiderVecType, Val);
471        return DAG.getNode(
472            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
473            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
474      }
475 
476      diagnosePossiblyInvalidConstraint(
477          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
478      return DAG.getUNDEF(ValueVT);
479   }
480 
481   // Handle cases such as i8 -> <1 x i1>
482   EVT ValueSVT = ValueVT.getVectorElementType();
483   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
484     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
485                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
486 
487   return DAG.getBuildVector(ValueVT, DL, Val);
488 }
489 
490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
491                                  SDValue Val, SDValue *Parts, unsigned NumParts,
492                                  MVT PartVT, const Value *V,
493                                  Optional<CallingConv::ID> CallConv);
494 
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts.  If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
499                            SDValue *Parts, unsigned NumParts, MVT PartVT,
500                            const Value *V,
501                            Optional<CallingConv::ID> CallConv = None,
502                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
503   EVT ValueVT = Val.getValueType();
504 
505   // Handle the vector case separately.
506   if (ValueVT.isVector())
507     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
508                                 CallConv);
509 
510   unsigned PartBits = PartVT.getSizeInBits();
511   unsigned OrigNumParts = NumParts;
512   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
513          "Copying to an illegal type!");
514 
515   if (NumParts == 0)
516     return;
517 
518   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
519   EVT PartEVT = PartVT;
520   if (PartEVT == ValueVT) {
521     assert(NumParts == 1 && "No-op copy with multiple parts!");
522     Parts[0] = Val;
523     return;
524   }
525 
526   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
527     // If the parts cover more bits than the value has, promote the value.
528     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
529       assert(NumParts == 1 && "Do not know what to promote to!");
530       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
531     } else {
532       if (ValueVT.isFloatingPoint()) {
533         // FP values need to be bitcast, then extended if they are being put
534         // into a larger container.
535         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
536         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
537       }
538       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
539              ValueVT.isInteger() &&
540              "Unknown mismatch!");
541       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
542       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
543       if (PartVT == MVT::x86mmx)
544         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
545     }
546   } else if (PartBits == ValueVT.getSizeInBits()) {
547     // Different types of the same size.
548     assert(NumParts == 1 && PartEVT != ValueVT);
549     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
550   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
551     // If the parts cover less bits than value has, truncate the value.
552     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
553            ValueVT.isInteger() &&
554            "Unknown mismatch!");
555     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
556     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
557     if (PartVT == MVT::x86mmx)
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559   }
560 
561   // The value may have changed - recompute ValueVT.
562   ValueVT = Val.getValueType();
563   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
564          "Failed to tile the value with PartVT!");
565 
566   if (NumParts == 1) {
567     if (PartEVT != ValueVT) {
568       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
569                                         "scalar-to-vector conversion failed");
570       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571     }
572 
573     Parts[0] = Val;
574     return;
575   }
576 
577   // Expand the value into multiple parts.
578   if (NumParts & (NumParts - 1)) {
579     // The number of parts is not a power of 2.  Split off and copy the tail.
580     assert(PartVT.isInteger() && ValueVT.isInteger() &&
581            "Do not know what to expand to!");
582     unsigned RoundParts = 1 << Log2_32(NumParts);
583     unsigned RoundBits = RoundParts * PartBits;
584     unsigned OddParts = NumParts - RoundParts;
585     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
586       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
587 
588     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
589                    CallConv);
590 
591     if (DAG.getDataLayout().isBigEndian())
592       // The odd parts were reversed by getCopyToParts - unreverse them.
593       std::reverse(Parts + RoundParts, Parts + NumParts);
594 
595     NumParts = RoundParts;
596     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
597     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
598   }
599 
600   // The number of parts is a power of 2.  Repeatedly bisect the value using
601   // EXTRACT_ELEMENT.
602   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
603                          EVT::getIntegerVT(*DAG.getContext(),
604                                            ValueVT.getSizeInBits()),
605                          Val);
606 
607   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
608     for (unsigned i = 0; i < NumParts; i += StepSize) {
609       unsigned ThisBits = StepSize * PartBits / 2;
610       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
611       SDValue &Part0 = Parts[i];
612       SDValue &Part1 = Parts[i+StepSize/2];
613 
614       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
616       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
617                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
618 
619       if (ThisBits == PartBits && ThisVT != PartVT) {
620         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
621         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
622       }
623     }
624   }
625 
626   if (DAG.getDataLayout().isBigEndian())
627     std::reverse(Parts, Parts + OrigNumParts);
628 }
629 
630 static SDValue widenVectorToPartType(SelectionDAG &DAG,
631                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
632   if (!PartVT.isVector())
633     return SDValue();
634 
635   EVT ValueVT = Val.getValueType();
636   unsigned PartNumElts = PartVT.getVectorNumElements();
637   unsigned ValueNumElts = ValueVT.getVectorNumElements();
638   if (PartNumElts > ValueNumElts &&
639       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
640     EVT ElementVT = PartVT.getVectorElementType();
641     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
642     // undef elements.
643     SmallVector<SDValue, 16> Ops;
644     DAG.ExtractVectorElements(Val, Ops);
645     SDValue EltUndef = DAG.getUNDEF(ElementVT);
646     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
647       Ops.push_back(EltUndef);
648 
649     // FIXME: Use CONCAT for 2x -> 4x.
650     return DAG.getBuildVector(PartVT, DL, Ops);
651   }
652 
653   return SDValue();
654 }
655 
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
659                                  SDValue Val, SDValue *Parts, unsigned NumParts,
660                                  MVT PartVT, const Value *V,
661                                  Optional<CallingConv::ID> CallConv) {
662   EVT ValueVT = Val.getValueType();
663   assert(ValueVT.isVector() && "Not a vector");
664   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
665   const bool IsABIRegCopy = CallConv.hasValue();
666 
667   if (NumParts == 1) {
668     EVT PartEVT = PartVT;
669     if (PartEVT == ValueVT) {
670       // Nothing to do.
671     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
672       // Bitconvert vector->vector case.
673       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
674     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
675       Val = Widened;
676     } else if (PartVT.isVector() &&
677                PartEVT.getVectorElementType().bitsGE(
678                  ValueVT.getVectorElementType()) &&
679                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
680 
681       // Promoted vector extract
682       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
683     } else {
684       if (ValueVT.getVectorNumElements() == 1) {
685         Val = DAG.getNode(
686             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
687             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
688       } else {
689         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
690                "lossy conversion of vector to scalar type");
691         EVT IntermediateType =
692             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
693         Val = DAG.getBitcast(IntermediateType, Val);
694         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
695       }
696     }
697 
698     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
699     Parts[0] = Val;
700     return;
701   }
702 
703   // Handle a multi-element vector.
704   EVT IntermediateVT;
705   MVT RegisterVT;
706   unsigned NumIntermediates;
707   unsigned NumRegs;
708   if (IsABIRegCopy) {
709     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
710         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
711         NumIntermediates, RegisterVT);
712   } else {
713     NumRegs =
714         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
715                                    NumIntermediates, RegisterVT);
716   }
717 
718   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
719   NumParts = NumRegs; // Silence a compiler warning.
720   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
721 
722   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
723     IntermediateVT.getVectorNumElements() : 1;
724 
725   // Convert the vector to the appropiate type if necessary.
726   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
727 
728   EVT BuiltVectorTy = EVT::getVectorVT(
729       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
730   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
731   if (ValueVT != BuiltVectorTy) {
732     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
733       Val = Widened;
734 
735     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736   }
737 
738   // Split the vector into intermediate operands.
739   SmallVector<SDValue, 8> Ops(NumIntermediates);
740   for (unsigned i = 0; i != NumIntermediates; ++i) {
741     if (IntermediateVT.isVector()) {
742       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
743                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
744     } else {
745       Ops[i] = DAG.getNode(
746           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
747           DAG.getConstant(i, DL, IdxVT));
748     }
749   }
750 
751   // Split the intermediate operands into legal parts.
752   if (NumParts == NumIntermediates) {
753     // If the register was not expanded, promote or copy the value,
754     // as appropriate.
755     for (unsigned i = 0; i != NumParts; ++i)
756       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
757   } else if (NumParts > 0) {
758     // If the intermediate type was expanded, split each the value into
759     // legal parts.
760     assert(NumIntermediates != 0 && "division by zero");
761     assert(NumParts % NumIntermediates == 0 &&
762            "Must expand into a divisible number of parts!");
763     unsigned Factor = NumParts / NumIntermediates;
764     for (unsigned i = 0; i != NumIntermediates; ++i)
765       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
766                      CallConv);
767   }
768 }
769 
770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
771                            EVT valuevt, Optional<CallingConv::ID> CC)
772     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
773       RegCount(1, regs.size()), CallConv(CC) {}
774 
775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
776                            const DataLayout &DL, unsigned Reg, Type *Ty,
777                            Optional<CallingConv::ID> CC) {
778   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
779 
780   CallConv = CC;
781 
782   for (EVT ValueVT : ValueVTs) {
783     unsigned NumRegs =
784         isABIMangled()
785             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
786             : TLI.getNumRegisters(Context, ValueVT);
787     MVT RegisterVT =
788         isABIMangled()
789             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getRegisterType(Context, ValueVT);
791     for (unsigned i = 0; i != NumRegs; ++i)
792       Regs.push_back(Reg + i);
793     RegVTs.push_back(RegisterVT);
794     RegCount.push_back(NumRegs);
795     Reg += NumRegs;
796   }
797 }
798 
799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
800                                       FunctionLoweringInfo &FuncInfo,
801                                       const SDLoc &dl, SDValue &Chain,
802                                       SDValue *Flag, const Value *V) const {
803   // A Value with type {} or [0 x %t] needs no registers.
804   if (ValueVTs.empty())
805     return SDValue();
806 
807   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
808 
809   // Assemble the legal parts into the final values.
810   SmallVector<SDValue, 4> Values(ValueVTs.size());
811   SmallVector<SDValue, 8> Parts;
812   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
813     // Copy the legal parts from the registers.
814     EVT ValueVT = ValueVTs[Value];
815     unsigned NumRegs = RegCount[Value];
816     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
817                                           *DAG.getContext(),
818                                           CallConv.getValue(), RegVTs[Value])
819                                     : RegVTs[Value];
820 
821     Parts.resize(NumRegs);
822     for (unsigned i = 0; i != NumRegs; ++i) {
823       SDValue P;
824       if (!Flag) {
825         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
826       } else {
827         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
828         *Flag = P.getValue(2);
829       }
830 
831       Chain = P.getValue(1);
832       Parts[i] = P;
833 
834       // If the source register was virtual and if we know something about it,
835       // add an assert node.
836       if (!Register::isVirtualRegister(Regs[Part + i]) ||
837           !RegisterVT.isInteger())
838         continue;
839 
840       const FunctionLoweringInfo::LiveOutInfo *LOI =
841         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
842       if (!LOI)
843         continue;
844 
845       unsigned RegSize = RegisterVT.getScalarSizeInBits();
846       unsigned NumSignBits = LOI->NumSignBits;
847       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
848 
849       if (NumZeroBits == RegSize) {
850         // The current value is a zero.
851         // Explicitly express that as it would be easier for
852         // optimizations to kick in.
853         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
854         continue;
855       }
856 
857       // FIXME: We capture more information than the dag can represent.  For
858       // now, just use the tightest assertzext/assertsext possible.
859       bool isSExt;
860       EVT FromVT(MVT::Other);
861       if (NumZeroBits) {
862         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
863         isSExt = false;
864       } else if (NumSignBits > 1) {
865         FromVT =
866             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
867         isSExt = true;
868       } else {
869         continue;
870       }
871       // Add an assertion node.
872       assert(FromVT != MVT::Other);
873       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
874                              RegisterVT, P, DAG.getValueType(FromVT));
875     }
876 
877     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
878                                      RegisterVT, ValueVT, V, CallConv);
879     Part += NumRegs;
880     Parts.clear();
881   }
882 
883   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 }
885 
886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
887                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
888                                  const Value *V,
889                                  ISD::NodeType PreferredExtendType) const {
890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
891   ISD::NodeType ExtendKind = PreferredExtendType;
892 
893   // Get the list of the values's legal parts.
894   unsigned NumRegs = Regs.size();
895   SmallVector<SDValue, 8> Parts(NumRegs);
896   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
897     unsigned NumParts = RegCount[Value];
898 
899     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
900                                           *DAG.getContext(),
901                                           CallConv.getValue(), RegVTs[Value])
902                                     : RegVTs[Value];
903 
904     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
905       ExtendKind = ISD::ZERO_EXTEND;
906 
907     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
908                    NumParts, RegisterVT, V, CallConv, ExtendKind);
909     Part += NumParts;
910   }
911 
912   // Copy the parts into the registers.
913   SmallVector<SDValue, 8> Chains(NumRegs);
914   for (unsigned i = 0; i != NumRegs; ++i) {
915     SDValue Part;
916     if (!Flag) {
917       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
918     } else {
919       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
920       *Flag = Part.getValue(1);
921     }
922 
923     Chains[i] = Part.getValue(0);
924   }
925 
926   if (NumRegs == 1 || Flag)
927     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928     // flagged to it. That is the CopyToReg nodes and the user are considered
929     // a single scheduling unit. If we create a TokenFactor and return it as
930     // chain, then the TokenFactor is both a predecessor (operand) of the
931     // user as well as a successor (the TF operands are flagged to the user).
932     // c1, f1 = CopyToReg
933     // c2, f2 = CopyToReg
934     // c3     = TokenFactor c1, c2
935     // ...
936     //        = op c3, ..., f2
937     Chain = Chains[NumRegs-1];
938   else
939     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 }
941 
942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
943                                         unsigned MatchingIdx, const SDLoc &dl,
944                                         SelectionDAG &DAG,
945                                         std::vector<SDValue> &Ops) const {
946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
947 
948   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
949   if (HasMatching)
950     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
951   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
952     // Put the register class of the virtual registers in the flag word.  That
953     // way, later passes can recompute register class constraints for inline
954     // assembly as well as normal instructions.
955     // Don't do this for tied operands that can use the regclass information
956     // from the def.
957     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
958     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
959     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
960   }
961 
962   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
963   Ops.push_back(Res);
964 
965   if (Code == InlineAsm::Kind_Clobber) {
966     // Clobbers should always have a 1:1 mapping with registers, and may
967     // reference registers that have illegal (e.g. vector) types. Hence, we
968     // shouldn't try to apply any sort of splitting logic to them.
969     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
970            "No 1:1 mapping from clobbers to regs?");
971     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
972     (void)SP;
973     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
974       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
975       assert(
976           (Regs[I] != SP ||
977            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
978           "If we clobbered the stack pointer, MFI should know about it.");
979     }
980     return;
981   }
982 
983   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
984     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
985     MVT RegisterVT = RegVTs[Value];
986     for (unsigned i = 0; i != NumRegs; ++i) {
987       assert(Reg < Regs.size() && "Mismatch in # registers expected");
988       unsigned TheReg = Regs[Reg++];
989       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
990     }
991   }
992 }
993 
994 SmallVector<std::pair<unsigned, unsigned>, 4>
995 RegsForValue::getRegsAndSizes() const {
996   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
997   unsigned I = 0;
998   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
999     unsigned RegCount = std::get<0>(CountAndVT);
1000     MVT RegisterVT = std::get<1>(CountAndVT);
1001     unsigned RegisterSize = RegisterVT.getSizeInBits();
1002     for (unsigned E = I + RegCount; I != E; ++I)
1003       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004   }
1005   return OutVec;
1006 }
1007 
1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1009                                const TargetLibraryInfo *li) {
1010   AA = aa;
1011   GFI = gfi;
1012   LibInfo = li;
1013   DL = &DAG.getDataLayout();
1014   Context = DAG.getContext();
1015   LPadToCallSiteMap.clear();
1016   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1017 }
1018 
1019 void SelectionDAGBuilder::clear() {
1020   NodeMap.clear();
1021   UnusedArgNodeMap.clear();
1022   PendingLoads.clear();
1023   PendingExports.clear();
1024   CurInst = nullptr;
1025   HasTailCall = false;
1026   SDNodeOrder = LowestSDNodeOrder;
1027   StatepointLowering.clear();
1028 }
1029 
1030 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1031   DanglingDebugInfoMap.clear();
1032 }
1033 
1034 SDValue SelectionDAGBuilder::getRoot() {
1035   if (PendingLoads.empty())
1036     return DAG.getRoot();
1037 
1038   if (PendingLoads.size() == 1) {
1039     SDValue Root = PendingLoads[0];
1040     DAG.setRoot(Root);
1041     PendingLoads.clear();
1042     return Root;
1043   }
1044 
1045   // Otherwise, we have to make a token factor node.
1046   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1047   PendingLoads.clear();
1048   DAG.setRoot(Root);
1049   return Root;
1050 }
1051 
1052 SDValue SelectionDAGBuilder::getControlRoot() {
1053   SDValue Root = DAG.getRoot();
1054 
1055   if (PendingExports.empty())
1056     return Root;
1057 
1058   // Turn all of the CopyToReg chains into one factored node.
1059   if (Root.getOpcode() != ISD::EntryToken) {
1060     unsigned i = 0, e = PendingExports.size();
1061     for (; i != e; ++i) {
1062       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1063       if (PendingExports[i].getNode()->getOperand(0) == Root)
1064         break;  // Don't add the root if we already indirectly depend on it.
1065     }
1066 
1067     if (i == e)
1068       PendingExports.push_back(Root);
1069   }
1070 
1071   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1072                      PendingExports);
1073   PendingExports.clear();
1074   DAG.setRoot(Root);
1075   return Root;
1076 }
1077 
1078 void SelectionDAGBuilder::visit(const Instruction &I) {
1079   // Set up outgoing PHI node register values before emitting the terminator.
1080   if (I.isTerminator()) {
1081     HandlePHINodesInSuccessorBlocks(I.getParent());
1082   }
1083 
1084   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1085   if (!isa<DbgInfoIntrinsic>(I))
1086     ++SDNodeOrder;
1087 
1088   CurInst = &I;
1089 
1090   visit(I.getOpcode(), I);
1091 
1092   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1093     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1094     // maps to this instruction.
1095     // TODO: We could handle all flags (nsw, etc) here.
1096     // TODO: If an IR instruction maps to >1 node, only the final node will have
1097     //       flags set.
1098     if (SDNode *Node = getNodeForIRValue(&I)) {
1099       SDNodeFlags IncomingFlags;
1100       IncomingFlags.copyFMF(*FPMO);
1101       if (!Node->getFlags().isDefined())
1102         Node->setFlags(IncomingFlags);
1103       else
1104         Node->intersectFlagsWith(IncomingFlags);
1105     }
1106   }
1107 
1108   if (!I.isTerminator() && !HasTailCall &&
1109       !isStatepoint(&I)) // statepoints handle their exports internally
1110     CopyToExportRegsIfNeeded(&I);
1111 
1112   CurInst = nullptr;
1113 }
1114 
1115 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1116   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 }
1118 
1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1120   // Note: this doesn't use InstVisitor, because it has to work with
1121   // ConstantExpr's in addition to instructions.
1122   switch (Opcode) {
1123   default: llvm_unreachable("Unknown instruction type encountered!");
1124     // Build the switch statement using the Instruction.def file.
1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1126     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1127 #include "llvm/IR/Instruction.def"
1128   }
1129 }
1130 
1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1132                                                 const DIExpression *Expr) {
1133   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1134     const DbgValueInst *DI = DDI.getDI();
1135     DIVariable *DanglingVariable = DI->getVariable();
1136     DIExpression *DanglingExpr = DI->getExpression();
1137     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1138       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1139       return true;
1140     }
1141     return false;
1142   };
1143 
1144   for (auto &DDIMI : DanglingDebugInfoMap) {
1145     DanglingDebugInfoVector &DDIV = DDIMI.second;
1146 
1147     // If debug info is to be dropped, run it through final checks to see
1148     // whether it can be salvaged.
1149     for (auto &DDI : DDIV)
1150       if (isMatchingDbgValue(DDI))
1151         salvageUnresolvedDbgValue(DDI);
1152 
1153     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1154   }
1155 }
1156 
1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1158 // generate the debug data structures now that we've seen its definition.
1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1160                                                    SDValue Val) {
1161   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1162   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1163     return;
1164 
1165   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1166   for (auto &DDI : DDIV) {
1167     const DbgValueInst *DI = DDI.getDI();
1168     assert(DI && "Ill-formed DanglingDebugInfo");
1169     DebugLoc dl = DDI.getdl();
1170     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1171     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1172     DILocalVariable *Variable = DI->getVariable();
1173     DIExpression *Expr = DI->getExpression();
1174     assert(Variable->isValidLocationForIntrinsic(dl) &&
1175            "Expected inlined-at fields to agree");
1176     SDDbgValue *SDV;
1177     if (Val.getNode()) {
1178       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1179       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1180       // we couldn't resolve it directly when examining the DbgValue intrinsic
1181       // in the first place we should not be more successful here). Unless we
1182       // have some test case that prove this to be correct we should avoid
1183       // calling EmitFuncArgumentDbgValue here.
1184       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1185         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1186                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1187         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1188         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1189         // inserted after the definition of Val when emitting the instructions
1190         // after ISel. An alternative could be to teach
1191         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1192         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1193                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1194                    << ValSDNodeOrder << "\n");
1195         SDV = getDbgValue(Val, Variable, Expr, dl,
1196                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1197         DAG.AddDbgValue(SDV, Val.getNode(), false);
1198       } else
1199         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1200                           << "in EmitFuncArgumentDbgValue\n");
1201     } else {
1202       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1203       auto Undef =
1204           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1205       auto SDV =
1206           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1207       DAG.AddDbgValue(SDV, nullptr, false);
1208     }
1209   }
1210   DDIV.clear();
1211 }
1212 
1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1214   Value *V = DDI.getDI()->getValue();
1215   DILocalVariable *Var = DDI.getDI()->getVariable();
1216   DIExpression *Expr = DDI.getDI()->getExpression();
1217   DebugLoc DL = DDI.getdl();
1218   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1219   unsigned SDOrder = DDI.getSDNodeOrder();
1220 
1221   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1222   // that DW_OP_stack_value is desired.
1223   assert(isa<DbgValueInst>(DDI.getDI()));
1224   bool StackValue = true;
1225 
1226   // Can this Value can be encoded without any further work?
1227   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1228     return;
1229 
1230   // Attempt to salvage back through as many instructions as possible. Bail if
1231   // a non-instruction is seen, such as a constant expression or global
1232   // variable. FIXME: Further work could recover those too.
1233   while (isa<Instruction>(V)) {
1234     Instruction &VAsInst = *cast<Instruction>(V);
1235     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1236 
1237     // If we cannot salvage any further, and haven't yet found a suitable debug
1238     // expression, bail out.
1239     if (!NewExpr)
1240       break;
1241 
1242     // New value and expr now represent this debuginfo.
1243     V = VAsInst.getOperand(0);
1244     Expr = NewExpr;
1245 
1246     // Some kind of simplification occurred: check whether the operand of the
1247     // salvaged debug expression can be encoded in this DAG.
1248     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1249       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1250                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1251       return;
1252     }
1253   }
1254 
1255   // This was the final opportunity to salvage this debug information, and it
1256   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1257   // any earlier variable location.
1258   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1259   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1260   DAG.AddDbgValue(SDV, nullptr, false);
1261 
1262   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1263                     << "\n");
1264   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1265                     << "\n");
1266 }
1267 
1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1269                                            DIExpression *Expr, DebugLoc dl,
1270                                            DebugLoc InstDL, unsigned Order) {
1271   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1272   SDDbgValue *SDV;
1273   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1274       isa<ConstantPointerNull>(V)) {
1275     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1276     DAG.AddDbgValue(SDV, nullptr, false);
1277     return true;
1278   }
1279 
1280   // If the Value is a frame index, we can create a FrameIndex debug value
1281   // without relying on the DAG at all.
1282   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1283     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1284     if (SI != FuncInfo.StaticAllocaMap.end()) {
1285       auto SDV =
1286           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1287                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1288       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1289       // is still available even if the SDNode gets optimized out.
1290       DAG.AddDbgValue(SDV, nullptr, false);
1291       return true;
1292     }
1293   }
1294 
1295   // Do not use getValue() in here; we don't want to generate code at
1296   // this point if it hasn't been done yet.
1297   SDValue N = NodeMap[V];
1298   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1299     N = UnusedArgNodeMap[V];
1300   if (N.getNode()) {
1301     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1302       return true;
1303     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1304     DAG.AddDbgValue(SDV, N.getNode(), false);
1305     return true;
1306   }
1307 
1308   // Special rules apply for the first dbg.values of parameter variables in a
1309   // function. Identify them by the fact they reference Argument Values, that
1310   // they're parameters, and they are parameters of the current function. We
1311   // need to let them dangle until they get an SDNode.
1312   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1313                        !InstDL.getInlinedAt();
1314   if (!IsParamOfFunc) {
1315     // The value is not used in this block yet (or it would have an SDNode).
1316     // We still want the value to appear for the user if possible -- if it has
1317     // an associated VReg, we can refer to that instead.
1318     auto VMI = FuncInfo.ValueMap.find(V);
1319     if (VMI != FuncInfo.ValueMap.end()) {
1320       unsigned Reg = VMI->second;
1321       // If this is a PHI node, it may be split up into several MI PHI nodes
1322       // (in FunctionLoweringInfo::set).
1323       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1324                        V->getType(), None);
1325       if (RFV.occupiesMultipleRegs()) {
1326         unsigned Offset = 0;
1327         unsigned BitsToDescribe = 0;
1328         if (auto VarSize = Var->getSizeInBits())
1329           BitsToDescribe = *VarSize;
1330         if (auto Fragment = Expr->getFragmentInfo())
1331           BitsToDescribe = Fragment->SizeInBits;
1332         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1333           unsigned RegisterSize = RegAndSize.second;
1334           // Bail out if all bits are described already.
1335           if (Offset >= BitsToDescribe)
1336             break;
1337           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1338               ? BitsToDescribe - Offset
1339               : RegisterSize;
1340           auto FragmentExpr = DIExpression::createFragmentExpression(
1341               Expr, Offset, FragmentSize);
1342           if (!FragmentExpr)
1343               continue;
1344           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1345                                     false, dl, SDNodeOrder);
1346           DAG.AddDbgValue(SDV, nullptr, false);
1347           Offset += RegisterSize;
1348         }
1349       } else {
1350         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1351         DAG.AddDbgValue(SDV, nullptr, false);
1352       }
1353       return true;
1354     }
1355   }
1356 
1357   return false;
1358 }
1359 
1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1361   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1362   for (auto &Pair : DanglingDebugInfoMap)
1363     for (auto &DDI : Pair.second)
1364       salvageUnresolvedDbgValue(DDI);
1365   clearDanglingDebugInfo();
1366 }
1367 
1368 /// getCopyFromRegs - If there was virtual register allocated for the value V
1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1371   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1372   SDValue Result;
1373 
1374   if (It != FuncInfo.ValueMap.end()) {
1375     unsigned InReg = It->second;
1376 
1377     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1378                      DAG.getDataLayout(), InReg, Ty,
1379                      None); // This is not an ABI copy.
1380     SDValue Chain = DAG.getEntryNode();
1381     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1382                                  V);
1383     resolveDanglingDebugInfo(V, Result);
1384   }
1385 
1386   return Result;
1387 }
1388 
1389 /// getValue - Return an SDValue for the given Value.
1390 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1391   // If we already have an SDValue for this value, use it. It's important
1392   // to do this first, so that we don't create a CopyFromReg if we already
1393   // have a regular SDValue.
1394   SDValue &N = NodeMap[V];
1395   if (N.getNode()) return N;
1396 
1397   // If there's a virtual register allocated and initialized for this
1398   // value, use it.
1399   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1400     return copyFromReg;
1401 
1402   // Otherwise create a new SDValue and remember it.
1403   SDValue Val = getValueImpl(V);
1404   NodeMap[V] = Val;
1405   resolveDanglingDebugInfo(V, Val);
1406   return Val;
1407 }
1408 
1409 // Return true if SDValue exists for the given Value
1410 bool SelectionDAGBuilder::findValue(const Value *V) const {
1411   return (NodeMap.find(V) != NodeMap.end()) ||
1412     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1413 }
1414 
1415 /// getNonRegisterValue - Return an SDValue for the given Value, but
1416 /// don't look in FuncInfo.ValueMap for a virtual register.
1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1418   // If we already have an SDValue for this value, use it.
1419   SDValue &N = NodeMap[V];
1420   if (N.getNode()) {
1421     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1422       // Remove the debug location from the node as the node is about to be used
1423       // in a location which may differ from the original debug location.  This
1424       // is relevant to Constant and ConstantFP nodes because they can appear
1425       // as constant expressions inside PHI nodes.
1426       N->setDebugLoc(DebugLoc());
1427     }
1428     return N;
1429   }
1430 
1431   // Otherwise create a new SDValue and remember it.
1432   SDValue Val = getValueImpl(V);
1433   NodeMap[V] = Val;
1434   resolveDanglingDebugInfo(V, Val);
1435   return Val;
1436 }
1437 
1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1439 /// Create an SDValue for the given value.
1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1442 
1443   if (const Constant *C = dyn_cast<Constant>(V)) {
1444     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1445 
1446     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1447       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1448 
1449     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1450       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1451 
1452     if (isa<ConstantPointerNull>(C)) {
1453       unsigned AS = V->getType()->getPointerAddressSpace();
1454       return DAG.getConstant(0, getCurSDLoc(),
1455                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1456     }
1457 
1458     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1459       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1460 
1461     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1462       return DAG.getUNDEF(VT);
1463 
1464     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1465       visit(CE->getOpcode(), *CE);
1466       SDValue N1 = NodeMap[V];
1467       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1468       return N1;
1469     }
1470 
1471     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1472       SmallVector<SDValue, 4> Constants;
1473       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1474            OI != OE; ++OI) {
1475         SDNode *Val = getValue(*OI).getNode();
1476         // If the operand is an empty aggregate, there are no values.
1477         if (!Val) continue;
1478         // Add each leaf value from the operand to the Constants list
1479         // to form a flattened list of all the values.
1480         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1481           Constants.push_back(SDValue(Val, i));
1482       }
1483 
1484       return DAG.getMergeValues(Constants, getCurSDLoc());
1485     }
1486 
1487     if (const ConstantDataSequential *CDS =
1488           dyn_cast<ConstantDataSequential>(C)) {
1489       SmallVector<SDValue, 4> Ops;
1490       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1492         // Add each leaf value from the operand to the Constants list
1493         // to form a flattened list of all the values.
1494         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1495           Ops.push_back(SDValue(Val, i));
1496       }
1497 
1498       if (isa<ArrayType>(CDS->getType()))
1499         return DAG.getMergeValues(Ops, getCurSDLoc());
1500       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1501     }
1502 
1503     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1504       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1505              "Unknown struct or array constant!");
1506 
1507       SmallVector<EVT, 4> ValueVTs;
1508       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1509       unsigned NumElts = ValueVTs.size();
1510       if (NumElts == 0)
1511         return SDValue(); // empty struct
1512       SmallVector<SDValue, 4> Constants(NumElts);
1513       for (unsigned i = 0; i != NumElts; ++i) {
1514         EVT EltVT = ValueVTs[i];
1515         if (isa<UndefValue>(C))
1516           Constants[i] = DAG.getUNDEF(EltVT);
1517         else if (EltVT.isFloatingPoint())
1518           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1519         else
1520           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1521       }
1522 
1523       return DAG.getMergeValues(Constants, getCurSDLoc());
1524     }
1525 
1526     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1527       return DAG.getBlockAddress(BA, VT);
1528 
1529     VectorType *VecTy = cast<VectorType>(V->getType());
1530     unsigned NumElements = VecTy->getNumElements();
1531 
1532     // Now that we know the number and type of the elements, get that number of
1533     // elements into the Ops array based on what kind of constant it is.
1534     SmallVector<SDValue, 16> Ops;
1535     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1536       for (unsigned i = 0; i != NumElements; ++i)
1537         Ops.push_back(getValue(CV->getOperand(i)));
1538     } else {
1539       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1540       EVT EltVT =
1541           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1542 
1543       SDValue Op;
1544       if (EltVT.isFloatingPoint())
1545         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1546       else
1547         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1548       Ops.assign(NumElements, Op);
1549     }
1550 
1551     // Create a BUILD_VECTOR node.
1552     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1553   }
1554 
1555   // If this is a static alloca, generate it as the frameindex instead of
1556   // computation.
1557   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1558     DenseMap<const AllocaInst*, int>::iterator SI =
1559       FuncInfo.StaticAllocaMap.find(AI);
1560     if (SI != FuncInfo.StaticAllocaMap.end())
1561       return DAG.getFrameIndex(SI->second,
1562                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1563   }
1564 
1565   // If this is an instruction which fast-isel has deferred, select it now.
1566   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1567     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1568 
1569     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1570                      Inst->getType(), getABIRegCopyCC(V));
1571     SDValue Chain = DAG.getEntryNode();
1572     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573   }
1574 
1575   llvm_unreachable("Can't get register for value!");
1576 }
1577 
1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1579   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1580   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1581   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1582   bool IsSEH = isAsynchronousEHPersonality(Pers);
1583   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1584   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1585   if (!IsSEH)
1586     CatchPadMBB->setIsEHScopeEntry();
1587   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1588   if (IsMSVCCXX || IsCoreCLR)
1589     CatchPadMBB->setIsEHFuncletEntry();
1590   // Wasm does not need catchpads anymore
1591   if (!IsWasmCXX)
1592     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1593                             getControlRoot()));
1594 }
1595 
1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1597   // Update machine-CFG edge.
1598   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1599   FuncInfo.MBB->addSuccessor(TargetMBB);
1600 
1601   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1602   bool IsSEH = isAsynchronousEHPersonality(Pers);
1603   if (IsSEH) {
1604     // If this is not a fall-through branch or optimizations are switched off,
1605     // emit the branch.
1606     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1607         TM.getOptLevel() == CodeGenOpt::None)
1608       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1609                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1610     return;
1611   }
1612 
1613   // Figure out the funclet membership for the catchret's successor.
1614   // This will be used by the FuncletLayout pass to determine how to order the
1615   // BB's.
1616   // A 'catchret' returns to the outer scope's color.
1617   Value *ParentPad = I.getCatchSwitchParentPad();
1618   const BasicBlock *SuccessorColor;
1619   if (isa<ConstantTokenNone>(ParentPad))
1620     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1621   else
1622     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1623   assert(SuccessorColor && "No parent funclet for catchret!");
1624   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1625   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1626 
1627   // Create the terminator node.
1628   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1629                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1630                             DAG.getBasicBlock(SuccessorColorMBB));
1631   DAG.setRoot(Ret);
1632 }
1633 
1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1635   // Don't emit any special code for the cleanuppad instruction. It just marks
1636   // the start of an EH scope/funclet.
1637   FuncInfo.MBB->setIsEHScopeEntry();
1638   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1639   if (Pers != EHPersonality::Wasm_CXX) {
1640     FuncInfo.MBB->setIsEHFuncletEntry();
1641     FuncInfo.MBB->setIsCleanupFuncletEntry();
1642   }
1643 }
1644 
1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1646 // the control flow always stops at the single catch pad, as it does for a
1647 // cleanup pad. In case the exception caught is not of the types the catch pad
1648 // catches, it will be rethrown by a rethrow.
1649 static void findWasmUnwindDestinations(
1650     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1651     BranchProbability Prob,
1652     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1653         &UnwindDests) {
1654   while (EHPadBB) {
1655     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1656     if (isa<CleanupPadInst>(Pad)) {
1657       // Stop on cleanup pads.
1658       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1659       UnwindDests.back().first->setIsEHScopeEntry();
1660       break;
1661     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1662       // Add the catchpad handlers to the possible destinations. We don't
1663       // continue to the unwind destination of the catchswitch for wasm.
1664       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1665         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1666         UnwindDests.back().first->setIsEHScopeEntry();
1667       }
1668       break;
1669     } else {
1670       continue;
1671     }
1672   }
1673 }
1674 
1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1676 /// many places it could ultimately go. In the IR, we have a single unwind
1677 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1678 /// This function skips over imaginary basic blocks that hold catchswitch
1679 /// instructions, and finds all the "real" machine
1680 /// basic block destinations. As those destinations may not be successors of
1681 /// EHPadBB, here we also calculate the edge probability to those destinations.
1682 /// The passed-in Prob is the edge probability to EHPadBB.
1683 static void findUnwindDestinations(
1684     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1685     BranchProbability Prob,
1686     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1687         &UnwindDests) {
1688   EHPersonality Personality =
1689     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1690   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1691   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1692   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1693   bool IsSEH = isAsynchronousEHPersonality(Personality);
1694 
1695   if (IsWasmCXX) {
1696     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1697     assert(UnwindDests.size() <= 1 &&
1698            "There should be at most one unwind destination for wasm");
1699     return;
1700   }
1701 
1702   while (EHPadBB) {
1703     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1704     BasicBlock *NewEHPadBB = nullptr;
1705     if (isa<LandingPadInst>(Pad)) {
1706       // Stop on landingpads. They are not funclets.
1707       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1708       break;
1709     } else if (isa<CleanupPadInst>(Pad)) {
1710       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1711       // personalities.
1712       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1713       UnwindDests.back().first->setIsEHScopeEntry();
1714       UnwindDests.back().first->setIsEHFuncletEntry();
1715       break;
1716     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1717       // Add the catchpad handlers to the possible destinations.
1718       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1719         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1720         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1721         if (IsMSVCCXX || IsCoreCLR)
1722           UnwindDests.back().first->setIsEHFuncletEntry();
1723         if (!IsSEH)
1724           UnwindDests.back().first->setIsEHScopeEntry();
1725       }
1726       NewEHPadBB = CatchSwitch->getUnwindDest();
1727     } else {
1728       continue;
1729     }
1730 
1731     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1732     if (BPI && NewEHPadBB)
1733       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1734     EHPadBB = NewEHPadBB;
1735   }
1736 }
1737 
1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1739   // Update successor info.
1740   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1741   auto UnwindDest = I.getUnwindDest();
1742   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1743   BranchProbability UnwindDestProb =
1744       (BPI && UnwindDest)
1745           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1746           : BranchProbability::getZero();
1747   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1748   for (auto &UnwindDest : UnwindDests) {
1749     UnwindDest.first->setIsEHPad();
1750     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1751   }
1752   FuncInfo.MBB->normalizeSuccProbs();
1753 
1754   // Create the terminator node.
1755   SDValue Ret =
1756       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1757   DAG.setRoot(Ret);
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1761   report_fatal_error("visitCatchSwitch not yet implemented!");
1762 }
1763 
1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1766   auto &DL = DAG.getDataLayout();
1767   SDValue Chain = getControlRoot();
1768   SmallVector<ISD::OutputArg, 8> Outs;
1769   SmallVector<SDValue, 8> OutVals;
1770 
1771   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772   // lower
1773   //
1774   //   %val = call <ty> @llvm.experimental.deoptimize()
1775   //   ret <ty> %val
1776   //
1777   // differently.
1778   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1779     LowerDeoptimizingReturn();
1780     return;
1781   }
1782 
1783   if (!FuncInfo.CanLowerReturn) {
1784     unsigned DemoteReg = FuncInfo.DemoteRegister;
1785     const Function *F = I.getParent()->getParent();
1786 
1787     // Emit a store of the return value through the virtual register.
1788     // Leave Outs empty so that LowerReturn won't try to load return
1789     // registers the usual way.
1790     SmallVector<EVT, 1> PtrValueVTs;
1791     ComputeValueVTs(TLI, DL,
1792                     F->getReturnType()->getPointerTo(
1793                         DAG.getDataLayout().getAllocaAddrSpace()),
1794                     PtrValueVTs);
1795 
1796     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1797                                         DemoteReg, PtrValueVTs[0]);
1798     SDValue RetOp = getValue(I.getOperand(0));
1799 
1800     SmallVector<EVT, 4> ValueVTs, MemVTs;
1801     SmallVector<uint64_t, 4> Offsets;
1802     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1803                     &Offsets);
1804     unsigned NumValues = ValueVTs.size();
1805 
1806     SmallVector<SDValue, 4> Chains(NumValues);
1807     for (unsigned i = 0; i != NumValues; ++i) {
1808       // An aggregate return value cannot wrap around the address space, so
1809       // offsets to its parts don't wrap either.
1810       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1811 
1812       SDValue Val = RetOp.getValue(i);
1813       if (MemVTs[i] != ValueVTs[i])
1814         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1815       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1816           // FIXME: better loc info would be nice.
1817           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1818     }
1819 
1820     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1821                         MVT::Other, Chains);
1822   } else if (I.getNumOperands() != 0) {
1823     SmallVector<EVT, 4> ValueVTs;
1824     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1825     unsigned NumValues = ValueVTs.size();
1826     if (NumValues) {
1827       SDValue RetOp = getValue(I.getOperand(0));
1828 
1829       const Function *F = I.getParent()->getParent();
1830 
1831       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1832           I.getOperand(0)->getType(), F->getCallingConv(),
1833           /*IsVarArg*/ false);
1834 
1835       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1836       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1837                                           Attribute::SExt))
1838         ExtendKind = ISD::SIGN_EXTEND;
1839       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1840                                                Attribute::ZExt))
1841         ExtendKind = ISD::ZERO_EXTEND;
1842 
1843       LLVMContext &Context = F->getContext();
1844       bool RetInReg = F->getAttributes().hasAttribute(
1845           AttributeList::ReturnIndex, Attribute::InReg);
1846 
1847       for (unsigned j = 0; j != NumValues; ++j) {
1848         EVT VT = ValueVTs[j];
1849 
1850         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1851           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1852 
1853         CallingConv::ID CC = F->getCallingConv();
1854 
1855         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1856         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1857         SmallVector<SDValue, 4> Parts(NumParts);
1858         getCopyToParts(DAG, getCurSDLoc(),
1859                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1860                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1861 
1862         // 'inreg' on function refers to return value
1863         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1864         if (RetInReg)
1865           Flags.setInReg();
1866 
1867         if (I.getOperand(0)->getType()->isPointerTy()) {
1868           Flags.setPointer();
1869           Flags.setPointerAddrSpace(
1870               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1871         }
1872 
1873         if (NeedsRegBlock) {
1874           Flags.setInConsecutiveRegs();
1875           if (j == NumValues - 1)
1876             Flags.setInConsecutiveRegsLast();
1877         }
1878 
1879         // Propagate extension type if any
1880         if (ExtendKind == ISD::SIGN_EXTEND)
1881           Flags.setSExt();
1882         else if (ExtendKind == ISD::ZERO_EXTEND)
1883           Flags.setZExt();
1884 
1885         for (unsigned i = 0; i < NumParts; ++i) {
1886           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1887                                         VT, /*isfixed=*/true, 0, 0));
1888           OutVals.push_back(Parts[i]);
1889         }
1890       }
1891     }
1892   }
1893 
1894   // Push in swifterror virtual register as the last element of Outs. This makes
1895   // sure swifterror virtual register will be returned in the swifterror
1896   // physical register.
1897   const Function *F = I.getParent()->getParent();
1898   if (TLI.supportSwiftError() &&
1899       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1900     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1901     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902     Flags.setSwiftError();
1903     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1904                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1905                                   true /*isfixed*/, 1 /*origidx*/,
1906                                   0 /*partOffs*/));
1907     // Create SDNode for the swifterror virtual register.
1908     OutVals.push_back(
1909         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1910                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1911                         EVT(TLI.getPointerTy(DL))));
1912   }
1913 
1914   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1915   CallingConv::ID CallConv =
1916     DAG.getMachineFunction().getFunction().getCallingConv();
1917   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1918       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1919 
1920   // Verify that the target's LowerReturn behaved as expected.
1921   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1922          "LowerReturn didn't return a valid chain!");
1923 
1924   // Update the DAG with the new chain value resulting from return lowering.
1925   DAG.setRoot(Chain);
1926 }
1927 
1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1929 /// created for it, emit nodes to copy the value into the virtual
1930 /// registers.
1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1932   // Skip empty types
1933   if (V->getType()->isEmptyTy())
1934     return;
1935 
1936   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1937   if (VMI != FuncInfo.ValueMap.end()) {
1938     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1939     CopyValueToVirtualRegister(V, VMI->second);
1940   }
1941 }
1942 
1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1944 /// the current basic block, add it to ValueMap now so that we'll get a
1945 /// CopyTo/FromReg.
1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1947   // No need to export constants.
1948   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1949 
1950   // Already exported?
1951   if (FuncInfo.isExportedInst(V)) return;
1952 
1953   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1954   CopyValueToVirtualRegister(V, Reg);
1955 }
1956 
1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1958                                                      const BasicBlock *FromBB) {
1959   // The operands of the setcc have to be in this block.  We don't know
1960   // how to export them from some other block.
1961   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1962     // Can export from current BB.
1963     if (VI->getParent() == FromBB)
1964       return true;
1965 
1966     // Is already exported, noop.
1967     return FuncInfo.isExportedInst(V);
1968   }
1969 
1970   // If this is an argument, we can export it if the BB is the entry block or
1971   // if it is already exported.
1972   if (isa<Argument>(V)) {
1973     if (FromBB == &FromBB->getParent()->getEntryBlock())
1974       return true;
1975 
1976     // Otherwise, can only export this if it is already exported.
1977     return FuncInfo.isExportedInst(V);
1978   }
1979 
1980   // Otherwise, constants can always be exported.
1981   return true;
1982 }
1983 
1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1985 BranchProbability
1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1987                                         const MachineBasicBlock *Dst) const {
1988   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1989   const BasicBlock *SrcBB = Src->getBasicBlock();
1990   const BasicBlock *DstBB = Dst->getBasicBlock();
1991   if (!BPI) {
1992     // If BPI is not available, set the default probability as 1 / N, where N is
1993     // the number of successors.
1994     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1995     return BranchProbability(1, SuccSize);
1996   }
1997   return BPI->getEdgeProbability(SrcBB, DstBB);
1998 }
1999 
2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2001                                                MachineBasicBlock *Dst,
2002                                                BranchProbability Prob) {
2003   if (!FuncInfo.BPI)
2004     Src->addSuccessorWithoutProb(Dst);
2005   else {
2006     if (Prob.isUnknown())
2007       Prob = getEdgeProbability(Src, Dst);
2008     Src->addSuccessor(Dst, Prob);
2009   }
2010 }
2011 
2012 static bool InBlock(const Value *V, const BasicBlock *BB) {
2013   if (const Instruction *I = dyn_cast<Instruction>(V))
2014     return I->getParent() == BB;
2015   return true;
2016 }
2017 
2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2019 /// This function emits a branch and is used at the leaves of an OR or an
2020 /// AND operator tree.
2021 void
2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2023                                                   MachineBasicBlock *TBB,
2024                                                   MachineBasicBlock *FBB,
2025                                                   MachineBasicBlock *CurBB,
2026                                                   MachineBasicBlock *SwitchBB,
2027                                                   BranchProbability TProb,
2028                                                   BranchProbability FProb,
2029                                                   bool InvertCond) {
2030   const BasicBlock *BB = CurBB->getBasicBlock();
2031 
2032   // If the leaf of the tree is a comparison, merge the condition into
2033   // the caseblock.
2034   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2035     // The operands of the cmp have to be in this block.  We don't know
2036     // how to export them from some other block.  If this is the first block
2037     // of the sequence, no exporting is needed.
2038     if (CurBB == SwitchBB ||
2039         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2040          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2041       ISD::CondCode Condition;
2042       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2043         ICmpInst::Predicate Pred =
2044             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2045         Condition = getICmpCondCode(Pred);
2046       } else {
2047         const FCmpInst *FC = cast<FCmpInst>(Cond);
2048         FCmpInst::Predicate Pred =
2049             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2050         Condition = getFCmpCondCode(Pred);
2051         if (TM.Options.NoNaNsFPMath)
2052           Condition = getFCmpCodeWithoutNaN(Condition);
2053       }
2054 
2055       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2056                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2057       SL->SwitchCases.push_back(CB);
2058       return;
2059     }
2060   }
2061 
2062   // Create a CaseBlock record representing this branch.
2063   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2064   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2065                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2066   SL->SwitchCases.push_back(CB);
2067 }
2068 
2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2070                                                MachineBasicBlock *TBB,
2071                                                MachineBasicBlock *FBB,
2072                                                MachineBasicBlock *CurBB,
2073                                                MachineBasicBlock *SwitchBB,
2074                                                Instruction::BinaryOps Opc,
2075                                                BranchProbability TProb,
2076                                                BranchProbability FProb,
2077                                                bool InvertCond) {
2078   // Skip over not part of the tree and remember to invert op and operands at
2079   // next level.
2080   Value *NotCond;
2081   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2082       InBlock(NotCond, CurBB->getBasicBlock())) {
2083     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2084                          !InvertCond);
2085     return;
2086   }
2087 
2088   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2089   // Compute the effective opcode for Cond, taking into account whether it needs
2090   // to be inverted, e.g.
2091   //   and (not (or A, B)), C
2092   // gets lowered as
2093   //   and (and (not A, not B), C)
2094   unsigned BOpc = 0;
2095   if (BOp) {
2096     BOpc = BOp->getOpcode();
2097     if (InvertCond) {
2098       if (BOpc == Instruction::And)
2099         BOpc = Instruction::Or;
2100       else if (BOpc == Instruction::Or)
2101         BOpc = Instruction::And;
2102     }
2103   }
2104 
2105   // If this node is not part of the or/and tree, emit it as a branch.
2106   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2107       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2108       BOp->getParent() != CurBB->getBasicBlock() ||
2109       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2110       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2111     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2112                                  TProb, FProb, InvertCond);
2113     return;
2114   }
2115 
2116   //  Create TmpBB after CurBB.
2117   MachineFunction::iterator BBI(CurBB);
2118   MachineFunction &MF = DAG.getMachineFunction();
2119   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2120   CurBB->getParent()->insert(++BBI, TmpBB);
2121 
2122   if (Opc == Instruction::Or) {
2123     // Codegen X | Y as:
2124     // BB1:
2125     //   jmp_if_X TBB
2126     //   jmp TmpBB
2127     // TmpBB:
2128     //   jmp_if_Y TBB
2129     //   jmp FBB
2130     //
2131 
2132     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2133     // The requirement is that
2134     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2135     //     = TrueProb for original BB.
2136     // Assuming the original probabilities are A and B, one choice is to set
2137     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2138     // A/(1+B) and 2B/(1+B). This choice assumes that
2139     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2140     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2141     // TmpBB, but the math is more complicated.
2142 
2143     auto NewTrueProb = TProb / 2;
2144     auto NewFalseProb = TProb / 2 + FProb;
2145     // Emit the LHS condition.
2146     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2147                          NewTrueProb, NewFalseProb, InvertCond);
2148 
2149     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2150     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2151     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152     // Emit the RHS condition into TmpBB.
2153     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154                          Probs[0], Probs[1], InvertCond);
2155   } else {
2156     assert(Opc == Instruction::And && "Unknown merge op!");
2157     // Codegen X & Y as:
2158     // BB1:
2159     //   jmp_if_X TmpBB
2160     //   jmp FBB
2161     // TmpBB:
2162     //   jmp_if_Y TBB
2163     //   jmp FBB
2164     //
2165     //  This requires creation of TmpBB after CurBB.
2166 
2167     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2168     // The requirement is that
2169     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2170     //     = FalseProb for original BB.
2171     // Assuming the original probabilities are A and B, one choice is to set
2172     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2173     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2174     // TrueProb for BB1 * FalseProb for TmpBB.
2175 
2176     auto NewTrueProb = TProb + FProb / 2;
2177     auto NewFalseProb = FProb / 2;
2178     // Emit the LHS condition.
2179     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2180                          NewTrueProb, NewFalseProb, InvertCond);
2181 
2182     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2183     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2184     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2185     // Emit the RHS condition into TmpBB.
2186     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2187                          Probs[0], Probs[1], InvertCond);
2188   }
2189 }
2190 
2191 /// If the set of cases should be emitted as a series of branches, return true.
2192 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 /// false.
2194 bool
2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2196   if (Cases.size() != 2) return true;
2197 
2198   // If this is two comparisons of the same values or'd or and'd together, they
2199   // will get folded into a single comparison, so don't emit two blocks.
2200   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2201        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2202       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2203        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2204     return false;
2205   }
2206 
2207   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2208   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2209   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2210       Cases[0].CC == Cases[1].CC &&
2211       isa<Constant>(Cases[0].CmpRHS) &&
2212       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2213     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2214       return false;
2215     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2216       return false;
2217   }
2218 
2219   return true;
2220 }
2221 
2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2223   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2224 
2225   // Update machine-CFG edges.
2226   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2227 
2228   if (I.isUnconditional()) {
2229     // Update machine-CFG edges.
2230     BrMBB->addSuccessor(Succ0MBB);
2231 
2232     // If this is not a fall-through branch or optimizations are switched off,
2233     // emit the branch.
2234     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2235       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2236                               MVT::Other, getControlRoot(),
2237                               DAG.getBasicBlock(Succ0MBB)));
2238 
2239     return;
2240   }
2241 
2242   // If this condition is one of the special cases we handle, do special stuff
2243   // now.
2244   const Value *CondVal = I.getCondition();
2245   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2246 
2247   // If this is a series of conditions that are or'd or and'd together, emit
2248   // this as a sequence of branches instead of setcc's with and/or operations.
2249   // As long as jumps are not expensive, this should improve performance.
2250   // For example, instead of something like:
2251   //     cmp A, B
2252   //     C = seteq
2253   //     cmp D, E
2254   //     F = setle
2255   //     or C, F
2256   //     jnz foo
2257   // Emit:
2258   //     cmp A, B
2259   //     je foo
2260   //     cmp D, E
2261   //     jle foo
2262   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2263     Instruction::BinaryOps Opcode = BOp->getOpcode();
2264     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2265         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2266         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2267       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2268                            Opcode,
2269                            getEdgeProbability(BrMBB, Succ0MBB),
2270                            getEdgeProbability(BrMBB, Succ1MBB),
2271                            /*InvertCond=*/false);
2272       // If the compares in later blocks need to use values not currently
2273       // exported from this block, export them now.  This block should always
2274       // be the first entry.
2275       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2276 
2277       // Allow some cases to be rejected.
2278       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2279         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2280           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2281           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2282         }
2283 
2284         // Emit the branch for this block.
2285         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2286         SL->SwitchCases.erase(SL->SwitchCases.begin());
2287         return;
2288       }
2289 
2290       // Okay, we decided not to do this, remove any inserted MBB's and clear
2291       // SwitchCases.
2292       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2293         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2294 
2295       SL->SwitchCases.clear();
2296     }
2297   }
2298 
2299   // Create a CaseBlock record representing this branch.
2300   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2301                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2302 
2303   // Use visitSwitchCase to actually insert the fast branch sequence for this
2304   // cond branch.
2305   visitSwitchCase(CB, BrMBB);
2306 }
2307 
2308 /// visitSwitchCase - Emits the necessary code to represent a single node in
2309 /// the binary search tree resulting from lowering a switch instruction.
2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2311                                           MachineBasicBlock *SwitchBB) {
2312   SDValue Cond;
2313   SDValue CondLHS = getValue(CB.CmpLHS);
2314   SDLoc dl = CB.DL;
2315 
2316   if (CB.CC == ISD::SETTRUE) {
2317     // Branch or fall through to TrueBB.
2318     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2319     SwitchBB->normalizeSuccProbs();
2320     if (CB.TrueBB != NextBlock(SwitchBB)) {
2321       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2322                               DAG.getBasicBlock(CB.TrueBB)));
2323     }
2324     return;
2325   }
2326 
2327   auto &TLI = DAG.getTargetLoweringInfo();
2328   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2329 
2330   // Build the setcc now.
2331   if (!CB.CmpMHS) {
2332     // Fold "(X == true)" to X and "(X == false)" to !X to
2333     // handle common cases produced by branch lowering.
2334     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2335         CB.CC == ISD::SETEQ)
2336       Cond = CondLHS;
2337     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2338              CB.CC == ISD::SETEQ) {
2339       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2340       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2341     } else {
2342       SDValue CondRHS = getValue(CB.CmpRHS);
2343 
2344       // If a pointer's DAG type is larger than its memory type then the DAG
2345       // values are zero-extended. This breaks signed comparisons so truncate
2346       // back to the underlying type before doing the compare.
2347       if (CondLHS.getValueType() != MemVT) {
2348         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2349         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2350       }
2351       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2352     }
2353   } else {
2354     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2355 
2356     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2357     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2358 
2359     SDValue CmpOp = getValue(CB.CmpMHS);
2360     EVT VT = CmpOp.getValueType();
2361 
2362     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2363       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2364                           ISD::SETLE);
2365     } else {
2366       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2367                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2368       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2369                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2370     }
2371   }
2372 
2373   // Update successor info
2374   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2375   // TrueBB and FalseBB are always different unless the incoming IR is
2376   // degenerate. This only happens when running llc on weird IR.
2377   if (CB.TrueBB != CB.FalseBB)
2378     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   // If the lhs block is the next block, invert the condition so that we can
2382   // fall through to the lhs instead of the rhs block.
2383   if (CB.TrueBB == NextBlock(SwitchBB)) {
2384     std::swap(CB.TrueBB, CB.FalseBB);
2385     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2386     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2387   }
2388 
2389   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2390                                MVT::Other, getControlRoot(), Cond,
2391                                DAG.getBasicBlock(CB.TrueBB));
2392 
2393   // Insert the false branch. Do this even if it's a fall through branch,
2394   // this makes it easier to do DAG optimizations which require inverting
2395   // the branch condition.
2396   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2397                        DAG.getBasicBlock(CB.FalseBB));
2398 
2399   DAG.setRoot(BrCond);
2400 }
2401 
2402 /// visitJumpTable - Emit JumpTable node in the current MBB
2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2404   // Emit the code for the jump table
2405   assert(JT.Reg != -1U && "Should lower JT Header first!");
2406   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2407   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2408                                      JT.Reg, PTy);
2409   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2410   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2411                                     MVT::Other, Index.getValue(1),
2412                                     Table, Index);
2413   DAG.setRoot(BrJumpTable);
2414 }
2415 
2416 /// visitJumpTableHeader - This function emits necessary code to produce index
2417 /// in the JumpTable from switch case.
2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2419                                                JumpTableHeader &JTH,
2420                                                MachineBasicBlock *SwitchBB) {
2421   SDLoc dl = getCurSDLoc();
2422 
2423   // Subtract the lowest switch case value from the value being switched on.
2424   SDValue SwitchOp = getValue(JTH.SValue);
2425   EVT VT = SwitchOp.getValueType();
2426   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2427                             DAG.getConstant(JTH.First, dl, VT));
2428 
2429   // The SDNode we just created, which holds the value being switched on minus
2430   // the smallest case value, needs to be copied to a virtual register so it
2431   // can be used as an index into the jump table in a subsequent basic block.
2432   // This value may be smaller or larger than the target's pointer type, and
2433   // therefore require extension or truncating.
2434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2435   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2436 
2437   unsigned JumpTableReg =
2438       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2439   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2440                                     JumpTableReg, SwitchOp);
2441   JT.Reg = JumpTableReg;
2442 
2443   if (!JTH.OmitRangeCheck) {
2444     // Emit the range check for the jump table, and branch to the default block
2445     // for the switch statement if the value being switched on exceeds the
2446     // largest case in the switch.
2447     SDValue CMP = DAG.getSetCC(
2448         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2449                                    Sub.getValueType()),
2450         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2451 
2452     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2453                                  MVT::Other, CopyTo, CMP,
2454                                  DAG.getBasicBlock(JT.Default));
2455 
2456     // Avoid emitting unnecessary branches to the next block.
2457     if (JT.MBB != NextBlock(SwitchBB))
2458       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2459                            DAG.getBasicBlock(JT.MBB));
2460 
2461     DAG.setRoot(BrCond);
2462   } else {
2463     // Avoid emitting unnecessary branches to the next block.
2464     if (JT.MBB != NextBlock(SwitchBB))
2465       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2466                               DAG.getBasicBlock(JT.MBB)));
2467     else
2468       DAG.setRoot(CopyTo);
2469   }
2470 }
2471 
2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2473 /// variable if there exists one.
2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2475                                  SDValue &Chain) {
2476   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2477   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2478   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2479   MachineFunction &MF = DAG.getMachineFunction();
2480   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2481   MachineSDNode *Node =
2482       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2483   if (Global) {
2484     MachinePointerInfo MPInfo(Global);
2485     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2486                  MachineMemOperand::MODereferenceable;
2487     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2488         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2489     DAG.setNodeMemRefs(Node, {MemRef});
2490   }
2491   if (PtrTy != PtrMemTy)
2492     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2493   return SDValue(Node, 0);
2494 }
2495 
2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2497 /// tail spliced into a stack protector check success bb.
2498 ///
2499 /// For a high level explanation of how this fits into the stack protector
2500 /// generation see the comment on the declaration of class
2501 /// StackProtectorDescriptor.
2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2503                                                   MachineBasicBlock *ParentBB) {
2504 
2505   // First create the loads to the guard/stack slot for the comparison.
2506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2507   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2508   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2509 
2510   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2511   int FI = MFI.getStackProtectorIndex();
2512 
2513   SDValue Guard;
2514   SDLoc dl = getCurSDLoc();
2515   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2516   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2517   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2518 
2519   // Generate code to load the content of the guard slot.
2520   SDValue GuardVal = DAG.getLoad(
2521       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2522       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2523       MachineMemOperand::MOVolatile);
2524 
2525   if (TLI.useStackGuardXorFP())
2526     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2527 
2528   // Retrieve guard check function, nullptr if instrumentation is inlined.
2529   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2530     // The target provides a guard check function to validate the guard value.
2531     // Generate a call to that function with the content of the guard slot as
2532     // argument.
2533     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2534     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2535 
2536     TargetLowering::ArgListTy Args;
2537     TargetLowering::ArgListEntry Entry;
2538     Entry.Node = GuardVal;
2539     Entry.Ty = FnTy->getParamType(0);
2540     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2541       Entry.IsInReg = true;
2542     Args.push_back(Entry);
2543 
2544     TargetLowering::CallLoweringInfo CLI(DAG);
2545     CLI.setDebugLoc(getCurSDLoc())
2546         .setChain(DAG.getEntryNode())
2547         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2548                    getValue(GuardCheckFn), std::move(Args));
2549 
2550     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2551     DAG.setRoot(Result.second);
2552     return;
2553   }
2554 
2555   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2556   // Otherwise, emit a volatile load to retrieve the stack guard value.
2557   SDValue Chain = DAG.getEntryNode();
2558   if (TLI.useLoadStackGuardNode()) {
2559     Guard = getLoadStackGuard(DAG, dl, Chain);
2560   } else {
2561     const Value *IRGuard = TLI.getSDagStackGuard(M);
2562     SDValue GuardPtr = getValue(IRGuard);
2563 
2564     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2565                         MachinePointerInfo(IRGuard, 0), Align,
2566                         MachineMemOperand::MOVolatile);
2567   }
2568 
2569   // Perform the comparison via a subtract/getsetcc.
2570   EVT VT = Guard.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2572 
2573   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2574                                                         *DAG.getContext(),
2575                                                         Sub.getValueType()),
2576                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2577 
2578   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2579   // branch to failure MBB.
2580   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2581                                MVT::Other, GuardVal.getOperand(0),
2582                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2583   // Otherwise branch to success MBB.
2584   SDValue Br = DAG.getNode(ISD::BR, dl,
2585                            MVT::Other, BrCond,
2586                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2587 
2588   DAG.setRoot(Br);
2589 }
2590 
2591 /// Codegen the failure basic block for a stack protector check.
2592 ///
2593 /// A failure stack protector machine basic block consists simply of a call to
2594 /// __stack_chk_fail().
2595 ///
2596 /// For a high level explanation of how this fits into the stack protector
2597 /// generation see the comment on the declaration of class
2598 /// StackProtectorDescriptor.
2599 void
2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2601   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2602   SDValue Chain =
2603       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2604                       None, false, getCurSDLoc(), false, false).second;
2605   // On PS4, the "return address" must still be within the calling function,
2606   // even if it's at the very end, so emit an explicit TRAP here.
2607   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2608   if (TM.getTargetTriple().isPS4CPU())
2609     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2610 
2611   DAG.setRoot(Chain);
2612 }
2613 
2614 /// visitBitTestHeader - This function emits necessary code to produce value
2615 /// suitable for "bit tests"
2616 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2617                                              MachineBasicBlock *SwitchBB) {
2618   SDLoc dl = getCurSDLoc();
2619 
2620   // Subtract the minimum value
2621   SDValue SwitchOp = getValue(B.SValue);
2622   EVT VT = SwitchOp.getValueType();
2623   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2624                             DAG.getConstant(B.First, dl, VT));
2625 
2626   // Check range
2627   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2628   SDValue RangeCmp = DAG.getSetCC(
2629       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2630                                  Sub.getValueType()),
2631       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2632 
2633   // Determine the type of the test operands.
2634   bool UsePtrType = false;
2635   if (!TLI.isTypeLegal(VT))
2636     UsePtrType = true;
2637   else {
2638     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2639       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2640         // Switch table case range are encoded into series of masks.
2641         // Just use pointer type, it's guaranteed to fit.
2642         UsePtrType = true;
2643         break;
2644       }
2645   }
2646   if (UsePtrType) {
2647     VT = TLI.getPointerTy(DAG.getDataLayout());
2648     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2649   }
2650 
2651   B.RegVT = VT.getSimpleVT();
2652   B.Reg = FuncInfo.CreateReg(B.RegVT);
2653   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2654 
2655   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2656 
2657   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2658   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2659   SwitchBB->normalizeSuccProbs();
2660 
2661   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2662                                 MVT::Other, CopyTo, RangeCmp,
2663                                 DAG.getBasicBlock(B.Default));
2664 
2665   // Avoid emitting unnecessary branches to the next block.
2666   if (MBB != NextBlock(SwitchBB))
2667     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2668                           DAG.getBasicBlock(MBB));
2669 
2670   DAG.setRoot(BrRange);
2671 }
2672 
2673 /// visitBitTestCase - this function produces one "bit test"
2674 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2675                                            MachineBasicBlock* NextMBB,
2676                                            BranchProbability BranchProbToNext,
2677                                            unsigned Reg,
2678                                            BitTestCase &B,
2679                                            MachineBasicBlock *SwitchBB) {
2680   SDLoc dl = getCurSDLoc();
2681   MVT VT = BB.RegVT;
2682   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2683   SDValue Cmp;
2684   unsigned PopCount = countPopulation(B.Mask);
2685   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2686   if (PopCount == 1) {
2687     // Testing for a single bit; just compare the shift count with what it
2688     // would need to be to shift a 1 bit in that position.
2689     Cmp = DAG.getSetCC(
2690         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2691         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2692         ISD::SETEQ);
2693   } else if (PopCount == BB.Range) {
2694     // There is only one zero bit in the range, test for it directly.
2695     Cmp = DAG.getSetCC(
2696         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2697         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2698         ISD::SETNE);
2699   } else {
2700     // Make desired shift
2701     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2702                                     DAG.getConstant(1, dl, VT), ShiftOp);
2703 
2704     // Emit bit tests and jumps
2705     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2706                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2707     Cmp = DAG.getSetCC(
2708         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2709         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2710   }
2711 
2712   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2713   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2714   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2715   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2716   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2717   // one as they are relative probabilities (and thus work more like weights),
2718   // and hence we need to normalize them to let the sum of them become one.
2719   SwitchBB->normalizeSuccProbs();
2720 
2721   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2722                               MVT::Other, getControlRoot(),
2723                               Cmp, DAG.getBasicBlock(B.TargetBB));
2724 
2725   // Avoid emitting unnecessary branches to the next block.
2726   if (NextMBB != NextBlock(SwitchBB))
2727     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2728                         DAG.getBasicBlock(NextMBB));
2729 
2730   DAG.setRoot(BrAnd);
2731 }
2732 
2733 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2734   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2735 
2736   // Retrieve successors. Look through artificial IR level blocks like
2737   // catchswitch for successors.
2738   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2739   const BasicBlock *EHPadBB = I.getSuccessor(1);
2740 
2741   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2742   // have to do anything here to lower funclet bundles.
2743   assert(!I.hasOperandBundlesOtherThan(
2744              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2745          "Cannot lower invokes with arbitrary operand bundles yet!");
2746 
2747   const Value *Callee(I.getCalledValue());
2748   const Function *Fn = dyn_cast<Function>(Callee);
2749   if (isa<InlineAsm>(Callee))
2750     visitInlineAsm(&I);
2751   else if (Fn && Fn->isIntrinsic()) {
2752     switch (Fn->getIntrinsicID()) {
2753     default:
2754       llvm_unreachable("Cannot invoke this intrinsic");
2755     case Intrinsic::donothing:
2756       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2757       break;
2758     case Intrinsic::experimental_patchpoint_void:
2759     case Intrinsic::experimental_patchpoint_i64:
2760       visitPatchpoint(&I, EHPadBB);
2761       break;
2762     case Intrinsic::experimental_gc_statepoint:
2763       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2764       break;
2765     case Intrinsic::wasm_rethrow_in_catch: {
2766       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2767       // special because it can be invoked, so we manually lower it to a DAG
2768       // node here.
2769       SmallVector<SDValue, 8> Ops;
2770       Ops.push_back(getRoot()); // inchain
2771       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2772       Ops.push_back(
2773           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2774                                 TLI.getPointerTy(DAG.getDataLayout())));
2775       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2776       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2777       break;
2778     }
2779     }
2780   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2781     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2782     // Eventually we will support lowering the @llvm.experimental.deoptimize
2783     // intrinsic, and right now there are no plans to support other intrinsics
2784     // with deopt state.
2785     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2786   } else {
2787     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2788   }
2789 
2790   // If the value of the invoke is used outside of its defining block, make it
2791   // available as a virtual register.
2792   // We already took care of the exported value for the statepoint instruction
2793   // during call to the LowerStatepoint.
2794   if (!isStatepoint(I)) {
2795     CopyToExportRegsIfNeeded(&I);
2796   }
2797 
2798   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2799   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2800   BranchProbability EHPadBBProb =
2801       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2802           : BranchProbability::getZero();
2803   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2804 
2805   // Update successor info.
2806   addSuccessorWithProb(InvokeMBB, Return);
2807   for (auto &UnwindDest : UnwindDests) {
2808     UnwindDest.first->setIsEHPad();
2809     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2810   }
2811   InvokeMBB->normalizeSuccProbs();
2812 
2813   // Drop into normal successor.
2814   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2815                           DAG.getBasicBlock(Return)));
2816 }
2817 
2818 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2819   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2820 
2821   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2822   // have to do anything here to lower funclet bundles.
2823   assert(!I.hasOperandBundlesOtherThan(
2824              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2825          "Cannot lower callbrs with arbitrary operand bundles yet!");
2826 
2827   assert(isa<InlineAsm>(I.getCalledValue()) &&
2828          "Only know how to handle inlineasm callbr");
2829   visitInlineAsm(&I);
2830 
2831   // Retrieve successors.
2832   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2833 
2834   // Update successor info.
2835   addSuccessorWithProb(CallBrMBB, Return);
2836   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2837     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2838     addSuccessorWithProb(CallBrMBB, Target);
2839   }
2840   CallBrMBB->normalizeSuccProbs();
2841 
2842   // Drop into default successor.
2843   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2844                           MVT::Other, getControlRoot(),
2845                           DAG.getBasicBlock(Return)));
2846 }
2847 
2848 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2849   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2850 }
2851 
2852 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2853   assert(FuncInfo.MBB->isEHPad() &&
2854          "Call to landingpad not in landing pad!");
2855 
2856   // If there aren't registers to copy the values into (e.g., during SjLj
2857   // exceptions), then don't bother to create these DAG nodes.
2858   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2859   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2860   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2861       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2862     return;
2863 
2864   // If landingpad's return type is token type, we don't create DAG nodes
2865   // for its exception pointer and selector value. The extraction of exception
2866   // pointer or selector value from token type landingpads is not currently
2867   // supported.
2868   if (LP.getType()->isTokenTy())
2869     return;
2870 
2871   SmallVector<EVT, 2> ValueVTs;
2872   SDLoc dl = getCurSDLoc();
2873   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2874   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2875 
2876   // Get the two live-in registers as SDValues. The physregs have already been
2877   // copied into virtual registers.
2878   SDValue Ops[2];
2879   if (FuncInfo.ExceptionPointerVirtReg) {
2880     Ops[0] = DAG.getZExtOrTrunc(
2881         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2882                            FuncInfo.ExceptionPointerVirtReg,
2883                            TLI.getPointerTy(DAG.getDataLayout())),
2884         dl, ValueVTs[0]);
2885   } else {
2886     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2887   }
2888   Ops[1] = DAG.getZExtOrTrunc(
2889       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2890                          FuncInfo.ExceptionSelectorVirtReg,
2891                          TLI.getPointerTy(DAG.getDataLayout())),
2892       dl, ValueVTs[1]);
2893 
2894   // Merge into one.
2895   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2896                             DAG.getVTList(ValueVTs), Ops);
2897   setValue(&LP, Res);
2898 }
2899 
2900 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2901                                            MachineBasicBlock *Last) {
2902   // Update JTCases.
2903   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2904     if (SL->JTCases[i].first.HeaderBB == First)
2905       SL->JTCases[i].first.HeaderBB = Last;
2906 
2907   // Update BitTestCases.
2908   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2909     if (SL->BitTestCases[i].Parent == First)
2910       SL->BitTestCases[i].Parent = Last;
2911 }
2912 
2913 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2914   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2915 
2916   // Update machine-CFG edges with unique successors.
2917   SmallSet<BasicBlock*, 32> Done;
2918   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2919     BasicBlock *BB = I.getSuccessor(i);
2920     bool Inserted = Done.insert(BB).second;
2921     if (!Inserted)
2922         continue;
2923 
2924     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2925     addSuccessorWithProb(IndirectBrMBB, Succ);
2926   }
2927   IndirectBrMBB->normalizeSuccProbs();
2928 
2929   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2930                           MVT::Other, getControlRoot(),
2931                           getValue(I.getAddress())));
2932 }
2933 
2934 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2935   if (!DAG.getTarget().Options.TrapUnreachable)
2936     return;
2937 
2938   // We may be able to ignore unreachable behind a noreturn call.
2939   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2940     const BasicBlock &BB = *I.getParent();
2941     if (&I != &BB.front()) {
2942       BasicBlock::const_iterator PredI =
2943         std::prev(BasicBlock::const_iterator(&I));
2944       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2945         if (Call->doesNotReturn())
2946           return;
2947       }
2948     }
2949   }
2950 
2951   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2952 }
2953 
2954 void SelectionDAGBuilder::visitFSub(const User &I) {
2955   // -0.0 - X --> fneg
2956   Type *Ty = I.getType();
2957   if (isa<Constant>(I.getOperand(0)) &&
2958       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2959     SDValue Op2 = getValue(I.getOperand(1));
2960     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2961                              Op2.getValueType(), Op2));
2962     return;
2963   }
2964 
2965   visitBinary(I, ISD::FSUB);
2966 }
2967 
2968 /// Checks if the given instruction performs a vector reduction, in which case
2969 /// we have the freedom to alter the elements in the result as long as the
2970 /// reduction of them stays unchanged.
2971 static bool isVectorReductionOp(const User *I) {
2972   const Instruction *Inst = dyn_cast<Instruction>(I);
2973   if (!Inst || !Inst->getType()->isVectorTy())
2974     return false;
2975 
2976   auto OpCode = Inst->getOpcode();
2977   switch (OpCode) {
2978   case Instruction::Add:
2979   case Instruction::Mul:
2980   case Instruction::And:
2981   case Instruction::Or:
2982   case Instruction::Xor:
2983     break;
2984   case Instruction::FAdd:
2985   case Instruction::FMul:
2986     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2987       if (FPOp->getFastMathFlags().isFast())
2988         break;
2989     LLVM_FALLTHROUGH;
2990   default:
2991     return false;
2992   }
2993 
2994   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2995   // Ensure the reduction size is a power of 2.
2996   if (!isPowerOf2_32(ElemNum))
2997     return false;
2998 
2999   unsigned ElemNumToReduce = ElemNum;
3000 
3001   // Do DFS search on the def-use chain from the given instruction. We only
3002   // allow four kinds of operations during the search until we reach the
3003   // instruction that extracts the first element from the vector:
3004   //
3005   //   1. The reduction operation of the same opcode as the given instruction.
3006   //
3007   //   2. PHI node.
3008   //
3009   //   3. ShuffleVector instruction together with a reduction operation that
3010   //      does a partial reduction.
3011   //
3012   //   4. ExtractElement that extracts the first element from the vector, and we
3013   //      stop searching the def-use chain here.
3014   //
3015   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3016   // from 1-3 to the stack to continue the DFS. The given instruction is not
3017   // a reduction operation if we meet any other instructions other than those
3018   // listed above.
3019 
3020   SmallVector<const User *, 16> UsersToVisit{Inst};
3021   SmallPtrSet<const User *, 16> Visited;
3022   bool ReduxExtracted = false;
3023 
3024   while (!UsersToVisit.empty()) {
3025     auto User = UsersToVisit.back();
3026     UsersToVisit.pop_back();
3027     if (!Visited.insert(User).second)
3028       continue;
3029 
3030     for (const auto &U : User->users()) {
3031       auto Inst = dyn_cast<Instruction>(U);
3032       if (!Inst)
3033         return false;
3034 
3035       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3036         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3037           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3038             return false;
3039         UsersToVisit.push_back(U);
3040       } else if (const ShuffleVectorInst *ShufInst =
3041                      dyn_cast<ShuffleVectorInst>(U)) {
3042         // Detect the following pattern: A ShuffleVector instruction together
3043         // with a reduction that do partial reduction on the first and second
3044         // ElemNumToReduce / 2 elements, and store the result in
3045         // ElemNumToReduce / 2 elements in another vector.
3046 
3047         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3048         if (ResultElements < ElemNum)
3049           return false;
3050 
3051         if (ElemNumToReduce == 1)
3052           return false;
3053         if (!isa<UndefValue>(U->getOperand(1)))
3054           return false;
3055         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3056           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3057             return false;
3058         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3059           if (ShufInst->getMaskValue(i) != -1)
3060             return false;
3061 
3062         // There is only one user of this ShuffleVector instruction, which
3063         // must be a reduction operation.
3064         if (!U->hasOneUse())
3065           return false;
3066 
3067         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3068         if (!U2 || U2->getOpcode() != OpCode)
3069           return false;
3070 
3071         // Check operands of the reduction operation.
3072         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3073             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3074           UsersToVisit.push_back(U2);
3075           ElemNumToReduce /= 2;
3076         } else
3077           return false;
3078       } else if (isa<ExtractElementInst>(U)) {
3079         // At this moment we should have reduced all elements in the vector.
3080         if (ElemNumToReduce != 1)
3081           return false;
3082 
3083         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3084         if (!Val || !Val->isZero())
3085           return false;
3086 
3087         ReduxExtracted = true;
3088       } else
3089         return false;
3090     }
3091   }
3092   return ReduxExtracted;
3093 }
3094 
3095 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3096   SDNodeFlags Flags;
3097 
3098   SDValue Op = getValue(I.getOperand(0));
3099   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3100                                     Op, Flags);
3101   setValue(&I, UnNodeValue);
3102 }
3103 
3104 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3105   SDNodeFlags Flags;
3106   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3107     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3108     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3109   }
3110   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3111     Flags.setExact(ExactOp->isExact());
3112   }
3113   if (isVectorReductionOp(&I)) {
3114     Flags.setVectorReduction(true);
3115     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3116   }
3117 
3118   SDValue Op1 = getValue(I.getOperand(0));
3119   SDValue Op2 = getValue(I.getOperand(1));
3120   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3121                                      Op1, Op2, Flags);
3122   setValue(&I, BinNodeValue);
3123 }
3124 
3125 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3126   SDValue Op1 = getValue(I.getOperand(0));
3127   SDValue Op2 = getValue(I.getOperand(1));
3128 
3129   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3130       Op1.getValueType(), DAG.getDataLayout());
3131 
3132   // Coerce the shift amount to the right type if we can.
3133   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3134     unsigned ShiftSize = ShiftTy.getSizeInBits();
3135     unsigned Op2Size = Op2.getValueSizeInBits();
3136     SDLoc DL = getCurSDLoc();
3137 
3138     // If the operand is smaller than the shift count type, promote it.
3139     if (ShiftSize > Op2Size)
3140       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3141 
3142     // If the operand is larger than the shift count type but the shift
3143     // count type has enough bits to represent any shift value, truncate
3144     // it now. This is a common case and it exposes the truncate to
3145     // optimization early.
3146     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3147       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3148     // Otherwise we'll need to temporarily settle for some other convenient
3149     // type.  Type legalization will make adjustments once the shiftee is split.
3150     else
3151       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3152   }
3153 
3154   bool nuw = false;
3155   bool nsw = false;
3156   bool exact = false;
3157 
3158   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3159 
3160     if (const OverflowingBinaryOperator *OFBinOp =
3161             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3162       nuw = OFBinOp->hasNoUnsignedWrap();
3163       nsw = OFBinOp->hasNoSignedWrap();
3164     }
3165     if (const PossiblyExactOperator *ExactOp =
3166             dyn_cast<const PossiblyExactOperator>(&I))
3167       exact = ExactOp->isExact();
3168   }
3169   SDNodeFlags Flags;
3170   Flags.setExact(exact);
3171   Flags.setNoSignedWrap(nsw);
3172   Flags.setNoUnsignedWrap(nuw);
3173   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3174                             Flags);
3175   setValue(&I, Res);
3176 }
3177 
3178 void SelectionDAGBuilder::visitSDiv(const User &I) {
3179   SDValue Op1 = getValue(I.getOperand(0));
3180   SDValue Op2 = getValue(I.getOperand(1));
3181 
3182   SDNodeFlags Flags;
3183   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3184                  cast<PossiblyExactOperator>(&I)->isExact());
3185   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3186                            Op2, Flags));
3187 }
3188 
3189 void SelectionDAGBuilder::visitICmp(const User &I) {
3190   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3191   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3192     predicate = IC->getPredicate();
3193   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3194     predicate = ICmpInst::Predicate(IC->getPredicate());
3195   SDValue Op1 = getValue(I.getOperand(0));
3196   SDValue Op2 = getValue(I.getOperand(1));
3197   ISD::CondCode Opcode = getICmpCondCode(predicate);
3198 
3199   auto &TLI = DAG.getTargetLoweringInfo();
3200   EVT MemVT =
3201       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3202 
3203   // If a pointer's DAG type is larger than its memory type then the DAG values
3204   // are zero-extended. This breaks signed comparisons so truncate back to the
3205   // underlying type before doing the compare.
3206   if (Op1.getValueType() != MemVT) {
3207     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3208     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3209   }
3210 
3211   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3212                                                         I.getType());
3213   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3214 }
3215 
3216 void SelectionDAGBuilder::visitFCmp(const User &I) {
3217   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3218   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3219     predicate = FC->getPredicate();
3220   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3221     predicate = FCmpInst::Predicate(FC->getPredicate());
3222   SDValue Op1 = getValue(I.getOperand(0));
3223   SDValue Op2 = getValue(I.getOperand(1));
3224 
3225   ISD::CondCode Condition = getFCmpCondCode(predicate);
3226   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3227   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3228     Condition = getFCmpCodeWithoutNaN(Condition);
3229 
3230   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3231                                                         I.getType());
3232   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3233 }
3234 
3235 // Check if the condition of the select has one use or two users that are both
3236 // selects with the same condition.
3237 static bool hasOnlySelectUsers(const Value *Cond) {
3238   return llvm::all_of(Cond->users(), [](const Value *V) {
3239     return isa<SelectInst>(V);
3240   });
3241 }
3242 
3243 void SelectionDAGBuilder::visitSelect(const User &I) {
3244   SmallVector<EVT, 4> ValueVTs;
3245   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3246                   ValueVTs);
3247   unsigned NumValues = ValueVTs.size();
3248   if (NumValues == 0) return;
3249 
3250   SmallVector<SDValue, 4> Values(NumValues);
3251   SDValue Cond     = getValue(I.getOperand(0));
3252   SDValue LHSVal   = getValue(I.getOperand(1));
3253   SDValue RHSVal   = getValue(I.getOperand(2));
3254   auto BaseOps = {Cond};
3255   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3256     ISD::VSELECT : ISD::SELECT;
3257 
3258   bool IsUnaryAbs = false;
3259 
3260   // Min/max matching is only viable if all output VTs are the same.
3261   if (is_splat(ValueVTs)) {
3262     EVT VT = ValueVTs[0];
3263     LLVMContext &Ctx = *DAG.getContext();
3264     auto &TLI = DAG.getTargetLoweringInfo();
3265 
3266     // We care about the legality of the operation after it has been type
3267     // legalized.
3268     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3269            VT != TLI.getTypeToTransformTo(Ctx, VT))
3270       VT = TLI.getTypeToTransformTo(Ctx, VT);
3271 
3272     // If the vselect is legal, assume we want to leave this as a vector setcc +
3273     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3274     // min/max is legal on the scalar type.
3275     bool UseScalarMinMax = VT.isVector() &&
3276       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3277 
3278     Value *LHS, *RHS;
3279     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3280     ISD::NodeType Opc = ISD::DELETED_NODE;
3281     switch (SPR.Flavor) {
3282     case SPF_UMAX:    Opc = ISD::UMAX; break;
3283     case SPF_UMIN:    Opc = ISD::UMIN; break;
3284     case SPF_SMAX:    Opc = ISD::SMAX; break;
3285     case SPF_SMIN:    Opc = ISD::SMIN; break;
3286     case SPF_FMINNUM:
3287       switch (SPR.NaNBehavior) {
3288       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3289       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3290       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3291       case SPNB_RETURNS_ANY: {
3292         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3293           Opc = ISD::FMINNUM;
3294         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3295           Opc = ISD::FMINIMUM;
3296         else if (UseScalarMinMax)
3297           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3298             ISD::FMINNUM : ISD::FMINIMUM;
3299         break;
3300       }
3301       }
3302       break;
3303     case SPF_FMAXNUM:
3304       switch (SPR.NaNBehavior) {
3305       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3306       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3307       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3308       case SPNB_RETURNS_ANY:
3309 
3310         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3311           Opc = ISD::FMAXNUM;
3312         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3313           Opc = ISD::FMAXIMUM;
3314         else if (UseScalarMinMax)
3315           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3316             ISD::FMAXNUM : ISD::FMAXIMUM;
3317         break;
3318       }
3319       break;
3320     case SPF_ABS:
3321       IsUnaryAbs = true;
3322       Opc = ISD::ABS;
3323       break;
3324     case SPF_NABS:
3325       // TODO: we need to produce sub(0, abs(X)).
3326     default: break;
3327     }
3328 
3329     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3330         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3331          (UseScalarMinMax &&
3332           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3333         // If the underlying comparison instruction is used by any other
3334         // instruction, the consumed instructions won't be destroyed, so it is
3335         // not profitable to convert to a min/max.
3336         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3337       OpCode = Opc;
3338       LHSVal = getValue(LHS);
3339       RHSVal = getValue(RHS);
3340       BaseOps = {};
3341     }
3342 
3343     if (IsUnaryAbs) {
3344       OpCode = Opc;
3345       LHSVal = getValue(LHS);
3346       BaseOps = {};
3347     }
3348   }
3349 
3350   if (IsUnaryAbs) {
3351     for (unsigned i = 0; i != NumValues; ++i) {
3352       Values[i] =
3353           DAG.getNode(OpCode, getCurSDLoc(),
3354                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3355                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3356     }
3357   } else {
3358     for (unsigned i = 0; i != NumValues; ++i) {
3359       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3360       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3361       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3362       Values[i] = DAG.getNode(
3363           OpCode, getCurSDLoc(),
3364           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3365     }
3366   }
3367 
3368   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3369                            DAG.getVTList(ValueVTs), Values));
3370 }
3371 
3372 void SelectionDAGBuilder::visitTrunc(const User &I) {
3373   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3374   SDValue N = getValue(I.getOperand(0));
3375   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3376                                                         I.getType());
3377   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3378 }
3379 
3380 void SelectionDAGBuilder::visitZExt(const User &I) {
3381   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3382   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3383   SDValue N = getValue(I.getOperand(0));
3384   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3385                                                         I.getType());
3386   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3387 }
3388 
3389 void SelectionDAGBuilder::visitSExt(const User &I) {
3390   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3391   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3392   SDValue N = getValue(I.getOperand(0));
3393   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3394                                                         I.getType());
3395   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3396 }
3397 
3398 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3399   // FPTrunc is never a no-op cast, no need to check
3400   SDValue N = getValue(I.getOperand(0));
3401   SDLoc dl = getCurSDLoc();
3402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3403   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3404   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3405                            DAG.getTargetConstant(
3406                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3407 }
3408 
3409 void SelectionDAGBuilder::visitFPExt(const User &I) {
3410   // FPExt is never a no-op cast, no need to check
3411   SDValue N = getValue(I.getOperand(0));
3412   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3413                                                         I.getType());
3414   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3415 }
3416 
3417 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3418   // FPToUI is never a no-op cast, no need to check
3419   SDValue N = getValue(I.getOperand(0));
3420   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3421                                                         I.getType());
3422   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3423 }
3424 
3425 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3426   // FPToSI is never a no-op cast, no need to check
3427   SDValue N = getValue(I.getOperand(0));
3428   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3429                                                         I.getType());
3430   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3431 }
3432 
3433 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3434   // UIToFP is never a no-op cast, no need to check
3435   SDValue N = getValue(I.getOperand(0));
3436   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3437                                                         I.getType());
3438   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3439 }
3440 
3441 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3442   // SIToFP is never a no-op cast, no need to check
3443   SDValue N = getValue(I.getOperand(0));
3444   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3445                                                         I.getType());
3446   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3447 }
3448 
3449 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3450   // What to do depends on the size of the integer and the size of the pointer.
3451   // We can either truncate, zero extend, or no-op, accordingly.
3452   SDValue N = getValue(I.getOperand(0));
3453   auto &TLI = DAG.getTargetLoweringInfo();
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   EVT PtrMemVT =
3457       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3458   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3459   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3460   setValue(&I, N);
3461 }
3462 
3463 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3464   // What to do depends on the size of the integer and the size of the pointer.
3465   // We can either truncate, zero extend, or no-op, accordingly.
3466   SDValue N = getValue(I.getOperand(0));
3467   auto &TLI = DAG.getTargetLoweringInfo();
3468   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3469   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3470   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3471   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3472   setValue(&I, N);
3473 }
3474 
3475 void SelectionDAGBuilder::visitBitCast(const User &I) {
3476   SDValue N = getValue(I.getOperand(0));
3477   SDLoc dl = getCurSDLoc();
3478   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3479                                                         I.getType());
3480 
3481   // BitCast assures us that source and destination are the same size so this is
3482   // either a BITCAST or a no-op.
3483   if (DestVT != N.getValueType())
3484     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3485                              DestVT, N)); // convert types.
3486   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3487   // might fold any kind of constant expression to an integer constant and that
3488   // is not what we are looking for. Only recognize a bitcast of a genuine
3489   // constant integer as an opaque constant.
3490   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3491     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3492                                  /*isOpaque*/true));
3493   else
3494     setValue(&I, N);            // noop cast.
3495 }
3496 
3497 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3499   const Value *SV = I.getOperand(0);
3500   SDValue N = getValue(SV);
3501   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3502 
3503   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3504   unsigned DestAS = I.getType()->getPointerAddressSpace();
3505 
3506   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3507     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3508 
3509   setValue(&I, N);
3510 }
3511 
3512 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3514   SDValue InVec = getValue(I.getOperand(0));
3515   SDValue InVal = getValue(I.getOperand(1));
3516   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3517                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3518   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3519                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3520                            InVec, InVal, InIdx));
3521 }
3522 
3523 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3525   SDValue InVec = getValue(I.getOperand(0));
3526   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3527                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3528   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3529                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3530                            InVec, InIdx));
3531 }
3532 
3533 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3534   SDValue Src1 = getValue(I.getOperand(0));
3535   SDValue Src2 = getValue(I.getOperand(1));
3536   SDLoc DL = getCurSDLoc();
3537 
3538   SmallVector<int, 8> Mask;
3539   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3540   unsigned MaskNumElts = Mask.size();
3541 
3542   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3543   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3544   EVT SrcVT = Src1.getValueType();
3545   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3546 
3547   if (SrcNumElts == MaskNumElts) {
3548     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3549     return;
3550   }
3551 
3552   // Normalize the shuffle vector since mask and vector length don't match.
3553   if (SrcNumElts < MaskNumElts) {
3554     // Mask is longer than the source vectors. We can use concatenate vector to
3555     // make the mask and vectors lengths match.
3556 
3557     if (MaskNumElts % SrcNumElts == 0) {
3558       // Mask length is a multiple of the source vector length.
3559       // Check if the shuffle is some kind of concatenation of the input
3560       // vectors.
3561       unsigned NumConcat = MaskNumElts / SrcNumElts;
3562       bool IsConcat = true;
3563       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3564       for (unsigned i = 0; i != MaskNumElts; ++i) {
3565         int Idx = Mask[i];
3566         if (Idx < 0)
3567           continue;
3568         // Ensure the indices in each SrcVT sized piece are sequential and that
3569         // the same source is used for the whole piece.
3570         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3571             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3572              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3573           IsConcat = false;
3574           break;
3575         }
3576         // Remember which source this index came from.
3577         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3578       }
3579 
3580       // The shuffle is concatenating multiple vectors together. Just emit
3581       // a CONCAT_VECTORS operation.
3582       if (IsConcat) {
3583         SmallVector<SDValue, 8> ConcatOps;
3584         for (auto Src : ConcatSrcs) {
3585           if (Src < 0)
3586             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3587           else if (Src == 0)
3588             ConcatOps.push_back(Src1);
3589           else
3590             ConcatOps.push_back(Src2);
3591         }
3592         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3593         return;
3594       }
3595     }
3596 
3597     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3598     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3599     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3600                                     PaddedMaskNumElts);
3601 
3602     // Pad both vectors with undefs to make them the same length as the mask.
3603     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3604 
3605     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3606     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3607     MOps1[0] = Src1;
3608     MOps2[0] = Src2;
3609 
3610     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3611     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3612 
3613     // Readjust mask for new input vector length.
3614     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3615     for (unsigned i = 0; i != MaskNumElts; ++i) {
3616       int Idx = Mask[i];
3617       if (Idx >= (int)SrcNumElts)
3618         Idx -= SrcNumElts - PaddedMaskNumElts;
3619       MappedOps[i] = Idx;
3620     }
3621 
3622     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3623 
3624     // If the concatenated vector was padded, extract a subvector with the
3625     // correct number of elements.
3626     if (MaskNumElts != PaddedMaskNumElts)
3627       Result = DAG.getNode(
3628           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3629           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3630 
3631     setValue(&I, Result);
3632     return;
3633   }
3634 
3635   if (SrcNumElts > MaskNumElts) {
3636     // Analyze the access pattern of the vector to see if we can extract
3637     // two subvectors and do the shuffle.
3638     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3639     bool CanExtract = true;
3640     for (int Idx : Mask) {
3641       unsigned Input = 0;
3642       if (Idx < 0)
3643         continue;
3644 
3645       if (Idx >= (int)SrcNumElts) {
3646         Input = 1;
3647         Idx -= SrcNumElts;
3648       }
3649 
3650       // If all the indices come from the same MaskNumElts sized portion of
3651       // the sources we can use extract. Also make sure the extract wouldn't
3652       // extract past the end of the source.
3653       int NewStartIdx = alignDown(Idx, MaskNumElts);
3654       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3655           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3656         CanExtract = false;
3657       // Make sure we always update StartIdx as we use it to track if all
3658       // elements are undef.
3659       StartIdx[Input] = NewStartIdx;
3660     }
3661 
3662     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3663       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3664       return;
3665     }
3666     if (CanExtract) {
3667       // Extract appropriate subvector and generate a vector shuffle
3668       for (unsigned Input = 0; Input < 2; ++Input) {
3669         SDValue &Src = Input == 0 ? Src1 : Src2;
3670         if (StartIdx[Input] < 0)
3671           Src = DAG.getUNDEF(VT);
3672         else {
3673           Src = DAG.getNode(
3674               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3675               DAG.getConstant(StartIdx[Input], DL,
3676                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3677         }
3678       }
3679 
3680       // Calculate new mask.
3681       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3682       for (int &Idx : MappedOps) {
3683         if (Idx >= (int)SrcNumElts)
3684           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3685         else if (Idx >= 0)
3686           Idx -= StartIdx[0];
3687       }
3688 
3689       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3690       return;
3691     }
3692   }
3693 
3694   // We can't use either concat vectors or extract subvectors so fall back to
3695   // replacing the shuffle with extract and build vector.
3696   // to insert and build vector.
3697   EVT EltVT = VT.getVectorElementType();
3698   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3699   SmallVector<SDValue,8> Ops;
3700   for (int Idx : Mask) {
3701     SDValue Res;
3702 
3703     if (Idx < 0) {
3704       Res = DAG.getUNDEF(EltVT);
3705     } else {
3706       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3707       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3708 
3709       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3710                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3711     }
3712 
3713     Ops.push_back(Res);
3714   }
3715 
3716   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3717 }
3718 
3719 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3720   ArrayRef<unsigned> Indices;
3721   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3722     Indices = IV->getIndices();
3723   else
3724     Indices = cast<ConstantExpr>(&I)->getIndices();
3725 
3726   const Value *Op0 = I.getOperand(0);
3727   const Value *Op1 = I.getOperand(1);
3728   Type *AggTy = I.getType();
3729   Type *ValTy = Op1->getType();
3730   bool IntoUndef = isa<UndefValue>(Op0);
3731   bool FromUndef = isa<UndefValue>(Op1);
3732 
3733   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3734 
3735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3736   SmallVector<EVT, 4> AggValueVTs;
3737   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3738   SmallVector<EVT, 4> ValValueVTs;
3739   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3740 
3741   unsigned NumAggValues = AggValueVTs.size();
3742   unsigned NumValValues = ValValueVTs.size();
3743   SmallVector<SDValue, 4> Values(NumAggValues);
3744 
3745   // Ignore an insertvalue that produces an empty object
3746   if (!NumAggValues) {
3747     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3748     return;
3749   }
3750 
3751   SDValue Agg = getValue(Op0);
3752   unsigned i = 0;
3753   // Copy the beginning value(s) from the original aggregate.
3754   for (; i != LinearIndex; ++i)
3755     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3756                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3757   // Copy values from the inserted value(s).
3758   if (NumValValues) {
3759     SDValue Val = getValue(Op1);
3760     for (; i != LinearIndex + NumValValues; ++i)
3761       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3762                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3763   }
3764   // Copy remaining value(s) from the original aggregate.
3765   for (; i != NumAggValues; ++i)
3766     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3767                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3768 
3769   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3770                            DAG.getVTList(AggValueVTs), Values));
3771 }
3772 
3773 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3774   ArrayRef<unsigned> Indices;
3775   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3776     Indices = EV->getIndices();
3777   else
3778     Indices = cast<ConstantExpr>(&I)->getIndices();
3779 
3780   const Value *Op0 = I.getOperand(0);
3781   Type *AggTy = Op0->getType();
3782   Type *ValTy = I.getType();
3783   bool OutOfUndef = isa<UndefValue>(Op0);
3784 
3785   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3786 
3787   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3788   SmallVector<EVT, 4> ValValueVTs;
3789   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3790 
3791   unsigned NumValValues = ValValueVTs.size();
3792 
3793   // Ignore a extractvalue that produces an empty object
3794   if (!NumValValues) {
3795     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3796     return;
3797   }
3798 
3799   SmallVector<SDValue, 4> Values(NumValValues);
3800 
3801   SDValue Agg = getValue(Op0);
3802   // Copy out the selected value(s).
3803   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3804     Values[i - LinearIndex] =
3805       OutOfUndef ?
3806         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3807         SDValue(Agg.getNode(), Agg.getResNo() + i);
3808 
3809   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3810                            DAG.getVTList(ValValueVTs), Values));
3811 }
3812 
3813 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3814   Value *Op0 = I.getOperand(0);
3815   // Note that the pointer operand may be a vector of pointers. Take the scalar
3816   // element which holds a pointer.
3817   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3818   SDValue N = getValue(Op0);
3819   SDLoc dl = getCurSDLoc();
3820   auto &TLI = DAG.getTargetLoweringInfo();
3821   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3822   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3823 
3824   // Normalize Vector GEP - all scalar operands should be converted to the
3825   // splat vector.
3826   unsigned VectorWidth = I.getType()->isVectorTy() ?
3827     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3828 
3829   if (VectorWidth && !N.getValueType().isVector()) {
3830     LLVMContext &Context = *DAG.getContext();
3831     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3832     N = DAG.getSplatBuildVector(VT, dl, N);
3833   }
3834 
3835   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3836        GTI != E; ++GTI) {
3837     const Value *Idx = GTI.getOperand();
3838     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3839       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3840       if (Field) {
3841         // N = N + Offset
3842         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3843 
3844         // In an inbounds GEP with an offset that is nonnegative even when
3845         // interpreted as signed, assume there is no unsigned overflow.
3846         SDNodeFlags Flags;
3847         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3848           Flags.setNoUnsignedWrap(true);
3849 
3850         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3851                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3852       }
3853     } else {
3854       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3855       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3856       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3857 
3858       // If this is a scalar constant or a splat vector of constants,
3859       // handle it quickly.
3860       const auto *CI = dyn_cast<ConstantInt>(Idx);
3861       if (!CI && isa<ConstantDataVector>(Idx) &&
3862           cast<ConstantDataVector>(Idx)->getSplatValue())
3863         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3864 
3865       if (CI) {
3866         if (CI->isZero())
3867           continue;
3868         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3869         LLVMContext &Context = *DAG.getContext();
3870         SDValue OffsVal = VectorWidth ?
3871           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3872           DAG.getConstant(Offs, dl, IdxTy);
3873 
3874         // In an inbouds GEP with an offset that is nonnegative even when
3875         // interpreted as signed, assume there is no unsigned overflow.
3876         SDNodeFlags Flags;
3877         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3878           Flags.setNoUnsignedWrap(true);
3879 
3880         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3881 
3882         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3883         continue;
3884       }
3885 
3886       // N = N + Idx * ElementSize;
3887       SDValue IdxN = getValue(Idx);
3888 
3889       if (!IdxN.getValueType().isVector() && VectorWidth) {
3890         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3891         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3892       }
3893 
3894       // If the index is smaller or larger than intptr_t, truncate or extend
3895       // it.
3896       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3897 
3898       // If this is a multiply by a power of two, turn it into a shl
3899       // immediately.  This is a very common case.
3900       if (ElementSize != 1) {
3901         if (ElementSize.isPowerOf2()) {
3902           unsigned Amt = ElementSize.logBase2();
3903           IdxN = DAG.getNode(ISD::SHL, dl,
3904                              N.getValueType(), IdxN,
3905                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3906         } else {
3907           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3908                                           IdxN.getValueType());
3909           IdxN = DAG.getNode(ISD::MUL, dl,
3910                              N.getValueType(), IdxN, Scale);
3911         }
3912       }
3913 
3914       N = DAG.getNode(ISD::ADD, dl,
3915                       N.getValueType(), N, IdxN);
3916     }
3917   }
3918 
3919   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3920     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3921 
3922   setValue(&I, N);
3923 }
3924 
3925 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3926   // If this is a fixed sized alloca in the entry block of the function,
3927   // allocate it statically on the stack.
3928   if (FuncInfo.StaticAllocaMap.count(&I))
3929     return;   // getValue will auto-populate this.
3930 
3931   SDLoc dl = getCurSDLoc();
3932   Type *Ty = I.getAllocatedType();
3933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3934   auto &DL = DAG.getDataLayout();
3935   uint64_t TySize = DL.getTypeAllocSize(Ty);
3936   unsigned Align =
3937       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3938 
3939   SDValue AllocSize = getValue(I.getArraySize());
3940 
3941   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3942   if (AllocSize.getValueType() != IntPtr)
3943     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3944 
3945   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3946                           AllocSize,
3947                           DAG.getConstant(TySize, dl, IntPtr));
3948 
3949   // Handle alignment.  If the requested alignment is less than or equal to
3950   // the stack alignment, ignore it.  If the size is greater than or equal to
3951   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3952   unsigned StackAlign =
3953       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3954   if (Align <= StackAlign)
3955     Align = 0;
3956 
3957   // Round the size of the allocation up to the stack alignment size
3958   // by add SA-1 to the size. This doesn't overflow because we're computing
3959   // an address inside an alloca.
3960   SDNodeFlags Flags;
3961   Flags.setNoUnsignedWrap(true);
3962   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3963                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3964 
3965   // Mask out the low bits for alignment purposes.
3966   AllocSize =
3967       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3968                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3969 
3970   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3971   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3972   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3973   setValue(&I, DSA);
3974   DAG.setRoot(DSA.getValue(1));
3975 
3976   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3977 }
3978 
3979 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3980   if (I.isAtomic())
3981     return visitAtomicLoad(I);
3982 
3983   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3984   const Value *SV = I.getOperand(0);
3985   if (TLI.supportSwiftError()) {
3986     // Swifterror values can come from either a function parameter with
3987     // swifterror attribute or an alloca with swifterror attribute.
3988     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3989       if (Arg->hasSwiftErrorAttr())
3990         return visitLoadFromSwiftError(I);
3991     }
3992 
3993     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3994       if (Alloca->isSwiftError())
3995         return visitLoadFromSwiftError(I);
3996     }
3997   }
3998 
3999   SDValue Ptr = getValue(SV);
4000 
4001   Type *Ty = I.getType();
4002 
4003   bool isVolatile = I.isVolatile();
4004   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
4005   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
4006   bool isDereferenceable =
4007       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4008   unsigned Alignment = I.getAlignment();
4009 
4010   AAMDNodes AAInfo;
4011   I.getAAMetadata(AAInfo);
4012   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4013 
4014   SmallVector<EVT, 4> ValueVTs, MemVTs;
4015   SmallVector<uint64_t, 4> Offsets;
4016   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4017   unsigned NumValues = ValueVTs.size();
4018   if (NumValues == 0)
4019     return;
4020 
4021   SDValue Root;
4022   bool ConstantMemory = false;
4023   if (isVolatile || NumValues > MaxParallelChains)
4024     // Serialize volatile loads with other side effects.
4025     Root = getRoot();
4026   else if (AA &&
4027            AA->pointsToConstantMemory(MemoryLocation(
4028                SV,
4029                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4030                AAInfo))) {
4031     // Do not serialize (non-volatile) loads of constant memory with anything.
4032     Root = DAG.getEntryNode();
4033     ConstantMemory = true;
4034   } else {
4035     // Do not serialize non-volatile loads against each other.
4036     Root = DAG.getRoot();
4037   }
4038 
4039   SDLoc dl = getCurSDLoc();
4040 
4041   if (isVolatile)
4042     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4043 
4044   // An aggregate load cannot wrap around the address space, so offsets to its
4045   // parts don't wrap either.
4046   SDNodeFlags Flags;
4047   Flags.setNoUnsignedWrap(true);
4048 
4049   SmallVector<SDValue, 4> Values(NumValues);
4050   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4051   EVT PtrVT = Ptr.getValueType();
4052   unsigned ChainI = 0;
4053   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4054     // Serializing loads here may result in excessive register pressure, and
4055     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4056     // could recover a bit by hoisting nodes upward in the chain by recognizing
4057     // they are side-effect free or do not alias. The optimizer should really
4058     // avoid this case by converting large object/array copies to llvm.memcpy
4059     // (MaxParallelChains should always remain as failsafe).
4060     if (ChainI == MaxParallelChains) {
4061       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4062       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4063                                   makeArrayRef(Chains.data(), ChainI));
4064       Root = Chain;
4065       ChainI = 0;
4066     }
4067     SDValue A = DAG.getNode(ISD::ADD, dl,
4068                             PtrVT, Ptr,
4069                             DAG.getConstant(Offsets[i], dl, PtrVT),
4070                             Flags);
4071     auto MMOFlags = MachineMemOperand::MONone;
4072     if (isVolatile)
4073       MMOFlags |= MachineMemOperand::MOVolatile;
4074     if (isNonTemporal)
4075       MMOFlags |= MachineMemOperand::MONonTemporal;
4076     if (isInvariant)
4077       MMOFlags |= MachineMemOperand::MOInvariant;
4078     if (isDereferenceable)
4079       MMOFlags |= MachineMemOperand::MODereferenceable;
4080     MMOFlags |= TLI.getMMOFlags(I);
4081 
4082     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4083                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4084                             MMOFlags, AAInfo, Ranges);
4085     Chains[ChainI] = L.getValue(1);
4086 
4087     if (MemVTs[i] != ValueVTs[i])
4088       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4089 
4090     Values[i] = L;
4091   }
4092 
4093   if (!ConstantMemory) {
4094     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4095                                 makeArrayRef(Chains.data(), ChainI));
4096     if (isVolatile)
4097       DAG.setRoot(Chain);
4098     else
4099       PendingLoads.push_back(Chain);
4100   }
4101 
4102   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4103                            DAG.getVTList(ValueVTs), Values));
4104 }
4105 
4106 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4107   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4108          "call visitStoreToSwiftError when backend supports swifterror");
4109 
4110   SmallVector<EVT, 4> ValueVTs;
4111   SmallVector<uint64_t, 4> Offsets;
4112   const Value *SrcV = I.getOperand(0);
4113   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4114                   SrcV->getType(), ValueVTs, &Offsets);
4115   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4116          "expect a single EVT for swifterror");
4117 
4118   SDValue Src = getValue(SrcV);
4119   // Create a virtual register, then update the virtual register.
4120   unsigned VReg =
4121       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4122   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4123   // Chain can be getRoot or getControlRoot.
4124   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4125                                       SDValue(Src.getNode(), Src.getResNo()));
4126   DAG.setRoot(CopyNode);
4127 }
4128 
4129 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4130   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4131          "call visitLoadFromSwiftError when backend supports swifterror");
4132 
4133   assert(!I.isVolatile() &&
4134          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4135          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4136          "Support volatile, non temporal, invariant for load_from_swift_error");
4137 
4138   const Value *SV = I.getOperand(0);
4139   Type *Ty = I.getType();
4140   AAMDNodes AAInfo;
4141   I.getAAMetadata(AAInfo);
4142   assert(
4143       (!AA ||
4144        !AA->pointsToConstantMemory(MemoryLocation(
4145            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4146            AAInfo))) &&
4147       "load_from_swift_error should not be constant memory");
4148 
4149   SmallVector<EVT, 4> ValueVTs;
4150   SmallVector<uint64_t, 4> Offsets;
4151   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4152                   ValueVTs, &Offsets);
4153   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4154          "expect a single EVT for swifterror");
4155 
4156   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4157   SDValue L = DAG.getCopyFromReg(
4158       getRoot(), getCurSDLoc(),
4159       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4160 
4161   setValue(&I, L);
4162 }
4163 
4164 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4165   if (I.isAtomic())
4166     return visitAtomicStore(I);
4167 
4168   const Value *SrcV = I.getOperand(0);
4169   const Value *PtrV = I.getOperand(1);
4170 
4171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4172   if (TLI.supportSwiftError()) {
4173     // Swifterror values can come from either a function parameter with
4174     // swifterror attribute or an alloca with swifterror attribute.
4175     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4176       if (Arg->hasSwiftErrorAttr())
4177         return visitStoreToSwiftError(I);
4178     }
4179 
4180     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4181       if (Alloca->isSwiftError())
4182         return visitStoreToSwiftError(I);
4183     }
4184   }
4185 
4186   SmallVector<EVT, 4> ValueVTs, MemVTs;
4187   SmallVector<uint64_t, 4> Offsets;
4188   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4189                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4190   unsigned NumValues = ValueVTs.size();
4191   if (NumValues == 0)
4192     return;
4193 
4194   // Get the lowered operands. Note that we do this after
4195   // checking if NumResults is zero, because with zero results
4196   // the operands won't have values in the map.
4197   SDValue Src = getValue(SrcV);
4198   SDValue Ptr = getValue(PtrV);
4199 
4200   SDValue Root = getRoot();
4201   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4202   SDLoc dl = getCurSDLoc();
4203   EVT PtrVT = Ptr.getValueType();
4204   unsigned Alignment = I.getAlignment();
4205   AAMDNodes AAInfo;
4206   I.getAAMetadata(AAInfo);
4207 
4208   auto MMOFlags = MachineMemOperand::MONone;
4209   if (I.isVolatile())
4210     MMOFlags |= MachineMemOperand::MOVolatile;
4211   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4212     MMOFlags |= MachineMemOperand::MONonTemporal;
4213   MMOFlags |= TLI.getMMOFlags(I);
4214 
4215   // An aggregate load cannot wrap around the address space, so offsets to its
4216   // parts don't wrap either.
4217   SDNodeFlags Flags;
4218   Flags.setNoUnsignedWrap(true);
4219 
4220   unsigned ChainI = 0;
4221   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4222     // See visitLoad comments.
4223     if (ChainI == MaxParallelChains) {
4224       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4225                                   makeArrayRef(Chains.data(), ChainI));
4226       Root = Chain;
4227       ChainI = 0;
4228     }
4229     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4230                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4231     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4232     if (MemVTs[i] != ValueVTs[i])
4233       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4234     SDValue St =
4235         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4236                      Alignment, MMOFlags, AAInfo);
4237     Chains[ChainI] = St;
4238   }
4239 
4240   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4241                                   makeArrayRef(Chains.data(), ChainI));
4242   DAG.setRoot(StoreNode);
4243 }
4244 
4245 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4246                                            bool IsCompressing) {
4247   SDLoc sdl = getCurSDLoc();
4248 
4249   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4250                            unsigned& Alignment) {
4251     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4252     Src0 = I.getArgOperand(0);
4253     Ptr = I.getArgOperand(1);
4254     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4255     Mask = I.getArgOperand(3);
4256   };
4257   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4258                            unsigned& Alignment) {
4259     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4260     Src0 = I.getArgOperand(0);
4261     Ptr = I.getArgOperand(1);
4262     Mask = I.getArgOperand(2);
4263     Alignment = 0;
4264   };
4265 
4266   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4267   unsigned Alignment;
4268   if (IsCompressing)
4269     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4270   else
4271     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4272 
4273   SDValue Ptr = getValue(PtrOperand);
4274   SDValue Src0 = getValue(Src0Operand);
4275   SDValue Mask = getValue(MaskOperand);
4276 
4277   EVT VT = Src0.getValueType();
4278   if (!Alignment)
4279     Alignment = DAG.getEVTAlignment(VT);
4280 
4281   AAMDNodes AAInfo;
4282   I.getAAMetadata(AAInfo);
4283 
4284   MachineMemOperand *MMO =
4285     DAG.getMachineFunction().
4286     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4287                           MachineMemOperand::MOStore,  VT.getStoreSize(),
4288                           Alignment, AAInfo);
4289   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4290                                          MMO, false /* Truncating */,
4291                                          IsCompressing);
4292   DAG.setRoot(StoreNode);
4293   setValue(&I, StoreNode);
4294 }
4295 
4296 // Get a uniform base for the Gather/Scatter intrinsic.
4297 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4298 // We try to represent it as a base pointer + vector of indices.
4299 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4300 // The first operand of the GEP may be a single pointer or a vector of pointers
4301 // Example:
4302 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4303 //  or
4304 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4305 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4306 //
4307 // When the first GEP operand is a single pointer - it is the uniform base we
4308 // are looking for. If first operand of the GEP is a splat vector - we
4309 // extract the splat value and use it as a uniform base.
4310 // In all other cases the function returns 'false'.
4311 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4312                            ISD::MemIndexType &IndexType, SDValue &Scale,
4313                            SelectionDAGBuilder *SDB) {
4314   SelectionDAG& DAG = SDB->DAG;
4315   LLVMContext &Context = *DAG.getContext();
4316 
4317   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4318   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4319   if (!GEP)
4320     return false;
4321 
4322   const Value *GEPPtr = GEP->getPointerOperand();
4323   if (!GEPPtr->getType()->isVectorTy())
4324     Ptr = GEPPtr;
4325   else if (!(Ptr = getSplatValue(GEPPtr)))
4326     return false;
4327 
4328   unsigned FinalIndex = GEP->getNumOperands() - 1;
4329   Value *IndexVal = GEP->getOperand(FinalIndex);
4330 
4331   // Ensure all the other indices are 0.
4332   for (unsigned i = 1; i < FinalIndex; ++i) {
4333     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4334     if (!C)
4335       return false;
4336     if (isa<VectorType>(C->getType()))
4337       C = C->getSplatValue();
4338     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4339     if (!CI || !CI->isZero())
4340       return false;
4341   }
4342 
4343   // The operands of the GEP may be defined in another basic block.
4344   // In this case we'll not find nodes for the operands.
4345   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4346     return false;
4347 
4348   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4349   const DataLayout &DL = DAG.getDataLayout();
4350   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4351                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4352   Base = SDB->getValue(Ptr);
4353   Index = SDB->getValue(IndexVal);
4354   IndexType = ISD::SIGNED_SCALED;
4355 
4356   if (!Index.getValueType().isVector()) {
4357     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4358     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4359     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4360   }
4361   return true;
4362 }
4363 
4364 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4365   SDLoc sdl = getCurSDLoc();
4366 
4367   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4368   const Value *Ptr = I.getArgOperand(1);
4369   SDValue Src0 = getValue(I.getArgOperand(0));
4370   SDValue Mask = getValue(I.getArgOperand(3));
4371   EVT VT = Src0.getValueType();
4372   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4373   if (!Alignment)
4374     Alignment = DAG.getEVTAlignment(VT);
4375   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4376 
4377   AAMDNodes AAInfo;
4378   I.getAAMetadata(AAInfo);
4379 
4380   SDValue Base;
4381   SDValue Index;
4382   ISD::MemIndexType IndexType;
4383   SDValue Scale;
4384   const Value *BasePtr = Ptr;
4385   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4386                                     this);
4387 
4388   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4389   MachineMemOperand *MMO = DAG.getMachineFunction().
4390     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4391                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4392                          Alignment, AAInfo);
4393   if (!UniformBase) {
4394     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4395     Index = getValue(Ptr);
4396     IndexType = ISD::SIGNED_SCALED;
4397     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4398   }
4399   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4400   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4401                                          Ops, MMO, IndexType);
4402   DAG.setRoot(Scatter);
4403   setValue(&I, Scatter);
4404 }
4405 
4406 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4407   SDLoc sdl = getCurSDLoc();
4408 
4409   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4410                            unsigned& Alignment) {
4411     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4412     Ptr = I.getArgOperand(0);
4413     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4414     Mask = I.getArgOperand(2);
4415     Src0 = I.getArgOperand(3);
4416   };
4417   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4418                            unsigned& Alignment) {
4419     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4420     Ptr = I.getArgOperand(0);
4421     Alignment = 0;
4422     Mask = I.getArgOperand(1);
4423     Src0 = I.getArgOperand(2);
4424   };
4425 
4426   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4427   unsigned Alignment;
4428   if (IsExpanding)
4429     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4430   else
4431     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4432 
4433   SDValue Ptr = getValue(PtrOperand);
4434   SDValue Src0 = getValue(Src0Operand);
4435   SDValue Mask = getValue(MaskOperand);
4436 
4437   EVT VT = Src0.getValueType();
4438   if (!Alignment)
4439     Alignment = DAG.getEVTAlignment(VT);
4440 
4441   AAMDNodes AAInfo;
4442   I.getAAMetadata(AAInfo);
4443   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4444 
4445   // Do not serialize masked loads of constant memory with anything.
4446   bool AddToChain =
4447       !AA || !AA->pointsToConstantMemory(MemoryLocation(
4448                  PtrOperand,
4449                  LocationSize::precise(
4450                      DAG.getDataLayout().getTypeStoreSize(I.getType())),
4451                  AAInfo));
4452   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4453 
4454   MachineMemOperand *MMO =
4455     DAG.getMachineFunction().
4456     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4457                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4458                           Alignment, AAInfo, Ranges);
4459 
4460   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4461                                    ISD::NON_EXTLOAD, IsExpanding);
4462   if (AddToChain)
4463     PendingLoads.push_back(Load.getValue(1));
4464   setValue(&I, Load);
4465 }
4466 
4467 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4468   SDLoc sdl = getCurSDLoc();
4469 
4470   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4471   const Value *Ptr = I.getArgOperand(0);
4472   SDValue Src0 = getValue(I.getArgOperand(3));
4473   SDValue Mask = getValue(I.getArgOperand(2));
4474 
4475   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4476   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4477   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4478   if (!Alignment)
4479     Alignment = DAG.getEVTAlignment(VT);
4480 
4481   AAMDNodes AAInfo;
4482   I.getAAMetadata(AAInfo);
4483   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4484 
4485   SDValue Root = DAG.getRoot();
4486   SDValue Base;
4487   SDValue Index;
4488   ISD::MemIndexType IndexType;
4489   SDValue Scale;
4490   const Value *BasePtr = Ptr;
4491   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4492                                     this);
4493   bool ConstantMemory = false;
4494   if (UniformBase && AA &&
4495       AA->pointsToConstantMemory(
4496           MemoryLocation(BasePtr,
4497                          LocationSize::precise(
4498                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4499                          AAInfo))) {
4500     // Do not serialize (non-volatile) loads of constant memory with anything.
4501     Root = DAG.getEntryNode();
4502     ConstantMemory = true;
4503   }
4504 
4505   MachineMemOperand *MMO =
4506     DAG.getMachineFunction().
4507     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4508                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4509                          Alignment, AAInfo, Ranges);
4510 
4511   if (!UniformBase) {
4512     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4513     Index = getValue(Ptr);
4514     IndexType = ISD::SIGNED_SCALED;
4515     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4516   }
4517   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4518   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4519                                        Ops, MMO, IndexType);
4520 
4521   SDValue OutChain = Gather.getValue(1);
4522   if (!ConstantMemory)
4523     PendingLoads.push_back(OutChain);
4524   setValue(&I, Gather);
4525 }
4526 
4527 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4528   SDLoc dl = getCurSDLoc();
4529   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4530   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4531   SyncScope::ID SSID = I.getSyncScopeID();
4532 
4533   SDValue InChain = getRoot();
4534 
4535   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4536   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4537 
4538   auto Alignment = DAG.getEVTAlignment(MemVT);
4539 
4540   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4541   if (I.isVolatile())
4542     Flags |= MachineMemOperand::MOVolatile;
4543   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4544 
4545   MachineFunction &MF = DAG.getMachineFunction();
4546   MachineMemOperand *MMO =
4547     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4548                             Flags, MemVT.getStoreSize(), Alignment,
4549                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4550                             FailureOrdering);
4551 
4552   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4553                                    dl, MemVT, VTs, InChain,
4554                                    getValue(I.getPointerOperand()),
4555                                    getValue(I.getCompareOperand()),
4556                                    getValue(I.getNewValOperand()), MMO);
4557 
4558   SDValue OutChain = L.getValue(2);
4559 
4560   setValue(&I, L);
4561   DAG.setRoot(OutChain);
4562 }
4563 
4564 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4565   SDLoc dl = getCurSDLoc();
4566   ISD::NodeType NT;
4567   switch (I.getOperation()) {
4568   default: llvm_unreachable("Unknown atomicrmw operation");
4569   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4570   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4571   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4572   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4573   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4574   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4575   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4576   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4577   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4578   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4579   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4580   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4581   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4582   }
4583   AtomicOrdering Ordering = I.getOrdering();
4584   SyncScope::ID SSID = I.getSyncScopeID();
4585 
4586   SDValue InChain = getRoot();
4587 
4588   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4589   auto Alignment = DAG.getEVTAlignment(MemVT);
4590 
4591   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4592   if (I.isVolatile())
4593     Flags |= MachineMemOperand::MOVolatile;
4594   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4595 
4596   MachineFunction &MF = DAG.getMachineFunction();
4597   MachineMemOperand *MMO =
4598     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4599                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4600                             nullptr, SSID, Ordering);
4601 
4602   SDValue L =
4603     DAG.getAtomic(NT, dl, MemVT, InChain,
4604                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4605                   MMO);
4606 
4607   SDValue OutChain = L.getValue(1);
4608 
4609   setValue(&I, L);
4610   DAG.setRoot(OutChain);
4611 }
4612 
4613 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4614   SDLoc dl = getCurSDLoc();
4615   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4616   SDValue Ops[3];
4617   Ops[0] = getRoot();
4618   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4619                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4620   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4621                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4622   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4623 }
4624 
4625 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4626   SDLoc dl = getCurSDLoc();
4627   AtomicOrdering Order = I.getOrdering();
4628   SyncScope::ID SSID = I.getSyncScopeID();
4629 
4630   SDValue InChain = getRoot();
4631 
4632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4633   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4634   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4635 
4636   if (!TLI.supportsUnalignedAtomics() &&
4637       I.getAlignment() < MemVT.getSizeInBits() / 8)
4638     report_fatal_error("Cannot generate unaligned atomic load");
4639 
4640   auto Flags = MachineMemOperand::MOLoad;
4641   if (I.isVolatile())
4642     Flags |= MachineMemOperand::MOVolatile;
4643   if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4644     Flags |= MachineMemOperand::MOInvariant;
4645   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4646                                DAG.getDataLayout()))
4647     Flags |= MachineMemOperand::MODereferenceable;
4648 
4649   Flags |= TLI.getMMOFlags(I);
4650 
4651   MachineMemOperand *MMO =
4652       DAG.getMachineFunction().
4653       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4654                            Flags, MemVT.getStoreSize(),
4655                            I.getAlignment() ? I.getAlignment() :
4656                                               DAG.getEVTAlignment(MemVT),
4657                            AAMDNodes(), nullptr, SSID, Order);
4658 
4659   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4660   SDValue L =
4661       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4662                     getValue(I.getPointerOperand()), MMO);
4663 
4664   SDValue OutChain = L.getValue(1);
4665   if (MemVT != VT)
4666     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4667 
4668   setValue(&I, L);
4669   DAG.setRoot(OutChain);
4670 }
4671 
4672 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4673   SDLoc dl = getCurSDLoc();
4674 
4675   AtomicOrdering Ordering = I.getOrdering();
4676   SyncScope::ID SSID = I.getSyncScopeID();
4677 
4678   SDValue InChain = getRoot();
4679 
4680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4681   EVT MemVT =
4682       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4683 
4684   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4685     report_fatal_error("Cannot generate unaligned atomic store");
4686 
4687   auto Flags = MachineMemOperand::MOStore;
4688   if (I.isVolatile())
4689     Flags |= MachineMemOperand::MOVolatile;
4690   Flags |= TLI.getMMOFlags(I);
4691 
4692   MachineFunction &MF = DAG.getMachineFunction();
4693   MachineMemOperand *MMO =
4694     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4695                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4696                             nullptr, SSID, Ordering);
4697 
4698   SDValue Val = getValue(I.getValueOperand());
4699   if (Val.getValueType() != MemVT)
4700     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4701 
4702   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4703                                    getValue(I.getPointerOperand()), Val, MMO);
4704 
4705 
4706   DAG.setRoot(OutChain);
4707 }
4708 
4709 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4710 /// node.
4711 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4712                                                unsigned Intrinsic) {
4713   // Ignore the callsite's attributes. A specific call site may be marked with
4714   // readnone, but the lowering code will expect the chain based on the
4715   // definition.
4716   const Function *F = I.getCalledFunction();
4717   bool HasChain = !F->doesNotAccessMemory();
4718   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4719 
4720   // Build the operand list.
4721   SmallVector<SDValue, 8> Ops;
4722   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4723     if (OnlyLoad) {
4724       // We don't need to serialize loads against other loads.
4725       Ops.push_back(DAG.getRoot());
4726     } else {
4727       Ops.push_back(getRoot());
4728     }
4729   }
4730 
4731   // Info is set by getTgtMemInstrinsic
4732   TargetLowering::IntrinsicInfo Info;
4733   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4734   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4735                                                DAG.getMachineFunction(),
4736                                                Intrinsic);
4737 
4738   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4739   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4740       Info.opc == ISD::INTRINSIC_W_CHAIN)
4741     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4742                                         TLI.getPointerTy(DAG.getDataLayout())));
4743 
4744   // Add all operands of the call to the operand list.
4745   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4746     SDValue Op = getValue(I.getArgOperand(i));
4747     Ops.push_back(Op);
4748   }
4749 
4750   SmallVector<EVT, 4> ValueVTs;
4751   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4752 
4753   if (HasChain)
4754     ValueVTs.push_back(MVT::Other);
4755 
4756   SDVTList VTs = DAG.getVTList(ValueVTs);
4757 
4758   // Create the node.
4759   SDValue Result;
4760   if (IsTgtIntrinsic) {
4761     // This is target intrinsic that touches memory
4762     AAMDNodes AAInfo;
4763     I.getAAMetadata(AAInfo);
4764     Result = DAG.getMemIntrinsicNode(
4765         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4766         MachinePointerInfo(Info.ptrVal, Info.offset),
4767         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4768   } else if (!HasChain) {
4769     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4770   } else if (!I.getType()->isVoidTy()) {
4771     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4772   } else {
4773     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4774   }
4775 
4776   if (HasChain) {
4777     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4778     if (OnlyLoad)
4779       PendingLoads.push_back(Chain);
4780     else
4781       DAG.setRoot(Chain);
4782   }
4783 
4784   if (!I.getType()->isVoidTy()) {
4785     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4786       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4787       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4788     } else
4789       Result = lowerRangeToAssertZExt(DAG, I, Result);
4790 
4791     setValue(&I, Result);
4792   }
4793 }
4794 
4795 /// GetSignificand - Get the significand and build it into a floating-point
4796 /// number with exponent of 1:
4797 ///
4798 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4799 ///
4800 /// where Op is the hexadecimal representation of floating point value.
4801 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4802   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4803                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4804   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4805                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4806   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4807 }
4808 
4809 /// GetExponent - Get the exponent:
4810 ///
4811 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4812 ///
4813 /// where Op is the hexadecimal representation of floating point value.
4814 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4815                            const TargetLowering &TLI, const SDLoc &dl) {
4816   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4817                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4818   SDValue t1 = DAG.getNode(
4819       ISD::SRL, dl, MVT::i32, t0,
4820       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4821   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4822                            DAG.getConstant(127, dl, MVT::i32));
4823   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4824 }
4825 
4826 /// getF32Constant - Get 32-bit floating point constant.
4827 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4828                               const SDLoc &dl) {
4829   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4830                            MVT::f32);
4831 }
4832 
4833 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4834                                        SelectionDAG &DAG) {
4835   // TODO: What fast-math-flags should be set on the floating-point nodes?
4836 
4837   //   IntegerPartOfX = ((int32_t)(t0);
4838   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4839 
4840   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4841   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4842   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4843 
4844   //   IntegerPartOfX <<= 23;
4845   IntegerPartOfX = DAG.getNode(
4846       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4847       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4848                                   DAG.getDataLayout())));
4849 
4850   SDValue TwoToFractionalPartOfX;
4851   if (LimitFloatPrecision <= 6) {
4852     // For floating-point precision of 6:
4853     //
4854     //   TwoToFractionalPartOfX =
4855     //     0.997535578f +
4856     //       (0.735607626f + 0.252464424f * x) * x;
4857     //
4858     // error 0.0144103317, which is 6 bits
4859     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4860                              getF32Constant(DAG, 0x3e814304, dl));
4861     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4862                              getF32Constant(DAG, 0x3f3c50c8, dl));
4863     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4864     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4865                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4866   } else if (LimitFloatPrecision <= 12) {
4867     // For floating-point precision of 12:
4868     //
4869     //   TwoToFractionalPartOfX =
4870     //     0.999892986f +
4871     //       (0.696457318f +
4872     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4873     //
4874     // error 0.000107046256, which is 13 to 14 bits
4875     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4876                              getF32Constant(DAG, 0x3da235e3, dl));
4877     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4878                              getF32Constant(DAG, 0x3e65b8f3, dl));
4879     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4880     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4881                              getF32Constant(DAG, 0x3f324b07, dl));
4882     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4883     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4884                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4885   } else { // LimitFloatPrecision <= 18
4886     // For floating-point precision of 18:
4887     //
4888     //   TwoToFractionalPartOfX =
4889     //     0.999999982f +
4890     //       (0.693148872f +
4891     //         (0.240227044f +
4892     //           (0.554906021e-1f +
4893     //             (0.961591928e-2f +
4894     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4895     // error 2.47208000*10^(-7), which is better than 18 bits
4896     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4897                              getF32Constant(DAG, 0x3924b03e, dl));
4898     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4899                              getF32Constant(DAG, 0x3ab24b87, dl));
4900     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4901     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4902                              getF32Constant(DAG, 0x3c1d8c17, dl));
4903     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4904     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4905                              getF32Constant(DAG, 0x3d634a1d, dl));
4906     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4907     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4908                              getF32Constant(DAG, 0x3e75fe14, dl));
4909     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4910     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4911                               getF32Constant(DAG, 0x3f317234, dl));
4912     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4913     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4914                                          getF32Constant(DAG, 0x3f800000, dl));
4915   }
4916 
4917   // Add the exponent into the result in integer domain.
4918   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4919   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4920                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4921 }
4922 
4923 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4924 /// limited-precision mode.
4925 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4926                          const TargetLowering &TLI) {
4927   if (Op.getValueType() == MVT::f32 &&
4928       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4929 
4930     // Put the exponent in the right bit position for later addition to the
4931     // final result:
4932     //
4933     //   #define LOG2OFe 1.4426950f
4934     //   t0 = Op * LOG2OFe
4935 
4936     // TODO: What fast-math-flags should be set here?
4937     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4938                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4939     return getLimitedPrecisionExp2(t0, dl, DAG);
4940   }
4941 
4942   // No special expansion.
4943   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4944 }
4945 
4946 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4947 /// limited-precision mode.
4948 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4949                          const TargetLowering &TLI) {
4950   // TODO: What fast-math-flags should be set on the floating-point nodes?
4951 
4952   if (Op.getValueType() == MVT::f32 &&
4953       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4954     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4955 
4956     // Scale the exponent by log(2) [0.69314718f].
4957     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4958     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4959                                         getF32Constant(DAG, 0x3f317218, dl));
4960 
4961     // Get the significand and build it into a floating-point number with
4962     // exponent of 1.
4963     SDValue X = GetSignificand(DAG, Op1, dl);
4964 
4965     SDValue LogOfMantissa;
4966     if (LimitFloatPrecision <= 6) {
4967       // For floating-point precision of 6:
4968       //
4969       //   LogofMantissa =
4970       //     -1.1609546f +
4971       //       (1.4034025f - 0.23903021f * x) * x;
4972       //
4973       // error 0.0034276066, which is better than 8 bits
4974       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4975                                getF32Constant(DAG, 0xbe74c456, dl));
4976       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4977                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4978       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4979       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4980                                   getF32Constant(DAG, 0x3f949a29, dl));
4981     } else if (LimitFloatPrecision <= 12) {
4982       // For floating-point precision of 12:
4983       //
4984       //   LogOfMantissa =
4985       //     -1.7417939f +
4986       //       (2.8212026f +
4987       //         (-1.4699568f +
4988       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4989       //
4990       // error 0.000061011436, which is 14 bits
4991       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4992                                getF32Constant(DAG, 0xbd67b6d6, dl));
4993       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4994                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4995       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4996       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4997                                getF32Constant(DAG, 0x3fbc278b, dl));
4998       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4999       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5000                                getF32Constant(DAG, 0x40348e95, dl));
5001       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5002       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5003                                   getF32Constant(DAG, 0x3fdef31a, dl));
5004     } else { // LimitFloatPrecision <= 18
5005       // For floating-point precision of 18:
5006       //
5007       //   LogOfMantissa =
5008       //     -2.1072184f +
5009       //       (4.2372794f +
5010       //         (-3.7029485f +
5011       //           (2.2781945f +
5012       //             (-0.87823314f +
5013       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5014       //
5015       // error 0.0000023660568, which is better than 18 bits
5016       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5017                                getF32Constant(DAG, 0xbc91e5ac, dl));
5018       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5019                                getF32Constant(DAG, 0x3e4350aa, dl));
5020       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5021       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5022                                getF32Constant(DAG, 0x3f60d3e3, dl));
5023       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5024       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5025                                getF32Constant(DAG, 0x4011cdf0, dl));
5026       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5027       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5028                                getF32Constant(DAG, 0x406cfd1c, dl));
5029       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5030       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5031                                getF32Constant(DAG, 0x408797cb, dl));
5032       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5033       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5034                                   getF32Constant(DAG, 0x4006dcab, dl));
5035     }
5036 
5037     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5038   }
5039 
5040   // No special expansion.
5041   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5042 }
5043 
5044 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5045 /// limited-precision mode.
5046 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5047                           const TargetLowering &TLI) {
5048   // TODO: What fast-math-flags should be set on the floating-point nodes?
5049 
5050   if (Op.getValueType() == MVT::f32 &&
5051       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5052     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5053 
5054     // Get the exponent.
5055     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5056 
5057     // Get the significand and build it into a floating-point number with
5058     // exponent of 1.
5059     SDValue X = GetSignificand(DAG, Op1, dl);
5060 
5061     // Different possible minimax approximations of significand in
5062     // floating-point for various degrees of accuracy over [1,2].
5063     SDValue Log2ofMantissa;
5064     if (LimitFloatPrecision <= 6) {
5065       // For floating-point precision of 6:
5066       //
5067       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5068       //
5069       // error 0.0049451742, which is more than 7 bits
5070       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5071                                getF32Constant(DAG, 0xbeb08fe0, dl));
5072       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5073                                getF32Constant(DAG, 0x40019463, dl));
5074       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5075       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5076                                    getF32Constant(DAG, 0x3fd6633d, dl));
5077     } else if (LimitFloatPrecision <= 12) {
5078       // For floating-point precision of 12:
5079       //
5080       //   Log2ofMantissa =
5081       //     -2.51285454f +
5082       //       (4.07009056f +
5083       //         (-2.12067489f +
5084       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5085       //
5086       // error 0.0000876136000, which is better than 13 bits
5087       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5088                                getF32Constant(DAG, 0xbda7262e, dl));
5089       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5090                                getF32Constant(DAG, 0x3f25280b, dl));
5091       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5092       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5093                                getF32Constant(DAG, 0x4007b923, dl));
5094       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5095       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5096                                getF32Constant(DAG, 0x40823e2f, dl));
5097       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5098       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5099                                    getF32Constant(DAG, 0x4020d29c, dl));
5100     } else { // LimitFloatPrecision <= 18
5101       // For floating-point precision of 18:
5102       //
5103       //   Log2ofMantissa =
5104       //     -3.0400495f +
5105       //       (6.1129976f +
5106       //         (-5.3420409f +
5107       //           (3.2865683f +
5108       //             (-1.2669343f +
5109       //               (0.27515199f -
5110       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5111       //
5112       // error 0.0000018516, which is better than 18 bits
5113       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5114                                getF32Constant(DAG, 0xbcd2769e, dl));
5115       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5116                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5117       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5118       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5119                                getF32Constant(DAG, 0x3fa22ae7, dl));
5120       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5121       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5122                                getF32Constant(DAG, 0x40525723, dl));
5123       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5124       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5125                                getF32Constant(DAG, 0x40aaf200, dl));
5126       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5127       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5128                                getF32Constant(DAG, 0x40c39dad, dl));
5129       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5130       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5131                                    getF32Constant(DAG, 0x4042902c, dl));
5132     }
5133 
5134     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5135   }
5136 
5137   // No special expansion.
5138   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5139 }
5140 
5141 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5142 /// limited-precision mode.
5143 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5144                            const TargetLowering &TLI) {
5145   // TODO: What fast-math-flags should be set on the floating-point nodes?
5146 
5147   if (Op.getValueType() == MVT::f32 &&
5148       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5149     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5150 
5151     // Scale the exponent by log10(2) [0.30102999f].
5152     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5153     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5154                                         getF32Constant(DAG, 0x3e9a209a, dl));
5155 
5156     // Get the significand and build it into a floating-point number with
5157     // exponent of 1.
5158     SDValue X = GetSignificand(DAG, Op1, dl);
5159 
5160     SDValue Log10ofMantissa;
5161     if (LimitFloatPrecision <= 6) {
5162       // For floating-point precision of 6:
5163       //
5164       //   Log10ofMantissa =
5165       //     -0.50419619f +
5166       //       (0.60948995f - 0.10380950f * x) * x;
5167       //
5168       // error 0.0014886165, which is 6 bits
5169       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5170                                getF32Constant(DAG, 0xbdd49a13, dl));
5171       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5172                                getF32Constant(DAG, 0x3f1c0789, dl));
5173       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5174       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5175                                     getF32Constant(DAG, 0x3f011300, dl));
5176     } else if (LimitFloatPrecision <= 12) {
5177       // For floating-point precision of 12:
5178       //
5179       //   Log10ofMantissa =
5180       //     -0.64831180f +
5181       //       (0.91751397f +
5182       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5183       //
5184       // error 0.00019228036, which is better than 12 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0x3d431f31, dl));
5187       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x3ea21fb2, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5191                                getF32Constant(DAG, 0x3f6ae232, dl));
5192       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5193       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5194                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5195     } else { // LimitFloatPrecision <= 18
5196       // For floating-point precision of 18:
5197       //
5198       //   Log10ofMantissa =
5199       //     -0.84299375f +
5200       //       (1.5327582f +
5201       //         (-1.0688956f +
5202       //           (0.49102474f +
5203       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5204       //
5205       // error 0.0000037995730, which is better than 18 bits
5206       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5207                                getF32Constant(DAG, 0x3c5d51ce, dl));
5208       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5209                                getF32Constant(DAG, 0x3e00685a, dl));
5210       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5211       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5212                                getF32Constant(DAG, 0x3efb6798, dl));
5213       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5214       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5215                                getF32Constant(DAG, 0x3f88d192, dl));
5216       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5217       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5218                                getF32Constant(DAG, 0x3fc4316c, dl));
5219       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5220       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5221                                     getF32Constant(DAG, 0x3f57ce70, dl));
5222     }
5223 
5224     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5225   }
5226 
5227   // No special expansion.
5228   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5229 }
5230 
5231 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5232 /// limited-precision mode.
5233 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5234                           const TargetLowering &TLI) {
5235   if (Op.getValueType() == MVT::f32 &&
5236       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5237     return getLimitedPrecisionExp2(Op, dl, DAG);
5238 
5239   // No special expansion.
5240   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5241 }
5242 
5243 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5244 /// limited-precision mode with x == 10.0f.
5245 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5246                          SelectionDAG &DAG, const TargetLowering &TLI) {
5247   bool IsExp10 = false;
5248   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5249       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5250     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5251       APFloat Ten(10.0f);
5252       IsExp10 = LHSC->isExactlyValue(Ten);
5253     }
5254   }
5255 
5256   // TODO: What fast-math-flags should be set on the FMUL node?
5257   if (IsExp10) {
5258     // Put the exponent in the right bit position for later addition to the
5259     // final result:
5260     //
5261     //   #define LOG2OF10 3.3219281f
5262     //   t0 = Op * LOG2OF10;
5263     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5264                              getF32Constant(DAG, 0x40549a78, dl));
5265     return getLimitedPrecisionExp2(t0, dl, DAG);
5266   }
5267 
5268   // No special expansion.
5269   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5270 }
5271 
5272 /// ExpandPowI - Expand a llvm.powi intrinsic.
5273 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5274                           SelectionDAG &DAG) {
5275   // If RHS is a constant, we can expand this out to a multiplication tree,
5276   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5277   // optimizing for size, we only want to do this if the expansion would produce
5278   // a small number of multiplies, otherwise we do the full expansion.
5279   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5280     // Get the exponent as a positive value.
5281     unsigned Val = RHSC->getSExtValue();
5282     if ((int)Val < 0) Val = -Val;
5283 
5284     // powi(x, 0) -> 1.0
5285     if (Val == 0)
5286       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5287 
5288     const Function &F = DAG.getMachineFunction().getFunction();
5289     if (!F.hasOptSize() ||
5290         // If optimizing for size, don't insert too many multiplies.
5291         // This inserts up to 5 multiplies.
5292         countPopulation(Val) + Log2_32(Val) < 7) {
5293       // We use the simple binary decomposition method to generate the multiply
5294       // sequence.  There are more optimal ways to do this (for example,
5295       // powi(x,15) generates one more multiply than it should), but this has
5296       // the benefit of being both really simple and much better than a libcall.
5297       SDValue Res;  // Logically starts equal to 1.0
5298       SDValue CurSquare = LHS;
5299       // TODO: Intrinsics should have fast-math-flags that propagate to these
5300       // nodes.
5301       while (Val) {
5302         if (Val & 1) {
5303           if (Res.getNode())
5304             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5305           else
5306             Res = CurSquare;  // 1.0*CurSquare.
5307         }
5308 
5309         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5310                                 CurSquare, CurSquare);
5311         Val >>= 1;
5312       }
5313 
5314       // If the original was negative, invert the result, producing 1/(x*x*x).
5315       if (RHSC->getSExtValue() < 0)
5316         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5317                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5318       return Res;
5319     }
5320   }
5321 
5322   // Otherwise, expand to a libcall.
5323   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5324 }
5325 
5326 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5327 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5328 void getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5329                           const SDValue &N) {
5330   switch (N.getOpcode()) {
5331   case ISD::CopyFromReg: {
5332     SDValue Op = N.getOperand(1);
5333     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5334                       Op.getValueType().getSizeInBits());
5335     return;
5336   }
5337   case ISD::BITCAST:
5338   case ISD::AssertZext:
5339   case ISD::AssertSext:
5340   case ISD::TRUNCATE:
5341     getUnderlyingArgRegs(Regs, N.getOperand(0));
5342     return;
5343   case ISD::BUILD_PAIR:
5344   case ISD::BUILD_VECTOR:
5345   case ISD::CONCAT_VECTORS:
5346     for (SDValue Op : N->op_values())
5347       getUnderlyingArgRegs(Regs, Op);
5348     return;
5349   default:
5350     return;
5351   }
5352 }
5353 
5354 /// If the DbgValueInst is a dbg_value of a function argument, create the
5355 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5356 /// instruction selection, they will be inserted to the entry BB.
5357 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5358     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5359     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5360   const Argument *Arg = dyn_cast<Argument>(V);
5361   if (!Arg)
5362     return false;
5363 
5364   if (!IsDbgDeclare) {
5365     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5366     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5367     // the entry block.
5368     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5369     if (!IsInEntryBlock)
5370       return false;
5371 
5372     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5373     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5374     // variable that also is a param.
5375     //
5376     // Although, if we are at the top of the entry block already, we can still
5377     // emit using ArgDbgValue. This might catch some situations when the
5378     // dbg.value refers to an argument that isn't used in the entry block, so
5379     // any CopyToReg node would be optimized out and the only way to express
5380     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5381     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5382     // we should only emit as ArgDbgValue if the Variable is an argument to the
5383     // current function, and the dbg.value intrinsic is found in the entry
5384     // block.
5385     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5386         !DL->getInlinedAt();
5387     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5388     if (!IsInPrologue && !VariableIsFunctionInputArg)
5389       return false;
5390 
5391     // Here we assume that a function argument on IR level only can be used to
5392     // describe one input parameter on source level. If we for example have
5393     // source code like this
5394     //
5395     //    struct A { long x, y; };
5396     //    void foo(struct A a, long b) {
5397     //      ...
5398     //      b = a.x;
5399     //      ...
5400     //    }
5401     //
5402     // and IR like this
5403     //
5404     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5405     //  entry:
5406     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5407     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5408     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5409     //    ...
5410     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5411     //    ...
5412     //
5413     // then the last dbg.value is describing a parameter "b" using a value that
5414     // is an argument. But since we already has used %a1 to describe a parameter
5415     // we should not handle that last dbg.value here (that would result in an
5416     // incorrect hoisting of the DBG_VALUE to the function entry).
5417     // Notice that we allow one dbg.value per IR level argument, to accomodate
5418     // for the situation with fragments above.
5419     if (VariableIsFunctionInputArg) {
5420       unsigned ArgNo = Arg->getArgNo();
5421       if (ArgNo >= FuncInfo.DescribedArgs.size())
5422         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5423       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5424         return false;
5425       FuncInfo.DescribedArgs.set(ArgNo);
5426     }
5427   }
5428 
5429   MachineFunction &MF = DAG.getMachineFunction();
5430   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5431 
5432   bool IsIndirect = false;
5433   Optional<MachineOperand> Op;
5434   // Some arguments' frame index is recorded during argument lowering.
5435   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5436   if (FI != std::numeric_limits<int>::max())
5437     Op = MachineOperand::CreateFI(FI);
5438 
5439   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5440   if (!Op && N.getNode()) {
5441     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5442     Register Reg;
5443     if (ArgRegsAndSizes.size() == 1)
5444       Reg = ArgRegsAndSizes.front().first;
5445 
5446     if (Reg && Reg.isVirtual()) {
5447       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5448       Register PR = RegInfo.getLiveInPhysReg(Reg);
5449       if (PR)
5450         Reg = PR;
5451     }
5452     if (Reg) {
5453       Op = MachineOperand::CreateReg(Reg, false);
5454       IsIndirect = IsDbgDeclare;
5455     }
5456   }
5457 
5458   if (!Op && N.getNode()) {
5459     // Check if frame index is available.
5460     SDValue LCandidate = peekThroughBitcasts(N);
5461     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5462       if (FrameIndexSDNode *FINode =
5463           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5464         Op = MachineOperand::CreateFI(FINode->getIndex());
5465   }
5466 
5467   if (!Op) {
5468     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5469     auto splitMultiRegDbgValue
5470       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5471       unsigned Offset = 0;
5472       for (auto RegAndSize : SplitRegs) {
5473         auto FragmentExpr = DIExpression::createFragmentExpression(
5474           Expr, Offset, RegAndSize.second);
5475         if (!FragmentExpr)
5476           continue;
5477         FuncInfo.ArgDbgValues.push_back(
5478           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5479                   RegAndSize.first, Variable, *FragmentExpr));
5480         Offset += RegAndSize.second;
5481       }
5482     };
5483 
5484     // Check if ValueMap has reg number.
5485     DenseMap<const Value *, unsigned>::const_iterator
5486       VMI = FuncInfo.ValueMap.find(V);
5487     if (VMI != FuncInfo.ValueMap.end()) {
5488       const auto &TLI = DAG.getTargetLoweringInfo();
5489       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5490                        V->getType(), getABIRegCopyCC(V));
5491       if (RFV.occupiesMultipleRegs()) {
5492         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5493         return true;
5494       }
5495 
5496       Op = MachineOperand::CreateReg(VMI->second, false);
5497       IsIndirect = IsDbgDeclare;
5498     } else if (ArgRegsAndSizes.size() > 1) {
5499       // This was split due to the calling convention, and no virtual register
5500       // mapping exists for the value.
5501       splitMultiRegDbgValue(ArgRegsAndSizes);
5502       return true;
5503     }
5504   }
5505 
5506   if (!Op)
5507     return false;
5508 
5509   assert(Variable->isValidLocationForIntrinsic(DL) &&
5510          "Expected inlined-at fields to agree");
5511   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5512   FuncInfo.ArgDbgValues.push_back(
5513       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5514               *Op, Variable, Expr));
5515 
5516   return true;
5517 }
5518 
5519 /// Return the appropriate SDDbgValue based on N.
5520 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5521                                              DILocalVariable *Variable,
5522                                              DIExpression *Expr,
5523                                              const DebugLoc &dl,
5524                                              unsigned DbgSDNodeOrder) {
5525   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5526     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5527     // stack slot locations.
5528     //
5529     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5530     // debug values here after optimization:
5531     //
5532     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5533     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5534     //
5535     // Both describe the direct values of their associated variables.
5536     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5537                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5538   }
5539   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5540                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5541 }
5542 
5543 // VisualStudio defines setjmp as _setjmp
5544 #if defined(_MSC_VER) && defined(setjmp) && \
5545                          !defined(setjmp_undefined_for_msvc)
5546 #  pragma push_macro("setjmp")
5547 #  undef setjmp
5548 #  define setjmp_undefined_for_msvc
5549 #endif
5550 
5551 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5552   switch (Intrinsic) {
5553   case Intrinsic::smul_fix:
5554     return ISD::SMULFIX;
5555   case Intrinsic::umul_fix:
5556     return ISD::UMULFIX;
5557   default:
5558     llvm_unreachable("Unhandled fixed point intrinsic");
5559   }
5560 }
5561 
5562 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5563                                            const char *FunctionName) {
5564   assert(FunctionName && "FunctionName must not be nullptr");
5565   SDValue Callee = DAG.getExternalSymbol(
5566       FunctionName,
5567       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5568   LowerCallTo(&I, Callee, I.isTailCall());
5569 }
5570 
5571 /// Lower the call to the specified intrinsic function.
5572 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5573                                              unsigned Intrinsic) {
5574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5575   SDLoc sdl = getCurSDLoc();
5576   DebugLoc dl = getCurDebugLoc();
5577   SDValue Res;
5578 
5579   switch (Intrinsic) {
5580   default:
5581     // By default, turn this into a target intrinsic node.
5582     visitTargetIntrinsic(I, Intrinsic);
5583     return;
5584   case Intrinsic::vastart:  visitVAStart(I); return;
5585   case Intrinsic::vaend:    visitVAEnd(I); return;
5586   case Intrinsic::vacopy:   visitVACopy(I); return;
5587   case Intrinsic::returnaddress:
5588     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5589                              TLI.getPointerTy(DAG.getDataLayout()),
5590                              getValue(I.getArgOperand(0))));
5591     return;
5592   case Intrinsic::addressofreturnaddress:
5593     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5594                              TLI.getPointerTy(DAG.getDataLayout())));
5595     return;
5596   case Intrinsic::sponentry:
5597     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5598                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5599     return;
5600   case Intrinsic::frameaddress:
5601     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5602                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5603                              getValue(I.getArgOperand(0))));
5604     return;
5605   case Intrinsic::read_register: {
5606     Value *Reg = I.getArgOperand(0);
5607     SDValue Chain = getRoot();
5608     SDValue RegName =
5609         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5610     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5611     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5612       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5613     setValue(&I, Res);
5614     DAG.setRoot(Res.getValue(1));
5615     return;
5616   }
5617   case Intrinsic::write_register: {
5618     Value *Reg = I.getArgOperand(0);
5619     Value *RegValue = I.getArgOperand(1);
5620     SDValue Chain = getRoot();
5621     SDValue RegName =
5622         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5623     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5624                             RegName, getValue(RegValue)));
5625     return;
5626   }
5627   case Intrinsic::setjmp:
5628     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5629     return;
5630   case Intrinsic::longjmp:
5631     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5632     return;
5633   case Intrinsic::memcpy: {
5634     const auto &MCI = cast<MemCpyInst>(I);
5635     SDValue Op1 = getValue(I.getArgOperand(0));
5636     SDValue Op2 = getValue(I.getArgOperand(1));
5637     SDValue Op3 = getValue(I.getArgOperand(2));
5638     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5639     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5640     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5641     unsigned Align = MinAlign(DstAlign, SrcAlign);
5642     bool isVol = MCI.isVolatile();
5643     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5644     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5645     // node.
5646     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5647                                false, isTC,
5648                                MachinePointerInfo(I.getArgOperand(0)),
5649                                MachinePointerInfo(I.getArgOperand(1)));
5650     updateDAGForMaybeTailCall(MC);
5651     return;
5652   }
5653   case Intrinsic::memset: {
5654     const auto &MSI = cast<MemSetInst>(I);
5655     SDValue Op1 = getValue(I.getArgOperand(0));
5656     SDValue Op2 = getValue(I.getArgOperand(1));
5657     SDValue Op3 = getValue(I.getArgOperand(2));
5658     // @llvm.memset defines 0 and 1 to both mean no alignment.
5659     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5660     bool isVol = MSI.isVolatile();
5661     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5662     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5663                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5664     updateDAGForMaybeTailCall(MS);
5665     return;
5666   }
5667   case Intrinsic::memmove: {
5668     const auto &MMI = cast<MemMoveInst>(I);
5669     SDValue Op1 = getValue(I.getArgOperand(0));
5670     SDValue Op2 = getValue(I.getArgOperand(1));
5671     SDValue Op3 = getValue(I.getArgOperand(2));
5672     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5673     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5674     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5675     unsigned Align = MinAlign(DstAlign, SrcAlign);
5676     bool isVol = MMI.isVolatile();
5677     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5678     // FIXME: Support passing different dest/src alignments to the memmove DAG
5679     // node.
5680     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5681                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5682                                 MachinePointerInfo(I.getArgOperand(1)));
5683     updateDAGForMaybeTailCall(MM);
5684     return;
5685   }
5686   case Intrinsic::memcpy_element_unordered_atomic: {
5687     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5688     SDValue Dst = getValue(MI.getRawDest());
5689     SDValue Src = getValue(MI.getRawSource());
5690     SDValue Length = getValue(MI.getLength());
5691 
5692     unsigned DstAlign = MI.getDestAlignment();
5693     unsigned SrcAlign = MI.getSourceAlignment();
5694     Type *LengthTy = MI.getLength()->getType();
5695     unsigned ElemSz = MI.getElementSizeInBytes();
5696     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5697     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5698                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5699                                      MachinePointerInfo(MI.getRawDest()),
5700                                      MachinePointerInfo(MI.getRawSource()));
5701     updateDAGForMaybeTailCall(MC);
5702     return;
5703   }
5704   case Intrinsic::memmove_element_unordered_atomic: {
5705     auto &MI = cast<AtomicMemMoveInst>(I);
5706     SDValue Dst = getValue(MI.getRawDest());
5707     SDValue Src = getValue(MI.getRawSource());
5708     SDValue Length = getValue(MI.getLength());
5709 
5710     unsigned DstAlign = MI.getDestAlignment();
5711     unsigned SrcAlign = MI.getSourceAlignment();
5712     Type *LengthTy = MI.getLength()->getType();
5713     unsigned ElemSz = MI.getElementSizeInBytes();
5714     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5715     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5716                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5717                                       MachinePointerInfo(MI.getRawDest()),
5718                                       MachinePointerInfo(MI.getRawSource()));
5719     updateDAGForMaybeTailCall(MC);
5720     return;
5721   }
5722   case Intrinsic::memset_element_unordered_atomic: {
5723     auto &MI = cast<AtomicMemSetInst>(I);
5724     SDValue Dst = getValue(MI.getRawDest());
5725     SDValue Val = getValue(MI.getValue());
5726     SDValue Length = getValue(MI.getLength());
5727 
5728     unsigned DstAlign = MI.getDestAlignment();
5729     Type *LengthTy = MI.getLength()->getType();
5730     unsigned ElemSz = MI.getElementSizeInBytes();
5731     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5732     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5733                                      LengthTy, ElemSz, isTC,
5734                                      MachinePointerInfo(MI.getRawDest()));
5735     updateDAGForMaybeTailCall(MC);
5736     return;
5737   }
5738   case Intrinsic::dbg_addr:
5739   case Intrinsic::dbg_declare: {
5740     const auto &DI = cast<DbgVariableIntrinsic>(I);
5741     DILocalVariable *Variable = DI.getVariable();
5742     DIExpression *Expression = DI.getExpression();
5743     dropDanglingDebugInfo(Variable, Expression);
5744     assert(Variable && "Missing variable");
5745 
5746     // Check if address has undef value.
5747     const Value *Address = DI.getVariableLocation();
5748     if (!Address || isa<UndefValue>(Address) ||
5749         (Address->use_empty() && !isa<Argument>(Address))) {
5750       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5751       return;
5752     }
5753 
5754     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5755 
5756     // Check if this variable can be described by a frame index, typically
5757     // either as a static alloca or a byval parameter.
5758     int FI = std::numeric_limits<int>::max();
5759     if (const auto *AI =
5760             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5761       if (AI->isStaticAlloca()) {
5762         auto I = FuncInfo.StaticAllocaMap.find(AI);
5763         if (I != FuncInfo.StaticAllocaMap.end())
5764           FI = I->second;
5765       }
5766     } else if (const auto *Arg = dyn_cast<Argument>(
5767                    Address->stripInBoundsConstantOffsets())) {
5768       FI = FuncInfo.getArgumentFrameIndex(Arg);
5769     }
5770 
5771     // llvm.dbg.addr is control dependent and always generates indirect
5772     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5773     // the MachineFunction variable table.
5774     if (FI != std::numeric_limits<int>::max()) {
5775       if (Intrinsic == Intrinsic::dbg_addr) {
5776         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5777             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5778         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5779       }
5780       return;
5781     }
5782 
5783     SDValue &N = NodeMap[Address];
5784     if (!N.getNode() && isa<Argument>(Address))
5785       // Check unused arguments map.
5786       N = UnusedArgNodeMap[Address];
5787     SDDbgValue *SDV;
5788     if (N.getNode()) {
5789       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5790         Address = BCI->getOperand(0);
5791       // Parameters are handled specially.
5792       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5793       if (isParameter && FINode) {
5794         // Byval parameter. We have a frame index at this point.
5795         SDV =
5796             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5797                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5798       } else if (isa<Argument>(Address)) {
5799         // Address is an argument, so try to emit its dbg value using
5800         // virtual register info from the FuncInfo.ValueMap.
5801         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5802         return;
5803       } else {
5804         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5805                               true, dl, SDNodeOrder);
5806       }
5807       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5808     } else {
5809       // If Address is an argument then try to emit its dbg value using
5810       // virtual register info from the FuncInfo.ValueMap.
5811       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5812                                     N)) {
5813         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5814       }
5815     }
5816     return;
5817   }
5818   case Intrinsic::dbg_label: {
5819     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5820     DILabel *Label = DI.getLabel();
5821     assert(Label && "Missing label");
5822 
5823     SDDbgLabel *SDV;
5824     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5825     DAG.AddDbgLabel(SDV);
5826     return;
5827   }
5828   case Intrinsic::dbg_value: {
5829     const DbgValueInst &DI = cast<DbgValueInst>(I);
5830     assert(DI.getVariable() && "Missing variable");
5831 
5832     DILocalVariable *Variable = DI.getVariable();
5833     DIExpression *Expression = DI.getExpression();
5834     dropDanglingDebugInfo(Variable, Expression);
5835     const Value *V = DI.getValue();
5836     if (!V)
5837       return;
5838 
5839     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5840         SDNodeOrder))
5841       return;
5842 
5843     // TODO: Dangling debug info will eventually either be resolved or produce
5844     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5845     // between the original dbg.value location and its resolved DBG_VALUE, which
5846     // we should ideally fill with an extra Undef DBG_VALUE.
5847 
5848     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5849     return;
5850   }
5851 
5852   case Intrinsic::eh_typeid_for: {
5853     // Find the type id for the given typeinfo.
5854     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5855     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5856     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5857     setValue(&I, Res);
5858     return;
5859   }
5860 
5861   case Intrinsic::eh_return_i32:
5862   case Intrinsic::eh_return_i64:
5863     DAG.getMachineFunction().setCallsEHReturn(true);
5864     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5865                             MVT::Other,
5866                             getControlRoot(),
5867                             getValue(I.getArgOperand(0)),
5868                             getValue(I.getArgOperand(1))));
5869     return;
5870   case Intrinsic::eh_unwind_init:
5871     DAG.getMachineFunction().setCallsUnwindInit(true);
5872     return;
5873   case Intrinsic::eh_dwarf_cfa:
5874     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5875                              TLI.getPointerTy(DAG.getDataLayout()),
5876                              getValue(I.getArgOperand(0))));
5877     return;
5878   case Intrinsic::eh_sjlj_callsite: {
5879     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5880     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5881     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5882     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5883 
5884     MMI.setCurrentCallSite(CI->getZExtValue());
5885     return;
5886   }
5887   case Intrinsic::eh_sjlj_functioncontext: {
5888     // Get and store the index of the function context.
5889     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5890     AllocaInst *FnCtx =
5891       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5892     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5893     MFI.setFunctionContextIndex(FI);
5894     return;
5895   }
5896   case Intrinsic::eh_sjlj_setjmp: {
5897     SDValue Ops[2];
5898     Ops[0] = getRoot();
5899     Ops[1] = getValue(I.getArgOperand(0));
5900     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5901                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5902     setValue(&I, Op.getValue(0));
5903     DAG.setRoot(Op.getValue(1));
5904     return;
5905   }
5906   case Intrinsic::eh_sjlj_longjmp:
5907     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5908                             getRoot(), getValue(I.getArgOperand(0))));
5909     return;
5910   case Intrinsic::eh_sjlj_setup_dispatch:
5911     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5912                             getRoot()));
5913     return;
5914   case Intrinsic::masked_gather:
5915     visitMaskedGather(I);
5916     return;
5917   case Intrinsic::masked_load:
5918     visitMaskedLoad(I);
5919     return;
5920   case Intrinsic::masked_scatter:
5921     visitMaskedScatter(I);
5922     return;
5923   case Intrinsic::masked_store:
5924     visitMaskedStore(I);
5925     return;
5926   case Intrinsic::masked_expandload:
5927     visitMaskedLoad(I, true /* IsExpanding */);
5928     return;
5929   case Intrinsic::masked_compressstore:
5930     visitMaskedStore(I, true /* IsCompressing */);
5931     return;
5932   case Intrinsic::x86_mmx_pslli_w:
5933   case Intrinsic::x86_mmx_pslli_d:
5934   case Intrinsic::x86_mmx_pslli_q:
5935   case Intrinsic::x86_mmx_psrli_w:
5936   case Intrinsic::x86_mmx_psrli_d:
5937   case Intrinsic::x86_mmx_psrli_q:
5938   case Intrinsic::x86_mmx_psrai_w:
5939   case Intrinsic::x86_mmx_psrai_d: {
5940     SDValue ShAmt = getValue(I.getArgOperand(1));
5941     if (isa<ConstantSDNode>(ShAmt)) {
5942       visitTargetIntrinsic(I, Intrinsic);
5943       return;
5944     }
5945     unsigned NewIntrinsic = 0;
5946     EVT ShAmtVT = MVT::v2i32;
5947     switch (Intrinsic) {
5948     case Intrinsic::x86_mmx_pslli_w:
5949       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5950       break;
5951     case Intrinsic::x86_mmx_pslli_d:
5952       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5953       break;
5954     case Intrinsic::x86_mmx_pslli_q:
5955       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5956       break;
5957     case Intrinsic::x86_mmx_psrli_w:
5958       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5959       break;
5960     case Intrinsic::x86_mmx_psrli_d:
5961       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5962       break;
5963     case Intrinsic::x86_mmx_psrli_q:
5964       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5965       break;
5966     case Intrinsic::x86_mmx_psrai_w:
5967       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5968       break;
5969     case Intrinsic::x86_mmx_psrai_d:
5970       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5971       break;
5972     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5973     }
5974 
5975     // The vector shift intrinsics with scalars uses 32b shift amounts but
5976     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5977     // to be zero.
5978     // We must do this early because v2i32 is not a legal type.
5979     SDValue ShOps[2];
5980     ShOps[0] = ShAmt;
5981     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5982     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5983     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5984     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5985     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5986                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5987                        getValue(I.getArgOperand(0)), ShAmt);
5988     setValue(&I, Res);
5989     return;
5990   }
5991   case Intrinsic::powi:
5992     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5993                             getValue(I.getArgOperand(1)), DAG));
5994     return;
5995   case Intrinsic::log:
5996     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5997     return;
5998   case Intrinsic::log2:
5999     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6000     return;
6001   case Intrinsic::log10:
6002     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6003     return;
6004   case Intrinsic::exp:
6005     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6006     return;
6007   case Intrinsic::exp2:
6008     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6009     return;
6010   case Intrinsic::pow:
6011     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6012                            getValue(I.getArgOperand(1)), DAG, TLI));
6013     return;
6014   case Intrinsic::sqrt:
6015   case Intrinsic::fabs:
6016   case Intrinsic::sin:
6017   case Intrinsic::cos:
6018   case Intrinsic::floor:
6019   case Intrinsic::ceil:
6020   case Intrinsic::trunc:
6021   case Intrinsic::rint:
6022   case Intrinsic::nearbyint:
6023   case Intrinsic::round:
6024   case Intrinsic::canonicalize: {
6025     unsigned Opcode;
6026     switch (Intrinsic) {
6027     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6028     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6029     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6030     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6031     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6032     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6033     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6034     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6035     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6036     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6037     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6038     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6039     }
6040 
6041     setValue(&I, DAG.getNode(Opcode, sdl,
6042                              getValue(I.getArgOperand(0)).getValueType(),
6043                              getValue(I.getArgOperand(0))));
6044     return;
6045   }
6046   case Intrinsic::lround:
6047   case Intrinsic::llround:
6048   case Intrinsic::lrint:
6049   case Intrinsic::llrint: {
6050     unsigned Opcode;
6051     switch (Intrinsic) {
6052     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6053     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6054     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6055     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6056     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6057     }
6058 
6059     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6060     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6061                              getValue(I.getArgOperand(0))));
6062     return;
6063   }
6064   case Intrinsic::minnum:
6065     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6066                              getValue(I.getArgOperand(0)).getValueType(),
6067                              getValue(I.getArgOperand(0)),
6068                              getValue(I.getArgOperand(1))));
6069     return;
6070   case Intrinsic::maxnum:
6071     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6072                              getValue(I.getArgOperand(0)).getValueType(),
6073                              getValue(I.getArgOperand(0)),
6074                              getValue(I.getArgOperand(1))));
6075     return;
6076   case Intrinsic::minimum:
6077     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6078                              getValue(I.getArgOperand(0)).getValueType(),
6079                              getValue(I.getArgOperand(0)),
6080                              getValue(I.getArgOperand(1))));
6081     return;
6082   case Intrinsic::maximum:
6083     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6084                              getValue(I.getArgOperand(0)).getValueType(),
6085                              getValue(I.getArgOperand(0)),
6086                              getValue(I.getArgOperand(1))));
6087     return;
6088   case Intrinsic::copysign:
6089     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6090                              getValue(I.getArgOperand(0)).getValueType(),
6091                              getValue(I.getArgOperand(0)),
6092                              getValue(I.getArgOperand(1))));
6093     return;
6094   case Intrinsic::fma:
6095     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6096                              getValue(I.getArgOperand(0)).getValueType(),
6097                              getValue(I.getArgOperand(0)),
6098                              getValue(I.getArgOperand(1)),
6099                              getValue(I.getArgOperand(2))));
6100     return;
6101   case Intrinsic::experimental_constrained_fadd:
6102   case Intrinsic::experimental_constrained_fsub:
6103   case Intrinsic::experimental_constrained_fmul:
6104   case Intrinsic::experimental_constrained_fdiv:
6105   case Intrinsic::experimental_constrained_frem:
6106   case Intrinsic::experimental_constrained_fma:
6107   case Intrinsic::experimental_constrained_fptrunc:
6108   case Intrinsic::experimental_constrained_fpext:
6109   case Intrinsic::experimental_constrained_sqrt:
6110   case Intrinsic::experimental_constrained_pow:
6111   case Intrinsic::experimental_constrained_powi:
6112   case Intrinsic::experimental_constrained_sin:
6113   case Intrinsic::experimental_constrained_cos:
6114   case Intrinsic::experimental_constrained_exp:
6115   case Intrinsic::experimental_constrained_exp2:
6116   case Intrinsic::experimental_constrained_log:
6117   case Intrinsic::experimental_constrained_log10:
6118   case Intrinsic::experimental_constrained_log2:
6119   case Intrinsic::experimental_constrained_rint:
6120   case Intrinsic::experimental_constrained_nearbyint:
6121   case Intrinsic::experimental_constrained_maxnum:
6122   case Intrinsic::experimental_constrained_minnum:
6123   case Intrinsic::experimental_constrained_ceil:
6124   case Intrinsic::experimental_constrained_floor:
6125   case Intrinsic::experimental_constrained_round:
6126   case Intrinsic::experimental_constrained_trunc:
6127     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6128     return;
6129   case Intrinsic::fmuladd: {
6130     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6131     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6132         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6133       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6134                                getValue(I.getArgOperand(0)).getValueType(),
6135                                getValue(I.getArgOperand(0)),
6136                                getValue(I.getArgOperand(1)),
6137                                getValue(I.getArgOperand(2))));
6138     } else {
6139       // TODO: Intrinsic calls should have fast-math-flags.
6140       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6141                                 getValue(I.getArgOperand(0)).getValueType(),
6142                                 getValue(I.getArgOperand(0)),
6143                                 getValue(I.getArgOperand(1)));
6144       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6145                                 getValue(I.getArgOperand(0)).getValueType(),
6146                                 Mul,
6147                                 getValue(I.getArgOperand(2)));
6148       setValue(&I, Add);
6149     }
6150     return;
6151   }
6152   case Intrinsic::convert_to_fp16:
6153     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6154                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6155                                          getValue(I.getArgOperand(0)),
6156                                          DAG.getTargetConstant(0, sdl,
6157                                                                MVT::i32))));
6158     return;
6159   case Intrinsic::convert_from_fp16:
6160     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6161                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6162                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6163                                          getValue(I.getArgOperand(0)))));
6164     return;
6165   case Intrinsic::pcmarker: {
6166     SDValue Tmp = getValue(I.getArgOperand(0));
6167     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6168     return;
6169   }
6170   case Intrinsic::readcyclecounter: {
6171     SDValue Op = getRoot();
6172     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6173                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6174     setValue(&I, Res);
6175     DAG.setRoot(Res.getValue(1));
6176     return;
6177   }
6178   case Intrinsic::bitreverse:
6179     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6180                              getValue(I.getArgOperand(0)).getValueType(),
6181                              getValue(I.getArgOperand(0))));
6182     return;
6183   case Intrinsic::bswap:
6184     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6185                              getValue(I.getArgOperand(0)).getValueType(),
6186                              getValue(I.getArgOperand(0))));
6187     return;
6188   case Intrinsic::cttz: {
6189     SDValue Arg = getValue(I.getArgOperand(0));
6190     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6191     EVT Ty = Arg.getValueType();
6192     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6193                              sdl, Ty, Arg));
6194     return;
6195   }
6196   case Intrinsic::ctlz: {
6197     SDValue Arg = getValue(I.getArgOperand(0));
6198     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6199     EVT Ty = Arg.getValueType();
6200     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6201                              sdl, Ty, Arg));
6202     return;
6203   }
6204   case Intrinsic::ctpop: {
6205     SDValue Arg = getValue(I.getArgOperand(0));
6206     EVT Ty = Arg.getValueType();
6207     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6208     return;
6209   }
6210   case Intrinsic::fshl:
6211   case Intrinsic::fshr: {
6212     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6213     SDValue X = getValue(I.getArgOperand(0));
6214     SDValue Y = getValue(I.getArgOperand(1));
6215     SDValue Z = getValue(I.getArgOperand(2));
6216     EVT VT = X.getValueType();
6217     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6218     SDValue Zero = DAG.getConstant(0, sdl, VT);
6219     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6220 
6221     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6222     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6223       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6224       return;
6225     }
6226 
6227     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6228     // avoid the select that is necessary in the general case to filter out
6229     // the 0-shift possibility that leads to UB.
6230     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6231       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6232       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6233         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6234         return;
6235       }
6236 
6237       // Some targets only rotate one way. Try the opposite direction.
6238       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6239       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6240         // Negate the shift amount because it is safe to ignore the high bits.
6241         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6242         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6243         return;
6244       }
6245 
6246       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6247       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6248       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6249       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6250       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6251       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6252       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6253       return;
6254     }
6255 
6256     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6257     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6258     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6259     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6260     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6261     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6262 
6263     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6264     // and that is undefined. We must compare and select to avoid UB.
6265     EVT CCVT = MVT::i1;
6266     if (VT.isVector())
6267       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6268 
6269     // For fshl, 0-shift returns the 1st arg (X).
6270     // For fshr, 0-shift returns the 2nd arg (Y).
6271     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6272     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6273     return;
6274   }
6275   case Intrinsic::sadd_sat: {
6276     SDValue Op1 = getValue(I.getArgOperand(0));
6277     SDValue Op2 = getValue(I.getArgOperand(1));
6278     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6279     return;
6280   }
6281   case Intrinsic::uadd_sat: {
6282     SDValue Op1 = getValue(I.getArgOperand(0));
6283     SDValue Op2 = getValue(I.getArgOperand(1));
6284     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6285     return;
6286   }
6287   case Intrinsic::ssub_sat: {
6288     SDValue Op1 = getValue(I.getArgOperand(0));
6289     SDValue Op2 = getValue(I.getArgOperand(1));
6290     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6291     return;
6292   }
6293   case Intrinsic::usub_sat: {
6294     SDValue Op1 = getValue(I.getArgOperand(0));
6295     SDValue Op2 = getValue(I.getArgOperand(1));
6296     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6297     return;
6298   }
6299   case Intrinsic::smul_fix:
6300   case Intrinsic::umul_fix: {
6301     SDValue Op1 = getValue(I.getArgOperand(0));
6302     SDValue Op2 = getValue(I.getArgOperand(1));
6303     SDValue Op3 = getValue(I.getArgOperand(2));
6304     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6305                              Op1.getValueType(), Op1, Op2, Op3));
6306     return;
6307   }
6308   case Intrinsic::smul_fix_sat: {
6309     SDValue Op1 = getValue(I.getArgOperand(0));
6310     SDValue Op2 = getValue(I.getArgOperand(1));
6311     SDValue Op3 = getValue(I.getArgOperand(2));
6312     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6313                              Op3));
6314     return;
6315   }
6316   case Intrinsic::stacksave: {
6317     SDValue Op = getRoot();
6318     Res = DAG.getNode(
6319         ISD::STACKSAVE, sdl,
6320         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6321     setValue(&I, Res);
6322     DAG.setRoot(Res.getValue(1));
6323     return;
6324   }
6325   case Intrinsic::stackrestore:
6326     Res = getValue(I.getArgOperand(0));
6327     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6328     return;
6329   case Intrinsic::get_dynamic_area_offset: {
6330     SDValue Op = getRoot();
6331     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6332     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6333     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6334     // target.
6335     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6336       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6337                          " intrinsic!");
6338     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6339                       Op);
6340     DAG.setRoot(Op);
6341     setValue(&I, Res);
6342     return;
6343   }
6344   case Intrinsic::stackguard: {
6345     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6346     MachineFunction &MF = DAG.getMachineFunction();
6347     const Module &M = *MF.getFunction().getParent();
6348     SDValue Chain = getRoot();
6349     if (TLI.useLoadStackGuardNode()) {
6350       Res = getLoadStackGuard(DAG, sdl, Chain);
6351     } else {
6352       const Value *Global = TLI.getSDagStackGuard(M);
6353       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6354       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6355                         MachinePointerInfo(Global, 0), Align,
6356                         MachineMemOperand::MOVolatile);
6357     }
6358     if (TLI.useStackGuardXorFP())
6359       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6360     DAG.setRoot(Chain);
6361     setValue(&I, Res);
6362     return;
6363   }
6364   case Intrinsic::stackprotector: {
6365     // Emit code into the DAG to store the stack guard onto the stack.
6366     MachineFunction &MF = DAG.getMachineFunction();
6367     MachineFrameInfo &MFI = MF.getFrameInfo();
6368     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6369     SDValue Src, Chain = getRoot();
6370 
6371     if (TLI.useLoadStackGuardNode())
6372       Src = getLoadStackGuard(DAG, sdl, Chain);
6373     else
6374       Src = getValue(I.getArgOperand(0));   // The guard's value.
6375 
6376     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6377 
6378     int FI = FuncInfo.StaticAllocaMap[Slot];
6379     MFI.setStackProtectorIndex(FI);
6380 
6381     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6382 
6383     // Store the stack protector onto the stack.
6384     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6385                                                  DAG.getMachineFunction(), FI),
6386                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6387     setValue(&I, Res);
6388     DAG.setRoot(Res);
6389     return;
6390   }
6391   case Intrinsic::objectsize: {
6392     // If we don't know by now, we're never going to know.
6393     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6394 
6395     assert(CI && "Non-constant type in __builtin_object_size?");
6396 
6397     SDValue Arg = getValue(I.getCalledValue());
6398     EVT Ty = Arg.getValueType();
6399 
6400     if (CI->isZero())
6401       Res = DAG.getConstant(-1ULL, sdl, Ty);
6402     else
6403       Res = DAG.getConstant(0, sdl, Ty);
6404 
6405     setValue(&I, Res);
6406     return;
6407   }
6408 
6409   case Intrinsic::is_constant:
6410     // If this wasn't constant-folded away by now, then it's not a
6411     // constant.
6412     setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6413     return;
6414 
6415   case Intrinsic::annotation:
6416   case Intrinsic::ptr_annotation:
6417   case Intrinsic::launder_invariant_group:
6418   case Intrinsic::strip_invariant_group:
6419     // Drop the intrinsic, but forward the value
6420     setValue(&I, getValue(I.getOperand(0)));
6421     return;
6422   case Intrinsic::assume:
6423   case Intrinsic::var_annotation:
6424   case Intrinsic::sideeffect:
6425     // Discard annotate attributes, assumptions, and artificial side-effects.
6426     return;
6427 
6428   case Intrinsic::codeview_annotation: {
6429     // Emit a label associated with this metadata.
6430     MachineFunction &MF = DAG.getMachineFunction();
6431     MCSymbol *Label =
6432         MF.getMMI().getContext().createTempSymbol("annotation", true);
6433     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6434     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6435     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6436     DAG.setRoot(Res);
6437     return;
6438   }
6439 
6440   case Intrinsic::init_trampoline: {
6441     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6442 
6443     SDValue Ops[6];
6444     Ops[0] = getRoot();
6445     Ops[1] = getValue(I.getArgOperand(0));
6446     Ops[2] = getValue(I.getArgOperand(1));
6447     Ops[3] = getValue(I.getArgOperand(2));
6448     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6449     Ops[5] = DAG.getSrcValue(F);
6450 
6451     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6452 
6453     DAG.setRoot(Res);
6454     return;
6455   }
6456   case Intrinsic::adjust_trampoline:
6457     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6458                              TLI.getPointerTy(DAG.getDataLayout()),
6459                              getValue(I.getArgOperand(0))));
6460     return;
6461   case Intrinsic::gcroot: {
6462     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6463            "only valid in functions with gc specified, enforced by Verifier");
6464     assert(GFI && "implied by previous");
6465     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6466     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6467 
6468     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6469     GFI->addStackRoot(FI->getIndex(), TypeMap);
6470     return;
6471   }
6472   case Intrinsic::gcread:
6473   case Intrinsic::gcwrite:
6474     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6475   case Intrinsic::flt_rounds:
6476     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6477     return;
6478 
6479   case Intrinsic::expect:
6480     // Just replace __builtin_expect(exp, c) with EXP.
6481     setValue(&I, getValue(I.getArgOperand(0)));
6482     return;
6483 
6484   case Intrinsic::debugtrap:
6485   case Intrinsic::trap: {
6486     StringRef TrapFuncName =
6487         I.getAttributes()
6488             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6489             .getValueAsString();
6490     if (TrapFuncName.empty()) {
6491       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6492         ISD::TRAP : ISD::DEBUGTRAP;
6493       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6494       return;
6495     }
6496     TargetLowering::ArgListTy Args;
6497 
6498     TargetLowering::CallLoweringInfo CLI(DAG);
6499     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6500         CallingConv::C, I.getType(),
6501         DAG.getExternalSymbol(TrapFuncName.data(),
6502                               TLI.getPointerTy(DAG.getDataLayout())),
6503         std::move(Args));
6504 
6505     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6506     DAG.setRoot(Result.second);
6507     return;
6508   }
6509 
6510   case Intrinsic::uadd_with_overflow:
6511   case Intrinsic::sadd_with_overflow:
6512   case Intrinsic::usub_with_overflow:
6513   case Intrinsic::ssub_with_overflow:
6514   case Intrinsic::umul_with_overflow:
6515   case Intrinsic::smul_with_overflow: {
6516     ISD::NodeType Op;
6517     switch (Intrinsic) {
6518     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6519     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6520     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6521     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6522     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6523     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6524     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6525     }
6526     SDValue Op1 = getValue(I.getArgOperand(0));
6527     SDValue Op2 = getValue(I.getArgOperand(1));
6528 
6529     EVT ResultVT = Op1.getValueType();
6530     EVT OverflowVT = MVT::i1;
6531     if (ResultVT.isVector())
6532       OverflowVT = EVT::getVectorVT(
6533           *Context, OverflowVT, ResultVT.getVectorNumElements());
6534 
6535     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6536     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6537     return;
6538   }
6539   case Intrinsic::prefetch: {
6540     SDValue Ops[5];
6541     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6542     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6543     Ops[0] = DAG.getRoot();
6544     Ops[1] = getValue(I.getArgOperand(0));
6545     Ops[2] = getValue(I.getArgOperand(1));
6546     Ops[3] = getValue(I.getArgOperand(2));
6547     Ops[4] = getValue(I.getArgOperand(3));
6548     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6549                                              DAG.getVTList(MVT::Other), Ops,
6550                                              EVT::getIntegerVT(*Context, 8),
6551                                              MachinePointerInfo(I.getArgOperand(0)),
6552                                              0, /* align */
6553                                              Flags);
6554 
6555     // Chain the prefetch in parallell with any pending loads, to stay out of
6556     // the way of later optimizations.
6557     PendingLoads.push_back(Result);
6558     Result = getRoot();
6559     DAG.setRoot(Result);
6560     return;
6561   }
6562   case Intrinsic::lifetime_start:
6563   case Intrinsic::lifetime_end: {
6564     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6565     // Stack coloring is not enabled in O0, discard region information.
6566     if (TM.getOptLevel() == CodeGenOpt::None)
6567       return;
6568 
6569     const int64_t ObjectSize =
6570         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6571     Value *const ObjectPtr = I.getArgOperand(1);
6572     SmallVector<const Value *, 4> Allocas;
6573     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6574 
6575     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6576            E = Allocas.end(); Object != E; ++Object) {
6577       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6578 
6579       // Could not find an Alloca.
6580       if (!LifetimeObject)
6581         continue;
6582 
6583       // First check that the Alloca is static, otherwise it won't have a
6584       // valid frame index.
6585       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6586       if (SI == FuncInfo.StaticAllocaMap.end())
6587         return;
6588 
6589       const int FrameIndex = SI->second;
6590       int64_t Offset;
6591       if (GetPointerBaseWithConstantOffset(
6592               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6593         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6594       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6595                                 Offset);
6596       DAG.setRoot(Res);
6597     }
6598     return;
6599   }
6600   case Intrinsic::invariant_start:
6601     // Discard region information.
6602     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6603     return;
6604   case Intrinsic::invariant_end:
6605     // Discard region information.
6606     return;
6607   case Intrinsic::clear_cache:
6608     /// FunctionName may be null.
6609     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6610       lowerCallToExternalSymbol(I, FunctionName);
6611     return;
6612   case Intrinsic::donothing:
6613     // ignore
6614     return;
6615   case Intrinsic::experimental_stackmap:
6616     visitStackmap(I);
6617     return;
6618   case Intrinsic::experimental_patchpoint_void:
6619   case Intrinsic::experimental_patchpoint_i64:
6620     visitPatchpoint(&I);
6621     return;
6622   case Intrinsic::experimental_gc_statepoint:
6623     LowerStatepoint(ImmutableStatepoint(&I));
6624     return;
6625   case Intrinsic::experimental_gc_result:
6626     visitGCResult(cast<GCResultInst>(I));
6627     return;
6628   case Intrinsic::experimental_gc_relocate:
6629     visitGCRelocate(cast<GCRelocateInst>(I));
6630     return;
6631   case Intrinsic::instrprof_increment:
6632     llvm_unreachable("instrprof failed to lower an increment");
6633   case Intrinsic::instrprof_value_profile:
6634     llvm_unreachable("instrprof failed to lower a value profiling call");
6635   case Intrinsic::localescape: {
6636     MachineFunction &MF = DAG.getMachineFunction();
6637     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6638 
6639     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6640     // is the same on all targets.
6641     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6642       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6643       if (isa<ConstantPointerNull>(Arg))
6644         continue; // Skip null pointers. They represent a hole in index space.
6645       AllocaInst *Slot = cast<AllocaInst>(Arg);
6646       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6647              "can only escape static allocas");
6648       int FI = FuncInfo.StaticAllocaMap[Slot];
6649       MCSymbol *FrameAllocSym =
6650           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6651               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6652       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6653               TII->get(TargetOpcode::LOCAL_ESCAPE))
6654           .addSym(FrameAllocSym)
6655           .addFrameIndex(FI);
6656     }
6657 
6658     return;
6659   }
6660 
6661   case Intrinsic::localrecover: {
6662     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6663     MachineFunction &MF = DAG.getMachineFunction();
6664     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6665 
6666     // Get the symbol that defines the frame offset.
6667     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6668     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6669     unsigned IdxVal =
6670         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6671     MCSymbol *FrameAllocSym =
6672         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6673             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6674 
6675     // Create a MCSymbol for the label to avoid any target lowering
6676     // that would make this PC relative.
6677     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6678     SDValue OffsetVal =
6679         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6680 
6681     // Add the offset to the FP.
6682     Value *FP = I.getArgOperand(1);
6683     SDValue FPVal = getValue(FP);
6684     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6685     setValue(&I, Add);
6686 
6687     return;
6688   }
6689 
6690   case Intrinsic::eh_exceptionpointer:
6691   case Intrinsic::eh_exceptioncode: {
6692     // Get the exception pointer vreg, copy from it, and resize it to fit.
6693     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6694     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6695     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6696     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6697     SDValue N =
6698         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6699     if (Intrinsic == Intrinsic::eh_exceptioncode)
6700       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6701     setValue(&I, N);
6702     return;
6703   }
6704   case Intrinsic::xray_customevent: {
6705     // Here we want to make sure that the intrinsic behaves as if it has a
6706     // specific calling convention, and only for x86_64.
6707     // FIXME: Support other platforms later.
6708     const auto &Triple = DAG.getTarget().getTargetTriple();
6709     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6710       return;
6711 
6712     SDLoc DL = getCurSDLoc();
6713     SmallVector<SDValue, 8> Ops;
6714 
6715     // We want to say that we always want the arguments in registers.
6716     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6717     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6718     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6719     SDValue Chain = getRoot();
6720     Ops.push_back(LogEntryVal);
6721     Ops.push_back(StrSizeVal);
6722     Ops.push_back(Chain);
6723 
6724     // We need to enforce the calling convention for the callsite, so that
6725     // argument ordering is enforced correctly, and that register allocation can
6726     // see that some registers may be assumed clobbered and have to preserve
6727     // them across calls to the intrinsic.
6728     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6729                                            DL, NodeTys, Ops);
6730     SDValue patchableNode = SDValue(MN, 0);
6731     DAG.setRoot(patchableNode);
6732     setValue(&I, patchableNode);
6733     return;
6734   }
6735   case Intrinsic::xray_typedevent: {
6736     // Here we want to make sure that the intrinsic behaves as if it has a
6737     // specific calling convention, and only for x86_64.
6738     // FIXME: Support other platforms later.
6739     const auto &Triple = DAG.getTarget().getTargetTriple();
6740     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6741       return;
6742 
6743     SDLoc DL = getCurSDLoc();
6744     SmallVector<SDValue, 8> Ops;
6745 
6746     // We want to say that we always want the arguments in registers.
6747     // It's unclear to me how manipulating the selection DAG here forces callers
6748     // to provide arguments in registers instead of on the stack.
6749     SDValue LogTypeId = getValue(I.getArgOperand(0));
6750     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6751     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6752     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6753     SDValue Chain = getRoot();
6754     Ops.push_back(LogTypeId);
6755     Ops.push_back(LogEntryVal);
6756     Ops.push_back(StrSizeVal);
6757     Ops.push_back(Chain);
6758 
6759     // We need to enforce the calling convention for the callsite, so that
6760     // argument ordering is enforced correctly, and that register allocation can
6761     // see that some registers may be assumed clobbered and have to preserve
6762     // them across calls to the intrinsic.
6763     MachineSDNode *MN = DAG.getMachineNode(
6764         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6765     SDValue patchableNode = SDValue(MN, 0);
6766     DAG.setRoot(patchableNode);
6767     setValue(&I, patchableNode);
6768     return;
6769   }
6770   case Intrinsic::experimental_deoptimize:
6771     LowerDeoptimizeCall(&I);
6772     return;
6773 
6774   case Intrinsic::experimental_vector_reduce_v2_fadd:
6775   case Intrinsic::experimental_vector_reduce_v2_fmul:
6776   case Intrinsic::experimental_vector_reduce_add:
6777   case Intrinsic::experimental_vector_reduce_mul:
6778   case Intrinsic::experimental_vector_reduce_and:
6779   case Intrinsic::experimental_vector_reduce_or:
6780   case Intrinsic::experimental_vector_reduce_xor:
6781   case Intrinsic::experimental_vector_reduce_smax:
6782   case Intrinsic::experimental_vector_reduce_smin:
6783   case Intrinsic::experimental_vector_reduce_umax:
6784   case Intrinsic::experimental_vector_reduce_umin:
6785   case Intrinsic::experimental_vector_reduce_fmax:
6786   case Intrinsic::experimental_vector_reduce_fmin:
6787     visitVectorReduce(I, Intrinsic);
6788     return;
6789 
6790   case Intrinsic::icall_branch_funnel: {
6791     SmallVector<SDValue, 16> Ops;
6792     Ops.push_back(getValue(I.getArgOperand(0)));
6793 
6794     int64_t Offset;
6795     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6796         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6797     if (!Base)
6798       report_fatal_error(
6799           "llvm.icall.branch.funnel operand must be a GlobalValue");
6800     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6801 
6802     struct BranchFunnelTarget {
6803       int64_t Offset;
6804       SDValue Target;
6805     };
6806     SmallVector<BranchFunnelTarget, 8> Targets;
6807 
6808     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6809       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6810           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6811       if (ElemBase != Base)
6812         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6813                            "to the same GlobalValue");
6814 
6815       SDValue Val = getValue(I.getArgOperand(Op + 1));
6816       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6817       if (!GA)
6818         report_fatal_error(
6819             "llvm.icall.branch.funnel operand must be a GlobalValue");
6820       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6821                                      GA->getGlobal(), getCurSDLoc(),
6822                                      Val.getValueType(), GA->getOffset())});
6823     }
6824     llvm::sort(Targets,
6825                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6826                  return T1.Offset < T2.Offset;
6827                });
6828 
6829     for (auto &T : Targets) {
6830       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6831       Ops.push_back(T.Target);
6832     }
6833 
6834     Ops.push_back(DAG.getRoot()); // Chain
6835     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6836                                  getCurSDLoc(), MVT::Other, Ops),
6837               0);
6838     DAG.setRoot(N);
6839     setValue(&I, N);
6840     HasTailCall = true;
6841     return;
6842   }
6843 
6844   case Intrinsic::wasm_landingpad_index:
6845     // Information this intrinsic contained has been transferred to
6846     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6847     // delete it now.
6848     return;
6849 
6850   case Intrinsic::aarch64_settag:
6851   case Intrinsic::aarch64_settag_zero: {
6852     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6853     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6854     SDValue Val = TSI.EmitTargetCodeForSetTag(
6855         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6856         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6857         ZeroMemory);
6858     DAG.setRoot(Val);
6859     setValue(&I, Val);
6860     return;
6861   }
6862   }
6863 }
6864 
6865 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6866     const ConstrainedFPIntrinsic &FPI) {
6867   SDLoc sdl = getCurSDLoc();
6868   unsigned Opcode;
6869   switch (FPI.getIntrinsicID()) {
6870   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6871   case Intrinsic::experimental_constrained_fadd:
6872     Opcode = ISD::STRICT_FADD;
6873     break;
6874   case Intrinsic::experimental_constrained_fsub:
6875     Opcode = ISD::STRICT_FSUB;
6876     break;
6877   case Intrinsic::experimental_constrained_fmul:
6878     Opcode = ISD::STRICT_FMUL;
6879     break;
6880   case Intrinsic::experimental_constrained_fdiv:
6881     Opcode = ISD::STRICT_FDIV;
6882     break;
6883   case Intrinsic::experimental_constrained_frem:
6884     Opcode = ISD::STRICT_FREM;
6885     break;
6886   case Intrinsic::experimental_constrained_fma:
6887     Opcode = ISD::STRICT_FMA;
6888     break;
6889   case Intrinsic::experimental_constrained_fptrunc:
6890     Opcode = ISD::STRICT_FP_ROUND;
6891     break;
6892   case Intrinsic::experimental_constrained_fpext:
6893     Opcode = ISD::STRICT_FP_EXTEND;
6894     break;
6895   case Intrinsic::experimental_constrained_sqrt:
6896     Opcode = ISD::STRICT_FSQRT;
6897     break;
6898   case Intrinsic::experimental_constrained_pow:
6899     Opcode = ISD::STRICT_FPOW;
6900     break;
6901   case Intrinsic::experimental_constrained_powi:
6902     Opcode = ISD::STRICT_FPOWI;
6903     break;
6904   case Intrinsic::experimental_constrained_sin:
6905     Opcode = ISD::STRICT_FSIN;
6906     break;
6907   case Intrinsic::experimental_constrained_cos:
6908     Opcode = ISD::STRICT_FCOS;
6909     break;
6910   case Intrinsic::experimental_constrained_exp:
6911     Opcode = ISD::STRICT_FEXP;
6912     break;
6913   case Intrinsic::experimental_constrained_exp2:
6914     Opcode = ISD::STRICT_FEXP2;
6915     break;
6916   case Intrinsic::experimental_constrained_log:
6917     Opcode = ISD::STRICT_FLOG;
6918     break;
6919   case Intrinsic::experimental_constrained_log10:
6920     Opcode = ISD::STRICT_FLOG10;
6921     break;
6922   case Intrinsic::experimental_constrained_log2:
6923     Opcode = ISD::STRICT_FLOG2;
6924     break;
6925   case Intrinsic::experimental_constrained_rint:
6926     Opcode = ISD::STRICT_FRINT;
6927     break;
6928   case Intrinsic::experimental_constrained_nearbyint:
6929     Opcode = ISD::STRICT_FNEARBYINT;
6930     break;
6931   case Intrinsic::experimental_constrained_maxnum:
6932     Opcode = ISD::STRICT_FMAXNUM;
6933     break;
6934   case Intrinsic::experimental_constrained_minnum:
6935     Opcode = ISD::STRICT_FMINNUM;
6936     break;
6937   case Intrinsic::experimental_constrained_ceil:
6938     Opcode = ISD::STRICT_FCEIL;
6939     break;
6940   case Intrinsic::experimental_constrained_floor:
6941     Opcode = ISD::STRICT_FFLOOR;
6942     break;
6943   case Intrinsic::experimental_constrained_round:
6944     Opcode = ISD::STRICT_FROUND;
6945     break;
6946   case Intrinsic::experimental_constrained_trunc:
6947     Opcode = ISD::STRICT_FTRUNC;
6948     break;
6949   }
6950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6951   SDValue Chain = getRoot();
6952   SmallVector<EVT, 4> ValueVTs;
6953   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6954   ValueVTs.push_back(MVT::Other); // Out chain
6955 
6956   SDVTList VTs = DAG.getVTList(ValueVTs);
6957   SDValue Result;
6958   if (Opcode == ISD::STRICT_FP_ROUND)
6959     Result = DAG.getNode(Opcode, sdl, VTs,
6960                           { Chain, getValue(FPI.getArgOperand(0)),
6961                                DAG.getTargetConstant(0, sdl,
6962                                TLI.getPointerTy(DAG.getDataLayout())) });
6963   else if (FPI.isUnaryOp())
6964     Result = DAG.getNode(Opcode, sdl, VTs,
6965                          { Chain, getValue(FPI.getArgOperand(0)) });
6966   else if (FPI.isTernaryOp())
6967     Result = DAG.getNode(Opcode, sdl, VTs,
6968                          { Chain, getValue(FPI.getArgOperand(0)),
6969                                   getValue(FPI.getArgOperand(1)),
6970                                   getValue(FPI.getArgOperand(2)) });
6971   else
6972     Result = DAG.getNode(Opcode, sdl, VTs,
6973                          { Chain, getValue(FPI.getArgOperand(0)),
6974                            getValue(FPI.getArgOperand(1))  });
6975 
6976   if (FPI.getExceptionBehavior() !=
6977       ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) {
6978     SDNodeFlags Flags;
6979     Flags.setFPExcept(true);
6980     Result->setFlags(Flags);
6981   }
6982 
6983   assert(Result.getNode()->getNumValues() == 2);
6984   SDValue OutChain = Result.getValue(1);
6985   DAG.setRoot(OutChain);
6986   SDValue FPResult = Result.getValue(0);
6987   setValue(&FPI, FPResult);
6988 }
6989 
6990 std::pair<SDValue, SDValue>
6991 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6992                                     const BasicBlock *EHPadBB) {
6993   MachineFunction &MF = DAG.getMachineFunction();
6994   MachineModuleInfo &MMI = MF.getMMI();
6995   MCSymbol *BeginLabel = nullptr;
6996 
6997   if (EHPadBB) {
6998     // Insert a label before the invoke call to mark the try range.  This can be
6999     // used to detect deletion of the invoke via the MachineModuleInfo.
7000     BeginLabel = MMI.getContext().createTempSymbol();
7001 
7002     // For SjLj, keep track of which landing pads go with which invokes
7003     // so as to maintain the ordering of pads in the LSDA.
7004     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7005     if (CallSiteIndex) {
7006       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7007       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7008 
7009       // Now that the call site is handled, stop tracking it.
7010       MMI.setCurrentCallSite(0);
7011     }
7012 
7013     // Both PendingLoads and PendingExports must be flushed here;
7014     // this call might not return.
7015     (void)getRoot();
7016     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7017 
7018     CLI.setChain(getRoot());
7019   }
7020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7021   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7022 
7023   assert((CLI.IsTailCall || Result.second.getNode()) &&
7024          "Non-null chain expected with non-tail call!");
7025   assert((Result.second.getNode() || !Result.first.getNode()) &&
7026          "Null value expected with tail call!");
7027 
7028   if (!Result.second.getNode()) {
7029     // As a special case, a null chain means that a tail call has been emitted
7030     // and the DAG root is already updated.
7031     HasTailCall = true;
7032 
7033     // Since there's no actual continuation from this block, nothing can be
7034     // relying on us setting vregs for them.
7035     PendingExports.clear();
7036   } else {
7037     DAG.setRoot(Result.second);
7038   }
7039 
7040   if (EHPadBB) {
7041     // Insert a label at the end of the invoke call to mark the try range.  This
7042     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7043     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7044     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7045 
7046     // Inform MachineModuleInfo of range.
7047     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7048     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7049     // actually use outlined funclets and their LSDA info style.
7050     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7051       assert(CLI.CS);
7052       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7053       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7054                                 BeginLabel, EndLabel);
7055     } else if (!isScopedEHPersonality(Pers)) {
7056       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7057     }
7058   }
7059 
7060   return Result;
7061 }
7062 
7063 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7064                                       bool isTailCall,
7065                                       const BasicBlock *EHPadBB) {
7066   auto &DL = DAG.getDataLayout();
7067   FunctionType *FTy = CS.getFunctionType();
7068   Type *RetTy = CS.getType();
7069 
7070   TargetLowering::ArgListTy Args;
7071   Args.reserve(CS.arg_size());
7072 
7073   const Value *SwiftErrorVal = nullptr;
7074   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7075 
7076   // We can't tail call inside a function with a swifterror argument. Lowering
7077   // does not support this yet. It would have to move into the swifterror
7078   // register before the call.
7079   auto *Caller = CS.getInstruction()->getParent()->getParent();
7080   if (TLI.supportSwiftError() &&
7081       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7082     isTailCall = false;
7083 
7084   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7085        i != e; ++i) {
7086     TargetLowering::ArgListEntry Entry;
7087     const Value *V = *i;
7088 
7089     // Skip empty types
7090     if (V->getType()->isEmptyTy())
7091       continue;
7092 
7093     SDValue ArgNode = getValue(V);
7094     Entry.Node = ArgNode; Entry.Ty = V->getType();
7095 
7096     Entry.setAttributes(&CS, i - CS.arg_begin());
7097 
7098     // Use swifterror virtual register as input to the call.
7099     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7100       SwiftErrorVal = V;
7101       // We find the virtual register for the actual swifterror argument.
7102       // Instead of using the Value, we use the virtual register instead.
7103       Entry.Node = DAG.getRegister(
7104           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7105           EVT(TLI.getPointerTy(DL)));
7106     }
7107 
7108     Args.push_back(Entry);
7109 
7110     // If we have an explicit sret argument that is an Instruction, (i.e., it
7111     // might point to function-local memory), we can't meaningfully tail-call.
7112     if (Entry.IsSRet && isa<Instruction>(V))
7113       isTailCall = false;
7114   }
7115 
7116   // Check if target-independent constraints permit a tail call here.
7117   // Target-dependent constraints are checked within TLI->LowerCallTo.
7118   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7119     isTailCall = false;
7120 
7121   // Disable tail calls if there is an swifterror argument. Targets have not
7122   // been updated to support tail calls.
7123   if (TLI.supportSwiftError() && SwiftErrorVal)
7124     isTailCall = false;
7125 
7126   TargetLowering::CallLoweringInfo CLI(DAG);
7127   CLI.setDebugLoc(getCurSDLoc())
7128       .setChain(getRoot())
7129       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7130       .setTailCall(isTailCall)
7131       .setConvergent(CS.isConvergent());
7132   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7133 
7134   if (Result.first.getNode()) {
7135     const Instruction *Inst = CS.getInstruction();
7136     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7137     setValue(Inst, Result.first);
7138   }
7139 
7140   // The last element of CLI.InVals has the SDValue for swifterror return.
7141   // Here we copy it to a virtual register and update SwiftErrorMap for
7142   // book-keeping.
7143   if (SwiftErrorVal && TLI.supportSwiftError()) {
7144     // Get the last element of InVals.
7145     SDValue Src = CLI.InVals.back();
7146     unsigned VReg = SwiftError.getOrCreateVRegDefAt(
7147         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7148     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7149     DAG.setRoot(CopyNode);
7150   }
7151 }
7152 
7153 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7154                              SelectionDAGBuilder &Builder) {
7155   // Check to see if this load can be trivially constant folded, e.g. if the
7156   // input is from a string literal.
7157   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7158     // Cast pointer to the type we really want to load.
7159     Type *LoadTy =
7160         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7161     if (LoadVT.isVector())
7162       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7163 
7164     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7165                                          PointerType::getUnqual(LoadTy));
7166 
7167     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7168             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7169       return Builder.getValue(LoadCst);
7170   }
7171 
7172   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7173   // still constant memory, the input chain can be the entry node.
7174   SDValue Root;
7175   bool ConstantMemory = false;
7176 
7177   // Do not serialize (non-volatile) loads of constant memory with anything.
7178   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7179     Root = Builder.DAG.getEntryNode();
7180     ConstantMemory = true;
7181   } else {
7182     // Do not serialize non-volatile loads against each other.
7183     Root = Builder.DAG.getRoot();
7184   }
7185 
7186   SDValue Ptr = Builder.getValue(PtrVal);
7187   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7188                                         Ptr, MachinePointerInfo(PtrVal),
7189                                         /* Alignment = */ 1);
7190 
7191   if (!ConstantMemory)
7192     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7193   return LoadVal;
7194 }
7195 
7196 /// Record the value for an instruction that produces an integer result,
7197 /// converting the type where necessary.
7198 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7199                                                   SDValue Value,
7200                                                   bool IsSigned) {
7201   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7202                                                     I.getType(), true);
7203   if (IsSigned)
7204     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7205   else
7206     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7207   setValue(&I, Value);
7208 }
7209 
7210 /// See if we can lower a memcmp call into an optimized form. If so, return
7211 /// true and lower it. Otherwise return false, and it will be lowered like a
7212 /// normal call.
7213 /// The caller already checked that \p I calls the appropriate LibFunc with a
7214 /// correct prototype.
7215 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7216   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7217   const Value *Size = I.getArgOperand(2);
7218   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7219   if (CSize && CSize->getZExtValue() == 0) {
7220     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7221                                                           I.getType(), true);
7222     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7223     return true;
7224   }
7225 
7226   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7227   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7228       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7229       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7230   if (Res.first.getNode()) {
7231     processIntegerCallValue(I, Res.first, true);
7232     PendingLoads.push_back(Res.second);
7233     return true;
7234   }
7235 
7236   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7237   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7238   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7239     return false;
7240 
7241   // If the target has a fast compare for the given size, it will return a
7242   // preferred load type for that size. Require that the load VT is legal and
7243   // that the target supports unaligned loads of that type. Otherwise, return
7244   // INVALID.
7245   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7246     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7247     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7248     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7249       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7250       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7251       // TODO: Check alignment of src and dest ptrs.
7252       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7253       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7254       if (!TLI.isTypeLegal(LVT) ||
7255           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7256           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7257         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7258     }
7259 
7260     return LVT;
7261   };
7262 
7263   // This turns into unaligned loads. We only do this if the target natively
7264   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7265   // we'll only produce a small number of byte loads.
7266   MVT LoadVT;
7267   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7268   switch (NumBitsToCompare) {
7269   default:
7270     return false;
7271   case 16:
7272     LoadVT = MVT::i16;
7273     break;
7274   case 32:
7275     LoadVT = MVT::i32;
7276     break;
7277   case 64:
7278   case 128:
7279   case 256:
7280     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7281     break;
7282   }
7283 
7284   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7285     return false;
7286 
7287   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7288   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7289 
7290   // Bitcast to a wide integer type if the loads are vectors.
7291   if (LoadVT.isVector()) {
7292     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7293     LoadL = DAG.getBitcast(CmpVT, LoadL);
7294     LoadR = DAG.getBitcast(CmpVT, LoadR);
7295   }
7296 
7297   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7298   processIntegerCallValue(I, Cmp, false);
7299   return true;
7300 }
7301 
7302 /// See if we can lower a memchr call into an optimized form. If so, return
7303 /// true and lower it. Otherwise return false, and it will be lowered like a
7304 /// normal call.
7305 /// The caller already checked that \p I calls the appropriate LibFunc with a
7306 /// correct prototype.
7307 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7308   const Value *Src = I.getArgOperand(0);
7309   const Value *Char = I.getArgOperand(1);
7310   const Value *Length = I.getArgOperand(2);
7311 
7312   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7313   std::pair<SDValue, SDValue> Res =
7314     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7315                                 getValue(Src), getValue(Char), getValue(Length),
7316                                 MachinePointerInfo(Src));
7317   if (Res.first.getNode()) {
7318     setValue(&I, Res.first);
7319     PendingLoads.push_back(Res.second);
7320     return true;
7321   }
7322 
7323   return false;
7324 }
7325 
7326 /// See if we can lower a mempcpy call into an optimized form. If so, return
7327 /// true and lower it. Otherwise return false, and it will be lowered like a
7328 /// normal call.
7329 /// The caller already checked that \p I calls the appropriate LibFunc with a
7330 /// correct prototype.
7331 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7332   SDValue Dst = getValue(I.getArgOperand(0));
7333   SDValue Src = getValue(I.getArgOperand(1));
7334   SDValue Size = getValue(I.getArgOperand(2));
7335 
7336   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7337   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7338   unsigned Align = std::min(DstAlign, SrcAlign);
7339   if (Align == 0) // Alignment of one or both could not be inferred.
7340     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7341 
7342   bool isVol = false;
7343   SDLoc sdl = getCurSDLoc();
7344 
7345   // In the mempcpy context we need to pass in a false value for isTailCall
7346   // because the return pointer needs to be adjusted by the size of
7347   // the copied memory.
7348   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7349                              false, /*isTailCall=*/false,
7350                              MachinePointerInfo(I.getArgOperand(0)),
7351                              MachinePointerInfo(I.getArgOperand(1)));
7352   assert(MC.getNode() != nullptr &&
7353          "** memcpy should not be lowered as TailCall in mempcpy context **");
7354   DAG.setRoot(MC);
7355 
7356   // Check if Size needs to be truncated or extended.
7357   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7358 
7359   // Adjust return pointer to point just past the last dst byte.
7360   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7361                                     Dst, Size);
7362   setValue(&I, DstPlusSize);
7363   return true;
7364 }
7365 
7366 /// See if we can lower a strcpy call into an optimized form.  If so, return
7367 /// true and lower it, otherwise return false and it will be lowered like a
7368 /// normal call.
7369 /// The caller already checked that \p I calls the appropriate LibFunc with a
7370 /// correct prototype.
7371 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7372   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7373 
7374   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7375   std::pair<SDValue, SDValue> Res =
7376     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7377                                 getValue(Arg0), getValue(Arg1),
7378                                 MachinePointerInfo(Arg0),
7379                                 MachinePointerInfo(Arg1), isStpcpy);
7380   if (Res.first.getNode()) {
7381     setValue(&I, Res.first);
7382     DAG.setRoot(Res.second);
7383     return true;
7384   }
7385 
7386   return false;
7387 }
7388 
7389 /// See if we can lower a strcmp call into an optimized form.  If so, return
7390 /// true and lower it, otherwise return false and it will be lowered like a
7391 /// normal call.
7392 /// The caller already checked that \p I calls the appropriate LibFunc with a
7393 /// correct prototype.
7394 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7395   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7396 
7397   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7398   std::pair<SDValue, SDValue> Res =
7399     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7400                                 getValue(Arg0), getValue(Arg1),
7401                                 MachinePointerInfo(Arg0),
7402                                 MachinePointerInfo(Arg1));
7403   if (Res.first.getNode()) {
7404     processIntegerCallValue(I, Res.first, true);
7405     PendingLoads.push_back(Res.second);
7406     return true;
7407   }
7408 
7409   return false;
7410 }
7411 
7412 /// See if we can lower a strlen call into an optimized form.  If so, return
7413 /// true and lower it, otherwise return false and it will be lowered like a
7414 /// normal call.
7415 /// The caller already checked that \p I calls the appropriate LibFunc with a
7416 /// correct prototype.
7417 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7418   const Value *Arg0 = I.getArgOperand(0);
7419 
7420   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7421   std::pair<SDValue, SDValue> Res =
7422     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7423                                 getValue(Arg0), MachinePointerInfo(Arg0));
7424   if (Res.first.getNode()) {
7425     processIntegerCallValue(I, Res.first, false);
7426     PendingLoads.push_back(Res.second);
7427     return true;
7428   }
7429 
7430   return false;
7431 }
7432 
7433 /// See if we can lower a strnlen call into an optimized form.  If so, return
7434 /// true and lower it, otherwise return false and it will be lowered like a
7435 /// normal call.
7436 /// The caller already checked that \p I calls the appropriate LibFunc with a
7437 /// correct prototype.
7438 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7439   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7440 
7441   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7442   std::pair<SDValue, SDValue> Res =
7443     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7444                                  getValue(Arg0), getValue(Arg1),
7445                                  MachinePointerInfo(Arg0));
7446   if (Res.first.getNode()) {
7447     processIntegerCallValue(I, Res.first, false);
7448     PendingLoads.push_back(Res.second);
7449     return true;
7450   }
7451 
7452   return false;
7453 }
7454 
7455 /// See if we can lower a unary floating-point operation into an SDNode with
7456 /// the specified Opcode.  If so, return true and lower it, otherwise return
7457 /// false and it will be lowered like a normal call.
7458 /// The caller already checked that \p I calls the appropriate LibFunc with a
7459 /// correct prototype.
7460 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7461                                               unsigned Opcode) {
7462   // We already checked this call's prototype; verify it doesn't modify errno.
7463   if (!I.onlyReadsMemory())
7464     return false;
7465 
7466   SDValue Tmp = getValue(I.getArgOperand(0));
7467   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7468   return true;
7469 }
7470 
7471 /// See if we can lower a binary floating-point operation into an SDNode with
7472 /// the specified Opcode. If so, return true and lower it. Otherwise return
7473 /// false, and it will be lowered like a normal call.
7474 /// The caller already checked that \p I calls the appropriate LibFunc with a
7475 /// correct prototype.
7476 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7477                                                unsigned Opcode) {
7478   // We already checked this call's prototype; verify it doesn't modify errno.
7479   if (!I.onlyReadsMemory())
7480     return false;
7481 
7482   SDValue Tmp0 = getValue(I.getArgOperand(0));
7483   SDValue Tmp1 = getValue(I.getArgOperand(1));
7484   EVT VT = Tmp0.getValueType();
7485   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7486   return true;
7487 }
7488 
7489 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7490   // Handle inline assembly differently.
7491   if (isa<InlineAsm>(I.getCalledValue())) {
7492     visitInlineAsm(&I);
7493     return;
7494   }
7495 
7496   if (Function *F = I.getCalledFunction()) {
7497     if (F->isDeclaration()) {
7498       // Is this an LLVM intrinsic or a target-specific intrinsic?
7499       unsigned IID = F->getIntrinsicID();
7500       if (!IID)
7501         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7502           IID = II->getIntrinsicID(F);
7503 
7504       if (IID) {
7505         visitIntrinsicCall(I, IID);
7506         return;
7507       }
7508     }
7509 
7510     // Check for well-known libc/libm calls.  If the function is internal, it
7511     // can't be a library call.  Don't do the check if marked as nobuiltin for
7512     // some reason or the call site requires strict floating point semantics.
7513     LibFunc Func;
7514     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7515         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7516         LibInfo->hasOptimizedCodeGen(Func)) {
7517       switch (Func) {
7518       default: break;
7519       case LibFunc_copysign:
7520       case LibFunc_copysignf:
7521       case LibFunc_copysignl:
7522         // We already checked this call's prototype; verify it doesn't modify
7523         // errno.
7524         if (I.onlyReadsMemory()) {
7525           SDValue LHS = getValue(I.getArgOperand(0));
7526           SDValue RHS = getValue(I.getArgOperand(1));
7527           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7528                                    LHS.getValueType(), LHS, RHS));
7529           return;
7530         }
7531         break;
7532       case LibFunc_fabs:
7533       case LibFunc_fabsf:
7534       case LibFunc_fabsl:
7535         if (visitUnaryFloatCall(I, ISD::FABS))
7536           return;
7537         break;
7538       case LibFunc_fmin:
7539       case LibFunc_fminf:
7540       case LibFunc_fminl:
7541         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7542           return;
7543         break;
7544       case LibFunc_fmax:
7545       case LibFunc_fmaxf:
7546       case LibFunc_fmaxl:
7547         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7548           return;
7549         break;
7550       case LibFunc_sin:
7551       case LibFunc_sinf:
7552       case LibFunc_sinl:
7553         if (visitUnaryFloatCall(I, ISD::FSIN))
7554           return;
7555         break;
7556       case LibFunc_cos:
7557       case LibFunc_cosf:
7558       case LibFunc_cosl:
7559         if (visitUnaryFloatCall(I, ISD::FCOS))
7560           return;
7561         break;
7562       case LibFunc_sqrt:
7563       case LibFunc_sqrtf:
7564       case LibFunc_sqrtl:
7565       case LibFunc_sqrt_finite:
7566       case LibFunc_sqrtf_finite:
7567       case LibFunc_sqrtl_finite:
7568         if (visitUnaryFloatCall(I, ISD::FSQRT))
7569           return;
7570         break;
7571       case LibFunc_floor:
7572       case LibFunc_floorf:
7573       case LibFunc_floorl:
7574         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7575           return;
7576         break;
7577       case LibFunc_nearbyint:
7578       case LibFunc_nearbyintf:
7579       case LibFunc_nearbyintl:
7580         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7581           return;
7582         break;
7583       case LibFunc_ceil:
7584       case LibFunc_ceilf:
7585       case LibFunc_ceill:
7586         if (visitUnaryFloatCall(I, ISD::FCEIL))
7587           return;
7588         break;
7589       case LibFunc_rint:
7590       case LibFunc_rintf:
7591       case LibFunc_rintl:
7592         if (visitUnaryFloatCall(I, ISD::FRINT))
7593           return;
7594         break;
7595       case LibFunc_round:
7596       case LibFunc_roundf:
7597       case LibFunc_roundl:
7598         if (visitUnaryFloatCall(I, ISD::FROUND))
7599           return;
7600         break;
7601       case LibFunc_trunc:
7602       case LibFunc_truncf:
7603       case LibFunc_truncl:
7604         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7605           return;
7606         break;
7607       case LibFunc_log2:
7608       case LibFunc_log2f:
7609       case LibFunc_log2l:
7610         if (visitUnaryFloatCall(I, ISD::FLOG2))
7611           return;
7612         break;
7613       case LibFunc_exp2:
7614       case LibFunc_exp2f:
7615       case LibFunc_exp2l:
7616         if (visitUnaryFloatCall(I, ISD::FEXP2))
7617           return;
7618         break;
7619       case LibFunc_memcmp:
7620         if (visitMemCmpCall(I))
7621           return;
7622         break;
7623       case LibFunc_mempcpy:
7624         if (visitMemPCpyCall(I))
7625           return;
7626         break;
7627       case LibFunc_memchr:
7628         if (visitMemChrCall(I))
7629           return;
7630         break;
7631       case LibFunc_strcpy:
7632         if (visitStrCpyCall(I, false))
7633           return;
7634         break;
7635       case LibFunc_stpcpy:
7636         if (visitStrCpyCall(I, true))
7637           return;
7638         break;
7639       case LibFunc_strcmp:
7640         if (visitStrCmpCall(I))
7641           return;
7642         break;
7643       case LibFunc_strlen:
7644         if (visitStrLenCall(I))
7645           return;
7646         break;
7647       case LibFunc_strnlen:
7648         if (visitStrNLenCall(I))
7649           return;
7650         break;
7651       }
7652     }
7653   }
7654 
7655   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7656   // have to do anything here to lower funclet bundles.
7657   assert(!I.hasOperandBundlesOtherThan(
7658              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7659          "Cannot lower calls with arbitrary operand bundles!");
7660 
7661   SDValue Callee = getValue(I.getCalledValue());
7662 
7663   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7664     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7665   else
7666     // Check if we can potentially perform a tail call. More detailed checking
7667     // is be done within LowerCallTo, after more information about the call is
7668     // known.
7669     LowerCallTo(&I, Callee, I.isTailCall());
7670 }
7671 
7672 namespace {
7673 
7674 /// AsmOperandInfo - This contains information for each constraint that we are
7675 /// lowering.
7676 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7677 public:
7678   /// CallOperand - If this is the result output operand or a clobber
7679   /// this is null, otherwise it is the incoming operand to the CallInst.
7680   /// This gets modified as the asm is processed.
7681   SDValue CallOperand;
7682 
7683   /// AssignedRegs - If this is a register or register class operand, this
7684   /// contains the set of register corresponding to the operand.
7685   RegsForValue AssignedRegs;
7686 
7687   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7688     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7689   }
7690 
7691   /// Whether or not this operand accesses memory
7692   bool hasMemory(const TargetLowering &TLI) const {
7693     // Indirect operand accesses access memory.
7694     if (isIndirect)
7695       return true;
7696 
7697     for (const auto &Code : Codes)
7698       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7699         return true;
7700 
7701     return false;
7702   }
7703 
7704   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7705   /// corresponds to.  If there is no Value* for this operand, it returns
7706   /// MVT::Other.
7707   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7708                            const DataLayout &DL) const {
7709     if (!CallOperandVal) return MVT::Other;
7710 
7711     if (isa<BasicBlock>(CallOperandVal))
7712       return TLI.getPointerTy(DL);
7713 
7714     llvm::Type *OpTy = CallOperandVal->getType();
7715 
7716     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7717     // If this is an indirect operand, the operand is a pointer to the
7718     // accessed type.
7719     if (isIndirect) {
7720       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7721       if (!PtrTy)
7722         report_fatal_error("Indirect operand for inline asm not a pointer!");
7723       OpTy = PtrTy->getElementType();
7724     }
7725 
7726     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7727     if (StructType *STy = dyn_cast<StructType>(OpTy))
7728       if (STy->getNumElements() == 1)
7729         OpTy = STy->getElementType(0);
7730 
7731     // If OpTy is not a single value, it may be a struct/union that we
7732     // can tile with integers.
7733     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7734       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7735       switch (BitSize) {
7736       default: break;
7737       case 1:
7738       case 8:
7739       case 16:
7740       case 32:
7741       case 64:
7742       case 128:
7743         OpTy = IntegerType::get(Context, BitSize);
7744         break;
7745       }
7746     }
7747 
7748     return TLI.getValueType(DL, OpTy, true);
7749   }
7750 };
7751 
7752 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7753 
7754 } // end anonymous namespace
7755 
7756 /// Make sure that the output operand \p OpInfo and its corresponding input
7757 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7758 /// out).
7759 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7760                                SDISelAsmOperandInfo &MatchingOpInfo,
7761                                SelectionDAG &DAG) {
7762   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7763     return;
7764 
7765   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7766   const auto &TLI = DAG.getTargetLoweringInfo();
7767 
7768   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7769       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7770                                        OpInfo.ConstraintVT);
7771   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7772       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7773                                        MatchingOpInfo.ConstraintVT);
7774   if ((OpInfo.ConstraintVT.isInteger() !=
7775        MatchingOpInfo.ConstraintVT.isInteger()) ||
7776       (MatchRC.second != InputRC.second)) {
7777     // FIXME: error out in a more elegant fashion
7778     report_fatal_error("Unsupported asm: input constraint"
7779                        " with a matching output constraint of"
7780                        " incompatible type!");
7781   }
7782   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7783 }
7784 
7785 /// Get a direct memory input to behave well as an indirect operand.
7786 /// This may introduce stores, hence the need for a \p Chain.
7787 /// \return The (possibly updated) chain.
7788 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7789                                         SDISelAsmOperandInfo &OpInfo,
7790                                         SelectionDAG &DAG) {
7791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7792 
7793   // If we don't have an indirect input, put it in the constpool if we can,
7794   // otherwise spill it to a stack slot.
7795   // TODO: This isn't quite right. We need to handle these according to
7796   // the addressing mode that the constraint wants. Also, this may take
7797   // an additional register for the computation and we don't want that
7798   // either.
7799 
7800   // If the operand is a float, integer, or vector constant, spill to a
7801   // constant pool entry to get its address.
7802   const Value *OpVal = OpInfo.CallOperandVal;
7803   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7804       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7805     OpInfo.CallOperand = DAG.getConstantPool(
7806         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7807     return Chain;
7808   }
7809 
7810   // Otherwise, create a stack slot and emit a store to it before the asm.
7811   Type *Ty = OpVal->getType();
7812   auto &DL = DAG.getDataLayout();
7813   uint64_t TySize = DL.getTypeAllocSize(Ty);
7814   unsigned Align = DL.getPrefTypeAlignment(Ty);
7815   MachineFunction &MF = DAG.getMachineFunction();
7816   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7817   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7818   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7819                             MachinePointerInfo::getFixedStack(MF, SSFI),
7820                             TLI.getMemValueType(DL, Ty));
7821   OpInfo.CallOperand = StackSlot;
7822 
7823   return Chain;
7824 }
7825 
7826 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7827 /// specified operand.  We prefer to assign virtual registers, to allow the
7828 /// register allocator to handle the assignment process.  However, if the asm
7829 /// uses features that we can't model on machineinstrs, we have SDISel do the
7830 /// allocation.  This produces generally horrible, but correct, code.
7831 ///
7832 ///   OpInfo describes the operand
7833 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7834 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7835                                  SDISelAsmOperandInfo &OpInfo,
7836                                  SDISelAsmOperandInfo &RefOpInfo) {
7837   LLVMContext &Context = *DAG.getContext();
7838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7839 
7840   MachineFunction &MF = DAG.getMachineFunction();
7841   SmallVector<unsigned, 4> Regs;
7842   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7843 
7844   // No work to do for memory operations.
7845   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7846     return;
7847 
7848   // If this is a constraint for a single physreg, or a constraint for a
7849   // register class, find it.
7850   unsigned AssignedReg;
7851   const TargetRegisterClass *RC;
7852   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7853       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7854   // RC is unset only on failure. Return immediately.
7855   if (!RC)
7856     return;
7857 
7858   // Get the actual register value type.  This is important, because the user
7859   // may have asked for (e.g.) the AX register in i32 type.  We need to
7860   // remember that AX is actually i16 to get the right extension.
7861   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7862 
7863   if (OpInfo.ConstraintVT != MVT::Other) {
7864     // If this is an FP operand in an integer register (or visa versa), or more
7865     // generally if the operand value disagrees with the register class we plan
7866     // to stick it in, fix the operand type.
7867     //
7868     // If this is an input value, the bitcast to the new type is done now.
7869     // Bitcast for output value is done at the end of visitInlineAsm().
7870     if ((OpInfo.Type == InlineAsm::isOutput ||
7871          OpInfo.Type == InlineAsm::isInput) &&
7872         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7873       // Try to convert to the first EVT that the reg class contains.  If the
7874       // types are identical size, use a bitcast to convert (e.g. two differing
7875       // vector types).  Note: output bitcast is done at the end of
7876       // visitInlineAsm().
7877       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7878         // Exclude indirect inputs while they are unsupported because the code
7879         // to perform the load is missing and thus OpInfo.CallOperand still
7880         // refers to the input address rather than the pointed-to value.
7881         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7882           OpInfo.CallOperand =
7883               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7884         OpInfo.ConstraintVT = RegVT;
7885         // If the operand is an FP value and we want it in integer registers,
7886         // use the corresponding integer type. This turns an f64 value into
7887         // i64, which can be passed with two i32 values on a 32-bit machine.
7888       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7889         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7890         if (OpInfo.Type == InlineAsm::isInput)
7891           OpInfo.CallOperand =
7892               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7893         OpInfo.ConstraintVT = VT;
7894       }
7895     }
7896   }
7897 
7898   // No need to allocate a matching input constraint since the constraint it's
7899   // matching to has already been allocated.
7900   if (OpInfo.isMatchingInputConstraint())
7901     return;
7902 
7903   EVT ValueVT = OpInfo.ConstraintVT;
7904   if (OpInfo.ConstraintVT == MVT::Other)
7905     ValueVT = RegVT;
7906 
7907   // Initialize NumRegs.
7908   unsigned NumRegs = 1;
7909   if (OpInfo.ConstraintVT != MVT::Other)
7910     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7911 
7912   // If this is a constraint for a specific physical register, like {r17},
7913   // assign it now.
7914 
7915   // If this associated to a specific register, initialize iterator to correct
7916   // place. If virtual, make sure we have enough registers
7917 
7918   // Initialize iterator if necessary
7919   TargetRegisterClass::iterator I = RC->begin();
7920   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7921 
7922   // Do not check for single registers.
7923   if (AssignedReg) {
7924       for (; *I != AssignedReg; ++I)
7925         assert(I != RC->end() && "AssignedReg should be member of RC");
7926   }
7927 
7928   for (; NumRegs; --NumRegs, ++I) {
7929     assert(I != RC->end() && "Ran out of registers to allocate!");
7930     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7931     Regs.push_back(R);
7932   }
7933 
7934   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7935 }
7936 
7937 static unsigned
7938 findMatchingInlineAsmOperand(unsigned OperandNo,
7939                              const std::vector<SDValue> &AsmNodeOperands) {
7940   // Scan until we find the definition we already emitted of this operand.
7941   unsigned CurOp = InlineAsm::Op_FirstOperand;
7942   for (; OperandNo; --OperandNo) {
7943     // Advance to the next operand.
7944     unsigned OpFlag =
7945         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7946     assert((InlineAsm::isRegDefKind(OpFlag) ||
7947             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7948             InlineAsm::isMemKind(OpFlag)) &&
7949            "Skipped past definitions?");
7950     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7951   }
7952   return CurOp;
7953 }
7954 
7955 namespace {
7956 
7957 class ExtraFlags {
7958   unsigned Flags = 0;
7959 
7960 public:
7961   explicit ExtraFlags(ImmutableCallSite CS) {
7962     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7963     if (IA->hasSideEffects())
7964       Flags |= InlineAsm::Extra_HasSideEffects;
7965     if (IA->isAlignStack())
7966       Flags |= InlineAsm::Extra_IsAlignStack;
7967     if (CS.isConvergent())
7968       Flags |= InlineAsm::Extra_IsConvergent;
7969     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7970   }
7971 
7972   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7973     // Ideally, we would only check against memory constraints.  However, the
7974     // meaning of an Other constraint can be target-specific and we can't easily
7975     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7976     // for Other constraints as well.
7977     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7978         OpInfo.ConstraintType == TargetLowering::C_Other) {
7979       if (OpInfo.Type == InlineAsm::isInput)
7980         Flags |= InlineAsm::Extra_MayLoad;
7981       else if (OpInfo.Type == InlineAsm::isOutput)
7982         Flags |= InlineAsm::Extra_MayStore;
7983       else if (OpInfo.Type == InlineAsm::isClobber)
7984         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7985     }
7986   }
7987 
7988   unsigned get() const { return Flags; }
7989 };
7990 
7991 } // end anonymous namespace
7992 
7993 /// visitInlineAsm - Handle a call to an InlineAsm object.
7994 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7995   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7996 
7997   /// ConstraintOperands - Information about all of the constraints.
7998   SDISelAsmOperandInfoVector ConstraintOperands;
7999 
8000   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8001   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8002       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8003 
8004   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8005   // AsmDialect, MayLoad, MayStore).
8006   bool HasSideEffect = IA->hasSideEffects();
8007   ExtraFlags ExtraInfo(CS);
8008 
8009   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8010   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8011   for (auto &T : TargetConstraints) {
8012     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8013     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8014 
8015     // Compute the value type for each operand.
8016     if (OpInfo.Type == InlineAsm::isInput ||
8017         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8018       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8019 
8020       // Process the call argument. BasicBlocks are labels, currently appearing
8021       // only in asm's.
8022       const Instruction *I = CS.getInstruction();
8023       if (isa<CallBrInst>(I) &&
8024           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8025                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8026         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8027         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8028         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8029       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8030         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8031       } else {
8032         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8033       }
8034 
8035       OpInfo.ConstraintVT =
8036           OpInfo
8037               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8038               .getSimpleVT();
8039     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8040       // The return value of the call is this value.  As such, there is no
8041       // corresponding argument.
8042       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8043       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8044         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8045             DAG.getDataLayout(), STy->getElementType(ResNo));
8046       } else {
8047         assert(ResNo == 0 && "Asm only has one result!");
8048         OpInfo.ConstraintVT =
8049             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8050       }
8051       ++ResNo;
8052     } else {
8053       OpInfo.ConstraintVT = MVT::Other;
8054     }
8055 
8056     if (!HasSideEffect)
8057       HasSideEffect = OpInfo.hasMemory(TLI);
8058 
8059     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8060     // FIXME: Could we compute this on OpInfo rather than T?
8061 
8062     // Compute the constraint code and ConstraintType to use.
8063     TLI.ComputeConstraintToUse(T, SDValue());
8064 
8065     if (T.ConstraintType == TargetLowering::C_Immediate &&
8066         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8067       // We've delayed emitting a diagnostic like the "n" constraint because
8068       // inlining could cause an integer showing up.
8069       return emitInlineAsmError(
8070           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8071                   "integer constant expression");
8072 
8073     ExtraInfo.update(T);
8074   }
8075 
8076 
8077   // We won't need to flush pending loads if this asm doesn't touch
8078   // memory and is nonvolatile.
8079   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8080 
8081   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8082   if (IsCallBr) {
8083     // If this is a callbr we need to flush pending exports since inlineasm_br
8084     // is a terminator. We need to do this before nodes are glued to
8085     // the inlineasm_br node.
8086     Chain = getControlRoot();
8087   }
8088 
8089   // Second pass over the constraints: compute which constraint option to use.
8090   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8091     // If this is an output operand with a matching input operand, look up the
8092     // matching input. If their types mismatch, e.g. one is an integer, the
8093     // other is floating point, or their sizes are different, flag it as an
8094     // error.
8095     if (OpInfo.hasMatchingInput()) {
8096       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8097       patchMatchingInput(OpInfo, Input, DAG);
8098     }
8099 
8100     // Compute the constraint code and ConstraintType to use.
8101     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8102 
8103     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8104         OpInfo.Type == InlineAsm::isClobber)
8105       continue;
8106 
8107     // If this is a memory input, and if the operand is not indirect, do what we
8108     // need to provide an address for the memory input.
8109     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8110         !OpInfo.isIndirect) {
8111       assert((OpInfo.isMultipleAlternative ||
8112               (OpInfo.Type == InlineAsm::isInput)) &&
8113              "Can only indirectify direct input operands!");
8114 
8115       // Memory operands really want the address of the value.
8116       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8117 
8118       // There is no longer a Value* corresponding to this operand.
8119       OpInfo.CallOperandVal = nullptr;
8120 
8121       // It is now an indirect operand.
8122       OpInfo.isIndirect = true;
8123     }
8124 
8125   }
8126 
8127   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8128   std::vector<SDValue> AsmNodeOperands;
8129   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8130   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8131       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8132 
8133   // If we have a !srcloc metadata node associated with it, we want to attach
8134   // this to the ultimately generated inline asm machineinstr.  To do this, we
8135   // pass in the third operand as this (potentially null) inline asm MDNode.
8136   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8137   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8138 
8139   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8140   // bits as operand 3.
8141   AsmNodeOperands.push_back(DAG.getTargetConstant(
8142       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8143 
8144   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8145   // this, assign virtual and physical registers for inputs and otput.
8146   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8147     // Assign Registers.
8148     SDISelAsmOperandInfo &RefOpInfo =
8149         OpInfo.isMatchingInputConstraint()
8150             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8151             : OpInfo;
8152     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8153 
8154     switch (OpInfo.Type) {
8155     case InlineAsm::isOutput:
8156       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8157           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8158             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8159            OpInfo.isIndirect)) {
8160         unsigned ConstraintID =
8161             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8162         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8163                "Failed to convert memory constraint code to constraint id.");
8164 
8165         // Add information to the INLINEASM node to know about this output.
8166         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8167         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8168         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8169                                                         MVT::i32));
8170         AsmNodeOperands.push_back(OpInfo.CallOperand);
8171         break;
8172       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8173                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8174                   !OpInfo.isIndirect) ||
8175                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8176                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8177         // Otherwise, this outputs to a register (directly for C_Register /
8178         // C_RegisterClass, and a target-defined fashion for
8179         // C_Immediate/C_Other). Find a register that we can use.
8180         if (OpInfo.AssignedRegs.Regs.empty()) {
8181           emitInlineAsmError(
8182               CS, "couldn't allocate output register for constraint '" +
8183                       Twine(OpInfo.ConstraintCode) + "'");
8184           return;
8185         }
8186 
8187         // Add information to the INLINEASM node to know that this register is
8188         // set.
8189         OpInfo.AssignedRegs.AddInlineAsmOperands(
8190             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8191                                   : InlineAsm::Kind_RegDef,
8192             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8193       }
8194       break;
8195 
8196     case InlineAsm::isInput: {
8197       SDValue InOperandVal = OpInfo.CallOperand;
8198 
8199       if (OpInfo.isMatchingInputConstraint()) {
8200         // If this is required to match an output register we have already set,
8201         // just use its register.
8202         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8203                                                   AsmNodeOperands);
8204         unsigned OpFlag =
8205           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8206         if (InlineAsm::isRegDefKind(OpFlag) ||
8207             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8208           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8209           if (OpInfo.isIndirect) {
8210             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8211             emitInlineAsmError(CS, "inline asm not supported yet:"
8212                                    " don't know how to handle tied "
8213                                    "indirect register inputs");
8214             return;
8215           }
8216 
8217           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8218           SmallVector<unsigned, 4> Regs;
8219 
8220           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8221             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8222             MachineRegisterInfo &RegInfo =
8223                 DAG.getMachineFunction().getRegInfo();
8224             for (unsigned i = 0; i != NumRegs; ++i)
8225               Regs.push_back(RegInfo.createVirtualRegister(RC));
8226           } else {
8227             emitInlineAsmError(CS, "inline asm error: This value type register "
8228                                    "class is not natively supported!");
8229             return;
8230           }
8231 
8232           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8233 
8234           SDLoc dl = getCurSDLoc();
8235           // Use the produced MatchedRegs object to
8236           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8237                                     CS.getInstruction());
8238           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8239                                            true, OpInfo.getMatchedOperand(), dl,
8240                                            DAG, AsmNodeOperands);
8241           break;
8242         }
8243 
8244         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8245         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8246                "Unexpected number of operands");
8247         // Add information to the INLINEASM node to know about this input.
8248         // See InlineAsm.h isUseOperandTiedToDef.
8249         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8250         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8251                                                     OpInfo.getMatchedOperand());
8252         AsmNodeOperands.push_back(DAG.getTargetConstant(
8253             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8254         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8255         break;
8256       }
8257 
8258       // Treat indirect 'X' constraint as memory.
8259       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8260            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8261           OpInfo.isIndirect)
8262         OpInfo.ConstraintType = TargetLowering::C_Memory;
8263 
8264       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8265           OpInfo.ConstraintType == TargetLowering::C_Other) {
8266         std::vector<SDValue> Ops;
8267         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8268                                           Ops, DAG);
8269         if (Ops.empty()) {
8270           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8271             if (isa<ConstantSDNode>(InOperandVal)) {
8272               emitInlineAsmError(CS, "value out of range for constraint '" +
8273                                  Twine(OpInfo.ConstraintCode) + "'");
8274               return;
8275             }
8276 
8277           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8278                                      Twine(OpInfo.ConstraintCode) + "'");
8279           return;
8280         }
8281 
8282         // Add information to the INLINEASM node to know about this input.
8283         unsigned ResOpType =
8284           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8285         AsmNodeOperands.push_back(DAG.getTargetConstant(
8286             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8287         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8288         break;
8289       }
8290 
8291       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8292         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8293         assert(InOperandVal.getValueType() ==
8294                    TLI.getPointerTy(DAG.getDataLayout()) &&
8295                "Memory operands expect pointer values");
8296 
8297         unsigned ConstraintID =
8298             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8299         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8300                "Failed to convert memory constraint code to constraint id.");
8301 
8302         // Add information to the INLINEASM node to know about this input.
8303         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8304         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8305         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8306                                                         getCurSDLoc(),
8307                                                         MVT::i32));
8308         AsmNodeOperands.push_back(InOperandVal);
8309         break;
8310       }
8311 
8312       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8313               OpInfo.ConstraintType == TargetLowering::C_Register ||
8314               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8315              "Unknown constraint type!");
8316 
8317       // TODO: Support this.
8318       if (OpInfo.isIndirect) {
8319         emitInlineAsmError(
8320             CS, "Don't know how to handle indirect register inputs yet "
8321                 "for constraint '" +
8322                     Twine(OpInfo.ConstraintCode) + "'");
8323         return;
8324       }
8325 
8326       // Copy the input into the appropriate registers.
8327       if (OpInfo.AssignedRegs.Regs.empty()) {
8328         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8329                                    Twine(OpInfo.ConstraintCode) + "'");
8330         return;
8331       }
8332 
8333       SDLoc dl = getCurSDLoc();
8334 
8335       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8336                                         Chain, &Flag, CS.getInstruction());
8337 
8338       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8339                                                dl, DAG, AsmNodeOperands);
8340       break;
8341     }
8342     case InlineAsm::isClobber:
8343       // Add the clobbered value to the operand list, so that the register
8344       // allocator is aware that the physreg got clobbered.
8345       if (!OpInfo.AssignedRegs.Regs.empty())
8346         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8347                                                  false, 0, getCurSDLoc(), DAG,
8348                                                  AsmNodeOperands);
8349       break;
8350     }
8351   }
8352 
8353   // Finish up input operands.  Set the input chain and add the flag last.
8354   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8355   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8356 
8357   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8358   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8359                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8360   Flag = Chain.getValue(1);
8361 
8362   // Do additional work to generate outputs.
8363 
8364   SmallVector<EVT, 1> ResultVTs;
8365   SmallVector<SDValue, 1> ResultValues;
8366   SmallVector<SDValue, 8> OutChains;
8367 
8368   llvm::Type *CSResultType = CS.getType();
8369   ArrayRef<Type *> ResultTypes;
8370   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8371     ResultTypes = StructResult->elements();
8372   else if (!CSResultType->isVoidTy())
8373     ResultTypes = makeArrayRef(CSResultType);
8374 
8375   auto CurResultType = ResultTypes.begin();
8376   auto handleRegAssign = [&](SDValue V) {
8377     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8378     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8379     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8380     ++CurResultType;
8381     // If the type of the inline asm call site return value is different but has
8382     // same size as the type of the asm output bitcast it.  One example of this
8383     // is for vectors with different width / number of elements.  This can
8384     // happen for register classes that can contain multiple different value
8385     // types.  The preg or vreg allocated may not have the same VT as was
8386     // expected.
8387     //
8388     // This can also happen for a return value that disagrees with the register
8389     // class it is put in, eg. a double in a general-purpose register on a
8390     // 32-bit machine.
8391     if (ResultVT != V.getValueType() &&
8392         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8393       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8394     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8395              V.getValueType().isInteger()) {
8396       // If a result value was tied to an input value, the computed result
8397       // may have a wider width than the expected result.  Extract the
8398       // relevant portion.
8399       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8400     }
8401     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8402     ResultVTs.push_back(ResultVT);
8403     ResultValues.push_back(V);
8404   };
8405 
8406   // Deal with output operands.
8407   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8408     if (OpInfo.Type == InlineAsm::isOutput) {
8409       SDValue Val;
8410       // Skip trivial output operands.
8411       if (OpInfo.AssignedRegs.Regs.empty())
8412         continue;
8413 
8414       switch (OpInfo.ConstraintType) {
8415       case TargetLowering::C_Register:
8416       case TargetLowering::C_RegisterClass:
8417         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8418             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8419         break;
8420       case TargetLowering::C_Immediate:
8421       case TargetLowering::C_Other:
8422         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8423                                               OpInfo, DAG);
8424         break;
8425       case TargetLowering::C_Memory:
8426         break; // Already handled.
8427       case TargetLowering::C_Unknown:
8428         assert(false && "Unexpected unknown constraint");
8429       }
8430 
8431       // Indirect output manifest as stores. Record output chains.
8432       if (OpInfo.isIndirect) {
8433         const Value *Ptr = OpInfo.CallOperandVal;
8434         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8435         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8436                                      MachinePointerInfo(Ptr));
8437         OutChains.push_back(Store);
8438       } else {
8439         // generate CopyFromRegs to associated registers.
8440         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8441         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8442           for (const SDValue &V : Val->op_values())
8443             handleRegAssign(V);
8444         } else
8445           handleRegAssign(Val);
8446       }
8447     }
8448   }
8449 
8450   // Set results.
8451   if (!ResultValues.empty()) {
8452     assert(CurResultType == ResultTypes.end() &&
8453            "Mismatch in number of ResultTypes");
8454     assert(ResultValues.size() == ResultTypes.size() &&
8455            "Mismatch in number of output operands in asm result");
8456 
8457     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8458                             DAG.getVTList(ResultVTs), ResultValues);
8459     setValue(CS.getInstruction(), V);
8460   }
8461 
8462   // Collect store chains.
8463   if (!OutChains.empty())
8464     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8465 
8466   // Only Update Root if inline assembly has a memory effect.
8467   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8468     DAG.setRoot(Chain);
8469 }
8470 
8471 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8472                                              const Twine &Message) {
8473   LLVMContext &Ctx = *DAG.getContext();
8474   Ctx.emitError(CS.getInstruction(), Message);
8475 
8476   // Make sure we leave the DAG in a valid state
8477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8478   SmallVector<EVT, 1> ValueVTs;
8479   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8480 
8481   if (ValueVTs.empty())
8482     return;
8483 
8484   SmallVector<SDValue, 1> Ops;
8485   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8486     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8487 
8488   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8489 }
8490 
8491 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8492   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8493                           MVT::Other, getRoot(),
8494                           getValue(I.getArgOperand(0)),
8495                           DAG.getSrcValue(I.getArgOperand(0))));
8496 }
8497 
8498 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8499   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8500   const DataLayout &DL = DAG.getDataLayout();
8501   SDValue V = DAG.getVAArg(
8502       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8503       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8504       DL.getABITypeAlignment(I.getType()));
8505   DAG.setRoot(V.getValue(1));
8506 
8507   if (I.getType()->isPointerTy())
8508     V = DAG.getPtrExtOrTrunc(
8509         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8510   setValue(&I, V);
8511 }
8512 
8513 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8514   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8515                           MVT::Other, getRoot(),
8516                           getValue(I.getArgOperand(0)),
8517                           DAG.getSrcValue(I.getArgOperand(0))));
8518 }
8519 
8520 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8521   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8522                           MVT::Other, getRoot(),
8523                           getValue(I.getArgOperand(0)),
8524                           getValue(I.getArgOperand(1)),
8525                           DAG.getSrcValue(I.getArgOperand(0)),
8526                           DAG.getSrcValue(I.getArgOperand(1))));
8527 }
8528 
8529 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8530                                                     const Instruction &I,
8531                                                     SDValue Op) {
8532   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8533   if (!Range)
8534     return Op;
8535 
8536   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8537   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8538     return Op;
8539 
8540   APInt Lo = CR.getUnsignedMin();
8541   if (!Lo.isMinValue())
8542     return Op;
8543 
8544   APInt Hi = CR.getUnsignedMax();
8545   unsigned Bits = std::max(Hi.getActiveBits(),
8546                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8547 
8548   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8549 
8550   SDLoc SL = getCurSDLoc();
8551 
8552   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8553                              DAG.getValueType(SmallVT));
8554   unsigned NumVals = Op.getNode()->getNumValues();
8555   if (NumVals == 1)
8556     return ZExt;
8557 
8558   SmallVector<SDValue, 4> Ops;
8559 
8560   Ops.push_back(ZExt);
8561   for (unsigned I = 1; I != NumVals; ++I)
8562     Ops.push_back(Op.getValue(I));
8563 
8564   return DAG.getMergeValues(Ops, SL);
8565 }
8566 
8567 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8568 /// the call being lowered.
8569 ///
8570 /// This is a helper for lowering intrinsics that follow a target calling
8571 /// convention or require stack pointer adjustment. Only a subset of the
8572 /// intrinsic's operands need to participate in the calling convention.
8573 void SelectionDAGBuilder::populateCallLoweringInfo(
8574     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8575     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8576     bool IsPatchPoint) {
8577   TargetLowering::ArgListTy Args;
8578   Args.reserve(NumArgs);
8579 
8580   // Populate the argument list.
8581   // Attributes for args start at offset 1, after the return attribute.
8582   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8583        ArgI != ArgE; ++ArgI) {
8584     const Value *V = Call->getOperand(ArgI);
8585 
8586     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8587 
8588     TargetLowering::ArgListEntry Entry;
8589     Entry.Node = getValue(V);
8590     Entry.Ty = V->getType();
8591     Entry.setAttributes(Call, ArgI);
8592     Args.push_back(Entry);
8593   }
8594 
8595   CLI.setDebugLoc(getCurSDLoc())
8596       .setChain(getRoot())
8597       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8598       .setDiscardResult(Call->use_empty())
8599       .setIsPatchPoint(IsPatchPoint);
8600 }
8601 
8602 /// Add a stack map intrinsic call's live variable operands to a stackmap
8603 /// or patchpoint target node's operand list.
8604 ///
8605 /// Constants are converted to TargetConstants purely as an optimization to
8606 /// avoid constant materialization and register allocation.
8607 ///
8608 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8609 /// generate addess computation nodes, and so FinalizeISel can convert the
8610 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8611 /// address materialization and register allocation, but may also be required
8612 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8613 /// alloca in the entry block, then the runtime may assume that the alloca's
8614 /// StackMap location can be read immediately after compilation and that the
8615 /// location is valid at any point during execution (this is similar to the
8616 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8617 /// only available in a register, then the runtime would need to trap when
8618 /// execution reaches the StackMap in order to read the alloca's location.
8619 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8620                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8621                                 SelectionDAGBuilder &Builder) {
8622   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8623     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8624     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8625       Ops.push_back(
8626         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8627       Ops.push_back(
8628         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8629     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8630       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8631       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8632           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8633     } else
8634       Ops.push_back(OpVal);
8635   }
8636 }
8637 
8638 /// Lower llvm.experimental.stackmap directly to its target opcode.
8639 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8640   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8641   //                                  [live variables...])
8642 
8643   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8644 
8645   SDValue Chain, InFlag, Callee, NullPtr;
8646   SmallVector<SDValue, 32> Ops;
8647 
8648   SDLoc DL = getCurSDLoc();
8649   Callee = getValue(CI.getCalledValue());
8650   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8651 
8652   // The stackmap intrinsic only records the live variables (the arguemnts
8653   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8654   // intrinsic, this won't be lowered to a function call. This means we don't
8655   // have to worry about calling conventions and target specific lowering code.
8656   // Instead we perform the call lowering right here.
8657   //
8658   // chain, flag = CALLSEQ_START(chain, 0, 0)
8659   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8660   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8661   //
8662   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8663   InFlag = Chain.getValue(1);
8664 
8665   // Add the <id> and <numBytes> constants.
8666   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8667   Ops.push_back(DAG.getTargetConstant(
8668                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8669   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8670   Ops.push_back(DAG.getTargetConstant(
8671                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8672                   MVT::i32));
8673 
8674   // Push live variables for the stack map.
8675   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8676 
8677   // We are not pushing any register mask info here on the operands list,
8678   // because the stackmap doesn't clobber anything.
8679 
8680   // Push the chain and the glue flag.
8681   Ops.push_back(Chain);
8682   Ops.push_back(InFlag);
8683 
8684   // Create the STACKMAP node.
8685   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8686   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8687   Chain = SDValue(SM, 0);
8688   InFlag = Chain.getValue(1);
8689 
8690   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8691 
8692   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8693 
8694   // Set the root to the target-lowered call chain.
8695   DAG.setRoot(Chain);
8696 
8697   // Inform the Frame Information that we have a stackmap in this function.
8698   FuncInfo.MF->getFrameInfo().setHasStackMap();
8699 }
8700 
8701 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8702 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8703                                           const BasicBlock *EHPadBB) {
8704   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8705   //                                                 i32 <numBytes>,
8706   //                                                 i8* <target>,
8707   //                                                 i32 <numArgs>,
8708   //                                                 [Args...],
8709   //                                                 [live variables...])
8710 
8711   CallingConv::ID CC = CS.getCallingConv();
8712   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8713   bool HasDef = !CS->getType()->isVoidTy();
8714   SDLoc dl = getCurSDLoc();
8715   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8716 
8717   // Handle immediate and symbolic callees.
8718   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8719     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8720                                    /*isTarget=*/true);
8721   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8722     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8723                                          SDLoc(SymbolicCallee),
8724                                          SymbolicCallee->getValueType(0));
8725 
8726   // Get the real number of arguments participating in the call <numArgs>
8727   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8728   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8729 
8730   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8731   // Intrinsics include all meta-operands up to but not including CC.
8732   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8733   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8734          "Not enough arguments provided to the patchpoint intrinsic");
8735 
8736   // For AnyRegCC the arguments are lowered later on manually.
8737   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8738   Type *ReturnTy =
8739     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8740 
8741   TargetLowering::CallLoweringInfo CLI(DAG);
8742   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8743                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8744   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8745 
8746   SDNode *CallEnd = Result.second.getNode();
8747   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8748     CallEnd = CallEnd->getOperand(0).getNode();
8749 
8750   /// Get a call instruction from the call sequence chain.
8751   /// Tail calls are not allowed.
8752   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8753          "Expected a callseq node.");
8754   SDNode *Call = CallEnd->getOperand(0).getNode();
8755   bool HasGlue = Call->getGluedNode();
8756 
8757   // Replace the target specific call node with the patchable intrinsic.
8758   SmallVector<SDValue, 8> Ops;
8759 
8760   // Add the <id> and <numBytes> constants.
8761   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8762   Ops.push_back(DAG.getTargetConstant(
8763                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8764   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8765   Ops.push_back(DAG.getTargetConstant(
8766                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8767                   MVT::i32));
8768 
8769   // Add the callee.
8770   Ops.push_back(Callee);
8771 
8772   // Adjust <numArgs> to account for any arguments that have been passed on the
8773   // stack instead.
8774   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8775   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8776   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8777   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8778 
8779   // Add the calling convention
8780   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8781 
8782   // Add the arguments we omitted previously. The register allocator should
8783   // place these in any free register.
8784   if (IsAnyRegCC)
8785     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8786       Ops.push_back(getValue(CS.getArgument(i)));
8787 
8788   // Push the arguments from the call instruction up to the register mask.
8789   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8790   Ops.append(Call->op_begin() + 2, e);
8791 
8792   // Push live variables for the stack map.
8793   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8794 
8795   // Push the register mask info.
8796   if (HasGlue)
8797     Ops.push_back(*(Call->op_end()-2));
8798   else
8799     Ops.push_back(*(Call->op_end()-1));
8800 
8801   // Push the chain (this is originally the first operand of the call, but
8802   // becomes now the last or second to last operand).
8803   Ops.push_back(*(Call->op_begin()));
8804 
8805   // Push the glue flag (last operand).
8806   if (HasGlue)
8807     Ops.push_back(*(Call->op_end()-1));
8808 
8809   SDVTList NodeTys;
8810   if (IsAnyRegCC && HasDef) {
8811     // Create the return types based on the intrinsic definition
8812     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8813     SmallVector<EVT, 3> ValueVTs;
8814     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8815     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8816 
8817     // There is always a chain and a glue type at the end
8818     ValueVTs.push_back(MVT::Other);
8819     ValueVTs.push_back(MVT::Glue);
8820     NodeTys = DAG.getVTList(ValueVTs);
8821   } else
8822     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8823 
8824   // Replace the target specific call node with a PATCHPOINT node.
8825   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8826                                          dl, NodeTys, Ops);
8827 
8828   // Update the NodeMap.
8829   if (HasDef) {
8830     if (IsAnyRegCC)
8831       setValue(CS.getInstruction(), SDValue(MN, 0));
8832     else
8833       setValue(CS.getInstruction(), Result.first);
8834   }
8835 
8836   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8837   // call sequence. Furthermore the location of the chain and glue can change
8838   // when the AnyReg calling convention is used and the intrinsic returns a
8839   // value.
8840   if (IsAnyRegCC && HasDef) {
8841     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8842     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8843     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8844   } else
8845     DAG.ReplaceAllUsesWith(Call, MN);
8846   DAG.DeleteNode(Call);
8847 
8848   // Inform the Frame Information that we have a patchpoint in this function.
8849   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8850 }
8851 
8852 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8853                                             unsigned Intrinsic) {
8854   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8855   SDValue Op1 = getValue(I.getArgOperand(0));
8856   SDValue Op2;
8857   if (I.getNumArgOperands() > 1)
8858     Op2 = getValue(I.getArgOperand(1));
8859   SDLoc dl = getCurSDLoc();
8860   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8861   SDValue Res;
8862   FastMathFlags FMF;
8863   if (isa<FPMathOperator>(I))
8864     FMF = I.getFastMathFlags();
8865 
8866   switch (Intrinsic) {
8867   case Intrinsic::experimental_vector_reduce_v2_fadd:
8868     if (FMF.allowReassoc())
8869       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8870                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8871     else
8872       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8873     break;
8874   case Intrinsic::experimental_vector_reduce_v2_fmul:
8875     if (FMF.allowReassoc())
8876       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8877                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8878     else
8879       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8880     break;
8881   case Intrinsic::experimental_vector_reduce_add:
8882     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8883     break;
8884   case Intrinsic::experimental_vector_reduce_mul:
8885     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8886     break;
8887   case Intrinsic::experimental_vector_reduce_and:
8888     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8889     break;
8890   case Intrinsic::experimental_vector_reduce_or:
8891     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8892     break;
8893   case Intrinsic::experimental_vector_reduce_xor:
8894     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8895     break;
8896   case Intrinsic::experimental_vector_reduce_smax:
8897     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8898     break;
8899   case Intrinsic::experimental_vector_reduce_smin:
8900     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8901     break;
8902   case Intrinsic::experimental_vector_reduce_umax:
8903     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8904     break;
8905   case Intrinsic::experimental_vector_reduce_umin:
8906     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8907     break;
8908   case Intrinsic::experimental_vector_reduce_fmax:
8909     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8910     break;
8911   case Intrinsic::experimental_vector_reduce_fmin:
8912     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8913     break;
8914   default:
8915     llvm_unreachable("Unhandled vector reduce intrinsic");
8916   }
8917   setValue(&I, Res);
8918 }
8919 
8920 /// Returns an AttributeList representing the attributes applied to the return
8921 /// value of the given call.
8922 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8923   SmallVector<Attribute::AttrKind, 2> Attrs;
8924   if (CLI.RetSExt)
8925     Attrs.push_back(Attribute::SExt);
8926   if (CLI.RetZExt)
8927     Attrs.push_back(Attribute::ZExt);
8928   if (CLI.IsInReg)
8929     Attrs.push_back(Attribute::InReg);
8930 
8931   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8932                             Attrs);
8933 }
8934 
8935 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8936 /// implementation, which just calls LowerCall.
8937 /// FIXME: When all targets are
8938 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8939 std::pair<SDValue, SDValue>
8940 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8941   // Handle the incoming return values from the call.
8942   CLI.Ins.clear();
8943   Type *OrigRetTy = CLI.RetTy;
8944   SmallVector<EVT, 4> RetTys;
8945   SmallVector<uint64_t, 4> Offsets;
8946   auto &DL = CLI.DAG.getDataLayout();
8947   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8948 
8949   if (CLI.IsPostTypeLegalization) {
8950     // If we are lowering a libcall after legalization, split the return type.
8951     SmallVector<EVT, 4> OldRetTys;
8952     SmallVector<uint64_t, 4> OldOffsets;
8953     RetTys.swap(OldRetTys);
8954     Offsets.swap(OldOffsets);
8955 
8956     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8957       EVT RetVT = OldRetTys[i];
8958       uint64_t Offset = OldOffsets[i];
8959       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8960       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8961       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8962       RetTys.append(NumRegs, RegisterVT);
8963       for (unsigned j = 0; j != NumRegs; ++j)
8964         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8965     }
8966   }
8967 
8968   SmallVector<ISD::OutputArg, 4> Outs;
8969   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8970 
8971   bool CanLowerReturn =
8972       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8973                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8974 
8975   SDValue DemoteStackSlot;
8976   int DemoteStackIdx = -100;
8977   if (!CanLowerReturn) {
8978     // FIXME: equivalent assert?
8979     // assert(!CS.hasInAllocaArgument() &&
8980     //        "sret demotion is incompatible with inalloca");
8981     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8982     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8983     MachineFunction &MF = CLI.DAG.getMachineFunction();
8984     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8985     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8986                                               DL.getAllocaAddrSpace());
8987 
8988     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8989     ArgListEntry Entry;
8990     Entry.Node = DemoteStackSlot;
8991     Entry.Ty = StackSlotPtrType;
8992     Entry.IsSExt = false;
8993     Entry.IsZExt = false;
8994     Entry.IsInReg = false;
8995     Entry.IsSRet = true;
8996     Entry.IsNest = false;
8997     Entry.IsByVal = false;
8998     Entry.IsReturned = false;
8999     Entry.IsSwiftSelf = false;
9000     Entry.IsSwiftError = false;
9001     Entry.Alignment = Align;
9002     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9003     CLI.NumFixedArgs += 1;
9004     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9005 
9006     // sret demotion isn't compatible with tail-calls, since the sret argument
9007     // points into the callers stack frame.
9008     CLI.IsTailCall = false;
9009   } else {
9010     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9011         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9012     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9013       ISD::ArgFlagsTy Flags;
9014       if (NeedsRegBlock) {
9015         Flags.setInConsecutiveRegs();
9016         if (I == RetTys.size() - 1)
9017           Flags.setInConsecutiveRegsLast();
9018       }
9019       EVT VT = RetTys[I];
9020       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9021                                                      CLI.CallConv, VT);
9022       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9023                                                        CLI.CallConv, VT);
9024       for (unsigned i = 0; i != NumRegs; ++i) {
9025         ISD::InputArg MyFlags;
9026         MyFlags.Flags = Flags;
9027         MyFlags.VT = RegisterVT;
9028         MyFlags.ArgVT = VT;
9029         MyFlags.Used = CLI.IsReturnValueUsed;
9030         if (CLI.RetTy->isPointerTy()) {
9031           MyFlags.Flags.setPointer();
9032           MyFlags.Flags.setPointerAddrSpace(
9033               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9034         }
9035         if (CLI.RetSExt)
9036           MyFlags.Flags.setSExt();
9037         if (CLI.RetZExt)
9038           MyFlags.Flags.setZExt();
9039         if (CLI.IsInReg)
9040           MyFlags.Flags.setInReg();
9041         CLI.Ins.push_back(MyFlags);
9042       }
9043     }
9044   }
9045 
9046   // We push in swifterror return as the last element of CLI.Ins.
9047   ArgListTy &Args = CLI.getArgs();
9048   if (supportSwiftError()) {
9049     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9050       if (Args[i].IsSwiftError) {
9051         ISD::InputArg MyFlags;
9052         MyFlags.VT = getPointerTy(DL);
9053         MyFlags.ArgVT = EVT(getPointerTy(DL));
9054         MyFlags.Flags.setSwiftError();
9055         CLI.Ins.push_back(MyFlags);
9056       }
9057     }
9058   }
9059 
9060   // Handle all of the outgoing arguments.
9061   CLI.Outs.clear();
9062   CLI.OutVals.clear();
9063   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9064     SmallVector<EVT, 4> ValueVTs;
9065     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9066     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9067     Type *FinalType = Args[i].Ty;
9068     if (Args[i].IsByVal)
9069       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9070     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9071         FinalType, CLI.CallConv, CLI.IsVarArg);
9072     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9073          ++Value) {
9074       EVT VT = ValueVTs[Value];
9075       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9076       SDValue Op = SDValue(Args[i].Node.getNode(),
9077                            Args[i].Node.getResNo() + Value);
9078       ISD::ArgFlagsTy Flags;
9079 
9080       // Certain targets (such as MIPS), may have a different ABI alignment
9081       // for a type depending on the context. Give the target a chance to
9082       // specify the alignment it wants.
9083       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
9084 
9085       if (Args[i].Ty->isPointerTy()) {
9086         Flags.setPointer();
9087         Flags.setPointerAddrSpace(
9088             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9089       }
9090       if (Args[i].IsZExt)
9091         Flags.setZExt();
9092       if (Args[i].IsSExt)
9093         Flags.setSExt();
9094       if (Args[i].IsInReg) {
9095         // If we are using vectorcall calling convention, a structure that is
9096         // passed InReg - is surely an HVA
9097         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9098             isa<StructType>(FinalType)) {
9099           // The first value of a structure is marked
9100           if (0 == Value)
9101             Flags.setHvaStart();
9102           Flags.setHva();
9103         }
9104         // Set InReg Flag
9105         Flags.setInReg();
9106       }
9107       if (Args[i].IsSRet)
9108         Flags.setSRet();
9109       if (Args[i].IsSwiftSelf)
9110         Flags.setSwiftSelf();
9111       if (Args[i].IsSwiftError)
9112         Flags.setSwiftError();
9113       if (Args[i].IsByVal)
9114         Flags.setByVal();
9115       if (Args[i].IsInAlloca) {
9116         Flags.setInAlloca();
9117         // Set the byval flag for CCAssignFn callbacks that don't know about
9118         // inalloca.  This way we can know how many bytes we should've allocated
9119         // and how many bytes a callee cleanup function will pop.  If we port
9120         // inalloca to more targets, we'll have to add custom inalloca handling
9121         // in the various CC lowering callbacks.
9122         Flags.setByVal();
9123       }
9124       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9125         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9126         Type *ElementTy = Ty->getElementType();
9127 
9128         unsigned FrameSize = DL.getTypeAllocSize(
9129             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9130         Flags.setByValSize(FrameSize);
9131 
9132         // info is not there but there are cases it cannot get right.
9133         unsigned FrameAlign;
9134         if (Args[i].Alignment)
9135           FrameAlign = Args[i].Alignment;
9136         else
9137           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9138         Flags.setByValAlign(FrameAlign);
9139       }
9140       if (Args[i].IsNest)
9141         Flags.setNest();
9142       if (NeedsRegBlock)
9143         Flags.setInConsecutiveRegs();
9144       Flags.setOrigAlign(OriginalAlignment);
9145 
9146       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9147                                                  CLI.CallConv, VT);
9148       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9149                                                         CLI.CallConv, VT);
9150       SmallVector<SDValue, 4> Parts(NumParts);
9151       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9152 
9153       if (Args[i].IsSExt)
9154         ExtendKind = ISD::SIGN_EXTEND;
9155       else if (Args[i].IsZExt)
9156         ExtendKind = ISD::ZERO_EXTEND;
9157 
9158       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9159       // for now.
9160       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9161           CanLowerReturn) {
9162         assert((CLI.RetTy == Args[i].Ty ||
9163                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9164                  CLI.RetTy->getPointerAddressSpace() ==
9165                      Args[i].Ty->getPointerAddressSpace())) &&
9166                RetTys.size() == NumValues && "unexpected use of 'returned'");
9167         // Before passing 'returned' to the target lowering code, ensure that
9168         // either the register MVT and the actual EVT are the same size or that
9169         // the return value and argument are extended in the same way; in these
9170         // cases it's safe to pass the argument register value unchanged as the
9171         // return register value (although it's at the target's option whether
9172         // to do so)
9173         // TODO: allow code generation to take advantage of partially preserved
9174         // registers rather than clobbering the entire register when the
9175         // parameter extension method is not compatible with the return
9176         // extension method
9177         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9178             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9179              CLI.RetZExt == Args[i].IsZExt))
9180           Flags.setReturned();
9181       }
9182 
9183       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9184                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9185 
9186       for (unsigned j = 0; j != NumParts; ++j) {
9187         // if it isn't first piece, alignment must be 1
9188         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9189                                i < CLI.NumFixedArgs,
9190                                i, j*Parts[j].getValueType().getStoreSize());
9191         if (NumParts > 1 && j == 0)
9192           MyFlags.Flags.setSplit();
9193         else if (j != 0) {
9194           MyFlags.Flags.setOrigAlign(1);
9195           if (j == NumParts - 1)
9196             MyFlags.Flags.setSplitEnd();
9197         }
9198 
9199         CLI.Outs.push_back(MyFlags);
9200         CLI.OutVals.push_back(Parts[j]);
9201       }
9202 
9203       if (NeedsRegBlock && Value == NumValues - 1)
9204         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9205     }
9206   }
9207 
9208   SmallVector<SDValue, 4> InVals;
9209   CLI.Chain = LowerCall(CLI, InVals);
9210 
9211   // Update CLI.InVals to use outside of this function.
9212   CLI.InVals = InVals;
9213 
9214   // Verify that the target's LowerCall behaved as expected.
9215   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9216          "LowerCall didn't return a valid chain!");
9217   assert((!CLI.IsTailCall || InVals.empty()) &&
9218          "LowerCall emitted a return value for a tail call!");
9219   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9220          "LowerCall didn't emit the correct number of values!");
9221 
9222   // For a tail call, the return value is merely live-out and there aren't
9223   // any nodes in the DAG representing it. Return a special value to
9224   // indicate that a tail call has been emitted and no more Instructions
9225   // should be processed in the current block.
9226   if (CLI.IsTailCall) {
9227     CLI.DAG.setRoot(CLI.Chain);
9228     return std::make_pair(SDValue(), SDValue());
9229   }
9230 
9231 #ifndef NDEBUG
9232   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9233     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9234     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9235            "LowerCall emitted a value with the wrong type!");
9236   }
9237 #endif
9238 
9239   SmallVector<SDValue, 4> ReturnValues;
9240   if (!CanLowerReturn) {
9241     // The instruction result is the result of loading from the
9242     // hidden sret parameter.
9243     SmallVector<EVT, 1> PVTs;
9244     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9245 
9246     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9247     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9248     EVT PtrVT = PVTs[0];
9249 
9250     unsigned NumValues = RetTys.size();
9251     ReturnValues.resize(NumValues);
9252     SmallVector<SDValue, 4> Chains(NumValues);
9253 
9254     // An aggregate return value cannot wrap around the address space, so
9255     // offsets to its parts don't wrap either.
9256     SDNodeFlags Flags;
9257     Flags.setNoUnsignedWrap(true);
9258 
9259     for (unsigned i = 0; i < NumValues; ++i) {
9260       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9261                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9262                                                         PtrVT), Flags);
9263       SDValue L = CLI.DAG.getLoad(
9264           RetTys[i], CLI.DL, CLI.Chain, Add,
9265           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9266                                             DemoteStackIdx, Offsets[i]),
9267           /* Alignment = */ 1);
9268       ReturnValues[i] = L;
9269       Chains[i] = L.getValue(1);
9270     }
9271 
9272     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9273   } else {
9274     // Collect the legal value parts into potentially illegal values
9275     // that correspond to the original function's return values.
9276     Optional<ISD::NodeType> AssertOp;
9277     if (CLI.RetSExt)
9278       AssertOp = ISD::AssertSext;
9279     else if (CLI.RetZExt)
9280       AssertOp = ISD::AssertZext;
9281     unsigned CurReg = 0;
9282     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9283       EVT VT = RetTys[I];
9284       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9285                                                      CLI.CallConv, VT);
9286       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9287                                                        CLI.CallConv, VT);
9288 
9289       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9290                                               NumRegs, RegisterVT, VT, nullptr,
9291                                               CLI.CallConv, AssertOp));
9292       CurReg += NumRegs;
9293     }
9294 
9295     // For a function returning void, there is no return value. We can't create
9296     // such a node, so we just return a null return value in that case. In
9297     // that case, nothing will actually look at the value.
9298     if (ReturnValues.empty())
9299       return std::make_pair(SDValue(), CLI.Chain);
9300   }
9301 
9302   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9303                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9304   return std::make_pair(Res, CLI.Chain);
9305 }
9306 
9307 void TargetLowering::LowerOperationWrapper(SDNode *N,
9308                                            SmallVectorImpl<SDValue> &Results,
9309                                            SelectionDAG &DAG) const {
9310   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9311     Results.push_back(Res);
9312 }
9313 
9314 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9315   llvm_unreachable("LowerOperation not implemented for this target!");
9316 }
9317 
9318 void
9319 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9320   SDValue Op = getNonRegisterValue(V);
9321   assert((Op.getOpcode() != ISD::CopyFromReg ||
9322           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9323          "Copy from a reg to the same reg!");
9324   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9325 
9326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9327   // If this is an InlineAsm we have to match the registers required, not the
9328   // notional registers required by the type.
9329 
9330   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9331                    None); // This is not an ABI copy.
9332   SDValue Chain = DAG.getEntryNode();
9333 
9334   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9335                               FuncInfo.PreferredExtendType.end())
9336                                  ? ISD::ANY_EXTEND
9337                                  : FuncInfo.PreferredExtendType[V];
9338   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9339   PendingExports.push_back(Chain);
9340 }
9341 
9342 #include "llvm/CodeGen/SelectionDAGISel.h"
9343 
9344 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9345 /// entry block, return true.  This includes arguments used by switches, since
9346 /// the switch may expand into multiple basic blocks.
9347 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9348   // With FastISel active, we may be splitting blocks, so force creation
9349   // of virtual registers for all non-dead arguments.
9350   if (FastISel)
9351     return A->use_empty();
9352 
9353   const BasicBlock &Entry = A->getParent()->front();
9354   for (const User *U : A->users())
9355     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9356       return false;  // Use not in entry block.
9357 
9358   return true;
9359 }
9360 
9361 using ArgCopyElisionMapTy =
9362     DenseMap<const Argument *,
9363              std::pair<const AllocaInst *, const StoreInst *>>;
9364 
9365 /// Scan the entry block of the function in FuncInfo for arguments that look
9366 /// like copies into a local alloca. Record any copied arguments in
9367 /// ArgCopyElisionCandidates.
9368 static void
9369 findArgumentCopyElisionCandidates(const DataLayout &DL,
9370                                   FunctionLoweringInfo *FuncInfo,
9371                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9372   // Record the state of every static alloca used in the entry block. Argument
9373   // allocas are all used in the entry block, so we need approximately as many
9374   // entries as we have arguments.
9375   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9376   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9377   unsigned NumArgs = FuncInfo->Fn->arg_size();
9378   StaticAllocas.reserve(NumArgs * 2);
9379 
9380   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9381     if (!V)
9382       return nullptr;
9383     V = V->stripPointerCasts();
9384     const auto *AI = dyn_cast<AllocaInst>(V);
9385     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9386       return nullptr;
9387     auto Iter = StaticAllocas.insert({AI, Unknown});
9388     return &Iter.first->second;
9389   };
9390 
9391   // Look for stores of arguments to static allocas. Look through bitcasts and
9392   // GEPs to handle type coercions, as long as the alloca is fully initialized
9393   // by the store. Any non-store use of an alloca escapes it and any subsequent
9394   // unanalyzed store might write it.
9395   // FIXME: Handle structs initialized with multiple stores.
9396   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9397     // Look for stores, and handle non-store uses conservatively.
9398     const auto *SI = dyn_cast<StoreInst>(&I);
9399     if (!SI) {
9400       // We will look through cast uses, so ignore them completely.
9401       if (I.isCast())
9402         continue;
9403       // Ignore debug info intrinsics, they don't escape or store to allocas.
9404       if (isa<DbgInfoIntrinsic>(I))
9405         continue;
9406       // This is an unknown instruction. Assume it escapes or writes to all
9407       // static alloca operands.
9408       for (const Use &U : I.operands()) {
9409         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9410           *Info = StaticAllocaInfo::Clobbered;
9411       }
9412       continue;
9413     }
9414 
9415     // If the stored value is a static alloca, mark it as escaped.
9416     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9417       *Info = StaticAllocaInfo::Clobbered;
9418 
9419     // Check if the destination is a static alloca.
9420     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9421     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9422     if (!Info)
9423       continue;
9424     const AllocaInst *AI = cast<AllocaInst>(Dst);
9425 
9426     // Skip allocas that have been initialized or clobbered.
9427     if (*Info != StaticAllocaInfo::Unknown)
9428       continue;
9429 
9430     // Check if the stored value is an argument, and that this store fully
9431     // initializes the alloca. Don't elide copies from the same argument twice.
9432     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9433     const auto *Arg = dyn_cast<Argument>(Val);
9434     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9435         Arg->getType()->isEmptyTy() ||
9436         DL.getTypeStoreSize(Arg->getType()) !=
9437             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9438         ArgCopyElisionCandidates.count(Arg)) {
9439       *Info = StaticAllocaInfo::Clobbered;
9440       continue;
9441     }
9442 
9443     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9444                       << '\n');
9445 
9446     // Mark this alloca and store for argument copy elision.
9447     *Info = StaticAllocaInfo::Elidable;
9448     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9449 
9450     // Stop scanning if we've seen all arguments. This will happen early in -O0
9451     // builds, which is useful, because -O0 builds have large entry blocks and
9452     // many allocas.
9453     if (ArgCopyElisionCandidates.size() == NumArgs)
9454       break;
9455   }
9456 }
9457 
9458 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9459 /// ArgVal is a load from a suitable fixed stack object.
9460 static void tryToElideArgumentCopy(
9461     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9462     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9463     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9464     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9465     SDValue ArgVal, bool &ArgHasUses) {
9466   // Check if this is a load from a fixed stack object.
9467   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9468   if (!LNode)
9469     return;
9470   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9471   if (!FINode)
9472     return;
9473 
9474   // Check that the fixed stack object is the right size and alignment.
9475   // Look at the alignment that the user wrote on the alloca instead of looking
9476   // at the stack object.
9477   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9478   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9479   const AllocaInst *AI = ArgCopyIter->second.first;
9480   int FixedIndex = FINode->getIndex();
9481   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9482   int OldIndex = AllocaIndex;
9483   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9484   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9485     LLVM_DEBUG(
9486         dbgs() << "  argument copy elision failed due to bad fixed stack "
9487                   "object size\n");
9488     return;
9489   }
9490   unsigned RequiredAlignment = AI->getAlignment();
9491   if (!RequiredAlignment) {
9492     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9493         AI->getAllocatedType());
9494   }
9495   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9496     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9497                          "greater than stack argument alignment ("
9498                       << RequiredAlignment << " vs "
9499                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9500     return;
9501   }
9502 
9503   // Perform the elision. Delete the old stack object and replace its only use
9504   // in the variable info map. Mark the stack object as mutable.
9505   LLVM_DEBUG({
9506     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9507            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9508            << '\n';
9509   });
9510   MFI.RemoveStackObject(OldIndex);
9511   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9512   AllocaIndex = FixedIndex;
9513   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9514   Chains.push_back(ArgVal.getValue(1));
9515 
9516   // Avoid emitting code for the store implementing the copy.
9517   const StoreInst *SI = ArgCopyIter->second.second;
9518   ElidedArgCopyInstrs.insert(SI);
9519 
9520   // Check for uses of the argument again so that we can avoid exporting ArgVal
9521   // if it is't used by anything other than the store.
9522   for (const Value *U : Arg.users()) {
9523     if (U != SI) {
9524       ArgHasUses = true;
9525       break;
9526     }
9527   }
9528 }
9529 
9530 void SelectionDAGISel::LowerArguments(const Function &F) {
9531   SelectionDAG &DAG = SDB->DAG;
9532   SDLoc dl = SDB->getCurSDLoc();
9533   const DataLayout &DL = DAG.getDataLayout();
9534   SmallVector<ISD::InputArg, 16> Ins;
9535 
9536   if (!FuncInfo->CanLowerReturn) {
9537     // Put in an sret pointer parameter before all the other parameters.
9538     SmallVector<EVT, 1> ValueVTs;
9539     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9540                     F.getReturnType()->getPointerTo(
9541                         DAG.getDataLayout().getAllocaAddrSpace()),
9542                     ValueVTs);
9543 
9544     // NOTE: Assuming that a pointer will never break down to more than one VT
9545     // or one register.
9546     ISD::ArgFlagsTy Flags;
9547     Flags.setSRet();
9548     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9549     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9550                          ISD::InputArg::NoArgIndex, 0);
9551     Ins.push_back(RetArg);
9552   }
9553 
9554   // Look for stores of arguments to static allocas. Mark such arguments with a
9555   // flag to ask the target to give us the memory location of that argument if
9556   // available.
9557   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9558   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9559 
9560   // Set up the incoming argument description vector.
9561   for (const Argument &Arg : F.args()) {
9562     unsigned ArgNo = Arg.getArgNo();
9563     SmallVector<EVT, 4> ValueVTs;
9564     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9565     bool isArgValueUsed = !Arg.use_empty();
9566     unsigned PartBase = 0;
9567     Type *FinalType = Arg.getType();
9568     if (Arg.hasAttribute(Attribute::ByVal))
9569       FinalType = Arg.getParamByValType();
9570     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9571         FinalType, F.getCallingConv(), F.isVarArg());
9572     for (unsigned Value = 0, NumValues = ValueVTs.size();
9573          Value != NumValues; ++Value) {
9574       EVT VT = ValueVTs[Value];
9575       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9576       ISD::ArgFlagsTy Flags;
9577 
9578       // Certain targets (such as MIPS), may have a different ABI alignment
9579       // for a type depending on the context. Give the target a chance to
9580       // specify the alignment it wants.
9581       unsigned OriginalAlignment =
9582           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9583 
9584       if (Arg.getType()->isPointerTy()) {
9585         Flags.setPointer();
9586         Flags.setPointerAddrSpace(
9587             cast<PointerType>(Arg.getType())->getAddressSpace());
9588       }
9589       if (Arg.hasAttribute(Attribute::ZExt))
9590         Flags.setZExt();
9591       if (Arg.hasAttribute(Attribute::SExt))
9592         Flags.setSExt();
9593       if (Arg.hasAttribute(Attribute::InReg)) {
9594         // If we are using vectorcall calling convention, a structure that is
9595         // passed InReg - is surely an HVA
9596         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9597             isa<StructType>(Arg.getType())) {
9598           // The first value of a structure is marked
9599           if (0 == Value)
9600             Flags.setHvaStart();
9601           Flags.setHva();
9602         }
9603         // Set InReg Flag
9604         Flags.setInReg();
9605       }
9606       if (Arg.hasAttribute(Attribute::StructRet))
9607         Flags.setSRet();
9608       if (Arg.hasAttribute(Attribute::SwiftSelf))
9609         Flags.setSwiftSelf();
9610       if (Arg.hasAttribute(Attribute::SwiftError))
9611         Flags.setSwiftError();
9612       if (Arg.hasAttribute(Attribute::ByVal))
9613         Flags.setByVal();
9614       if (Arg.hasAttribute(Attribute::InAlloca)) {
9615         Flags.setInAlloca();
9616         // Set the byval flag for CCAssignFn callbacks that don't know about
9617         // inalloca.  This way we can know how many bytes we should've allocated
9618         // and how many bytes a callee cleanup function will pop.  If we port
9619         // inalloca to more targets, we'll have to add custom inalloca handling
9620         // in the various CC lowering callbacks.
9621         Flags.setByVal();
9622       }
9623       if (F.getCallingConv() == CallingConv::X86_INTR) {
9624         // IA Interrupt passes frame (1st parameter) by value in the stack.
9625         if (ArgNo == 0)
9626           Flags.setByVal();
9627       }
9628       if (Flags.isByVal() || Flags.isInAlloca()) {
9629         Type *ElementTy = Arg.getParamByValType();
9630 
9631         // For ByVal, size and alignment should be passed from FE.  BE will
9632         // guess if this info is not there but there are cases it cannot get
9633         // right.
9634         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9635         Flags.setByValSize(FrameSize);
9636 
9637         unsigned FrameAlign;
9638         if (Arg.getParamAlignment())
9639           FrameAlign = Arg.getParamAlignment();
9640         else
9641           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9642         Flags.setByValAlign(FrameAlign);
9643       }
9644       if (Arg.hasAttribute(Attribute::Nest))
9645         Flags.setNest();
9646       if (NeedsRegBlock)
9647         Flags.setInConsecutiveRegs();
9648       Flags.setOrigAlign(OriginalAlignment);
9649       if (ArgCopyElisionCandidates.count(&Arg))
9650         Flags.setCopyElisionCandidate();
9651       if (Arg.hasAttribute(Attribute::Returned))
9652         Flags.setReturned();
9653 
9654       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9655           *CurDAG->getContext(), F.getCallingConv(), VT);
9656       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9657           *CurDAG->getContext(), F.getCallingConv(), VT);
9658       for (unsigned i = 0; i != NumRegs; ++i) {
9659         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9660                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9661         if (NumRegs > 1 && i == 0)
9662           MyFlags.Flags.setSplit();
9663         // if it isn't first piece, alignment must be 1
9664         else if (i > 0) {
9665           MyFlags.Flags.setOrigAlign(1);
9666           if (i == NumRegs - 1)
9667             MyFlags.Flags.setSplitEnd();
9668         }
9669         Ins.push_back(MyFlags);
9670       }
9671       if (NeedsRegBlock && Value == NumValues - 1)
9672         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9673       PartBase += VT.getStoreSize();
9674     }
9675   }
9676 
9677   // Call the target to set up the argument values.
9678   SmallVector<SDValue, 8> InVals;
9679   SDValue NewRoot = TLI->LowerFormalArguments(
9680       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9681 
9682   // Verify that the target's LowerFormalArguments behaved as expected.
9683   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9684          "LowerFormalArguments didn't return a valid chain!");
9685   assert(InVals.size() == Ins.size() &&
9686          "LowerFormalArguments didn't emit the correct number of values!");
9687   LLVM_DEBUG({
9688     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9689       assert(InVals[i].getNode() &&
9690              "LowerFormalArguments emitted a null value!");
9691       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9692              "LowerFormalArguments emitted a value with the wrong type!");
9693     }
9694   });
9695 
9696   // Update the DAG with the new chain value resulting from argument lowering.
9697   DAG.setRoot(NewRoot);
9698 
9699   // Set up the argument values.
9700   unsigned i = 0;
9701   if (!FuncInfo->CanLowerReturn) {
9702     // Create a virtual register for the sret pointer, and put in a copy
9703     // from the sret argument into it.
9704     SmallVector<EVT, 1> ValueVTs;
9705     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9706                     F.getReturnType()->getPointerTo(
9707                         DAG.getDataLayout().getAllocaAddrSpace()),
9708                     ValueVTs);
9709     MVT VT = ValueVTs[0].getSimpleVT();
9710     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9711     Optional<ISD::NodeType> AssertOp = None;
9712     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9713                                         nullptr, F.getCallingConv(), AssertOp);
9714 
9715     MachineFunction& MF = SDB->DAG.getMachineFunction();
9716     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9717     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9718     FuncInfo->DemoteRegister = SRetReg;
9719     NewRoot =
9720         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9721     DAG.setRoot(NewRoot);
9722 
9723     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9724     ++i;
9725   }
9726 
9727   SmallVector<SDValue, 4> Chains;
9728   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9729   for (const Argument &Arg : F.args()) {
9730     SmallVector<SDValue, 4> ArgValues;
9731     SmallVector<EVT, 4> ValueVTs;
9732     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9733     unsigned NumValues = ValueVTs.size();
9734     if (NumValues == 0)
9735       continue;
9736 
9737     bool ArgHasUses = !Arg.use_empty();
9738 
9739     // Elide the copying store if the target loaded this argument from a
9740     // suitable fixed stack object.
9741     if (Ins[i].Flags.isCopyElisionCandidate()) {
9742       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9743                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9744                              InVals[i], ArgHasUses);
9745     }
9746 
9747     // If this argument is unused then remember its value. It is used to generate
9748     // debugging information.
9749     bool isSwiftErrorArg =
9750         TLI->supportSwiftError() &&
9751         Arg.hasAttribute(Attribute::SwiftError);
9752     if (!ArgHasUses && !isSwiftErrorArg) {
9753       SDB->setUnusedArgValue(&Arg, InVals[i]);
9754 
9755       // Also remember any frame index for use in FastISel.
9756       if (FrameIndexSDNode *FI =
9757           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9758         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9759     }
9760 
9761     for (unsigned Val = 0; Val != NumValues; ++Val) {
9762       EVT VT = ValueVTs[Val];
9763       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9764                                                       F.getCallingConv(), VT);
9765       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9766           *CurDAG->getContext(), F.getCallingConv(), VT);
9767 
9768       // Even an apparant 'unused' swifterror argument needs to be returned. So
9769       // we do generate a copy for it that can be used on return from the
9770       // function.
9771       if (ArgHasUses || isSwiftErrorArg) {
9772         Optional<ISD::NodeType> AssertOp;
9773         if (Arg.hasAttribute(Attribute::SExt))
9774           AssertOp = ISD::AssertSext;
9775         else if (Arg.hasAttribute(Attribute::ZExt))
9776           AssertOp = ISD::AssertZext;
9777 
9778         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9779                                              PartVT, VT, nullptr,
9780                                              F.getCallingConv(), AssertOp));
9781       }
9782 
9783       i += NumParts;
9784     }
9785 
9786     // We don't need to do anything else for unused arguments.
9787     if (ArgValues.empty())
9788       continue;
9789 
9790     // Note down frame index.
9791     if (FrameIndexSDNode *FI =
9792         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9793       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9794 
9795     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9796                                      SDB->getCurSDLoc());
9797 
9798     SDB->setValue(&Arg, Res);
9799     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9800       // We want to associate the argument with the frame index, among
9801       // involved operands, that correspond to the lowest address. The
9802       // getCopyFromParts function, called earlier, is swapping the order of
9803       // the operands to BUILD_PAIR depending on endianness. The result of
9804       // that swapping is that the least significant bits of the argument will
9805       // be in the first operand of the BUILD_PAIR node, and the most
9806       // significant bits will be in the second operand.
9807       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9808       if (LoadSDNode *LNode =
9809           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9810         if (FrameIndexSDNode *FI =
9811             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9812           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9813     }
9814 
9815     // Update the SwiftErrorVRegDefMap.
9816     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9817       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9818       if (Register::isVirtualRegister(Reg))
9819         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9820                                    Reg);
9821     }
9822 
9823     // If this argument is live outside of the entry block, insert a copy from
9824     // wherever we got it to the vreg that other BB's will reference it as.
9825     if (Res.getOpcode() == ISD::CopyFromReg) {
9826       // If we can, though, try to skip creating an unnecessary vreg.
9827       // FIXME: This isn't very clean... it would be nice to make this more
9828       // general.
9829       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9830       if (Register::isVirtualRegister(Reg)) {
9831         FuncInfo->ValueMap[&Arg] = Reg;
9832         continue;
9833       }
9834     }
9835     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9836       FuncInfo->InitializeRegForValue(&Arg);
9837       SDB->CopyToExportRegsIfNeeded(&Arg);
9838     }
9839   }
9840 
9841   if (!Chains.empty()) {
9842     Chains.push_back(NewRoot);
9843     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9844   }
9845 
9846   DAG.setRoot(NewRoot);
9847 
9848   assert(i == InVals.size() && "Argument register count mismatch!");
9849 
9850   // If any argument copy elisions occurred and we have debug info, update the
9851   // stale frame indices used in the dbg.declare variable info table.
9852   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9853   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9854     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9855       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9856       if (I != ArgCopyElisionFrameIndexMap.end())
9857         VI.Slot = I->second;
9858     }
9859   }
9860 
9861   // Finally, if the target has anything special to do, allow it to do so.
9862   EmitFunctionEntryCode();
9863 }
9864 
9865 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9866 /// ensure constants are generated when needed.  Remember the virtual registers
9867 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9868 /// directly add them, because expansion might result in multiple MBB's for one
9869 /// BB.  As such, the start of the BB might correspond to a different MBB than
9870 /// the end.
9871 void
9872 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9873   const Instruction *TI = LLVMBB->getTerminator();
9874 
9875   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9876 
9877   // Check PHI nodes in successors that expect a value to be available from this
9878   // block.
9879   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9880     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9881     if (!isa<PHINode>(SuccBB->begin())) continue;
9882     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9883 
9884     // If this terminator has multiple identical successors (common for
9885     // switches), only handle each succ once.
9886     if (!SuccsHandled.insert(SuccMBB).second)
9887       continue;
9888 
9889     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9890 
9891     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9892     // nodes and Machine PHI nodes, but the incoming operands have not been
9893     // emitted yet.
9894     for (const PHINode &PN : SuccBB->phis()) {
9895       // Ignore dead phi's.
9896       if (PN.use_empty())
9897         continue;
9898 
9899       // Skip empty types
9900       if (PN.getType()->isEmptyTy())
9901         continue;
9902 
9903       unsigned Reg;
9904       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9905 
9906       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9907         unsigned &RegOut = ConstantsOut[C];
9908         if (RegOut == 0) {
9909           RegOut = FuncInfo.CreateRegs(C);
9910           CopyValueToVirtualRegister(C, RegOut);
9911         }
9912         Reg = RegOut;
9913       } else {
9914         DenseMap<const Value *, unsigned>::iterator I =
9915           FuncInfo.ValueMap.find(PHIOp);
9916         if (I != FuncInfo.ValueMap.end())
9917           Reg = I->second;
9918         else {
9919           assert(isa<AllocaInst>(PHIOp) &&
9920                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9921                  "Didn't codegen value into a register!??");
9922           Reg = FuncInfo.CreateRegs(PHIOp);
9923           CopyValueToVirtualRegister(PHIOp, Reg);
9924         }
9925       }
9926 
9927       // Remember that this register needs to added to the machine PHI node as
9928       // the input for this MBB.
9929       SmallVector<EVT, 4> ValueVTs;
9930       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9931       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9932       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9933         EVT VT = ValueVTs[vti];
9934         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9935         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9936           FuncInfo.PHINodesToUpdate.push_back(
9937               std::make_pair(&*MBBI++, Reg + i));
9938         Reg += NumRegisters;
9939       }
9940     }
9941   }
9942 
9943   ConstantsOut.clear();
9944 }
9945 
9946 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9947 /// is 0.
9948 MachineBasicBlock *
9949 SelectionDAGBuilder::StackProtectorDescriptor::
9950 AddSuccessorMBB(const BasicBlock *BB,
9951                 MachineBasicBlock *ParentMBB,
9952                 bool IsLikely,
9953                 MachineBasicBlock *SuccMBB) {
9954   // If SuccBB has not been created yet, create it.
9955   if (!SuccMBB) {
9956     MachineFunction *MF = ParentMBB->getParent();
9957     MachineFunction::iterator BBI(ParentMBB);
9958     SuccMBB = MF->CreateMachineBasicBlock(BB);
9959     MF->insert(++BBI, SuccMBB);
9960   }
9961   // Add it as a successor of ParentMBB.
9962   ParentMBB->addSuccessor(
9963       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9964   return SuccMBB;
9965 }
9966 
9967 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9968   MachineFunction::iterator I(MBB);
9969   if (++I == FuncInfo.MF->end())
9970     return nullptr;
9971   return &*I;
9972 }
9973 
9974 /// During lowering new call nodes can be created (such as memset, etc.).
9975 /// Those will become new roots of the current DAG, but complications arise
9976 /// when they are tail calls. In such cases, the call lowering will update
9977 /// the root, but the builder still needs to know that a tail call has been
9978 /// lowered in order to avoid generating an additional return.
9979 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9980   // If the node is null, we do have a tail call.
9981   if (MaybeTC.getNode() != nullptr)
9982     DAG.setRoot(MaybeTC);
9983   else
9984     HasTailCall = true;
9985 }
9986 
9987 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9988                                         MachineBasicBlock *SwitchMBB,
9989                                         MachineBasicBlock *DefaultMBB) {
9990   MachineFunction *CurMF = FuncInfo.MF;
9991   MachineBasicBlock *NextMBB = nullptr;
9992   MachineFunction::iterator BBI(W.MBB);
9993   if (++BBI != FuncInfo.MF->end())
9994     NextMBB = &*BBI;
9995 
9996   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9997 
9998   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9999 
10000   if (Size == 2 && W.MBB == SwitchMBB) {
10001     // If any two of the cases has the same destination, and if one value
10002     // is the same as the other, but has one bit unset that the other has set,
10003     // use bit manipulation to do two compares at once.  For example:
10004     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10005     // TODO: This could be extended to merge any 2 cases in switches with 3
10006     // cases.
10007     // TODO: Handle cases where W.CaseBB != SwitchBB.
10008     CaseCluster &Small = *W.FirstCluster;
10009     CaseCluster &Big = *W.LastCluster;
10010 
10011     if (Small.Low == Small.High && Big.Low == Big.High &&
10012         Small.MBB == Big.MBB) {
10013       const APInt &SmallValue = Small.Low->getValue();
10014       const APInt &BigValue = Big.Low->getValue();
10015 
10016       // Check that there is only one bit different.
10017       APInt CommonBit = BigValue ^ SmallValue;
10018       if (CommonBit.isPowerOf2()) {
10019         SDValue CondLHS = getValue(Cond);
10020         EVT VT = CondLHS.getValueType();
10021         SDLoc DL = getCurSDLoc();
10022 
10023         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10024                                  DAG.getConstant(CommonBit, DL, VT));
10025         SDValue Cond = DAG.getSetCC(
10026             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10027             ISD::SETEQ);
10028 
10029         // Update successor info.
10030         // Both Small and Big will jump to Small.BB, so we sum up the
10031         // probabilities.
10032         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10033         if (BPI)
10034           addSuccessorWithProb(
10035               SwitchMBB, DefaultMBB,
10036               // The default destination is the first successor in IR.
10037               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10038         else
10039           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10040 
10041         // Insert the true branch.
10042         SDValue BrCond =
10043             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10044                         DAG.getBasicBlock(Small.MBB));
10045         // Insert the false branch.
10046         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10047                              DAG.getBasicBlock(DefaultMBB));
10048 
10049         DAG.setRoot(BrCond);
10050         return;
10051       }
10052     }
10053   }
10054 
10055   if (TM.getOptLevel() != CodeGenOpt::None) {
10056     // Here, we order cases by probability so the most likely case will be
10057     // checked first. However, two clusters can have the same probability in
10058     // which case their relative ordering is non-deterministic. So we use Low
10059     // as a tie-breaker as clusters are guaranteed to never overlap.
10060     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10061                [](const CaseCluster &a, const CaseCluster &b) {
10062       return a.Prob != b.Prob ?
10063              a.Prob > b.Prob :
10064              a.Low->getValue().slt(b.Low->getValue());
10065     });
10066 
10067     // Rearrange the case blocks so that the last one falls through if possible
10068     // without changing the order of probabilities.
10069     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10070       --I;
10071       if (I->Prob > W.LastCluster->Prob)
10072         break;
10073       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10074         std::swap(*I, *W.LastCluster);
10075         break;
10076       }
10077     }
10078   }
10079 
10080   // Compute total probability.
10081   BranchProbability DefaultProb = W.DefaultProb;
10082   BranchProbability UnhandledProbs = DefaultProb;
10083   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10084     UnhandledProbs += I->Prob;
10085 
10086   MachineBasicBlock *CurMBB = W.MBB;
10087   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10088     bool FallthroughUnreachable = false;
10089     MachineBasicBlock *Fallthrough;
10090     if (I == W.LastCluster) {
10091       // For the last cluster, fall through to the default destination.
10092       Fallthrough = DefaultMBB;
10093       FallthroughUnreachable = isa<UnreachableInst>(
10094           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10095     } else {
10096       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10097       CurMF->insert(BBI, Fallthrough);
10098       // Put Cond in a virtual register to make it available from the new blocks.
10099       ExportFromCurrentBlock(Cond);
10100     }
10101     UnhandledProbs -= I->Prob;
10102 
10103     switch (I->Kind) {
10104       case CC_JumpTable: {
10105         // FIXME: Optimize away range check based on pivot comparisons.
10106         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10107         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10108 
10109         // The jump block hasn't been inserted yet; insert it here.
10110         MachineBasicBlock *JumpMBB = JT->MBB;
10111         CurMF->insert(BBI, JumpMBB);
10112 
10113         auto JumpProb = I->Prob;
10114         auto FallthroughProb = UnhandledProbs;
10115 
10116         // If the default statement is a target of the jump table, we evenly
10117         // distribute the default probability to successors of CurMBB. Also
10118         // update the probability on the edge from JumpMBB to Fallthrough.
10119         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10120                                               SE = JumpMBB->succ_end();
10121              SI != SE; ++SI) {
10122           if (*SI == DefaultMBB) {
10123             JumpProb += DefaultProb / 2;
10124             FallthroughProb -= DefaultProb / 2;
10125             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10126             JumpMBB->normalizeSuccProbs();
10127             break;
10128           }
10129         }
10130 
10131         if (FallthroughUnreachable) {
10132           // Skip the range check if the fallthrough block is unreachable.
10133           JTH->OmitRangeCheck = true;
10134         }
10135 
10136         if (!JTH->OmitRangeCheck)
10137           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10138         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10139         CurMBB->normalizeSuccProbs();
10140 
10141         // The jump table header will be inserted in our current block, do the
10142         // range check, and fall through to our fallthrough block.
10143         JTH->HeaderBB = CurMBB;
10144         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10145 
10146         // If we're in the right place, emit the jump table header right now.
10147         if (CurMBB == SwitchMBB) {
10148           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10149           JTH->Emitted = true;
10150         }
10151         break;
10152       }
10153       case CC_BitTests: {
10154         // FIXME: If Fallthrough is unreachable, skip the range check.
10155 
10156         // FIXME: Optimize away range check based on pivot comparisons.
10157         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10158 
10159         // The bit test blocks haven't been inserted yet; insert them here.
10160         for (BitTestCase &BTC : BTB->Cases)
10161           CurMF->insert(BBI, BTC.ThisBB);
10162 
10163         // Fill in fields of the BitTestBlock.
10164         BTB->Parent = CurMBB;
10165         BTB->Default = Fallthrough;
10166 
10167         BTB->DefaultProb = UnhandledProbs;
10168         // If the cases in bit test don't form a contiguous range, we evenly
10169         // distribute the probability on the edge to Fallthrough to two
10170         // successors of CurMBB.
10171         if (!BTB->ContiguousRange) {
10172           BTB->Prob += DefaultProb / 2;
10173           BTB->DefaultProb -= DefaultProb / 2;
10174         }
10175 
10176         // If we're in the right place, emit the bit test header right now.
10177         if (CurMBB == SwitchMBB) {
10178           visitBitTestHeader(*BTB, SwitchMBB);
10179           BTB->Emitted = true;
10180         }
10181         break;
10182       }
10183       case CC_Range: {
10184         const Value *RHS, *LHS, *MHS;
10185         ISD::CondCode CC;
10186         if (I->Low == I->High) {
10187           // Check Cond == I->Low.
10188           CC = ISD::SETEQ;
10189           LHS = Cond;
10190           RHS=I->Low;
10191           MHS = nullptr;
10192         } else {
10193           // Check I->Low <= Cond <= I->High.
10194           CC = ISD::SETLE;
10195           LHS = I->Low;
10196           MHS = Cond;
10197           RHS = I->High;
10198         }
10199 
10200         // If Fallthrough is unreachable, fold away the comparison.
10201         if (FallthroughUnreachable)
10202           CC = ISD::SETTRUE;
10203 
10204         // The false probability is the sum of all unhandled cases.
10205         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10206                      getCurSDLoc(), I->Prob, UnhandledProbs);
10207 
10208         if (CurMBB == SwitchMBB)
10209           visitSwitchCase(CB, SwitchMBB);
10210         else
10211           SL->SwitchCases.push_back(CB);
10212 
10213         break;
10214       }
10215     }
10216     CurMBB = Fallthrough;
10217   }
10218 }
10219 
10220 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10221                                               CaseClusterIt First,
10222                                               CaseClusterIt Last) {
10223   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10224     if (X.Prob != CC.Prob)
10225       return X.Prob > CC.Prob;
10226 
10227     // Ties are broken by comparing the case value.
10228     return X.Low->getValue().slt(CC.Low->getValue());
10229   });
10230 }
10231 
10232 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10233                                         const SwitchWorkListItem &W,
10234                                         Value *Cond,
10235                                         MachineBasicBlock *SwitchMBB) {
10236   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10237          "Clusters not sorted?");
10238 
10239   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10240 
10241   // Balance the tree based on branch probabilities to create a near-optimal (in
10242   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10243   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10244   CaseClusterIt LastLeft = W.FirstCluster;
10245   CaseClusterIt FirstRight = W.LastCluster;
10246   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10247   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10248 
10249   // Move LastLeft and FirstRight towards each other from opposite directions to
10250   // find a partitioning of the clusters which balances the probability on both
10251   // sides. If LeftProb and RightProb are equal, alternate which side is
10252   // taken to ensure 0-probability nodes are distributed evenly.
10253   unsigned I = 0;
10254   while (LastLeft + 1 < FirstRight) {
10255     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10256       LeftProb += (++LastLeft)->Prob;
10257     else
10258       RightProb += (--FirstRight)->Prob;
10259     I++;
10260   }
10261 
10262   while (true) {
10263     // Our binary search tree differs from a typical BST in that ours can have up
10264     // to three values in each leaf. The pivot selection above doesn't take that
10265     // into account, which means the tree might require more nodes and be less
10266     // efficient. We compensate for this here.
10267 
10268     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10269     unsigned NumRight = W.LastCluster - FirstRight + 1;
10270 
10271     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10272       // If one side has less than 3 clusters, and the other has more than 3,
10273       // consider taking a cluster from the other side.
10274 
10275       if (NumLeft < NumRight) {
10276         // Consider moving the first cluster on the right to the left side.
10277         CaseCluster &CC = *FirstRight;
10278         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10279         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10280         if (LeftSideRank <= RightSideRank) {
10281           // Moving the cluster to the left does not demote it.
10282           ++LastLeft;
10283           ++FirstRight;
10284           continue;
10285         }
10286       } else {
10287         assert(NumRight < NumLeft);
10288         // Consider moving the last element on the left to the right side.
10289         CaseCluster &CC = *LastLeft;
10290         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10291         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10292         if (RightSideRank <= LeftSideRank) {
10293           // Moving the cluster to the right does not demot it.
10294           --LastLeft;
10295           --FirstRight;
10296           continue;
10297         }
10298       }
10299     }
10300     break;
10301   }
10302 
10303   assert(LastLeft + 1 == FirstRight);
10304   assert(LastLeft >= W.FirstCluster);
10305   assert(FirstRight <= W.LastCluster);
10306 
10307   // Use the first element on the right as pivot since we will make less-than
10308   // comparisons against it.
10309   CaseClusterIt PivotCluster = FirstRight;
10310   assert(PivotCluster > W.FirstCluster);
10311   assert(PivotCluster <= W.LastCluster);
10312 
10313   CaseClusterIt FirstLeft = W.FirstCluster;
10314   CaseClusterIt LastRight = W.LastCluster;
10315 
10316   const ConstantInt *Pivot = PivotCluster->Low;
10317 
10318   // New blocks will be inserted immediately after the current one.
10319   MachineFunction::iterator BBI(W.MBB);
10320   ++BBI;
10321 
10322   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10323   // we can branch to its destination directly if it's squeezed exactly in
10324   // between the known lower bound and Pivot - 1.
10325   MachineBasicBlock *LeftMBB;
10326   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10327       FirstLeft->Low == W.GE &&
10328       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10329     LeftMBB = FirstLeft->MBB;
10330   } else {
10331     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10332     FuncInfo.MF->insert(BBI, LeftMBB);
10333     WorkList.push_back(
10334         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10335     // Put Cond in a virtual register to make it available from the new blocks.
10336     ExportFromCurrentBlock(Cond);
10337   }
10338 
10339   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10340   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10341   // directly if RHS.High equals the current upper bound.
10342   MachineBasicBlock *RightMBB;
10343   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10344       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10345     RightMBB = FirstRight->MBB;
10346   } else {
10347     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10348     FuncInfo.MF->insert(BBI, RightMBB);
10349     WorkList.push_back(
10350         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10351     // Put Cond in a virtual register to make it available from the new blocks.
10352     ExportFromCurrentBlock(Cond);
10353   }
10354 
10355   // Create the CaseBlock record that will be used to lower the branch.
10356   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10357                getCurSDLoc(), LeftProb, RightProb);
10358 
10359   if (W.MBB == SwitchMBB)
10360     visitSwitchCase(CB, SwitchMBB);
10361   else
10362     SL->SwitchCases.push_back(CB);
10363 }
10364 
10365 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10366 // from the swith statement.
10367 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10368                                             BranchProbability PeeledCaseProb) {
10369   if (PeeledCaseProb == BranchProbability::getOne())
10370     return BranchProbability::getZero();
10371   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10372 
10373   uint32_t Numerator = CaseProb.getNumerator();
10374   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10375   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10376 }
10377 
10378 // Try to peel the top probability case if it exceeds the threshold.
10379 // Return current MachineBasicBlock for the switch statement if the peeling
10380 // does not occur.
10381 // If the peeling is performed, return the newly created MachineBasicBlock
10382 // for the peeled switch statement. Also update Clusters to remove the peeled
10383 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10384 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10385     const SwitchInst &SI, CaseClusterVector &Clusters,
10386     BranchProbability &PeeledCaseProb) {
10387   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10388   // Don't perform if there is only one cluster or optimizing for size.
10389   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10390       TM.getOptLevel() == CodeGenOpt::None ||
10391       SwitchMBB->getParent()->getFunction().hasMinSize())
10392     return SwitchMBB;
10393 
10394   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10395   unsigned PeeledCaseIndex = 0;
10396   bool SwitchPeeled = false;
10397   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10398     CaseCluster &CC = Clusters[Index];
10399     if (CC.Prob < TopCaseProb)
10400       continue;
10401     TopCaseProb = CC.Prob;
10402     PeeledCaseIndex = Index;
10403     SwitchPeeled = true;
10404   }
10405   if (!SwitchPeeled)
10406     return SwitchMBB;
10407 
10408   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10409                     << TopCaseProb << "\n");
10410 
10411   // Record the MBB for the peeled switch statement.
10412   MachineFunction::iterator BBI(SwitchMBB);
10413   ++BBI;
10414   MachineBasicBlock *PeeledSwitchMBB =
10415       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10416   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10417 
10418   ExportFromCurrentBlock(SI.getCondition());
10419   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10420   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10421                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10422   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10423 
10424   Clusters.erase(PeeledCaseIt);
10425   for (CaseCluster &CC : Clusters) {
10426     LLVM_DEBUG(
10427         dbgs() << "Scale the probablity for one cluster, before scaling: "
10428                << CC.Prob << "\n");
10429     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10430     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10431   }
10432   PeeledCaseProb = TopCaseProb;
10433   return PeeledSwitchMBB;
10434 }
10435 
10436 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10437   // Extract cases from the switch.
10438   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10439   CaseClusterVector Clusters;
10440   Clusters.reserve(SI.getNumCases());
10441   for (auto I : SI.cases()) {
10442     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10443     const ConstantInt *CaseVal = I.getCaseValue();
10444     BranchProbability Prob =
10445         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10446             : BranchProbability(1, SI.getNumCases() + 1);
10447     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10448   }
10449 
10450   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10451 
10452   // Cluster adjacent cases with the same destination. We do this at all
10453   // optimization levels because it's cheap to do and will make codegen faster
10454   // if there are many clusters.
10455   sortAndRangeify(Clusters);
10456 
10457   // The branch probablity of the peeled case.
10458   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10459   MachineBasicBlock *PeeledSwitchMBB =
10460       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10461 
10462   // If there is only the default destination, jump there directly.
10463   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10464   if (Clusters.empty()) {
10465     assert(PeeledSwitchMBB == SwitchMBB);
10466     SwitchMBB->addSuccessor(DefaultMBB);
10467     if (DefaultMBB != NextBlock(SwitchMBB)) {
10468       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10469                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10470     }
10471     return;
10472   }
10473 
10474   SL->findJumpTables(Clusters, &SI, DefaultMBB);
10475   SL->findBitTestClusters(Clusters, &SI);
10476 
10477   LLVM_DEBUG({
10478     dbgs() << "Case clusters: ";
10479     for (const CaseCluster &C : Clusters) {
10480       if (C.Kind == CC_JumpTable)
10481         dbgs() << "JT:";
10482       if (C.Kind == CC_BitTests)
10483         dbgs() << "BT:";
10484 
10485       C.Low->getValue().print(dbgs(), true);
10486       if (C.Low != C.High) {
10487         dbgs() << '-';
10488         C.High->getValue().print(dbgs(), true);
10489       }
10490       dbgs() << ' ';
10491     }
10492     dbgs() << '\n';
10493   });
10494 
10495   assert(!Clusters.empty());
10496   SwitchWorkList WorkList;
10497   CaseClusterIt First = Clusters.begin();
10498   CaseClusterIt Last = Clusters.end() - 1;
10499   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10500   // Scale the branchprobability for DefaultMBB if the peel occurs and
10501   // DefaultMBB is not replaced.
10502   if (PeeledCaseProb != BranchProbability::getZero() &&
10503       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10504     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10505   WorkList.push_back(
10506       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10507 
10508   while (!WorkList.empty()) {
10509     SwitchWorkListItem W = WorkList.back();
10510     WorkList.pop_back();
10511     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10512 
10513     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10514         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10515       // For optimized builds, lower large range as a balanced binary tree.
10516       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10517       continue;
10518     }
10519 
10520     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10521   }
10522 }
10523