xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e79105b591ea51d2e4a9ade5e656590f20be57ba)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuilder.h"
16 #include "FunctionLoweringInfo.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Constants.h"
21 #include "llvm/CallingConv.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Function.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/InlineAsm.h"
26 #include "llvm/Instructions.h"
27 #include "llvm/Intrinsics.h"
28 #include "llvm/IntrinsicInst.h"
29 #include "llvm/LLVMContext.h"
30 #include "llvm/Module.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/GCStrategy.h"
33 #include "llvm/CodeGen/GCMetadata.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/PseudoSourceValue.h"
41 #include "llvm/CodeGen/SelectionDAG.h"
42 #include "llvm/CodeGen/DwarfWriter.h"
43 #include "llvm/Analysis/DebugInfo.h"
44 #include "llvm/Target/TargetRegisterInfo.h"
45 #include "llvm/Target/TargetData.h"
46 #include "llvm/Target/TargetFrameInfo.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetIntrinsicInfo.h"
49 #include "llvm/Target/TargetLowering.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 using namespace llvm;
59 
60 /// LimitFloatPrecision - Generate low-precision inline sequences for
61 /// some float libcalls (6, 8 or 12 bits).
62 static unsigned LimitFloatPrecision;
63 
64 static cl::opt<unsigned, true>
65 LimitFPPrecision("limit-float-precision",
66                  cl::desc("Generate low-precision inline sequences "
67                           "for some float libcalls"),
68                  cl::location(LimitFloatPrecision),
69                  cl::init(0));
70 
71 namespace {
72   /// RegsForValue - This struct represents the registers (physical or virtual)
73   /// that a particular set of values is assigned, and the type information about
74   /// the value. The most common situation is to represent one value at a time,
75   /// but struct or array values are handled element-wise as multiple values.
76   /// The splitting of aggregates is performed recursively, so that we never
77   /// have aggregate-typed registers. The values at this point do not necessarily
78   /// have legal types, so each value may require one or more registers of some
79   /// legal type.
80   ///
81   struct RegsForValue {
82     /// TLI - The TargetLowering object.
83     ///
84     const TargetLowering *TLI;
85 
86     /// ValueVTs - The value types of the values, which may not be legal, and
87     /// may need be promoted or synthesized from one or more registers.
88     ///
89     SmallVector<EVT, 4> ValueVTs;
90 
91     /// RegVTs - The value types of the registers. This is the same size as
92     /// ValueVTs and it records, for each value, what the type of the assigned
93     /// register or registers are. (Individual values are never synthesized
94     /// from more than one type of register.)
95     ///
96     /// With virtual registers, the contents of RegVTs is redundant with TLI's
97     /// getRegisterType member function, however when with physical registers
98     /// it is necessary to have a separate record of the types.
99     ///
100     SmallVector<EVT, 4> RegVTs;
101 
102     /// Regs - This list holds the registers assigned to the values.
103     /// Each legal or promoted value requires one register, and each
104     /// expanded value requires multiple registers.
105     ///
106     SmallVector<unsigned, 4> Regs;
107 
108     RegsForValue() : TLI(0) {}
109 
110     RegsForValue(const TargetLowering &tli,
111                  const SmallVector<unsigned, 4> &regs,
112                  EVT regvt, EVT valuevt)
113       : TLI(&tli),  ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
114     RegsForValue(const TargetLowering &tli,
115                  const SmallVector<unsigned, 4> &regs,
116                  const SmallVector<EVT, 4> &regvts,
117                  const SmallVector<EVT, 4> &valuevts)
118       : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
119     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
120                  unsigned Reg, const Type *Ty) : TLI(&tli) {
121       ComputeValueVTs(tli, Ty, ValueVTs);
122 
123       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
124         EVT ValueVT = ValueVTs[Value];
125         unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT);
126         EVT RegisterVT = TLI->getRegisterType(Context, ValueVT);
127         for (unsigned i = 0; i != NumRegs; ++i)
128           Regs.push_back(Reg + i);
129         RegVTs.push_back(RegisterVT);
130         Reg += NumRegs;
131       }
132     }
133 
134     /// append - Add the specified values to this one.
135     void append(const RegsForValue &RHS) {
136       TLI = RHS.TLI;
137       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
138       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
139       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
140     }
141 
142 
143     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
144     /// this value and returns the result as a ValueVTs value.  This uses
145     /// Chain/Flag as the input and updates them for the output Chain/Flag.
146     /// If the Flag pointer is NULL, no flag is used.
147     SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
148                               SDValue &Chain, SDValue *Flag) const;
149 
150     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
151     /// specified value into the registers specified by this object.  This uses
152     /// Chain/Flag as the input and updates them for the output Chain/Flag.
153     /// If the Flag pointer is NULL, no flag is used.
154     void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
155                        SDValue &Chain, SDValue *Flag) const;
156 
157     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
158     /// operand list.  This adds the code marker, matching input operand index
159     /// (if applicable), and includes the number of values added into it.
160     void AddInlineAsmOperands(unsigned Code,
161                               bool HasMatching, unsigned MatchingIdx,
162                               SelectionDAG &DAG, std::vector<SDValue> &Ops) const;
163   };
164 }
165 
166 /// getCopyFromParts - Create a value that contains the specified legal parts
167 /// combined into the value they represent.  If the parts combine to a type
168 /// larger then ValueVT then AssertOp can be used to specify whether the extra
169 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
170 /// (ISD::AssertSext).
171 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl,
172                                 const SDValue *Parts,
173                                 unsigned NumParts, EVT PartVT, EVT ValueVT,
174                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
175   assert(NumParts > 0 && "No parts to assemble!");
176   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
177   SDValue Val = Parts[0];
178 
179   if (NumParts > 1) {
180     // Assemble the value from multiple parts.
181     if (!ValueVT.isVector() && ValueVT.isInteger()) {
182       unsigned PartBits = PartVT.getSizeInBits();
183       unsigned ValueBits = ValueVT.getSizeInBits();
184 
185       // Assemble the power of 2 part.
186       unsigned RoundParts = NumParts & (NumParts - 1) ?
187         1 << Log2_32(NumParts) : NumParts;
188       unsigned RoundBits = PartBits * RoundParts;
189       EVT RoundVT = RoundBits == ValueBits ?
190         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191       SDValue Lo, Hi;
192 
193       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194 
195       if (RoundParts > 2) {
196         Lo = getCopyFromParts(DAG, dl, Parts, RoundParts/2, PartVT, HalfVT);
197         Hi = getCopyFromParts(DAG, dl, Parts+RoundParts/2, RoundParts/2,
198                               PartVT, HalfVT);
199       } else {
200         Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]);
202       }
203       if (TLI.isBigEndian())
204         std::swap(Lo, Hi);
205       Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi);
206 
207       if (RoundParts < NumParts) {
208         // Assemble the trailing non-power-of-2 part.
209         unsigned OddParts = NumParts - RoundParts;
210         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
211         Hi = getCopyFromParts(DAG, dl,
212                               Parts+RoundParts, OddParts, PartVT, OddVT);
213 
214         // Combine the round and odd parts.
215         Lo = Val;
216         if (TLI.isBigEndian())
217           std::swap(Lo, Hi);
218         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
219         Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi);
220         Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi,
221                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
222                                          TLI.getPointerTy()));
223         Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo);
224         Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi);
225       }
226     } else if (ValueVT.isVector()) {
227       // Handle a multi-element vector.
228       EVT IntermediateVT, RegisterVT;
229       unsigned NumIntermediates;
230       unsigned NumRegs =
231         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
232                                    NumIntermediates, RegisterVT);
233       assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
234       NumParts = NumRegs; // Silence a compiler warning.
235       assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
236       assert(RegisterVT == Parts[0].getValueType() &&
237              "Part type doesn't match part!");
238 
239       // Assemble the parts into intermediate operands.
240       SmallVector<SDValue, 8> Ops(NumIntermediates);
241       if (NumIntermediates == NumParts) {
242         // If the register was not expanded, truncate or copy the value,
243         // as appropriate.
244         for (unsigned i = 0; i != NumParts; ++i)
245           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1,
246                                     PartVT, IntermediateVT);
247       } else if (NumParts > 0) {
248         // If the intermediate type was expanded, build the intermediate operands
249         // from the parts.
250         assert(NumParts % NumIntermediates == 0 &&
251                "Must expand into a divisible number of parts!");
252         unsigned Factor = NumParts / NumIntermediates;
253         for (unsigned i = 0; i != NumIntermediates; ++i)
254           Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor,
255                                     PartVT, IntermediateVT);
256       }
257 
258       // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
259       // operands.
260       Val = DAG.getNode(IntermediateVT.isVector() ?
261                         ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl,
262                         ValueVT, &Ops[0], NumIntermediates);
263     } else if (PartVT.isFloatingPoint()) {
264       // FP split into multiple FP parts (for ppcf128)
265       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
266              "Unexpected split");
267       SDValue Lo, Hi;
268       Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]);
269       Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]);
270       if (TLI.isBigEndian())
271         std::swap(Lo, Hi);
272       Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi);
273     } else {
274       // FP split into integer parts (soft fp)
275       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
276              !PartVT.isVector() && "Unexpected split");
277       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
278       Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT);
279     }
280   }
281 
282   // There is now one part, held in Val.  Correct it to match ValueVT.
283   PartVT = Val.getValueType();
284 
285   if (PartVT == ValueVT)
286     return Val;
287 
288   if (PartVT.isVector()) {
289     assert(ValueVT.isVector() && "Unknown vector conversion!");
290     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
291   }
292 
293   if (ValueVT.isVector()) {
294     assert(ValueVT.getVectorElementType() == PartVT &&
295            ValueVT.getVectorNumElements() == 1 &&
296            "Only trivial scalar-to-vector conversions should get here!");
297     return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val);
298   }
299 
300   if (PartVT.isInteger() &&
301       ValueVT.isInteger()) {
302     if (ValueVT.bitsLT(PartVT)) {
303       // For a truncate, see if we have any information to
304       // indicate whether the truncated bits will always be
305       // zero or sign-extension.
306       if (AssertOp != ISD::DELETED_NODE)
307         Val = DAG.getNode(AssertOp, dl, PartVT, Val,
308                           DAG.getValueType(ValueVT));
309       return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
310     } else {
311       return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val);
312     }
313   }
314 
315   if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316     if (ValueVT.bitsLT(Val.getValueType()))
317       // FP_ROUND's are always exact here.
318       return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val,
319                          DAG.getIntPtrConstant(1));
320     return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val);
321   }
322 
323   if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
324     return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val);
325 
326   llvm_unreachable("Unknown mismatch!");
327   return SDValue();
328 }
329 
330 /// getCopyToParts - Create a series of nodes that contain the specified value
331 /// split into legal parts.  If the parts contain more bits than Val, then, for
332 /// integers, ExtendKind can be used to specify how to generate the extra bits.
333 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, SDValue Val,
334                            SDValue *Parts, unsigned NumParts, EVT PartVT,
335                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
337   EVT PtrVT = TLI.getPointerTy();
338   EVT ValueVT = Val.getValueType();
339   unsigned PartBits = PartVT.getSizeInBits();
340   unsigned OrigNumParts = NumParts;
341   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
342 
343   if (!NumParts)
344     return;
345 
346   if (!ValueVT.isVector()) {
347     if (PartVT == ValueVT) {
348       assert(NumParts == 1 && "No-op copy with multiple parts!");
349       Parts[0] = Val;
350       return;
351     }
352 
353     if (NumParts * PartBits > ValueVT.getSizeInBits()) {
354       // If the parts cover more bits than the value has, promote the value.
355       if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
356         assert(NumParts == 1 && "Do not know what to promote to!");
357         Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val);
358       } else if (PartVT.isInteger() && ValueVT.isInteger()) {
359         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
360         Val = DAG.getNode(ExtendKind, dl, ValueVT, Val);
361       } else {
362         llvm_unreachable("Unknown mismatch!");
363       }
364     } else if (PartBits == ValueVT.getSizeInBits()) {
365       // Different types of the same size.
366       assert(NumParts == 1 && PartVT != ValueVT);
367       Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
368     } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
369       // If the parts cover less bits than value has, truncate the value.
370       if (PartVT.isInteger() && ValueVT.isInteger()) {
371         ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
372         Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
373       } else {
374         llvm_unreachable("Unknown mismatch!");
375       }
376     }
377 
378     // The value may have changed - recompute ValueVT.
379     ValueVT = Val.getValueType();
380     assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
381            "Failed to tile the value with PartVT!");
382 
383     if (NumParts == 1) {
384       assert(PartVT == ValueVT && "Type conversion failed!");
385       Parts[0] = Val;
386       return;
387     }
388 
389     // Expand the value into multiple parts.
390     if (NumParts & (NumParts - 1)) {
391       // The number of parts is not a power of 2.  Split off and copy the tail.
392       assert(PartVT.isInteger() && ValueVT.isInteger() &&
393              "Do not know what to expand to!");
394       unsigned RoundParts = 1 << Log2_32(NumParts);
395       unsigned RoundBits = RoundParts * PartBits;
396       unsigned OddParts = NumParts - RoundParts;
397       SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val,
398                                    DAG.getConstant(RoundBits,
399                                                    TLI.getPointerTy()));
400       getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, OddParts, PartVT);
401       if (TLI.isBigEndian())
402         // The odd parts were reversed by getCopyToParts - unreverse them.
403         std::reverse(Parts + RoundParts, Parts + NumParts);
404       NumParts = RoundParts;
405       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
406       Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val);
407     }
408 
409     // The number of parts is a power of 2.  Repeatedly bisect the value using
410     // EXTRACT_ELEMENT.
411     Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl,
412                            EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()),
413                            Val);
414     for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
415       for (unsigned i = 0; i < NumParts; i += StepSize) {
416         unsigned ThisBits = StepSize * PartBits / 2;
417         EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
418         SDValue &Part0 = Parts[i];
419         SDValue &Part1 = Parts[i+StepSize/2];
420 
421         Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
422                             ThisVT, Part0,
423                             DAG.getConstant(1, PtrVT));
424         Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
425                             ThisVT, Part0,
426                             DAG.getConstant(0, PtrVT));
427 
428         if (ThisBits == PartBits && ThisVT != PartVT) {
429           Part0 = DAG.getNode(ISD::BIT_CONVERT, dl,
430                                                 PartVT, Part0);
431           Part1 = DAG.getNode(ISD::BIT_CONVERT, dl,
432                                                 PartVT, Part1);
433         }
434       }
435     }
436 
437     if (TLI.isBigEndian())
438       std::reverse(Parts, Parts + OrigNumParts);
439 
440     return;
441   }
442 
443   // Vector ValueVT.
444   if (NumParts == 1) {
445     if (PartVT != ValueVT) {
446       if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
447         Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val);
448       } else {
449         assert(ValueVT.getVectorElementType() == PartVT &&
450                ValueVT.getVectorNumElements() == 1 &&
451                "Only trivial vector-to-scalar conversions should get here!");
452         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
453                           PartVT, Val,
454                           DAG.getConstant(0, PtrVT));
455       }
456     }
457 
458     Parts[0] = Val;
459     return;
460   }
461 
462   // Handle a multi-element vector.
463   EVT IntermediateVT, RegisterVT;
464   unsigned NumIntermediates;
465   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
466                               IntermediateVT, NumIntermediates, RegisterVT);
467   unsigned NumElements = ValueVT.getVectorNumElements();
468 
469   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
470   NumParts = NumRegs; // Silence a compiler warning.
471   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
472 
473   // Split the vector into intermediate operands.
474   SmallVector<SDValue, 8> Ops(NumIntermediates);
475   for (unsigned i = 0; i != NumIntermediates; ++i)
476     if (IntermediateVT.isVector())
477       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
478                            IntermediateVT, Val,
479                            DAG.getConstant(i * (NumElements / NumIntermediates),
480                                            PtrVT));
481     else
482       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
483                            IntermediateVT, Val,
484                            DAG.getConstant(i, PtrVT));
485 
486   // Split the intermediate operands into legal parts.
487   if (NumParts == NumIntermediates) {
488     // If the register was not expanded, promote or copy the value,
489     // as appropriate.
490     for (unsigned i = 0; i != NumParts; ++i)
491       getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT);
492   } else if (NumParts > 0) {
493     // If the intermediate type was expanded, split each the value into
494     // legal parts.
495     assert(NumParts % NumIntermediates == 0 &&
496            "Must expand into a divisible number of parts!");
497     unsigned Factor = NumParts / NumIntermediates;
498     for (unsigned i = 0; i != NumIntermediates; ++i)
499       getCopyToParts(DAG, dl, Ops[i], &Parts[i * Factor], Factor, PartVT);
500   }
501 }
502 
503 
504 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
505   AA = &aa;
506   GFI = gfi;
507   TD = DAG.getTarget().getTargetData();
508 }
509 
510 /// clear - Clear out the curret SelectionDAG and the associated
511 /// state and prepare this SelectionDAGBuilder object to be used
512 /// for a new block. This doesn't clear out information about
513 /// additional blocks that are needed to complete switch lowering
514 /// or PHI node updating; that information is cleared out as it is
515 /// consumed.
516 void SelectionDAGBuilder::clear() {
517   NodeMap.clear();
518   PendingLoads.clear();
519   PendingExports.clear();
520   EdgeMapping.clear();
521   DAG.clear();
522   CurDebugLoc = DebugLoc::getUnknownLoc();
523   HasTailCall = false;
524 }
525 
526 /// getRoot - Return the current virtual root of the Selection DAG,
527 /// flushing any PendingLoad items. This must be done before emitting
528 /// a store or any other node that may need to be ordered after any
529 /// prior load instructions.
530 ///
531 SDValue SelectionDAGBuilder::getRoot() {
532   if (PendingLoads.empty())
533     return DAG.getRoot();
534 
535   if (PendingLoads.size() == 1) {
536     SDValue Root = PendingLoads[0];
537     DAG.setRoot(Root);
538     PendingLoads.clear();
539     return Root;
540   }
541 
542   // Otherwise, we have to make a token factor node.
543   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
544                                &PendingLoads[0], PendingLoads.size());
545   PendingLoads.clear();
546   DAG.setRoot(Root);
547   return Root;
548 }
549 
550 /// getControlRoot - Similar to getRoot, but instead of flushing all the
551 /// PendingLoad items, flush all the PendingExports items. It is necessary
552 /// to do this before emitting a terminator instruction.
553 ///
554 SDValue SelectionDAGBuilder::getControlRoot() {
555   SDValue Root = DAG.getRoot();
556 
557   if (PendingExports.empty())
558     return Root;
559 
560   // Turn all of the CopyToReg chains into one factored node.
561   if (Root.getOpcode() != ISD::EntryToken) {
562     unsigned i = 0, e = PendingExports.size();
563     for (; i != e; ++i) {
564       assert(PendingExports[i].getNode()->getNumOperands() > 1);
565       if (PendingExports[i].getNode()->getOperand(0) == Root)
566         break;  // Don't add the root if we already indirectly depend on it.
567     }
568 
569     if (i == e)
570       PendingExports.push_back(Root);
571   }
572 
573   Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
574                      &PendingExports[0],
575                      PendingExports.size());
576   PendingExports.clear();
577   DAG.setRoot(Root);
578   return Root;
579 }
580 
581 void SelectionDAGBuilder::visit(Instruction &I) {
582   visit(I.getOpcode(), I);
583 }
584 
585 void SelectionDAGBuilder::visit(unsigned Opcode, User &I) {
586   // We're processing a new instruction.
587   ++SDNodeOrder;
588 
589   // Note: this doesn't use InstVisitor, because it has to work with
590   // ConstantExpr's in addition to instructions.
591   switch (Opcode) {
592   default: llvm_unreachable("Unknown instruction type encountered!");
593     // Build the switch statement using the Instruction.def file.
594 #define HANDLE_INST(NUM, OPCODE, CLASS) \
595   case Instruction::OPCODE: return visit##OPCODE((CLASS&)I);
596 #include "llvm/Instruction.def"
597   }
598 }
599 
600 SDValue SelectionDAGBuilder::getValue(const Value *V) {
601   SDValue &N = NodeMap[V];
602   if (N.getNode()) return N;
603 
604   if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
605     EVT VT = TLI.getValueType(V->getType(), true);
606 
607     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
608       return N = DAG.getConstant(*CI, VT);
609 
610     if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
611       return N = DAG.getGlobalAddress(GV, VT);
612 
613     if (isa<ConstantPointerNull>(C))
614       return N = DAG.getConstant(0, TLI.getPointerTy());
615 
616     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
617       return N = DAG.getConstantFP(*CFP, VT);
618 
619     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
620       return N = DAG.getUNDEF(VT);
621 
622     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
623       visit(CE->getOpcode(), *CE);
624       SDValue N1 = NodeMap[V];
625       assert(N1.getNode() && "visit didn't populate the ValueMap!");
626       return N1;
627     }
628 
629     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
630       SmallVector<SDValue, 4> Constants;
631       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
632            OI != OE; ++OI) {
633         SDNode *Val = getValue(*OI).getNode();
634         // If the operand is an empty aggregate, there are no values.
635         if (!Val) continue;
636         // Add each leaf value from the operand to the Constants list
637         // to form a flattened list of all the values.
638         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
639           Constants.push_back(SDValue(Val, i));
640       }
641       return DAG.getMergeValues(&Constants[0], Constants.size(),
642                                 getCurDebugLoc());
643     }
644 
645     if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
646       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
647              "Unknown struct or array constant!");
648 
649       SmallVector<EVT, 4> ValueVTs;
650       ComputeValueVTs(TLI, C->getType(), ValueVTs);
651       unsigned NumElts = ValueVTs.size();
652       if (NumElts == 0)
653         return SDValue(); // empty struct
654       SmallVector<SDValue, 4> Constants(NumElts);
655       for (unsigned i = 0; i != NumElts; ++i) {
656         EVT EltVT = ValueVTs[i];
657         if (isa<UndefValue>(C))
658           Constants[i] = DAG.getUNDEF(EltVT);
659         else if (EltVT.isFloatingPoint())
660           Constants[i] = DAG.getConstantFP(0, EltVT);
661         else
662           Constants[i] = DAG.getConstant(0, EltVT);
663       }
664       return DAG.getMergeValues(&Constants[0], NumElts, getCurDebugLoc());
665     }
666 
667     if (BlockAddress *BA = dyn_cast<BlockAddress>(C))
668       return DAG.getBlockAddress(BA, VT);
669 
670     const VectorType *VecTy = cast<VectorType>(V->getType());
671     unsigned NumElements = VecTy->getNumElements();
672 
673     // Now that we know the number and type of the elements, get that number of
674     // elements into the Ops array based on what kind of constant it is.
675     SmallVector<SDValue, 16> Ops;
676     if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
677       for (unsigned i = 0; i != NumElements; ++i)
678         Ops.push_back(getValue(CP->getOperand(i)));
679     } else {
680       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
681       EVT EltVT = TLI.getValueType(VecTy->getElementType());
682 
683       SDValue Op;
684       if (EltVT.isFloatingPoint())
685         Op = DAG.getConstantFP(0, EltVT);
686       else
687         Op = DAG.getConstant(0, EltVT);
688       Ops.assign(NumElements, Op);
689     }
690 
691     // Create a BUILD_VECTOR node.
692     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
693                                     VT, &Ops[0], Ops.size());
694   }
695 
696   // If this is a static alloca, generate it as the frameindex instead of
697   // computation.
698   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
699     DenseMap<const AllocaInst*, int>::iterator SI =
700       FuncInfo.StaticAllocaMap.find(AI);
701     if (SI != FuncInfo.StaticAllocaMap.end())
702       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
703   }
704 
705   unsigned InReg = FuncInfo.ValueMap[V];
706   assert(InReg && "Value not in map!");
707 
708   RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
709   SDValue Chain = DAG.getEntryNode();
710   return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL);
711 }
712 
713 /// Get the EVTs and ArgFlags collections that represent the return type
714 /// of the given function.  This does not require a DAG or a return value, and
715 /// is suitable for use before any DAGs for the function are constructed.
716 static void getReturnInfo(const Type* ReturnType,
717                    Attributes attr, SmallVectorImpl<EVT> &OutVTs,
718                    SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags,
719                    TargetLowering &TLI,
720                    SmallVectorImpl<uint64_t> *Offsets = 0) {
721   SmallVector<EVT, 4> ValueVTs;
722   ComputeValueVTs(TLI, ReturnType, ValueVTs, Offsets);
723   unsigned NumValues = ValueVTs.size();
724   if ( NumValues == 0 ) return;
725 
726   for (unsigned j = 0, f = NumValues; j != f; ++j) {
727     EVT VT = ValueVTs[j];
728     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
729 
730     if (attr & Attribute::SExt)
731       ExtendKind = ISD::SIGN_EXTEND;
732     else if (attr & Attribute::ZExt)
733       ExtendKind = ISD::ZERO_EXTEND;
734 
735     // FIXME: C calling convention requires the return type to be promoted to
736     // at least 32-bit. But this is not necessary for non-C calling
737     // conventions. The frontend should mark functions whose return values
738     // require promoting with signext or zeroext attributes.
739     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
740       EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
741       if (VT.bitsLT(MinVT))
742         VT = MinVT;
743     }
744 
745     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
746     EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
747     // 'inreg' on function refers to return value
748     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
749     if (attr & Attribute::InReg)
750       Flags.setInReg();
751 
752     // Propagate extension type if any
753     if (attr & Attribute::SExt)
754       Flags.setSExt();
755     else if (attr & Attribute::ZExt)
756       Flags.setZExt();
757 
758     for (unsigned i = 0; i < NumParts; ++i) {
759       OutVTs.push_back(PartVT);
760       OutFlags.push_back(Flags);
761     }
762   }
763 }
764 
765 void SelectionDAGBuilder::visitRet(ReturnInst &I) {
766   SDValue Chain = getControlRoot();
767   SmallVector<ISD::OutputArg, 8> Outs;
768   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
769 
770   if (!FLI.CanLowerReturn) {
771     unsigned DemoteReg = FLI.DemoteRegister;
772     const Function *F = I.getParent()->getParent();
773 
774     // Emit a store of the return value through the virtual register.
775     // Leave Outs empty so that LowerReturn won't try to load return
776     // registers the usual way.
777     SmallVector<EVT, 1> PtrValueVTs;
778     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
779                     PtrValueVTs);
780 
781     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
782     SDValue RetOp = getValue(I.getOperand(0));
783 
784     SmallVector<EVT, 4> ValueVTs;
785     SmallVector<uint64_t, 4> Offsets;
786     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
787     unsigned NumValues = ValueVTs.size();
788 
789     SmallVector<SDValue, 4> Chains(NumValues);
790     EVT PtrVT = PtrValueVTs[0];
791     for (unsigned i = 0; i != NumValues; ++i)
792       Chains[i] = DAG.getStore(Chain, getCurDebugLoc(),
793                   SDValue(RetOp.getNode(), RetOp.getResNo() + i),
794                   DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr,
795                   DAG.getConstant(Offsets[i], PtrVT)),
796                   NULL, Offsets[i], false, 0);
797     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
798                         MVT::Other, &Chains[0], NumValues);
799   }
800   else {
801     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
802       SmallVector<EVT, 4> ValueVTs;
803       ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
804       unsigned NumValues = ValueVTs.size();
805       if (NumValues == 0) continue;
806 
807       SDValue RetOp = getValue(I.getOperand(i));
808       for (unsigned j = 0, f = NumValues; j != f; ++j) {
809         EVT VT = ValueVTs[j];
810 
811         ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
812 
813         const Function *F = I.getParent()->getParent();
814         if (F->paramHasAttr(0, Attribute::SExt))
815           ExtendKind = ISD::SIGN_EXTEND;
816         else if (F->paramHasAttr(0, Attribute::ZExt))
817           ExtendKind = ISD::ZERO_EXTEND;
818 
819         // FIXME: C calling convention requires the return type to be promoted to
820         // at least 32-bit. But this is not necessary for non-C calling
821         // conventions. The frontend should mark functions whose return values
822         // require promoting with signext or zeroext attributes.
823         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
824           EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32);
825           if (VT.bitsLT(MinVT))
826             VT = MinVT;
827         }
828 
829         unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
830         EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
831         SmallVector<SDValue, 4> Parts(NumParts);
832         getCopyToParts(DAG, getCurDebugLoc(),
833                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
834                        &Parts[0], NumParts, PartVT, ExtendKind);
835 
836         // 'inreg' on function refers to return value
837         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
838         if (F->paramHasAttr(0, Attribute::InReg))
839           Flags.setInReg();
840 
841         // Propagate extension type if any
842         if (F->paramHasAttr(0, Attribute::SExt))
843           Flags.setSExt();
844         else if (F->paramHasAttr(0, Attribute::ZExt))
845           Flags.setZExt();
846 
847         for (unsigned i = 0; i < NumParts; ++i)
848           Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true));
849       }
850     }
851   }
852 
853   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
854   CallingConv::ID CallConv =
855     DAG.getMachineFunction().getFunction()->getCallingConv();
856   Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
857                           Outs, getCurDebugLoc(), DAG);
858 
859   // Verify that the target's LowerReturn behaved as expected.
860   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
861          "LowerReturn didn't return a valid chain!");
862 
863   // Update the DAG with the new chain value resulting from return lowering.
864   DAG.setRoot(Chain);
865 }
866 
867 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
868 /// created for it, emit nodes to copy the value into the virtual
869 /// registers.
870 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(Value *V) {
871   if (!V->use_empty()) {
872     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
873     if (VMI != FuncInfo.ValueMap.end())
874       CopyValueToVirtualRegister(V, VMI->second);
875   }
876 }
877 
878 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
879 /// the current basic block, add it to ValueMap now so that we'll get a
880 /// CopyTo/FromReg.
881 void SelectionDAGBuilder::ExportFromCurrentBlock(Value *V) {
882   // No need to export constants.
883   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
884 
885   // Already exported?
886   if (FuncInfo.isExportedInst(V)) return;
887 
888   unsigned Reg = FuncInfo.InitializeRegForValue(V);
889   CopyValueToVirtualRegister(V, Reg);
890 }
891 
892 bool SelectionDAGBuilder::isExportableFromCurrentBlock(Value *V,
893                                                      const BasicBlock *FromBB) {
894   // The operands of the setcc have to be in this block.  We don't know
895   // how to export them from some other block.
896   if (Instruction *VI = dyn_cast<Instruction>(V)) {
897     // Can export from current BB.
898     if (VI->getParent() == FromBB)
899       return true;
900 
901     // Is already exported, noop.
902     return FuncInfo.isExportedInst(V);
903   }
904 
905   // If this is an argument, we can export it if the BB is the entry block or
906   // if it is already exported.
907   if (isa<Argument>(V)) {
908     if (FromBB == &FromBB->getParent()->getEntryBlock())
909       return true;
910 
911     // Otherwise, can only export this if it is already exported.
912     return FuncInfo.isExportedInst(V);
913   }
914 
915   // Otherwise, constants can always be exported.
916   return true;
917 }
918 
919 static bool InBlock(const Value *V, const BasicBlock *BB) {
920   if (const Instruction *I = dyn_cast<Instruction>(V))
921     return I->getParent() == BB;
922   return true;
923 }
924 
925 /// getFCmpCondCode - Return the ISD condition code corresponding to
926 /// the given LLVM IR floating-point condition code.  This includes
927 /// consideration of global floating-point math flags.
928 ///
929 static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
930   ISD::CondCode FPC, FOC;
931   switch (Pred) {
932   case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
933   case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
934   case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
935   case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
936   case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
937   case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
938   case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
939   case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
940   case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
941   case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
942   case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
943   case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
944   case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
945   case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
946   case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
947   case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
948   default:
949     llvm_unreachable("Invalid FCmp predicate opcode!");
950     FOC = FPC = ISD::SETFALSE;
951     break;
952   }
953   if (FiniteOnlyFPMath())
954     return FOC;
955   else
956     return FPC;
957 }
958 
959 /// getICmpCondCode - Return the ISD condition code corresponding to
960 /// the given LLVM IR integer condition code.
961 ///
962 static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
963   switch (Pred) {
964   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
965   case ICmpInst::ICMP_NE:  return ISD::SETNE;
966   case ICmpInst::ICMP_SLE: return ISD::SETLE;
967   case ICmpInst::ICMP_ULE: return ISD::SETULE;
968   case ICmpInst::ICMP_SGE: return ISD::SETGE;
969   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
970   case ICmpInst::ICMP_SLT: return ISD::SETLT;
971   case ICmpInst::ICMP_ULT: return ISD::SETULT;
972   case ICmpInst::ICMP_SGT: return ISD::SETGT;
973   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
974   default:
975     llvm_unreachable("Invalid ICmp predicate opcode!");
976     return ISD::SETNE;
977   }
978 }
979 
980 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
981 /// This function emits a branch and is used at the leaves of an OR or an
982 /// AND operator tree.
983 ///
984 void
985 SelectionDAGBuilder::EmitBranchForMergedCondition(Value *Cond,
986                                                   MachineBasicBlock *TBB,
987                                                   MachineBasicBlock *FBB,
988                                                   MachineBasicBlock *CurBB) {
989   const BasicBlock *BB = CurBB->getBasicBlock();
990 
991   // If the leaf of the tree is a comparison, merge the condition into
992   // the caseblock.
993   if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
994     // The operands of the cmp have to be in this block.  We don't know
995     // how to export them from some other block.  If this is the first block
996     // of the sequence, no exporting is needed.
997     if (CurBB == CurMBB ||
998         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
999          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1000       ISD::CondCode Condition;
1001       if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1002         Condition = getICmpCondCode(IC->getPredicate());
1003       } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1004         Condition = getFCmpCondCode(FC->getPredicate());
1005       } else {
1006         Condition = ISD::SETEQ; // silence warning.
1007         llvm_unreachable("Unknown compare instruction");
1008       }
1009 
1010       CaseBlock CB(Condition, BOp->getOperand(0),
1011                    BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1012       SwitchCases.push_back(CB);
1013       return;
1014     }
1015   }
1016 
1017   // Create a CaseBlock record representing this branch.
1018   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1019                NULL, TBB, FBB, CurBB);
1020   SwitchCases.push_back(CB);
1021 }
1022 
1023 /// FindMergedConditions - If Cond is an expression like
1024 void SelectionDAGBuilder::FindMergedConditions(Value *Cond,
1025                                                MachineBasicBlock *TBB,
1026                                                MachineBasicBlock *FBB,
1027                                                MachineBasicBlock *CurBB,
1028                                                unsigned Opc) {
1029   // If this node is not part of the or/and tree, emit it as a branch.
1030   Instruction *BOp = dyn_cast<Instruction>(Cond);
1031   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1032       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1033       BOp->getParent() != CurBB->getBasicBlock() ||
1034       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1035       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1036     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
1037     return;
1038   }
1039 
1040   //  Create TmpBB after CurBB.
1041   MachineFunction::iterator BBI = CurBB;
1042   MachineFunction &MF = DAG.getMachineFunction();
1043   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1044   CurBB->getParent()->insert(++BBI, TmpBB);
1045 
1046   if (Opc == Instruction::Or) {
1047     // Codegen X | Y as:
1048     //   jmp_if_X TBB
1049     //   jmp TmpBB
1050     // TmpBB:
1051     //   jmp_if_Y TBB
1052     //   jmp FBB
1053     //
1054 
1055     // Emit the LHS condition.
1056     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1057 
1058     // Emit the RHS condition into TmpBB.
1059     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1060   } else {
1061     assert(Opc == Instruction::And && "Unknown merge op!");
1062     // Codegen X & Y as:
1063     //   jmp_if_X TmpBB
1064     //   jmp FBB
1065     // TmpBB:
1066     //   jmp_if_Y TBB
1067     //   jmp FBB
1068     //
1069     //  This requires creation of TmpBB after CurBB.
1070 
1071     // Emit the LHS condition.
1072     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1073 
1074     // Emit the RHS condition into TmpBB.
1075     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1076   }
1077 }
1078 
1079 /// If the set of cases should be emitted as a series of branches, return true.
1080 /// If we should emit this as a bunch of and/or'd together conditions, return
1081 /// false.
1082 bool
1083 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1084   if (Cases.size() != 2) return true;
1085 
1086   // If this is two comparisons of the same values or'd or and'd together, they
1087   // will get folded into a single comparison, so don't emit two blocks.
1088   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1089        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1090       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1091        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1092     return false;
1093   }
1094 
1095   return true;
1096 }
1097 
1098 void SelectionDAGBuilder::visitBr(BranchInst &I) {
1099   // Update machine-CFG edges.
1100   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1101 
1102   // Figure out which block is immediately after the current one.
1103   MachineBasicBlock *NextBlock = 0;
1104   MachineFunction::iterator BBI = CurMBB;
1105   if (++BBI != FuncInfo.MF->end())
1106     NextBlock = BBI;
1107 
1108   if (I.isUnconditional()) {
1109     // Update machine-CFG edges.
1110     CurMBB->addSuccessor(Succ0MBB);
1111 
1112     // If this is not a fall-through branch, emit the branch.
1113     if (Succ0MBB != NextBlock) {
1114       SDValue V = DAG.getNode(ISD::BR, getCurDebugLoc(),
1115                               MVT::Other, getControlRoot(),
1116                               DAG.getBasicBlock(Succ0MBB));
1117       DAG.setRoot(V);
1118 
1119       if (DisableScheduling)
1120         DAG.AssignOrdering(V.getNode(), SDNodeOrder);
1121     }
1122 
1123     return;
1124   }
1125 
1126   // If this condition is one of the special cases we handle, do special stuff
1127   // now.
1128   Value *CondVal = I.getCondition();
1129   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1130 
1131   // If this is a series of conditions that are or'd or and'd together, emit
1132   // this as a sequence of branches instead of setcc's with and/or operations.
1133   // For example, instead of something like:
1134   //     cmp A, B
1135   //     C = seteq
1136   //     cmp D, E
1137   //     F = setle
1138   //     or C, F
1139   //     jnz foo
1140   // Emit:
1141   //     cmp A, B
1142   //     je foo
1143   //     cmp D, E
1144   //     jle foo
1145   //
1146   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1147     if (BOp->hasOneUse() &&
1148         (BOp->getOpcode() == Instruction::And ||
1149          BOp->getOpcode() == Instruction::Or)) {
1150       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1151       // If the compares in later blocks need to use values not currently
1152       // exported from this block, export them now.  This block should always
1153       // be the first entry.
1154       assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1155 
1156       // Allow some cases to be rejected.
1157       if (ShouldEmitAsBranches(SwitchCases)) {
1158         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1159           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1160           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1161         }
1162 
1163         // Emit the branch for this block.
1164         visitSwitchCase(SwitchCases[0]);
1165         SwitchCases.erase(SwitchCases.begin());
1166         return;
1167       }
1168 
1169       // Okay, we decided not to do this, remove any inserted MBB's and clear
1170       // SwitchCases.
1171       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1172         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1173 
1174       SwitchCases.clear();
1175     }
1176   }
1177 
1178   // Create a CaseBlock record representing this branch.
1179   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1180                NULL, Succ0MBB, Succ1MBB, CurMBB);
1181 
1182   // Use visitSwitchCase to actually insert the fast branch sequence for this
1183   // cond branch.
1184   visitSwitchCase(CB);
1185 }
1186 
1187 /// visitSwitchCase - Emits the necessary code to represent a single node in
1188 /// the binary search tree resulting from lowering a switch instruction.
1189 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB) {
1190   SDValue Cond;
1191   SDValue CondLHS = getValue(CB.CmpLHS);
1192   DebugLoc dl = getCurDebugLoc();
1193 
1194   // Build the setcc now.
1195   if (CB.CmpMHS == NULL) {
1196     // Fold "(X == true)" to X and "(X == false)" to !X to
1197     // handle common cases produced by branch lowering.
1198     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1199         CB.CC == ISD::SETEQ)
1200       Cond = CondLHS;
1201     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1202              CB.CC == ISD::SETEQ) {
1203       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1204       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1205     } else
1206       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1207   } else {
1208     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1209 
1210     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1211     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1212 
1213     SDValue CmpOp = getValue(CB.CmpMHS);
1214     EVT VT = CmpOp.getValueType();
1215 
1216     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1217       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1218                           ISD::SETLE);
1219     } else {
1220       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1221                                 VT, CmpOp, DAG.getConstant(Low, VT));
1222       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1223                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1224     }
1225   }
1226 
1227   // Update successor info
1228   CurMBB->addSuccessor(CB.TrueBB);
1229   CurMBB->addSuccessor(CB.FalseBB);
1230 
1231   // Set NextBlock to be the MBB immediately after the current one, if any.
1232   // This is used to avoid emitting unnecessary branches to the next block.
1233   MachineBasicBlock *NextBlock = 0;
1234   MachineFunction::iterator BBI = CurMBB;
1235   if (++BBI != FuncInfo.MF->end())
1236     NextBlock = BBI;
1237 
1238   // If the lhs block is the next block, invert the condition so that we can
1239   // fall through to the lhs instead of the rhs block.
1240   if (CB.TrueBB == NextBlock) {
1241     std::swap(CB.TrueBB, CB.FalseBB);
1242     SDValue True = DAG.getConstant(1, Cond.getValueType());
1243     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1244   }
1245 
1246   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1247                                MVT::Other, getControlRoot(), Cond,
1248                                DAG.getBasicBlock(CB.TrueBB));
1249 
1250   // If the branch was constant folded, fix up the CFG.
1251   if (BrCond.getOpcode() == ISD::BR) {
1252     CurMBB->removeSuccessor(CB.FalseBB);
1253   } else {
1254     // Otherwise, go ahead and insert the false branch.
1255     if (BrCond == getControlRoot())
1256       CurMBB->removeSuccessor(CB.TrueBB);
1257 
1258     if (CB.FalseBB != NextBlock)
1259       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1260                            DAG.getBasicBlock(CB.FalseBB));
1261   }
1262 
1263   DAG.setRoot(BrCond);
1264 
1265   if (DisableScheduling)
1266     DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1267 }
1268 
1269 /// visitJumpTable - Emit JumpTable node in the current MBB
1270 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1271   // Emit the code for the jump table
1272   assert(JT.Reg != -1U && "Should lower JT Header first!");
1273   EVT PTy = TLI.getPointerTy();
1274   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1275                                      JT.Reg, PTy);
1276   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1277   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1278                                     MVT::Other, Index.getValue(1),
1279                                     Table, Index);
1280   DAG.setRoot(BrJumpTable);
1281 
1282   if (DisableScheduling)
1283     DAG.AssignOrdering(BrJumpTable.getNode(), SDNodeOrder);
1284 }
1285 
1286 /// visitJumpTableHeader - This function emits necessary code to produce index
1287 /// in the JumpTable from switch case.
1288 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1289                                                JumpTableHeader &JTH) {
1290   // Subtract the lowest switch case value from the value being switched on and
1291   // conditional branch to default mbb if the result is greater than the
1292   // difference between smallest and largest cases.
1293   SDValue SwitchOp = getValue(JTH.SValue);
1294   EVT VT = SwitchOp.getValueType();
1295   SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1296                             DAG.getConstant(JTH.First, VT));
1297 
1298   // The SDNode we just created, which holds the value being switched on minus
1299   // the the smallest case value, needs to be copied to a virtual register so it
1300   // can be used as an index into the jump table in a subsequent basic block.
1301   // This value may be smaller or larger than the target's pointer type, and
1302   // therefore require extension or truncating.
1303   SwitchOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
1304 
1305   unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1306   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1307                                     JumpTableReg, SwitchOp);
1308   JT.Reg = JumpTableReg;
1309 
1310   // Emit the range check for the jump table, and branch to the default block
1311   // for the switch statement if the value being switched on exceeds the largest
1312   // case in the switch.
1313   SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1314                              TLI.getSetCCResultType(SUB.getValueType()), SUB,
1315                              DAG.getConstant(JTH.Last-JTH.First,VT),
1316                              ISD::SETUGT);
1317 
1318   // Set NextBlock to be the MBB immediately after the current one, if any.
1319   // This is used to avoid emitting unnecessary branches to the next block.
1320   MachineBasicBlock *NextBlock = 0;
1321   MachineFunction::iterator BBI = CurMBB;
1322   if (++BBI != FuncInfo.MF->end())
1323     NextBlock = BBI;
1324 
1325   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1326                                MVT::Other, CopyTo, CMP,
1327                                DAG.getBasicBlock(JT.Default));
1328 
1329   if (JT.MBB != NextBlock)
1330     BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1331                          DAG.getBasicBlock(JT.MBB));
1332 
1333   DAG.setRoot(BrCond);
1334 
1335   if (DisableScheduling)
1336     DAG.AssignOrdering(BrCond.getNode(), SDNodeOrder);
1337 }
1338 
1339 /// visitBitTestHeader - This function emits necessary code to produce value
1340 /// suitable for "bit tests"
1341 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B) {
1342   // Subtract the minimum value
1343   SDValue SwitchOp = getValue(B.SValue);
1344   EVT VT = SwitchOp.getValueType();
1345   SDValue SUB = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1346                             DAG.getConstant(B.First, VT));
1347 
1348   // Check range
1349   SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1350                                   TLI.getSetCCResultType(SUB.getValueType()),
1351                                   SUB, DAG.getConstant(B.Range, VT),
1352                                   ISD::SETUGT);
1353 
1354   SDValue ShiftOp = DAG.getZExtOrTrunc(SUB, getCurDebugLoc(), TLI.getPointerTy());
1355 
1356   B.Reg = FuncInfo.MakeReg(TLI.getPointerTy());
1357   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1358                                     B.Reg, ShiftOp);
1359 
1360   // Set NextBlock to be the MBB immediately after the current one, if any.
1361   // This is used to avoid emitting unnecessary branches to the next block.
1362   MachineBasicBlock *NextBlock = 0;
1363   MachineFunction::iterator BBI = CurMBB;
1364   if (++BBI != FuncInfo.MF->end())
1365     NextBlock = BBI;
1366 
1367   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1368 
1369   CurMBB->addSuccessor(B.Default);
1370   CurMBB->addSuccessor(MBB);
1371 
1372   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1373                                 MVT::Other, CopyTo, RangeCmp,
1374                                 DAG.getBasicBlock(B.Default));
1375 
1376   if (MBB != NextBlock)
1377     BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1378                           DAG.getBasicBlock(MBB));
1379 
1380   DAG.setRoot(BrRange);
1381 
1382   if (DisableScheduling)
1383     DAG.AssignOrdering(BrRange.getNode(), SDNodeOrder);
1384 }
1385 
1386 /// visitBitTestCase - this function produces one "bit test"
1387 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB,
1388                                            unsigned Reg,
1389                                            BitTestCase &B) {
1390   // Make desired shift
1391   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg,
1392                                        TLI.getPointerTy());
1393   SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(),
1394                                   TLI.getPointerTy(),
1395                                   DAG.getConstant(1, TLI.getPointerTy()),
1396                                   ShiftOp);
1397 
1398   // Emit bit tests and jumps
1399   SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1400                               TLI.getPointerTy(), SwitchVal,
1401                               DAG.getConstant(B.Mask, TLI.getPointerTy()));
1402   SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(),
1403                                 TLI.getSetCCResultType(AndOp.getValueType()),
1404                                 AndOp, DAG.getConstant(0, TLI.getPointerTy()),
1405                                 ISD::SETNE);
1406 
1407   CurMBB->addSuccessor(B.TargetBB);
1408   CurMBB->addSuccessor(NextMBB);
1409 
1410   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1411                               MVT::Other, getControlRoot(),
1412                               AndCmp, DAG.getBasicBlock(B.TargetBB));
1413 
1414   // Set NextBlock to be the MBB immediately after the current one, if any.
1415   // This is used to avoid emitting unnecessary branches to the next block.
1416   MachineBasicBlock *NextBlock = 0;
1417   MachineFunction::iterator BBI = CurMBB;
1418   if (++BBI != FuncInfo.MF->end())
1419     NextBlock = BBI;
1420 
1421   if (NextMBB != NextBlock)
1422     BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1423                         DAG.getBasicBlock(NextMBB));
1424 
1425   DAG.setRoot(BrAnd);
1426 
1427   if (DisableScheduling)
1428     DAG.AssignOrdering(BrAnd.getNode(), SDNodeOrder);
1429 }
1430 
1431 void SelectionDAGBuilder::visitInvoke(InvokeInst &I) {
1432   // Retrieve successors.
1433   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1434   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1435 
1436   const Value *Callee(I.getCalledValue());
1437   if (isa<InlineAsm>(Callee))
1438     visitInlineAsm(&I);
1439   else
1440     LowerCallTo(&I, getValue(Callee), false, LandingPad);
1441 
1442   // If the value of the invoke is used outside of its defining block, make it
1443   // available as a virtual register.
1444   CopyToExportRegsIfNeeded(&I);
1445 
1446   // Update successor info
1447   CurMBB->addSuccessor(Return);
1448   CurMBB->addSuccessor(LandingPad);
1449 
1450   // Drop into normal successor.
1451   SDValue Branch = DAG.getNode(ISD::BR, getCurDebugLoc(),
1452                                MVT::Other, getControlRoot(),
1453                                DAG.getBasicBlock(Return));
1454   DAG.setRoot(Branch);
1455 
1456   if (DisableScheduling)
1457     DAG.AssignOrdering(Branch.getNode(), SDNodeOrder);
1458 }
1459 
1460 void SelectionDAGBuilder::visitUnwind(UnwindInst &I) {
1461 }
1462 
1463 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1464 /// small case ranges).
1465 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1466                                                  CaseRecVector& WorkList,
1467                                                  Value* SV,
1468                                                  MachineBasicBlock* Default) {
1469   Case& BackCase  = *(CR.Range.second-1);
1470 
1471   // Size is the number of Cases represented by this range.
1472   size_t Size = CR.Range.second - CR.Range.first;
1473   if (Size > 3)
1474     return false;
1475 
1476   // Get the MachineFunction which holds the current MBB.  This is used when
1477   // inserting any additional MBBs necessary to represent the switch.
1478   MachineFunction *CurMF = FuncInfo.MF;
1479 
1480   // Figure out which block is immediately after the current one.
1481   MachineBasicBlock *NextBlock = 0;
1482   MachineFunction::iterator BBI = CR.CaseBB;
1483 
1484   if (++BBI != FuncInfo.MF->end())
1485     NextBlock = BBI;
1486 
1487   // TODO: If any two of the cases has the same destination, and if one value
1488   // is the same as the other, but has one bit unset that the other has set,
1489   // use bit manipulation to do two compares at once.  For example:
1490   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1491 
1492   // Rearrange the case blocks so that the last one falls through if possible.
1493   if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1494     // The last case block won't fall through into 'NextBlock' if we emit the
1495     // branches in this order.  See if rearranging a case value would help.
1496     for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1497       if (I->BB == NextBlock) {
1498         std::swap(*I, BackCase);
1499         break;
1500       }
1501     }
1502   }
1503 
1504   // Create a CaseBlock record representing a conditional branch to
1505   // the Case's target mbb if the value being switched on SV is equal
1506   // to C.
1507   MachineBasicBlock *CurBlock = CR.CaseBB;
1508   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1509     MachineBasicBlock *FallThrough;
1510     if (I != E-1) {
1511       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1512       CurMF->insert(BBI, FallThrough);
1513 
1514       // Put SV in a virtual register to make it available from the new blocks.
1515       ExportFromCurrentBlock(SV);
1516     } else {
1517       // If the last case doesn't match, go to the default block.
1518       FallThrough = Default;
1519     }
1520 
1521     Value *RHS, *LHS, *MHS;
1522     ISD::CondCode CC;
1523     if (I->High == I->Low) {
1524       // This is just small small case range :) containing exactly 1 case
1525       CC = ISD::SETEQ;
1526       LHS = SV; RHS = I->High; MHS = NULL;
1527     } else {
1528       CC = ISD::SETLE;
1529       LHS = I->Low; MHS = SV; RHS = I->High;
1530     }
1531     CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1532 
1533     // If emitting the first comparison, just call visitSwitchCase to emit the
1534     // code into the current block.  Otherwise, push the CaseBlock onto the
1535     // vector to be later processed by SDISel, and insert the node's MBB
1536     // before the next MBB.
1537     if (CurBlock == CurMBB)
1538       visitSwitchCase(CB);
1539     else
1540       SwitchCases.push_back(CB);
1541 
1542     CurBlock = FallThrough;
1543   }
1544 
1545   return true;
1546 }
1547 
1548 static inline bool areJTsAllowed(const TargetLowering &TLI) {
1549   return !DisableJumpTables &&
1550           (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1551            TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
1552 }
1553 
1554 static APInt ComputeRange(const APInt &First, const APInt &Last) {
1555   APInt LastExt(Last), FirstExt(First);
1556   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
1557   LastExt.sext(BitWidth); FirstExt.sext(BitWidth);
1558   return (LastExt - FirstExt + 1ULL);
1559 }
1560 
1561 /// handleJTSwitchCase - Emit jumptable for current switch case range
1562 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR,
1563                                              CaseRecVector& WorkList,
1564                                              Value* SV,
1565                                              MachineBasicBlock* Default) {
1566   Case& FrontCase = *CR.Range.first;
1567   Case& BackCase  = *(CR.Range.second-1);
1568 
1569   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1570   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1571 
1572   APInt TSize(First.getBitWidth(), 0);
1573   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1574        I!=E; ++I)
1575     TSize += I->size();
1576 
1577   if (!areJTsAllowed(TLI) || TSize.ult(APInt(First.getBitWidth(), 4)))
1578     return false;
1579 
1580   APInt Range = ComputeRange(First, Last);
1581   double Density = TSize.roundToDouble() / Range.roundToDouble();
1582   if (Density < 0.4)
1583     return false;
1584 
1585   DEBUG(errs() << "Lowering jump table\n"
1586                << "First entry: " << First << ". Last entry: " << Last << '\n'
1587                << "Range: " << Range
1588                << "Size: " << TSize << ". Density: " << Density << "\n\n");
1589 
1590   // Get the MachineFunction which holds the current MBB.  This is used when
1591   // inserting any additional MBBs necessary to represent the switch.
1592   MachineFunction *CurMF = FuncInfo.MF;
1593 
1594   // Figure out which block is immediately after the current one.
1595   MachineFunction::iterator BBI = CR.CaseBB;
1596   ++BBI;
1597 
1598   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1599 
1600   // Create a new basic block to hold the code for loading the address
1601   // of the jump table, and jumping to it.  Update successor information;
1602   // we will either branch to the default case for the switch, or the jump
1603   // table.
1604   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1605   CurMF->insert(BBI, JumpTableBB);
1606   CR.CaseBB->addSuccessor(Default);
1607   CR.CaseBB->addSuccessor(JumpTableBB);
1608 
1609   // Build a vector of destination BBs, corresponding to each target
1610   // of the jump table. If the value of the jump table slot corresponds to
1611   // a case statement, push the case's BB onto the vector, otherwise, push
1612   // the default BB.
1613   std::vector<MachineBasicBlock*> DestBBs;
1614   APInt TEI = First;
1615   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1616     const APInt& Low = cast<ConstantInt>(I->Low)->getValue();
1617     const APInt& High = cast<ConstantInt>(I->High)->getValue();
1618 
1619     if (Low.sle(TEI) && TEI.sle(High)) {
1620       DestBBs.push_back(I->BB);
1621       if (TEI==High)
1622         ++I;
1623     } else {
1624       DestBBs.push_back(Default);
1625     }
1626   }
1627 
1628   // Update successor info. Add one edge to each unique successor.
1629   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1630   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1631          E = DestBBs.end(); I != E; ++I) {
1632     if (!SuccsHandled[(*I)->getNumber()]) {
1633       SuccsHandled[(*I)->getNumber()] = true;
1634       JumpTableBB->addSuccessor(*I);
1635     }
1636   }
1637 
1638   // Create a jump table index for this jump table, or return an existing
1639   // one.
1640   unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1641 
1642   // Set the jump table information so that we can codegen it as a second
1643   // MachineBasicBlock
1644   JumpTable JT(-1U, JTI, JumpTableBB, Default);
1645   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1646   if (CR.CaseBB == CurMBB)
1647     visitJumpTableHeader(JT, JTH);
1648 
1649   JTCases.push_back(JumpTableBlock(JTH, JT));
1650 
1651   return true;
1652 }
1653 
1654 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1655 /// 2 subtrees.
1656 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
1657                                                   CaseRecVector& WorkList,
1658                                                   Value* SV,
1659                                                   MachineBasicBlock* Default) {
1660   // Get the MachineFunction which holds the current MBB.  This is used when
1661   // inserting any additional MBBs necessary to represent the switch.
1662   MachineFunction *CurMF = FuncInfo.MF;
1663 
1664   // Figure out which block is immediately after the current one.
1665   MachineFunction::iterator BBI = CR.CaseBB;
1666   ++BBI;
1667 
1668   Case& FrontCase = *CR.Range.first;
1669   Case& BackCase  = *(CR.Range.second-1);
1670   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1671 
1672   // Size is the number of Cases represented by this range.
1673   unsigned Size = CR.Range.second - CR.Range.first;
1674 
1675   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
1676   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
1677   double FMetric = 0;
1678   CaseItr Pivot = CR.Range.first + Size/2;
1679 
1680   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1681   // (heuristically) allow us to emit JumpTable's later.
1682   APInt TSize(First.getBitWidth(), 0);
1683   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1684        I!=E; ++I)
1685     TSize += I->size();
1686 
1687   APInt LSize = FrontCase.size();
1688   APInt RSize = TSize-LSize;
1689   DEBUG(errs() << "Selecting best pivot: \n"
1690                << "First: " << First << ", Last: " << Last <<'\n'
1691                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
1692   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1693        J!=E; ++I, ++J) {
1694     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
1695     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
1696     APInt Range = ComputeRange(LEnd, RBegin);
1697     assert((Range - 2ULL).isNonNegative() &&
1698            "Invalid case distance");
1699     double LDensity = (double)LSize.roundToDouble() /
1700                            (LEnd - First + 1ULL).roundToDouble();
1701     double RDensity = (double)RSize.roundToDouble() /
1702                            (Last - RBegin + 1ULL).roundToDouble();
1703     double Metric = Range.logBase2()*(LDensity+RDensity);
1704     // Should always split in some non-trivial place
1705     DEBUG(errs() <<"=>Step\n"
1706                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
1707                  << "LDensity: " << LDensity
1708                  << ", RDensity: " << RDensity << '\n'
1709                  << "Metric: " << Metric << '\n');
1710     if (FMetric < Metric) {
1711       Pivot = J;
1712       FMetric = Metric;
1713       DEBUG(errs() << "Current metric set to: " << FMetric << '\n');
1714     }
1715 
1716     LSize += J->size();
1717     RSize -= J->size();
1718   }
1719   if (areJTsAllowed(TLI)) {
1720     // If our case is dense we *really* should handle it earlier!
1721     assert((FMetric > 0) && "Should handle dense range earlier!");
1722   } else {
1723     Pivot = CR.Range.first + Size/2;
1724   }
1725 
1726   CaseRange LHSR(CR.Range.first, Pivot);
1727   CaseRange RHSR(Pivot, CR.Range.second);
1728   Constant *C = Pivot->Low;
1729   MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1730 
1731   // We know that we branch to the LHS if the Value being switched on is
1732   // less than the Pivot value, C.  We use this to optimize our binary
1733   // tree a bit, by recognizing that if SV is greater than or equal to the
1734   // LHS's Case Value, and that Case Value is exactly one less than the
1735   // Pivot's Value, then we can branch directly to the LHS's Target,
1736   // rather than creating a leaf node for it.
1737   if ((LHSR.second - LHSR.first) == 1 &&
1738       LHSR.first->High == CR.GE &&
1739       cast<ConstantInt>(C)->getValue() ==
1740       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
1741     TrueBB = LHSR.first->BB;
1742   } else {
1743     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1744     CurMF->insert(BBI, TrueBB);
1745     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1746 
1747     // Put SV in a virtual register to make it available from the new blocks.
1748     ExportFromCurrentBlock(SV);
1749   }
1750 
1751   // Similar to the optimization above, if the Value being switched on is
1752   // known to be less than the Constant CR.LT, and the current Case Value
1753   // is CR.LT - 1, then we can branch directly to the target block for
1754   // the current Case Value, rather than emitting a RHS leaf node for it.
1755   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1756       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
1757       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
1758     FalseBB = RHSR.first->BB;
1759   } else {
1760     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1761     CurMF->insert(BBI, FalseBB);
1762     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1763 
1764     // Put SV in a virtual register to make it available from the new blocks.
1765     ExportFromCurrentBlock(SV);
1766   }
1767 
1768   // Create a CaseBlock record representing a conditional branch to
1769   // the LHS node if the value being switched on SV is less than C.
1770   // Otherwise, branch to LHS.
1771   CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1772 
1773   if (CR.CaseBB == CurMBB)
1774     visitSwitchCase(CB);
1775   else
1776     SwitchCases.push_back(CB);
1777 
1778   return true;
1779 }
1780 
1781 /// handleBitTestsSwitchCase - if current case range has few destination and
1782 /// range span less, than machine word bitwidth, encode case range into series
1783 /// of masks and emit bit tests with these masks.
1784 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
1785                                                    CaseRecVector& WorkList,
1786                                                    Value* SV,
1787                                                    MachineBasicBlock* Default){
1788   EVT PTy = TLI.getPointerTy();
1789   unsigned IntPtrBits = PTy.getSizeInBits();
1790 
1791   Case& FrontCase = *CR.Range.first;
1792   Case& BackCase  = *(CR.Range.second-1);
1793 
1794   // Get the MachineFunction which holds the current MBB.  This is used when
1795   // inserting any additional MBBs necessary to represent the switch.
1796   MachineFunction *CurMF = FuncInfo.MF;
1797 
1798   // If target does not have legal shift left, do not emit bit tests at all.
1799   if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
1800     return false;
1801 
1802   size_t numCmps = 0;
1803   for (CaseItr I = CR.Range.first, E = CR.Range.second;
1804        I!=E; ++I) {
1805     // Single case counts one, case range - two.
1806     numCmps += (I->Low == I->High ? 1 : 2);
1807   }
1808 
1809   // Count unique destinations
1810   SmallSet<MachineBasicBlock*, 4> Dests;
1811   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1812     Dests.insert(I->BB);
1813     if (Dests.size() > 3)
1814       // Don't bother the code below, if there are too much unique destinations
1815       return false;
1816   }
1817   DEBUG(errs() << "Total number of unique destinations: " << Dests.size() << '\n'
1818                << "Total number of comparisons: " << numCmps << '\n');
1819 
1820   // Compute span of values.
1821   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
1822   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
1823   APInt cmpRange = maxValue - minValue;
1824 
1825   DEBUG(errs() << "Compare range: " << cmpRange << '\n'
1826                << "Low bound: " << minValue << '\n'
1827                << "High bound: " << maxValue << '\n');
1828 
1829   if (cmpRange.uge(APInt(cmpRange.getBitWidth(), IntPtrBits)) ||
1830       (!(Dests.size() == 1 && numCmps >= 3) &&
1831        !(Dests.size() == 2 && numCmps >= 5) &&
1832        !(Dests.size() >= 3 && numCmps >= 6)))
1833     return false;
1834 
1835   DEBUG(errs() << "Emitting bit tests\n");
1836   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
1837 
1838   // Optimize the case where all the case values fit in a
1839   // word without having to subtract minValue. In this case,
1840   // we can optimize away the subtraction.
1841   if (minValue.isNonNegative() &&
1842       maxValue.slt(APInt(maxValue.getBitWidth(), IntPtrBits))) {
1843     cmpRange = maxValue;
1844   } else {
1845     lowBound = minValue;
1846   }
1847 
1848   CaseBitsVector CasesBits;
1849   unsigned i, count = 0;
1850 
1851   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1852     MachineBasicBlock* Dest = I->BB;
1853     for (i = 0; i < count; ++i)
1854       if (Dest == CasesBits[i].BB)
1855         break;
1856 
1857     if (i == count) {
1858       assert((count < 3) && "Too much destinations to test!");
1859       CasesBits.push_back(CaseBits(0, Dest, 0));
1860       count++;
1861     }
1862 
1863     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
1864     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
1865 
1866     uint64_t lo = (lowValue - lowBound).getZExtValue();
1867     uint64_t hi = (highValue - lowBound).getZExtValue();
1868 
1869     for (uint64_t j = lo; j <= hi; j++) {
1870       CasesBits[i].Mask |=  1ULL << j;
1871       CasesBits[i].Bits++;
1872     }
1873 
1874   }
1875   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1876 
1877   BitTestInfo BTC;
1878 
1879   // Figure out which block is immediately after the current one.
1880   MachineFunction::iterator BBI = CR.CaseBB;
1881   ++BBI;
1882 
1883   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1884 
1885   DEBUG(errs() << "Cases:\n");
1886   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1887     DEBUG(errs() << "Mask: " << CasesBits[i].Mask
1888                  << ", Bits: " << CasesBits[i].Bits
1889                  << ", BB: " << CasesBits[i].BB << '\n');
1890 
1891     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1892     CurMF->insert(BBI, CaseBB);
1893     BTC.push_back(BitTestCase(CasesBits[i].Mask,
1894                               CaseBB,
1895                               CasesBits[i].BB));
1896 
1897     // Put SV in a virtual register to make it available from the new blocks.
1898     ExportFromCurrentBlock(SV);
1899   }
1900 
1901   BitTestBlock BTB(lowBound, cmpRange, SV,
1902                    -1U, (CR.CaseBB == CurMBB),
1903                    CR.CaseBB, Default, BTC);
1904 
1905   if (CR.CaseBB == CurMBB)
1906     visitBitTestHeader(BTB);
1907 
1908   BitTestCases.push_back(BTB);
1909 
1910   return true;
1911 }
1912 
1913 
1914 /// Clusterify - Transform simple list of Cases into list of CaseRange's
1915 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
1916                                        const SwitchInst& SI) {
1917   size_t numCmps = 0;
1918 
1919   // Start with "simple" cases
1920   for (size_t i = 1; i < SI.getNumSuccessors(); ++i) {
1921     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1922     Cases.push_back(Case(SI.getSuccessorValue(i),
1923                          SI.getSuccessorValue(i),
1924                          SMBB));
1925   }
1926   std::sort(Cases.begin(), Cases.end(), CaseCmp());
1927 
1928   // Merge case into clusters
1929   if (Cases.size() >= 2)
1930     // Must recompute end() each iteration because it may be
1931     // invalidated by erase if we hold on to it
1932     for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) {
1933       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
1934       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
1935       MachineBasicBlock* nextBB = J->BB;
1936       MachineBasicBlock* currentBB = I->BB;
1937 
1938       // If the two neighboring cases go to the same destination, merge them
1939       // into a single case.
1940       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
1941         I->High = J->High;
1942         J = Cases.erase(J);
1943       } else {
1944         I = J++;
1945       }
1946     }
1947 
1948   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1949     if (I->Low != I->High)
1950       // A range counts double, since it requires two compares.
1951       ++numCmps;
1952   }
1953 
1954   return numCmps;
1955 }
1956 
1957 void SelectionDAGBuilder::visitSwitch(SwitchInst &SI) {
1958   // Figure out which block is immediately after the current one.
1959   MachineBasicBlock *NextBlock = 0;
1960 
1961   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1962 
1963   // If there is only the default destination, branch to it if it is not the
1964   // next basic block.  Otherwise, just fall through.
1965   if (SI.getNumOperands() == 2) {
1966     // Update machine-CFG edges.
1967 
1968     // If this is not a fall-through branch, emit the branch.
1969     CurMBB->addSuccessor(Default);
1970     if (Default != NextBlock) {
1971       SDValue Val = DAG.getNode(ISD::BR, getCurDebugLoc(),
1972                                 MVT::Other, getControlRoot(),
1973                                 DAG.getBasicBlock(Default));
1974       DAG.setRoot(Val);
1975 
1976       if (DisableScheduling)
1977         DAG.AssignOrdering(Val.getNode(), SDNodeOrder);
1978     }
1979 
1980     return;
1981   }
1982 
1983   // If there are any non-default case statements, create a vector of Cases
1984   // representing each one, and sort the vector so that we can efficiently
1985   // create a binary search tree from them.
1986   CaseVector Cases;
1987   size_t numCmps = Clusterify(Cases, SI);
1988   DEBUG(errs() << "Clusterify finished. Total clusters: " << Cases.size()
1989                << ". Total compares: " << numCmps << '\n');
1990   numCmps = 0;
1991 
1992   // Get the Value to be switched on and default basic blocks, which will be
1993   // inserted into CaseBlock records, representing basic blocks in the binary
1994   // search tree.
1995   Value *SV = SI.getOperand(0);
1996 
1997   // Push the initial CaseRec onto the worklist
1998   CaseRecVector WorkList;
1999   WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2000 
2001   while (!WorkList.empty()) {
2002     // Grab a record representing a case range to process off the worklist
2003     CaseRec CR = WorkList.back();
2004     WorkList.pop_back();
2005 
2006     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2007       continue;
2008 
2009     // If the range has few cases (two or less) emit a series of specific
2010     // tests.
2011     if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2012       continue;
2013 
2014     // If the switch has more than 5 blocks, and at least 40% dense, and the
2015     // target supports indirect branches, then emit a jump table rather than
2016     // lowering the switch to a binary tree of conditional branches.
2017     if (handleJTSwitchCase(CR, WorkList, SV, Default))
2018       continue;
2019 
2020     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2021     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2022     handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2023   }
2024 }
2025 
2026 void SelectionDAGBuilder::visitIndirectBr(IndirectBrInst &I) {
2027   // Update machine-CFG edges.
2028   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i)
2029     CurMBB->addSuccessor(FuncInfo.MBBMap[I.getSuccessor(i)]);
2030 
2031   SDValue Res = DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2032                             MVT::Other, getControlRoot(),
2033                             getValue(I.getAddress()));
2034   DAG.setRoot(Res);
2035 
2036   if (DisableScheduling)
2037     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2038 }
2039 
2040 void SelectionDAGBuilder::visitFSub(User &I) {
2041   // -0.0 - X --> fneg
2042   const Type *Ty = I.getType();
2043   if (isa<VectorType>(Ty)) {
2044     if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2045       const VectorType *DestTy = cast<VectorType>(I.getType());
2046       const Type *ElTy = DestTy->getElementType();
2047       unsigned VL = DestTy->getNumElements();
2048       std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2049       Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2050       if (CV == CNZ) {
2051         SDValue Op2 = getValue(I.getOperand(1));
2052         SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2053                                   Op2.getValueType(), Op2);
2054         setValue(&I, Res);
2055 
2056         if (DisableScheduling)
2057           DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2058 
2059         return;
2060       }
2061     }
2062   }
2063 
2064   if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2065     if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2066       SDValue Op2 = getValue(I.getOperand(1));
2067       SDValue Res = DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2068                                 Op2.getValueType(), Op2);
2069       setValue(&I, Res);
2070 
2071       if (DisableScheduling)
2072         DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2073 
2074       return;
2075     }
2076 
2077   visitBinary(I, ISD::FSUB);
2078 }
2079 
2080 void SelectionDAGBuilder::visitBinary(User &I, unsigned OpCode) {
2081   SDValue Op1 = getValue(I.getOperand(0));
2082   SDValue Op2 = getValue(I.getOperand(1));
2083   SDValue Res = DAG.getNode(OpCode, getCurDebugLoc(),
2084                             Op1.getValueType(), Op1, Op2);
2085   setValue(&I, Res);
2086 
2087   if (DisableScheduling)
2088     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2089 }
2090 
2091 void SelectionDAGBuilder::visitShift(User &I, unsigned Opcode) {
2092   SDValue Op1 = getValue(I.getOperand(0));
2093   SDValue Op2 = getValue(I.getOperand(1));
2094   if (!isa<VectorType>(I.getType()) &&
2095       Op2.getValueType() != TLI.getShiftAmountTy()) {
2096     // If the operand is smaller than the shift count type, promote it.
2097     EVT PTy = TLI.getPointerTy();
2098     EVT STy = TLI.getShiftAmountTy();
2099     if (STy.bitsGT(Op2.getValueType()))
2100       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2101                         TLI.getShiftAmountTy(), Op2);
2102     // If the operand is larger than the shift count type but the shift
2103     // count type has enough bits to represent any shift value, truncate
2104     // it now. This is a common case and it exposes the truncate to
2105     // optimization early.
2106     else if (STy.getSizeInBits() >=
2107              Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2108       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2109                         TLI.getShiftAmountTy(), Op2);
2110     // Otherwise we'll need to temporarily settle for some other
2111     // convenient type; type legalization will make adjustments as
2112     // needed.
2113     else if (PTy.bitsLT(Op2.getValueType()))
2114       Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2115                         TLI.getPointerTy(), Op2);
2116     else if (PTy.bitsGT(Op2.getValueType()))
2117       Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(),
2118                         TLI.getPointerTy(), Op2);
2119   }
2120 
2121   SDValue Res = DAG.getNode(Opcode, getCurDebugLoc(),
2122                             Op1.getValueType(), Op1, Op2);
2123   setValue(&I, Res);
2124 
2125   if (DisableScheduling)
2126     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2127 }
2128 
2129 void SelectionDAGBuilder::visitICmp(User &I) {
2130   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2131   if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2132     predicate = IC->getPredicate();
2133   else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2134     predicate = ICmpInst::Predicate(IC->getPredicate());
2135   SDValue Op1 = getValue(I.getOperand(0));
2136   SDValue Op2 = getValue(I.getOperand(1));
2137   ISD::CondCode Opcode = getICmpCondCode(predicate);
2138 
2139   EVT DestVT = TLI.getValueType(I.getType());
2140   SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode);
2141   setValue(&I, Res);
2142 
2143   if (DisableScheduling)
2144     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2145 }
2146 
2147 void SelectionDAGBuilder::visitFCmp(User &I) {
2148   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2149   if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2150     predicate = FC->getPredicate();
2151   else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2152     predicate = FCmpInst::Predicate(FC->getPredicate());
2153   SDValue Op1 = getValue(I.getOperand(0));
2154   SDValue Op2 = getValue(I.getOperand(1));
2155   ISD::CondCode Condition = getFCmpCondCode(predicate);
2156   EVT DestVT = TLI.getValueType(I.getType());
2157   SDValue Res = DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition);
2158   setValue(&I, Res);
2159 
2160   if (DisableScheduling)
2161     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2162 }
2163 
2164 void SelectionDAGBuilder::visitSelect(User &I) {
2165   SmallVector<EVT, 4> ValueVTs;
2166   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2167   unsigned NumValues = ValueVTs.size();
2168   if (NumValues == 0) return;
2169 
2170   SmallVector<SDValue, 4> Values(NumValues);
2171   SDValue Cond     = getValue(I.getOperand(0));
2172   SDValue TrueVal  = getValue(I.getOperand(1));
2173   SDValue FalseVal = getValue(I.getOperand(2));
2174 
2175   for (unsigned i = 0; i != NumValues; ++i) {
2176     Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(),
2177                             TrueVal.getNode()->getValueType(i), Cond,
2178                             SDValue(TrueVal.getNode(),
2179                                     TrueVal.getResNo() + i),
2180                             SDValue(FalseVal.getNode(),
2181                                     FalseVal.getResNo() + i));
2182 
2183     if (DisableScheduling)
2184       DAG.AssignOrdering(Values[i].getNode(), SDNodeOrder);
2185   }
2186 
2187   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2188                             DAG.getVTList(&ValueVTs[0], NumValues),
2189                             &Values[0], NumValues);
2190   setValue(&I, Res);
2191 
2192   if (DisableScheduling)
2193     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2194 }
2195 
2196 void SelectionDAGBuilder::visitTrunc(User &I) {
2197   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2198   SDValue N = getValue(I.getOperand(0));
2199   EVT DestVT = TLI.getValueType(I.getType());
2200   SDValue Res = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N);
2201   setValue(&I, Res);
2202 
2203   if (DisableScheduling)
2204     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2205 }
2206 
2207 void SelectionDAGBuilder::visitZExt(User &I) {
2208   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2209   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2210   SDValue N = getValue(I.getOperand(0));
2211   EVT DestVT = TLI.getValueType(I.getType());
2212   SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N);
2213   setValue(&I, Res);
2214 
2215   if (DisableScheduling)
2216     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2217 }
2218 
2219 void SelectionDAGBuilder::visitSExt(User &I) {
2220   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2221   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2222   SDValue N = getValue(I.getOperand(0));
2223   EVT DestVT = TLI.getValueType(I.getType());
2224   SDValue Res = DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N);
2225   setValue(&I, Res);
2226 
2227   if (DisableScheduling)
2228     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2229 }
2230 
2231 void SelectionDAGBuilder::visitFPTrunc(User &I) {
2232   // FPTrunc is never a no-op cast, no need to check
2233   SDValue N = getValue(I.getOperand(0));
2234   EVT DestVT = TLI.getValueType(I.getType());
2235   SDValue Res = DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2236                             DestVT, N, DAG.getIntPtrConstant(0));
2237   setValue(&I, Res);
2238 
2239   if (DisableScheduling)
2240     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2241 }
2242 
2243 void SelectionDAGBuilder::visitFPExt(User &I){
2244   // FPTrunc is never a no-op cast, no need to check
2245   SDValue N = getValue(I.getOperand(0));
2246   EVT DestVT = TLI.getValueType(I.getType());
2247   SDValue Res = DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N);
2248   setValue(&I, Res);
2249 
2250   if (DisableScheduling)
2251     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2252 }
2253 
2254 void SelectionDAGBuilder::visitFPToUI(User &I) {
2255   // FPToUI is never a no-op cast, no need to check
2256   SDValue N = getValue(I.getOperand(0));
2257   EVT DestVT = TLI.getValueType(I.getType());
2258   SDValue Res = DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N);
2259   setValue(&I, Res);
2260 
2261   if (DisableScheduling)
2262     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2263 }
2264 
2265 void SelectionDAGBuilder::visitFPToSI(User &I) {
2266   // FPToSI is never a no-op cast, no need to check
2267   SDValue N = getValue(I.getOperand(0));
2268   EVT DestVT = TLI.getValueType(I.getType());
2269   SDValue Res = DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N);
2270   setValue(&I, Res);
2271 
2272   if (DisableScheduling)
2273     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2274 }
2275 
2276 void SelectionDAGBuilder::visitUIToFP(User &I) {
2277   // UIToFP is never a no-op cast, no need to check
2278   SDValue N = getValue(I.getOperand(0));
2279   EVT DestVT = TLI.getValueType(I.getType());
2280   SDValue Res = DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N);
2281   setValue(&I, Res);
2282 
2283   if (DisableScheduling)
2284     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2285 }
2286 
2287 void SelectionDAGBuilder::visitSIToFP(User &I){
2288   // SIToFP is never a no-op cast, no need to check
2289   SDValue N = getValue(I.getOperand(0));
2290   EVT DestVT = TLI.getValueType(I.getType());
2291   SDValue Res = DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N);
2292   setValue(&I, Res);
2293 
2294   if (DisableScheduling)
2295     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2296 }
2297 
2298 void SelectionDAGBuilder::visitPtrToInt(User &I) {
2299   // What to do depends on the size of the integer and the size of the pointer.
2300   // We can either truncate, zero extend, or no-op, accordingly.
2301   SDValue N = getValue(I.getOperand(0));
2302   EVT SrcVT = N.getValueType();
2303   EVT DestVT = TLI.getValueType(I.getType());
2304   SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2305   setValue(&I, Res);
2306 
2307   if (DisableScheduling)
2308     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2309 }
2310 
2311 void SelectionDAGBuilder::visitIntToPtr(User &I) {
2312   // What to do depends on the size of the integer and the size of the pointer.
2313   // We can either truncate, zero extend, or no-op, accordingly.
2314   SDValue N = getValue(I.getOperand(0));
2315   EVT SrcVT = N.getValueType();
2316   EVT DestVT = TLI.getValueType(I.getType());
2317   SDValue Res = DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT);
2318   setValue(&I, Res);
2319 
2320   if (DisableScheduling)
2321     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2322 }
2323 
2324 void SelectionDAGBuilder::visitBitCast(User &I) {
2325   SDValue N = getValue(I.getOperand(0));
2326   EVT DestVT = TLI.getValueType(I.getType());
2327 
2328   // BitCast assures us that source and destination are the same size so this is
2329   // either a BIT_CONVERT or a no-op.
2330   if (DestVT != N.getValueType()) {
2331     SDValue Res = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
2332                               DestVT, N); // convert types.
2333     setValue(&I, Res);
2334 
2335     if (DisableScheduling)
2336       DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2337   } else {
2338     setValue(&I, N);            // noop cast.
2339   }
2340 }
2341 
2342 void SelectionDAGBuilder::visitInsertElement(User &I) {
2343   SDValue InVec = getValue(I.getOperand(0));
2344   SDValue InVal = getValue(I.getOperand(1));
2345   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2346                                 TLI.getPointerTy(),
2347                                 getValue(I.getOperand(2)));
2348   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2349                             TLI.getValueType(I.getType()),
2350                             InVec, InVal, InIdx);
2351   setValue(&I, Res);
2352 
2353   if (DisableScheduling)
2354     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2355 }
2356 
2357 void SelectionDAGBuilder::visitExtractElement(User &I) {
2358   SDValue InVec = getValue(I.getOperand(0));
2359   SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2360                                 TLI.getPointerTy(),
2361                                 getValue(I.getOperand(1)));
2362   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2363                             TLI.getValueType(I.getType()), InVec, InIdx);
2364   setValue(&I, Res);
2365 
2366   if (DisableScheduling)
2367     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2368 }
2369 
2370 
2371 // Utility for visitShuffleVector - Returns true if the mask is mask starting
2372 // from SIndx and increasing to the element length (undefs are allowed).
2373 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) {
2374   unsigned MaskNumElts = Mask.size();
2375   for (unsigned i = 0; i != MaskNumElts; ++i)
2376     if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx)))
2377       return false;
2378   return true;
2379 }
2380 
2381 void SelectionDAGBuilder::visitShuffleVector(User &I) {
2382   SmallVector<int, 8> Mask;
2383   SDValue Src1 = getValue(I.getOperand(0));
2384   SDValue Src2 = getValue(I.getOperand(1));
2385 
2386   if (DisableScheduling) {
2387     DAG.AssignOrdering(Src1.getNode(), SDNodeOrder);
2388     DAG.AssignOrdering(Src2.getNode(), SDNodeOrder);
2389   }
2390 
2391   // Convert the ConstantVector mask operand into an array of ints, with -1
2392   // representing undef values.
2393   SmallVector<Constant*, 8> MaskElts;
2394   cast<Constant>(I.getOperand(2))->getVectorElements(*DAG.getContext(),
2395                                                      MaskElts);
2396   unsigned MaskNumElts = MaskElts.size();
2397   for (unsigned i = 0; i != MaskNumElts; ++i) {
2398     if (isa<UndefValue>(MaskElts[i]))
2399       Mask.push_back(-1);
2400     else
2401       Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue());
2402   }
2403 
2404   EVT VT = TLI.getValueType(I.getType());
2405   EVT SrcVT = Src1.getValueType();
2406   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2407 
2408   if (SrcNumElts == MaskNumElts) {
2409     SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2410                                        &Mask[0]);
2411     setValue(&I, Res);
2412 
2413     if (DisableScheduling)
2414       DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2415 
2416     return;
2417   }
2418 
2419   // Normalize the shuffle vector since mask and vector length don't match.
2420   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2421     // Mask is longer than the source vectors and is a multiple of the source
2422     // vectors.  We can use concatenate vector to make the mask and vectors
2423     // lengths match.
2424     if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2425       // The shuffle is concatenating two vectors together.
2426       SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2427                                 VT, Src1, Src2);
2428       setValue(&I, Res);
2429 
2430       if (DisableScheduling)
2431         DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2432 
2433       return;
2434     }
2435 
2436     // Pad both vectors with undefs to make them the same length as the mask.
2437     unsigned NumConcat = MaskNumElts / SrcNumElts;
2438     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2439     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2440     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2441 
2442     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2443     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2444     MOps1[0] = Src1;
2445     MOps2[0] = Src2;
2446 
2447     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2448                                                   getCurDebugLoc(), VT,
2449                                                   &MOps1[0], NumConcat);
2450     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2451                                                   getCurDebugLoc(), VT,
2452                                                   &MOps2[0], NumConcat);
2453 
2454     // Readjust mask for new input vector length.
2455     SmallVector<int, 8> MappedOps;
2456     for (unsigned i = 0; i != MaskNumElts; ++i) {
2457       int Idx = Mask[i];
2458       if (Idx < (int)SrcNumElts)
2459         MappedOps.push_back(Idx);
2460       else
2461         MappedOps.push_back(Idx + MaskNumElts - SrcNumElts);
2462     }
2463 
2464     SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2465                                        &MappedOps[0]);
2466     setValue(&I, Res);
2467 
2468     if (DisableScheduling) {
2469       DAG.AssignOrdering(Src1.getNode(), SDNodeOrder);
2470       DAG.AssignOrdering(Src2.getNode(), SDNodeOrder);
2471       DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2472     }
2473 
2474     return;
2475   }
2476 
2477   if (SrcNumElts > MaskNumElts) {
2478     // Analyze the access pattern of the vector to see if we can extract
2479     // two subvectors and do the shuffle. The analysis is done by calculating
2480     // the range of elements the mask access on both vectors.
2481     int MinRange[2] = { SrcNumElts+1, SrcNumElts+1};
2482     int MaxRange[2] = {-1, -1};
2483 
2484     for (unsigned i = 0; i != MaskNumElts; ++i) {
2485       int Idx = Mask[i];
2486       int Input = 0;
2487       if (Idx < 0)
2488         continue;
2489 
2490       if (Idx >= (int)SrcNumElts) {
2491         Input = 1;
2492         Idx -= SrcNumElts;
2493       }
2494       if (Idx > MaxRange[Input])
2495         MaxRange[Input] = Idx;
2496       if (Idx < MinRange[Input])
2497         MinRange[Input] = Idx;
2498     }
2499 
2500     // Check if the access is smaller than the vector size and can we find
2501     // a reasonable extract index.
2502     int RangeUse[2] = { 2, 2 };  // 0 = Unused, 1 = Extract, 2 = Can not Extract.
2503     int StartIdx[2];  // StartIdx to extract from
2504     for (int Input=0; Input < 2; ++Input) {
2505       if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) {
2506         RangeUse[Input] = 0; // Unused
2507         StartIdx[Input] = 0;
2508       } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) {
2509         // Fits within range but we should see if we can find a good
2510         // start index that is a multiple of the mask length.
2511         if (MaxRange[Input] < (int)MaskNumElts) {
2512           RangeUse[Input] = 1; // Extract from beginning of the vector
2513           StartIdx[Input] = 0;
2514         } else {
2515           StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2516           if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2517               StartIdx[Input] + MaskNumElts < SrcNumElts)
2518             RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2519         }
2520       }
2521     }
2522 
2523     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2524       SDValue Res = DAG.getUNDEF(VT);
2525       setValue(&I, Res);  // Vectors are not used.
2526 
2527       if (DisableScheduling)
2528         DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2529 
2530       return;
2531     }
2532     else if (RangeUse[0] < 2 && RangeUse[1] < 2) {
2533       // Extract appropriate subvector and generate a vector shuffle
2534       for (int Input=0; Input < 2; ++Input) {
2535         SDValue& Src = Input == 0 ? Src1 : Src2;
2536         if (RangeUse[Input] == 0)
2537           Src = DAG.getUNDEF(VT);
2538         else
2539           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
2540                             Src, DAG.getIntPtrConstant(StartIdx[Input]));
2541 
2542         if (DisableScheduling)
2543           DAG.AssignOrdering(Src.getNode(), SDNodeOrder);
2544       }
2545 
2546       // Calculate new mask.
2547       SmallVector<int, 8> MappedOps;
2548       for (unsigned i = 0; i != MaskNumElts; ++i) {
2549         int Idx = Mask[i];
2550         if (Idx < 0)
2551           MappedOps.push_back(Idx);
2552         else if (Idx < (int)SrcNumElts)
2553           MappedOps.push_back(Idx - StartIdx[0]);
2554         else
2555           MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts);
2556       }
2557 
2558       SDValue Res = DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2559                                          &MappedOps[0]);
2560       setValue(&I, Res);
2561 
2562       if (DisableScheduling)
2563         DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2564 
2565       return;
2566     }
2567   }
2568 
2569   // We can't use either concat vectors or extract subvectors so fall back to
2570   // replacing the shuffle with extract and build vector.
2571   // to insert and build vector.
2572   EVT EltVT = VT.getVectorElementType();
2573   EVT PtrVT = TLI.getPointerTy();
2574   SmallVector<SDValue,8> Ops;
2575   for (unsigned i = 0; i != MaskNumElts; ++i) {
2576     if (Mask[i] < 0) {
2577       Ops.push_back(DAG.getUNDEF(EltVT));
2578     } else {
2579       int Idx = Mask[i];
2580       SDValue Res;
2581 
2582       if (Idx < (int)SrcNumElts)
2583         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2584                           EltVT, Src1, DAG.getConstant(Idx, PtrVT));
2585       else
2586         Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2587                           EltVT, Src2,
2588                           DAG.getConstant(Idx - SrcNumElts, PtrVT));
2589 
2590       Ops.push_back(Res);
2591 
2592       if (DisableScheduling)
2593         DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2594     }
2595   }
2596 
2597   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
2598                             VT, &Ops[0], Ops.size());
2599   setValue(&I, Res);
2600 
2601   if (DisableScheduling)
2602     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2603 }
2604 
2605 void SelectionDAGBuilder::visitInsertValue(InsertValueInst &I) {
2606   const Value *Op0 = I.getOperand(0);
2607   const Value *Op1 = I.getOperand(1);
2608   const Type *AggTy = I.getType();
2609   const Type *ValTy = Op1->getType();
2610   bool IntoUndef = isa<UndefValue>(Op0);
2611   bool FromUndef = isa<UndefValue>(Op1);
2612 
2613   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2614                                             I.idx_begin(), I.idx_end());
2615 
2616   SmallVector<EVT, 4> AggValueVTs;
2617   ComputeValueVTs(TLI, AggTy, AggValueVTs);
2618   SmallVector<EVT, 4> ValValueVTs;
2619   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2620 
2621   unsigned NumAggValues = AggValueVTs.size();
2622   unsigned NumValValues = ValValueVTs.size();
2623   SmallVector<SDValue, 4> Values(NumAggValues);
2624 
2625   SDValue Agg = getValue(Op0);
2626   SDValue Val = getValue(Op1);
2627   unsigned i = 0;
2628   // Copy the beginning value(s) from the original aggregate.
2629   for (; i != LinearIndex; ++i)
2630     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2631                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2632   // Copy values from the inserted value(s).
2633   for (; i != LinearIndex + NumValValues; ++i)
2634     Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2635                 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2636   // Copy remaining value(s) from the original aggregate.
2637   for (; i != NumAggValues; ++i)
2638     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2639                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2640 
2641   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2642                             DAG.getVTList(&AggValueVTs[0], NumAggValues),
2643                             &Values[0], NumAggValues);
2644   setValue(&I, Res);
2645 
2646   if (DisableScheduling)
2647     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2648 }
2649 
2650 void SelectionDAGBuilder::visitExtractValue(ExtractValueInst &I) {
2651   const Value *Op0 = I.getOperand(0);
2652   const Type *AggTy = Op0->getType();
2653   const Type *ValTy = I.getType();
2654   bool OutOfUndef = isa<UndefValue>(Op0);
2655 
2656   unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2657                                             I.idx_begin(), I.idx_end());
2658 
2659   SmallVector<EVT, 4> ValValueVTs;
2660   ComputeValueVTs(TLI, ValTy, ValValueVTs);
2661 
2662   unsigned NumValValues = ValValueVTs.size();
2663   SmallVector<SDValue, 4> Values(NumValValues);
2664 
2665   SDValue Agg = getValue(Op0);
2666   // Copy out the selected value(s).
2667   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2668     Values[i - LinearIndex] =
2669       OutOfUndef ?
2670         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2671         SDValue(Agg.getNode(), Agg.getResNo() + i);
2672 
2673   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2674                             DAG.getVTList(&ValValueVTs[0], NumValValues),
2675                             &Values[0], NumValValues);
2676   setValue(&I, Res);
2677 
2678   if (DisableScheduling)
2679     DAG.AssignOrdering(Res.getNode(), SDNodeOrder);
2680 }
2681 
2682 void SelectionDAGBuilder::visitGetElementPtr(User &I) {
2683   SDValue N = getValue(I.getOperand(0));
2684   const Type *Ty = I.getOperand(0)->getType();
2685 
2686   if (DisableScheduling)
2687     DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2688 
2689   for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2690        OI != E; ++OI) {
2691     Value *Idx = *OI;
2692     if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2693       unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2694       if (Field) {
2695         // N = N + Offset
2696         uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2697         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2698                         DAG.getIntPtrConstant(Offset));
2699 
2700         if (DisableScheduling)
2701           DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2702       }
2703 
2704       Ty = StTy->getElementType(Field);
2705     } else {
2706       Ty = cast<SequentialType>(Ty)->getElementType();
2707 
2708       // If this is a constant subscript, handle it quickly.
2709       if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2710         if (CI->getZExtValue() == 0) continue;
2711         uint64_t Offs =
2712             TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2713         SDValue OffsVal;
2714         EVT PTy = TLI.getPointerTy();
2715         unsigned PtrBits = PTy.getSizeInBits();
2716         if (PtrBits < 64)
2717           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
2718                                 TLI.getPointerTy(),
2719                                 DAG.getConstant(Offs, MVT::i64));
2720         else
2721           OffsVal = DAG.getIntPtrConstant(Offs);
2722 
2723         N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
2724                         OffsVal);
2725 
2726         if (DisableScheduling) {
2727           DAG.AssignOrdering(OffsVal.getNode(), SDNodeOrder);
2728           DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2729         }
2730 
2731         continue;
2732       }
2733 
2734       // N = N + Idx * ElementSize;
2735       APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
2736                                 TD->getTypeAllocSize(Ty));
2737       SDValue IdxN = getValue(Idx);
2738 
2739       // If the index is smaller or larger than intptr_t, truncate or extend
2740       // it.
2741       IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
2742 
2743       // If this is a multiply by a power of two, turn it into a shl
2744       // immediately.  This is a very common case.
2745       if (ElementSize != 1) {
2746         if (ElementSize.isPowerOf2()) {
2747           unsigned Amt = ElementSize.logBase2();
2748           IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
2749                              N.getValueType(), IdxN,
2750                              DAG.getConstant(Amt, TLI.getPointerTy()));
2751         } else {
2752           SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
2753           IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
2754                              N.getValueType(), IdxN, Scale);
2755         }
2756 
2757         if (DisableScheduling)
2758           DAG.AssignOrdering(IdxN.getNode(), SDNodeOrder);
2759       }
2760 
2761       N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2762                       N.getValueType(), N, IdxN);
2763 
2764       if (DisableScheduling)
2765         DAG.AssignOrdering(N.getNode(), SDNodeOrder);
2766     }
2767   }
2768 
2769   setValue(&I, N);
2770 }
2771 
2772 void SelectionDAGBuilder::visitAlloca(AllocaInst &I) {
2773   // If this is a fixed sized alloca in the entry block of the function,
2774   // allocate it statically on the stack.
2775   if (FuncInfo.StaticAllocaMap.count(&I))
2776     return;   // getValue will auto-populate this.
2777 
2778   const Type *Ty = I.getAllocatedType();
2779   uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
2780   unsigned Align =
2781     std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2782              I.getAlignment());
2783 
2784   SDValue AllocSize = getValue(I.getArraySize());
2785 
2786   AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(),
2787                           AllocSize,
2788                           DAG.getConstant(TySize, AllocSize.getValueType()));
2789 
2790 
2791 
2792   EVT IntPtr = TLI.getPointerTy();
2793   AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
2794 
2795   // Handle alignment.  If the requested alignment is less than or equal to
2796   // the stack alignment, ignore it.  If the size is greater than or equal to
2797   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2798   unsigned StackAlign =
2799     TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2800   if (Align <= StackAlign)
2801     Align = 0;
2802 
2803   // Round the size of the allocation up to the stack alignment size
2804   // by add SA-1 to the size.
2805   AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
2806                           AllocSize.getValueType(), AllocSize,
2807                           DAG.getIntPtrConstant(StackAlign-1));
2808   // Mask out the low bits for alignment purposes.
2809   AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
2810                           AllocSize.getValueType(), AllocSize,
2811                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2812 
2813   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2814   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
2815   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
2816                             VTs, Ops, 3);
2817   setValue(&I, DSA);
2818   DAG.setRoot(DSA.getValue(1));
2819 
2820   // Inform the Frame Information that we have just allocated a variable-sized
2821   // object.
2822   FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject();
2823 }
2824 
2825 void SelectionDAGBuilder::visitLoad(LoadInst &I) {
2826   const Value *SV = I.getOperand(0);
2827   SDValue Ptr = getValue(SV);
2828 
2829   const Type *Ty = I.getType();
2830   bool isVolatile = I.isVolatile();
2831   unsigned Alignment = I.getAlignment();
2832 
2833   SmallVector<EVT, 4> ValueVTs;
2834   SmallVector<uint64_t, 4> Offsets;
2835   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2836   unsigned NumValues = ValueVTs.size();
2837   if (NumValues == 0)
2838     return;
2839 
2840   SDValue Root;
2841   bool ConstantMemory = false;
2842   if (I.isVolatile())
2843     // Serialize volatile loads with other side effects.
2844     Root = getRoot();
2845   else if (AA->pointsToConstantMemory(SV)) {
2846     // Do not serialize (non-volatile) loads of constant memory with anything.
2847     Root = DAG.getEntryNode();
2848     ConstantMemory = true;
2849   } else {
2850     // Do not serialize non-volatile loads against each other.
2851     Root = DAG.getRoot();
2852   }
2853 
2854   SmallVector<SDValue, 4> Values(NumValues);
2855   SmallVector<SDValue, 4> Chains(NumValues);
2856   EVT PtrVT = Ptr.getValueType();
2857   for (unsigned i = 0; i != NumValues; ++i) {
2858     SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
2859                             DAG.getNode(ISD::ADD, getCurDebugLoc(),
2860                                         PtrVT, Ptr,
2861                                         DAG.getConstant(Offsets[i], PtrVT)),
2862                             SV, Offsets[i], isVolatile, Alignment);
2863     Values[i] = L;
2864     Chains[i] = L.getValue(1);
2865   }
2866 
2867   if (!ConstantMemory) {
2868     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2869                                   MVT::Other,
2870                                   &Chains[0], NumValues);
2871     if (isVolatile)
2872       DAG.setRoot(Chain);
2873     else
2874       PendingLoads.push_back(Chain);
2875   }
2876 
2877   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2878                            DAG.getVTList(&ValueVTs[0], NumValues),
2879                            &Values[0], NumValues));
2880 }
2881 
2882 
2883 void SelectionDAGBuilder::visitStore(StoreInst &I) {
2884   Value *SrcV = I.getOperand(0);
2885   Value *PtrV = I.getOperand(1);
2886 
2887   SmallVector<EVT, 4> ValueVTs;
2888   SmallVector<uint64_t, 4> Offsets;
2889   ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2890   unsigned NumValues = ValueVTs.size();
2891   if (NumValues == 0)
2892     return;
2893 
2894   // Get the lowered operands. Note that we do this after
2895   // checking if NumResults is zero, because with zero results
2896   // the operands won't have values in the map.
2897   SDValue Src = getValue(SrcV);
2898   SDValue Ptr = getValue(PtrV);
2899 
2900   SDValue Root = getRoot();
2901   SmallVector<SDValue, 4> Chains(NumValues);
2902   EVT PtrVT = Ptr.getValueType();
2903   bool isVolatile = I.isVolatile();
2904   unsigned Alignment = I.getAlignment();
2905   for (unsigned i = 0; i != NumValues; ++i)
2906     Chains[i] = DAG.getStore(Root, getCurDebugLoc(),
2907                              SDValue(Src.getNode(), Src.getResNo() + i),
2908                              DAG.getNode(ISD::ADD, getCurDebugLoc(),
2909                                          PtrVT, Ptr,
2910                                          DAG.getConstant(Offsets[i], PtrVT)),
2911                              PtrV, Offsets[i], isVolatile, Alignment);
2912 
2913   DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
2914                           MVT::Other, &Chains[0], NumValues));
2915 }
2916 
2917 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2918 /// node.
2919 void SelectionDAGBuilder::visitTargetIntrinsic(CallInst &I,
2920                                                unsigned Intrinsic) {
2921   bool HasChain = !I.doesNotAccessMemory();
2922   bool OnlyLoad = HasChain && I.onlyReadsMemory();
2923 
2924   // Build the operand list.
2925   SmallVector<SDValue, 8> Ops;
2926   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
2927     if (OnlyLoad) {
2928       // We don't need to serialize loads against other loads.
2929       Ops.push_back(DAG.getRoot());
2930     } else {
2931       Ops.push_back(getRoot());
2932     }
2933   }
2934 
2935   // Info is set by getTgtMemInstrinsic
2936   TargetLowering::IntrinsicInfo Info;
2937   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2938 
2939   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2940   if (!IsTgtIntrinsic)
2941     Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
2942 
2943   // Add all operands of the call to the operand list.
2944   for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2945     SDValue Op = getValue(I.getOperand(i));
2946     assert(TLI.isTypeLegal(Op.getValueType()) &&
2947            "Intrinsic uses a non-legal type?");
2948     Ops.push_back(Op);
2949   }
2950 
2951   SmallVector<EVT, 4> ValueVTs;
2952   ComputeValueVTs(TLI, I.getType(), ValueVTs);
2953 #ifndef NDEBUG
2954   for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) {
2955     assert(TLI.isTypeLegal(ValueVTs[Val]) &&
2956            "Intrinsic uses a non-legal type?");
2957   }
2958 #endif // NDEBUG
2959   if (HasChain)
2960     ValueVTs.push_back(MVT::Other);
2961 
2962   SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
2963 
2964   // Create the node.
2965   SDValue Result;
2966   if (IsTgtIntrinsic) {
2967     // This is target intrinsic that touches memory
2968     Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
2969                                      VTs, &Ops[0], Ops.size(),
2970                                      Info.memVT, Info.ptrVal, Info.offset,
2971                                      Info.align, Info.vol,
2972                                      Info.readMem, Info.writeMem);
2973   }
2974   else if (!HasChain)
2975     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
2976                          VTs, &Ops[0], Ops.size());
2977   else if (I.getType() != Type::getVoidTy(*DAG.getContext()))
2978     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
2979                          VTs, &Ops[0], Ops.size());
2980   else
2981     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
2982                          VTs, &Ops[0], Ops.size());
2983 
2984   if (HasChain) {
2985     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2986     if (OnlyLoad)
2987       PendingLoads.push_back(Chain);
2988     else
2989       DAG.setRoot(Chain);
2990   }
2991   if (I.getType() != Type::getVoidTy(*DAG.getContext())) {
2992     if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2993       EVT VT = TLI.getValueType(PTy);
2994       Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result);
2995     }
2996     setValue(&I, Result);
2997   }
2998 }
2999 
3000 /// GetSignificand - Get the significand and build it into a floating-point
3001 /// number with exponent of 1:
3002 ///
3003 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3004 ///
3005 /// where Op is the hexidecimal representation of floating point value.
3006 static SDValue
3007 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3008   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3009                            DAG.getConstant(0x007fffff, MVT::i32));
3010   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3011                            DAG.getConstant(0x3f800000, MVT::i32));
3012   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2);
3013 }
3014 
3015 /// GetExponent - Get the exponent:
3016 ///
3017 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3018 ///
3019 /// where Op is the hexidecimal representation of floating point value.
3020 static SDValue
3021 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3022             DebugLoc dl) {
3023   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3024                            DAG.getConstant(0x7f800000, MVT::i32));
3025   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3026                            DAG.getConstant(23, TLI.getPointerTy()));
3027   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3028                            DAG.getConstant(127, MVT::i32));
3029   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3030 }
3031 
3032 /// getF32Constant - Get 32-bit floating point constant.
3033 static SDValue
3034 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3035   return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3036 }
3037 
3038 /// Inlined utility function to implement binary input atomic intrinsics for
3039 /// visitIntrinsicCall: I is a call instruction
3040 ///                     Op is the associated NodeType for I
3041 const char *
3042 SelectionDAGBuilder::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
3043   SDValue Root = getRoot();
3044   SDValue L =
3045     DAG.getAtomic(Op, getCurDebugLoc(),
3046                   getValue(I.getOperand(2)).getValueType().getSimpleVT(),
3047                   Root,
3048                   getValue(I.getOperand(1)),
3049                   getValue(I.getOperand(2)),
3050                   I.getOperand(1));
3051   setValue(&I, L);
3052   DAG.setRoot(L.getValue(1));
3053   return 0;
3054 }
3055 
3056 // implVisitAluOverflow - Lower arithmetic overflow instrinsics.
3057 const char *
3058 SelectionDAGBuilder::implVisitAluOverflow(CallInst &I, ISD::NodeType Op) {
3059   SDValue Op1 = getValue(I.getOperand(1));
3060   SDValue Op2 = getValue(I.getOperand(2));
3061 
3062   SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
3063   SDValue Result = DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2);
3064 
3065   setValue(&I, Result);
3066   return 0;
3067 }
3068 
3069 /// visitExp - Lower an exp intrinsic. Handles the special sequences for
3070 /// limited-precision mode.
3071 void
3072 SelectionDAGBuilder::visitExp(CallInst &I) {
3073   SDValue result;
3074   DebugLoc dl = getCurDebugLoc();
3075 
3076   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3077       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3078     SDValue Op = getValue(I.getOperand(1));
3079 
3080     // Put the exponent in the right bit position for later addition to the
3081     // final result:
3082     //
3083     //   #define LOG2OFe 1.4426950f
3084     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3085     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3086                              getF32Constant(DAG, 0x3fb8aa3b));
3087     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3088 
3089     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3090     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3091     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3092 
3093     //   IntegerPartOfX <<= 23;
3094     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3095                                  DAG.getConstant(23, TLI.getPointerTy()));
3096 
3097     if (LimitFloatPrecision <= 6) {
3098       // For floating-point precision of 6:
3099       //
3100       //   TwoToFractionalPartOfX =
3101       //     0.997535578f +
3102       //       (0.735607626f + 0.252464424f * x) * x;
3103       //
3104       // error 0.0144103317, which is 6 bits
3105       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3106                                getF32Constant(DAG, 0x3e814304));
3107       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3108                                getF32Constant(DAG, 0x3f3c50c8));
3109       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3110       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3111                                getF32Constant(DAG, 0x3f7f5e7e));
3112       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5);
3113 
3114       // Add the exponent into the result in integer domain.
3115       SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3116                                TwoToFracPartOfX, IntegerPartOfX);
3117 
3118       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6);
3119     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3120       // For floating-point precision of 12:
3121       //
3122       //   TwoToFractionalPartOfX =
3123       //     0.999892986f +
3124       //       (0.696457318f +
3125       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3126       //
3127       // 0.000107046256 error, which is 13 to 14 bits
3128       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3129                                getF32Constant(DAG, 0x3da235e3));
3130       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3131                                getF32Constant(DAG, 0x3e65b8f3));
3132       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3133       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3134                                getF32Constant(DAG, 0x3f324b07));
3135       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3136       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3137                                getF32Constant(DAG, 0x3f7ff8fd));
3138       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7);
3139 
3140       // Add the exponent into the result in integer domain.
3141       SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3142                                TwoToFracPartOfX, IntegerPartOfX);
3143 
3144       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8);
3145     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3146       // For floating-point precision of 18:
3147       //
3148       //   TwoToFractionalPartOfX =
3149       //     0.999999982f +
3150       //       (0.693148872f +
3151       //         (0.240227044f +
3152       //           (0.554906021e-1f +
3153       //             (0.961591928e-2f +
3154       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3155       //
3156       // error 2.47208000*10^(-7), which is better than 18 bits
3157       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3158                                getF32Constant(DAG, 0x3924b03e));
3159       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3160                                getF32Constant(DAG, 0x3ab24b87));
3161       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3162       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3163                                getF32Constant(DAG, 0x3c1d8c17));
3164       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3165       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3166                                getF32Constant(DAG, 0x3d634a1d));
3167       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3168       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3169                                getF32Constant(DAG, 0x3e75fe14));
3170       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3171       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3172                                 getF32Constant(DAG, 0x3f317234));
3173       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3174       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3175                                 getF32Constant(DAG, 0x3f800000));
3176       SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,
3177                                              MVT::i32, t13);
3178 
3179       // Add the exponent into the result in integer domain.
3180       SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3181                                 TwoToFracPartOfX, IntegerPartOfX);
3182 
3183       result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14);
3184     }
3185   } else {
3186     // No special expansion.
3187     result = DAG.getNode(ISD::FEXP, dl,
3188                          getValue(I.getOperand(1)).getValueType(),
3189                          getValue(I.getOperand(1)));
3190   }
3191 
3192   setValue(&I, result);
3193 }
3194 
3195 /// visitLog - Lower a log intrinsic. Handles the special sequences for
3196 /// limited-precision mode.
3197 void
3198 SelectionDAGBuilder::visitLog(CallInst &I) {
3199   SDValue result;
3200   DebugLoc dl = getCurDebugLoc();
3201 
3202   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3203       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3204     SDValue Op = getValue(I.getOperand(1));
3205     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3206 
3207     // Scale the exponent by log(2) [0.69314718f].
3208     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3209     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3210                                         getF32Constant(DAG, 0x3f317218));
3211 
3212     // Get the significand and build it into a floating-point number with
3213     // exponent of 1.
3214     SDValue X = GetSignificand(DAG, Op1, dl);
3215 
3216     if (LimitFloatPrecision <= 6) {
3217       // For floating-point precision of 6:
3218       //
3219       //   LogofMantissa =
3220       //     -1.1609546f +
3221       //       (1.4034025f - 0.23903021f * x) * x;
3222       //
3223       // error 0.0034276066, which is better than 8 bits
3224       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3225                                getF32Constant(DAG, 0xbe74c456));
3226       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3227                                getF32Constant(DAG, 0x3fb3a2b1));
3228       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3229       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3230                                           getF32Constant(DAG, 0x3f949a29));
3231 
3232       result = DAG.getNode(ISD::FADD, dl,
3233                            MVT::f32, LogOfExponent, LogOfMantissa);
3234     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3235       // For floating-point precision of 12:
3236       //
3237       //   LogOfMantissa =
3238       //     -1.7417939f +
3239       //       (2.8212026f +
3240       //         (-1.4699568f +
3241       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3242       //
3243       // error 0.000061011436, which is 14 bits
3244       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3245                                getF32Constant(DAG, 0xbd67b6d6));
3246       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3247                                getF32Constant(DAG, 0x3ee4f4b8));
3248       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3249       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3250                                getF32Constant(DAG, 0x3fbc278b));
3251       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3252       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3253                                getF32Constant(DAG, 0x40348e95));
3254       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3255       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3256                                           getF32Constant(DAG, 0x3fdef31a));
3257 
3258       result = DAG.getNode(ISD::FADD, dl,
3259                            MVT::f32, LogOfExponent, LogOfMantissa);
3260     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3261       // For floating-point precision of 18:
3262       //
3263       //   LogOfMantissa =
3264       //     -2.1072184f +
3265       //       (4.2372794f +
3266       //         (-3.7029485f +
3267       //           (2.2781945f +
3268       //             (-0.87823314f +
3269       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3270       //
3271       // error 0.0000023660568, which is better than 18 bits
3272       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3273                                getF32Constant(DAG, 0xbc91e5ac));
3274       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3275                                getF32Constant(DAG, 0x3e4350aa));
3276       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3277       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3278                                getF32Constant(DAG, 0x3f60d3e3));
3279       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3280       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3281                                getF32Constant(DAG, 0x4011cdf0));
3282       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3283       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3284                                getF32Constant(DAG, 0x406cfd1c));
3285       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3286       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3287                                getF32Constant(DAG, 0x408797cb));
3288       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3289       SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3290                                           getF32Constant(DAG, 0x4006dcab));
3291 
3292       result = DAG.getNode(ISD::FADD, dl,
3293                            MVT::f32, LogOfExponent, LogOfMantissa);
3294     }
3295   } else {
3296     // No special expansion.
3297     result = DAG.getNode(ISD::FLOG, dl,
3298                          getValue(I.getOperand(1)).getValueType(),
3299                          getValue(I.getOperand(1)));
3300   }
3301 
3302   setValue(&I, result);
3303 }
3304 
3305 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3306 /// limited-precision mode.
3307 void
3308 SelectionDAGBuilder::visitLog2(CallInst &I) {
3309   SDValue result;
3310   DebugLoc dl = getCurDebugLoc();
3311 
3312   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3313       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3314     SDValue Op = getValue(I.getOperand(1));
3315     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3316 
3317     // Get the exponent.
3318     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3319 
3320     // Get the significand and build it into a floating-point number with
3321     // exponent of 1.
3322     SDValue X = GetSignificand(DAG, Op1, dl);
3323 
3324     // Different possible minimax approximations of significand in
3325     // floating-point for various degrees of accuracy over [1,2].
3326     if (LimitFloatPrecision <= 6) {
3327       // For floating-point precision of 6:
3328       //
3329       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3330       //
3331       // error 0.0049451742, which is more than 7 bits
3332       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3333                                getF32Constant(DAG, 0xbeb08fe0));
3334       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3335                                getF32Constant(DAG, 0x40019463));
3336       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3337       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3338                                            getF32Constant(DAG, 0x3fd6633d));
3339 
3340       result = DAG.getNode(ISD::FADD, dl,
3341                            MVT::f32, LogOfExponent, Log2ofMantissa);
3342     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3343       // For floating-point precision of 12:
3344       //
3345       //   Log2ofMantissa =
3346       //     -2.51285454f +
3347       //       (4.07009056f +
3348       //         (-2.12067489f +
3349       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3350       //
3351       // error 0.0000876136000, which is better than 13 bits
3352       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3353                                getF32Constant(DAG, 0xbda7262e));
3354       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3355                                getF32Constant(DAG, 0x3f25280b));
3356       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3357       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3358                                getF32Constant(DAG, 0x4007b923));
3359       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3360       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3361                                getF32Constant(DAG, 0x40823e2f));
3362       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3363       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3364                                            getF32Constant(DAG, 0x4020d29c));
3365 
3366       result = DAG.getNode(ISD::FADD, dl,
3367                            MVT::f32, LogOfExponent, Log2ofMantissa);
3368     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3369       // For floating-point precision of 18:
3370       //
3371       //   Log2ofMantissa =
3372       //     -3.0400495f +
3373       //       (6.1129976f +
3374       //         (-5.3420409f +
3375       //           (3.2865683f +
3376       //             (-1.2669343f +
3377       //               (0.27515199f -
3378       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3379       //
3380       // error 0.0000018516, which is better than 18 bits
3381       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3382                                getF32Constant(DAG, 0xbcd2769e));
3383       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3384                                getF32Constant(DAG, 0x3e8ce0b9));
3385       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3386       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3387                                getF32Constant(DAG, 0x3fa22ae7));
3388       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3389       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3390                                getF32Constant(DAG, 0x40525723));
3391       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3392       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3393                                getF32Constant(DAG, 0x40aaf200));
3394       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3395       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3396                                getF32Constant(DAG, 0x40c39dad));
3397       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3398       SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3399                                            getF32Constant(DAG, 0x4042902c));
3400 
3401       result = DAG.getNode(ISD::FADD, dl,
3402                            MVT::f32, LogOfExponent, Log2ofMantissa);
3403     }
3404   } else {
3405     // No special expansion.
3406     result = DAG.getNode(ISD::FLOG2, dl,
3407                          getValue(I.getOperand(1)).getValueType(),
3408                          getValue(I.getOperand(1)));
3409   }
3410 
3411   setValue(&I, result);
3412 }
3413 
3414 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3415 /// limited-precision mode.
3416 void
3417 SelectionDAGBuilder::visitLog10(CallInst &I) {
3418   SDValue result;
3419   DebugLoc dl = getCurDebugLoc();
3420 
3421   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3422       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3423     SDValue Op = getValue(I.getOperand(1));
3424     SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op);
3425 
3426     // Scale the exponent by log10(2) [0.30102999f].
3427     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3428     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3429                                         getF32Constant(DAG, 0x3e9a209a));
3430 
3431     // Get the significand and build it into a floating-point number with
3432     // exponent of 1.
3433     SDValue X = GetSignificand(DAG, Op1, dl);
3434 
3435     if (LimitFloatPrecision <= 6) {
3436       // For floating-point precision of 6:
3437       //
3438       //   Log10ofMantissa =
3439       //     -0.50419619f +
3440       //       (0.60948995f - 0.10380950f * x) * x;
3441       //
3442       // error 0.0014886165, which is 6 bits
3443       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3444                                getF32Constant(DAG, 0xbdd49a13));
3445       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3446                                getF32Constant(DAG, 0x3f1c0789));
3447       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3448       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3449                                             getF32Constant(DAG, 0x3f011300));
3450 
3451       result = DAG.getNode(ISD::FADD, dl,
3452                            MVT::f32, LogOfExponent, Log10ofMantissa);
3453     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3454       // For floating-point precision of 12:
3455       //
3456       //   Log10ofMantissa =
3457       //     -0.64831180f +
3458       //       (0.91751397f +
3459       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3460       //
3461       // error 0.00019228036, which is better than 12 bits
3462       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3463                                getF32Constant(DAG, 0x3d431f31));
3464       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3465                                getF32Constant(DAG, 0x3ea21fb2));
3466       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3467       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3468                                getF32Constant(DAG, 0x3f6ae232));
3469       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3470       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3471                                             getF32Constant(DAG, 0x3f25f7c3));
3472 
3473       result = DAG.getNode(ISD::FADD, dl,
3474                            MVT::f32, LogOfExponent, Log10ofMantissa);
3475     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3476       // For floating-point precision of 18:
3477       //
3478       //   Log10ofMantissa =
3479       //     -0.84299375f +
3480       //       (1.5327582f +
3481       //         (-1.0688956f +
3482       //           (0.49102474f +
3483       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3484       //
3485       // error 0.0000037995730, which is better than 18 bits
3486       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3487                                getF32Constant(DAG, 0x3c5d51ce));
3488       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
3489                                getF32Constant(DAG, 0x3e00685a));
3490       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3491       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3492                                getF32Constant(DAG, 0x3efb6798));
3493       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3494       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
3495                                getF32Constant(DAG, 0x3f88d192));
3496       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3497       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3498                                getF32Constant(DAG, 0x3fc4316c));
3499       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3500       SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
3501                                             getF32Constant(DAG, 0x3f57ce70));
3502 
3503       result = DAG.getNode(ISD::FADD, dl,
3504                            MVT::f32, LogOfExponent, Log10ofMantissa);
3505     }
3506   } else {
3507     // No special expansion.
3508     result = DAG.getNode(ISD::FLOG10, dl,
3509                          getValue(I.getOperand(1)).getValueType(),
3510                          getValue(I.getOperand(1)));
3511   }
3512 
3513   setValue(&I, result);
3514 }
3515 
3516 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3517 /// limited-precision mode.
3518 void
3519 SelectionDAGBuilder::visitExp2(CallInst &I) {
3520   SDValue result;
3521   DebugLoc dl = getCurDebugLoc();
3522 
3523   if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3524       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3525     SDValue Op = getValue(I.getOperand(1));
3526 
3527     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
3528 
3529     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3530     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3531     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
3532 
3533     //   IntegerPartOfX <<= 23;
3534     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3535                                  DAG.getConstant(23, TLI.getPointerTy()));
3536 
3537     if (LimitFloatPrecision <= 6) {
3538       // For floating-point precision of 6:
3539       //
3540       //   TwoToFractionalPartOfX =
3541       //     0.997535578f +
3542       //       (0.735607626f + 0.252464424f * x) * x;
3543       //
3544       // error 0.0144103317, which is 6 bits
3545       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3546                                getF32Constant(DAG, 0x3e814304));
3547       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3548                                getF32Constant(DAG, 0x3f3c50c8));
3549       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3550       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3551                                getF32Constant(DAG, 0x3f7f5e7e));
3552       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3553       SDValue TwoToFractionalPartOfX =
3554         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3555 
3556       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3557                            MVT::f32, TwoToFractionalPartOfX);
3558     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3559       // For floating-point precision of 12:
3560       //
3561       //   TwoToFractionalPartOfX =
3562       //     0.999892986f +
3563       //       (0.696457318f +
3564       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3565       //
3566       // error 0.000107046256, which is 13 to 14 bits
3567       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3568                                getF32Constant(DAG, 0x3da235e3));
3569       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3570                                getF32Constant(DAG, 0x3e65b8f3));
3571       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3572       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3573                                getF32Constant(DAG, 0x3f324b07));
3574       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3575       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3576                                getF32Constant(DAG, 0x3f7ff8fd));
3577       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3578       SDValue TwoToFractionalPartOfX =
3579         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3580 
3581       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3582                            MVT::f32, TwoToFractionalPartOfX);
3583     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3584       // For floating-point precision of 18:
3585       //
3586       //   TwoToFractionalPartOfX =
3587       //     0.999999982f +
3588       //       (0.693148872f +
3589       //         (0.240227044f +
3590       //           (0.554906021e-1f +
3591       //             (0.961591928e-2f +
3592       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3593       // error 2.47208000*10^(-7), which is better than 18 bits
3594       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3595                                getF32Constant(DAG, 0x3924b03e));
3596       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3597                                getF32Constant(DAG, 0x3ab24b87));
3598       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3599       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3600                                getF32Constant(DAG, 0x3c1d8c17));
3601       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3602       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3603                                getF32Constant(DAG, 0x3d634a1d));
3604       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3605       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3606                                getF32Constant(DAG, 0x3e75fe14));
3607       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3608       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3609                                 getF32Constant(DAG, 0x3f317234));
3610       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3611       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3612                                 getF32Constant(DAG, 0x3f800000));
3613       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3614       SDValue TwoToFractionalPartOfX =
3615         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3616 
3617       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3618                            MVT::f32, TwoToFractionalPartOfX);
3619     }
3620   } else {
3621     // No special expansion.
3622     result = DAG.getNode(ISD::FEXP2, dl,
3623                          getValue(I.getOperand(1)).getValueType(),
3624                          getValue(I.getOperand(1)));
3625   }
3626 
3627   setValue(&I, result);
3628 }
3629 
3630 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
3631 /// limited-precision mode with x == 10.0f.
3632 void
3633 SelectionDAGBuilder::visitPow(CallInst &I) {
3634   SDValue result;
3635   Value *Val = I.getOperand(1);
3636   DebugLoc dl = getCurDebugLoc();
3637   bool IsExp10 = false;
3638 
3639   if (getValue(Val).getValueType() == MVT::f32 &&
3640       getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
3641       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3642     if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3643       if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3644         APFloat Ten(10.0f);
3645         IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3646       }
3647     }
3648   }
3649 
3650   if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3651     SDValue Op = getValue(I.getOperand(2));
3652 
3653     // Put the exponent in the right bit position for later addition to the
3654     // final result:
3655     //
3656     //   #define LOG2OF10 3.3219281f
3657     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
3658     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3659                              getF32Constant(DAG, 0x40549a78));
3660     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3661 
3662     //   FractionalPartOfX = x - (float)IntegerPartOfX;
3663     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3664     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3665 
3666     //   IntegerPartOfX <<= 23;
3667     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3668                                  DAG.getConstant(23, TLI.getPointerTy()));
3669 
3670     if (LimitFloatPrecision <= 6) {
3671       // For floating-point precision of 6:
3672       //
3673       //   twoToFractionalPartOfX =
3674       //     0.997535578f +
3675       //       (0.735607626f + 0.252464424f * x) * x;
3676       //
3677       // error 0.0144103317, which is 6 bits
3678       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3679                                getF32Constant(DAG, 0x3e814304));
3680       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3681                                getF32Constant(DAG, 0x3f3c50c8));
3682       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3683       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3684                                getF32Constant(DAG, 0x3f7f5e7e));
3685       SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5);
3686       SDValue TwoToFractionalPartOfX =
3687         DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
3688 
3689       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3690                            MVT::f32, TwoToFractionalPartOfX);
3691     } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3692       // For floating-point precision of 12:
3693       //
3694       //   TwoToFractionalPartOfX =
3695       //     0.999892986f +
3696       //       (0.696457318f +
3697       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3698       //
3699       // error 0.000107046256, which is 13 to 14 bits
3700       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3701                                getF32Constant(DAG, 0x3da235e3));
3702       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3703                                getF32Constant(DAG, 0x3e65b8f3));
3704       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3705       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3706                                getF32Constant(DAG, 0x3f324b07));
3707       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3708       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3709                                getF32Constant(DAG, 0x3f7ff8fd));
3710       SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7);
3711       SDValue TwoToFractionalPartOfX =
3712         DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
3713 
3714       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3715                            MVT::f32, TwoToFractionalPartOfX);
3716     } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3717       // For floating-point precision of 18:
3718       //
3719       //   TwoToFractionalPartOfX =
3720       //     0.999999982f +
3721       //       (0.693148872f +
3722       //         (0.240227044f +
3723       //           (0.554906021e-1f +
3724       //             (0.961591928e-2f +
3725       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3726       // error 2.47208000*10^(-7), which is better than 18 bits
3727       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3728                                getF32Constant(DAG, 0x3924b03e));
3729       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3730                                getF32Constant(DAG, 0x3ab24b87));
3731       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3732       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3733                                getF32Constant(DAG, 0x3c1d8c17));
3734       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3735       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3736                                getF32Constant(DAG, 0x3d634a1d));
3737       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3738       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3739                                getF32Constant(DAG, 0x3e75fe14));
3740       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3741       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3742                                 getF32Constant(DAG, 0x3f317234));
3743       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3744       SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3745                                 getF32Constant(DAG, 0x3f800000));
3746       SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13);
3747       SDValue TwoToFractionalPartOfX =
3748         DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
3749 
3750       result = DAG.getNode(ISD::BIT_CONVERT, dl,
3751                            MVT::f32, TwoToFractionalPartOfX);
3752     }
3753   } else {
3754     // No special expansion.
3755     result = DAG.getNode(ISD::FPOW, dl,
3756                          getValue(I.getOperand(1)).getValueType(),
3757                          getValue(I.getOperand(1)),
3758                          getValue(I.getOperand(2)));
3759   }
3760 
3761   setValue(&I, result);
3762 }
3763 
3764 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
3765 /// we want to emit this as a call to a named external function, return the name
3766 /// otherwise lower it and return null.
3767 const char *
3768 SelectionDAGBuilder::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3769   DebugLoc dl = getCurDebugLoc();
3770   switch (Intrinsic) {
3771   default:
3772     // By default, turn this into a target intrinsic node.
3773     visitTargetIntrinsic(I, Intrinsic);
3774     return 0;
3775   case Intrinsic::vastart:  visitVAStart(I); return 0;
3776   case Intrinsic::vaend:    visitVAEnd(I); return 0;
3777   case Intrinsic::vacopy:   visitVACopy(I); return 0;
3778   case Intrinsic::returnaddress:
3779     setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
3780                              getValue(I.getOperand(1))));
3781     return 0;
3782   case Intrinsic::frameaddress:
3783     setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
3784                              getValue(I.getOperand(1))));
3785     return 0;
3786   case Intrinsic::setjmp:
3787     return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3788     break;
3789   case Intrinsic::longjmp:
3790     return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3791     break;
3792   case Intrinsic::memcpy: {
3793     SDValue Op1 = getValue(I.getOperand(1));
3794     SDValue Op2 = getValue(I.getOperand(2));
3795     SDValue Op3 = getValue(I.getOperand(3));
3796     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3797     DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3798                               I.getOperand(1), 0, I.getOperand(2), 0));
3799     return 0;
3800   }
3801   case Intrinsic::memset: {
3802     SDValue Op1 = getValue(I.getOperand(1));
3803     SDValue Op2 = getValue(I.getOperand(2));
3804     SDValue Op3 = getValue(I.getOperand(3));
3805     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3806     DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align,
3807                               I.getOperand(1), 0));
3808     return 0;
3809   }
3810   case Intrinsic::memmove: {
3811     SDValue Op1 = getValue(I.getOperand(1));
3812     SDValue Op2 = getValue(I.getOperand(2));
3813     SDValue Op3 = getValue(I.getOperand(3));
3814     unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3815 
3816     // If the source and destination are known to not be aliases, we can
3817     // lower memmove as memcpy.
3818     uint64_t Size = -1ULL;
3819     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
3820       Size = C->getZExtValue();
3821     if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3822         AliasAnalysis::NoAlias) {
3823       DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, false,
3824                                 I.getOperand(1), 0, I.getOperand(2), 0));
3825       return 0;
3826     }
3827 
3828     DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align,
3829                                I.getOperand(1), 0, I.getOperand(2), 0));
3830     return 0;
3831   }
3832   case Intrinsic::dbg_stoppoint:
3833   case Intrinsic::dbg_region_start:
3834   case Intrinsic::dbg_region_end:
3835   case Intrinsic::dbg_func_start:
3836     // FIXME - Remove this instructions once the dust settles.
3837     return 0;
3838   case Intrinsic::dbg_declare: {
3839     if (OptLevel != CodeGenOpt::None)
3840       // FIXME: Variable debug info is not supported here.
3841       return 0;
3842     DwarfWriter *DW = DAG.getDwarfWriter();
3843     if (!DW)
3844       return 0;
3845     DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3846     if (!isValidDebugInfoIntrinsic(DI, CodeGenOpt::None))
3847       return 0;
3848 
3849     MDNode *Variable = DI.getVariable();
3850     Value *Address = DI.getAddress();
3851     if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
3852       Address = BCI->getOperand(0);
3853     AllocaInst *AI = dyn_cast<AllocaInst>(Address);
3854     // Don't handle byval struct arguments or VLAs, for example.
3855     if (!AI)
3856       return 0;
3857     DenseMap<const AllocaInst*, int>::iterator SI =
3858       FuncInfo.StaticAllocaMap.find(AI);
3859     if (SI == FuncInfo.StaticAllocaMap.end())
3860       return 0; // VLAs.
3861     int FI = SI->second;
3862 
3863     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3864     if (MMI) {
3865       MetadataContext &TheMetadata =
3866         DI.getParent()->getContext().getMetadata();
3867       unsigned MDDbgKind = TheMetadata.getMDKind("dbg");
3868       MDNode *Dbg = TheMetadata.getMD(MDDbgKind, &DI);
3869       MMI->setVariableDbgInfo(Variable, FI, Dbg);
3870     }
3871     return 0;
3872   }
3873   case Intrinsic::eh_exception: {
3874     // Insert the EXCEPTIONADDR instruction.
3875     assert(CurMBB->isLandingPad() &&"Call to eh.exception not in landing pad!");
3876     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3877     SDValue Ops[1];
3878     Ops[0] = DAG.getRoot();
3879     SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1);
3880     setValue(&I, Op);
3881     DAG.setRoot(Op.getValue(1));
3882     return 0;
3883   }
3884 
3885   case Intrinsic::eh_selector: {
3886     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3887 
3888     if (CurMBB->isLandingPad())
3889       AddCatchInfo(I, MMI, CurMBB);
3890     else {
3891 #ifndef NDEBUG
3892       FuncInfo.CatchInfoLost.insert(&I);
3893 #endif
3894       // FIXME: Mark exception selector register as live in.  Hack for PR1508.
3895       unsigned Reg = TLI.getExceptionSelectorRegister();
3896       if (Reg) CurMBB->addLiveIn(Reg);
3897     }
3898 
3899     // Insert the EHSELECTION instruction.
3900     SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3901     SDValue Ops[2];
3902     Ops[0] = getValue(I.getOperand(1));
3903     Ops[1] = getRoot();
3904     SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2);
3905 
3906     DAG.setRoot(Op.getValue(1));
3907 
3908     setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32));
3909     return 0;
3910   }
3911 
3912   case Intrinsic::eh_typeid_for: {
3913     MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3914 
3915     if (MMI) {
3916       // Find the type id for the given typeinfo.
3917       GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3918 
3919       unsigned TypeID = MMI->getTypeIDFor(GV);
3920       setValue(&I, DAG.getConstant(TypeID, MVT::i32));
3921     } else {
3922       // Return something different to eh_selector.
3923       setValue(&I, DAG.getConstant(1, MVT::i32));
3924     }
3925 
3926     return 0;
3927   }
3928 
3929   case Intrinsic::eh_return_i32:
3930   case Intrinsic::eh_return_i64:
3931     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3932       MMI->setCallsEHReturn(true);
3933       DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
3934                               MVT::Other,
3935                               getControlRoot(),
3936                               getValue(I.getOperand(1)),
3937                               getValue(I.getOperand(2))));
3938     } else {
3939       setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3940     }
3941 
3942     return 0;
3943   case Intrinsic::eh_unwind_init:
3944     if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3945       MMI->setCallsUnwindInit(true);
3946     }
3947 
3948     return 0;
3949 
3950   case Intrinsic::eh_dwarf_cfa: {
3951     EVT VT = getValue(I.getOperand(1)).getValueType();
3952     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl,
3953                                         TLI.getPointerTy());
3954 
3955     SDValue Offset = DAG.getNode(ISD::ADD, dl,
3956                                  TLI.getPointerTy(),
3957                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
3958                                              TLI.getPointerTy()),
3959                                  CfaArg);
3960     setValue(&I, DAG.getNode(ISD::ADD, dl,
3961                              TLI.getPointerTy(),
3962                              DAG.getNode(ISD::FRAMEADDR, dl,
3963                                          TLI.getPointerTy(),
3964                                          DAG.getConstant(0,
3965                                                          TLI.getPointerTy())),
3966                              Offset));
3967     return 0;
3968   }
3969   case Intrinsic::convertff:
3970   case Intrinsic::convertfsi:
3971   case Intrinsic::convertfui:
3972   case Intrinsic::convertsif:
3973   case Intrinsic::convertuif:
3974   case Intrinsic::convertss:
3975   case Intrinsic::convertsu:
3976   case Intrinsic::convertus:
3977   case Intrinsic::convertuu: {
3978     ISD::CvtCode Code = ISD::CVT_INVALID;
3979     switch (Intrinsic) {
3980     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
3981     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
3982     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
3983     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
3984     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
3985     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
3986     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
3987     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
3988     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
3989     }
3990     EVT DestVT = TLI.getValueType(I.getType());
3991     Value* Op1 = I.getOperand(1);
3992     setValue(&I, DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
3993                                 DAG.getValueType(DestVT),
3994                                 DAG.getValueType(getValue(Op1).getValueType()),
3995                                 getValue(I.getOperand(2)),
3996                                 getValue(I.getOperand(3)),
3997                                 Code));
3998     return 0;
3999   }
4000 
4001   case Intrinsic::sqrt:
4002     setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4003                              getValue(I.getOperand(1)).getValueType(),
4004                              getValue(I.getOperand(1))));
4005     return 0;
4006   case Intrinsic::powi:
4007     setValue(&I, DAG.getNode(ISD::FPOWI, dl,
4008                              getValue(I.getOperand(1)).getValueType(),
4009                              getValue(I.getOperand(1)),
4010                              getValue(I.getOperand(2))));
4011     return 0;
4012   case Intrinsic::sin:
4013     setValue(&I, DAG.getNode(ISD::FSIN, dl,
4014                              getValue(I.getOperand(1)).getValueType(),
4015                              getValue(I.getOperand(1))));
4016     return 0;
4017   case Intrinsic::cos:
4018     setValue(&I, DAG.getNode(ISD::FCOS, dl,
4019                              getValue(I.getOperand(1)).getValueType(),
4020                              getValue(I.getOperand(1))));
4021     return 0;
4022   case Intrinsic::log:
4023     visitLog(I);
4024     return 0;
4025   case Intrinsic::log2:
4026     visitLog2(I);
4027     return 0;
4028   case Intrinsic::log10:
4029     visitLog10(I);
4030     return 0;
4031   case Intrinsic::exp:
4032     visitExp(I);
4033     return 0;
4034   case Intrinsic::exp2:
4035     visitExp2(I);
4036     return 0;
4037   case Intrinsic::pow:
4038     visitPow(I);
4039     return 0;
4040   case Intrinsic::pcmarker: {
4041     SDValue Tmp = getValue(I.getOperand(1));
4042     DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
4043     return 0;
4044   }
4045   case Intrinsic::readcyclecounter: {
4046     SDValue Op = getRoot();
4047     SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER, dl,
4048                               DAG.getVTList(MVT::i64, MVT::Other),
4049                               &Op, 1);
4050     setValue(&I, Tmp);
4051     DAG.setRoot(Tmp.getValue(1));
4052     return 0;
4053   }
4054   case Intrinsic::bswap:
4055     setValue(&I, DAG.getNode(ISD::BSWAP, dl,
4056                              getValue(I.getOperand(1)).getValueType(),
4057                              getValue(I.getOperand(1))));
4058     return 0;
4059   case Intrinsic::cttz: {
4060     SDValue Arg = getValue(I.getOperand(1));
4061     EVT Ty = Arg.getValueType();
4062     SDValue result = DAG.getNode(ISD::CTTZ, dl, Ty, Arg);
4063     setValue(&I, result);
4064     return 0;
4065   }
4066   case Intrinsic::ctlz: {
4067     SDValue Arg = getValue(I.getOperand(1));
4068     EVT Ty = Arg.getValueType();
4069     SDValue result = DAG.getNode(ISD::CTLZ, dl, Ty, Arg);
4070     setValue(&I, result);
4071     return 0;
4072   }
4073   case Intrinsic::ctpop: {
4074     SDValue Arg = getValue(I.getOperand(1));
4075     EVT Ty = Arg.getValueType();
4076     SDValue result = DAG.getNode(ISD::CTPOP, dl, Ty, Arg);
4077     setValue(&I, result);
4078     return 0;
4079   }
4080   case Intrinsic::stacksave: {
4081     SDValue Op = getRoot();
4082     SDValue Tmp = DAG.getNode(ISD::STACKSAVE, dl,
4083               DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
4084     setValue(&I, Tmp);
4085     DAG.setRoot(Tmp.getValue(1));
4086     return 0;
4087   }
4088   case Intrinsic::stackrestore: {
4089     SDValue Tmp = getValue(I.getOperand(1));
4090     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Tmp));
4091     return 0;
4092   }
4093   case Intrinsic::stackprotector: {
4094     // Emit code into the DAG to store the stack guard onto the stack.
4095     MachineFunction &MF = DAG.getMachineFunction();
4096     MachineFrameInfo *MFI = MF.getFrameInfo();
4097     EVT PtrTy = TLI.getPointerTy();
4098 
4099     SDValue Src = getValue(I.getOperand(1));   // The guard's value.
4100     AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
4101 
4102     int FI = FuncInfo.StaticAllocaMap[Slot];
4103     MFI->setStackProtectorIndex(FI);
4104 
4105     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
4106 
4107     // Store the stack protector onto the stack.
4108     SDValue Result = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
4109                                   PseudoSourceValue::getFixedStack(FI),
4110                                   0, true);
4111     setValue(&I, Result);
4112     DAG.setRoot(Result);
4113     return 0;
4114   }
4115   case Intrinsic::objectsize: {
4116     // If we don't know by now, we're never going to know.
4117     ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2));
4118 
4119     assert(CI && "Non-constant type in __builtin_object_size?");
4120 
4121     SDValue Arg = getValue(I.getOperand(0));
4122     EVT Ty = Arg.getValueType();
4123 
4124     if (CI->getZExtValue() < 2)
4125       setValue(&I, DAG.getConstant(-1ULL, Ty));
4126     else
4127       setValue(&I, DAG.getConstant(0, Ty));
4128     return 0;
4129   }
4130   case Intrinsic::var_annotation:
4131     // Discard annotate attributes
4132     return 0;
4133 
4134   case Intrinsic::init_trampoline: {
4135     const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4136 
4137     SDValue Ops[6];
4138     Ops[0] = getRoot();
4139     Ops[1] = getValue(I.getOperand(1));
4140     Ops[2] = getValue(I.getOperand(2));
4141     Ops[3] = getValue(I.getOperand(3));
4142     Ops[4] = DAG.getSrcValue(I.getOperand(1));
4143     Ops[5] = DAG.getSrcValue(F);
4144 
4145     SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE, dl,
4146                               DAG.getVTList(TLI.getPointerTy(), MVT::Other),
4147                               Ops, 6);
4148 
4149     setValue(&I, Tmp);
4150     DAG.setRoot(Tmp.getValue(1));
4151     return 0;
4152   }
4153 
4154   case Intrinsic::gcroot:
4155     if (GFI) {
4156       Value *Alloca = I.getOperand(1);
4157       Constant *TypeMap = cast<Constant>(I.getOperand(2));
4158 
4159       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4160       GFI->addStackRoot(FI->getIndex(), TypeMap);
4161     }
4162     return 0;
4163 
4164   case Intrinsic::gcread:
4165   case Intrinsic::gcwrite:
4166     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
4167     return 0;
4168 
4169   case Intrinsic::flt_rounds: {
4170     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
4171     return 0;
4172   }
4173 
4174   case Intrinsic::trap: {
4175     DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot()));
4176     return 0;
4177   }
4178 
4179   case Intrinsic::uadd_with_overflow:
4180     return implVisitAluOverflow(I, ISD::UADDO);
4181   case Intrinsic::sadd_with_overflow:
4182     return implVisitAluOverflow(I, ISD::SADDO);
4183   case Intrinsic::usub_with_overflow:
4184     return implVisitAluOverflow(I, ISD::USUBO);
4185   case Intrinsic::ssub_with_overflow:
4186     return implVisitAluOverflow(I, ISD::SSUBO);
4187   case Intrinsic::umul_with_overflow:
4188     return implVisitAluOverflow(I, ISD::UMULO);
4189   case Intrinsic::smul_with_overflow:
4190     return implVisitAluOverflow(I, ISD::SMULO);
4191 
4192   case Intrinsic::prefetch: {
4193     SDValue Ops[4];
4194     Ops[0] = getRoot();
4195     Ops[1] = getValue(I.getOperand(1));
4196     Ops[2] = getValue(I.getOperand(2));
4197     Ops[3] = getValue(I.getOperand(3));
4198     DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4));
4199     return 0;
4200   }
4201 
4202   case Intrinsic::memory_barrier: {
4203     SDValue Ops[6];
4204     Ops[0] = getRoot();
4205     for (int x = 1; x < 6; ++x)
4206       Ops[x] = getValue(I.getOperand(x));
4207 
4208     DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6));
4209     return 0;
4210   }
4211   case Intrinsic::atomic_cmp_swap: {
4212     SDValue Root = getRoot();
4213     SDValue L =
4214       DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(),
4215                     getValue(I.getOperand(2)).getValueType().getSimpleVT(),
4216                     Root,
4217                     getValue(I.getOperand(1)),
4218                     getValue(I.getOperand(2)),
4219                     getValue(I.getOperand(3)),
4220                     I.getOperand(1));
4221     setValue(&I, L);
4222     DAG.setRoot(L.getValue(1));
4223     return 0;
4224   }
4225   case Intrinsic::atomic_load_add:
4226     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD);
4227   case Intrinsic::atomic_load_sub:
4228     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB);
4229   case Intrinsic::atomic_load_or:
4230     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR);
4231   case Intrinsic::atomic_load_xor:
4232     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR);
4233   case Intrinsic::atomic_load_and:
4234     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND);
4235   case Intrinsic::atomic_load_nand:
4236     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND);
4237   case Intrinsic::atomic_load_max:
4238     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX);
4239   case Intrinsic::atomic_load_min:
4240     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN);
4241   case Intrinsic::atomic_load_umin:
4242     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN);
4243   case Intrinsic::atomic_load_umax:
4244     return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX);
4245   case Intrinsic::atomic_swap:
4246     return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP);
4247 
4248   case Intrinsic::invariant_start:
4249   case Intrinsic::lifetime_start:
4250     // Discard region information.
4251     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
4252     return 0;
4253   case Intrinsic::invariant_end:
4254   case Intrinsic::lifetime_end:
4255     // Discard region information.
4256     return 0;
4257   }
4258 }
4259 
4260 /// Test if the given instruction is in a position to be optimized
4261 /// with a tail-call. This roughly means that it's in a block with
4262 /// a return and there's nothing that needs to be scheduled
4263 /// between it and the return.
4264 ///
4265 /// This function only tests target-independent requirements.
4266 /// For target-dependent requirements, a target should override
4267 /// TargetLowering::IsEligibleForTailCallOptimization.
4268 ///
4269 static bool
4270 isInTailCallPosition(const Instruction *I, Attributes CalleeRetAttr,
4271                      const TargetLowering &TLI) {
4272   const BasicBlock *ExitBB = I->getParent();
4273   const TerminatorInst *Term = ExitBB->getTerminator();
4274   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
4275   const Function *F = ExitBB->getParent();
4276 
4277   // The block must end in a return statement or an unreachable.
4278   if (!Ret && !isa<UnreachableInst>(Term)) return false;
4279 
4280   // If I will have a chain, make sure no other instruction that will have a
4281   // chain interposes between I and the return.
4282   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
4283       !I->isSafeToSpeculativelyExecute())
4284     for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
4285          --BBI) {
4286       if (&*BBI == I)
4287         break;
4288       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
4289           !BBI->isSafeToSpeculativelyExecute())
4290         return false;
4291     }
4292 
4293   // If the block ends with a void return or unreachable, it doesn't matter
4294   // what the call's return type is.
4295   if (!Ret || Ret->getNumOperands() == 0) return true;
4296 
4297   // If the return value is undef, it doesn't matter what the call's
4298   // return type is.
4299   if (isa<UndefValue>(Ret->getOperand(0))) return true;
4300 
4301   // Conservatively require the attributes of the call to match those of
4302   // the return. Ignore noalias because it doesn't affect the call sequence.
4303   unsigned CallerRetAttr = F->getAttributes().getRetAttributes();
4304   if ((CalleeRetAttr ^ CallerRetAttr) & ~Attribute::NoAlias)
4305     return false;
4306 
4307   // Otherwise, make sure the unmodified return value of I is the return value.
4308   for (const Instruction *U = dyn_cast<Instruction>(Ret->getOperand(0)); ;
4309        U = dyn_cast<Instruction>(U->getOperand(0))) {
4310     if (!U)
4311       return false;
4312     if (!U->hasOneUse())
4313       return false;
4314     if (U == I)
4315       break;
4316     // Check for a truly no-op truncate.
4317     if (isa<TruncInst>(U) &&
4318         TLI.isTruncateFree(U->getOperand(0)->getType(), U->getType()))
4319       continue;
4320     // Check for a truly no-op bitcast.
4321     if (isa<BitCastInst>(U) &&
4322         (U->getOperand(0)->getType() == U->getType() ||
4323          (isa<PointerType>(U->getOperand(0)->getType()) &&
4324           isa<PointerType>(U->getType()))))
4325       continue;
4326     // Otherwise it's not a true no-op.
4327     return false;
4328   }
4329 
4330   return true;
4331 }
4332 
4333 void SelectionDAGBuilder::LowerCallTo(CallSite CS, SDValue Callee,
4334                                       bool isTailCall,
4335                                       MachineBasicBlock *LandingPad) {
4336   const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4337   const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4338   const Type *RetTy = FTy->getReturnType();
4339   MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4340   unsigned BeginLabel = 0, EndLabel = 0;
4341 
4342   TargetLowering::ArgListTy Args;
4343   TargetLowering::ArgListEntry Entry;
4344   Args.reserve(CS.arg_size());
4345 
4346   // Check whether the function can return without sret-demotion.
4347   SmallVector<EVT, 4> OutVTs;
4348   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
4349   SmallVector<uint64_t, 4> Offsets;
4350   getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
4351     OutVTs, OutsFlags, TLI, &Offsets);
4352 
4353 
4354   bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
4355                         FTy->isVarArg(), OutVTs, OutsFlags, DAG);
4356 
4357   SDValue DemoteStackSlot;
4358 
4359   if (!CanLowerReturn) {
4360     uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
4361                       FTy->getReturnType());
4362     unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
4363                       FTy->getReturnType());
4364     MachineFunction &MF = DAG.getMachineFunction();
4365     int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
4366     const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
4367 
4368     DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
4369     Entry.Node = DemoteStackSlot;
4370     Entry.Ty = StackSlotPtrType;
4371     Entry.isSExt = false;
4372     Entry.isZExt = false;
4373     Entry.isInReg = false;
4374     Entry.isSRet = true;
4375     Entry.isNest = false;
4376     Entry.isByVal = false;
4377     Entry.Alignment = Align;
4378     Args.push_back(Entry);
4379     RetTy = Type::getVoidTy(FTy->getContext());
4380   }
4381 
4382   for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4383        i != e; ++i) {
4384     SDValue ArgNode = getValue(*i);
4385     Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4386 
4387     unsigned attrInd = i - CS.arg_begin() + 1;
4388     Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
4389     Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
4390     Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4391     Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
4392     Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
4393     Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
4394     Entry.Alignment = CS.getParamAlignment(attrInd);
4395     Args.push_back(Entry);
4396   }
4397 
4398   if (LandingPad && MMI) {
4399     // Insert a label before the invoke call to mark the try range.  This can be
4400     // used to detect deletion of the invoke via the MachineModuleInfo.
4401     BeginLabel = MMI->NextLabelID();
4402 
4403     // Both PendingLoads and PendingExports must be flushed here;
4404     // this call might not return.
4405     (void)getRoot();
4406     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4407                              getControlRoot(), BeginLabel));
4408   }
4409 
4410   // Check if target-independent constraints permit a tail call here.
4411   // Target-dependent constraints are checked within TLI.LowerCallTo.
4412   if (isTailCall &&
4413       !isInTailCallPosition(CS.getInstruction(),
4414                             CS.getAttributes().getRetAttributes(),
4415                             TLI))
4416     isTailCall = false;
4417 
4418   std::pair<SDValue,SDValue> Result =
4419     TLI.LowerCallTo(getRoot(), RetTy,
4420                     CS.paramHasAttr(0, Attribute::SExt),
4421                     CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4422                     CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(),
4423                     CS.getCallingConv(),
4424                     isTailCall,
4425                     !CS.getInstruction()->use_empty(),
4426                     Callee, Args, DAG, getCurDebugLoc());
4427   assert((isTailCall || Result.second.getNode()) &&
4428          "Non-null chain expected with non-tail call!");
4429   assert((Result.second.getNode() || !Result.first.getNode()) &&
4430          "Null value expected with tail call!");
4431   if (Result.first.getNode())
4432     setValue(CS.getInstruction(), Result.first);
4433   else if (!CanLowerReturn && Result.second.getNode()) {
4434     // The instruction result is the result of loading from the
4435     // hidden sret parameter.
4436     SmallVector<EVT, 1> PVTs;
4437     const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
4438 
4439     ComputeValueVTs(TLI, PtrRetTy, PVTs);
4440     assert(PVTs.size() == 1 && "Pointers should fit in one register");
4441     EVT PtrVT = PVTs[0];
4442     unsigned NumValues = OutVTs.size();
4443     SmallVector<SDValue, 4> Values(NumValues);
4444     SmallVector<SDValue, 4> Chains(NumValues);
4445 
4446     for (unsigned i = 0; i < NumValues; ++i) {
4447       SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second,
4448         DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, DemoteStackSlot,
4449         DAG.getConstant(Offsets[i], PtrVT)),
4450         NULL, Offsets[i], false, 1);
4451       Values[i] = L;
4452       Chains[i] = L.getValue(1);
4453     }
4454     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
4455                                 MVT::Other, &Chains[0], NumValues);
4456     PendingLoads.push_back(Chain);
4457 
4458     setValue(CS.getInstruction(), DAG.getNode(ISD::MERGE_VALUES,
4459              getCurDebugLoc(), DAG.getVTList(&OutVTs[0], NumValues),
4460              &Values[0], NumValues));
4461   }
4462   // As a special case, a null chain means that a tail call has
4463   // been emitted and the DAG root is already updated.
4464   if (Result.second.getNode())
4465     DAG.setRoot(Result.second);
4466   else
4467     HasTailCall = true;
4468 
4469   if (LandingPad && MMI) {
4470     // Insert a label at the end of the invoke call to mark the try range.  This
4471     // can be used to detect deletion of the invoke via the MachineModuleInfo.
4472     EndLabel = MMI->NextLabelID();
4473     DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getCurDebugLoc(),
4474                              getRoot(), EndLabel));
4475 
4476     // Inform MachineModuleInfo of range.
4477     MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4478   }
4479 }
4480 
4481 
4482 void SelectionDAGBuilder::visitCall(CallInst &I) {
4483   const char *RenameFn = 0;
4484   if (Function *F = I.getCalledFunction()) {
4485     if (F->isDeclaration()) {
4486       const TargetIntrinsicInfo *II = TLI.getTargetMachine().getIntrinsicInfo();
4487       if (II) {
4488         if (unsigned IID = II->getIntrinsicID(F)) {
4489           RenameFn = visitIntrinsicCall(I, IID);
4490           if (!RenameFn)
4491             return;
4492         }
4493       }
4494       if (unsigned IID = F->getIntrinsicID()) {
4495         RenameFn = visitIntrinsicCall(I, IID);
4496         if (!RenameFn)
4497           return;
4498       }
4499     }
4500 
4501     // Check for well-known libc/libm calls.  If the function is internal, it
4502     // can't be a library call.
4503     if (!F->hasLocalLinkage() && F->hasName()) {
4504       StringRef Name = F->getName();
4505       if (Name == "copysign" || Name == "copysignf") {
4506         if (I.getNumOperands() == 3 &&   // Basic sanity checks.
4507             I.getOperand(1)->getType()->isFloatingPoint() &&
4508             I.getType() == I.getOperand(1)->getType() &&
4509             I.getType() == I.getOperand(2)->getType()) {
4510           SDValue LHS = getValue(I.getOperand(1));
4511           SDValue RHS = getValue(I.getOperand(2));
4512           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
4513                                    LHS.getValueType(), LHS, RHS));
4514           return;
4515         }
4516       } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") {
4517         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4518             I.getOperand(1)->getType()->isFloatingPoint() &&
4519             I.getType() == I.getOperand(1)->getType()) {
4520           SDValue Tmp = getValue(I.getOperand(1));
4521           setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(),
4522                                    Tmp.getValueType(), Tmp));
4523           return;
4524         }
4525       } else if (Name == "sin" || Name == "sinf" || Name == "sinl") {
4526         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4527             I.getOperand(1)->getType()->isFloatingPoint() &&
4528             I.getType() == I.getOperand(1)->getType() &&
4529             I.onlyReadsMemory()) {
4530           SDValue Tmp = getValue(I.getOperand(1));
4531           setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(),
4532                                    Tmp.getValueType(), Tmp));
4533           return;
4534         }
4535       } else if (Name == "cos" || Name == "cosf" || Name == "cosl") {
4536         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4537             I.getOperand(1)->getType()->isFloatingPoint() &&
4538             I.getType() == I.getOperand(1)->getType() &&
4539             I.onlyReadsMemory()) {
4540           SDValue Tmp = getValue(I.getOperand(1));
4541           setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(),
4542                                    Tmp.getValueType(), Tmp));
4543           return;
4544         }
4545       } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") {
4546         if (I.getNumOperands() == 2 &&   // Basic sanity checks.
4547             I.getOperand(1)->getType()->isFloatingPoint() &&
4548             I.getType() == I.getOperand(1)->getType() &&
4549             I.onlyReadsMemory()) {
4550           SDValue Tmp = getValue(I.getOperand(1));
4551           setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(),
4552                                    Tmp.getValueType(), Tmp));
4553           return;
4554         }
4555       }
4556     }
4557   } else if (isa<InlineAsm>(I.getOperand(0))) {
4558     visitInlineAsm(&I);
4559     return;
4560   }
4561 
4562   SDValue Callee;
4563   if (!RenameFn)
4564     Callee = getValue(I.getOperand(0));
4565   else
4566     Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
4567 
4568   // Check if we can potentially perform a tail call. More detailed
4569   // checking is be done within LowerCallTo, after more information
4570   // about the call is known.
4571   bool isTailCall = PerformTailCallOpt && I.isTailCall();
4572 
4573   LowerCallTo(&I, Callee, isTailCall);
4574 }
4575 
4576 
4577 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4578 /// this value and returns the result as a ValueVT value.  This uses
4579 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4580 /// If the Flag pointer is NULL, no flag is used.
4581 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl,
4582                                       SDValue &Chain,
4583                                       SDValue *Flag) const {
4584   // Assemble the legal parts into the final values.
4585   SmallVector<SDValue, 4> Values(ValueVTs.size());
4586   SmallVector<SDValue, 8> Parts;
4587   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4588     // Copy the legal parts from the registers.
4589     EVT ValueVT = ValueVTs[Value];
4590     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4591     EVT RegisterVT = RegVTs[Value];
4592 
4593     Parts.resize(NumRegs);
4594     for (unsigned i = 0; i != NumRegs; ++i) {
4595       SDValue P;
4596       if (Flag == 0)
4597         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
4598       else {
4599         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
4600         *Flag = P.getValue(2);
4601       }
4602       Chain = P.getValue(1);
4603 
4604       // If the source register was virtual and if we know something about it,
4605       // add an assert node.
4606       if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4607           RegisterVT.isInteger() && !RegisterVT.isVector()) {
4608         unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4609         FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4610         if (FLI.LiveOutRegInfo.size() > SlotNo) {
4611           FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4612 
4613           unsigned RegSize = RegisterVT.getSizeInBits();
4614           unsigned NumSignBits = LOI.NumSignBits;
4615           unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4616 
4617           // FIXME: We capture more information than the dag can represent.  For
4618           // now, just use the tightest assertzext/assertsext possible.
4619           bool isSExt = true;
4620           EVT FromVT(MVT::Other);
4621           if (NumSignBits == RegSize)
4622             isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
4623           else if (NumZeroBits >= RegSize-1)
4624             isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
4625           else if (NumSignBits > RegSize-8)
4626             isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
4627           else if (NumZeroBits >= RegSize-8)
4628             isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
4629           else if (NumSignBits > RegSize-16)
4630             isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
4631           else if (NumZeroBits >= RegSize-16)
4632             isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
4633           else if (NumSignBits > RegSize-32)
4634             isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
4635           else if (NumZeroBits >= RegSize-32)
4636             isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
4637 
4638           if (FromVT != MVT::Other) {
4639             P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
4640                             RegisterVT, P, DAG.getValueType(FromVT));
4641 
4642           }
4643         }
4644       }
4645 
4646       Parts[i] = P;
4647     }
4648 
4649     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
4650                                      NumRegs, RegisterVT, ValueVT);
4651     Part += NumRegs;
4652     Parts.clear();
4653   }
4654 
4655   return DAG.getNode(ISD::MERGE_VALUES, dl,
4656                      DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4657                      &Values[0], ValueVTs.size());
4658 }
4659 
4660 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4661 /// specified value into the registers specified by this object.  This uses
4662 /// Chain/Flag as the input and updates them for the output Chain/Flag.
4663 /// If the Flag pointer is NULL, no flag is used.
4664 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
4665                                  SDValue &Chain, SDValue *Flag) const {
4666   // Get the list of the values's legal parts.
4667   unsigned NumRegs = Regs.size();
4668   SmallVector<SDValue, 8> Parts(NumRegs);
4669   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4670     EVT ValueVT = ValueVTs[Value];
4671     unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT);
4672     EVT RegisterVT = RegVTs[Value];
4673 
4674     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
4675                    &Parts[Part], NumParts, RegisterVT);
4676     Part += NumParts;
4677   }
4678 
4679   // Copy the parts into the registers.
4680   SmallVector<SDValue, 8> Chains(NumRegs);
4681   for (unsigned i = 0; i != NumRegs; ++i) {
4682     SDValue Part;
4683     if (Flag == 0)
4684       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
4685     else {
4686       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
4687       *Flag = Part.getValue(1);
4688     }
4689     Chains[i] = Part.getValue(0);
4690   }
4691 
4692   if (NumRegs == 1 || Flag)
4693     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4694     // flagged to it. That is the CopyToReg nodes and the user are considered
4695     // a single scheduling unit. If we create a TokenFactor and return it as
4696     // chain, then the TokenFactor is both a predecessor (operand) of the
4697     // user as well as a successor (the TF operands are flagged to the user).
4698     // c1, f1 = CopyToReg
4699     // c2, f2 = CopyToReg
4700     // c3     = TokenFactor c1, c2
4701     // ...
4702     //        = op c3, ..., f2
4703     Chain = Chains[NumRegs-1];
4704   else
4705     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
4706 }
4707 
4708 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
4709 /// operand list.  This adds the code marker and includes the number of
4710 /// values added into it.
4711 void RegsForValue::AddInlineAsmOperands(unsigned Code,
4712                                         bool HasMatching,unsigned MatchingIdx,
4713                                         SelectionDAG &DAG,
4714                                         std::vector<SDValue> &Ops) const {
4715   EVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4716   assert(Regs.size() < (1 << 13) && "Too many inline asm outputs!");
4717   unsigned Flag = Code | (Regs.size() << 3);
4718   if (HasMatching)
4719     Flag |= 0x80000000 | (MatchingIdx << 16);
4720   Ops.push_back(DAG.getTargetConstant(Flag, IntPtrTy));
4721   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4722     unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
4723     EVT RegisterVT = RegVTs[Value];
4724     for (unsigned i = 0; i != NumRegs; ++i) {
4725       assert(Reg < Regs.size() && "Mismatch in # registers expected");
4726       Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
4727     }
4728   }
4729 }
4730 
4731 /// isAllocatableRegister - If the specified register is safe to allocate,
4732 /// i.e. it isn't a stack pointer or some other special register, return the
4733 /// register class for the register.  Otherwise, return null.
4734 static const TargetRegisterClass *
4735 isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4736                       const TargetLowering &TLI,
4737                       const TargetRegisterInfo *TRI) {
4738   EVT FoundVT = MVT::Other;
4739   const TargetRegisterClass *FoundRC = 0;
4740   for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4741        E = TRI->regclass_end(); RCI != E; ++RCI) {
4742     EVT ThisVT = MVT::Other;
4743 
4744     const TargetRegisterClass *RC = *RCI;
4745     // If none of the the value types for this register class are valid, we
4746     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4747     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4748          I != E; ++I) {
4749       if (TLI.isTypeLegal(*I)) {
4750         // If we have already found this register in a different register class,
4751         // choose the one with the largest VT specified.  For example, on
4752         // PowerPC, we favor f64 register classes over f32.
4753         if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4754           ThisVT = *I;
4755           break;
4756         }
4757       }
4758     }
4759 
4760     if (ThisVT == MVT::Other) continue;
4761 
4762     // NOTE: This isn't ideal.  In particular, this might allocate the
4763     // frame pointer in functions that need it (due to them not being taken
4764     // out of allocation, because a variable sized allocation hasn't been seen
4765     // yet).  This is a slight code pessimization, but should still work.
4766     for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4767          E = RC->allocation_order_end(MF); I != E; ++I)
4768       if (*I == Reg) {
4769         // We found a matching register class.  Keep looking at others in case
4770         // we find one with larger registers that this physreg is also in.
4771         FoundRC = RC;
4772         FoundVT = ThisVT;
4773         break;
4774       }
4775   }
4776   return FoundRC;
4777 }
4778 
4779 
4780 namespace llvm {
4781 /// AsmOperandInfo - This contains information for each constraint that we are
4782 /// lowering.
4783 class VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4784     public TargetLowering::AsmOperandInfo {
4785 public:
4786   /// CallOperand - If this is the result output operand or a clobber
4787   /// this is null, otherwise it is the incoming operand to the CallInst.
4788   /// This gets modified as the asm is processed.
4789   SDValue CallOperand;
4790 
4791   /// AssignedRegs - If this is a register or register class operand, this
4792   /// contains the set of register corresponding to the operand.
4793   RegsForValue AssignedRegs;
4794 
4795   explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4796     : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4797   }
4798 
4799   /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4800   /// busy in OutputRegs/InputRegs.
4801   void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4802                          std::set<unsigned> &OutputRegs,
4803                          std::set<unsigned> &InputRegs,
4804                          const TargetRegisterInfo &TRI) const {
4805     if (isOutReg) {
4806       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4807         MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4808     }
4809     if (isInReg) {
4810       for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4811         MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4812     }
4813   }
4814 
4815   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
4816   /// corresponds to.  If there is no Value* for this operand, it returns
4817   /// MVT::Other.
4818   EVT getCallOperandValEVT(LLVMContext &Context,
4819                            const TargetLowering &TLI,
4820                            const TargetData *TD) const {
4821     if (CallOperandVal == 0) return MVT::Other;
4822 
4823     if (isa<BasicBlock>(CallOperandVal))
4824       return TLI.getPointerTy();
4825 
4826     const llvm::Type *OpTy = CallOperandVal->getType();
4827 
4828     // If this is an indirect operand, the operand is a pointer to the
4829     // accessed type.
4830     if (isIndirect)
4831       OpTy = cast<PointerType>(OpTy)->getElementType();
4832 
4833     // If OpTy is not a single value, it may be a struct/union that we
4834     // can tile with integers.
4835     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4836       unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4837       switch (BitSize) {
4838       default: break;
4839       case 1:
4840       case 8:
4841       case 16:
4842       case 32:
4843       case 64:
4844       case 128:
4845         OpTy = IntegerType::get(Context, BitSize);
4846         break;
4847       }
4848     }
4849 
4850     return TLI.getValueType(OpTy, true);
4851   }
4852 
4853 private:
4854   /// MarkRegAndAliases - Mark the specified register and all aliases in the
4855   /// specified set.
4856   static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4857                                 const TargetRegisterInfo &TRI) {
4858     assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4859     Regs.insert(Reg);
4860     if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4861       for (; *Aliases; ++Aliases)
4862         Regs.insert(*Aliases);
4863   }
4864 };
4865 } // end llvm namespace.
4866 
4867 
4868 /// GetRegistersForValue - Assign registers (virtual or physical) for the
4869 /// specified operand.  We prefer to assign virtual registers, to allow the
4870 /// register allocator to handle the assignment process.  However, if the asm
4871 /// uses features that we can't model on machineinstrs, we have SDISel do the
4872 /// allocation.  This produces generally horrible, but correct, code.
4873 ///
4874 ///   OpInfo describes the operand.
4875 ///   Input and OutputRegs are the set of already allocated physical registers.
4876 ///
4877 void SelectionDAGBuilder::
4878 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
4879                      std::set<unsigned> &OutputRegs,
4880                      std::set<unsigned> &InputRegs) {
4881   LLVMContext &Context = FuncInfo.Fn->getContext();
4882 
4883   // Compute whether this value requires an input register, an output register,
4884   // or both.
4885   bool isOutReg = false;
4886   bool isInReg = false;
4887   switch (OpInfo.Type) {
4888   case InlineAsm::isOutput:
4889     isOutReg = true;
4890 
4891     // If there is an input constraint that matches this, we need to reserve
4892     // the input register so no other inputs allocate to it.
4893     isInReg = OpInfo.hasMatchingInput();
4894     break;
4895   case InlineAsm::isInput:
4896     isInReg = true;
4897     isOutReg = false;
4898     break;
4899   case InlineAsm::isClobber:
4900     isOutReg = true;
4901     isInReg = true;
4902     break;
4903   }
4904 
4905 
4906   MachineFunction &MF = DAG.getMachineFunction();
4907   SmallVector<unsigned, 4> Regs;
4908 
4909   // If this is a constraint for a single physreg, or a constraint for a
4910   // register class, find it.
4911   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4912     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4913                                      OpInfo.ConstraintVT);
4914 
4915   unsigned NumRegs = 1;
4916   if (OpInfo.ConstraintVT != MVT::Other) {
4917     // If this is a FP input in an integer register (or visa versa) insert a bit
4918     // cast of the input value.  More generally, handle any case where the input
4919     // value disagrees with the register class we plan to stick this in.
4920     if (OpInfo.Type == InlineAsm::isInput &&
4921         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
4922       // Try to convert to the first EVT that the reg class contains.  If the
4923       // types are identical size, use a bitcast to convert (e.g. two differing
4924       // vector types).
4925       EVT RegVT = *PhysReg.second->vt_begin();
4926       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
4927         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
4928                                          RegVT, OpInfo.CallOperand);
4929         OpInfo.ConstraintVT = RegVT;
4930       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
4931         // If the input is a FP value and we want it in FP registers, do a
4932         // bitcast to the corresponding integer type.  This turns an f64 value
4933         // into i64, which can be passed with two i32 values on a 32-bit
4934         // machine.
4935         RegVT = EVT::getIntegerVT(Context,
4936                                   OpInfo.ConstraintVT.getSizeInBits());
4937         OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
4938                                          RegVT, OpInfo.CallOperand);
4939         OpInfo.ConstraintVT = RegVT;
4940       }
4941     }
4942 
4943     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
4944   }
4945 
4946   EVT RegVT;
4947   EVT ValueVT = OpInfo.ConstraintVT;
4948 
4949   // If this is a constraint for a specific physical register, like {r17},
4950   // assign it now.
4951   if (unsigned AssignedReg = PhysReg.first) {
4952     const TargetRegisterClass *RC = PhysReg.second;
4953     if (OpInfo.ConstraintVT == MVT::Other)
4954       ValueVT = *RC->vt_begin();
4955 
4956     // Get the actual register value type.  This is important, because the user
4957     // may have asked for (e.g.) the AX register in i32 type.  We need to
4958     // remember that AX is actually i16 to get the right extension.
4959     RegVT = *RC->vt_begin();
4960 
4961     // This is a explicit reference to a physical register.
4962     Regs.push_back(AssignedReg);
4963 
4964     // If this is an expanded reference, add the rest of the regs to Regs.
4965     if (NumRegs != 1) {
4966       TargetRegisterClass::iterator I = RC->begin();
4967       for (; *I != AssignedReg; ++I)
4968         assert(I != RC->end() && "Didn't find reg!");
4969 
4970       // Already added the first reg.
4971       --NumRegs; ++I;
4972       for (; NumRegs; --NumRegs, ++I) {
4973         assert(I != RC->end() && "Ran out of registers to allocate!");
4974         Regs.push_back(*I);
4975       }
4976     }
4977     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4978     const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4979     OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4980     return;
4981   }
4982 
4983   // Otherwise, if this was a reference to an LLVM register class, create vregs
4984   // for this reference.
4985   if (const TargetRegisterClass *RC = PhysReg.second) {
4986     RegVT = *RC->vt_begin();
4987     if (OpInfo.ConstraintVT == MVT::Other)
4988       ValueVT = RegVT;
4989 
4990     // Create the appropriate number of virtual registers.
4991     MachineRegisterInfo &RegInfo = MF.getRegInfo();
4992     for (; NumRegs; --NumRegs)
4993       Regs.push_back(RegInfo.createVirtualRegister(RC));
4994 
4995     OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4996     return;
4997   }
4998 
4999   // This is a reference to a register class that doesn't directly correspond
5000   // to an LLVM register class.  Allocate NumRegs consecutive, available,
5001   // registers from the class.
5002   std::vector<unsigned> RegClassRegs
5003     = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
5004                                             OpInfo.ConstraintVT);
5005 
5006   const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
5007   unsigned NumAllocated = 0;
5008   for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
5009     unsigned Reg = RegClassRegs[i];
5010     // See if this register is available.
5011     if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
5012         (isInReg  && InputRegs.count(Reg))) {    // Already used.
5013       // Make sure we find consecutive registers.
5014       NumAllocated = 0;
5015       continue;
5016     }
5017 
5018     // Check to see if this register is allocatable (i.e. don't give out the
5019     // stack pointer).
5020     const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI);
5021     if (!RC) {        // Couldn't allocate this register.
5022       // Reset NumAllocated to make sure we return consecutive registers.
5023       NumAllocated = 0;
5024       continue;
5025     }
5026 
5027     // Okay, this register is good, we can use it.
5028     ++NumAllocated;
5029 
5030     // If we allocated enough consecutive registers, succeed.
5031     if (NumAllocated == NumRegs) {
5032       unsigned RegStart = (i-NumAllocated)+1;
5033       unsigned RegEnd   = i+1;
5034       // Mark all of the allocated registers used.
5035       for (unsigned i = RegStart; i != RegEnd; ++i)
5036         Regs.push_back(RegClassRegs[i]);
5037 
5038       OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
5039                                          OpInfo.ConstraintVT);
5040       OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
5041       return;
5042     }
5043   }
5044 
5045   // Otherwise, we couldn't allocate enough registers for this.
5046 }
5047 
5048 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
5049 /// processed uses a memory 'm' constraint.
5050 static bool
5051 hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
5052                           const TargetLowering &TLI) {
5053   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
5054     InlineAsm::ConstraintInfo &CI = CInfos[i];
5055     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
5056       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
5057       if (CType == TargetLowering::C_Memory)
5058         return true;
5059     }
5060 
5061     // Indirect operand accesses access memory.
5062     if (CI.isIndirect)
5063       return true;
5064   }
5065 
5066   return false;
5067 }
5068 
5069 /// visitInlineAsm - Handle a call to an InlineAsm object.
5070 ///
5071 void SelectionDAGBuilder::visitInlineAsm(CallSite CS) {
5072   InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5073 
5074   /// ConstraintOperands - Information about all of the constraints.
5075   std::vector<SDISelAsmOperandInfo> ConstraintOperands;
5076 
5077   std::set<unsigned> OutputRegs, InputRegs;
5078 
5079   // Do a prepass over the constraints, canonicalizing them, and building up the
5080   // ConstraintOperands list.
5081   std::vector<InlineAsm::ConstraintInfo>
5082     ConstraintInfos = IA->ParseConstraints();
5083 
5084   bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
5085 
5086   SDValue Chain, Flag;
5087 
5088   // We won't need to flush pending loads if this asm doesn't touch
5089   // memory and is nonvolatile.
5090   if (hasMemory || IA->hasSideEffects())
5091     Chain = getRoot();
5092   else
5093     Chain = DAG.getRoot();
5094 
5095   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5096   unsigned ResNo = 0;   // ResNo - The result number of the next output.
5097   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5098     ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
5099     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5100 
5101     EVT OpVT = MVT::Other;
5102 
5103     // Compute the value type for each operand.
5104     switch (OpInfo.Type) {
5105     case InlineAsm::isOutput:
5106       // Indirect outputs just consume an argument.
5107       if (OpInfo.isIndirect) {
5108         OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5109         break;
5110       }
5111 
5112       // The return value of the call is this value.  As such, there is no
5113       // corresponding argument.
5114       assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
5115              "Bad inline asm!");
5116       if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
5117         OpVT = TLI.getValueType(STy->getElementType(ResNo));
5118       } else {
5119         assert(ResNo == 0 && "Asm only has one result!");
5120         OpVT = TLI.getValueType(CS.getType());
5121       }
5122       ++ResNo;
5123       break;
5124     case InlineAsm::isInput:
5125       OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
5126       break;
5127     case InlineAsm::isClobber:
5128       // Nothing to do.
5129       break;
5130     }
5131 
5132     // If this is an input or an indirect output, process the call argument.
5133     // BasicBlocks are labels, currently appearing only in asm's.
5134     if (OpInfo.CallOperandVal) {
5135       // Strip bitcasts, if any.  This mostly comes up for functions.
5136       OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts();
5137 
5138       if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5139         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5140       } else {
5141         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5142       }
5143 
5144       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5145     }
5146 
5147     OpInfo.ConstraintVT = OpVT;
5148   }
5149 
5150   // Second pass over the constraints: compute which constraint option to use
5151   // and assign registers to constraints that want a specific physreg.
5152   for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
5153     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5154 
5155     // If this is an output operand with a matching input operand, look up the
5156     // matching input. If their types mismatch, e.g. one is an integer, the
5157     // other is floating point, or their sizes are different, flag it as an
5158     // error.
5159     if (OpInfo.hasMatchingInput()) {
5160       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5161       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5162         if ((OpInfo.ConstraintVT.isInteger() !=
5163              Input.ConstraintVT.isInteger()) ||
5164             (OpInfo.ConstraintVT.getSizeInBits() !=
5165              Input.ConstraintVT.getSizeInBits())) {
5166           llvm_report_error("Unsupported asm: input constraint"
5167                             " with a matching output constraint of incompatible"
5168                             " type!");
5169         }
5170         Input.ConstraintVT = OpInfo.ConstraintVT;
5171       }
5172     }
5173 
5174     // Compute the constraint code and ConstraintType to use.
5175     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
5176 
5177     // If this is a memory input, and if the operand is not indirect, do what we
5178     // need to to provide an address for the memory input.
5179     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5180         !OpInfo.isIndirect) {
5181       assert(OpInfo.Type == InlineAsm::isInput &&
5182              "Can only indirectify direct input operands!");
5183 
5184       // Memory operands really want the address of the value.  If we don't have
5185       // an indirect input, put it in the constpool if we can, otherwise spill
5186       // it to a stack slot.
5187 
5188       // If the operand is a float, integer, or vector constant, spill to a
5189       // constant pool entry to get its address.
5190       Value *OpVal = OpInfo.CallOperandVal;
5191       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5192           isa<ConstantVector>(OpVal)) {
5193         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5194                                                  TLI.getPointerTy());
5195       } else {
5196         // Otherwise, create a stack slot and emit a store to it before the
5197         // asm.
5198         const Type *Ty = OpVal->getType();
5199         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
5200         unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5201         MachineFunction &MF = DAG.getMachineFunction();
5202         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5203         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5204         Chain = DAG.getStore(Chain, getCurDebugLoc(),
5205                              OpInfo.CallOperand, StackSlot, NULL, 0);
5206         OpInfo.CallOperand = StackSlot;
5207       }
5208 
5209       // There is no longer a Value* corresponding to this operand.
5210       OpInfo.CallOperandVal = 0;
5211       // It is now an indirect operand.
5212       OpInfo.isIndirect = true;
5213     }
5214 
5215     // If this constraint is for a specific register, allocate it before
5216     // anything else.
5217     if (OpInfo.ConstraintType == TargetLowering::C_Register)
5218       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5219   }
5220   ConstraintInfos.clear();
5221 
5222 
5223   // Second pass - Loop over all of the operands, assigning virtual or physregs
5224   // to register class operands.
5225   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5226     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5227 
5228     // C_Register operands have already been allocated, Other/Memory don't need
5229     // to be.
5230     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
5231       GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
5232   }
5233 
5234   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5235   std::vector<SDValue> AsmNodeOperands;
5236   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
5237   AsmNodeOperands.push_back(
5238           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
5239 
5240 
5241   // Loop over all of the inputs, copying the operand values into the
5242   // appropriate registers and processing the output regs.
5243   RegsForValue RetValRegs;
5244 
5245   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5246   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5247 
5248   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5249     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5250 
5251     switch (OpInfo.Type) {
5252     case InlineAsm::isOutput: {
5253       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5254           OpInfo.ConstraintType != TargetLowering::C_Register) {
5255         // Memory output, or 'other' output (e.g. 'X' constraint).
5256         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5257 
5258         // Add information to the INLINEASM node to know about this output.
5259         unsigned ResOpType = 4/*MEM*/ | (1<<3);
5260         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5261                                                         TLI.getPointerTy()));
5262         AsmNodeOperands.push_back(OpInfo.CallOperand);
5263         break;
5264       }
5265 
5266       // Otherwise, this is a register or register class output.
5267 
5268       // Copy the output from the appropriate register.  Find a register that
5269       // we can use.
5270       if (OpInfo.AssignedRegs.Regs.empty()) {
5271         llvm_report_error("Couldn't allocate output reg for"
5272                           " constraint '" + OpInfo.ConstraintCode + "'!");
5273       }
5274 
5275       // If this is an indirect operand, store through the pointer after the
5276       // asm.
5277       if (OpInfo.isIndirect) {
5278         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5279                                                       OpInfo.CallOperandVal));
5280       } else {
5281         // This is the result value of the call.
5282         assert(CS.getType() != Type::getVoidTy(*DAG.getContext()) &&
5283                "Bad inline asm!");
5284         // Concatenate this output onto the outputs list.
5285         RetValRegs.append(OpInfo.AssignedRegs);
5286       }
5287 
5288       // Add information to the INLINEASM node to know that this register is
5289       // set.
5290       OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5291                                                6 /* EARLYCLOBBER REGDEF */ :
5292                                                2 /* REGDEF */ ,
5293                                                false,
5294                                                0,
5295                                                DAG, AsmNodeOperands);
5296       break;
5297     }
5298     case InlineAsm::isInput: {
5299       SDValue InOperandVal = OpInfo.CallOperand;
5300 
5301       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
5302         // If this is required to match an output register we have already set,
5303         // just use its register.
5304         unsigned OperandNo = OpInfo.getMatchedOperand();
5305 
5306         // Scan until we find the definition we already emitted of this operand.
5307         // When we find it, create a RegsForValue operand.
5308         unsigned CurOp = 2;  // The first operand.
5309         for (; OperandNo; --OperandNo) {
5310           // Advance to the next operand.
5311           unsigned OpFlag =
5312             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5313           assert(((OpFlag & 7) == 2 /*REGDEF*/ ||
5314                   (OpFlag & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
5315                   (OpFlag & 7) == 4 /*MEM*/) &&
5316                  "Skipped past definitions?");
5317           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
5318         }
5319 
5320         unsigned OpFlag =
5321           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
5322         if ((OpFlag & 7) == 2 /*REGDEF*/
5323             || (OpFlag & 7) == 6 /* EARLYCLOBBER REGDEF */) {
5324           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
5325           if (OpInfo.isIndirect) {
5326             llvm_report_error("Don't know how to handle tied indirect "
5327                               "register inputs yet!");
5328           }
5329           RegsForValue MatchedRegs;
5330           MatchedRegs.TLI = &TLI;
5331           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5332           EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
5333           MatchedRegs.RegVTs.push_back(RegVT);
5334           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
5335           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
5336                i != e; ++i)
5337             MatchedRegs.Regs.
5338               push_back(RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
5339 
5340           // Use the produced MatchedRegs object to
5341           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5342                                     Chain, &Flag);
5343           MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/,
5344                                            true, OpInfo.getMatchedOperand(),
5345                                            DAG, AsmNodeOperands);
5346           break;
5347         } else {
5348           assert(((OpFlag & 7) == 4) && "Unknown matching constraint!");
5349           assert((InlineAsm::getNumOperandRegisters(OpFlag)) == 1 &&
5350                  "Unexpected number of operands");
5351           // Add information to the INLINEASM node to know about this input.
5352           // See InlineAsm.h isUseOperandTiedToDef.
5353           OpFlag |= 0x80000000 | (OpInfo.getMatchedOperand() << 16);
5354           AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
5355                                                           TLI.getPointerTy()));
5356           AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5357           break;
5358         }
5359       }
5360 
5361       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5362         assert(!OpInfo.isIndirect &&
5363                "Don't know how to handle indirect other inputs yet!");
5364 
5365         std::vector<SDValue> Ops;
5366         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
5367                                          hasMemory, Ops, DAG);
5368         if (Ops.empty()) {
5369           llvm_report_error("Invalid operand for inline asm"
5370                             " constraint '" + OpInfo.ConstraintCode + "'!");
5371         }
5372 
5373         // Add information to the INLINEASM node to know about this input.
5374         unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5375         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5376                                                         TLI.getPointerTy()));
5377         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5378         break;
5379       } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5380         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5381         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5382                "Memory operands expect pointer values");
5383 
5384         // Add information to the INLINEASM node to know about this input.
5385         unsigned ResOpType = 4/*MEM*/ | (1<<3);
5386         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5387                                                         TLI.getPointerTy()));
5388         AsmNodeOperands.push_back(InOperandVal);
5389         break;
5390       }
5391 
5392       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5393               OpInfo.ConstraintType == TargetLowering::C_Register) &&
5394              "Unknown constraint type!");
5395       assert(!OpInfo.isIndirect &&
5396              "Don't know how to handle indirect register inputs yet!");
5397 
5398       // Copy the input into the appropriate registers.
5399       if (OpInfo.AssignedRegs.Regs.empty()) {
5400         llvm_report_error("Couldn't allocate input reg for"
5401                           " constraint '"+ OpInfo.ConstraintCode +"'!");
5402       }
5403 
5404       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
5405                                         Chain, &Flag);
5406 
5407       OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/, false, 0,
5408                                                DAG, AsmNodeOperands);
5409       break;
5410     }
5411     case InlineAsm::isClobber: {
5412       // Add the clobbered value to the operand list, so that the register
5413       // allocator is aware that the physreg got clobbered.
5414       if (!OpInfo.AssignedRegs.Regs.empty())
5415         OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5416                                                  false, 0, DAG,AsmNodeOperands);
5417       break;
5418     }
5419     }
5420   }
5421 
5422   // Finish up input operands.
5423   AsmNodeOperands[0] = Chain;
5424   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5425 
5426   Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
5427                       DAG.getVTList(MVT::Other, MVT::Flag),
5428                       &AsmNodeOperands[0], AsmNodeOperands.size());
5429   Flag = Chain.getValue(1);
5430 
5431   // If this asm returns a register value, copy the result from that register
5432   // and set it as the value of the call.
5433   if (!RetValRegs.Regs.empty()) {
5434     SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5435                                              Chain, &Flag);
5436 
5437     // FIXME: Why don't we do this for inline asms with MRVs?
5438     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5439       EVT ResultType = TLI.getValueType(CS.getType());
5440 
5441       // If any of the results of the inline asm is a vector, it may have the
5442       // wrong width/num elts.  This can happen for register classes that can
5443       // contain multiple different value types.  The preg or vreg allocated may
5444       // not have the same VT as was expected.  Convert it to the right type
5445       // with bit_convert.
5446       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5447         Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(),
5448                           ResultType, Val);
5449 
5450       } else if (ResultType != Val.getValueType() &&
5451                  ResultType.isInteger() && Val.getValueType().isInteger()) {
5452         // If a result value was tied to an input value, the computed result may
5453         // have a wider width than the expected result.  Extract the relevant
5454         // portion.
5455         Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
5456       }
5457 
5458       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
5459     }
5460 
5461     setValue(CS.getInstruction(), Val);
5462     // Don't need to use this as a chain in this case.
5463     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
5464       return;
5465   }
5466 
5467   std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5468 
5469   // Process indirect outputs, first output all of the flagged copies out of
5470   // physregs.
5471   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5472     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5473     Value *Ptr = IndirectStoresToEmit[i].second;
5474     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(),
5475                                              Chain, &Flag);
5476     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5477 
5478   }
5479 
5480   // Emit the non-flagged stores from the physregs.
5481   SmallVector<SDValue, 8> OutChains;
5482   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
5483     OutChains.push_back(DAG.getStore(Chain, getCurDebugLoc(),
5484                                     StoresToEmit[i].first,
5485                                     getValue(StoresToEmit[i].second),
5486                                     StoresToEmit[i].second, 0));
5487   if (!OutChains.empty())
5488     Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
5489                         &OutChains[0], OutChains.size());
5490   DAG.setRoot(Chain);
5491 }
5492 
5493 void SelectionDAGBuilder::visitVAStart(CallInst &I) {
5494   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
5495                           MVT::Other, getRoot(),
5496                           getValue(I.getOperand(1)),
5497                           DAG.getSrcValue(I.getOperand(1))));
5498 }
5499 
5500 void SelectionDAGBuilder::visitVAArg(VAArgInst &I) {
5501   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
5502                            getRoot(), getValue(I.getOperand(0)),
5503                            DAG.getSrcValue(I.getOperand(0)));
5504   setValue(&I, V);
5505   DAG.setRoot(V.getValue(1));
5506 }
5507 
5508 void SelectionDAGBuilder::visitVAEnd(CallInst &I) {
5509   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
5510                           MVT::Other, getRoot(),
5511                           getValue(I.getOperand(1)),
5512                           DAG.getSrcValue(I.getOperand(1))));
5513 }
5514 
5515 void SelectionDAGBuilder::visitVACopy(CallInst &I) {
5516   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
5517                           MVT::Other, getRoot(),
5518                           getValue(I.getOperand(1)),
5519                           getValue(I.getOperand(2)),
5520                           DAG.getSrcValue(I.getOperand(1)),
5521                           DAG.getSrcValue(I.getOperand(2))));
5522 }
5523 
5524 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
5525 /// implementation, which just calls LowerCall.
5526 /// FIXME: When all targets are
5527 /// migrated to using LowerCall, this hook should be integrated into SDISel.
5528 std::pair<SDValue, SDValue>
5529 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5530                             bool RetSExt, bool RetZExt, bool isVarArg,
5531                             bool isInreg, unsigned NumFixedArgs,
5532                             CallingConv::ID CallConv, bool isTailCall,
5533                             bool isReturnValueUsed,
5534                             SDValue Callee,
5535                             ArgListTy &Args, SelectionDAG &DAG, DebugLoc dl) {
5536 
5537   assert((!isTailCall || PerformTailCallOpt) &&
5538          "isTailCall set when tail-call optimizations are disabled!");
5539 
5540   // Handle all of the outgoing arguments.
5541   SmallVector<ISD::OutputArg, 32> Outs;
5542   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5543     SmallVector<EVT, 4> ValueVTs;
5544     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5545     for (unsigned Value = 0, NumValues = ValueVTs.size();
5546          Value != NumValues; ++Value) {
5547       EVT VT = ValueVTs[Value];
5548       const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext());
5549       SDValue Op = SDValue(Args[i].Node.getNode(),
5550                            Args[i].Node.getResNo() + Value);
5551       ISD::ArgFlagsTy Flags;
5552       unsigned OriginalAlignment =
5553         getTargetData()->getABITypeAlignment(ArgTy);
5554 
5555       if (Args[i].isZExt)
5556         Flags.setZExt();
5557       if (Args[i].isSExt)
5558         Flags.setSExt();
5559       if (Args[i].isInReg)
5560         Flags.setInReg();
5561       if (Args[i].isSRet)
5562         Flags.setSRet();
5563       if (Args[i].isByVal) {
5564         Flags.setByVal();
5565         const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5566         const Type *ElementTy = Ty->getElementType();
5567         unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5568         unsigned FrameSize  = getTargetData()->getTypeAllocSize(ElementTy);
5569         // For ByVal, alignment should come from FE.  BE will guess if this
5570         // info is not there but there are cases it cannot get right.
5571         if (Args[i].Alignment)
5572           FrameAlign = Args[i].Alignment;
5573         Flags.setByValAlign(FrameAlign);
5574         Flags.setByValSize(FrameSize);
5575       }
5576       if (Args[i].isNest)
5577         Flags.setNest();
5578       Flags.setOrigAlign(OriginalAlignment);
5579 
5580       EVT PartVT = getRegisterType(RetTy->getContext(), VT);
5581       unsigned NumParts = getNumRegisters(RetTy->getContext(), VT);
5582       SmallVector<SDValue, 4> Parts(NumParts);
5583       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5584 
5585       if (Args[i].isSExt)
5586         ExtendKind = ISD::SIGN_EXTEND;
5587       else if (Args[i].isZExt)
5588         ExtendKind = ISD::ZERO_EXTEND;
5589 
5590       getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5591 
5592       for (unsigned j = 0; j != NumParts; ++j) {
5593         // if it isn't first piece, alignment must be 1
5594         ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs);
5595         if (NumParts > 1 && j == 0)
5596           MyFlags.Flags.setSplit();
5597         else if (j != 0)
5598           MyFlags.Flags.setOrigAlign(1);
5599 
5600         Outs.push_back(MyFlags);
5601       }
5602     }
5603   }
5604 
5605   // Handle the incoming return values from the call.
5606   SmallVector<ISD::InputArg, 32> Ins;
5607   SmallVector<EVT, 4> RetTys;
5608   ComputeValueVTs(*this, RetTy, RetTys);
5609   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5610     EVT VT = RetTys[I];
5611     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5612     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5613     for (unsigned i = 0; i != NumRegs; ++i) {
5614       ISD::InputArg MyFlags;
5615       MyFlags.VT = RegisterVT;
5616       MyFlags.Used = isReturnValueUsed;
5617       if (RetSExt)
5618         MyFlags.Flags.setSExt();
5619       if (RetZExt)
5620         MyFlags.Flags.setZExt();
5621       if (isInreg)
5622         MyFlags.Flags.setInReg();
5623       Ins.push_back(MyFlags);
5624     }
5625   }
5626 
5627   // Check if target-dependent constraints permit a tail call here.
5628   // Target-independent constraints should be checked by the caller.
5629   if (isTailCall &&
5630       !IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, Ins, DAG))
5631     isTailCall = false;
5632 
5633   SmallVector<SDValue, 4> InVals;
5634   Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall,
5635                     Outs, Ins, dl, DAG, InVals);
5636 
5637   // Verify that the target's LowerCall behaved as expected.
5638   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
5639          "LowerCall didn't return a valid chain!");
5640   assert((!isTailCall || InVals.empty()) &&
5641          "LowerCall emitted a return value for a tail call!");
5642   assert((isTailCall || InVals.size() == Ins.size()) &&
5643          "LowerCall didn't emit the correct number of values!");
5644   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5645           assert(InVals[i].getNode() &&
5646                  "LowerCall emitted a null value!");
5647           assert(Ins[i].VT == InVals[i].getValueType() &&
5648                  "LowerCall emitted a value with the wrong type!");
5649         });
5650 
5651   // For a tail call, the return value is merely live-out and there aren't
5652   // any nodes in the DAG representing it. Return a special value to
5653   // indicate that a tail call has been emitted and no more Instructions
5654   // should be processed in the current block.
5655   if (isTailCall) {
5656     DAG.setRoot(Chain);
5657     return std::make_pair(SDValue(), SDValue());
5658   }
5659 
5660   // Collect the legal value parts into potentially illegal values
5661   // that correspond to the original function's return values.
5662   ISD::NodeType AssertOp = ISD::DELETED_NODE;
5663   if (RetSExt)
5664     AssertOp = ISD::AssertSext;
5665   else if (RetZExt)
5666     AssertOp = ISD::AssertZext;
5667   SmallVector<SDValue, 4> ReturnValues;
5668   unsigned CurReg = 0;
5669   for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5670     EVT VT = RetTys[I];
5671     EVT RegisterVT = getRegisterType(RetTy->getContext(), VT);
5672     unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT);
5673 
5674     SDValue ReturnValue =
5675       getCopyFromParts(DAG, dl, &InVals[CurReg], NumRegs, RegisterVT, VT,
5676                        AssertOp);
5677     ReturnValues.push_back(ReturnValue);
5678     CurReg += NumRegs;
5679   }
5680 
5681   // For a function returning void, there is no return value. We can't create
5682   // such a node, so we just return a null return value in that case. In
5683   // that case, nothing will actualy look at the value.
5684   if (ReturnValues.empty())
5685     return std::make_pair(SDValue(), Chain);
5686 
5687   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
5688                             DAG.getVTList(&RetTys[0], RetTys.size()),
5689                             &ReturnValues[0], ReturnValues.size());
5690 
5691   return std::make_pair(Res, Chain);
5692 }
5693 
5694 void TargetLowering::LowerOperationWrapper(SDNode *N,
5695                                            SmallVectorImpl<SDValue> &Results,
5696                                            SelectionDAG &DAG) {
5697   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
5698   if (Res.getNode())
5699     Results.push_back(Res);
5700 }
5701 
5702 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5703   llvm_unreachable("LowerOperation not implemented for this target!");
5704   return SDValue();
5705 }
5706 
5707 
5708 void SelectionDAGBuilder::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5709   SDValue Op = getValue(V);
5710   assert((Op.getOpcode() != ISD::CopyFromReg ||
5711           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5712          "Copy from a reg to the same reg!");
5713   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5714 
5715   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
5716   SDValue Chain = DAG.getEntryNode();
5717   RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0);
5718   PendingExports.push_back(Chain);
5719 }
5720 
5721 #include "llvm/CodeGen/SelectionDAGISel.h"
5722 
5723 void SelectionDAGISel::LowerArguments(BasicBlock *LLVMBB) {
5724   // If this is the entry block, emit arguments.
5725   Function &F = *LLVMBB->getParent();
5726   SelectionDAG &DAG = SDB->DAG;
5727   SDValue OldRoot = DAG.getRoot();
5728   DebugLoc dl = SDB->getCurDebugLoc();
5729   const TargetData *TD = TLI.getTargetData();
5730   SmallVector<ISD::InputArg, 16> Ins;
5731 
5732   // Check whether the function can return without sret-demotion.
5733   SmallVector<EVT, 4> OutVTs;
5734   SmallVector<ISD::ArgFlagsTy, 4> OutsFlags;
5735   getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
5736                 OutVTs, OutsFlags, TLI);
5737   FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
5738 
5739   FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(),
5740     OutVTs, OutsFlags, DAG);
5741   if (!FLI.CanLowerReturn) {
5742     // Put in an sret pointer parameter before all the other parameters.
5743     SmallVector<EVT, 1> ValueVTs;
5744     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5745 
5746     // NOTE: Assuming that a pointer will never break down to more than one VT
5747     // or one register.
5748     ISD::ArgFlagsTy Flags;
5749     Flags.setSRet();
5750     EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]);
5751     ISD::InputArg RetArg(Flags, RegisterVT, true);
5752     Ins.push_back(RetArg);
5753   }
5754 
5755   // Set up the incoming argument description vector.
5756   unsigned Idx = 1;
5757   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5758        I != E; ++I, ++Idx) {
5759     SmallVector<EVT, 4> ValueVTs;
5760     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5761     bool isArgValueUsed = !I->use_empty();
5762     for (unsigned Value = 0, NumValues = ValueVTs.size();
5763          Value != NumValues; ++Value) {
5764       EVT VT = ValueVTs[Value];
5765       const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
5766       ISD::ArgFlagsTy Flags;
5767       unsigned OriginalAlignment =
5768         TD->getABITypeAlignment(ArgTy);
5769 
5770       if (F.paramHasAttr(Idx, Attribute::ZExt))
5771         Flags.setZExt();
5772       if (F.paramHasAttr(Idx, Attribute::SExt))
5773         Flags.setSExt();
5774       if (F.paramHasAttr(Idx, Attribute::InReg))
5775         Flags.setInReg();
5776       if (F.paramHasAttr(Idx, Attribute::StructRet))
5777         Flags.setSRet();
5778       if (F.paramHasAttr(Idx, Attribute::ByVal)) {
5779         Flags.setByVal();
5780         const PointerType *Ty = cast<PointerType>(I->getType());
5781         const Type *ElementTy = Ty->getElementType();
5782         unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy);
5783         unsigned FrameSize  = TD->getTypeAllocSize(ElementTy);
5784         // For ByVal, alignment should be passed from FE.  BE will guess if
5785         // this info is not there but there are cases it cannot get right.
5786         if (F.getParamAlignment(Idx))
5787           FrameAlign = F.getParamAlignment(Idx);
5788         Flags.setByValAlign(FrameAlign);
5789         Flags.setByValSize(FrameSize);
5790       }
5791       if (F.paramHasAttr(Idx, Attribute::Nest))
5792         Flags.setNest();
5793       Flags.setOrigAlign(OriginalAlignment);
5794 
5795       EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5796       unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5797       for (unsigned i = 0; i != NumRegs; ++i) {
5798         ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed);
5799         if (NumRegs > 1 && i == 0)
5800           MyFlags.Flags.setSplit();
5801         // if it isn't first piece, alignment must be 1
5802         else if (i > 0)
5803           MyFlags.Flags.setOrigAlign(1);
5804         Ins.push_back(MyFlags);
5805       }
5806     }
5807   }
5808 
5809   // Call the target to set up the argument values.
5810   SmallVector<SDValue, 8> InVals;
5811   SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
5812                                              F.isVarArg(), Ins,
5813                                              dl, DAG, InVals);
5814 
5815   // Verify that the target's LowerFormalArguments behaved as expected.
5816   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
5817          "LowerFormalArguments didn't return a valid chain!");
5818   assert(InVals.size() == Ins.size() &&
5819          "LowerFormalArguments didn't emit the correct number of values!");
5820   DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
5821           assert(InVals[i].getNode() &&
5822                  "LowerFormalArguments emitted a null value!");
5823           assert(Ins[i].VT == InVals[i].getValueType() &&
5824                  "LowerFormalArguments emitted a value with the wrong type!");
5825         });
5826 
5827   // Update the DAG with the new chain value resulting from argument lowering.
5828   DAG.setRoot(NewRoot);
5829 
5830   // Set up the argument values.
5831   unsigned i = 0;
5832   Idx = 1;
5833   if (!FLI.CanLowerReturn) {
5834     // Create a virtual register for the sret pointer, and put in a copy
5835     // from the sret argument into it.
5836     SmallVector<EVT, 1> ValueVTs;
5837     ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
5838     EVT VT = ValueVTs[0];
5839     EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5840     ISD::NodeType AssertOp = ISD::DELETED_NODE;
5841     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT,
5842                                         VT, AssertOp);
5843 
5844     MachineFunction& MF = SDB->DAG.getMachineFunction();
5845     MachineRegisterInfo& RegInfo = MF.getRegInfo();
5846     unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
5847     FLI.DemoteRegister = SRetReg;
5848     NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), SRetReg, ArgValue);
5849     DAG.setRoot(NewRoot);
5850 
5851     // i indexes lowered arguments.  Bump it past the hidden sret argument.
5852     // Idx indexes LLVM arguments.  Don't touch it.
5853     ++i;
5854   }
5855   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5856       ++I, ++Idx) {
5857     SmallVector<SDValue, 4> ArgValues;
5858     SmallVector<EVT, 4> ValueVTs;
5859     ComputeValueVTs(TLI, I->getType(), ValueVTs);
5860     unsigned NumValues = ValueVTs.size();
5861     for (unsigned Value = 0; Value != NumValues; ++Value) {
5862       EVT VT = ValueVTs[Value];
5863       EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
5864       unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5865 
5866       if (!I->use_empty()) {
5867         ISD::NodeType AssertOp = ISD::DELETED_NODE;
5868         if (F.paramHasAttr(Idx, Attribute::SExt))
5869           AssertOp = ISD::AssertSext;
5870         else if (F.paramHasAttr(Idx, Attribute::ZExt))
5871           AssertOp = ISD::AssertZext;
5872 
5873         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
5874                                              PartVT, VT, AssertOp));
5875       }
5876       i += NumParts;
5877     }
5878     if (!I->use_empty()) {
5879       SDB->setValue(I, DAG.getMergeValues(&ArgValues[0], NumValues,
5880                                           SDB->getCurDebugLoc()));
5881       // If this argument is live outside of the entry block, insert a copy from
5882       // whereever we got it to the vreg that other BB's will reference it as.
5883       SDB->CopyToExportRegsIfNeeded(I);
5884     }
5885   }
5886   assert(i == InVals.size() && "Argument register count mismatch!");
5887 
5888   // Finally, if the target has anything special to do, allow it to do so.
5889   // FIXME: this should insert code into the DAG!
5890   EmitFunctionEntryCode(F, SDB->DAG.getMachineFunction());
5891 }
5892 
5893 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
5894 /// ensure constants are generated when needed.  Remember the virtual registers
5895 /// that need to be added to the Machine PHI nodes as input.  We cannot just
5896 /// directly add them, because expansion might result in multiple MBB's for one
5897 /// BB.  As such, the start of the BB might correspond to a different MBB than
5898 /// the end.
5899 ///
5900 void
5901 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5902   TerminatorInst *TI = LLVMBB->getTerminator();
5903 
5904   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5905 
5906   // Check successor nodes' PHI nodes that expect a constant to be available
5907   // from this block.
5908   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5909     BasicBlock *SuccBB = TI->getSuccessor(succ);
5910     if (!isa<PHINode>(SuccBB->begin())) continue;
5911     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5912 
5913     // If this terminator has multiple identical successors (common for
5914     // switches), only handle each succ once.
5915     if (!SuccsHandled.insert(SuccMBB)) continue;
5916 
5917     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5918     PHINode *PN;
5919 
5920     // At this point we know that there is a 1-1 correspondence between LLVM PHI
5921     // nodes and Machine PHI nodes, but the incoming operands have not been
5922     // emitted yet.
5923     for (BasicBlock::iterator I = SuccBB->begin();
5924          (PN = dyn_cast<PHINode>(I)); ++I) {
5925       // Ignore dead phi's.
5926       if (PN->use_empty()) continue;
5927 
5928       unsigned Reg;
5929       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5930 
5931       if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5932         unsigned &RegOut = SDB->ConstantsOut[C];
5933         if (RegOut == 0) {
5934           RegOut = FuncInfo->CreateRegForValue(C);
5935           SDB->CopyValueToVirtualRegister(C, RegOut);
5936         }
5937         Reg = RegOut;
5938       } else {
5939         Reg = FuncInfo->ValueMap[PHIOp];
5940         if (Reg == 0) {
5941           assert(isa<AllocaInst>(PHIOp) &&
5942                  FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5943                  "Didn't codegen value into a register!??");
5944           Reg = FuncInfo->CreateRegForValue(PHIOp);
5945           SDB->CopyValueToVirtualRegister(PHIOp, Reg);
5946         }
5947       }
5948 
5949       // Remember that this register needs to added to the machine PHI node as
5950       // the input for this MBB.
5951       SmallVector<EVT, 4> ValueVTs;
5952       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5953       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5954         EVT VT = ValueVTs[vti];
5955         unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT);
5956         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5957           SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5958         Reg += NumRegisters;
5959       }
5960     }
5961   }
5962   SDB->ConstantsOut.clear();
5963 }
5964 
5965 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
5966 /// supports legal types, and it emits MachineInstrs directly instead of
5967 /// creating SelectionDAG nodes.
5968 ///
5969 bool
5970 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
5971                                                       FastISel *F) {
5972   TerminatorInst *TI = LLVMBB->getTerminator();
5973 
5974   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5975   unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size();
5976 
5977   // Check successor nodes' PHI nodes that expect a constant to be available
5978   // from this block.
5979   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5980     BasicBlock *SuccBB = TI->getSuccessor(succ);
5981     if (!isa<PHINode>(SuccBB->begin())) continue;
5982     MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5983 
5984     // If this terminator has multiple identical successors (common for
5985     // switches), only handle each succ once.
5986     if (!SuccsHandled.insert(SuccMBB)) continue;
5987 
5988     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5989     PHINode *PN;
5990 
5991     // At this point we know that there is a 1-1 correspondence between LLVM PHI
5992     // nodes and Machine PHI nodes, but the incoming operands have not been
5993     // emitted yet.
5994     for (BasicBlock::iterator I = SuccBB->begin();
5995          (PN = dyn_cast<PHINode>(I)); ++I) {
5996       // Ignore dead phi's.
5997       if (PN->use_empty()) continue;
5998 
5999       // Only handle legal types. Two interesting things to note here. First,
6000       // by bailing out early, we may leave behind some dead instructions,
6001       // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
6002       // own moves. Second, this check is necessary becuase FastISel doesn't
6003       // use CreateRegForValue to create registers, so it always creates
6004       // exactly one register for each non-void instruction.
6005       EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
6006       if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
6007         // Promote MVT::i1.
6008         if (VT == MVT::i1)
6009           VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT);
6010         else {
6011           SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6012           return false;
6013         }
6014       }
6015 
6016       Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6017 
6018       unsigned Reg = F->getRegForValue(PHIOp);
6019       if (Reg == 0) {
6020         SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
6021         return false;
6022       }
6023       SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
6024     }
6025   }
6026 
6027   return true;
6028 }
6029