1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include <algorithm> 62 using namespace llvm; 63 64 #define DEBUG_TYPE "isel" 65 66 /// LimitFloatPrecision - Generate low-precision inline sequences for 67 /// some float libcalls (6, 8 or 12 bits). 68 static unsigned LimitFloatPrecision; 69 70 static cl::opt<unsigned, true> 71 LimitFPPrecision("limit-float-precision", 72 cl::desc("Generate low-precision inline sequences " 73 "for some float libcalls"), 74 cl::location(LimitFloatPrecision), 75 cl::init(0)); 76 77 // Limit the width of DAG chains. This is important in general to prevent 78 // prevent DAG-based analysis from blowing up. For example, alias analysis and 79 // load clustering may not complete in reasonable time. It is difficult to 80 // recognize and avoid this situation within each individual analysis, and 81 // future analyses are likely to have the same behavior. Limiting DAG width is 82 // the safe approach, and will be especially important with global DAGs. 83 // 84 // MaxParallelChains default is arbitrarily high to avoid affecting 85 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 86 // sequence over this should have been converted to llvm.memcpy by the 87 // frontend. It easy to induce this behavior with .ll code such as: 88 // %buffer = alloca [4096 x i8] 89 // %data = load [4096 x i8]* %argPtr 90 // store [4096 x i8] %data, [4096 x i8]* %buffer 91 static const unsigned MaxParallelChains = 64; 92 93 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 94 const SDValue *Parts, unsigned NumParts, 95 MVT PartVT, EVT ValueVT, const Value *V); 96 97 /// getCopyFromParts - Create a value that contains the specified legal parts 98 /// combined into the value they represent. If the parts combine to a type 99 /// larger then ValueVT then AssertOp can be used to specify whether the extra 100 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 101 /// (ISD::AssertSext). 102 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 103 const SDValue *Parts, 104 unsigned NumParts, MVT PartVT, EVT ValueVT, 105 const Value *V, 106 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 107 if (ValueVT.isVector()) 108 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 109 PartVT, ValueVT, V); 110 111 assert(NumParts > 0 && "No parts to assemble!"); 112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 113 SDValue Val = Parts[0]; 114 115 if (NumParts > 1) { 116 // Assemble the value from multiple parts. 117 if (ValueVT.isInteger()) { 118 unsigned PartBits = PartVT.getSizeInBits(); 119 unsigned ValueBits = ValueVT.getSizeInBits(); 120 121 // Assemble the power of 2 part. 122 unsigned RoundParts = NumParts & (NumParts - 1) ? 123 1 << Log2_32(NumParts) : NumParts; 124 unsigned RoundBits = PartBits * RoundParts; 125 EVT RoundVT = RoundBits == ValueBits ? 126 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 127 SDValue Lo, Hi; 128 129 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 130 131 if (RoundParts > 2) { 132 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 133 PartVT, HalfVT, V); 134 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 135 RoundParts / 2, PartVT, HalfVT, V); 136 } else { 137 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 138 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 139 } 140 141 if (TLI.isBigEndian()) 142 std::swap(Lo, Hi); 143 144 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 145 146 if (RoundParts < NumParts) { 147 // Assemble the trailing non-power-of-2 part. 148 unsigned OddParts = NumParts - RoundParts; 149 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 150 Hi = getCopyFromParts(DAG, DL, 151 Parts + RoundParts, OddParts, PartVT, OddVT, V); 152 153 // Combine the round and odd parts. 154 Lo = Val; 155 if (TLI.isBigEndian()) 156 std::swap(Lo, Hi); 157 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 158 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 159 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 160 DAG.getConstant(Lo.getValueType().getSizeInBits(), 161 TLI.getPointerTy())); 162 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 163 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 164 } 165 } else if (PartVT.isFloatingPoint()) { 166 // FP split into multiple FP parts (for ppcf128) 167 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 168 "Unexpected split"); 169 SDValue Lo, Hi; 170 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 171 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 172 if (TLI.hasBigEndianPartOrdering(ValueVT)) 173 std::swap(Lo, Hi); 174 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 175 } else { 176 // FP split into integer parts (soft fp) 177 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 178 !PartVT.isVector() && "Unexpected split"); 179 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 180 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 181 } 182 } 183 184 // There is now one part, held in Val. Correct it to match ValueVT. 185 EVT PartEVT = Val.getValueType(); 186 187 if (PartEVT == ValueVT) 188 return Val; 189 190 if (PartEVT.isInteger() && ValueVT.isInteger()) { 191 if (ValueVT.bitsLT(PartEVT)) { 192 // For a truncate, see if we have any information to 193 // indicate whether the truncated bits will always be 194 // zero or sign-extension. 195 if (AssertOp != ISD::DELETED_NODE) 196 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 197 DAG.getValueType(ValueVT)); 198 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 199 } 200 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 201 } 202 203 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 204 // FP_ROUND's are always exact here. 205 if (ValueVT.bitsLT(Val.getValueType())) 206 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 207 DAG.getTargetConstant(1, TLI.getPointerTy())); 208 209 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 213 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 214 215 llvm_unreachable("Unknown mismatch!"); 216 } 217 218 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 219 const Twine &ErrMsg) { 220 const Instruction *I = dyn_cast_or_null<Instruction>(V); 221 if (!V) 222 return Ctx.emitError(ErrMsg); 223 224 const char *AsmError = ", possible invalid constraint for vector type"; 225 if (const CallInst *CI = dyn_cast<CallInst>(I)) 226 if (isa<InlineAsm>(CI->getCalledValue())) 227 return Ctx.emitError(I, ErrMsg + AsmError); 228 229 return Ctx.emitError(I, ErrMsg); 230 } 231 232 /// getCopyFromPartsVector - Create a value that contains the specified legal 233 /// parts combined into the value they represent. If the parts combine to a 234 /// type larger then ValueVT then AssertOp can be used to specify whether the 235 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 236 /// ValueVT (ISD::AssertSext). 237 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 238 const SDValue *Parts, unsigned NumParts, 239 MVT PartVT, EVT ValueVT, const Value *V) { 240 assert(ValueVT.isVector() && "Not a vector value"); 241 assert(NumParts > 0 && "No parts to assemble!"); 242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 243 SDValue Val = Parts[0]; 244 245 // Handle a multi-element vector. 246 if (NumParts > 1) { 247 EVT IntermediateVT; 248 MVT RegisterVT; 249 unsigned NumIntermediates; 250 unsigned NumRegs = 251 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 252 NumIntermediates, RegisterVT); 253 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 254 NumParts = NumRegs; // Silence a compiler warning. 255 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 256 assert(RegisterVT == Parts[0].getSimpleValueType() && 257 "Part type doesn't match part!"); 258 259 // Assemble the parts into intermediate operands. 260 SmallVector<SDValue, 8> Ops(NumIntermediates); 261 if (NumIntermediates == NumParts) { 262 // If the register was not expanded, truncate or copy the value, 263 // as appropriate. 264 for (unsigned i = 0; i != NumParts; ++i) 265 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 266 PartVT, IntermediateVT, V); 267 } else if (NumParts > 0) { 268 // If the intermediate type was expanded, build the intermediate 269 // operands from the parts. 270 assert(NumParts % NumIntermediates == 0 && 271 "Must expand into a divisible number of parts!"); 272 unsigned Factor = NumParts / NumIntermediates; 273 for (unsigned i = 0; i != NumIntermediates; ++i) 274 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 275 PartVT, IntermediateVT, V); 276 } 277 278 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 279 // intermediate operands. 280 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 281 : ISD::BUILD_VECTOR, 282 DL, ValueVT, Ops); 283 } 284 285 // There is now one part, held in Val. Correct it to match ValueVT. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isVector()) { 292 // If the element type of the source/dest vectors are the same, but the 293 // parts vector has more elements than the value vector, then we have a 294 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 295 // elements we want. 296 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 297 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 298 "Cannot narrow, it would be a lossy transformation"); 299 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 300 DAG.getConstant(0, TLI.getVectorIdxTy())); 301 } 302 303 // Vector/Vector bitcast. 304 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 308 "Cannot handle this kind of promotion"); 309 // Promoted vector extract 310 bool Smaller = ValueVT.bitsLE(PartEVT); 311 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 312 DL, ValueVT, Val); 313 314 } 315 316 // Trivial bitcast if the types are the same size and the destination 317 // vector type is legal. 318 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 319 TLI.isTypeLegal(ValueVT)) 320 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 321 322 // Handle cases such as i8 -> <1 x i1> 323 if (ValueVT.getVectorNumElements() != 1) { 324 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 325 "non-trivial scalar-to-vector conversion"); 326 return DAG.getUNDEF(ValueVT); 327 } 328 329 if (ValueVT.getVectorNumElements() == 1 && 330 ValueVT.getVectorElementType() != PartEVT) { 331 bool Smaller = ValueVT.bitsLE(PartEVT); 332 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 333 DL, ValueVT.getScalarType(), Val); 334 } 335 336 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 337 } 338 339 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 340 SDValue Val, SDValue *Parts, unsigned NumParts, 341 MVT PartVT, const Value *V); 342 343 /// getCopyToParts - Create a series of nodes that contain the specified value 344 /// split into legal parts. If the parts contain more bits than Val, then, for 345 /// integers, ExtendKind can be used to specify how to generate the extra bits. 346 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V, 349 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 350 EVT ValueVT = Val.getValueType(); 351 352 // Handle the vector case separately. 353 if (ValueVT.isVector()) 354 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 355 356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 357 unsigned PartBits = PartVT.getSizeInBits(); 358 unsigned OrigNumParts = NumParts; 359 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 360 361 if (NumParts == 0) 362 return; 363 364 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 365 EVT PartEVT = PartVT; 366 if (PartEVT == ValueVT) { 367 assert(NumParts == 1 && "No-op copy with multiple parts!"); 368 Parts[0] = Val; 369 return; 370 } 371 372 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 373 // If the parts cover more bits than the value has, promote the value. 374 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 375 assert(NumParts == 1 && "Do not know what to promote to!"); 376 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 377 } else { 378 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 379 ValueVT.isInteger() && 380 "Unknown mismatch!"); 381 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 382 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 383 if (PartVT == MVT::x86mmx) 384 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 385 } 386 } else if (PartBits == ValueVT.getSizeInBits()) { 387 // Different types of the same size. 388 assert(NumParts == 1 && PartEVT != ValueVT); 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 391 // If the parts cover less bits than value has, truncate the value. 392 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 393 ValueVT.isInteger() && 394 "Unknown mismatch!"); 395 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 396 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 397 if (PartVT == MVT::x86mmx) 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } 400 401 // The value may have changed - recompute ValueVT. 402 ValueVT = Val.getValueType(); 403 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 404 "Failed to tile the value with PartVT!"); 405 406 if (NumParts == 1) { 407 if (PartEVT != ValueVT) 408 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 409 "scalar-to-vector conversion failed"); 410 411 Parts[0] = Val; 412 return; 413 } 414 415 // Expand the value into multiple parts. 416 if (NumParts & (NumParts - 1)) { 417 // The number of parts is not a power of 2. Split off and copy the tail. 418 assert(PartVT.isInteger() && ValueVT.isInteger() && 419 "Do not know what to expand to!"); 420 unsigned RoundParts = 1 << Log2_32(NumParts); 421 unsigned RoundBits = RoundParts * PartBits; 422 unsigned OddParts = NumParts - RoundParts; 423 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 424 DAG.getIntPtrConstant(RoundBits)); 425 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 426 427 if (TLI.isBigEndian()) 428 // The odd parts were reversed by getCopyToParts - unreverse them. 429 std::reverse(Parts + RoundParts, Parts + NumParts); 430 431 NumParts = RoundParts; 432 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 433 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 434 } 435 436 // The number of parts is a power of 2. Repeatedly bisect the value using 437 // EXTRACT_ELEMENT. 438 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 439 EVT::getIntegerVT(*DAG.getContext(), 440 ValueVT.getSizeInBits()), 441 Val); 442 443 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 444 for (unsigned i = 0; i < NumParts; i += StepSize) { 445 unsigned ThisBits = StepSize * PartBits / 2; 446 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 447 SDValue &Part0 = Parts[i]; 448 SDValue &Part1 = Parts[i+StepSize/2]; 449 450 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 451 ThisVT, Part0, DAG.getIntPtrConstant(1)); 452 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 453 ThisVT, Part0, DAG.getIntPtrConstant(0)); 454 455 if (ThisBits == PartBits && ThisVT != PartVT) { 456 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 458 } 459 } 460 } 461 462 if (TLI.isBigEndian()) 463 std::reverse(Parts, Parts + OrigNumParts); 464 } 465 466 467 /// getCopyToPartsVector - Create a series of nodes that contain the specified 468 /// value split into legal parts. 469 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 470 SDValue Val, SDValue *Parts, unsigned NumParts, 471 MVT PartVT, const Value *V) { 472 EVT ValueVT = Val.getValueType(); 473 assert(ValueVT.isVector() && "Not a vector"); 474 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 475 476 if (NumParts == 1) { 477 EVT PartEVT = PartVT; 478 if (PartEVT == ValueVT) { 479 // Nothing to do. 480 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 481 // Bitconvert vector->vector case. 482 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 483 } else if (PartVT.isVector() && 484 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 485 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 486 EVT ElementVT = PartVT.getVectorElementType(); 487 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 488 // undef elements. 489 SmallVector<SDValue, 16> Ops; 490 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 491 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 492 ElementVT, Val, DAG.getConstant(i, 493 TLI.getVectorIdxTy()))); 494 495 for (unsigned i = ValueVT.getVectorNumElements(), 496 e = PartVT.getVectorNumElements(); i != e; ++i) 497 Ops.push_back(DAG.getUNDEF(ElementVT)); 498 499 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 500 501 // FIXME: Use CONCAT for 2x -> 4x. 502 503 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 504 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 505 } else if (PartVT.isVector() && 506 PartEVT.getVectorElementType().bitsGE( 507 ValueVT.getVectorElementType()) && 508 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 509 510 // Promoted vector extract 511 bool Smaller = PartEVT.bitsLE(ValueVT); 512 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 513 DL, PartVT, Val); 514 } else{ 515 // Vector -> scalar conversion. 516 assert(ValueVT.getVectorNumElements() == 1 && 517 "Only trivial vector-to-scalar conversions should get here!"); 518 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 519 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 520 521 bool Smaller = ValueVT.bitsLE(PartVT); 522 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 523 DL, PartVT, Val); 524 } 525 526 Parts[0] = Val; 527 return; 528 } 529 530 // Handle a multi-element vector. 531 EVT IntermediateVT; 532 MVT RegisterVT; 533 unsigned NumIntermediates; 534 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 535 IntermediateVT, 536 NumIntermediates, RegisterVT); 537 unsigned NumElements = ValueVT.getVectorNumElements(); 538 539 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 540 NumParts = NumRegs; // Silence a compiler warning. 541 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 542 543 // Split the vector into intermediate operands. 544 SmallVector<SDValue, 8> Ops(NumIntermediates); 545 for (unsigned i = 0; i != NumIntermediates; ++i) { 546 if (IntermediateVT.isVector()) 547 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 548 IntermediateVT, Val, 549 DAG.getConstant(i * (NumElements / NumIntermediates), 550 TLI.getVectorIdxTy())); 551 else 552 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 553 IntermediateVT, Val, 554 DAG.getConstant(i, TLI.getVectorIdxTy())); 555 } 556 557 // Split the intermediate operands into legal parts. 558 if (NumParts == NumIntermediates) { 559 // If the register was not expanded, promote or copy the value, 560 // as appropriate. 561 for (unsigned i = 0; i != NumParts; ++i) 562 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 563 } else if (NumParts > 0) { 564 // If the intermediate type was expanded, split each the value into 565 // legal parts. 566 assert(NumParts % NumIntermediates == 0 && 567 "Must expand into a divisible number of parts!"); 568 unsigned Factor = NumParts / NumIntermediates; 569 for (unsigned i = 0; i != NumIntermediates; ++i) 570 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 571 } 572 } 573 574 namespace { 575 /// RegsForValue - This struct represents the registers (physical or virtual) 576 /// that a particular set of values is assigned, and the type information 577 /// about the value. The most common situation is to represent one value at a 578 /// time, but struct or array values are handled element-wise as multiple 579 /// values. The splitting of aggregates is performed recursively, so that we 580 /// never have aggregate-typed registers. The values at this point do not 581 /// necessarily have legal types, so each value may require one or more 582 /// registers of some legal type. 583 /// 584 struct RegsForValue { 585 /// ValueVTs - The value types of the values, which may not be legal, and 586 /// may need be promoted or synthesized from one or more registers. 587 /// 588 SmallVector<EVT, 4> ValueVTs; 589 590 /// RegVTs - The value types of the registers. This is the same size as 591 /// ValueVTs and it records, for each value, what the type of the assigned 592 /// register or registers are. (Individual values are never synthesized 593 /// from more than one type of register.) 594 /// 595 /// With virtual registers, the contents of RegVTs is redundant with TLI's 596 /// getRegisterType member function, however when with physical registers 597 /// it is necessary to have a separate record of the types. 598 /// 599 SmallVector<MVT, 4> RegVTs; 600 601 /// Regs - This list holds the registers assigned to the values. 602 /// Each legal or promoted value requires one register, and each 603 /// expanded value requires multiple registers. 604 /// 605 SmallVector<unsigned, 4> Regs; 606 607 RegsForValue() {} 608 609 RegsForValue(const SmallVector<unsigned, 4> ®s, 610 MVT regvt, EVT valuevt) 611 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 612 613 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 614 unsigned Reg, Type *Ty) { 615 ComputeValueVTs(tli, Ty, ValueVTs); 616 617 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 EVT ValueVT = ValueVTs[Value]; 619 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 620 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 621 for (unsigned i = 0; i != NumRegs; ++i) 622 Regs.push_back(Reg + i); 623 RegVTs.push_back(RegisterVT); 624 Reg += NumRegs; 625 } 626 } 627 628 /// append - Add the specified values to this one. 629 void append(const RegsForValue &RHS) { 630 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 631 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 632 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 633 } 634 635 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 636 /// this value and returns the result as a ValueVTs value. This uses 637 /// Chain/Flag as the input and updates them for the output Chain/Flag. 638 /// If the Flag pointer is NULL, no flag is used. 639 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V = nullptr) const; 643 644 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 645 /// specified value into the registers specified by this object. This uses 646 /// Chain/Flag as the input and updates them for the output Chain/Flag. 647 /// If the Flag pointer is NULL, no flag is used. 648 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 649 SDValue &Chain, SDValue *Flag, const Value *V) const; 650 651 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 652 /// operand list. This adds the code marker, matching input operand index 653 /// (if applicable), and includes the number of values added into it. 654 void AddInlineAsmOperands(unsigned Kind, 655 bool HasMatching, unsigned MatchingIdx, 656 SelectionDAG &DAG, 657 std::vector<SDValue> &Ops) const; 658 }; 659 } 660 661 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 662 /// this value and returns the result as a ValueVT value. This uses 663 /// Chain/Flag as the input and updates them for the output Chain/Flag. 664 /// If the Flag pointer is NULL, no flag is used. 665 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 666 FunctionLoweringInfo &FuncInfo, 667 SDLoc dl, 668 SDValue &Chain, SDValue *Flag, 669 const Value *V) const { 670 // A Value with type {} or [0 x %t] needs no registers. 671 if (ValueVTs.empty()) 672 return SDValue(); 673 674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 675 676 // Assemble the legal parts into the final values. 677 SmallVector<SDValue, 4> Values(ValueVTs.size()); 678 SmallVector<SDValue, 8> Parts; 679 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 680 // Copy the legal parts from the registers. 681 EVT ValueVT = ValueVTs[Value]; 682 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 683 MVT RegisterVT = RegVTs[Value]; 684 685 Parts.resize(NumRegs); 686 for (unsigned i = 0; i != NumRegs; ++i) { 687 SDValue P; 688 if (!Flag) { 689 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 690 } else { 691 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 692 *Flag = P.getValue(2); 693 } 694 695 Chain = P.getValue(1); 696 Parts[i] = P; 697 698 // If the source register was virtual and if we know something about it, 699 // add an assert node. 700 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 701 !RegisterVT.isInteger() || RegisterVT.isVector()) 702 continue; 703 704 const FunctionLoweringInfo::LiveOutInfo *LOI = 705 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 706 if (!LOI) 707 continue; 708 709 unsigned RegSize = RegisterVT.getSizeInBits(); 710 unsigned NumSignBits = LOI->NumSignBits; 711 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 712 713 if (NumZeroBits == RegSize) { 714 // The current value is a zero. 715 // Explicitly express that as it would be easier for 716 // optimizations to kick in. 717 Parts[i] = DAG.getConstant(0, RegisterVT); 718 continue; 719 } 720 721 // FIXME: We capture more information than the dag can represent. For 722 // now, just use the tightest assertzext/assertsext possible. 723 bool isSExt = true; 724 EVT FromVT(MVT::Other); 725 if (NumSignBits == RegSize) 726 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 727 else if (NumZeroBits >= RegSize-1) 728 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 729 else if (NumSignBits > RegSize-8) 730 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 731 else if (NumZeroBits >= RegSize-8) 732 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 733 else if (NumSignBits > RegSize-16) 734 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 735 else if (NumZeroBits >= RegSize-16) 736 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 737 else if (NumSignBits > RegSize-32) 738 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 739 else if (NumZeroBits >= RegSize-32) 740 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 741 else 742 continue; 743 744 // Add an assertion node. 745 assert(FromVT != MVT::Other); 746 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 747 RegisterVT, P, DAG.getValueType(FromVT)); 748 } 749 750 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 751 NumRegs, RegisterVT, ValueVT, V); 752 Part += NumRegs; 753 Parts.clear(); 754 } 755 756 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 757 } 758 759 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 760 /// specified value into the registers specified by this object. This uses 761 /// Chain/Flag as the input and updates them for the output Chain/Flag. 762 /// If the Flag pointer is NULL, no flag is used. 763 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 764 SDValue &Chain, SDValue *Flag, 765 const Value *V) const { 766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 767 768 // Get the list of the values's legal parts. 769 unsigned NumRegs = Regs.size(); 770 SmallVector<SDValue, 8> Parts(NumRegs); 771 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 772 EVT ValueVT = ValueVTs[Value]; 773 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 774 MVT RegisterVT = RegVTs[Value]; 775 ISD::NodeType ExtendKind = 776 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND; 777 778 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 779 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 780 Part += NumParts; 781 } 782 783 // Copy the parts into the registers. 784 SmallVector<SDValue, 8> Chains(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue Part; 787 if (!Flag) { 788 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 789 } else { 790 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 791 *Flag = Part.getValue(1); 792 } 793 794 Chains[i] = Part.getValue(0); 795 } 796 797 if (NumRegs == 1 || Flag) 798 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 799 // flagged to it. That is the CopyToReg nodes and the user are considered 800 // a single scheduling unit. If we create a TokenFactor and return it as 801 // chain, then the TokenFactor is both a predecessor (operand) of the 802 // user as well as a successor (the TF operands are flagged to the user). 803 // c1, f1 = CopyToReg 804 // c2, f2 = CopyToReg 805 // c3 = TokenFactor c1, c2 806 // ... 807 // = op c3, ..., f2 808 Chain = Chains[NumRegs-1]; 809 else 810 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 811 } 812 813 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 814 /// operand list. This adds the code marker and includes the number of 815 /// values added into it. 816 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 817 unsigned MatchingIdx, 818 SelectionDAG &DAG, 819 std::vector<SDValue> &Ops) const { 820 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 821 822 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 823 if (HasMatching) 824 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 825 else if (!Regs.empty() && 826 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 827 // Put the register class of the virtual registers in the flag word. That 828 // way, later passes can recompute register class constraints for inline 829 // assembly as well as normal instructions. 830 // Don't do this for tied operands that can use the regclass information 831 // from the def. 832 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 833 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 834 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 835 } 836 837 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 838 Ops.push_back(Res); 839 840 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 841 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 842 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 843 MVT RegisterVT = RegVTs[Value]; 844 for (unsigned i = 0; i != NumRegs; ++i) { 845 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 846 unsigned TheReg = Regs[Reg++]; 847 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 848 849 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 850 // If we clobbered the stack pointer, MFI should know about it. 851 assert(DAG.getMachineFunction().getFrameInfo()-> 852 hasInlineAsmWithSPAdjust()); 853 } 854 } 855 } 856 } 857 858 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 859 const TargetLibraryInfo *li) { 860 AA = &aa; 861 GFI = gfi; 862 LibInfo = li; 863 DL = DAG.getTarget().getDataLayout(); 864 Context = DAG.getContext(); 865 LPadToCallSiteMap.clear(); 866 } 867 868 /// clear - Clear out the current SelectionDAG and the associated 869 /// state and prepare this SelectionDAGBuilder object to be used 870 /// for a new block. This doesn't clear out information about 871 /// additional blocks that are needed to complete switch lowering 872 /// or PHI node updating; that information is cleared out as it is 873 /// consumed. 874 void SelectionDAGBuilder::clear() { 875 NodeMap.clear(); 876 UnusedArgNodeMap.clear(); 877 PendingLoads.clear(); 878 PendingExports.clear(); 879 CurInst = nullptr; 880 HasTailCall = false; 881 SDNodeOrder = LowestSDNodeOrder; 882 } 883 884 /// clearDanglingDebugInfo - Clear the dangling debug information 885 /// map. This function is separated from the clear so that debug 886 /// information that is dangling in a basic block can be properly 887 /// resolved in a different basic block. This allows the 888 /// SelectionDAG to resolve dangling debug information attached 889 /// to PHI nodes. 890 void SelectionDAGBuilder::clearDanglingDebugInfo() { 891 DanglingDebugInfoMap.clear(); 892 } 893 894 /// getRoot - Return the current virtual root of the Selection DAG, 895 /// flushing any PendingLoad items. This must be done before emitting 896 /// a store or any other node that may need to be ordered after any 897 /// prior load instructions. 898 /// 899 SDValue SelectionDAGBuilder::getRoot() { 900 if (PendingLoads.empty()) 901 return DAG.getRoot(); 902 903 if (PendingLoads.size() == 1) { 904 SDValue Root = PendingLoads[0]; 905 DAG.setRoot(Root); 906 PendingLoads.clear(); 907 return Root; 908 } 909 910 // Otherwise, we have to make a token factor node. 911 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 912 PendingLoads); 913 PendingLoads.clear(); 914 DAG.setRoot(Root); 915 return Root; 916 } 917 918 /// getControlRoot - Similar to getRoot, but instead of flushing all the 919 /// PendingLoad items, flush all the PendingExports items. It is necessary 920 /// to do this before emitting a terminator instruction. 921 /// 922 SDValue SelectionDAGBuilder::getControlRoot() { 923 SDValue Root = DAG.getRoot(); 924 925 if (PendingExports.empty()) 926 return Root; 927 928 // Turn all of the CopyToReg chains into one factored node. 929 if (Root.getOpcode() != ISD::EntryToken) { 930 unsigned i = 0, e = PendingExports.size(); 931 for (; i != e; ++i) { 932 assert(PendingExports[i].getNode()->getNumOperands() > 1); 933 if (PendingExports[i].getNode()->getOperand(0) == Root) 934 break; // Don't add the root if we already indirectly depend on it. 935 } 936 937 if (i == e) 938 PendingExports.push_back(Root); 939 } 940 941 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 942 PendingExports); 943 PendingExports.clear(); 944 DAG.setRoot(Root); 945 return Root; 946 } 947 948 void SelectionDAGBuilder::visit(const Instruction &I) { 949 // Set up outgoing PHI node register values before emitting the terminator. 950 if (isa<TerminatorInst>(&I)) 951 HandlePHINodesInSuccessorBlocks(I.getParent()); 952 953 ++SDNodeOrder; 954 955 CurInst = &I; 956 957 visit(I.getOpcode(), I); 958 959 if (!isa<TerminatorInst>(&I) && !HasTailCall) 960 CopyToExportRegsIfNeeded(&I); 961 962 CurInst = nullptr; 963 } 964 965 void SelectionDAGBuilder::visitPHI(const PHINode &) { 966 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 967 } 968 969 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 970 // Note: this doesn't use InstVisitor, because it has to work with 971 // ConstantExpr's in addition to instructions. 972 switch (Opcode) { 973 default: llvm_unreachable("Unknown instruction type encountered!"); 974 // Build the switch statement using the Instruction.def file. 975 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 976 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 977 #include "llvm/IR/Instruction.def" 978 } 979 } 980 981 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 982 // generate the debug data structures now that we've seen its definition. 983 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 984 SDValue Val) { 985 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 986 if (DDI.getDI()) { 987 const DbgValueInst *DI = DDI.getDI(); 988 DebugLoc dl = DDI.getdl(); 989 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 990 MDNode *Variable = DI->getVariable(); 991 uint64_t Offset = DI->getOffset(); 992 // A dbg.value for an alloca is always indirect. 993 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 994 SDDbgValue *SDV; 995 if (Val.getNode()) { 996 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) { 997 SDV = DAG.getDbgValue(Variable, Val.getNode(), 998 Val.getResNo(), IsIndirect, 999 Offset, dl, DbgSDNodeOrder); 1000 DAG.AddDbgValue(SDV, Val.getNode(), false); 1001 } 1002 } else 1003 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1004 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1005 } 1006 } 1007 1008 /// getValue - Return an SDValue for the given Value. 1009 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1010 // If we already have an SDValue for this value, use it. It's important 1011 // to do this first, so that we don't create a CopyFromReg if we already 1012 // have a regular SDValue. 1013 SDValue &N = NodeMap[V]; 1014 if (N.getNode()) return N; 1015 1016 // If there's a virtual register allocated and initialized for this 1017 // value, use it. 1018 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1019 if (It != FuncInfo.ValueMap.end()) { 1020 unsigned InReg = It->second; 1021 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(), 1022 InReg, V->getType()); 1023 SDValue Chain = DAG.getEntryNode(); 1024 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1025 resolveDanglingDebugInfo(V, N); 1026 return N; 1027 } 1028 1029 // Otherwise create a new SDValue and remember it. 1030 SDValue Val = getValueImpl(V); 1031 NodeMap[V] = Val; 1032 resolveDanglingDebugInfo(V, Val); 1033 return Val; 1034 } 1035 1036 /// getNonRegisterValue - Return an SDValue for the given Value, but 1037 /// don't look in FuncInfo.ValueMap for a virtual register. 1038 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1039 // If we already have an SDValue for this value, use it. 1040 SDValue &N = NodeMap[V]; 1041 if (N.getNode()) return N; 1042 1043 // Otherwise create a new SDValue and remember it. 1044 SDValue Val = getValueImpl(V); 1045 NodeMap[V] = Val; 1046 resolveDanglingDebugInfo(V, Val); 1047 return Val; 1048 } 1049 1050 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1051 /// Create an SDValue for the given value. 1052 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1053 const TargetLowering *TLI = TM.getTargetLowering(); 1054 1055 if (const Constant *C = dyn_cast<Constant>(V)) { 1056 EVT VT = TLI->getValueType(V->getType(), true); 1057 1058 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1059 return DAG.getConstant(*CI, VT); 1060 1061 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1062 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1063 1064 if (isa<ConstantPointerNull>(C)) { 1065 unsigned AS = V->getType()->getPointerAddressSpace(); 1066 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1067 } 1068 1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1070 return DAG.getConstantFP(*CFP, VT); 1071 1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1073 return DAG.getUNDEF(VT); 1074 1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1076 visit(CE->getOpcode(), *CE); 1077 SDValue N1 = NodeMap[V]; 1078 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1079 return N1; 1080 } 1081 1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1083 SmallVector<SDValue, 4> Constants; 1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1085 OI != OE; ++OI) { 1086 SDNode *Val = getValue(*OI).getNode(); 1087 // If the operand is an empty aggregate, there are no values. 1088 if (!Val) continue; 1089 // Add each leaf value from the operand to the Constants list 1090 // to form a flattened list of all the values. 1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1092 Constants.push_back(SDValue(Val, i)); 1093 } 1094 1095 return DAG.getMergeValues(Constants, getCurSDLoc()); 1096 } 1097 1098 if (const ConstantDataSequential *CDS = 1099 dyn_cast<ConstantDataSequential>(C)) { 1100 SmallVector<SDValue, 4> Ops; 1101 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1102 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1103 // Add each leaf value from the operand to the Constants list 1104 // to form a flattened list of all the values. 1105 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1106 Ops.push_back(SDValue(Val, i)); 1107 } 1108 1109 if (isa<ArrayType>(CDS->getType())) 1110 return DAG.getMergeValues(Ops, getCurSDLoc()); 1111 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1112 VT, Ops); 1113 } 1114 1115 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1116 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1117 "Unknown struct or array constant!"); 1118 1119 SmallVector<EVT, 4> ValueVTs; 1120 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1121 unsigned NumElts = ValueVTs.size(); 1122 if (NumElts == 0) 1123 return SDValue(); // empty struct 1124 SmallVector<SDValue, 4> Constants(NumElts); 1125 for (unsigned i = 0; i != NumElts; ++i) { 1126 EVT EltVT = ValueVTs[i]; 1127 if (isa<UndefValue>(C)) 1128 Constants[i] = DAG.getUNDEF(EltVT); 1129 else if (EltVT.isFloatingPoint()) 1130 Constants[i] = DAG.getConstantFP(0, EltVT); 1131 else 1132 Constants[i] = DAG.getConstant(0, EltVT); 1133 } 1134 1135 return DAG.getMergeValues(Constants, getCurSDLoc()); 1136 } 1137 1138 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1139 return DAG.getBlockAddress(BA, VT); 1140 1141 VectorType *VecTy = cast<VectorType>(V->getType()); 1142 unsigned NumElements = VecTy->getNumElements(); 1143 1144 // Now that we know the number and type of the elements, get that number of 1145 // elements into the Ops array based on what kind of constant it is. 1146 SmallVector<SDValue, 16> Ops; 1147 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1148 for (unsigned i = 0; i != NumElements; ++i) 1149 Ops.push_back(getValue(CV->getOperand(i))); 1150 } else { 1151 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1152 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1153 1154 SDValue Op; 1155 if (EltVT.isFloatingPoint()) 1156 Op = DAG.getConstantFP(0, EltVT); 1157 else 1158 Op = DAG.getConstant(0, EltVT); 1159 Ops.assign(NumElements, Op); 1160 } 1161 1162 // Create a BUILD_VECTOR node. 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1173 } 1174 1175 // If this is an instruction which fast-isel has deferred, select it now. 1176 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1177 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1178 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1179 SDValue Chain = DAG.getEntryNode(); 1180 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1181 } 1182 1183 llvm_unreachable("Can't get register for value!"); 1184 } 1185 1186 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1187 const TargetLowering *TLI = TM.getTargetLowering(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i])); 1216 Chains[i] = 1217 DAG.getStore(Chain, getCurSDLoc(), 1218 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1219 // FIXME: better loc info would be nice. 1220 Add, MachinePointerInfo(), false, false, 0); 1221 } 1222 1223 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1224 MVT::Other, Chains); 1225 } else if (I.getNumOperands() != 0) { 1226 SmallVector<EVT, 4> ValueVTs; 1227 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1228 unsigned NumValues = ValueVTs.size(); 1229 if (NumValues) { 1230 SDValue RetOp = getValue(I.getOperand(0)); 1231 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1232 EVT VT = ValueVTs[j]; 1233 1234 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1235 1236 const Function *F = I.getParent()->getParent(); 1237 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1238 Attribute::SExt)) 1239 ExtendKind = ISD::SIGN_EXTEND; 1240 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1241 Attribute::ZExt)) 1242 ExtendKind = ISD::ZERO_EXTEND; 1243 1244 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1245 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind); 1246 1247 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1248 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1249 SmallVector<SDValue, 4> Parts(NumParts); 1250 getCopyToParts(DAG, getCurSDLoc(), 1251 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1252 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1253 1254 // 'inreg' on function refers to return value 1255 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1256 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1257 Attribute::InReg)) 1258 Flags.setInReg(); 1259 1260 // Propagate extension type if any 1261 if (ExtendKind == ISD::SIGN_EXTEND) 1262 Flags.setSExt(); 1263 else if (ExtendKind == ISD::ZERO_EXTEND) 1264 Flags.setZExt(); 1265 1266 for (unsigned i = 0; i < NumParts; ++i) { 1267 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1268 VT, /*isfixed=*/true, 0, 0)); 1269 OutVals.push_back(Parts[i]); 1270 } 1271 } 1272 } 1273 } 1274 1275 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1276 CallingConv::ID CallConv = 1277 DAG.getMachineFunction().getFunction()->getCallingConv(); 1278 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg, 1279 Outs, OutVals, getCurSDLoc(), 1280 DAG); 1281 1282 // Verify that the target's LowerReturn behaved as expected. 1283 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1284 "LowerReturn didn't return a valid chain!"); 1285 1286 // Update the DAG with the new chain value resulting from return lowering. 1287 DAG.setRoot(Chain); 1288 } 1289 1290 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1291 /// created for it, emit nodes to copy the value into the virtual 1292 /// registers. 1293 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1294 // Skip empty types 1295 if (V->getType()->isEmptyTy()) 1296 return; 1297 1298 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1299 if (VMI != FuncInfo.ValueMap.end()) { 1300 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1301 CopyValueToVirtualRegister(V, VMI->second); 1302 } 1303 } 1304 1305 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1306 /// the current basic block, add it to ValueMap now so that we'll get a 1307 /// CopyTo/FromReg. 1308 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1309 // No need to export constants. 1310 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1311 1312 // Already exported? 1313 if (FuncInfo.isExportedInst(V)) return; 1314 1315 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1316 CopyValueToVirtualRegister(V, Reg); 1317 } 1318 1319 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1320 const BasicBlock *FromBB) { 1321 // The operands of the setcc have to be in this block. We don't know 1322 // how to export them from some other block. 1323 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1324 // Can export from current BB. 1325 if (VI->getParent() == FromBB) 1326 return true; 1327 1328 // Is already exported, noop. 1329 return FuncInfo.isExportedInst(V); 1330 } 1331 1332 // If this is an argument, we can export it if the BB is the entry block or 1333 // if it is already exported. 1334 if (isa<Argument>(V)) { 1335 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1336 return true; 1337 1338 // Otherwise, can only export this if it is already exported. 1339 return FuncInfo.isExportedInst(V); 1340 } 1341 1342 // Otherwise, constants can always be exported. 1343 return true; 1344 } 1345 1346 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1347 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1348 const MachineBasicBlock *Dst) const { 1349 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1350 if (!BPI) 1351 return 0; 1352 const BasicBlock *SrcBB = Src->getBasicBlock(); 1353 const BasicBlock *DstBB = Dst->getBasicBlock(); 1354 return BPI->getEdgeWeight(SrcBB, DstBB); 1355 } 1356 1357 void SelectionDAGBuilder:: 1358 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1359 uint32_t Weight /* = 0 */) { 1360 if (!Weight) 1361 Weight = getEdgeWeight(Src, Dst); 1362 Src->addSuccessor(Dst, Weight); 1363 } 1364 1365 1366 static bool InBlock(const Value *V, const BasicBlock *BB) { 1367 if (const Instruction *I = dyn_cast<Instruction>(V)) 1368 return I->getParent() == BB; 1369 return true; 1370 } 1371 1372 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1373 /// This function emits a branch and is used at the leaves of an OR or an 1374 /// AND operator tree. 1375 /// 1376 void 1377 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1378 MachineBasicBlock *TBB, 1379 MachineBasicBlock *FBB, 1380 MachineBasicBlock *CurBB, 1381 MachineBasicBlock *SwitchBB, 1382 uint32_t TWeight, 1383 uint32_t FWeight) { 1384 const BasicBlock *BB = CurBB->getBasicBlock(); 1385 1386 // If the leaf of the tree is a comparison, merge the condition into 1387 // the caseblock. 1388 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1389 // The operands of the cmp have to be in this block. We don't know 1390 // how to export them from some other block. If this is the first block 1391 // of the sequence, no exporting is needed. 1392 if (CurBB == SwitchBB || 1393 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1394 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1395 ISD::CondCode Condition; 1396 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1397 Condition = getICmpCondCode(IC->getPredicate()); 1398 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1399 Condition = getFCmpCondCode(FC->getPredicate()); 1400 if (TM.Options.NoNaNsFPMath) 1401 Condition = getFCmpCodeWithoutNaN(Condition); 1402 } else { 1403 Condition = ISD::SETEQ; // silence warning. 1404 llvm_unreachable("Unknown compare instruction"); 1405 } 1406 1407 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1408 TBB, FBB, CurBB, TWeight, FWeight); 1409 SwitchCases.push_back(CB); 1410 return; 1411 } 1412 } 1413 1414 // Create a CaseBlock record representing this branch. 1415 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1416 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1417 SwitchCases.push_back(CB); 1418 } 1419 1420 /// Scale down both weights to fit into uint32_t. 1421 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1422 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1423 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1424 NewTrue = NewTrue / Scale; 1425 NewFalse = NewFalse / Scale; 1426 } 1427 1428 /// FindMergedConditions - If Cond is an expression like 1429 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1430 MachineBasicBlock *TBB, 1431 MachineBasicBlock *FBB, 1432 MachineBasicBlock *CurBB, 1433 MachineBasicBlock *SwitchBB, 1434 unsigned Opc, uint32_t TWeight, 1435 uint32_t FWeight) { 1436 // If this node is not part of the or/and tree, emit it as a branch. 1437 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1438 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1439 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1440 BOp->getParent() != CurBB->getBasicBlock() || 1441 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1442 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1443 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1444 TWeight, FWeight); 1445 return; 1446 } 1447 1448 // Create TmpBB after CurBB. 1449 MachineFunction::iterator BBI = CurBB; 1450 MachineFunction &MF = DAG.getMachineFunction(); 1451 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1452 CurBB->getParent()->insert(++BBI, TmpBB); 1453 1454 if (Opc == Instruction::Or) { 1455 // Codegen X | Y as: 1456 // BB1: 1457 // jmp_if_X TBB 1458 // jmp TmpBB 1459 // TmpBB: 1460 // jmp_if_Y TBB 1461 // jmp FBB 1462 // 1463 1464 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1465 // The requirement is that 1466 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1467 // = TrueProb for orignal BB. 1468 // Assuming the orignal weights are A and B, one choice is to set BB1's 1469 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1470 // assumes that 1471 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1472 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1473 // TmpBB, but the math is more complicated. 1474 1475 uint64_t NewTrueWeight = TWeight; 1476 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1477 ScaleWeights(NewTrueWeight, NewFalseWeight); 1478 // Emit the LHS condition. 1479 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1480 NewTrueWeight, NewFalseWeight); 1481 1482 NewTrueWeight = TWeight; 1483 NewFalseWeight = 2 * (uint64_t)FWeight; 1484 ScaleWeights(NewTrueWeight, NewFalseWeight); 1485 // Emit the RHS condition into TmpBB. 1486 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1487 NewTrueWeight, NewFalseWeight); 1488 } else { 1489 assert(Opc == Instruction::And && "Unknown merge op!"); 1490 // Codegen X & Y as: 1491 // BB1: 1492 // jmp_if_X TmpBB 1493 // jmp FBB 1494 // TmpBB: 1495 // jmp_if_Y TBB 1496 // jmp FBB 1497 // 1498 // This requires creation of TmpBB after CurBB. 1499 1500 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1501 // The requirement is that 1502 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1503 // = FalseProb for orignal BB. 1504 // Assuming the orignal weights are A and B, one choice is to set BB1's 1505 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1506 // assumes that 1507 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1508 1509 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1510 uint64_t NewFalseWeight = FWeight; 1511 ScaleWeights(NewTrueWeight, NewFalseWeight); 1512 // Emit the LHS condition. 1513 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1514 NewTrueWeight, NewFalseWeight); 1515 1516 NewTrueWeight = 2 * (uint64_t)TWeight; 1517 NewFalseWeight = FWeight; 1518 ScaleWeights(NewTrueWeight, NewFalseWeight); 1519 // Emit the RHS condition into TmpBB. 1520 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1521 NewTrueWeight, NewFalseWeight); 1522 } 1523 } 1524 1525 /// If the set of cases should be emitted as a series of branches, return true. 1526 /// If we should emit this as a bunch of and/or'd together conditions, return 1527 /// false. 1528 bool 1529 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1530 if (Cases.size() != 2) return true; 1531 1532 // If this is two comparisons of the same values or'd or and'd together, they 1533 // will get folded into a single comparison, so don't emit two blocks. 1534 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1535 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1536 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1537 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1538 return false; 1539 } 1540 1541 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1542 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1543 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1544 Cases[0].CC == Cases[1].CC && 1545 isa<Constant>(Cases[0].CmpRHS) && 1546 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1547 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1548 return false; 1549 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1550 return false; 1551 } 1552 1553 return true; 1554 } 1555 1556 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1557 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1558 1559 // Update machine-CFG edges. 1560 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1561 1562 // Figure out which block is immediately after the current one. 1563 MachineBasicBlock *NextBlock = nullptr; 1564 MachineFunction::iterator BBI = BrMBB; 1565 if (++BBI != FuncInfo.MF->end()) 1566 NextBlock = BBI; 1567 1568 if (I.isUnconditional()) { 1569 // Update machine-CFG edges. 1570 BrMBB->addSuccessor(Succ0MBB); 1571 1572 // If this is not a fall-through branch or optimizations are switched off, 1573 // emit the branch. 1574 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1575 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1576 MVT::Other, getControlRoot(), 1577 DAG.getBasicBlock(Succ0MBB))); 1578 1579 return; 1580 } 1581 1582 // If this condition is one of the special cases we handle, do special stuff 1583 // now. 1584 const Value *CondVal = I.getCondition(); 1585 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1586 1587 // If this is a series of conditions that are or'd or and'd together, emit 1588 // this as a sequence of branches instead of setcc's with and/or operations. 1589 // As long as jumps are not expensive, this should improve performance. 1590 // For example, instead of something like: 1591 // cmp A, B 1592 // C = seteq 1593 // cmp D, E 1594 // F = setle 1595 // or C, F 1596 // jnz foo 1597 // Emit: 1598 // cmp A, B 1599 // je foo 1600 // cmp D, E 1601 // jle foo 1602 // 1603 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1604 if (!TM.getTargetLowering()->isJumpExpensive() && 1605 BOp->hasOneUse() && 1606 (BOp->getOpcode() == Instruction::And || 1607 BOp->getOpcode() == Instruction::Or)) { 1608 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1609 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1610 getEdgeWeight(BrMBB, Succ1MBB)); 1611 // If the compares in later blocks need to use values not currently 1612 // exported from this block, export them now. This block should always 1613 // be the first entry. 1614 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1615 1616 // Allow some cases to be rejected. 1617 if (ShouldEmitAsBranches(SwitchCases)) { 1618 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1619 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1620 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1621 } 1622 1623 // Emit the branch for this block. 1624 visitSwitchCase(SwitchCases[0], BrMBB); 1625 SwitchCases.erase(SwitchCases.begin()); 1626 return; 1627 } 1628 1629 // Okay, we decided not to do this, remove any inserted MBB's and clear 1630 // SwitchCases. 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1632 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1633 1634 SwitchCases.clear(); 1635 } 1636 } 1637 1638 // Create a CaseBlock record representing this branch. 1639 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1640 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1641 1642 // Use visitSwitchCase to actually insert the fast branch sequence for this 1643 // cond branch. 1644 visitSwitchCase(CB, BrMBB); 1645 } 1646 1647 /// visitSwitchCase - Emits the necessary code to represent a single node in 1648 /// the binary search tree resulting from lowering a switch instruction. 1649 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1650 MachineBasicBlock *SwitchBB) { 1651 SDValue Cond; 1652 SDValue CondLHS = getValue(CB.CmpLHS); 1653 SDLoc dl = getCurSDLoc(); 1654 1655 // Build the setcc now. 1656 if (!CB.CmpMHS) { 1657 // Fold "(X == true)" to X and "(X == false)" to !X to 1658 // handle common cases produced by branch lowering. 1659 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1660 CB.CC == ISD::SETEQ) 1661 Cond = CondLHS; 1662 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1663 CB.CC == ISD::SETEQ) { 1664 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1665 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1666 } else 1667 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1668 } else { 1669 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1670 1671 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1672 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1673 1674 SDValue CmpOp = getValue(CB.CmpMHS); 1675 EVT VT = CmpOp.getValueType(); 1676 1677 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1678 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1679 ISD::SETLE); 1680 } else { 1681 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1682 VT, CmpOp, DAG.getConstant(Low, VT)); 1683 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1684 DAG.getConstant(High-Low, VT), ISD::SETULE); 1685 } 1686 } 1687 1688 // Update successor info 1689 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1690 // TrueBB and FalseBB are always different unless the incoming IR is 1691 // degenerate. This only happens when running llc on weird IR. 1692 if (CB.TrueBB != CB.FalseBB) 1693 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1694 1695 // Set NextBlock to be the MBB immediately after the current one, if any. 1696 // This is used to avoid emitting unnecessary branches to the next block. 1697 MachineBasicBlock *NextBlock = nullptr; 1698 MachineFunction::iterator BBI = SwitchBB; 1699 if (++BBI != FuncInfo.MF->end()) 1700 NextBlock = BBI; 1701 1702 // If the lhs block is the next block, invert the condition so that we can 1703 // fall through to the lhs instead of the rhs block. 1704 if (CB.TrueBB == NextBlock) { 1705 std::swap(CB.TrueBB, CB.FalseBB); 1706 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1707 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1708 } 1709 1710 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1711 MVT::Other, getControlRoot(), Cond, 1712 DAG.getBasicBlock(CB.TrueBB)); 1713 1714 // Insert the false branch. Do this even if it's a fall through branch, 1715 // this makes it easier to do DAG optimizations which require inverting 1716 // the branch condition. 1717 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1718 DAG.getBasicBlock(CB.FalseBB)); 1719 1720 DAG.setRoot(BrCond); 1721 } 1722 1723 /// visitJumpTable - Emit JumpTable node in the current MBB 1724 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1725 // Emit the code for the jump table 1726 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1727 EVT PTy = TM.getTargetLowering()->getPointerTy(); 1728 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1729 JT.Reg, PTy); 1730 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1731 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1732 MVT::Other, Index.getValue(1), 1733 Table, Index); 1734 DAG.setRoot(BrJumpTable); 1735 } 1736 1737 /// visitJumpTableHeader - This function emits necessary code to produce index 1738 /// in the JumpTable from switch case. 1739 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1740 JumpTableHeader &JTH, 1741 MachineBasicBlock *SwitchBB) { 1742 // Subtract the lowest switch case value from the value being switched on and 1743 // conditional branch to default mbb if the result is greater than the 1744 // difference between smallest and largest cases. 1745 SDValue SwitchOp = getValue(JTH.SValue); 1746 EVT VT = SwitchOp.getValueType(); 1747 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1748 DAG.getConstant(JTH.First, VT)); 1749 1750 // The SDNode we just created, which holds the value being switched on minus 1751 // the smallest case value, needs to be copied to a virtual register so it 1752 // can be used as an index into the jump table in a subsequent basic block. 1753 // This value may be smaller or larger than the target's pointer type, and 1754 // therefore require extension or truncating. 1755 const TargetLowering *TLI = TM.getTargetLowering(); 1756 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1757 1758 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1759 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1760 JumpTableReg, SwitchOp); 1761 JT.Reg = JumpTableReg; 1762 1763 // Emit the range check for the jump table, and branch to the default block 1764 // for the switch statement if the value being switched on exceeds the largest 1765 // case in the switch. 1766 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1767 TLI->getSetCCResultType(*DAG.getContext(), 1768 Sub.getValueType()), 1769 Sub, 1770 DAG.getConstant(JTH.Last - JTH.First,VT), 1771 ISD::SETUGT); 1772 1773 // Set NextBlock to be the MBB immediately after the current one, if any. 1774 // This is used to avoid emitting unnecessary branches to the next block. 1775 MachineBasicBlock *NextBlock = nullptr; 1776 MachineFunction::iterator BBI = SwitchBB; 1777 1778 if (++BBI != FuncInfo.MF->end()) 1779 NextBlock = BBI; 1780 1781 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1782 MVT::Other, CopyTo, CMP, 1783 DAG.getBasicBlock(JT.Default)); 1784 1785 if (JT.MBB != NextBlock) 1786 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1787 DAG.getBasicBlock(JT.MBB)); 1788 1789 DAG.setRoot(BrCond); 1790 } 1791 1792 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1793 /// tail spliced into a stack protector check success bb. 1794 /// 1795 /// For a high level explanation of how this fits into the stack protector 1796 /// generation see the comment on the declaration of class 1797 /// StackProtectorDescriptor. 1798 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1799 MachineBasicBlock *ParentBB) { 1800 1801 // First create the loads to the guard/stack slot for the comparison. 1802 const TargetLowering *TLI = TM.getTargetLowering(); 1803 EVT PtrTy = TLI->getPointerTy(); 1804 1805 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1806 int FI = MFI->getStackProtectorIndex(); 1807 1808 const Value *IRGuard = SPD.getGuard(); 1809 SDValue GuardPtr = getValue(IRGuard); 1810 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1811 1812 unsigned Align = 1813 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1814 1815 SDValue Guard; 1816 1817 // If useLoadStackGuardNode returns true, retrieve the guard value from 1818 // the virtual register holding the value. Otherwise, emit a volatile load 1819 // to retrieve the stack guard value. 1820 if (TLI->useLoadStackGuardNode()) 1821 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1822 SPD.getGuardReg(), PtrTy); 1823 else 1824 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1825 GuardPtr, MachinePointerInfo(IRGuard, 0), 1826 true, false, false, Align); 1827 1828 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 StackSlotPtr, 1830 MachinePointerInfo::getFixedStack(FI), 1831 true, false, false, Align); 1832 1833 // Perform the comparison via a subtract/getsetcc. 1834 EVT VT = Guard.getValueType(); 1835 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1836 1837 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1838 TLI->getSetCCResultType(*DAG.getContext(), 1839 Sub.getValueType()), 1840 Sub, DAG.getConstant(0, VT), 1841 ISD::SETNE); 1842 1843 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1844 // branch to failure MBB. 1845 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1846 MVT::Other, StackSlot.getOperand(0), 1847 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1848 // Otherwise branch to success MBB. 1849 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1850 MVT::Other, BrCond, 1851 DAG.getBasicBlock(SPD.getSuccessMBB())); 1852 1853 DAG.setRoot(Br); 1854 } 1855 1856 /// Codegen the failure basic block for a stack protector check. 1857 /// 1858 /// A failure stack protector machine basic block consists simply of a call to 1859 /// __stack_chk_fail(). 1860 /// 1861 /// For a high level explanation of how this fits into the stack protector 1862 /// generation see the comment on the declaration of class 1863 /// StackProtectorDescriptor. 1864 void 1865 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1866 const TargetLowering *TLI = TM.getTargetLowering(); 1867 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1868 MVT::isVoid, nullptr, 0, false, 1869 getCurSDLoc(), false, false).second; 1870 DAG.setRoot(Chain); 1871 } 1872 1873 /// visitBitTestHeader - This function emits necessary code to produce value 1874 /// suitable for "bit tests" 1875 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1876 MachineBasicBlock *SwitchBB) { 1877 // Subtract the minimum value 1878 SDValue SwitchOp = getValue(B.SValue); 1879 EVT VT = SwitchOp.getValueType(); 1880 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1881 DAG.getConstant(B.First, VT)); 1882 1883 // Check range 1884 const TargetLowering *TLI = TM.getTargetLowering(); 1885 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1886 TLI->getSetCCResultType(*DAG.getContext(), 1887 Sub.getValueType()), 1888 Sub, DAG.getConstant(B.Range, VT), 1889 ISD::SETUGT); 1890 1891 // Determine the type of the test operands. 1892 bool UsePtrType = false; 1893 if (!TLI->isTypeLegal(VT)) 1894 UsePtrType = true; 1895 else { 1896 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1897 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1898 // Switch table case range are encoded into series of masks. 1899 // Just use pointer type, it's guaranteed to fit. 1900 UsePtrType = true; 1901 break; 1902 } 1903 } 1904 if (UsePtrType) { 1905 VT = TLI->getPointerTy(); 1906 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1907 } 1908 1909 B.RegVT = VT.getSimpleVT(); 1910 B.Reg = FuncInfo.CreateReg(B.RegVT); 1911 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1912 B.Reg, Sub); 1913 1914 // Set NextBlock to be the MBB immediately after the current one, if any. 1915 // This is used to avoid emitting unnecessary branches to the next block. 1916 MachineBasicBlock *NextBlock = nullptr; 1917 MachineFunction::iterator BBI = SwitchBB; 1918 if (++BBI != FuncInfo.MF->end()) 1919 NextBlock = BBI; 1920 1921 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1922 1923 addSuccessorWithWeight(SwitchBB, B.Default); 1924 addSuccessorWithWeight(SwitchBB, MBB); 1925 1926 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1927 MVT::Other, CopyTo, RangeCmp, 1928 DAG.getBasicBlock(B.Default)); 1929 1930 if (MBB != NextBlock) 1931 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1932 DAG.getBasicBlock(MBB)); 1933 1934 DAG.setRoot(BrRange); 1935 } 1936 1937 /// visitBitTestCase - this function produces one "bit test" 1938 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1939 MachineBasicBlock* NextMBB, 1940 uint32_t BranchWeightToNext, 1941 unsigned Reg, 1942 BitTestCase &B, 1943 MachineBasicBlock *SwitchBB) { 1944 MVT VT = BB.RegVT; 1945 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1946 Reg, VT); 1947 SDValue Cmp; 1948 unsigned PopCount = CountPopulation_64(B.Mask); 1949 const TargetLowering *TLI = TM.getTargetLowering(); 1950 if (PopCount == 1) { 1951 // Testing for a single bit; just compare the shift count with what it 1952 // would need to be to shift a 1 bit in that position. 1953 Cmp = DAG.getSetCC(getCurSDLoc(), 1954 TLI->getSetCCResultType(*DAG.getContext(), VT), 1955 ShiftOp, 1956 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1957 ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC(getCurSDLoc(), 1961 TLI->getSetCCResultType(*DAG.getContext(), VT), 1962 ShiftOp, 1963 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1964 ISD::SETNE); 1965 } else { 1966 // Make desired shift 1967 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1968 DAG.getConstant(1, VT), ShiftOp); 1969 1970 // Emit bit tests and jumps 1971 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1972 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1973 Cmp = DAG.getSetCC(getCurSDLoc(), 1974 TLI->getSetCCResultType(*DAG.getContext(), VT), 1975 AndOp, DAG.getConstant(0, VT), 1976 ISD::SETNE); 1977 } 1978 1979 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1980 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1981 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1982 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1983 1984 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1985 MVT::Other, getControlRoot(), 1986 Cmp, DAG.getBasicBlock(B.TargetBB)); 1987 1988 // Set NextBlock to be the MBB immediately after the current one, if any. 1989 // This is used to avoid emitting unnecessary branches to the next block. 1990 MachineBasicBlock *NextBlock = nullptr; 1991 MachineFunction::iterator BBI = SwitchBB; 1992 if (++BBI != FuncInfo.MF->end()) 1993 NextBlock = BBI; 1994 1995 if (NextMBB != NextBlock) 1996 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1997 DAG.getBasicBlock(NextMBB)); 1998 1999 DAG.setRoot(BrAnd); 2000 } 2001 2002 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2003 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2004 2005 // Retrieve successors. 2006 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2007 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2008 2009 const Value *Callee(I.getCalledValue()); 2010 const Function *Fn = dyn_cast<Function>(Callee); 2011 if (isa<InlineAsm>(Callee)) 2012 visitInlineAsm(&I); 2013 else if (Fn && Fn->isIntrinsic()) { 2014 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2015 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2016 } else 2017 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2018 2019 // If the value of the invoke is used outside of its defining block, make it 2020 // available as a virtual register. 2021 CopyToExportRegsIfNeeded(&I); 2022 2023 // Update successor info 2024 addSuccessorWithWeight(InvokeMBB, Return); 2025 addSuccessorWithWeight(InvokeMBB, LandingPad); 2026 2027 // Drop into normal successor. 2028 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2029 MVT::Other, getControlRoot(), 2030 DAG.getBasicBlock(Return))); 2031 } 2032 2033 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2034 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2035 } 2036 2037 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2038 assert(FuncInfo.MBB->isLandingPad() && 2039 "Call to landingpad not in landing pad!"); 2040 2041 MachineBasicBlock *MBB = FuncInfo.MBB; 2042 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2043 AddLandingPadInfo(LP, MMI, MBB); 2044 2045 // If there aren't registers to copy the values into (e.g., during SjLj 2046 // exceptions), then don't bother to create these DAG nodes. 2047 const TargetLowering *TLI = TM.getTargetLowering(); 2048 if (TLI->getExceptionPointerRegister() == 0 && 2049 TLI->getExceptionSelectorRegister() == 0) 2050 return; 2051 2052 SmallVector<EVT, 2> ValueVTs; 2053 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2054 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2055 2056 // Get the two live-in registers as SDValues. The physregs have already been 2057 // copied into virtual registers. 2058 SDValue Ops[2]; 2059 Ops[0] = DAG.getZExtOrTrunc( 2060 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2061 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2062 getCurSDLoc(), ValueVTs[0]); 2063 Ops[1] = DAG.getZExtOrTrunc( 2064 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2065 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2066 getCurSDLoc(), ValueVTs[1]); 2067 2068 // Merge into one. 2069 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2070 DAG.getVTList(ValueVTs), Ops); 2071 setValue(&LP, Res); 2072 } 2073 2074 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2075 /// small case ranges). 2076 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2077 CaseRecVector& WorkList, 2078 const Value* SV, 2079 MachineBasicBlock *Default, 2080 MachineBasicBlock *SwitchBB) { 2081 // Size is the number of Cases represented by this range. 2082 size_t Size = CR.Range.second - CR.Range.first; 2083 if (Size > 3) 2084 return false; 2085 2086 // Get the MachineFunction which holds the current MBB. This is used when 2087 // inserting any additional MBBs necessary to represent the switch. 2088 MachineFunction *CurMF = FuncInfo.MF; 2089 2090 // Figure out which block is immediately after the current one. 2091 MachineBasicBlock *NextBlock = nullptr; 2092 MachineFunction::iterator BBI = CR.CaseBB; 2093 2094 if (++BBI != FuncInfo.MF->end()) 2095 NextBlock = BBI; 2096 2097 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2098 // If any two of the cases has the same destination, and if one value 2099 // is the same as the other, but has one bit unset that the other has set, 2100 // use bit manipulation to do two compares at once. For example: 2101 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2102 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2103 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2104 if (Size == 2 && CR.CaseBB == SwitchBB) { 2105 Case &Small = *CR.Range.first; 2106 Case &Big = *(CR.Range.second-1); 2107 2108 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2109 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2110 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2111 2112 // Check that there is only one bit different. 2113 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2114 (SmallValue | BigValue) == BigValue) { 2115 // Isolate the common bit. 2116 APInt CommonBit = BigValue & ~SmallValue; 2117 assert((SmallValue | CommonBit) == BigValue && 2118 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2119 2120 SDValue CondLHS = getValue(SV); 2121 EVT VT = CondLHS.getValueType(); 2122 SDLoc DL = getCurSDLoc(); 2123 2124 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2125 DAG.getConstant(CommonBit, VT)); 2126 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2127 Or, DAG.getConstant(BigValue, VT), 2128 ISD::SETEQ); 2129 2130 // Update successor info. 2131 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2132 addSuccessorWithWeight(SwitchBB, Small.BB, 2133 Small.ExtraWeight + Big.ExtraWeight); 2134 addSuccessorWithWeight(SwitchBB, Default, 2135 // The default destination is the first successor in IR. 2136 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2137 2138 // Insert the true branch. 2139 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2140 getControlRoot(), Cond, 2141 DAG.getBasicBlock(Small.BB)); 2142 2143 // Insert the false branch. 2144 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2145 DAG.getBasicBlock(Default)); 2146 2147 DAG.setRoot(BrCond); 2148 return true; 2149 } 2150 } 2151 } 2152 2153 // Order cases by weight so the most likely case will be checked first. 2154 uint32_t UnhandledWeights = 0; 2155 if (BPI) { 2156 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2157 uint32_t IWeight = I->ExtraWeight; 2158 UnhandledWeights += IWeight; 2159 for (CaseItr J = CR.Range.first; J < I; ++J) { 2160 uint32_t JWeight = J->ExtraWeight; 2161 if (IWeight > JWeight) 2162 std::swap(*I, *J); 2163 } 2164 } 2165 } 2166 // Rearrange the case blocks so that the last one falls through if possible. 2167 Case &BackCase = *(CR.Range.second-1); 2168 if (Size > 1 && 2169 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2170 // The last case block won't fall through into 'NextBlock' if we emit the 2171 // branches in this order. See if rearranging a case value would help. 2172 // We start at the bottom as it's the case with the least weight. 2173 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2174 if (I->BB == NextBlock) { 2175 std::swap(*I, BackCase); 2176 break; 2177 } 2178 } 2179 2180 // Create a CaseBlock record representing a conditional branch to 2181 // the Case's target mbb if the value being switched on SV is equal 2182 // to C. 2183 MachineBasicBlock *CurBlock = CR.CaseBB; 2184 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2185 MachineBasicBlock *FallThrough; 2186 if (I != E-1) { 2187 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2188 CurMF->insert(BBI, FallThrough); 2189 2190 // Put SV in a virtual register to make it available from the new blocks. 2191 ExportFromCurrentBlock(SV); 2192 } else { 2193 // If the last case doesn't match, go to the default block. 2194 FallThrough = Default; 2195 } 2196 2197 const Value *RHS, *LHS, *MHS; 2198 ISD::CondCode CC; 2199 if (I->High == I->Low) { 2200 // This is just small small case range :) containing exactly 1 case 2201 CC = ISD::SETEQ; 2202 LHS = SV; RHS = I->High; MHS = nullptr; 2203 } else { 2204 CC = ISD::SETLE; 2205 LHS = I->Low; MHS = SV; RHS = I->High; 2206 } 2207 2208 // The false weight should be sum of all un-handled cases. 2209 UnhandledWeights -= I->ExtraWeight; 2210 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2211 /* me */ CurBlock, 2212 /* trueweight */ I->ExtraWeight, 2213 /* falseweight */ UnhandledWeights); 2214 2215 // If emitting the first comparison, just call visitSwitchCase to emit the 2216 // code into the current block. Otherwise, push the CaseBlock onto the 2217 // vector to be later processed by SDISel, and insert the node's MBB 2218 // before the next MBB. 2219 if (CurBlock == SwitchBB) 2220 visitSwitchCase(CB, SwitchBB); 2221 else 2222 SwitchCases.push_back(CB); 2223 2224 CurBlock = FallThrough; 2225 } 2226 2227 return true; 2228 } 2229 2230 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2231 return TLI.supportJumpTables() && 2232 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2233 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2234 } 2235 2236 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2237 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2238 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2239 return (LastExt - FirstExt + 1ULL); 2240 } 2241 2242 /// handleJTSwitchCase - Emit jumptable for current switch case range 2243 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2244 CaseRecVector &WorkList, 2245 const Value *SV, 2246 MachineBasicBlock *Default, 2247 MachineBasicBlock *SwitchBB) { 2248 Case& FrontCase = *CR.Range.first; 2249 Case& BackCase = *(CR.Range.second-1); 2250 2251 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2252 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2253 2254 APInt TSize(First.getBitWidth(), 0); 2255 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2256 TSize += I->size(); 2257 2258 const TargetLowering *TLI = TM.getTargetLowering(); 2259 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2260 return false; 2261 2262 APInt Range = ComputeRange(First, Last); 2263 // The density is TSize / Range. Require at least 40%. 2264 // It should not be possible for IntTSize to saturate for sane code, but make 2265 // sure we handle Range saturation correctly. 2266 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2267 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2268 if (IntTSize * 10 < IntRange * 4) 2269 return false; 2270 2271 DEBUG(dbgs() << "Lowering jump table\n" 2272 << "First entry: " << First << ". Last entry: " << Last << '\n' 2273 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2274 2275 // Get the MachineFunction which holds the current MBB. This is used when 2276 // inserting any additional MBBs necessary to represent the switch. 2277 MachineFunction *CurMF = FuncInfo.MF; 2278 2279 // Figure out which block is immediately after the current one. 2280 MachineFunction::iterator BBI = CR.CaseBB; 2281 ++BBI; 2282 2283 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2284 2285 // Create a new basic block to hold the code for loading the address 2286 // of the jump table, and jumping to it. Update successor information; 2287 // we will either branch to the default case for the switch, or the jump 2288 // table. 2289 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2290 CurMF->insert(BBI, JumpTableBB); 2291 2292 addSuccessorWithWeight(CR.CaseBB, Default); 2293 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2294 2295 // Build a vector of destination BBs, corresponding to each target 2296 // of the jump table. If the value of the jump table slot corresponds to 2297 // a case statement, push the case's BB onto the vector, otherwise, push 2298 // the default BB. 2299 std::vector<MachineBasicBlock*> DestBBs; 2300 APInt TEI = First; 2301 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2302 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2303 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2304 2305 if (Low.sle(TEI) && TEI.sle(High)) { 2306 DestBBs.push_back(I->BB); 2307 if (TEI==High) 2308 ++I; 2309 } else { 2310 DestBBs.push_back(Default); 2311 } 2312 } 2313 2314 // Calculate weight for each unique destination in CR. 2315 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2316 if (FuncInfo.BPI) 2317 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2318 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2319 DestWeights.find(I->BB); 2320 if (Itr != DestWeights.end()) 2321 Itr->second += I->ExtraWeight; 2322 else 2323 DestWeights[I->BB] = I->ExtraWeight; 2324 } 2325 2326 // Update successor info. Add one edge to each unique successor. 2327 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2328 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2329 E = DestBBs.end(); I != E; ++I) { 2330 if (!SuccsHandled[(*I)->getNumber()]) { 2331 SuccsHandled[(*I)->getNumber()] = true; 2332 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2333 DestWeights.find(*I); 2334 addSuccessorWithWeight(JumpTableBB, *I, 2335 Itr != DestWeights.end() ? Itr->second : 0); 2336 } 2337 } 2338 2339 // Create a jump table index for this jump table. 2340 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2341 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2342 ->createJumpTableIndex(DestBBs); 2343 2344 // Set the jump table information so that we can codegen it as a second 2345 // MachineBasicBlock 2346 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2347 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2348 if (CR.CaseBB == SwitchBB) 2349 visitJumpTableHeader(JT, JTH, SwitchBB); 2350 2351 JTCases.push_back(JumpTableBlock(JTH, JT)); 2352 return true; 2353 } 2354 2355 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2356 /// 2 subtrees. 2357 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2358 CaseRecVector& WorkList, 2359 const Value* SV, 2360 MachineBasicBlock* Default, 2361 MachineBasicBlock* SwitchBB) { 2362 // Get the MachineFunction which holds the current MBB. This is used when 2363 // inserting any additional MBBs necessary to represent the switch. 2364 MachineFunction *CurMF = FuncInfo.MF; 2365 2366 // Figure out which block is immediately after the current one. 2367 MachineFunction::iterator BBI = CR.CaseBB; 2368 ++BBI; 2369 2370 Case& FrontCase = *CR.Range.first; 2371 Case& BackCase = *(CR.Range.second-1); 2372 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2373 2374 // Size is the number of Cases represented by this range. 2375 unsigned Size = CR.Range.second - CR.Range.first; 2376 2377 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2378 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2379 double FMetric = 0; 2380 CaseItr Pivot = CR.Range.first + Size/2; 2381 2382 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2383 // (heuristically) allow us to emit JumpTable's later. 2384 APInt TSize(First.getBitWidth(), 0); 2385 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2386 I!=E; ++I) 2387 TSize += I->size(); 2388 2389 APInt LSize = FrontCase.size(); 2390 APInt RSize = TSize-LSize; 2391 DEBUG(dbgs() << "Selecting best pivot: \n" 2392 << "First: " << First << ", Last: " << Last <<'\n' 2393 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2394 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2395 J!=E; ++I, ++J) { 2396 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2397 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2398 APInt Range = ComputeRange(LEnd, RBegin); 2399 assert((Range - 2ULL).isNonNegative() && 2400 "Invalid case distance"); 2401 // Use volatile double here to avoid excess precision issues on some hosts, 2402 // e.g. that use 80-bit X87 registers. 2403 volatile double LDensity = 2404 (double)LSize.roundToDouble() / 2405 (LEnd - First + 1ULL).roundToDouble(); 2406 volatile double RDensity = 2407 (double)RSize.roundToDouble() / 2408 (Last - RBegin + 1ULL).roundToDouble(); 2409 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2410 // Should always split in some non-trivial place 2411 DEBUG(dbgs() <<"=>Step\n" 2412 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2413 << "LDensity: " << LDensity 2414 << ", RDensity: " << RDensity << '\n' 2415 << "Metric: " << Metric << '\n'); 2416 if (FMetric < Metric) { 2417 Pivot = J; 2418 FMetric = Metric; 2419 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2420 } 2421 2422 LSize += J->size(); 2423 RSize -= J->size(); 2424 } 2425 2426 const TargetLowering *TLI = TM.getTargetLowering(); 2427 if (areJTsAllowed(*TLI)) { 2428 // If our case is dense we *really* should handle it earlier! 2429 assert((FMetric > 0) && "Should handle dense range earlier!"); 2430 } else { 2431 Pivot = CR.Range.first + Size/2; 2432 } 2433 2434 CaseRange LHSR(CR.Range.first, Pivot); 2435 CaseRange RHSR(Pivot, CR.Range.second); 2436 const Constant *C = Pivot->Low; 2437 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2438 2439 // We know that we branch to the LHS if the Value being switched on is 2440 // less than the Pivot value, C. We use this to optimize our binary 2441 // tree a bit, by recognizing that if SV is greater than or equal to the 2442 // LHS's Case Value, and that Case Value is exactly one less than the 2443 // Pivot's Value, then we can branch directly to the LHS's Target, 2444 // rather than creating a leaf node for it. 2445 if ((LHSR.second - LHSR.first) == 1 && 2446 LHSR.first->High == CR.GE && 2447 cast<ConstantInt>(C)->getValue() == 2448 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2449 TrueBB = LHSR.first->BB; 2450 } else { 2451 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2452 CurMF->insert(BBI, TrueBB); 2453 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2454 2455 // Put SV in a virtual register to make it available from the new blocks. 2456 ExportFromCurrentBlock(SV); 2457 } 2458 2459 // Similar to the optimization above, if the Value being switched on is 2460 // known to be less than the Constant CR.LT, and the current Case Value 2461 // is CR.LT - 1, then we can branch directly to the target block for 2462 // the current Case Value, rather than emitting a RHS leaf node for it. 2463 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2464 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2465 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2466 FalseBB = RHSR.first->BB; 2467 } else { 2468 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2469 CurMF->insert(BBI, FalseBB); 2470 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2471 2472 // Put SV in a virtual register to make it available from the new blocks. 2473 ExportFromCurrentBlock(SV); 2474 } 2475 2476 // Create a CaseBlock record representing a conditional branch to 2477 // the LHS node if the value being switched on SV is less than C. 2478 // Otherwise, branch to LHS. 2479 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2480 2481 if (CR.CaseBB == SwitchBB) 2482 visitSwitchCase(CB, SwitchBB); 2483 else 2484 SwitchCases.push_back(CB); 2485 2486 return true; 2487 } 2488 2489 /// handleBitTestsSwitchCase - if current case range has few destination and 2490 /// range span less, than machine word bitwidth, encode case range into series 2491 /// of masks and emit bit tests with these masks. 2492 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2493 CaseRecVector& WorkList, 2494 const Value* SV, 2495 MachineBasicBlock* Default, 2496 MachineBasicBlock* SwitchBB) { 2497 const TargetLowering *TLI = TM.getTargetLowering(); 2498 EVT PTy = TLI->getPointerTy(); 2499 unsigned IntPtrBits = PTy.getSizeInBits(); 2500 2501 Case& FrontCase = *CR.Range.first; 2502 Case& BackCase = *(CR.Range.second-1); 2503 2504 // Get the MachineFunction which holds the current MBB. This is used when 2505 // inserting any additional MBBs necessary to represent the switch. 2506 MachineFunction *CurMF = FuncInfo.MF; 2507 2508 // If target does not have legal shift left, do not emit bit tests at all. 2509 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2510 return false; 2511 2512 size_t numCmps = 0; 2513 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2514 I!=E; ++I) { 2515 // Single case counts one, case range - two. 2516 numCmps += (I->Low == I->High ? 1 : 2); 2517 } 2518 2519 // Count unique destinations 2520 SmallSet<MachineBasicBlock*, 4> Dests; 2521 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2522 Dests.insert(I->BB); 2523 if (Dests.size() > 3) 2524 // Don't bother the code below, if there are too much unique destinations 2525 return false; 2526 } 2527 DEBUG(dbgs() << "Total number of unique destinations: " 2528 << Dests.size() << '\n' 2529 << "Total number of comparisons: " << numCmps << '\n'); 2530 2531 // Compute span of values. 2532 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2533 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2534 APInt cmpRange = maxValue - minValue; 2535 2536 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2537 << "Low bound: " << minValue << '\n' 2538 << "High bound: " << maxValue << '\n'); 2539 2540 if (cmpRange.uge(IntPtrBits) || 2541 (!(Dests.size() == 1 && numCmps >= 3) && 2542 !(Dests.size() == 2 && numCmps >= 5) && 2543 !(Dests.size() >= 3 && numCmps >= 6))) 2544 return false; 2545 2546 DEBUG(dbgs() << "Emitting bit tests\n"); 2547 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2548 2549 // Optimize the case where all the case values fit in a 2550 // word without having to subtract minValue. In this case, 2551 // we can optimize away the subtraction. 2552 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2553 cmpRange = maxValue; 2554 } else { 2555 lowBound = minValue; 2556 } 2557 2558 CaseBitsVector CasesBits; 2559 unsigned i, count = 0; 2560 2561 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2562 MachineBasicBlock* Dest = I->BB; 2563 for (i = 0; i < count; ++i) 2564 if (Dest == CasesBits[i].BB) 2565 break; 2566 2567 if (i == count) { 2568 assert((count < 3) && "Too much destinations to test!"); 2569 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2570 count++; 2571 } 2572 2573 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2574 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2575 2576 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2577 uint64_t hi = (highValue - lowBound).getZExtValue(); 2578 CasesBits[i].ExtraWeight += I->ExtraWeight; 2579 2580 for (uint64_t j = lo; j <= hi; j++) { 2581 CasesBits[i].Mask |= 1ULL << j; 2582 CasesBits[i].Bits++; 2583 } 2584 2585 } 2586 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2587 2588 BitTestInfo BTC; 2589 2590 // Figure out which block is immediately after the current one. 2591 MachineFunction::iterator BBI = CR.CaseBB; 2592 ++BBI; 2593 2594 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2595 2596 DEBUG(dbgs() << "Cases:\n"); 2597 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2598 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2599 << ", Bits: " << CasesBits[i].Bits 2600 << ", BB: " << CasesBits[i].BB << '\n'); 2601 2602 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2603 CurMF->insert(BBI, CaseBB); 2604 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2605 CaseBB, 2606 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2607 2608 // Put SV in a virtual register to make it available from the new blocks. 2609 ExportFromCurrentBlock(SV); 2610 } 2611 2612 BitTestBlock BTB(lowBound, cmpRange, SV, 2613 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2614 CR.CaseBB, Default, BTC); 2615 2616 if (CR.CaseBB == SwitchBB) 2617 visitBitTestHeader(BTB, SwitchBB); 2618 2619 BitTestCases.push_back(BTB); 2620 2621 return true; 2622 } 2623 2624 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2625 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2626 const SwitchInst& SI) { 2627 size_t numCmps = 0; 2628 2629 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2630 // Start with "simple" cases 2631 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2632 i != e; ++i) { 2633 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2634 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2635 2636 uint32_t ExtraWeight = 2637 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2638 2639 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2640 SMBB, ExtraWeight)); 2641 } 2642 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2643 2644 // Merge case into clusters 2645 if (Cases.size() >= 2) 2646 // Must recompute end() each iteration because it may be 2647 // invalidated by erase if we hold on to it 2648 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2649 J != Cases.end(); ) { 2650 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2651 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2652 MachineBasicBlock* nextBB = J->BB; 2653 MachineBasicBlock* currentBB = I->BB; 2654 2655 // If the two neighboring cases go to the same destination, merge them 2656 // into a single case. 2657 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2658 I->High = J->High; 2659 I->ExtraWeight += J->ExtraWeight; 2660 J = Cases.erase(J); 2661 } else { 2662 I = J++; 2663 } 2664 } 2665 2666 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2667 if (I->Low != I->High) 2668 // A range counts double, since it requires two compares. 2669 ++numCmps; 2670 } 2671 2672 return numCmps; 2673 } 2674 2675 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2676 MachineBasicBlock *Last) { 2677 // Update JTCases. 2678 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2679 if (JTCases[i].first.HeaderBB == First) 2680 JTCases[i].first.HeaderBB = Last; 2681 2682 // Update BitTestCases. 2683 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2684 if (BitTestCases[i].Parent == First) 2685 BitTestCases[i].Parent = Last; 2686 } 2687 2688 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2689 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2690 2691 // Figure out which block is immediately after the current one. 2692 MachineBasicBlock *NextBlock = nullptr; 2693 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2694 2695 // If there is only the default destination, branch to it if it is not the 2696 // next basic block. Otherwise, just fall through. 2697 if (!SI.getNumCases()) { 2698 // Update machine-CFG edges. 2699 2700 // If this is not a fall-through branch, emit the branch. 2701 SwitchMBB->addSuccessor(Default); 2702 if (Default != NextBlock) 2703 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2704 MVT::Other, getControlRoot(), 2705 DAG.getBasicBlock(Default))); 2706 2707 return; 2708 } 2709 2710 // If there are any non-default case statements, create a vector of Cases 2711 // representing each one, and sort the vector so that we can efficiently 2712 // create a binary search tree from them. 2713 CaseVector Cases; 2714 size_t numCmps = Clusterify(Cases, SI); 2715 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2716 << ". Total compares: " << numCmps << '\n'); 2717 (void)numCmps; 2718 2719 // Get the Value to be switched on and default basic blocks, which will be 2720 // inserted into CaseBlock records, representing basic blocks in the binary 2721 // search tree. 2722 const Value *SV = SI.getCondition(); 2723 2724 // Push the initial CaseRec onto the worklist 2725 CaseRecVector WorkList; 2726 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2727 CaseRange(Cases.begin(),Cases.end()))); 2728 2729 while (!WorkList.empty()) { 2730 // Grab a record representing a case range to process off the worklist 2731 CaseRec CR = WorkList.back(); 2732 WorkList.pop_back(); 2733 2734 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2735 continue; 2736 2737 // If the range has few cases (two or less) emit a series of specific 2738 // tests. 2739 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2740 continue; 2741 2742 // If the switch has more than N blocks, and is at least 40% dense, and the 2743 // target supports indirect branches, then emit a jump table rather than 2744 // lowering the switch to a binary tree of conditional branches. 2745 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2746 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2747 continue; 2748 2749 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2750 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2751 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2752 } 2753 } 2754 2755 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2756 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2757 2758 // Update machine-CFG edges with unique successors. 2759 SmallSet<BasicBlock*, 32> Done; 2760 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2761 BasicBlock *BB = I.getSuccessor(i); 2762 bool Inserted = Done.insert(BB); 2763 if (!Inserted) 2764 continue; 2765 2766 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2767 addSuccessorWithWeight(IndirectBrMBB, Succ); 2768 } 2769 2770 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2771 MVT::Other, getControlRoot(), 2772 getValue(I.getAddress()))); 2773 } 2774 2775 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2776 if (DAG.getTarget().Options.TrapUnreachable) 2777 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2778 } 2779 2780 void SelectionDAGBuilder::visitFSub(const User &I) { 2781 // -0.0 - X --> fneg 2782 Type *Ty = I.getType(); 2783 if (isa<Constant>(I.getOperand(0)) && 2784 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2785 SDValue Op2 = getValue(I.getOperand(1)); 2786 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2787 Op2.getValueType(), Op2)); 2788 return; 2789 } 2790 2791 visitBinary(I, ISD::FSUB); 2792 } 2793 2794 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2795 SDValue Op1 = getValue(I.getOperand(0)); 2796 SDValue Op2 = getValue(I.getOperand(1)); 2797 2798 bool nuw = false; 2799 bool nsw = false; 2800 bool exact = false; 2801 if (const OverflowingBinaryOperator *OFBinOp = 2802 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2803 nuw = OFBinOp->hasNoUnsignedWrap(); 2804 nsw = OFBinOp->hasNoSignedWrap(); 2805 } 2806 if (const PossiblyExactOperator *ExactOp = 2807 dyn_cast<const PossiblyExactOperator>(&I)) 2808 exact = ExactOp->isExact(); 2809 2810 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2811 Op1, Op2, nuw, nsw, exact); 2812 setValue(&I, BinNodeValue); 2813 } 2814 2815 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2816 SDValue Op1 = getValue(I.getOperand(0)); 2817 SDValue Op2 = getValue(I.getOperand(1)); 2818 2819 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType()); 2820 2821 // Coerce the shift amount to the right type if we can. 2822 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2823 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2824 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2825 SDLoc DL = getCurSDLoc(); 2826 2827 // If the operand is smaller than the shift count type, promote it. 2828 if (ShiftSize > Op2Size) 2829 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2830 2831 // If the operand is larger than the shift count type but the shift 2832 // count type has enough bits to represent any shift value, truncate 2833 // it now. This is a common case and it exposes the truncate to 2834 // optimization early. 2835 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2836 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2837 // Otherwise we'll need to temporarily settle for some other convenient 2838 // type. Type legalization will make adjustments once the shiftee is split. 2839 else 2840 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2841 } 2842 2843 bool nuw = false; 2844 bool nsw = false; 2845 bool exact = false; 2846 2847 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2848 2849 if (const OverflowingBinaryOperator *OFBinOp = 2850 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2851 nuw = OFBinOp->hasNoUnsignedWrap(); 2852 nsw = OFBinOp->hasNoSignedWrap(); 2853 } 2854 if (const PossiblyExactOperator *ExactOp = 2855 dyn_cast<const PossiblyExactOperator>(&I)) 2856 exact = ExactOp->isExact(); 2857 } 2858 2859 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2860 nuw, nsw, exact); 2861 setValue(&I, Res); 2862 } 2863 2864 void SelectionDAGBuilder::visitSDiv(const User &I) { 2865 SDValue Op1 = getValue(I.getOperand(0)); 2866 SDValue Op2 = getValue(I.getOperand(1)); 2867 2868 // Turn exact SDivs into multiplications. 2869 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2870 // exact bit. 2871 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2872 !isa<ConstantSDNode>(Op1) && 2873 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2874 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2, 2875 getCurSDLoc(), DAG)); 2876 else 2877 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2878 Op1, Op2)); 2879 } 2880 2881 void SelectionDAGBuilder::visitICmp(const User &I) { 2882 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2883 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2884 predicate = IC->getPredicate(); 2885 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2886 predicate = ICmpInst::Predicate(IC->getPredicate()); 2887 SDValue Op1 = getValue(I.getOperand(0)); 2888 SDValue Op2 = getValue(I.getOperand(1)); 2889 ISD::CondCode Opcode = getICmpCondCode(predicate); 2890 2891 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2892 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2893 } 2894 2895 void SelectionDAGBuilder::visitFCmp(const User &I) { 2896 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2897 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2898 predicate = FC->getPredicate(); 2899 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2900 predicate = FCmpInst::Predicate(FC->getPredicate()); 2901 SDValue Op1 = getValue(I.getOperand(0)); 2902 SDValue Op2 = getValue(I.getOperand(1)); 2903 ISD::CondCode Condition = getFCmpCondCode(predicate); 2904 if (TM.Options.NoNaNsFPMath) 2905 Condition = getFCmpCodeWithoutNaN(Condition); 2906 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2907 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2908 } 2909 2910 void SelectionDAGBuilder::visitSelect(const User &I) { 2911 SmallVector<EVT, 4> ValueVTs; 2912 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs); 2913 unsigned NumValues = ValueVTs.size(); 2914 if (NumValues == 0) return; 2915 2916 SmallVector<SDValue, 4> Values(NumValues); 2917 SDValue Cond = getValue(I.getOperand(0)); 2918 SDValue TrueVal = getValue(I.getOperand(1)); 2919 SDValue FalseVal = getValue(I.getOperand(2)); 2920 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2921 ISD::VSELECT : ISD::SELECT; 2922 2923 for (unsigned i = 0; i != NumValues; ++i) 2924 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2925 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2926 Cond, 2927 SDValue(TrueVal.getNode(), 2928 TrueVal.getResNo() + i), 2929 SDValue(FalseVal.getNode(), 2930 FalseVal.getResNo() + i)); 2931 2932 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2933 DAG.getVTList(ValueVTs), Values)); 2934 } 2935 2936 void SelectionDAGBuilder::visitTrunc(const User &I) { 2937 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2938 SDValue N = getValue(I.getOperand(0)); 2939 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2940 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2941 } 2942 2943 void SelectionDAGBuilder::visitZExt(const User &I) { 2944 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2945 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2946 SDValue N = getValue(I.getOperand(0)); 2947 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2948 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2949 } 2950 2951 void SelectionDAGBuilder::visitSExt(const User &I) { 2952 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2953 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2954 SDValue N = getValue(I.getOperand(0)); 2955 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2956 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2957 } 2958 2959 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2960 // FPTrunc is never a no-op cast, no need to check 2961 SDValue N = getValue(I.getOperand(0)); 2962 const TargetLowering *TLI = TM.getTargetLowering(); 2963 EVT DestVT = TLI->getValueType(I.getType()); 2964 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2965 DestVT, N, 2966 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2967 } 2968 2969 void SelectionDAGBuilder::visitFPExt(const User &I) { 2970 // FPExt is never a no-op cast, no need to check 2971 SDValue N = getValue(I.getOperand(0)); 2972 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2973 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2974 } 2975 2976 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2977 // FPToUI is never a no-op cast, no need to check 2978 SDValue N = getValue(I.getOperand(0)); 2979 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2980 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2981 } 2982 2983 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2984 // FPToSI is never a no-op cast, no need to check 2985 SDValue N = getValue(I.getOperand(0)); 2986 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2987 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2988 } 2989 2990 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2991 // UIToFP is never a no-op cast, no need to check 2992 SDValue N = getValue(I.getOperand(0)); 2993 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 2994 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2995 } 2996 2997 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2998 // SIToFP is never a no-op cast, no need to check 2999 SDValue N = getValue(I.getOperand(0)); 3000 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3001 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3002 } 3003 3004 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3005 // What to do depends on the size of the integer and the size of the pointer. 3006 // We can either truncate, zero extend, or no-op, accordingly. 3007 SDValue N = getValue(I.getOperand(0)); 3008 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3009 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3010 } 3011 3012 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3013 // What to do depends on the size of the integer and the size of the pointer. 3014 // We can either truncate, zero extend, or no-op, accordingly. 3015 SDValue N = getValue(I.getOperand(0)); 3016 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3017 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3018 } 3019 3020 void SelectionDAGBuilder::visitBitCast(const User &I) { 3021 SDValue N = getValue(I.getOperand(0)); 3022 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3023 3024 // BitCast assures us that source and destination are the same size so this is 3025 // either a BITCAST or a no-op. 3026 if (DestVT != N.getValueType()) 3027 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3028 DestVT, N)); // convert types. 3029 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3030 // might fold any kind of constant expression to an integer constant and that 3031 // is not what we are looking for. Only regcognize a bitcast of a genuine 3032 // constant integer as an opaque constant. 3033 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3034 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3035 /*isOpaque*/true)); 3036 else 3037 setValue(&I, N); // noop cast. 3038 } 3039 3040 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3042 const Value *SV = I.getOperand(0); 3043 SDValue N = getValue(SV); 3044 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType()); 3045 3046 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3047 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3048 3049 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3050 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3051 3052 setValue(&I, N); 3053 } 3054 3055 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3056 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3057 SDValue InVec = getValue(I.getOperand(0)); 3058 SDValue InVal = getValue(I.getOperand(1)); 3059 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3060 getCurSDLoc(), TLI.getVectorIdxTy()); 3061 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3062 TM.getTargetLowering()->getValueType(I.getType()), 3063 InVec, InVal, InIdx)); 3064 } 3065 3066 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 SDValue InVec = getValue(I.getOperand(0)); 3069 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3070 getCurSDLoc(), TLI.getVectorIdxTy()); 3071 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3072 TM.getTargetLowering()->getValueType(I.getType()), 3073 InVec, InIdx)); 3074 } 3075 3076 // Utility for visitShuffleVector - Return true if every element in Mask, 3077 // beginning from position Pos and ending in Pos+Size, falls within the 3078 // specified sequential range [L, L+Pos). or is undef. 3079 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3080 unsigned Pos, unsigned Size, int Low) { 3081 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3082 if (Mask[i] >= 0 && Mask[i] != Low) 3083 return false; 3084 return true; 3085 } 3086 3087 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3088 SDValue Src1 = getValue(I.getOperand(0)); 3089 SDValue Src2 = getValue(I.getOperand(1)); 3090 3091 SmallVector<int, 8> Mask; 3092 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3093 unsigned MaskNumElts = Mask.size(); 3094 3095 const TargetLowering *TLI = TM.getTargetLowering(); 3096 EVT VT = TLI->getValueType(I.getType()); 3097 EVT SrcVT = Src1.getValueType(); 3098 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3099 3100 if (SrcNumElts == MaskNumElts) { 3101 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3102 &Mask[0])); 3103 return; 3104 } 3105 3106 // Normalize the shuffle vector since mask and vector length don't match. 3107 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3108 // Mask is longer than the source vectors and is a multiple of the source 3109 // vectors. We can use concatenate vector to make the mask and vectors 3110 // lengths match. 3111 if (SrcNumElts*2 == MaskNumElts) { 3112 // First check for Src1 in low and Src2 in high 3113 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3114 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3115 // The shuffle is concatenating two vectors together. 3116 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3117 VT, Src1, Src2)); 3118 return; 3119 } 3120 // Then check for Src2 in low and Src1 in high 3121 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3122 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3123 // The shuffle is concatenating two vectors together. 3124 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3125 VT, Src2, Src1)); 3126 return; 3127 } 3128 } 3129 3130 // Pad both vectors with undefs to make them the same length as the mask. 3131 unsigned NumConcat = MaskNumElts / SrcNumElts; 3132 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3133 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3134 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3135 3136 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3137 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3138 MOps1[0] = Src1; 3139 MOps2[0] = Src2; 3140 3141 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3142 getCurSDLoc(), VT, MOps1); 3143 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3144 getCurSDLoc(), VT, MOps2); 3145 3146 // Readjust mask for new input vector length. 3147 SmallVector<int, 8> MappedOps; 3148 for (unsigned i = 0; i != MaskNumElts; ++i) { 3149 int Idx = Mask[i]; 3150 if (Idx >= (int)SrcNumElts) 3151 Idx -= SrcNumElts - MaskNumElts; 3152 MappedOps.push_back(Idx); 3153 } 3154 3155 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3156 &MappedOps[0])); 3157 return; 3158 } 3159 3160 if (SrcNumElts > MaskNumElts) { 3161 // Analyze the access pattern of the vector to see if we can extract 3162 // two subvectors and do the shuffle. The analysis is done by calculating 3163 // the range of elements the mask access on both vectors. 3164 int MinRange[2] = { static_cast<int>(SrcNumElts), 3165 static_cast<int>(SrcNumElts)}; 3166 int MaxRange[2] = {-1, -1}; 3167 3168 for (unsigned i = 0; i != MaskNumElts; ++i) { 3169 int Idx = Mask[i]; 3170 unsigned Input = 0; 3171 if (Idx < 0) 3172 continue; 3173 3174 if (Idx >= (int)SrcNumElts) { 3175 Input = 1; 3176 Idx -= SrcNumElts; 3177 } 3178 if (Idx > MaxRange[Input]) 3179 MaxRange[Input] = Idx; 3180 if (Idx < MinRange[Input]) 3181 MinRange[Input] = Idx; 3182 } 3183 3184 // Check if the access is smaller than the vector size and can we find 3185 // a reasonable extract index. 3186 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3187 // Extract. 3188 int StartIdx[2]; // StartIdx to extract from 3189 for (unsigned Input = 0; Input < 2; ++Input) { 3190 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3191 RangeUse[Input] = 0; // Unused 3192 StartIdx[Input] = 0; 3193 continue; 3194 } 3195 3196 // Find a good start index that is a multiple of the mask length. Then 3197 // see if the rest of the elements are in range. 3198 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3199 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3200 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3201 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3202 } 3203 3204 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3205 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3206 return; 3207 } 3208 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3209 // Extract appropriate subvector and generate a vector shuffle 3210 for (unsigned Input = 0; Input < 2; ++Input) { 3211 SDValue &Src = Input == 0 ? Src1 : Src2; 3212 if (RangeUse[Input] == 0) 3213 Src = DAG.getUNDEF(VT); 3214 else 3215 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3216 Src, DAG.getConstant(StartIdx[Input], 3217 TLI->getVectorIdxTy())); 3218 } 3219 3220 // Calculate new mask. 3221 SmallVector<int, 8> MappedOps; 3222 for (unsigned i = 0; i != MaskNumElts; ++i) { 3223 int Idx = Mask[i]; 3224 if (Idx >= 0) { 3225 if (Idx < (int)SrcNumElts) 3226 Idx -= StartIdx[0]; 3227 else 3228 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3229 } 3230 MappedOps.push_back(Idx); 3231 } 3232 3233 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3234 &MappedOps[0])); 3235 return; 3236 } 3237 } 3238 3239 // We can't use either concat vectors or extract subvectors so fall back to 3240 // replacing the shuffle with extract and build vector. 3241 // to insert and build vector. 3242 EVT EltVT = VT.getVectorElementType(); 3243 EVT IdxVT = TLI->getVectorIdxTy(); 3244 SmallVector<SDValue,8> Ops; 3245 for (unsigned i = 0; i != MaskNumElts; ++i) { 3246 int Idx = Mask[i]; 3247 SDValue Res; 3248 3249 if (Idx < 0) { 3250 Res = DAG.getUNDEF(EltVT); 3251 } else { 3252 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3253 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3254 3255 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3256 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3257 } 3258 3259 Ops.push_back(Res); 3260 } 3261 3262 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3263 } 3264 3265 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3266 const Value *Op0 = I.getOperand(0); 3267 const Value *Op1 = I.getOperand(1); 3268 Type *AggTy = I.getType(); 3269 Type *ValTy = Op1->getType(); 3270 bool IntoUndef = isa<UndefValue>(Op0); 3271 bool FromUndef = isa<UndefValue>(Op1); 3272 3273 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3274 3275 const TargetLowering *TLI = TM.getTargetLowering(); 3276 SmallVector<EVT, 4> AggValueVTs; 3277 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3278 SmallVector<EVT, 4> ValValueVTs; 3279 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3280 3281 unsigned NumAggValues = AggValueVTs.size(); 3282 unsigned NumValValues = ValValueVTs.size(); 3283 SmallVector<SDValue, 4> Values(NumAggValues); 3284 3285 SDValue Agg = getValue(Op0); 3286 unsigned i = 0; 3287 // Copy the beginning value(s) from the original aggregate. 3288 for (; i != LinearIndex; ++i) 3289 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3290 SDValue(Agg.getNode(), Agg.getResNo() + i); 3291 // Copy values from the inserted value(s). 3292 if (NumValValues) { 3293 SDValue Val = getValue(Op1); 3294 for (; i != LinearIndex + NumValValues; ++i) 3295 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3296 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3297 } 3298 // Copy remaining value(s) from the original aggregate. 3299 for (; i != NumAggValues; ++i) 3300 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3301 SDValue(Agg.getNode(), Agg.getResNo() + i); 3302 3303 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3304 DAG.getVTList(AggValueVTs), Values)); 3305 } 3306 3307 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3308 const Value *Op0 = I.getOperand(0); 3309 Type *AggTy = Op0->getType(); 3310 Type *ValTy = I.getType(); 3311 bool OutOfUndef = isa<UndefValue>(Op0); 3312 3313 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3314 3315 const TargetLowering *TLI = TM.getTargetLowering(); 3316 SmallVector<EVT, 4> ValValueVTs; 3317 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3318 3319 unsigned NumValValues = ValValueVTs.size(); 3320 3321 // Ignore a extractvalue that produces an empty object 3322 if (!NumValValues) { 3323 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3324 return; 3325 } 3326 3327 SmallVector<SDValue, 4> Values(NumValValues); 3328 3329 SDValue Agg = getValue(Op0); 3330 // Copy out the selected value(s). 3331 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3332 Values[i - LinearIndex] = 3333 OutOfUndef ? 3334 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3335 SDValue(Agg.getNode(), Agg.getResNo() + i); 3336 3337 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3338 DAG.getVTList(ValValueVTs), Values)); 3339 } 3340 3341 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3342 Value *Op0 = I.getOperand(0); 3343 // Note that the pointer operand may be a vector of pointers. Take the scalar 3344 // element which holds a pointer. 3345 Type *Ty = Op0->getType()->getScalarType(); 3346 unsigned AS = Ty->getPointerAddressSpace(); 3347 SDValue N = getValue(Op0); 3348 3349 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3350 OI != E; ++OI) { 3351 const Value *Idx = *OI; 3352 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3353 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3354 if (Field) { 3355 // N = N + Offset 3356 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3357 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3358 DAG.getConstant(Offset, N.getValueType())); 3359 } 3360 3361 Ty = StTy->getElementType(Field); 3362 } else { 3363 Ty = cast<SequentialType>(Ty)->getElementType(); 3364 3365 // If this is a constant subscript, handle it quickly. 3366 const TargetLowering *TLI = TM.getTargetLowering(); 3367 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3368 if (CI->isZero()) continue; 3369 uint64_t Offs = 3370 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3371 SDValue OffsVal; 3372 EVT PTy = TLI->getPointerTy(AS); 3373 unsigned PtrBits = PTy.getSizeInBits(); 3374 if (PtrBits < 64) 3375 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3376 DAG.getConstant(Offs, MVT::i64)); 3377 else 3378 OffsVal = DAG.getConstant(Offs, PTy); 3379 3380 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3381 OffsVal); 3382 continue; 3383 } 3384 3385 // N = N + Idx * ElementSize; 3386 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3387 DL->getTypeAllocSize(Ty)); 3388 SDValue IdxN = getValue(Idx); 3389 3390 // If the index is smaller or larger than intptr_t, truncate or extend 3391 // it. 3392 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3393 3394 // If this is a multiply by a power of two, turn it into a shl 3395 // immediately. This is a very common case. 3396 if (ElementSize != 1) { 3397 if (ElementSize.isPowerOf2()) { 3398 unsigned Amt = ElementSize.logBase2(); 3399 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3400 N.getValueType(), IdxN, 3401 DAG.getConstant(Amt, IdxN.getValueType())); 3402 } else { 3403 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3404 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3405 N.getValueType(), IdxN, Scale); 3406 } 3407 } 3408 3409 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3410 N.getValueType(), N, IdxN); 3411 } 3412 } 3413 3414 setValue(&I, N); 3415 } 3416 3417 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3418 // If this is a fixed sized alloca in the entry block of the function, 3419 // allocate it statically on the stack. 3420 if (FuncInfo.StaticAllocaMap.count(&I)) 3421 return; // getValue will auto-populate this. 3422 3423 Type *Ty = I.getAllocatedType(); 3424 const TargetLowering *TLI = TM.getTargetLowering(); 3425 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3426 unsigned Align = 3427 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3428 I.getAlignment()); 3429 3430 SDValue AllocSize = getValue(I.getArraySize()); 3431 3432 EVT IntPtr = TLI->getPointerTy(); 3433 if (AllocSize.getValueType() != IntPtr) 3434 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3435 3436 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3437 AllocSize, 3438 DAG.getConstant(TySize, IntPtr)); 3439 3440 // Handle alignment. If the requested alignment is less than or equal to 3441 // the stack alignment, ignore it. If the size is greater than or equal to 3442 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3443 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3444 if (Align <= StackAlign) 3445 Align = 0; 3446 3447 // Round the size of the allocation up to the stack alignment size 3448 // by add SA-1 to the size. 3449 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3450 AllocSize.getValueType(), AllocSize, 3451 DAG.getIntPtrConstant(StackAlign-1)); 3452 3453 // Mask out the low bits for alignment purposes. 3454 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3455 AllocSize.getValueType(), AllocSize, 3456 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3457 3458 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3459 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3460 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3461 setValue(&I, DSA); 3462 DAG.setRoot(DSA.getValue(1)); 3463 3464 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3465 } 3466 3467 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3468 if (I.isAtomic()) 3469 return visitAtomicLoad(I); 3470 3471 const Value *SV = I.getOperand(0); 3472 SDValue Ptr = getValue(SV); 3473 3474 Type *Ty = I.getType(); 3475 3476 bool isVolatile = I.isVolatile(); 3477 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3478 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3479 unsigned Alignment = I.getAlignment(); 3480 3481 AAMDNodes AAInfo; 3482 I.getAAMetadata(AAInfo); 3483 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3484 3485 SmallVector<EVT, 4> ValueVTs; 3486 SmallVector<uint64_t, 4> Offsets; 3487 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets); 3488 unsigned NumValues = ValueVTs.size(); 3489 if (NumValues == 0) 3490 return; 3491 3492 SDValue Root; 3493 bool ConstantMemory = false; 3494 if (isVolatile || NumValues > MaxParallelChains) 3495 // Serialize volatile loads with other side effects. 3496 Root = getRoot(); 3497 else if (AA->pointsToConstantMemory( 3498 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3499 // Do not serialize (non-volatile) loads of constant memory with anything. 3500 Root = DAG.getEntryNode(); 3501 ConstantMemory = true; 3502 } else { 3503 // Do not serialize non-volatile loads against each other. 3504 Root = DAG.getRoot(); 3505 } 3506 3507 const TargetLowering *TLI = TM.getTargetLowering(); 3508 if (isVolatile) 3509 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3510 3511 SmallVector<SDValue, 4> Values(NumValues); 3512 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3513 NumValues)); 3514 EVT PtrVT = Ptr.getValueType(); 3515 unsigned ChainI = 0; 3516 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3517 // Serializing loads here may result in excessive register pressure, and 3518 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3519 // could recover a bit by hoisting nodes upward in the chain by recognizing 3520 // they are side-effect free or do not alias. The optimizer should really 3521 // avoid this case by converting large object/array copies to llvm.memcpy 3522 // (MaxParallelChains should always remain as failsafe). 3523 if (ChainI == MaxParallelChains) { 3524 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3525 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3526 makeArrayRef(Chains.data(), ChainI)); 3527 Root = Chain; 3528 ChainI = 0; 3529 } 3530 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3531 PtrVT, Ptr, 3532 DAG.getConstant(Offsets[i], PtrVT)); 3533 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3534 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3535 isNonTemporal, isInvariant, Alignment, AAInfo, 3536 Ranges); 3537 3538 Values[i] = L; 3539 Chains[ChainI] = L.getValue(1); 3540 } 3541 3542 if (!ConstantMemory) { 3543 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3544 makeArrayRef(Chains.data(), ChainI)); 3545 if (isVolatile) 3546 DAG.setRoot(Chain); 3547 else 3548 PendingLoads.push_back(Chain); 3549 } 3550 3551 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3552 DAG.getVTList(ValueVTs), Values)); 3553 } 3554 3555 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3556 if (I.isAtomic()) 3557 return visitAtomicStore(I); 3558 3559 const Value *SrcV = I.getOperand(0); 3560 const Value *PtrV = I.getOperand(1); 3561 3562 SmallVector<EVT, 4> ValueVTs; 3563 SmallVector<uint64_t, 4> Offsets; 3564 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets); 3565 unsigned NumValues = ValueVTs.size(); 3566 if (NumValues == 0) 3567 return; 3568 3569 // Get the lowered operands. Note that we do this after 3570 // checking if NumResults is zero, because with zero results 3571 // the operands won't have values in the map. 3572 SDValue Src = getValue(SrcV); 3573 SDValue Ptr = getValue(PtrV); 3574 3575 SDValue Root = getRoot(); 3576 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3577 NumValues)); 3578 EVT PtrVT = Ptr.getValueType(); 3579 bool isVolatile = I.isVolatile(); 3580 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3581 unsigned Alignment = I.getAlignment(); 3582 3583 AAMDNodes AAInfo; 3584 I.getAAMetadata(AAInfo); 3585 3586 unsigned ChainI = 0; 3587 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3588 // See visitLoad comments. 3589 if (ChainI == MaxParallelChains) { 3590 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3591 makeArrayRef(Chains.data(), ChainI)); 3592 Root = Chain; 3593 ChainI = 0; 3594 } 3595 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3596 DAG.getConstant(Offsets[i], PtrVT)); 3597 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3598 SDValue(Src.getNode(), Src.getResNo() + i), 3599 Add, MachinePointerInfo(PtrV, Offsets[i]), 3600 isVolatile, isNonTemporal, Alignment, AAInfo); 3601 Chains[ChainI] = St; 3602 } 3603 3604 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3605 makeArrayRef(Chains.data(), ChainI)); 3606 DAG.setRoot(StoreNode); 3607 } 3608 3609 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3610 SynchronizationScope Scope, 3611 bool Before, SDLoc dl, 3612 SelectionDAG &DAG, 3613 const TargetLowering &TLI) { 3614 // Fence, if necessary 3615 if (Before) { 3616 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3617 Order = Release; 3618 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3619 return Chain; 3620 } else { 3621 if (Order == AcquireRelease) 3622 Order = Acquire; 3623 else if (Order == Release || Order == Monotonic || Order == Unordered) 3624 return Chain; 3625 } 3626 SDValue Ops[3]; 3627 Ops[0] = Chain; 3628 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3629 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3630 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3631 } 3632 3633 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3634 SDLoc dl = getCurSDLoc(); 3635 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3636 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3637 SynchronizationScope Scope = I.getSynchScope(); 3638 3639 SDValue InChain = getRoot(); 3640 3641 const TargetLowering *TLI = TM.getTargetLowering(); 3642 if (TLI->getInsertFencesForAtomic()) 3643 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3644 DAG, *TLI); 3645 3646 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3647 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3648 SDValue L = DAG.getAtomicCmpSwap( 3649 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3650 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3651 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3652 0 /* Alignment */, 3653 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3654 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3655 3656 SDValue OutChain = L.getValue(2); 3657 3658 if (TLI->getInsertFencesForAtomic()) 3659 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3660 DAG, *TLI); 3661 3662 setValue(&I, L); 3663 DAG.setRoot(OutChain); 3664 } 3665 3666 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3667 SDLoc dl = getCurSDLoc(); 3668 ISD::NodeType NT; 3669 switch (I.getOperation()) { 3670 default: llvm_unreachable("Unknown atomicrmw operation"); 3671 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3672 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3673 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3674 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3675 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3676 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3677 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3678 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3679 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3680 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3681 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3682 } 3683 AtomicOrdering Order = I.getOrdering(); 3684 SynchronizationScope Scope = I.getSynchScope(); 3685 3686 SDValue InChain = getRoot(); 3687 3688 const TargetLowering *TLI = TM.getTargetLowering(); 3689 if (TLI->getInsertFencesForAtomic()) 3690 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3691 DAG, *TLI); 3692 3693 SDValue L = 3694 DAG.getAtomic(NT, dl, 3695 getValue(I.getValOperand()).getSimpleValueType(), 3696 InChain, 3697 getValue(I.getPointerOperand()), 3698 getValue(I.getValOperand()), 3699 I.getPointerOperand(), 0 /* Alignment */, 3700 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3701 Scope); 3702 3703 SDValue OutChain = L.getValue(1); 3704 3705 if (TLI->getInsertFencesForAtomic()) 3706 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3707 DAG, *TLI); 3708 3709 setValue(&I, L); 3710 DAG.setRoot(OutChain); 3711 } 3712 3713 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3714 SDLoc dl = getCurSDLoc(); 3715 const TargetLowering *TLI = TM.getTargetLowering(); 3716 SDValue Ops[3]; 3717 Ops[0] = getRoot(); 3718 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3719 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3720 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3721 } 3722 3723 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3724 SDLoc dl = getCurSDLoc(); 3725 AtomicOrdering Order = I.getOrdering(); 3726 SynchronizationScope Scope = I.getSynchScope(); 3727 3728 SDValue InChain = getRoot(); 3729 3730 const TargetLowering *TLI = TM.getTargetLowering(); 3731 EVT VT = TLI->getValueType(I.getType()); 3732 3733 if (I.getAlignment() < VT.getSizeInBits() / 8) 3734 report_fatal_error("Cannot generate unaligned atomic load"); 3735 3736 MachineMemOperand *MMO = 3737 DAG.getMachineFunction(). 3738 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3739 MachineMemOperand::MOVolatile | 3740 MachineMemOperand::MOLoad, 3741 VT.getStoreSize(), 3742 I.getAlignment() ? I.getAlignment() : 3743 DAG.getEVTAlignment(VT)); 3744 3745 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3746 SDValue L = 3747 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3748 getValue(I.getPointerOperand()), MMO, 3749 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3750 Scope); 3751 3752 SDValue OutChain = L.getValue(1); 3753 3754 if (TLI->getInsertFencesForAtomic()) 3755 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3756 DAG, *TLI); 3757 3758 setValue(&I, L); 3759 DAG.setRoot(OutChain); 3760 } 3761 3762 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3763 SDLoc dl = getCurSDLoc(); 3764 3765 AtomicOrdering Order = I.getOrdering(); 3766 SynchronizationScope Scope = I.getSynchScope(); 3767 3768 SDValue InChain = getRoot(); 3769 3770 const TargetLowering *TLI = TM.getTargetLowering(); 3771 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3772 3773 if (I.getAlignment() < VT.getSizeInBits() / 8) 3774 report_fatal_error("Cannot generate unaligned atomic store"); 3775 3776 if (TLI->getInsertFencesForAtomic()) 3777 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3778 DAG, *TLI); 3779 3780 SDValue OutChain = 3781 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3782 InChain, 3783 getValue(I.getPointerOperand()), 3784 getValue(I.getValueOperand()), 3785 I.getPointerOperand(), I.getAlignment(), 3786 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3787 Scope); 3788 3789 if (TLI->getInsertFencesForAtomic()) 3790 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3791 DAG, *TLI); 3792 3793 DAG.setRoot(OutChain); 3794 } 3795 3796 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3797 /// node. 3798 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3799 unsigned Intrinsic) { 3800 bool HasChain = !I.doesNotAccessMemory(); 3801 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3802 3803 // Build the operand list. 3804 SmallVector<SDValue, 8> Ops; 3805 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3806 if (OnlyLoad) { 3807 // We don't need to serialize loads against other loads. 3808 Ops.push_back(DAG.getRoot()); 3809 } else { 3810 Ops.push_back(getRoot()); 3811 } 3812 } 3813 3814 // Info is set by getTgtMemInstrinsic 3815 TargetLowering::IntrinsicInfo Info; 3816 const TargetLowering *TLI = TM.getTargetLowering(); 3817 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3818 3819 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3820 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3821 Info.opc == ISD::INTRINSIC_W_CHAIN) 3822 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3823 3824 // Add all operands of the call to the operand list. 3825 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3826 SDValue Op = getValue(I.getArgOperand(i)); 3827 Ops.push_back(Op); 3828 } 3829 3830 SmallVector<EVT, 4> ValueVTs; 3831 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3832 3833 if (HasChain) 3834 ValueVTs.push_back(MVT::Other); 3835 3836 SDVTList VTs = DAG.getVTList(ValueVTs); 3837 3838 // Create the node. 3839 SDValue Result; 3840 if (IsTgtIntrinsic) { 3841 // This is target intrinsic that touches memory 3842 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3843 VTs, Ops, Info.memVT, 3844 MachinePointerInfo(Info.ptrVal, Info.offset), 3845 Info.align, Info.vol, 3846 Info.readMem, Info.writeMem); 3847 } else if (!HasChain) { 3848 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3849 } else if (!I.getType()->isVoidTy()) { 3850 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3851 } else { 3852 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3853 } 3854 3855 if (HasChain) { 3856 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3857 if (OnlyLoad) 3858 PendingLoads.push_back(Chain); 3859 else 3860 DAG.setRoot(Chain); 3861 } 3862 3863 if (!I.getType()->isVoidTy()) { 3864 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3865 EVT VT = TLI->getValueType(PTy); 3866 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3867 } 3868 3869 setValue(&I, Result); 3870 } 3871 } 3872 3873 /// GetSignificand - Get the significand and build it into a floating-point 3874 /// number with exponent of 1: 3875 /// 3876 /// Op = (Op & 0x007fffff) | 0x3f800000; 3877 /// 3878 /// where Op is the hexadecimal representation of floating point value. 3879 static SDValue 3880 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3881 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3882 DAG.getConstant(0x007fffff, MVT::i32)); 3883 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3884 DAG.getConstant(0x3f800000, MVT::i32)); 3885 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3886 } 3887 3888 /// GetExponent - Get the exponent: 3889 /// 3890 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3891 /// 3892 /// where Op is the hexadecimal representation of floating point value. 3893 static SDValue 3894 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3895 SDLoc dl) { 3896 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3897 DAG.getConstant(0x7f800000, MVT::i32)); 3898 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3899 DAG.getConstant(23, TLI.getPointerTy())); 3900 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3901 DAG.getConstant(127, MVT::i32)); 3902 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3903 } 3904 3905 /// getF32Constant - Get 32-bit floating point constant. 3906 static SDValue 3907 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3908 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3909 MVT::f32); 3910 } 3911 3912 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3913 /// limited-precision mode. 3914 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3915 const TargetLowering &TLI) { 3916 if (Op.getValueType() == MVT::f32 && 3917 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3918 3919 // Put the exponent in the right bit position for later addition to the 3920 // final result: 3921 // 3922 // #define LOG2OFe 1.4426950f 3923 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3924 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3925 getF32Constant(DAG, 0x3fb8aa3b)); 3926 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3927 3928 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3929 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3930 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3931 3932 // IntegerPartOfX <<= 23; 3933 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3934 DAG.getConstant(23, TLI.getPointerTy())); 3935 3936 SDValue TwoToFracPartOfX; 3937 if (LimitFloatPrecision <= 6) { 3938 // For floating-point precision of 6: 3939 // 3940 // TwoToFractionalPartOfX = 3941 // 0.997535578f + 3942 // (0.735607626f + 0.252464424f * x) * x; 3943 // 3944 // error 0.0144103317, which is 6 bits 3945 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3946 getF32Constant(DAG, 0x3e814304)); 3947 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3948 getF32Constant(DAG, 0x3f3c50c8)); 3949 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3950 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3951 getF32Constant(DAG, 0x3f7f5e7e)); 3952 } else if (LimitFloatPrecision <= 12) { 3953 // For floating-point precision of 12: 3954 // 3955 // TwoToFractionalPartOfX = 3956 // 0.999892986f + 3957 // (0.696457318f + 3958 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3959 // 3960 // 0.000107046256 error, which is 13 to 14 bits 3961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3962 getF32Constant(DAG, 0x3da235e3)); 3963 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3964 getF32Constant(DAG, 0x3e65b8f3)); 3965 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3966 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3967 getF32Constant(DAG, 0x3f324b07)); 3968 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3969 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3970 getF32Constant(DAG, 0x3f7ff8fd)); 3971 } else { // LimitFloatPrecision <= 18 3972 // For floating-point precision of 18: 3973 // 3974 // TwoToFractionalPartOfX = 3975 // 0.999999982f + 3976 // (0.693148872f + 3977 // (0.240227044f + 3978 // (0.554906021e-1f + 3979 // (0.961591928e-2f + 3980 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3981 // 3982 // error 2.47208000*10^(-7), which is better than 18 bits 3983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3984 getF32Constant(DAG, 0x3924b03e)); 3985 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3986 getF32Constant(DAG, 0x3ab24b87)); 3987 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3988 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3989 getF32Constant(DAG, 0x3c1d8c17)); 3990 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3991 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3992 getF32Constant(DAG, 0x3d634a1d)); 3993 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3994 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3995 getF32Constant(DAG, 0x3e75fe14)); 3996 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3997 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3998 getF32Constant(DAG, 0x3f317234)); 3999 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4000 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4001 getF32Constant(DAG, 0x3f800000)); 4002 } 4003 4004 // Add the exponent into the result in integer domain. 4005 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4006 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4007 DAG.getNode(ISD::ADD, dl, MVT::i32, 4008 t13, IntegerPartOfX)); 4009 } 4010 4011 // No special expansion. 4012 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4013 } 4014 4015 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4016 /// limited-precision mode. 4017 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4018 const TargetLowering &TLI) { 4019 if (Op.getValueType() == MVT::f32 && 4020 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4021 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4022 4023 // Scale the exponent by log(2) [0.69314718f]. 4024 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4025 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4026 getF32Constant(DAG, 0x3f317218)); 4027 4028 // Get the significand and build it into a floating-point number with 4029 // exponent of 1. 4030 SDValue X = GetSignificand(DAG, Op1, dl); 4031 4032 SDValue LogOfMantissa; 4033 if (LimitFloatPrecision <= 6) { 4034 // For floating-point precision of 6: 4035 // 4036 // LogofMantissa = 4037 // -1.1609546f + 4038 // (1.4034025f - 0.23903021f * x) * x; 4039 // 4040 // error 0.0034276066, which is better than 8 bits 4041 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4042 getF32Constant(DAG, 0xbe74c456)); 4043 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4044 getF32Constant(DAG, 0x3fb3a2b1)); 4045 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4046 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4047 getF32Constant(DAG, 0x3f949a29)); 4048 } else if (LimitFloatPrecision <= 12) { 4049 // For floating-point precision of 12: 4050 // 4051 // LogOfMantissa = 4052 // -1.7417939f + 4053 // (2.8212026f + 4054 // (-1.4699568f + 4055 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4056 // 4057 // error 0.000061011436, which is 14 bits 4058 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4059 getF32Constant(DAG, 0xbd67b6d6)); 4060 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4061 getF32Constant(DAG, 0x3ee4f4b8)); 4062 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4063 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4064 getF32Constant(DAG, 0x3fbc278b)); 4065 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4066 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4067 getF32Constant(DAG, 0x40348e95)); 4068 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4069 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4070 getF32Constant(DAG, 0x3fdef31a)); 4071 } else { // LimitFloatPrecision <= 18 4072 // For floating-point precision of 18: 4073 // 4074 // LogOfMantissa = 4075 // -2.1072184f + 4076 // (4.2372794f + 4077 // (-3.7029485f + 4078 // (2.2781945f + 4079 // (-0.87823314f + 4080 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4081 // 4082 // error 0.0000023660568, which is better than 18 bits 4083 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4084 getF32Constant(DAG, 0xbc91e5ac)); 4085 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4086 getF32Constant(DAG, 0x3e4350aa)); 4087 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4088 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4089 getF32Constant(DAG, 0x3f60d3e3)); 4090 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4091 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4092 getF32Constant(DAG, 0x4011cdf0)); 4093 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4094 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4095 getF32Constant(DAG, 0x406cfd1c)); 4096 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4097 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4098 getF32Constant(DAG, 0x408797cb)); 4099 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4100 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4101 getF32Constant(DAG, 0x4006dcab)); 4102 } 4103 4104 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4105 } 4106 4107 // No special expansion. 4108 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4109 } 4110 4111 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4112 /// limited-precision mode. 4113 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4114 const TargetLowering &TLI) { 4115 if (Op.getValueType() == MVT::f32 && 4116 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4117 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4118 4119 // Get the exponent. 4120 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4121 4122 // Get the significand and build it into a floating-point number with 4123 // exponent of 1. 4124 SDValue X = GetSignificand(DAG, Op1, dl); 4125 4126 // Different possible minimax approximations of significand in 4127 // floating-point for various degrees of accuracy over [1,2]. 4128 SDValue Log2ofMantissa; 4129 if (LimitFloatPrecision <= 6) { 4130 // For floating-point precision of 6: 4131 // 4132 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4133 // 4134 // error 0.0049451742, which is more than 7 bits 4135 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4136 getF32Constant(DAG, 0xbeb08fe0)); 4137 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4138 getF32Constant(DAG, 0x40019463)); 4139 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4140 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4141 getF32Constant(DAG, 0x3fd6633d)); 4142 } else if (LimitFloatPrecision <= 12) { 4143 // For floating-point precision of 12: 4144 // 4145 // Log2ofMantissa = 4146 // -2.51285454f + 4147 // (4.07009056f + 4148 // (-2.12067489f + 4149 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4150 // 4151 // error 0.0000876136000, which is better than 13 bits 4152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4153 getF32Constant(DAG, 0xbda7262e)); 4154 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4155 getF32Constant(DAG, 0x3f25280b)); 4156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4157 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4158 getF32Constant(DAG, 0x4007b923)); 4159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4160 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4161 getF32Constant(DAG, 0x40823e2f)); 4162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4163 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4164 getF32Constant(DAG, 0x4020d29c)); 4165 } else { // LimitFloatPrecision <= 18 4166 // For floating-point precision of 18: 4167 // 4168 // Log2ofMantissa = 4169 // -3.0400495f + 4170 // (6.1129976f + 4171 // (-5.3420409f + 4172 // (3.2865683f + 4173 // (-1.2669343f + 4174 // (0.27515199f - 4175 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4176 // 4177 // error 0.0000018516, which is better than 18 bits 4178 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4179 getF32Constant(DAG, 0xbcd2769e)); 4180 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4181 getF32Constant(DAG, 0x3e8ce0b9)); 4182 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4183 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4184 getF32Constant(DAG, 0x3fa22ae7)); 4185 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4186 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4187 getF32Constant(DAG, 0x40525723)); 4188 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4189 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4190 getF32Constant(DAG, 0x40aaf200)); 4191 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4192 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4193 getF32Constant(DAG, 0x40c39dad)); 4194 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4195 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4196 getF32Constant(DAG, 0x4042902c)); 4197 } 4198 4199 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4200 } 4201 4202 // No special expansion. 4203 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4204 } 4205 4206 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4207 /// limited-precision mode. 4208 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4209 const TargetLowering &TLI) { 4210 if (Op.getValueType() == MVT::f32 && 4211 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4212 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4213 4214 // Scale the exponent by log10(2) [0.30102999f]. 4215 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4216 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4217 getF32Constant(DAG, 0x3e9a209a)); 4218 4219 // Get the significand and build it into a floating-point number with 4220 // exponent of 1. 4221 SDValue X = GetSignificand(DAG, Op1, dl); 4222 4223 SDValue Log10ofMantissa; 4224 if (LimitFloatPrecision <= 6) { 4225 // For floating-point precision of 6: 4226 // 4227 // Log10ofMantissa = 4228 // -0.50419619f + 4229 // (0.60948995f - 0.10380950f * x) * x; 4230 // 4231 // error 0.0014886165, which is 6 bits 4232 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4233 getF32Constant(DAG, 0xbdd49a13)); 4234 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4235 getF32Constant(DAG, 0x3f1c0789)); 4236 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4237 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4238 getF32Constant(DAG, 0x3f011300)); 4239 } else if (LimitFloatPrecision <= 12) { 4240 // For floating-point precision of 12: 4241 // 4242 // Log10ofMantissa = 4243 // -0.64831180f + 4244 // (0.91751397f + 4245 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4246 // 4247 // error 0.00019228036, which is better than 12 bits 4248 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4249 getF32Constant(DAG, 0x3d431f31)); 4250 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4251 getF32Constant(DAG, 0x3ea21fb2)); 4252 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4253 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4254 getF32Constant(DAG, 0x3f6ae232)); 4255 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4256 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4257 getF32Constant(DAG, 0x3f25f7c3)); 4258 } else { // LimitFloatPrecision <= 18 4259 // For floating-point precision of 18: 4260 // 4261 // Log10ofMantissa = 4262 // -0.84299375f + 4263 // (1.5327582f + 4264 // (-1.0688956f + 4265 // (0.49102474f + 4266 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4267 // 4268 // error 0.0000037995730, which is better than 18 bits 4269 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4270 getF32Constant(DAG, 0x3c5d51ce)); 4271 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4272 getF32Constant(DAG, 0x3e00685a)); 4273 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4274 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4275 getF32Constant(DAG, 0x3efb6798)); 4276 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4277 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4278 getF32Constant(DAG, 0x3f88d192)); 4279 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4280 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4281 getF32Constant(DAG, 0x3fc4316c)); 4282 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4283 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4284 getF32Constant(DAG, 0x3f57ce70)); 4285 } 4286 4287 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4288 } 4289 4290 // No special expansion. 4291 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4292 } 4293 4294 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4295 /// limited-precision mode. 4296 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4297 const TargetLowering &TLI) { 4298 if (Op.getValueType() == MVT::f32 && 4299 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4300 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4301 4302 // FractionalPartOfX = x - (float)IntegerPartOfX; 4303 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4304 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4305 4306 // IntegerPartOfX <<= 23; 4307 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4308 DAG.getConstant(23, TLI.getPointerTy())); 4309 4310 SDValue TwoToFractionalPartOfX; 4311 if (LimitFloatPrecision <= 6) { 4312 // For floating-point precision of 6: 4313 // 4314 // TwoToFractionalPartOfX = 4315 // 0.997535578f + 4316 // (0.735607626f + 0.252464424f * x) * x; 4317 // 4318 // error 0.0144103317, which is 6 bits 4319 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4320 getF32Constant(DAG, 0x3e814304)); 4321 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4322 getF32Constant(DAG, 0x3f3c50c8)); 4323 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4324 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4325 getF32Constant(DAG, 0x3f7f5e7e)); 4326 } else if (LimitFloatPrecision <= 12) { 4327 // For floating-point precision of 12: 4328 // 4329 // TwoToFractionalPartOfX = 4330 // 0.999892986f + 4331 // (0.696457318f + 4332 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4333 // 4334 // error 0.000107046256, which is 13 to 14 bits 4335 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4336 getF32Constant(DAG, 0x3da235e3)); 4337 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4338 getF32Constant(DAG, 0x3e65b8f3)); 4339 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4340 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4341 getF32Constant(DAG, 0x3f324b07)); 4342 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4343 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4344 getF32Constant(DAG, 0x3f7ff8fd)); 4345 } else { // LimitFloatPrecision <= 18 4346 // For floating-point precision of 18: 4347 // 4348 // TwoToFractionalPartOfX = 4349 // 0.999999982f + 4350 // (0.693148872f + 4351 // (0.240227044f + 4352 // (0.554906021e-1f + 4353 // (0.961591928e-2f + 4354 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4355 // error 2.47208000*10^(-7), which is better than 18 bits 4356 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4357 getF32Constant(DAG, 0x3924b03e)); 4358 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4359 getF32Constant(DAG, 0x3ab24b87)); 4360 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4361 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4362 getF32Constant(DAG, 0x3c1d8c17)); 4363 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4364 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4365 getF32Constant(DAG, 0x3d634a1d)); 4366 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4367 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4368 getF32Constant(DAG, 0x3e75fe14)); 4369 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4370 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4371 getF32Constant(DAG, 0x3f317234)); 4372 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4373 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4374 getF32Constant(DAG, 0x3f800000)); 4375 } 4376 4377 // Add the exponent into the result in integer domain. 4378 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4379 TwoToFractionalPartOfX); 4380 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4381 DAG.getNode(ISD::ADD, dl, MVT::i32, 4382 t13, IntegerPartOfX)); 4383 } 4384 4385 // No special expansion. 4386 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4387 } 4388 4389 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4390 /// limited-precision mode with x == 10.0f. 4391 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4392 SelectionDAG &DAG, const TargetLowering &TLI) { 4393 bool IsExp10 = false; 4394 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4395 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4396 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4397 APFloat Ten(10.0f); 4398 IsExp10 = LHSC->isExactlyValue(Ten); 4399 } 4400 } 4401 4402 if (IsExp10) { 4403 // Put the exponent in the right bit position for later addition to the 4404 // final result: 4405 // 4406 // #define LOG2OF10 3.3219281f 4407 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4408 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4409 getF32Constant(DAG, 0x40549a78)); 4410 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4411 4412 // FractionalPartOfX = x - (float)IntegerPartOfX; 4413 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4414 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4415 4416 // IntegerPartOfX <<= 23; 4417 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4418 DAG.getConstant(23, TLI.getPointerTy())); 4419 4420 SDValue TwoToFractionalPartOfX; 4421 if (LimitFloatPrecision <= 6) { 4422 // For floating-point precision of 6: 4423 // 4424 // twoToFractionalPartOfX = 4425 // 0.997535578f + 4426 // (0.735607626f + 0.252464424f * x) * x; 4427 // 4428 // error 0.0144103317, which is 6 bits 4429 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4430 getF32Constant(DAG, 0x3e814304)); 4431 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4432 getF32Constant(DAG, 0x3f3c50c8)); 4433 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4434 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4435 getF32Constant(DAG, 0x3f7f5e7e)); 4436 } else if (LimitFloatPrecision <= 12) { 4437 // For floating-point precision of 12: 4438 // 4439 // TwoToFractionalPartOfX = 4440 // 0.999892986f + 4441 // (0.696457318f + 4442 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4443 // 4444 // error 0.000107046256, which is 13 to 14 bits 4445 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4446 getF32Constant(DAG, 0x3da235e3)); 4447 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4448 getF32Constant(DAG, 0x3e65b8f3)); 4449 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4450 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4451 getF32Constant(DAG, 0x3f324b07)); 4452 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4453 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4454 getF32Constant(DAG, 0x3f7ff8fd)); 4455 } else { // LimitFloatPrecision <= 18 4456 // For floating-point precision of 18: 4457 // 4458 // TwoToFractionalPartOfX = 4459 // 0.999999982f + 4460 // (0.693148872f + 4461 // (0.240227044f + 4462 // (0.554906021e-1f + 4463 // (0.961591928e-2f + 4464 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4465 // error 2.47208000*10^(-7), which is better than 18 bits 4466 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4467 getF32Constant(DAG, 0x3924b03e)); 4468 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4469 getF32Constant(DAG, 0x3ab24b87)); 4470 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4471 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4472 getF32Constant(DAG, 0x3c1d8c17)); 4473 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4474 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4475 getF32Constant(DAG, 0x3d634a1d)); 4476 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4477 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4478 getF32Constant(DAG, 0x3e75fe14)); 4479 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4480 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4481 getF32Constant(DAG, 0x3f317234)); 4482 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4483 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4484 getF32Constant(DAG, 0x3f800000)); 4485 } 4486 4487 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4488 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4489 DAG.getNode(ISD::ADD, dl, MVT::i32, 4490 t13, IntegerPartOfX)); 4491 } 4492 4493 // No special expansion. 4494 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4495 } 4496 4497 4498 /// ExpandPowI - Expand a llvm.powi intrinsic. 4499 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4500 SelectionDAG &DAG) { 4501 // If RHS is a constant, we can expand this out to a multiplication tree, 4502 // otherwise we end up lowering to a call to __powidf2 (for example). When 4503 // optimizing for size, we only want to do this if the expansion would produce 4504 // a small number of multiplies, otherwise we do the full expansion. 4505 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4506 // Get the exponent as a positive value. 4507 unsigned Val = RHSC->getSExtValue(); 4508 if ((int)Val < 0) Val = -Val; 4509 4510 // powi(x, 0) -> 1.0 4511 if (Val == 0) 4512 return DAG.getConstantFP(1.0, LHS.getValueType()); 4513 4514 const Function *F = DAG.getMachineFunction().getFunction(); 4515 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4516 Attribute::OptimizeForSize) || 4517 // If optimizing for size, don't insert too many multiplies. This 4518 // inserts up to 5 multiplies. 4519 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4520 // We use the simple binary decomposition method to generate the multiply 4521 // sequence. There are more optimal ways to do this (for example, 4522 // powi(x,15) generates one more multiply than it should), but this has 4523 // the benefit of being both really simple and much better than a libcall. 4524 SDValue Res; // Logically starts equal to 1.0 4525 SDValue CurSquare = LHS; 4526 while (Val) { 4527 if (Val & 1) { 4528 if (Res.getNode()) 4529 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4530 else 4531 Res = CurSquare; // 1.0*CurSquare. 4532 } 4533 4534 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4535 CurSquare, CurSquare); 4536 Val >>= 1; 4537 } 4538 4539 // If the original was negative, invert the result, producing 1/(x*x*x). 4540 if (RHSC->getSExtValue() < 0) 4541 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4542 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4543 return Res; 4544 } 4545 } 4546 4547 // Otherwise, expand to a libcall. 4548 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4549 } 4550 4551 // getTruncatedArgReg - Find underlying register used for an truncated 4552 // argument. 4553 static unsigned getTruncatedArgReg(const SDValue &N) { 4554 if (N.getOpcode() != ISD::TRUNCATE) 4555 return 0; 4556 4557 const SDValue &Ext = N.getOperand(0); 4558 if (Ext.getOpcode() == ISD::AssertZext || 4559 Ext.getOpcode() == ISD::AssertSext) { 4560 const SDValue &CFR = Ext.getOperand(0); 4561 if (CFR.getOpcode() == ISD::CopyFromReg) 4562 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4563 if (CFR.getOpcode() == ISD::TRUNCATE) 4564 return getTruncatedArgReg(CFR); 4565 } 4566 return 0; 4567 } 4568 4569 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4570 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4571 /// At the end of instruction selection, they will be inserted to the entry BB. 4572 bool 4573 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4574 int64_t Offset, bool IsIndirect, 4575 const SDValue &N) { 4576 const Argument *Arg = dyn_cast<Argument>(V); 4577 if (!Arg) 4578 return false; 4579 4580 MachineFunction &MF = DAG.getMachineFunction(); 4581 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4582 4583 // Ignore inlined function arguments here. 4584 DIVariable DV(Variable); 4585 if (DV.isInlinedFnArgument(MF.getFunction())) 4586 return false; 4587 4588 Optional<MachineOperand> Op; 4589 // Some arguments' frame index is recorded during argument lowering. 4590 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4591 Op = MachineOperand::CreateFI(FI); 4592 4593 if (!Op && N.getNode()) { 4594 unsigned Reg; 4595 if (N.getOpcode() == ISD::CopyFromReg) 4596 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4597 else 4598 Reg = getTruncatedArgReg(N); 4599 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4600 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4601 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4602 if (PR) 4603 Reg = PR; 4604 } 4605 if (Reg) 4606 Op = MachineOperand::CreateReg(Reg, false); 4607 } 4608 4609 if (!Op) { 4610 // Check if ValueMap has reg number. 4611 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4612 if (VMI != FuncInfo.ValueMap.end()) 4613 Op = MachineOperand::CreateReg(VMI->second, false); 4614 } 4615 4616 if (!Op && N.getNode()) 4617 // Check if frame index is available. 4618 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4619 if (FrameIndexSDNode *FINode = 4620 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4621 Op = MachineOperand::CreateFI(FINode->getIndex()); 4622 4623 if (!Op) 4624 return false; 4625 4626 if (Op->isReg()) 4627 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(), 4628 TII->get(TargetOpcode::DBG_VALUE), 4629 IsIndirect, 4630 Op->getReg(), Offset, Variable)); 4631 else 4632 FuncInfo.ArgDbgValues.push_back( 4633 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4634 .addOperand(*Op).addImm(Offset).addMetadata(Variable)); 4635 4636 return true; 4637 } 4638 4639 // VisualStudio defines setjmp as _setjmp 4640 #if defined(_MSC_VER) && defined(setjmp) && \ 4641 !defined(setjmp_undefined_for_msvc) 4642 # pragma push_macro("setjmp") 4643 # undef setjmp 4644 # define setjmp_undefined_for_msvc 4645 #endif 4646 4647 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4648 /// we want to emit this as a call to a named external function, return the name 4649 /// otherwise lower it and return null. 4650 const char * 4651 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4652 const TargetLowering *TLI = TM.getTargetLowering(); 4653 SDLoc sdl = getCurSDLoc(); 4654 DebugLoc dl = getCurDebugLoc(); 4655 SDValue Res; 4656 4657 switch (Intrinsic) { 4658 default: 4659 // By default, turn this into a target intrinsic node. 4660 visitTargetIntrinsic(I, Intrinsic); 4661 return nullptr; 4662 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4663 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4664 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4665 case Intrinsic::returnaddress: 4666 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4667 getValue(I.getArgOperand(0)))); 4668 return nullptr; 4669 case Intrinsic::frameaddress: 4670 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4671 getValue(I.getArgOperand(0)))); 4672 return nullptr; 4673 case Intrinsic::read_register: { 4674 Value *Reg = I.getArgOperand(0); 4675 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4676 EVT VT = TM.getTargetLowering()->getValueType(I.getType()); 4677 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4678 return nullptr; 4679 } 4680 case Intrinsic::write_register: { 4681 Value *Reg = I.getArgOperand(0); 4682 Value *RegValue = I.getArgOperand(1); 4683 SDValue Chain = getValue(RegValue).getOperand(0); 4684 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4685 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4686 RegName, getValue(RegValue))); 4687 return nullptr; 4688 } 4689 case Intrinsic::setjmp: 4690 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4691 case Intrinsic::longjmp: 4692 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4693 case Intrinsic::memcpy: { 4694 // Assert for address < 256 since we support only user defined address 4695 // spaces. 4696 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4697 < 256 && 4698 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4699 < 256 && 4700 "Unknown address space"); 4701 SDValue Op1 = getValue(I.getArgOperand(0)); 4702 SDValue Op2 = getValue(I.getArgOperand(1)); 4703 SDValue Op3 = getValue(I.getArgOperand(2)); 4704 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4705 if (!Align) 4706 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4707 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4708 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4709 MachinePointerInfo(I.getArgOperand(0)), 4710 MachinePointerInfo(I.getArgOperand(1)))); 4711 return nullptr; 4712 } 4713 case Intrinsic::memset: { 4714 // Assert for address < 256 since we support only user defined address 4715 // spaces. 4716 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4717 < 256 && 4718 "Unknown address space"); 4719 SDValue Op1 = getValue(I.getArgOperand(0)); 4720 SDValue Op2 = getValue(I.getArgOperand(1)); 4721 SDValue Op3 = getValue(I.getArgOperand(2)); 4722 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4723 if (!Align) 4724 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4725 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4726 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4727 MachinePointerInfo(I.getArgOperand(0)))); 4728 return nullptr; 4729 } 4730 case Intrinsic::memmove: { 4731 // Assert for address < 256 since we support only user defined address 4732 // spaces. 4733 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4734 < 256 && 4735 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4736 < 256 && 4737 "Unknown address space"); 4738 SDValue Op1 = getValue(I.getArgOperand(0)); 4739 SDValue Op2 = getValue(I.getArgOperand(1)); 4740 SDValue Op3 = getValue(I.getArgOperand(2)); 4741 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4742 if (!Align) 4743 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4744 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4745 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4746 MachinePointerInfo(I.getArgOperand(0)), 4747 MachinePointerInfo(I.getArgOperand(1)))); 4748 return nullptr; 4749 } 4750 case Intrinsic::dbg_declare: { 4751 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4752 MDNode *Variable = DI.getVariable(); 4753 const Value *Address = DI.getAddress(); 4754 DIVariable DIVar(Variable); 4755 assert((!DIVar || DIVar.isVariable()) && 4756 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4757 if (!Address || !DIVar) { 4758 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4759 return nullptr; 4760 } 4761 4762 // Check if address has undef value. 4763 if (isa<UndefValue>(Address) || 4764 (Address->use_empty() && !isa<Argument>(Address))) { 4765 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4766 return nullptr; 4767 } 4768 4769 SDValue &N = NodeMap[Address]; 4770 if (!N.getNode() && isa<Argument>(Address)) 4771 // Check unused arguments map. 4772 N = UnusedArgNodeMap[Address]; 4773 SDDbgValue *SDV; 4774 if (N.getNode()) { 4775 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4776 Address = BCI->getOperand(0); 4777 // Parameters are handled specially. 4778 bool isParameter = 4779 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4780 isa<Argument>(Address)); 4781 4782 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4783 4784 if (isParameter && !AI) { 4785 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4786 if (FINode) 4787 // Byval parameter. We have a frame index at this point. 4788 SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(), 4789 0, dl, SDNodeOrder); 4790 else { 4791 // Address is an argument, so try to emit its dbg value using 4792 // virtual register info from the FuncInfo.ValueMap. 4793 EmitFuncArgumentDbgValue(Address, Variable, 0, false, N); 4794 return nullptr; 4795 } 4796 } else if (AI) 4797 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4798 true, 0, dl, SDNodeOrder); 4799 else { 4800 // Can't do anything with other non-AI cases yet. 4801 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4802 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4803 DEBUG(Address->dump()); 4804 return nullptr; 4805 } 4806 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4807 } else { 4808 // If Address is an argument then try to emit its dbg value using 4809 // virtual register info from the FuncInfo.ValueMap. 4810 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) { 4811 // If variable is pinned by a alloca in dominating bb then 4812 // use StaticAllocaMap. 4813 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4814 if (AI->getParent() != DI.getParent()) { 4815 DenseMap<const AllocaInst*, int>::iterator SI = 4816 FuncInfo.StaticAllocaMap.find(AI); 4817 if (SI != FuncInfo.StaticAllocaMap.end()) { 4818 SDV = DAG.getFrameIndexDbgValue(Variable, SI->second, 4819 0, dl, SDNodeOrder); 4820 DAG.AddDbgValue(SDV, nullptr, false); 4821 return nullptr; 4822 } 4823 } 4824 } 4825 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4826 } 4827 } 4828 return nullptr; 4829 } 4830 case Intrinsic::dbg_value: { 4831 const DbgValueInst &DI = cast<DbgValueInst>(I); 4832 DIVariable DIVar(DI.getVariable()); 4833 assert((!DIVar || DIVar.isVariable()) && 4834 "Variable in DbgValueInst should be either null or a DIVariable."); 4835 if (!DIVar) 4836 return nullptr; 4837 4838 MDNode *Variable = DI.getVariable(); 4839 uint64_t Offset = DI.getOffset(); 4840 const Value *V = DI.getValue(); 4841 if (!V) 4842 return nullptr; 4843 4844 SDDbgValue *SDV; 4845 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4846 SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4847 DAG.AddDbgValue(SDV, nullptr, false); 4848 } else { 4849 // Do not use getValue() in here; we don't want to generate code at 4850 // this point if it hasn't been done yet. 4851 SDValue N = NodeMap[V]; 4852 if (!N.getNode() && isa<Argument>(V)) 4853 // Check unused arguments map. 4854 N = UnusedArgNodeMap[V]; 4855 if (N.getNode()) { 4856 // A dbg.value for an alloca is always indirect. 4857 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4858 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) { 4859 SDV = DAG.getDbgValue(Variable, N.getNode(), 4860 N.getResNo(), IsIndirect, 4861 Offset, dl, SDNodeOrder); 4862 DAG.AddDbgValue(SDV, N.getNode(), false); 4863 } 4864 } else if (!V->use_empty() ) { 4865 // Do not call getValue(V) yet, as we don't want to generate code. 4866 // Remember it for later. 4867 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4868 DanglingDebugInfoMap[V] = DDI; 4869 } else { 4870 // We may expand this to cover more cases. One case where we have no 4871 // data available is an unreferenced parameter. 4872 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4873 } 4874 } 4875 4876 // Build a debug info table entry. 4877 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4878 V = BCI->getOperand(0); 4879 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4880 // Don't handle byval struct arguments or VLAs, for example. 4881 if (!AI) { 4882 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4883 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4884 return nullptr; 4885 } 4886 DenseMap<const AllocaInst*, int>::iterator SI = 4887 FuncInfo.StaticAllocaMap.find(AI); 4888 if (SI == FuncInfo.StaticAllocaMap.end()) 4889 return nullptr; // VLAs. 4890 return nullptr; 4891 } 4892 4893 case Intrinsic::eh_typeid_for: { 4894 // Find the type id for the given typeinfo. 4895 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4896 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4897 Res = DAG.getConstant(TypeID, MVT::i32); 4898 setValue(&I, Res); 4899 return nullptr; 4900 } 4901 4902 case Intrinsic::eh_return_i32: 4903 case Intrinsic::eh_return_i64: 4904 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4905 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4906 MVT::Other, 4907 getControlRoot(), 4908 getValue(I.getArgOperand(0)), 4909 getValue(I.getArgOperand(1)))); 4910 return nullptr; 4911 case Intrinsic::eh_unwind_init: 4912 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4913 return nullptr; 4914 case Intrinsic::eh_dwarf_cfa: { 4915 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4916 TLI->getPointerTy()); 4917 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4918 CfaArg.getValueType(), 4919 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4920 CfaArg.getValueType()), 4921 CfaArg); 4922 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4923 TLI->getPointerTy(), 4924 DAG.getConstant(0, TLI->getPointerTy())); 4925 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4926 FA, Offset)); 4927 return nullptr; 4928 } 4929 case Intrinsic::eh_sjlj_callsite: { 4930 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4931 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4932 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4933 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4934 4935 MMI.setCurrentCallSite(CI->getZExtValue()); 4936 return nullptr; 4937 } 4938 case Intrinsic::eh_sjlj_functioncontext: { 4939 // Get and store the index of the function context. 4940 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4941 AllocaInst *FnCtx = 4942 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4943 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4944 MFI->setFunctionContextIndex(FI); 4945 return nullptr; 4946 } 4947 case Intrinsic::eh_sjlj_setjmp: { 4948 SDValue Ops[2]; 4949 Ops[0] = getRoot(); 4950 Ops[1] = getValue(I.getArgOperand(0)); 4951 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4952 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4953 setValue(&I, Op.getValue(0)); 4954 DAG.setRoot(Op.getValue(1)); 4955 return nullptr; 4956 } 4957 case Intrinsic::eh_sjlj_longjmp: { 4958 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4959 getRoot(), getValue(I.getArgOperand(0)))); 4960 return nullptr; 4961 } 4962 4963 case Intrinsic::x86_mmx_pslli_w: 4964 case Intrinsic::x86_mmx_pslli_d: 4965 case Intrinsic::x86_mmx_pslli_q: 4966 case Intrinsic::x86_mmx_psrli_w: 4967 case Intrinsic::x86_mmx_psrli_d: 4968 case Intrinsic::x86_mmx_psrli_q: 4969 case Intrinsic::x86_mmx_psrai_w: 4970 case Intrinsic::x86_mmx_psrai_d: { 4971 SDValue ShAmt = getValue(I.getArgOperand(1)); 4972 if (isa<ConstantSDNode>(ShAmt)) { 4973 visitTargetIntrinsic(I, Intrinsic); 4974 return nullptr; 4975 } 4976 unsigned NewIntrinsic = 0; 4977 EVT ShAmtVT = MVT::v2i32; 4978 switch (Intrinsic) { 4979 case Intrinsic::x86_mmx_pslli_w: 4980 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4981 break; 4982 case Intrinsic::x86_mmx_pslli_d: 4983 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4984 break; 4985 case Intrinsic::x86_mmx_pslli_q: 4986 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4987 break; 4988 case Intrinsic::x86_mmx_psrli_w: 4989 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4990 break; 4991 case Intrinsic::x86_mmx_psrli_d: 4992 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4993 break; 4994 case Intrinsic::x86_mmx_psrli_q: 4995 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4996 break; 4997 case Intrinsic::x86_mmx_psrai_w: 4998 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4999 break; 5000 case Intrinsic::x86_mmx_psrai_d: 5001 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5002 break; 5003 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5004 } 5005 5006 // The vector shift intrinsics with scalars uses 32b shift amounts but 5007 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5008 // to be zero. 5009 // We must do this early because v2i32 is not a legal type. 5010 SDValue ShOps[2]; 5011 ShOps[0] = ShAmt; 5012 ShOps[1] = DAG.getConstant(0, MVT::i32); 5013 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5014 EVT DestVT = TLI->getValueType(I.getType()); 5015 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5016 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5017 DAG.getConstant(NewIntrinsic, MVT::i32), 5018 getValue(I.getArgOperand(0)), ShAmt); 5019 setValue(&I, Res); 5020 return nullptr; 5021 } 5022 case Intrinsic::x86_avx_vinsertf128_pd_256: 5023 case Intrinsic::x86_avx_vinsertf128_ps_256: 5024 case Intrinsic::x86_avx_vinsertf128_si_256: 5025 case Intrinsic::x86_avx2_vinserti128: { 5026 EVT DestVT = TLI->getValueType(I.getType()); 5027 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5028 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5029 ElVT.getVectorNumElements(); 5030 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5031 getValue(I.getArgOperand(0)), 5032 getValue(I.getArgOperand(1)), 5033 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5034 setValue(&I, Res); 5035 return nullptr; 5036 } 5037 case Intrinsic::x86_avx_vextractf128_pd_256: 5038 case Intrinsic::x86_avx_vextractf128_ps_256: 5039 case Intrinsic::x86_avx_vextractf128_si_256: 5040 case Intrinsic::x86_avx2_vextracti128: { 5041 EVT DestVT = TLI->getValueType(I.getType()); 5042 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5043 DestVT.getVectorNumElements(); 5044 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5045 getValue(I.getArgOperand(0)), 5046 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5047 setValue(&I, Res); 5048 return nullptr; 5049 } 5050 case Intrinsic::convertff: 5051 case Intrinsic::convertfsi: 5052 case Intrinsic::convertfui: 5053 case Intrinsic::convertsif: 5054 case Intrinsic::convertuif: 5055 case Intrinsic::convertss: 5056 case Intrinsic::convertsu: 5057 case Intrinsic::convertus: 5058 case Intrinsic::convertuu: { 5059 ISD::CvtCode Code = ISD::CVT_INVALID; 5060 switch (Intrinsic) { 5061 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5062 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5063 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5064 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5065 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5066 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5067 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5068 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5069 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5070 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5071 } 5072 EVT DestVT = TLI->getValueType(I.getType()); 5073 const Value *Op1 = I.getArgOperand(0); 5074 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5075 DAG.getValueType(DestVT), 5076 DAG.getValueType(getValue(Op1).getValueType()), 5077 getValue(I.getArgOperand(1)), 5078 getValue(I.getArgOperand(2)), 5079 Code); 5080 setValue(&I, Res); 5081 return nullptr; 5082 } 5083 case Intrinsic::powi: 5084 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5085 getValue(I.getArgOperand(1)), DAG)); 5086 return nullptr; 5087 case Intrinsic::log: 5088 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5089 return nullptr; 5090 case Intrinsic::log2: 5091 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5092 return nullptr; 5093 case Intrinsic::log10: 5094 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5095 return nullptr; 5096 case Intrinsic::exp: 5097 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5098 return nullptr; 5099 case Intrinsic::exp2: 5100 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5101 return nullptr; 5102 case Intrinsic::pow: 5103 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5104 getValue(I.getArgOperand(1)), DAG, *TLI)); 5105 return nullptr; 5106 case Intrinsic::sqrt: 5107 case Intrinsic::fabs: 5108 case Intrinsic::sin: 5109 case Intrinsic::cos: 5110 case Intrinsic::floor: 5111 case Intrinsic::ceil: 5112 case Intrinsic::trunc: 5113 case Intrinsic::rint: 5114 case Intrinsic::nearbyint: 5115 case Intrinsic::round: { 5116 unsigned Opcode; 5117 switch (Intrinsic) { 5118 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5119 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5120 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5121 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5122 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5123 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5124 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5125 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5126 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5127 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5128 case Intrinsic::round: Opcode = ISD::FROUND; break; 5129 } 5130 5131 setValue(&I, DAG.getNode(Opcode, sdl, 5132 getValue(I.getArgOperand(0)).getValueType(), 5133 getValue(I.getArgOperand(0)))); 5134 return nullptr; 5135 } 5136 case Intrinsic::copysign: 5137 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5138 getValue(I.getArgOperand(0)).getValueType(), 5139 getValue(I.getArgOperand(0)), 5140 getValue(I.getArgOperand(1)))); 5141 return nullptr; 5142 case Intrinsic::fma: 5143 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5144 getValue(I.getArgOperand(0)).getValueType(), 5145 getValue(I.getArgOperand(0)), 5146 getValue(I.getArgOperand(1)), 5147 getValue(I.getArgOperand(2)))); 5148 return nullptr; 5149 case Intrinsic::fmuladd: { 5150 EVT VT = TLI->getValueType(I.getType()); 5151 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5152 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5153 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5154 getValue(I.getArgOperand(0)).getValueType(), 5155 getValue(I.getArgOperand(0)), 5156 getValue(I.getArgOperand(1)), 5157 getValue(I.getArgOperand(2)))); 5158 } else { 5159 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5160 getValue(I.getArgOperand(0)).getValueType(), 5161 getValue(I.getArgOperand(0)), 5162 getValue(I.getArgOperand(1))); 5163 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5164 getValue(I.getArgOperand(0)).getValueType(), 5165 Mul, 5166 getValue(I.getArgOperand(2))); 5167 setValue(&I, Add); 5168 } 5169 return nullptr; 5170 } 5171 case Intrinsic::convert_to_fp16: 5172 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5173 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5174 getValue(I.getArgOperand(0)), 5175 DAG.getTargetConstant(0, MVT::i32)))); 5176 return nullptr; 5177 case Intrinsic::convert_from_fp16: 5178 setValue(&I, 5179 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5180 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5181 getValue(I.getArgOperand(0))))); 5182 return nullptr; 5183 case Intrinsic::pcmarker: { 5184 SDValue Tmp = getValue(I.getArgOperand(0)); 5185 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5186 return nullptr; 5187 } 5188 case Intrinsic::readcyclecounter: { 5189 SDValue Op = getRoot(); 5190 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5191 DAG.getVTList(MVT::i64, MVT::Other), Op); 5192 setValue(&I, Res); 5193 DAG.setRoot(Res.getValue(1)); 5194 return nullptr; 5195 } 5196 case Intrinsic::bswap: 5197 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5198 getValue(I.getArgOperand(0)).getValueType(), 5199 getValue(I.getArgOperand(0)))); 5200 return nullptr; 5201 case Intrinsic::cttz: { 5202 SDValue Arg = getValue(I.getArgOperand(0)); 5203 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5204 EVT Ty = Arg.getValueType(); 5205 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5206 sdl, Ty, Arg)); 5207 return nullptr; 5208 } 5209 case Intrinsic::ctlz: { 5210 SDValue Arg = getValue(I.getArgOperand(0)); 5211 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5212 EVT Ty = Arg.getValueType(); 5213 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5214 sdl, Ty, Arg)); 5215 return nullptr; 5216 } 5217 case Intrinsic::ctpop: { 5218 SDValue Arg = getValue(I.getArgOperand(0)); 5219 EVT Ty = Arg.getValueType(); 5220 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5221 return nullptr; 5222 } 5223 case Intrinsic::stacksave: { 5224 SDValue Op = getRoot(); 5225 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5226 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5227 setValue(&I, Res); 5228 DAG.setRoot(Res.getValue(1)); 5229 return nullptr; 5230 } 5231 case Intrinsic::stackrestore: { 5232 Res = getValue(I.getArgOperand(0)); 5233 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5234 return nullptr; 5235 } 5236 case Intrinsic::stackprotector: { 5237 // Emit code into the DAG to store the stack guard onto the stack. 5238 MachineFunction &MF = DAG.getMachineFunction(); 5239 MachineFrameInfo *MFI = MF.getFrameInfo(); 5240 EVT PtrTy = TLI->getPointerTy(); 5241 SDValue Src, Chain = getRoot(); 5242 5243 if (TLI->useLoadStackGuardNode()) { 5244 // Emit a LOAD_STACK_GUARD node. 5245 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5246 sdl, PtrTy, Chain); 5247 LoadInst *LI = cast<LoadInst>(I.getArgOperand(0)); 5248 MachinePointerInfo MPInfo(LI->getPointerOperand()); 5249 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5250 unsigned Flags = MachineMemOperand::MOLoad | 5251 MachineMemOperand::MOInvariant; 5252 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5253 PtrTy.getSizeInBits() / 8, 5254 DAG.getEVTAlignment(PtrTy)); 5255 Node->setMemRefs(MemRefs, MemRefs + 1); 5256 5257 // Copy the guard value to a virtual register so that it can be 5258 // retrieved in the epilogue. 5259 Src = SDValue(Node, 0); 5260 const TargetRegisterClass *RC = 5261 TLI->getRegClassFor(Src.getSimpleValueType()); 5262 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5263 5264 SPDescriptor.setGuardReg(Reg); 5265 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5266 } else { 5267 Src = getValue(I.getArgOperand(0)); // The guard's value. 5268 } 5269 5270 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5271 5272 int FI = FuncInfo.StaticAllocaMap[Slot]; 5273 MFI->setStackProtectorIndex(FI); 5274 5275 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5276 5277 // Store the stack protector onto the stack. 5278 Res = DAG.getStore(Chain, sdl, Src, FIN, 5279 MachinePointerInfo::getFixedStack(FI), 5280 true, false, 0); 5281 setValue(&I, Res); 5282 DAG.setRoot(Res); 5283 return nullptr; 5284 } 5285 case Intrinsic::objectsize: { 5286 // If we don't know by now, we're never going to know. 5287 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5288 5289 assert(CI && "Non-constant type in __builtin_object_size?"); 5290 5291 SDValue Arg = getValue(I.getCalledValue()); 5292 EVT Ty = Arg.getValueType(); 5293 5294 if (CI->isZero()) 5295 Res = DAG.getConstant(-1ULL, Ty); 5296 else 5297 Res = DAG.getConstant(0, Ty); 5298 5299 setValue(&I, Res); 5300 return nullptr; 5301 } 5302 case Intrinsic::annotation: 5303 case Intrinsic::ptr_annotation: 5304 // Drop the intrinsic, but forward the value 5305 setValue(&I, getValue(I.getOperand(0))); 5306 return nullptr; 5307 case Intrinsic::var_annotation: 5308 // Discard annotate attributes 5309 return nullptr; 5310 5311 case Intrinsic::init_trampoline: { 5312 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5313 5314 SDValue Ops[6]; 5315 Ops[0] = getRoot(); 5316 Ops[1] = getValue(I.getArgOperand(0)); 5317 Ops[2] = getValue(I.getArgOperand(1)); 5318 Ops[3] = getValue(I.getArgOperand(2)); 5319 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5320 Ops[5] = DAG.getSrcValue(F); 5321 5322 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5323 5324 DAG.setRoot(Res); 5325 return nullptr; 5326 } 5327 case Intrinsic::adjust_trampoline: { 5328 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5329 TLI->getPointerTy(), 5330 getValue(I.getArgOperand(0)))); 5331 return nullptr; 5332 } 5333 case Intrinsic::gcroot: 5334 if (GFI) { 5335 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5336 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5337 5338 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5339 GFI->addStackRoot(FI->getIndex(), TypeMap); 5340 } 5341 return nullptr; 5342 case Intrinsic::gcread: 5343 case Intrinsic::gcwrite: 5344 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5345 case Intrinsic::flt_rounds: 5346 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5347 return nullptr; 5348 5349 case Intrinsic::expect: { 5350 // Just replace __builtin_expect(exp, c) with EXP. 5351 setValue(&I, getValue(I.getArgOperand(0))); 5352 return nullptr; 5353 } 5354 5355 case Intrinsic::debugtrap: 5356 case Intrinsic::trap: { 5357 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5358 if (TrapFuncName.empty()) { 5359 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5360 ISD::TRAP : ISD::DEBUGTRAP; 5361 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5362 return nullptr; 5363 } 5364 TargetLowering::ArgListTy Args; 5365 5366 TargetLowering::CallLoweringInfo CLI(DAG); 5367 CLI.setDebugLoc(sdl).setChain(getRoot()) 5368 .setCallee(CallingConv::C, I.getType(), 5369 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5370 std::move(Args), 0); 5371 5372 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5373 DAG.setRoot(Result.second); 5374 return nullptr; 5375 } 5376 5377 case Intrinsic::uadd_with_overflow: 5378 case Intrinsic::sadd_with_overflow: 5379 case Intrinsic::usub_with_overflow: 5380 case Intrinsic::ssub_with_overflow: 5381 case Intrinsic::umul_with_overflow: 5382 case Intrinsic::smul_with_overflow: { 5383 ISD::NodeType Op; 5384 switch (Intrinsic) { 5385 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5386 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5387 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5388 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5389 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5390 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5391 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5392 } 5393 SDValue Op1 = getValue(I.getArgOperand(0)); 5394 SDValue Op2 = getValue(I.getArgOperand(1)); 5395 5396 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5397 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5398 return nullptr; 5399 } 5400 case Intrinsic::prefetch: { 5401 SDValue Ops[5]; 5402 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5403 Ops[0] = getRoot(); 5404 Ops[1] = getValue(I.getArgOperand(0)); 5405 Ops[2] = getValue(I.getArgOperand(1)); 5406 Ops[3] = getValue(I.getArgOperand(2)); 5407 Ops[4] = getValue(I.getArgOperand(3)); 5408 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5409 DAG.getVTList(MVT::Other), Ops, 5410 EVT::getIntegerVT(*Context, 8), 5411 MachinePointerInfo(I.getArgOperand(0)), 5412 0, /* align */ 5413 false, /* volatile */ 5414 rw==0, /* read */ 5415 rw==1)); /* write */ 5416 return nullptr; 5417 } 5418 case Intrinsic::lifetime_start: 5419 case Intrinsic::lifetime_end: { 5420 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5421 // Stack coloring is not enabled in O0, discard region information. 5422 if (TM.getOptLevel() == CodeGenOpt::None) 5423 return nullptr; 5424 5425 SmallVector<Value *, 4> Allocas; 5426 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5427 5428 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5429 E = Allocas.end(); Object != E; ++Object) { 5430 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5431 5432 // Could not find an Alloca. 5433 if (!LifetimeObject) 5434 continue; 5435 5436 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5437 5438 SDValue Ops[2]; 5439 Ops[0] = getRoot(); 5440 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5441 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5442 5443 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5444 DAG.setRoot(Res); 5445 } 5446 return nullptr; 5447 } 5448 case Intrinsic::invariant_start: 5449 // Discard region information. 5450 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5451 return nullptr; 5452 case Intrinsic::invariant_end: 5453 // Discard region information. 5454 return nullptr; 5455 case Intrinsic::stackprotectorcheck: { 5456 // Do not actually emit anything for this basic block. Instead we initialize 5457 // the stack protector descriptor and export the guard variable so we can 5458 // access it in FinishBasicBlock. 5459 const BasicBlock *BB = I.getParent(); 5460 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5461 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5462 5463 // Flush our exports since we are going to process a terminator. 5464 (void)getControlRoot(); 5465 return nullptr; 5466 } 5467 case Intrinsic::clear_cache: 5468 return TLI->getClearCacheBuiltinName(); 5469 case Intrinsic::donothing: 5470 // ignore 5471 return nullptr; 5472 case Intrinsic::experimental_stackmap: { 5473 visitStackmap(I); 5474 return nullptr; 5475 } 5476 case Intrinsic::experimental_patchpoint_void: 5477 case Intrinsic::experimental_patchpoint_i64: { 5478 visitPatchpoint(I); 5479 return nullptr; 5480 } 5481 } 5482 } 5483 5484 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5485 bool isTailCall, 5486 MachineBasicBlock *LandingPad) { 5487 const TargetLowering *TLI = TM.getTargetLowering(); 5488 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5489 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5490 Type *RetTy = FTy->getReturnType(); 5491 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5492 MCSymbol *BeginLabel = nullptr; 5493 5494 TargetLowering::ArgListTy Args; 5495 TargetLowering::ArgListEntry Entry; 5496 Args.reserve(CS.arg_size()); 5497 5498 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5499 i != e; ++i) { 5500 const Value *V = *i; 5501 5502 // Skip empty types 5503 if (V->getType()->isEmptyTy()) 5504 continue; 5505 5506 SDValue ArgNode = getValue(V); 5507 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5508 5509 // Skip the first return-type Attribute to get to params. 5510 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5511 Args.push_back(Entry); 5512 } 5513 5514 if (LandingPad) { 5515 // Insert a label before the invoke call to mark the try range. This can be 5516 // used to detect deletion of the invoke via the MachineModuleInfo. 5517 BeginLabel = MMI.getContext().CreateTempSymbol(); 5518 5519 // For SjLj, keep track of which landing pads go with which invokes 5520 // so as to maintain the ordering of pads in the LSDA. 5521 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5522 if (CallSiteIndex) { 5523 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5524 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5525 5526 // Now that the call site is handled, stop tracking it. 5527 MMI.setCurrentCallSite(0); 5528 } 5529 5530 // Both PendingLoads and PendingExports must be flushed here; 5531 // this call might not return. 5532 (void)getRoot(); 5533 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5534 } 5535 5536 // Check if target-independent constraints permit a tail call here. 5537 // Target-dependent constraints are checked within TLI->LowerCallTo. 5538 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5539 isTailCall = false; 5540 5541 TargetLowering::CallLoweringInfo CLI(DAG); 5542 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5543 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5544 5545 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5546 assert((isTailCall || Result.second.getNode()) && 5547 "Non-null chain expected with non-tail call!"); 5548 assert((Result.second.getNode() || !Result.first.getNode()) && 5549 "Null value expected with tail call!"); 5550 if (Result.first.getNode()) 5551 setValue(CS.getInstruction(), Result.first); 5552 5553 if (!Result.second.getNode()) { 5554 // As a special case, a null chain means that a tail call has been emitted 5555 // and the DAG root is already updated. 5556 HasTailCall = true; 5557 5558 // Since there's no actual continuation from this block, nothing can be 5559 // relying on us setting vregs for them. 5560 PendingExports.clear(); 5561 } else { 5562 DAG.setRoot(Result.second); 5563 } 5564 5565 if (LandingPad) { 5566 // Insert a label at the end of the invoke call to mark the try range. This 5567 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5568 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5569 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5570 5571 // Inform MachineModuleInfo of range. 5572 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5573 } 5574 } 5575 5576 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5577 /// value is equal or not-equal to zero. 5578 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5579 for (const User *U : V->users()) { 5580 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5581 if (IC->isEquality()) 5582 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5583 if (C->isNullValue()) 5584 continue; 5585 // Unknown instruction. 5586 return false; 5587 } 5588 return true; 5589 } 5590 5591 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5592 Type *LoadTy, 5593 SelectionDAGBuilder &Builder) { 5594 5595 // Check to see if this load can be trivially constant folded, e.g. if the 5596 // input is from a string literal. 5597 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5598 // Cast pointer to the type we really want to load. 5599 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5600 PointerType::getUnqual(LoadTy)); 5601 5602 if (const Constant *LoadCst = 5603 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5604 Builder.DL)) 5605 return Builder.getValue(LoadCst); 5606 } 5607 5608 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5609 // still constant memory, the input chain can be the entry node. 5610 SDValue Root; 5611 bool ConstantMemory = false; 5612 5613 // Do not serialize (non-volatile) loads of constant memory with anything. 5614 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5615 Root = Builder.DAG.getEntryNode(); 5616 ConstantMemory = true; 5617 } else { 5618 // Do not serialize non-volatile loads against each other. 5619 Root = Builder.DAG.getRoot(); 5620 } 5621 5622 SDValue Ptr = Builder.getValue(PtrVal); 5623 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5624 Ptr, MachinePointerInfo(PtrVal), 5625 false /*volatile*/, 5626 false /*nontemporal*/, 5627 false /*isinvariant*/, 1 /* align=1 */); 5628 5629 if (!ConstantMemory) 5630 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5631 return LoadVal; 5632 } 5633 5634 /// processIntegerCallValue - Record the value for an instruction that 5635 /// produces an integer result, converting the type where necessary. 5636 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5637 SDValue Value, 5638 bool IsSigned) { 5639 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true); 5640 if (IsSigned) 5641 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5642 else 5643 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5644 setValue(&I, Value); 5645 } 5646 5647 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5648 /// If so, return true and lower it, otherwise return false and it will be 5649 /// lowered like a normal call. 5650 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5651 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5652 if (I.getNumArgOperands() != 3) 5653 return false; 5654 5655 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5656 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5657 !I.getArgOperand(2)->getType()->isIntegerTy() || 5658 !I.getType()->isIntegerTy()) 5659 return false; 5660 5661 const Value *Size = I.getArgOperand(2); 5662 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5663 if (CSize && CSize->getZExtValue() == 0) { 5664 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true); 5665 setValue(&I, DAG.getConstant(0, CallVT)); 5666 return true; 5667 } 5668 5669 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5670 std::pair<SDValue, SDValue> Res = 5671 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5672 getValue(LHS), getValue(RHS), getValue(Size), 5673 MachinePointerInfo(LHS), 5674 MachinePointerInfo(RHS)); 5675 if (Res.first.getNode()) { 5676 processIntegerCallValue(I, Res.first, true); 5677 PendingLoads.push_back(Res.second); 5678 return true; 5679 } 5680 5681 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5682 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5683 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5684 bool ActuallyDoIt = true; 5685 MVT LoadVT; 5686 Type *LoadTy; 5687 switch (CSize->getZExtValue()) { 5688 default: 5689 LoadVT = MVT::Other; 5690 LoadTy = nullptr; 5691 ActuallyDoIt = false; 5692 break; 5693 case 2: 5694 LoadVT = MVT::i16; 5695 LoadTy = Type::getInt16Ty(CSize->getContext()); 5696 break; 5697 case 4: 5698 LoadVT = MVT::i32; 5699 LoadTy = Type::getInt32Ty(CSize->getContext()); 5700 break; 5701 case 8: 5702 LoadVT = MVT::i64; 5703 LoadTy = Type::getInt64Ty(CSize->getContext()); 5704 break; 5705 /* 5706 case 16: 5707 LoadVT = MVT::v4i32; 5708 LoadTy = Type::getInt32Ty(CSize->getContext()); 5709 LoadTy = VectorType::get(LoadTy, 4); 5710 break; 5711 */ 5712 } 5713 5714 // This turns into unaligned loads. We only do this if the target natively 5715 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5716 // we'll only produce a small number of byte loads. 5717 5718 // Require that we can find a legal MVT, and only do this if the target 5719 // supports unaligned loads of that type. Expanding into byte loads would 5720 // bloat the code. 5721 const TargetLowering *TLI = TM.getTargetLowering(); 5722 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5723 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5724 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5725 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5726 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5727 if (!TLI->isTypeLegal(LoadVT) || 5728 !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) || 5729 !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS)) 5730 ActuallyDoIt = false; 5731 } 5732 5733 if (ActuallyDoIt) { 5734 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5735 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5736 5737 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5738 ISD::SETNE); 5739 processIntegerCallValue(I, Res, false); 5740 return true; 5741 } 5742 } 5743 5744 5745 return false; 5746 } 5747 5748 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5749 /// form. If so, return true and lower it, otherwise return false and it 5750 /// will be lowered like a normal call. 5751 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5752 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5753 if (I.getNumArgOperands() != 3) 5754 return false; 5755 5756 const Value *Src = I.getArgOperand(0); 5757 const Value *Char = I.getArgOperand(1); 5758 const Value *Length = I.getArgOperand(2); 5759 if (!Src->getType()->isPointerTy() || 5760 !Char->getType()->isIntegerTy() || 5761 !Length->getType()->isIntegerTy() || 5762 !I.getType()->isPointerTy()) 5763 return false; 5764 5765 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5766 std::pair<SDValue, SDValue> Res = 5767 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5768 getValue(Src), getValue(Char), getValue(Length), 5769 MachinePointerInfo(Src)); 5770 if (Res.first.getNode()) { 5771 setValue(&I, Res.first); 5772 PendingLoads.push_back(Res.second); 5773 return true; 5774 } 5775 5776 return false; 5777 } 5778 5779 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5780 /// optimized form. If so, return true and lower it, otherwise return false 5781 /// and it will be lowered like a normal call. 5782 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5783 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5784 if (I.getNumArgOperands() != 2) 5785 return false; 5786 5787 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5788 if (!Arg0->getType()->isPointerTy() || 5789 !Arg1->getType()->isPointerTy() || 5790 !I.getType()->isPointerTy()) 5791 return false; 5792 5793 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5794 std::pair<SDValue, SDValue> Res = 5795 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5796 getValue(Arg0), getValue(Arg1), 5797 MachinePointerInfo(Arg0), 5798 MachinePointerInfo(Arg1), isStpcpy); 5799 if (Res.first.getNode()) { 5800 setValue(&I, Res.first); 5801 DAG.setRoot(Res.second); 5802 return true; 5803 } 5804 5805 return false; 5806 } 5807 5808 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5809 /// If so, return true and lower it, otherwise return false and it will be 5810 /// lowered like a normal call. 5811 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5812 // Verify that the prototype makes sense. int strcmp(void*,void*) 5813 if (I.getNumArgOperands() != 2) 5814 return false; 5815 5816 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5817 if (!Arg0->getType()->isPointerTy() || 5818 !Arg1->getType()->isPointerTy() || 5819 !I.getType()->isIntegerTy()) 5820 return false; 5821 5822 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5823 std::pair<SDValue, SDValue> Res = 5824 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5825 getValue(Arg0), getValue(Arg1), 5826 MachinePointerInfo(Arg0), 5827 MachinePointerInfo(Arg1)); 5828 if (Res.first.getNode()) { 5829 processIntegerCallValue(I, Res.first, true); 5830 PendingLoads.push_back(Res.second); 5831 return true; 5832 } 5833 5834 return false; 5835 } 5836 5837 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5838 /// form. If so, return true and lower it, otherwise return false and it 5839 /// will be lowered like a normal call. 5840 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5841 // Verify that the prototype makes sense. size_t strlen(char *) 5842 if (I.getNumArgOperands() != 1) 5843 return false; 5844 5845 const Value *Arg0 = I.getArgOperand(0); 5846 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5847 return false; 5848 5849 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5850 std::pair<SDValue, SDValue> Res = 5851 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5852 getValue(Arg0), MachinePointerInfo(Arg0)); 5853 if (Res.first.getNode()) { 5854 processIntegerCallValue(I, Res.first, false); 5855 PendingLoads.push_back(Res.second); 5856 return true; 5857 } 5858 5859 return false; 5860 } 5861 5862 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5863 /// form. If so, return true and lower it, otherwise return false and it 5864 /// will be lowered like a normal call. 5865 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5866 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5867 if (I.getNumArgOperands() != 2) 5868 return false; 5869 5870 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5871 if (!Arg0->getType()->isPointerTy() || 5872 !Arg1->getType()->isIntegerTy() || 5873 !I.getType()->isIntegerTy()) 5874 return false; 5875 5876 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5877 std::pair<SDValue, SDValue> Res = 5878 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5879 getValue(Arg0), getValue(Arg1), 5880 MachinePointerInfo(Arg0)); 5881 if (Res.first.getNode()) { 5882 processIntegerCallValue(I, Res.first, false); 5883 PendingLoads.push_back(Res.second); 5884 return true; 5885 } 5886 5887 return false; 5888 } 5889 5890 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5891 /// operation (as expected), translate it to an SDNode with the specified opcode 5892 /// and return true. 5893 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5894 unsigned Opcode) { 5895 // Sanity check that it really is a unary floating-point call. 5896 if (I.getNumArgOperands() != 1 || 5897 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5898 I.getType() != I.getArgOperand(0)->getType() || 5899 !I.onlyReadsMemory()) 5900 return false; 5901 5902 SDValue Tmp = getValue(I.getArgOperand(0)); 5903 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5904 return true; 5905 } 5906 5907 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5908 // Handle inline assembly differently. 5909 if (isa<InlineAsm>(I.getCalledValue())) { 5910 visitInlineAsm(&I); 5911 return; 5912 } 5913 5914 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5915 ComputeUsesVAFloatArgument(I, &MMI); 5916 5917 const char *RenameFn = nullptr; 5918 if (Function *F = I.getCalledFunction()) { 5919 if (F->isDeclaration()) { 5920 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5921 if (unsigned IID = II->getIntrinsicID(F)) { 5922 RenameFn = visitIntrinsicCall(I, IID); 5923 if (!RenameFn) 5924 return; 5925 } 5926 } 5927 if (unsigned IID = F->getIntrinsicID()) { 5928 RenameFn = visitIntrinsicCall(I, IID); 5929 if (!RenameFn) 5930 return; 5931 } 5932 } 5933 5934 // Check for well-known libc/libm calls. If the function is internal, it 5935 // can't be a library call. 5936 LibFunc::Func Func; 5937 if (!F->hasLocalLinkage() && F->hasName() && 5938 LibInfo->getLibFunc(F->getName(), Func) && 5939 LibInfo->hasOptimizedCodeGen(Func)) { 5940 switch (Func) { 5941 default: break; 5942 case LibFunc::copysign: 5943 case LibFunc::copysignf: 5944 case LibFunc::copysignl: 5945 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5946 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5947 I.getType() == I.getArgOperand(0)->getType() && 5948 I.getType() == I.getArgOperand(1)->getType() && 5949 I.onlyReadsMemory()) { 5950 SDValue LHS = getValue(I.getArgOperand(0)); 5951 SDValue RHS = getValue(I.getArgOperand(1)); 5952 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5953 LHS.getValueType(), LHS, RHS)); 5954 return; 5955 } 5956 break; 5957 case LibFunc::fabs: 5958 case LibFunc::fabsf: 5959 case LibFunc::fabsl: 5960 if (visitUnaryFloatCall(I, ISD::FABS)) 5961 return; 5962 break; 5963 case LibFunc::sin: 5964 case LibFunc::sinf: 5965 case LibFunc::sinl: 5966 if (visitUnaryFloatCall(I, ISD::FSIN)) 5967 return; 5968 break; 5969 case LibFunc::cos: 5970 case LibFunc::cosf: 5971 case LibFunc::cosl: 5972 if (visitUnaryFloatCall(I, ISD::FCOS)) 5973 return; 5974 break; 5975 case LibFunc::sqrt: 5976 case LibFunc::sqrtf: 5977 case LibFunc::sqrtl: 5978 case LibFunc::sqrt_finite: 5979 case LibFunc::sqrtf_finite: 5980 case LibFunc::sqrtl_finite: 5981 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5982 return; 5983 break; 5984 case LibFunc::floor: 5985 case LibFunc::floorf: 5986 case LibFunc::floorl: 5987 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5988 return; 5989 break; 5990 case LibFunc::nearbyint: 5991 case LibFunc::nearbyintf: 5992 case LibFunc::nearbyintl: 5993 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5994 return; 5995 break; 5996 case LibFunc::ceil: 5997 case LibFunc::ceilf: 5998 case LibFunc::ceill: 5999 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6000 return; 6001 break; 6002 case LibFunc::rint: 6003 case LibFunc::rintf: 6004 case LibFunc::rintl: 6005 if (visitUnaryFloatCall(I, ISD::FRINT)) 6006 return; 6007 break; 6008 case LibFunc::round: 6009 case LibFunc::roundf: 6010 case LibFunc::roundl: 6011 if (visitUnaryFloatCall(I, ISD::FROUND)) 6012 return; 6013 break; 6014 case LibFunc::trunc: 6015 case LibFunc::truncf: 6016 case LibFunc::truncl: 6017 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6018 return; 6019 break; 6020 case LibFunc::log2: 6021 case LibFunc::log2f: 6022 case LibFunc::log2l: 6023 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6024 return; 6025 break; 6026 case LibFunc::exp2: 6027 case LibFunc::exp2f: 6028 case LibFunc::exp2l: 6029 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6030 return; 6031 break; 6032 case LibFunc::memcmp: 6033 if (visitMemCmpCall(I)) 6034 return; 6035 break; 6036 case LibFunc::memchr: 6037 if (visitMemChrCall(I)) 6038 return; 6039 break; 6040 case LibFunc::strcpy: 6041 if (visitStrCpyCall(I, false)) 6042 return; 6043 break; 6044 case LibFunc::stpcpy: 6045 if (visitStrCpyCall(I, true)) 6046 return; 6047 break; 6048 case LibFunc::strcmp: 6049 if (visitStrCmpCall(I)) 6050 return; 6051 break; 6052 case LibFunc::strlen: 6053 if (visitStrLenCall(I)) 6054 return; 6055 break; 6056 case LibFunc::strnlen: 6057 if (visitStrNLenCall(I)) 6058 return; 6059 break; 6060 } 6061 } 6062 } 6063 6064 SDValue Callee; 6065 if (!RenameFn) 6066 Callee = getValue(I.getCalledValue()); 6067 else 6068 Callee = DAG.getExternalSymbol(RenameFn, 6069 TM.getTargetLowering()->getPointerTy()); 6070 6071 // Check if we can potentially perform a tail call. More detailed checking is 6072 // be done within LowerCallTo, after more information about the call is known. 6073 LowerCallTo(&I, Callee, I.isTailCall()); 6074 } 6075 6076 namespace { 6077 6078 /// AsmOperandInfo - This contains information for each constraint that we are 6079 /// lowering. 6080 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6081 public: 6082 /// CallOperand - If this is the result output operand or a clobber 6083 /// this is null, otherwise it is the incoming operand to the CallInst. 6084 /// This gets modified as the asm is processed. 6085 SDValue CallOperand; 6086 6087 /// AssignedRegs - If this is a register or register class operand, this 6088 /// contains the set of register corresponding to the operand. 6089 RegsForValue AssignedRegs; 6090 6091 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6092 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6093 } 6094 6095 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6096 /// corresponds to. If there is no Value* for this operand, it returns 6097 /// MVT::Other. 6098 EVT getCallOperandValEVT(LLVMContext &Context, 6099 const TargetLowering &TLI, 6100 const DataLayout *DL) const { 6101 if (!CallOperandVal) return MVT::Other; 6102 6103 if (isa<BasicBlock>(CallOperandVal)) 6104 return TLI.getPointerTy(); 6105 6106 llvm::Type *OpTy = CallOperandVal->getType(); 6107 6108 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6109 // If this is an indirect operand, the operand is a pointer to the 6110 // accessed type. 6111 if (isIndirect) { 6112 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6113 if (!PtrTy) 6114 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6115 OpTy = PtrTy->getElementType(); 6116 } 6117 6118 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6119 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6120 if (STy->getNumElements() == 1) 6121 OpTy = STy->getElementType(0); 6122 6123 // If OpTy is not a single value, it may be a struct/union that we 6124 // can tile with integers. 6125 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6126 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6127 switch (BitSize) { 6128 default: break; 6129 case 1: 6130 case 8: 6131 case 16: 6132 case 32: 6133 case 64: 6134 case 128: 6135 OpTy = IntegerType::get(Context, BitSize); 6136 break; 6137 } 6138 } 6139 6140 return TLI.getValueType(OpTy, true); 6141 } 6142 }; 6143 6144 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6145 6146 } // end anonymous namespace 6147 6148 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6149 /// specified operand. We prefer to assign virtual registers, to allow the 6150 /// register allocator to handle the assignment process. However, if the asm 6151 /// uses features that we can't model on machineinstrs, we have SDISel do the 6152 /// allocation. This produces generally horrible, but correct, code. 6153 /// 6154 /// OpInfo describes the operand. 6155 /// 6156 static void GetRegistersForValue(SelectionDAG &DAG, 6157 const TargetLowering &TLI, 6158 SDLoc DL, 6159 SDISelAsmOperandInfo &OpInfo) { 6160 LLVMContext &Context = *DAG.getContext(); 6161 6162 MachineFunction &MF = DAG.getMachineFunction(); 6163 SmallVector<unsigned, 4> Regs; 6164 6165 // If this is a constraint for a single physreg, or a constraint for a 6166 // register class, find it. 6167 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6168 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6169 OpInfo.ConstraintVT); 6170 6171 unsigned NumRegs = 1; 6172 if (OpInfo.ConstraintVT != MVT::Other) { 6173 // If this is a FP input in an integer register (or visa versa) insert a bit 6174 // cast of the input value. More generally, handle any case where the input 6175 // value disagrees with the register class we plan to stick this in. 6176 if (OpInfo.Type == InlineAsm::isInput && 6177 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6178 // Try to convert to the first EVT that the reg class contains. If the 6179 // types are identical size, use a bitcast to convert (e.g. two differing 6180 // vector types). 6181 MVT RegVT = *PhysReg.second->vt_begin(); 6182 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6183 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6184 RegVT, OpInfo.CallOperand); 6185 OpInfo.ConstraintVT = RegVT; 6186 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6187 // If the input is a FP value and we want it in FP registers, do a 6188 // bitcast to the corresponding integer type. This turns an f64 value 6189 // into i64, which can be passed with two i32 values on a 32-bit 6190 // machine. 6191 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6192 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6193 RegVT, OpInfo.CallOperand); 6194 OpInfo.ConstraintVT = RegVT; 6195 } 6196 } 6197 6198 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6199 } 6200 6201 MVT RegVT; 6202 EVT ValueVT = OpInfo.ConstraintVT; 6203 6204 // If this is a constraint for a specific physical register, like {r17}, 6205 // assign it now. 6206 if (unsigned AssignedReg = PhysReg.first) { 6207 const TargetRegisterClass *RC = PhysReg.second; 6208 if (OpInfo.ConstraintVT == MVT::Other) 6209 ValueVT = *RC->vt_begin(); 6210 6211 // Get the actual register value type. This is important, because the user 6212 // may have asked for (e.g.) the AX register in i32 type. We need to 6213 // remember that AX is actually i16 to get the right extension. 6214 RegVT = *RC->vt_begin(); 6215 6216 // This is a explicit reference to a physical register. 6217 Regs.push_back(AssignedReg); 6218 6219 // If this is an expanded reference, add the rest of the regs to Regs. 6220 if (NumRegs != 1) { 6221 TargetRegisterClass::iterator I = RC->begin(); 6222 for (; *I != AssignedReg; ++I) 6223 assert(I != RC->end() && "Didn't find reg!"); 6224 6225 // Already added the first reg. 6226 --NumRegs; ++I; 6227 for (; NumRegs; --NumRegs, ++I) { 6228 assert(I != RC->end() && "Ran out of registers to allocate!"); 6229 Regs.push_back(*I); 6230 } 6231 } 6232 6233 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6234 return; 6235 } 6236 6237 // Otherwise, if this was a reference to an LLVM register class, create vregs 6238 // for this reference. 6239 if (const TargetRegisterClass *RC = PhysReg.second) { 6240 RegVT = *RC->vt_begin(); 6241 if (OpInfo.ConstraintVT == MVT::Other) 6242 ValueVT = RegVT; 6243 6244 // Create the appropriate number of virtual registers. 6245 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6246 for (; NumRegs; --NumRegs) 6247 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6248 6249 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6250 return; 6251 } 6252 6253 // Otherwise, we couldn't allocate enough registers for this. 6254 } 6255 6256 /// visitInlineAsm - Handle a call to an InlineAsm object. 6257 /// 6258 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6259 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6260 6261 /// ConstraintOperands - Information about all of the constraints. 6262 SDISelAsmOperandInfoVector ConstraintOperands; 6263 6264 const TargetLowering *TLI = TM.getTargetLowering(); 6265 TargetLowering::AsmOperandInfoVector 6266 TargetConstraints = TLI->ParseConstraints(CS); 6267 6268 bool hasMemory = false; 6269 6270 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6271 unsigned ResNo = 0; // ResNo - The result number of the next output. 6272 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6273 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6274 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6275 6276 MVT OpVT = MVT::Other; 6277 6278 // Compute the value type for each operand. 6279 switch (OpInfo.Type) { 6280 case InlineAsm::isOutput: 6281 // Indirect outputs just consume an argument. 6282 if (OpInfo.isIndirect) { 6283 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6284 break; 6285 } 6286 6287 // The return value of the call is this value. As such, there is no 6288 // corresponding argument. 6289 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6290 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6291 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6292 } else { 6293 assert(ResNo == 0 && "Asm only has one result!"); 6294 OpVT = TLI->getSimpleValueType(CS.getType()); 6295 } 6296 ++ResNo; 6297 break; 6298 case InlineAsm::isInput: 6299 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6300 break; 6301 case InlineAsm::isClobber: 6302 // Nothing to do. 6303 break; 6304 } 6305 6306 // If this is an input or an indirect output, process the call argument. 6307 // BasicBlocks are labels, currently appearing only in asm's. 6308 if (OpInfo.CallOperandVal) { 6309 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6310 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6311 } else { 6312 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6313 } 6314 6315 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6316 getSimpleVT(); 6317 } 6318 6319 OpInfo.ConstraintVT = OpVT; 6320 6321 // Indirect operand accesses access memory. 6322 if (OpInfo.isIndirect) 6323 hasMemory = true; 6324 else { 6325 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6326 TargetLowering::ConstraintType 6327 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6328 if (CType == TargetLowering::C_Memory) { 6329 hasMemory = true; 6330 break; 6331 } 6332 } 6333 } 6334 } 6335 6336 SDValue Chain, Flag; 6337 6338 // We won't need to flush pending loads if this asm doesn't touch 6339 // memory and is nonvolatile. 6340 if (hasMemory || IA->hasSideEffects()) 6341 Chain = getRoot(); 6342 else 6343 Chain = DAG.getRoot(); 6344 6345 // Second pass over the constraints: compute which constraint option to use 6346 // and assign registers to constraints that want a specific physreg. 6347 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6348 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6349 6350 // If this is an output operand with a matching input operand, look up the 6351 // matching input. If their types mismatch, e.g. one is an integer, the 6352 // other is floating point, or their sizes are different, flag it as an 6353 // error. 6354 if (OpInfo.hasMatchingInput()) { 6355 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6356 6357 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6358 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6359 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6360 OpInfo.ConstraintVT); 6361 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6362 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6363 Input.ConstraintVT); 6364 if ((OpInfo.ConstraintVT.isInteger() != 6365 Input.ConstraintVT.isInteger()) || 6366 (MatchRC.second != InputRC.second)) { 6367 report_fatal_error("Unsupported asm: input constraint" 6368 " with a matching output constraint of" 6369 " incompatible type!"); 6370 } 6371 Input.ConstraintVT = OpInfo.ConstraintVT; 6372 } 6373 } 6374 6375 // Compute the constraint code and ConstraintType to use. 6376 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6377 6378 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6379 OpInfo.Type == InlineAsm::isClobber) 6380 continue; 6381 6382 // If this is a memory input, and if the operand is not indirect, do what we 6383 // need to to provide an address for the memory input. 6384 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6385 !OpInfo.isIndirect) { 6386 assert((OpInfo.isMultipleAlternative || 6387 (OpInfo.Type == InlineAsm::isInput)) && 6388 "Can only indirectify direct input operands!"); 6389 6390 // Memory operands really want the address of the value. If we don't have 6391 // an indirect input, put it in the constpool if we can, otherwise spill 6392 // it to a stack slot. 6393 // TODO: This isn't quite right. We need to handle these according to 6394 // the addressing mode that the constraint wants. Also, this may take 6395 // an additional register for the computation and we don't want that 6396 // either. 6397 6398 // If the operand is a float, integer, or vector constant, spill to a 6399 // constant pool entry to get its address. 6400 const Value *OpVal = OpInfo.CallOperandVal; 6401 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6402 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6403 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6404 TLI->getPointerTy()); 6405 } else { 6406 // Otherwise, create a stack slot and emit a store to it before the 6407 // asm. 6408 Type *Ty = OpVal->getType(); 6409 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6410 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6411 MachineFunction &MF = DAG.getMachineFunction(); 6412 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6413 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6414 Chain = DAG.getStore(Chain, getCurSDLoc(), 6415 OpInfo.CallOperand, StackSlot, 6416 MachinePointerInfo::getFixedStack(SSFI), 6417 false, false, 0); 6418 OpInfo.CallOperand = StackSlot; 6419 } 6420 6421 // There is no longer a Value* corresponding to this operand. 6422 OpInfo.CallOperandVal = nullptr; 6423 6424 // It is now an indirect operand. 6425 OpInfo.isIndirect = true; 6426 } 6427 6428 // If this constraint is for a specific register, allocate it before 6429 // anything else. 6430 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6431 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6432 } 6433 6434 // Second pass - Loop over all of the operands, assigning virtual or physregs 6435 // to register class operands. 6436 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6437 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6438 6439 // C_Register operands have already been allocated, Other/Memory don't need 6440 // to be. 6441 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6442 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6443 } 6444 6445 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6446 std::vector<SDValue> AsmNodeOperands; 6447 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6448 AsmNodeOperands.push_back( 6449 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6450 TLI->getPointerTy())); 6451 6452 // If we have a !srcloc metadata node associated with it, we want to attach 6453 // this to the ultimately generated inline asm machineinstr. To do this, we 6454 // pass in the third operand as this (potentially null) inline asm MDNode. 6455 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6456 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6457 6458 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6459 // bits as operand 3. 6460 unsigned ExtraInfo = 0; 6461 if (IA->hasSideEffects()) 6462 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6463 if (IA->isAlignStack()) 6464 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6465 // Set the asm dialect. 6466 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6467 6468 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6469 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6470 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6471 6472 // Compute the constraint code and ConstraintType to use. 6473 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6474 6475 // Ideally, we would only check against memory constraints. However, the 6476 // meaning of an other constraint can be target-specific and we can't easily 6477 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6478 // for other constriants as well. 6479 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6480 OpInfo.ConstraintType == TargetLowering::C_Other) { 6481 if (OpInfo.Type == InlineAsm::isInput) 6482 ExtraInfo |= InlineAsm::Extra_MayLoad; 6483 else if (OpInfo.Type == InlineAsm::isOutput) 6484 ExtraInfo |= InlineAsm::Extra_MayStore; 6485 else if (OpInfo.Type == InlineAsm::isClobber) 6486 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6487 } 6488 } 6489 6490 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6491 TLI->getPointerTy())); 6492 6493 // Loop over all of the inputs, copying the operand values into the 6494 // appropriate registers and processing the output regs. 6495 RegsForValue RetValRegs; 6496 6497 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6498 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6499 6500 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6501 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6502 6503 switch (OpInfo.Type) { 6504 case InlineAsm::isOutput: { 6505 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6506 OpInfo.ConstraintType != TargetLowering::C_Register) { 6507 // Memory output, or 'other' output (e.g. 'X' constraint). 6508 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6509 6510 // Add information to the INLINEASM node to know about this output. 6511 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6512 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6513 TLI->getPointerTy())); 6514 AsmNodeOperands.push_back(OpInfo.CallOperand); 6515 break; 6516 } 6517 6518 // Otherwise, this is a register or register class output. 6519 6520 // Copy the output from the appropriate register. Find a register that 6521 // we can use. 6522 if (OpInfo.AssignedRegs.Regs.empty()) { 6523 LLVMContext &Ctx = *DAG.getContext(); 6524 Ctx.emitError(CS.getInstruction(), 6525 "couldn't allocate output register for constraint '" + 6526 Twine(OpInfo.ConstraintCode) + "'"); 6527 return; 6528 } 6529 6530 // If this is an indirect operand, store through the pointer after the 6531 // asm. 6532 if (OpInfo.isIndirect) { 6533 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6534 OpInfo.CallOperandVal)); 6535 } else { 6536 // This is the result value of the call. 6537 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6538 // Concatenate this output onto the outputs list. 6539 RetValRegs.append(OpInfo.AssignedRegs); 6540 } 6541 6542 // Add information to the INLINEASM node to know that this register is 6543 // set. 6544 OpInfo.AssignedRegs 6545 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6546 ? InlineAsm::Kind_RegDefEarlyClobber 6547 : InlineAsm::Kind_RegDef, 6548 false, 0, DAG, AsmNodeOperands); 6549 break; 6550 } 6551 case InlineAsm::isInput: { 6552 SDValue InOperandVal = OpInfo.CallOperand; 6553 6554 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6555 // If this is required to match an output register we have already set, 6556 // just use its register. 6557 unsigned OperandNo = OpInfo.getMatchedOperand(); 6558 6559 // Scan until we find the definition we already emitted of this operand. 6560 // When we find it, create a RegsForValue operand. 6561 unsigned CurOp = InlineAsm::Op_FirstOperand; 6562 for (; OperandNo; --OperandNo) { 6563 // Advance to the next operand. 6564 unsigned OpFlag = 6565 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6566 assert((InlineAsm::isRegDefKind(OpFlag) || 6567 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6568 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6569 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6570 } 6571 6572 unsigned OpFlag = 6573 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6574 if (InlineAsm::isRegDefKind(OpFlag) || 6575 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6576 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6577 if (OpInfo.isIndirect) { 6578 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6579 LLVMContext &Ctx = *DAG.getContext(); 6580 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6581 " don't know how to handle tied " 6582 "indirect register inputs"); 6583 return; 6584 } 6585 6586 RegsForValue MatchedRegs; 6587 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6588 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6589 MatchedRegs.RegVTs.push_back(RegVT); 6590 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6591 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6592 i != e; ++i) { 6593 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6594 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6595 else { 6596 LLVMContext &Ctx = *DAG.getContext(); 6597 Ctx.emitError(CS.getInstruction(), 6598 "inline asm error: This value" 6599 " type register class is not natively supported!"); 6600 return; 6601 } 6602 } 6603 // Use the produced MatchedRegs object to 6604 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6605 Chain, &Flag, CS.getInstruction()); 6606 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6607 true, OpInfo.getMatchedOperand(), 6608 DAG, AsmNodeOperands); 6609 break; 6610 } 6611 6612 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6613 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6614 "Unexpected number of operands"); 6615 // Add information to the INLINEASM node to know about this input. 6616 // See InlineAsm.h isUseOperandTiedToDef. 6617 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6618 OpInfo.getMatchedOperand()); 6619 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6620 TLI->getPointerTy())); 6621 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6622 break; 6623 } 6624 6625 // Treat indirect 'X' constraint as memory. 6626 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6627 OpInfo.isIndirect) 6628 OpInfo.ConstraintType = TargetLowering::C_Memory; 6629 6630 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6631 std::vector<SDValue> Ops; 6632 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6633 Ops, DAG); 6634 if (Ops.empty()) { 6635 LLVMContext &Ctx = *DAG.getContext(); 6636 Ctx.emitError(CS.getInstruction(), 6637 "invalid operand for inline asm constraint '" + 6638 Twine(OpInfo.ConstraintCode) + "'"); 6639 return; 6640 } 6641 6642 // Add information to the INLINEASM node to know about this input. 6643 unsigned ResOpType = 6644 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6645 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6646 TLI->getPointerTy())); 6647 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6648 break; 6649 } 6650 6651 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6652 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6653 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6654 "Memory operands expect pointer values"); 6655 6656 // Add information to the INLINEASM node to know about this input. 6657 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6658 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6659 TLI->getPointerTy())); 6660 AsmNodeOperands.push_back(InOperandVal); 6661 break; 6662 } 6663 6664 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6665 OpInfo.ConstraintType == TargetLowering::C_Register) && 6666 "Unknown constraint type!"); 6667 6668 // TODO: Support this. 6669 if (OpInfo.isIndirect) { 6670 LLVMContext &Ctx = *DAG.getContext(); 6671 Ctx.emitError(CS.getInstruction(), 6672 "Don't know how to handle indirect register inputs yet " 6673 "for constraint '" + 6674 Twine(OpInfo.ConstraintCode) + "'"); 6675 return; 6676 } 6677 6678 // Copy the input into the appropriate registers. 6679 if (OpInfo.AssignedRegs.Regs.empty()) { 6680 LLVMContext &Ctx = *DAG.getContext(); 6681 Ctx.emitError(CS.getInstruction(), 6682 "couldn't allocate input reg for constraint '" + 6683 Twine(OpInfo.ConstraintCode) + "'"); 6684 return; 6685 } 6686 6687 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6688 Chain, &Flag, CS.getInstruction()); 6689 6690 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6691 DAG, AsmNodeOperands); 6692 break; 6693 } 6694 case InlineAsm::isClobber: { 6695 // Add the clobbered value to the operand list, so that the register 6696 // allocator is aware that the physreg got clobbered. 6697 if (!OpInfo.AssignedRegs.Regs.empty()) 6698 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6699 false, 0, DAG, 6700 AsmNodeOperands); 6701 break; 6702 } 6703 } 6704 } 6705 6706 // Finish up input operands. Set the input chain and add the flag last. 6707 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6708 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6709 6710 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6711 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6712 Flag = Chain.getValue(1); 6713 6714 // If this asm returns a register value, copy the result from that register 6715 // and set it as the value of the call. 6716 if (!RetValRegs.Regs.empty()) { 6717 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6718 Chain, &Flag, CS.getInstruction()); 6719 6720 // FIXME: Why don't we do this for inline asms with MRVs? 6721 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6722 EVT ResultType = TLI->getValueType(CS.getType()); 6723 6724 // If any of the results of the inline asm is a vector, it may have the 6725 // wrong width/num elts. This can happen for register classes that can 6726 // contain multiple different value types. The preg or vreg allocated may 6727 // not have the same VT as was expected. Convert it to the right type 6728 // with bit_convert. 6729 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6730 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6731 ResultType, Val); 6732 6733 } else if (ResultType != Val.getValueType() && 6734 ResultType.isInteger() && Val.getValueType().isInteger()) { 6735 // If a result value was tied to an input value, the computed result may 6736 // have a wider width than the expected result. Extract the relevant 6737 // portion. 6738 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6739 } 6740 6741 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6742 } 6743 6744 setValue(CS.getInstruction(), Val); 6745 // Don't need to use this as a chain in this case. 6746 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6747 return; 6748 } 6749 6750 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6751 6752 // Process indirect outputs, first output all of the flagged copies out of 6753 // physregs. 6754 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6755 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6756 const Value *Ptr = IndirectStoresToEmit[i].second; 6757 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6758 Chain, &Flag, IA); 6759 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6760 } 6761 6762 // Emit the non-flagged stores from the physregs. 6763 SmallVector<SDValue, 8> OutChains; 6764 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6765 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6766 StoresToEmit[i].first, 6767 getValue(StoresToEmit[i].second), 6768 MachinePointerInfo(StoresToEmit[i].second), 6769 false, false, 0); 6770 OutChains.push_back(Val); 6771 } 6772 6773 if (!OutChains.empty()) 6774 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6775 6776 DAG.setRoot(Chain); 6777 } 6778 6779 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6780 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6781 MVT::Other, getRoot(), 6782 getValue(I.getArgOperand(0)), 6783 DAG.getSrcValue(I.getArgOperand(0)))); 6784 } 6785 6786 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6787 const TargetLowering *TLI = TM.getTargetLowering(); 6788 const DataLayout &DL = *TLI->getDataLayout(); 6789 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6790 getRoot(), getValue(I.getOperand(0)), 6791 DAG.getSrcValue(I.getOperand(0)), 6792 DL.getABITypeAlignment(I.getType())); 6793 setValue(&I, V); 6794 DAG.setRoot(V.getValue(1)); 6795 } 6796 6797 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6798 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6799 MVT::Other, getRoot(), 6800 getValue(I.getArgOperand(0)), 6801 DAG.getSrcValue(I.getArgOperand(0)))); 6802 } 6803 6804 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6805 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6806 MVT::Other, getRoot(), 6807 getValue(I.getArgOperand(0)), 6808 getValue(I.getArgOperand(1)), 6809 DAG.getSrcValue(I.getArgOperand(0)), 6810 DAG.getSrcValue(I.getArgOperand(1)))); 6811 } 6812 6813 /// \brief Lower an argument list according to the target calling convention. 6814 /// 6815 /// \return A tuple of <return-value, token-chain> 6816 /// 6817 /// This is a helper for lowering intrinsics that follow a target calling 6818 /// convention or require stack pointer adjustment. Only a subset of the 6819 /// intrinsic's operands need to participate in the calling convention. 6820 std::pair<SDValue, SDValue> 6821 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6822 unsigned NumArgs, SDValue Callee, 6823 bool useVoidTy) { 6824 TargetLowering::ArgListTy Args; 6825 Args.reserve(NumArgs); 6826 6827 // Populate the argument list. 6828 // Attributes for args start at offset 1, after the return attribute. 6829 ImmutableCallSite CS(&CI); 6830 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6831 ArgI != ArgE; ++ArgI) { 6832 const Value *V = CI.getOperand(ArgI); 6833 6834 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6835 6836 TargetLowering::ArgListEntry Entry; 6837 Entry.Node = getValue(V); 6838 Entry.Ty = V->getType(); 6839 Entry.setAttributes(&CS, AttrI); 6840 Args.push_back(Entry); 6841 } 6842 6843 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6844 TargetLowering::CallLoweringInfo CLI(DAG); 6845 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6846 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6847 .setDiscardResult(!CI.use_empty()); 6848 6849 const TargetLowering *TLI = TM.getTargetLowering(); 6850 return TLI->LowerCallTo(CLI); 6851 } 6852 6853 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6854 /// or patchpoint target node's operand list. 6855 /// 6856 /// Constants are converted to TargetConstants purely as an optimization to 6857 /// avoid constant materialization and register allocation. 6858 /// 6859 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6860 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6861 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6862 /// address materialization and register allocation, but may also be required 6863 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6864 /// alloca in the entry block, then the runtime may assume that the alloca's 6865 /// StackMap location can be read immediately after compilation and that the 6866 /// location is valid at any point during execution (this is similar to the 6867 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6868 /// only available in a register, then the runtime would need to trap when 6869 /// execution reaches the StackMap in order to read the alloca's location. 6870 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6871 SmallVectorImpl<SDValue> &Ops, 6872 SelectionDAGBuilder &Builder) { 6873 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6874 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6875 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6876 Ops.push_back( 6877 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6878 Ops.push_back( 6879 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6880 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6881 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6882 Ops.push_back( 6883 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6884 } else 6885 Ops.push_back(OpVal); 6886 } 6887 } 6888 6889 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6890 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6891 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6892 // [live variables...]) 6893 6894 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6895 6896 SDValue Chain, InFlag, Callee, NullPtr; 6897 SmallVector<SDValue, 32> Ops; 6898 6899 SDLoc DL = getCurSDLoc(); 6900 Callee = getValue(CI.getCalledValue()); 6901 NullPtr = DAG.getIntPtrConstant(0, true); 6902 6903 // The stackmap intrinsic only records the live variables (the arguemnts 6904 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6905 // intrinsic, this won't be lowered to a function call. This means we don't 6906 // have to worry about calling conventions and target specific lowering code. 6907 // Instead we perform the call lowering right here. 6908 // 6909 // chain, flag = CALLSEQ_START(chain, 0) 6910 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6911 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6912 // 6913 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6914 InFlag = Chain.getValue(1); 6915 6916 // Add the <id> and <numBytes> constants. 6917 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6918 Ops.push_back(DAG.getTargetConstant( 6919 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6920 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6921 Ops.push_back(DAG.getTargetConstant( 6922 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6923 6924 // Push live variables for the stack map. 6925 addStackMapLiveVars(CI, 2, Ops, *this); 6926 6927 // We are not pushing any register mask info here on the operands list, 6928 // because the stackmap doesn't clobber anything. 6929 6930 // Push the chain and the glue flag. 6931 Ops.push_back(Chain); 6932 Ops.push_back(InFlag); 6933 6934 // Create the STACKMAP node. 6935 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6936 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6937 Chain = SDValue(SM, 0); 6938 InFlag = Chain.getValue(1); 6939 6940 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6941 6942 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6943 6944 // Set the root to the target-lowered call chain. 6945 DAG.setRoot(Chain); 6946 6947 // Inform the Frame Information that we have a stackmap in this function. 6948 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6949 } 6950 6951 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6952 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6953 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6954 // i32 <numBytes>, 6955 // i8* <target>, 6956 // i32 <numArgs>, 6957 // [Args...], 6958 // [live variables...]) 6959 6960 CallingConv::ID CC = CI.getCallingConv(); 6961 bool isAnyRegCC = CC == CallingConv::AnyReg; 6962 bool hasDef = !CI.getType()->isVoidTy(); 6963 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6964 6965 // Get the real number of arguments participating in the call <numArgs> 6966 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6967 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6968 6969 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6970 // Intrinsics include all meta-operands up to but not including CC. 6971 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6972 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6973 "Not enough arguments provided to the patchpoint intrinsic"); 6974 6975 // For AnyRegCC the arguments are lowered later on manually. 6976 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6977 std::pair<SDValue, SDValue> Result = 6978 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6979 6980 // Set the root to the target-lowered call chain. 6981 SDValue Chain = Result.second; 6982 DAG.setRoot(Chain); 6983 6984 SDNode *CallEnd = Chain.getNode(); 6985 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6986 CallEnd = CallEnd->getOperand(0).getNode(); 6987 6988 /// Get a call instruction from the call sequence chain. 6989 /// Tail calls are not allowed. 6990 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6991 "Expected a callseq node."); 6992 SDNode *Call = CallEnd->getOperand(0).getNode(); 6993 bool hasGlue = Call->getGluedNode(); 6994 6995 // Replace the target specific call node with the patchable intrinsic. 6996 SmallVector<SDValue, 8> Ops; 6997 6998 // Add the <id> and <numBytes> constants. 6999 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7000 Ops.push_back(DAG.getTargetConstant( 7001 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7002 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7003 Ops.push_back(DAG.getTargetConstant( 7004 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7005 7006 // Assume that the Callee is a constant address. 7007 // FIXME: handle function symbols in the future. 7008 Ops.push_back( 7009 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7010 /*isTarget=*/true)); 7011 7012 // Adjust <numArgs> to account for any arguments that have been passed on the 7013 // stack instead. 7014 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7015 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7016 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7017 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7018 7019 // Add the calling convention 7020 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7021 7022 // Add the arguments we omitted previously. The register allocator should 7023 // place these in any free register. 7024 if (isAnyRegCC) 7025 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7026 Ops.push_back(getValue(CI.getArgOperand(i))); 7027 7028 // Push the arguments from the call instruction up to the register mask. 7029 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7030 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7031 Ops.push_back(*i); 7032 7033 // Push live variables for the stack map. 7034 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7035 7036 // Push the register mask info. 7037 if (hasGlue) 7038 Ops.push_back(*(Call->op_end()-2)); 7039 else 7040 Ops.push_back(*(Call->op_end()-1)); 7041 7042 // Push the chain (this is originally the first operand of the call, but 7043 // becomes now the last or second to last operand). 7044 Ops.push_back(*(Call->op_begin())); 7045 7046 // Push the glue flag (last operand). 7047 if (hasGlue) 7048 Ops.push_back(*(Call->op_end()-1)); 7049 7050 SDVTList NodeTys; 7051 if (isAnyRegCC && hasDef) { 7052 // Create the return types based on the intrinsic definition 7053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7054 SmallVector<EVT, 3> ValueVTs; 7055 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7056 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7057 7058 // There is always a chain and a glue type at the end 7059 ValueVTs.push_back(MVT::Other); 7060 ValueVTs.push_back(MVT::Glue); 7061 NodeTys = DAG.getVTList(ValueVTs); 7062 } else 7063 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7064 7065 // Replace the target specific call node with a PATCHPOINT node. 7066 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7067 getCurSDLoc(), NodeTys, Ops); 7068 7069 // Update the NodeMap. 7070 if (hasDef) { 7071 if (isAnyRegCC) 7072 setValue(&CI, SDValue(MN, 0)); 7073 else 7074 setValue(&CI, Result.first); 7075 } 7076 7077 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7078 // call sequence. Furthermore the location of the chain and glue can change 7079 // when the AnyReg calling convention is used and the intrinsic returns a 7080 // value. 7081 if (isAnyRegCC && hasDef) { 7082 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7083 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7084 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7085 } else 7086 DAG.ReplaceAllUsesWith(Call, MN); 7087 DAG.DeleteNode(Call); 7088 7089 // Inform the Frame Information that we have a patchpoint in this function. 7090 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7091 } 7092 7093 /// Returns an AttributeSet representing the attributes applied to the return 7094 /// value of the given call. 7095 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7096 SmallVector<Attribute::AttrKind, 2> Attrs; 7097 if (CLI.RetSExt) 7098 Attrs.push_back(Attribute::SExt); 7099 if (CLI.RetZExt) 7100 Attrs.push_back(Attribute::ZExt); 7101 if (CLI.IsInReg) 7102 Attrs.push_back(Attribute::InReg); 7103 7104 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7105 Attrs); 7106 } 7107 7108 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7109 /// implementation, which just calls LowerCall. 7110 /// FIXME: When all targets are 7111 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7112 std::pair<SDValue, SDValue> 7113 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7114 // Handle the incoming return values from the call. 7115 CLI.Ins.clear(); 7116 Type *OrigRetTy = CLI.RetTy; 7117 SmallVector<EVT, 4> RetTys; 7118 SmallVector<uint64_t, 4> Offsets; 7119 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7120 7121 SmallVector<ISD::OutputArg, 4> Outs; 7122 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7123 7124 bool CanLowerReturn = 7125 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7126 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7127 7128 SDValue DemoteStackSlot; 7129 int DemoteStackIdx = -100; 7130 if (!CanLowerReturn) { 7131 // FIXME: equivalent assert? 7132 // assert(!CS.hasInAllocaArgument() && 7133 // "sret demotion is incompatible with inalloca"); 7134 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7135 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7136 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7137 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7138 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7139 7140 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7141 ArgListEntry Entry; 7142 Entry.Node = DemoteStackSlot; 7143 Entry.Ty = StackSlotPtrType; 7144 Entry.isSExt = false; 7145 Entry.isZExt = false; 7146 Entry.isInReg = false; 7147 Entry.isSRet = true; 7148 Entry.isNest = false; 7149 Entry.isByVal = false; 7150 Entry.isReturned = false; 7151 Entry.Alignment = Align; 7152 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7153 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7154 } else { 7155 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7156 EVT VT = RetTys[I]; 7157 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7158 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7159 for (unsigned i = 0; i != NumRegs; ++i) { 7160 ISD::InputArg MyFlags; 7161 MyFlags.VT = RegisterVT; 7162 MyFlags.ArgVT = VT; 7163 MyFlags.Used = CLI.IsReturnValueUsed; 7164 if (CLI.RetSExt) 7165 MyFlags.Flags.setSExt(); 7166 if (CLI.RetZExt) 7167 MyFlags.Flags.setZExt(); 7168 if (CLI.IsInReg) 7169 MyFlags.Flags.setInReg(); 7170 CLI.Ins.push_back(MyFlags); 7171 } 7172 } 7173 } 7174 7175 // Handle all of the outgoing arguments. 7176 CLI.Outs.clear(); 7177 CLI.OutVals.clear(); 7178 ArgListTy &Args = CLI.getArgs(); 7179 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7180 SmallVector<EVT, 4> ValueVTs; 7181 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7182 Type *FinalType = Args[i].Ty; 7183 if (Args[i].isByVal) 7184 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7185 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7186 FinalType, CLI.CallConv, CLI.IsVarArg); 7187 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7188 ++Value) { 7189 EVT VT = ValueVTs[Value]; 7190 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7191 SDValue Op = SDValue(Args[i].Node.getNode(), 7192 Args[i].Node.getResNo() + Value); 7193 ISD::ArgFlagsTy Flags; 7194 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7195 7196 if (Args[i].isZExt) 7197 Flags.setZExt(); 7198 if (Args[i].isSExt) 7199 Flags.setSExt(); 7200 if (Args[i].isInReg) 7201 Flags.setInReg(); 7202 if (Args[i].isSRet) 7203 Flags.setSRet(); 7204 if (Args[i].isByVal) 7205 Flags.setByVal(); 7206 if (Args[i].isInAlloca) { 7207 Flags.setInAlloca(); 7208 // Set the byval flag for CCAssignFn callbacks that don't know about 7209 // inalloca. This way we can know how many bytes we should've allocated 7210 // and how many bytes a callee cleanup function will pop. If we port 7211 // inalloca to more targets, we'll have to add custom inalloca handling 7212 // in the various CC lowering callbacks. 7213 Flags.setByVal(); 7214 } 7215 if (Args[i].isByVal || Args[i].isInAlloca) { 7216 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7217 Type *ElementTy = Ty->getElementType(); 7218 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7219 // For ByVal, alignment should come from FE. BE will guess if this 7220 // info is not there but there are cases it cannot get right. 7221 unsigned FrameAlign; 7222 if (Args[i].Alignment) 7223 FrameAlign = Args[i].Alignment; 7224 else 7225 FrameAlign = getByValTypeAlignment(ElementTy); 7226 Flags.setByValAlign(FrameAlign); 7227 } 7228 if (Args[i].isNest) 7229 Flags.setNest(); 7230 if (NeedsRegBlock) 7231 Flags.setInConsecutiveRegs(); 7232 Flags.setOrigAlign(OriginalAlignment); 7233 7234 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7235 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7236 SmallVector<SDValue, 4> Parts(NumParts); 7237 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7238 7239 if (Args[i].isSExt) 7240 ExtendKind = ISD::SIGN_EXTEND; 7241 else if (Args[i].isZExt) 7242 ExtendKind = ISD::ZERO_EXTEND; 7243 7244 // Conservatively only handle 'returned' on non-vectors for now 7245 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7246 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7247 "unexpected use of 'returned'"); 7248 // Before passing 'returned' to the target lowering code, ensure that 7249 // either the register MVT and the actual EVT are the same size or that 7250 // the return value and argument are extended in the same way; in these 7251 // cases it's safe to pass the argument register value unchanged as the 7252 // return register value (although it's at the target's option whether 7253 // to do so) 7254 // TODO: allow code generation to take advantage of partially preserved 7255 // registers rather than clobbering the entire register when the 7256 // parameter extension method is not compatible with the return 7257 // extension method 7258 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7259 (ExtendKind != ISD::ANY_EXTEND && 7260 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7261 Flags.setReturned(); 7262 } 7263 7264 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7265 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7266 7267 for (unsigned j = 0; j != NumParts; ++j) { 7268 // if it isn't first piece, alignment must be 1 7269 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7270 i < CLI.NumFixedArgs, 7271 i, j*Parts[j].getValueType().getStoreSize()); 7272 if (NumParts > 1 && j == 0) 7273 MyFlags.Flags.setSplit(); 7274 else if (j != 0) 7275 MyFlags.Flags.setOrigAlign(1); 7276 7277 // Only mark the end at the last register of the last value. 7278 if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1) 7279 MyFlags.Flags.setInConsecutiveRegsLast(); 7280 7281 CLI.Outs.push_back(MyFlags); 7282 CLI.OutVals.push_back(Parts[j]); 7283 } 7284 } 7285 } 7286 7287 SmallVector<SDValue, 4> InVals; 7288 CLI.Chain = LowerCall(CLI, InVals); 7289 7290 // Verify that the target's LowerCall behaved as expected. 7291 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7292 "LowerCall didn't return a valid chain!"); 7293 assert((!CLI.IsTailCall || InVals.empty()) && 7294 "LowerCall emitted a return value for a tail call!"); 7295 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7296 "LowerCall didn't emit the correct number of values!"); 7297 7298 // For a tail call, the return value is merely live-out and there aren't 7299 // any nodes in the DAG representing it. Return a special value to 7300 // indicate that a tail call has been emitted and no more Instructions 7301 // should be processed in the current block. 7302 if (CLI.IsTailCall) { 7303 CLI.DAG.setRoot(CLI.Chain); 7304 return std::make_pair(SDValue(), SDValue()); 7305 } 7306 7307 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7308 assert(InVals[i].getNode() && 7309 "LowerCall emitted a null value!"); 7310 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7311 "LowerCall emitted a value with the wrong type!"); 7312 }); 7313 7314 SmallVector<SDValue, 4> ReturnValues; 7315 if (!CanLowerReturn) { 7316 // The instruction result is the result of loading from the 7317 // hidden sret parameter. 7318 SmallVector<EVT, 1> PVTs; 7319 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7320 7321 ComputeValueVTs(*this, PtrRetTy, PVTs); 7322 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7323 EVT PtrVT = PVTs[0]; 7324 7325 unsigned NumValues = RetTys.size(); 7326 ReturnValues.resize(NumValues); 7327 SmallVector<SDValue, 4> Chains(NumValues); 7328 7329 for (unsigned i = 0; i < NumValues; ++i) { 7330 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7331 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7332 SDValue L = CLI.DAG.getLoad( 7333 RetTys[i], CLI.DL, CLI.Chain, Add, 7334 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7335 false, false, 1); 7336 ReturnValues[i] = L; 7337 Chains[i] = L.getValue(1); 7338 } 7339 7340 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7341 } else { 7342 // Collect the legal value parts into potentially illegal values 7343 // that correspond to the original function's return values. 7344 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7345 if (CLI.RetSExt) 7346 AssertOp = ISD::AssertSext; 7347 else if (CLI.RetZExt) 7348 AssertOp = ISD::AssertZext; 7349 unsigned CurReg = 0; 7350 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7351 EVT VT = RetTys[I]; 7352 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7353 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7354 7355 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7356 NumRegs, RegisterVT, VT, nullptr, 7357 AssertOp)); 7358 CurReg += NumRegs; 7359 } 7360 7361 // For a function returning void, there is no return value. We can't create 7362 // such a node, so we just return a null return value in that case. In 7363 // that case, nothing will actually look at the value. 7364 if (ReturnValues.empty()) 7365 return std::make_pair(SDValue(), CLI.Chain); 7366 } 7367 7368 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7369 CLI.DAG.getVTList(RetTys), ReturnValues); 7370 return std::make_pair(Res, CLI.Chain); 7371 } 7372 7373 void TargetLowering::LowerOperationWrapper(SDNode *N, 7374 SmallVectorImpl<SDValue> &Results, 7375 SelectionDAG &DAG) const { 7376 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7377 if (Res.getNode()) 7378 Results.push_back(Res); 7379 } 7380 7381 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7382 llvm_unreachable("LowerOperation not implemented for this target!"); 7383 } 7384 7385 void 7386 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7387 SDValue Op = getNonRegisterValue(V); 7388 assert((Op.getOpcode() != ISD::CopyFromReg || 7389 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7390 "Copy from a reg to the same reg!"); 7391 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7392 7393 const TargetLowering *TLI = TM.getTargetLowering(); 7394 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7395 SDValue Chain = DAG.getEntryNode(); 7396 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V); 7397 PendingExports.push_back(Chain); 7398 } 7399 7400 #include "llvm/CodeGen/SelectionDAGISel.h" 7401 7402 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7403 /// entry block, return true. This includes arguments used by switches, since 7404 /// the switch may expand into multiple basic blocks. 7405 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7406 // With FastISel active, we may be splitting blocks, so force creation 7407 // of virtual registers for all non-dead arguments. 7408 if (FastISel) 7409 return A->use_empty(); 7410 7411 const BasicBlock *Entry = A->getParent()->begin(); 7412 for (const User *U : A->users()) 7413 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7414 return false; // Use not in entry block. 7415 7416 return true; 7417 } 7418 7419 void SelectionDAGISel::LowerArguments(const Function &F) { 7420 SelectionDAG &DAG = SDB->DAG; 7421 SDLoc dl = SDB->getCurSDLoc(); 7422 const TargetLowering *TLI = getTargetLowering(); 7423 const DataLayout *DL = TLI->getDataLayout(); 7424 SmallVector<ISD::InputArg, 16> Ins; 7425 7426 if (!FuncInfo->CanLowerReturn) { 7427 // Put in an sret pointer parameter before all the other parameters. 7428 SmallVector<EVT, 1> ValueVTs; 7429 ComputeValueVTs(*getTargetLowering(), 7430 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7431 7432 // NOTE: Assuming that a pointer will never break down to more than one VT 7433 // or one register. 7434 ISD::ArgFlagsTy Flags; 7435 Flags.setSRet(); 7436 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7437 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7438 Ins.push_back(RetArg); 7439 } 7440 7441 // Set up the incoming argument description vector. 7442 unsigned Idx = 1; 7443 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7444 I != E; ++I, ++Idx) { 7445 SmallVector<EVT, 4> ValueVTs; 7446 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7447 bool isArgValueUsed = !I->use_empty(); 7448 unsigned PartBase = 0; 7449 Type *FinalType = I->getType(); 7450 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7451 FinalType = cast<PointerType>(FinalType)->getElementType(); 7452 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7453 FinalType, F.getCallingConv(), F.isVarArg()); 7454 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7455 Value != NumValues; ++Value) { 7456 EVT VT = ValueVTs[Value]; 7457 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7458 ISD::ArgFlagsTy Flags; 7459 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7460 7461 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7462 Flags.setZExt(); 7463 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7464 Flags.setSExt(); 7465 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7466 Flags.setInReg(); 7467 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7468 Flags.setSRet(); 7469 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7470 Flags.setByVal(); 7471 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7472 Flags.setInAlloca(); 7473 // Set the byval flag for CCAssignFn callbacks that don't know about 7474 // inalloca. This way we can know how many bytes we should've allocated 7475 // and how many bytes a callee cleanup function will pop. If we port 7476 // inalloca to more targets, we'll have to add custom inalloca handling 7477 // in the various CC lowering callbacks. 7478 Flags.setByVal(); 7479 } 7480 if (Flags.isByVal() || Flags.isInAlloca()) { 7481 PointerType *Ty = cast<PointerType>(I->getType()); 7482 Type *ElementTy = Ty->getElementType(); 7483 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7484 // For ByVal, alignment should be passed from FE. BE will guess if 7485 // this info is not there but there are cases it cannot get right. 7486 unsigned FrameAlign; 7487 if (F.getParamAlignment(Idx)) 7488 FrameAlign = F.getParamAlignment(Idx); 7489 else 7490 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7491 Flags.setByValAlign(FrameAlign); 7492 } 7493 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7494 Flags.setNest(); 7495 if (NeedsRegBlock) 7496 Flags.setInConsecutiveRegs(); 7497 Flags.setOrigAlign(OriginalAlignment); 7498 7499 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7500 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7501 for (unsigned i = 0; i != NumRegs; ++i) { 7502 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7503 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7504 if (NumRegs > 1 && i == 0) 7505 MyFlags.Flags.setSplit(); 7506 // if it isn't first piece, alignment must be 1 7507 else if (i > 0) 7508 MyFlags.Flags.setOrigAlign(1); 7509 7510 // Only mark the end at the last register of the last value. 7511 if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1) 7512 MyFlags.Flags.setInConsecutiveRegsLast(); 7513 7514 Ins.push_back(MyFlags); 7515 } 7516 PartBase += VT.getStoreSize(); 7517 } 7518 } 7519 7520 // Call the target to set up the argument values. 7521 SmallVector<SDValue, 8> InVals; 7522 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7523 F.isVarArg(), Ins, 7524 dl, DAG, InVals); 7525 7526 // Verify that the target's LowerFormalArguments behaved as expected. 7527 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7528 "LowerFormalArguments didn't return a valid chain!"); 7529 assert(InVals.size() == Ins.size() && 7530 "LowerFormalArguments didn't emit the correct number of values!"); 7531 DEBUG({ 7532 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7533 assert(InVals[i].getNode() && 7534 "LowerFormalArguments emitted a null value!"); 7535 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7536 "LowerFormalArguments emitted a value with the wrong type!"); 7537 } 7538 }); 7539 7540 // Update the DAG with the new chain value resulting from argument lowering. 7541 DAG.setRoot(NewRoot); 7542 7543 // Set up the argument values. 7544 unsigned i = 0; 7545 Idx = 1; 7546 if (!FuncInfo->CanLowerReturn) { 7547 // Create a virtual register for the sret pointer, and put in a copy 7548 // from the sret argument into it. 7549 SmallVector<EVT, 1> ValueVTs; 7550 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7551 MVT VT = ValueVTs[0].getSimpleVT(); 7552 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7553 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7554 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7555 RegVT, VT, nullptr, AssertOp); 7556 7557 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7558 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7559 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7560 FuncInfo->DemoteRegister = SRetReg; 7561 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7562 SRetReg, ArgValue); 7563 DAG.setRoot(NewRoot); 7564 7565 // i indexes lowered arguments. Bump it past the hidden sret argument. 7566 // Idx indexes LLVM arguments. Don't touch it. 7567 ++i; 7568 } 7569 7570 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7571 ++I, ++Idx) { 7572 SmallVector<SDValue, 4> ArgValues; 7573 SmallVector<EVT, 4> ValueVTs; 7574 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7575 unsigned NumValues = ValueVTs.size(); 7576 7577 // If this argument is unused then remember its value. It is used to generate 7578 // debugging information. 7579 if (I->use_empty() && NumValues) { 7580 SDB->setUnusedArgValue(I, InVals[i]); 7581 7582 // Also remember any frame index for use in FastISel. 7583 if (FrameIndexSDNode *FI = 7584 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7585 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7586 } 7587 7588 for (unsigned Val = 0; Val != NumValues; ++Val) { 7589 EVT VT = ValueVTs[Val]; 7590 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7591 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7592 7593 if (!I->use_empty()) { 7594 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7595 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7596 AssertOp = ISD::AssertSext; 7597 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7598 AssertOp = ISD::AssertZext; 7599 7600 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7601 NumParts, PartVT, VT, 7602 nullptr, AssertOp)); 7603 } 7604 7605 i += NumParts; 7606 } 7607 7608 // We don't need to do anything else for unused arguments. 7609 if (ArgValues.empty()) 7610 continue; 7611 7612 // Note down frame index. 7613 if (FrameIndexSDNode *FI = 7614 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7615 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7616 7617 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7618 SDB->getCurSDLoc()); 7619 7620 SDB->setValue(I, Res); 7621 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7622 if (LoadSDNode *LNode = 7623 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7624 if (FrameIndexSDNode *FI = 7625 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7626 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7627 } 7628 7629 // If this argument is live outside of the entry block, insert a copy from 7630 // wherever we got it to the vreg that other BB's will reference it as. 7631 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7632 // If we can, though, try to skip creating an unnecessary vreg. 7633 // FIXME: This isn't very clean... it would be nice to make this more 7634 // general. It's also subtly incompatible with the hacks FastISel 7635 // uses with vregs. 7636 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7637 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7638 FuncInfo->ValueMap[I] = Reg; 7639 continue; 7640 } 7641 } 7642 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7643 FuncInfo->InitializeRegForValue(I); 7644 SDB->CopyToExportRegsIfNeeded(I); 7645 } 7646 } 7647 7648 assert(i == InVals.size() && "Argument register count mismatch!"); 7649 7650 // Finally, if the target has anything special to do, allow it to do so. 7651 // FIXME: this should insert code into the DAG! 7652 EmitFunctionEntryCode(); 7653 } 7654 7655 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7656 /// ensure constants are generated when needed. Remember the virtual registers 7657 /// that need to be added to the Machine PHI nodes as input. We cannot just 7658 /// directly add them, because expansion might result in multiple MBB's for one 7659 /// BB. As such, the start of the BB might correspond to a different MBB than 7660 /// the end. 7661 /// 7662 void 7663 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7664 const TerminatorInst *TI = LLVMBB->getTerminator(); 7665 7666 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7667 7668 // Check successor nodes' PHI nodes that expect a constant to be available 7669 // from this block. 7670 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7671 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7672 if (!isa<PHINode>(SuccBB->begin())) continue; 7673 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7674 7675 // If this terminator has multiple identical successors (common for 7676 // switches), only handle each succ once. 7677 if (!SuccsHandled.insert(SuccMBB)) continue; 7678 7679 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7680 7681 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7682 // nodes and Machine PHI nodes, but the incoming operands have not been 7683 // emitted yet. 7684 for (BasicBlock::const_iterator I = SuccBB->begin(); 7685 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7686 // Ignore dead phi's. 7687 if (PN->use_empty()) continue; 7688 7689 // Skip empty types 7690 if (PN->getType()->isEmptyTy()) 7691 continue; 7692 7693 unsigned Reg; 7694 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7695 7696 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7697 unsigned &RegOut = ConstantsOut[C]; 7698 if (RegOut == 0) { 7699 RegOut = FuncInfo.CreateRegs(C->getType()); 7700 CopyValueToVirtualRegister(C, RegOut); 7701 } 7702 Reg = RegOut; 7703 } else { 7704 DenseMap<const Value *, unsigned>::iterator I = 7705 FuncInfo.ValueMap.find(PHIOp); 7706 if (I != FuncInfo.ValueMap.end()) 7707 Reg = I->second; 7708 else { 7709 assert(isa<AllocaInst>(PHIOp) && 7710 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7711 "Didn't codegen value into a register!??"); 7712 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7713 CopyValueToVirtualRegister(PHIOp, Reg); 7714 } 7715 } 7716 7717 // Remember that this register needs to added to the machine PHI node as 7718 // the input for this MBB. 7719 SmallVector<EVT, 4> ValueVTs; 7720 const TargetLowering *TLI = TM.getTargetLowering(); 7721 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7722 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7723 EVT VT = ValueVTs[vti]; 7724 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7725 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7726 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7727 Reg += NumRegisters; 7728 } 7729 } 7730 } 7731 7732 ConstantsOut.clear(); 7733 } 7734 7735 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7736 /// is 0. 7737 MachineBasicBlock * 7738 SelectionDAGBuilder::StackProtectorDescriptor:: 7739 AddSuccessorMBB(const BasicBlock *BB, 7740 MachineBasicBlock *ParentMBB, 7741 MachineBasicBlock *SuccMBB) { 7742 // If SuccBB has not been created yet, create it. 7743 if (!SuccMBB) { 7744 MachineFunction *MF = ParentMBB->getParent(); 7745 MachineFunction::iterator BBI = ParentMBB; 7746 SuccMBB = MF->CreateMachineBasicBlock(BB); 7747 MF->insert(++BBI, SuccMBB); 7748 } 7749 // Add it as a successor of ParentMBB. 7750 ParentMBB->addSuccessor(SuccMBB); 7751 return SuccMBB; 7752 } 7753