1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "FunctionLoweringInfo.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/FastISel.h" 34 #include "llvm/CodeGen/GCStrategy.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineJumpTableInfo.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/PseudoSourceValue.h" 43 #include "llvm/CodeGen/SelectionDAG.h" 44 #include "llvm/Analysis/DebugInfo.h" 45 #include "llvm/Target/TargetRegisterInfo.h" 46 #include "llvm/Target/TargetData.h" 47 #include "llvm/Target/TargetFrameInfo.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetIntrinsicInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 namespace { 73 /// RegsForValue - This struct represents the registers (physical or virtual) 74 /// that a particular set of values is assigned, and the type information 75 /// about the value. The most common situation is to represent one value at a 76 /// time, but struct or array values are handled element-wise as multiple 77 /// values. The splitting of aggregates is performed recursively, so that we 78 /// never have aggregate-typed registers. The values at this point do not 79 /// necessarily have legal types, so each value may require one or more 80 /// registers of some legal type. 81 /// 82 struct RegsForValue { 83 /// TLI - The TargetLowering object. 84 /// 85 const TargetLowering *TLI; 86 87 /// ValueVTs - The value types of the values, which may not be legal, and 88 /// may need be promoted or synthesized from one or more registers. 89 /// 90 SmallVector<EVT, 4> ValueVTs; 91 92 /// RegVTs - The value types of the registers. This is the same size as 93 /// ValueVTs and it records, for each value, what the type of the assigned 94 /// register or registers are. (Individual values are never synthesized 95 /// from more than one type of register.) 96 /// 97 /// With virtual registers, the contents of RegVTs is redundant with TLI's 98 /// getRegisterType member function, however when with physical registers 99 /// it is necessary to have a separate record of the types. 100 /// 101 SmallVector<EVT, 4> RegVTs; 102 103 /// Regs - This list holds the registers assigned to the values. 104 /// Each legal or promoted value requires one register, and each 105 /// expanded value requires multiple registers. 106 /// 107 SmallVector<unsigned, 4> Regs; 108 109 RegsForValue() : TLI(0) {} 110 111 RegsForValue(const TargetLowering &tli, 112 const SmallVector<unsigned, 4> ®s, 113 EVT regvt, EVT valuevt) 114 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 115 RegsForValue(const TargetLowering &tli, 116 const SmallVector<unsigned, 4> ®s, 117 const SmallVector<EVT, 4> ®vts, 118 const SmallVector<EVT, 4> &valuevts) 119 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {} 120 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 121 unsigned Reg, const Type *Ty) : TLI(&tli) { 122 ComputeValueVTs(tli, Ty, ValueVTs); 123 124 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 125 EVT ValueVT = ValueVTs[Value]; 126 unsigned NumRegs = TLI->getNumRegisters(Context, ValueVT); 127 EVT RegisterVT = TLI->getRegisterType(Context, ValueVT); 128 for (unsigned i = 0; i != NumRegs; ++i) 129 Regs.push_back(Reg + i); 130 RegVTs.push_back(RegisterVT); 131 Reg += NumRegs; 132 } 133 } 134 135 /// areValueTypesLegal - Return true if types of all the values are legal. 136 bool areValueTypesLegal() { 137 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 138 EVT RegisterVT = RegVTs[Value]; 139 if (!TLI->isTypeLegal(RegisterVT)) 140 return false; 141 } 142 return true; 143 } 144 145 146 /// append - Add the specified values to this one. 147 void append(const RegsForValue &RHS) { 148 TLI = RHS.TLI; 149 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 150 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 151 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 152 } 153 154 155 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 156 /// this value and returns the result as a ValueVTs value. This uses 157 /// Chain/Flag as the input and updates them for the output Chain/Flag. 158 /// If the Flag pointer is NULL, no flag is used. 159 SDValue getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 160 SDValue &Chain, SDValue *Flag) const; 161 162 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 163 /// specified value into the registers specified by this object. This uses 164 /// Chain/Flag as the input and updates them for the output Chain/Flag. 165 /// If the Flag pointer is NULL, no flag is used. 166 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 167 SDValue &Chain, SDValue *Flag) const; 168 169 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 170 /// operand list. This adds the code marker, matching input operand index 171 /// (if applicable), and includes the number of values added into it. 172 void AddInlineAsmOperands(unsigned Kind, 173 bool HasMatching, unsigned MatchingIdx, 174 SelectionDAG &DAG, 175 std::vector<SDValue> &Ops) const; 176 }; 177 } 178 179 /// getCopyFromParts - Create a value that contains the specified legal parts 180 /// combined into the value they represent. If the parts combine to a type 181 /// larger then ValueVT then AssertOp can be used to specify whether the extra 182 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 183 /// (ISD::AssertSext). 184 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc dl, 185 const SDValue *Parts, 186 unsigned NumParts, EVT PartVT, EVT ValueVT, 187 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 188 assert(NumParts > 0 && "No parts to assemble!"); 189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 190 SDValue Val = Parts[0]; 191 192 if (NumParts > 1) { 193 // Assemble the value from multiple parts. 194 if (!ValueVT.isVector() && ValueVT.isInteger()) { 195 unsigned PartBits = PartVT.getSizeInBits(); 196 unsigned ValueBits = ValueVT.getSizeInBits(); 197 198 // Assemble the power of 2 part. 199 unsigned RoundParts = NumParts & (NumParts - 1) ? 200 1 << Log2_32(NumParts) : NumParts; 201 unsigned RoundBits = PartBits * RoundParts; 202 EVT RoundVT = RoundBits == ValueBits ? 203 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 204 SDValue Lo, Hi; 205 206 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 207 208 if (RoundParts > 2) { 209 Lo = getCopyFromParts(DAG, dl, Parts, RoundParts / 2, 210 PartVT, HalfVT); 211 Hi = getCopyFromParts(DAG, dl, Parts + RoundParts / 2, 212 RoundParts / 2, PartVT, HalfVT); 213 } else { 214 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[0]); 215 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, HalfVT, Parts[1]); 216 } 217 218 if (TLI.isBigEndian()) 219 std::swap(Lo, Hi); 220 221 Val = DAG.getNode(ISD::BUILD_PAIR, dl, RoundVT, Lo, Hi); 222 223 if (RoundParts < NumParts) { 224 // Assemble the trailing non-power-of-2 part. 225 unsigned OddParts = NumParts - RoundParts; 226 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 227 Hi = getCopyFromParts(DAG, dl, 228 Parts + RoundParts, OddParts, PartVT, OddVT); 229 230 // Combine the round and odd parts. 231 Lo = Val; 232 if (TLI.isBigEndian()) 233 std::swap(Lo, Hi); 234 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 235 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, TotalVT, Hi); 236 Hi = DAG.getNode(ISD::SHL, dl, TotalVT, Hi, 237 DAG.getConstant(Lo.getValueType().getSizeInBits(), 238 TLI.getPointerTy())); 239 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, TotalVT, Lo); 240 Val = DAG.getNode(ISD::OR, dl, TotalVT, Lo, Hi); 241 } 242 } else if (ValueVT.isVector()) { 243 // Handle a multi-element vector. 244 EVT IntermediateVT, RegisterVT; 245 unsigned NumIntermediates; 246 unsigned NumRegs = 247 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 248 NumIntermediates, RegisterVT); 249 assert(NumRegs == NumParts 250 && "Part count doesn't match vector breakdown!"); 251 NumParts = NumRegs; // Silence a compiler warning. 252 assert(RegisterVT == PartVT 253 && "Part type doesn't match vector breakdown!"); 254 assert(RegisterVT == Parts[0].getValueType() && 255 "Part type doesn't match part!"); 256 257 // Assemble the parts into intermediate operands. 258 SmallVector<SDValue, 8> Ops(NumIntermediates); 259 if (NumIntermediates == NumParts) { 260 // If the register was not expanded, truncate or copy the value, 261 // as appropriate. 262 for (unsigned i = 0; i != NumParts; ++i) 263 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i], 1, 264 PartVT, IntermediateVT); 265 } else if (NumParts > 0) { 266 // If the intermediate type was expanded, build the intermediate 267 // operands from the parts. 268 assert(NumParts % NumIntermediates == 0 && 269 "Must expand into a divisible number of parts!"); 270 unsigned Factor = NumParts / NumIntermediates; 271 for (unsigned i = 0; i != NumIntermediates; ++i) 272 Ops[i] = getCopyFromParts(DAG, dl, &Parts[i * Factor], Factor, 273 PartVT, IntermediateVT); 274 } 275 276 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 277 // intermediate operands. 278 Val = DAG.getNode(IntermediateVT.isVector() ? 279 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, dl, 280 ValueVT, &Ops[0], NumIntermediates); 281 } else if (PartVT.isFloatingPoint()) { 282 // FP split into multiple FP parts (for ppcf128) 283 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 284 "Unexpected split"); 285 SDValue Lo, Hi; 286 Lo = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[0]); 287 Hi = DAG.getNode(ISD::BIT_CONVERT, dl, EVT(MVT::f64), Parts[1]); 288 if (TLI.isBigEndian()) 289 std::swap(Lo, Hi); 290 Val = DAG.getNode(ISD::BUILD_PAIR, dl, ValueVT, Lo, Hi); 291 } else { 292 // FP split into integer parts (soft fp) 293 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 294 !PartVT.isVector() && "Unexpected split"); 295 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = getCopyFromParts(DAG, dl, Parts, NumParts, PartVT, IntVT); 297 } 298 } 299 300 // There is now one part, held in Val. Correct it to match ValueVT. 301 PartVT = Val.getValueType(); 302 303 if (PartVT == ValueVT) 304 return Val; 305 306 if (PartVT.isVector()) { 307 assert(ValueVT.isVector() && "Unknown vector conversion!"); 308 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 309 } 310 311 if (ValueVT.isVector()) { 312 assert(ValueVT.getVectorElementType() == PartVT && 313 ValueVT.getVectorNumElements() == 1 && 314 "Only trivial scalar-to-vector conversions should get here!"); 315 return DAG.getNode(ISD::BUILD_VECTOR, dl, ValueVT, Val); 316 } 317 318 if (PartVT.isInteger() && 319 ValueVT.isInteger()) { 320 if (ValueVT.bitsLT(PartVT)) { 321 // For a truncate, see if we have any information to 322 // indicate whether the truncated bits will always be 323 // zero or sign-extension. 324 if (AssertOp != ISD::DELETED_NODE) 325 Val = DAG.getNode(AssertOp, dl, PartVT, Val, 326 DAG.getValueType(ValueVT)); 327 return DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 328 } else { 329 return DAG.getNode(ISD::ANY_EXTEND, dl, ValueVT, Val); 330 } 331 } 332 333 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 334 if (ValueVT.bitsLT(Val.getValueType())) { 335 // FP_ROUND's are always exact here. 336 return DAG.getNode(ISD::FP_ROUND, dl, ValueVT, Val, 337 DAG.getIntPtrConstant(1)); 338 } 339 340 return DAG.getNode(ISD::FP_EXTEND, dl, ValueVT, Val); 341 } 342 343 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 344 return DAG.getNode(ISD::BIT_CONVERT, dl, ValueVT, Val); 345 346 llvm_unreachable("Unknown mismatch!"); 347 return SDValue(); 348 } 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, DebugLoc dl, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 EVT PartVT, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 EVT PtrVT = TLI.getPointerTy(); 359 EVT ValueVT = Val.getValueType(); 360 unsigned PartBits = PartVT.getSizeInBits(); 361 unsigned OrigNumParts = NumParts; 362 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 363 364 if (!NumParts) 365 return; 366 367 if (!ValueVT.isVector()) { 368 if (PartVT == ValueVT) { 369 assert(NumParts == 1 && "No-op copy with multiple parts!"); 370 Parts[0] = Val; 371 return; 372 } 373 374 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 375 // If the parts cover more bits than the value has, promote the value. 376 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 377 assert(NumParts == 1 && "Do not know what to promote to!"); 378 Val = DAG.getNode(ISD::FP_EXTEND, dl, PartVT, Val); 379 } else if (PartVT.isInteger() && ValueVT.isInteger()) { 380 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 381 Val = DAG.getNode(ExtendKind, dl, ValueVT, Val); 382 } else { 383 llvm_unreachable("Unknown mismatch!"); 384 } 385 } else if (PartBits == ValueVT.getSizeInBits()) { 386 // Different types of the same size. 387 assert(NumParts == 1 && PartVT != ValueVT); 388 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 389 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 390 // If the parts cover less bits than value has, truncate the value. 391 if (PartVT.isInteger() && ValueVT.isInteger()) { 392 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 393 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 394 } else { 395 llvm_unreachable("Unknown mismatch!"); 396 } 397 } 398 399 // The value may have changed - recompute ValueVT. 400 ValueVT = Val.getValueType(); 401 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 402 "Failed to tile the value with PartVT!"); 403 404 if (NumParts == 1) { 405 assert(PartVT == ValueVT && "Type conversion failed!"); 406 Parts[0] = Val; 407 return; 408 } 409 410 // Expand the value into multiple parts. 411 if (NumParts & (NumParts - 1)) { 412 // The number of parts is not a power of 2. Split off and copy the tail. 413 assert(PartVT.isInteger() && ValueVT.isInteger() && 414 "Do not know what to expand to!"); 415 unsigned RoundParts = 1 << Log2_32(NumParts); 416 unsigned RoundBits = RoundParts * PartBits; 417 unsigned OddParts = NumParts - RoundParts; 418 SDValue OddVal = DAG.getNode(ISD::SRL, dl, ValueVT, Val, 419 DAG.getConstant(RoundBits, 420 TLI.getPointerTy())); 421 getCopyToParts(DAG, dl, OddVal, Parts + RoundParts, 422 OddParts, PartVT); 423 424 if (TLI.isBigEndian()) 425 // The odd parts were reversed by getCopyToParts - unreverse them. 426 std::reverse(Parts + RoundParts, Parts + NumParts); 427 428 NumParts = RoundParts; 429 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 430 Val = DAG.getNode(ISD::TRUNCATE, dl, ValueVT, Val); 431 } 432 433 // The number of parts is a power of 2. Repeatedly bisect the value using 434 // EXTRACT_ELEMENT. 435 Parts[0] = DAG.getNode(ISD::BIT_CONVERT, dl, 436 EVT::getIntegerVT(*DAG.getContext(), 437 ValueVT.getSizeInBits()), 438 Val); 439 440 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 441 for (unsigned i = 0; i < NumParts; i += StepSize) { 442 unsigned ThisBits = StepSize * PartBits / 2; 443 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 444 SDValue &Part0 = Parts[i]; 445 SDValue &Part1 = Parts[i+StepSize/2]; 446 447 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 448 ThisVT, Part0, 449 DAG.getConstant(1, PtrVT)); 450 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, 451 ThisVT, Part0, 452 DAG.getConstant(0, PtrVT)); 453 454 if (ThisBits == PartBits && ThisVT != PartVT) { 455 Part0 = DAG.getNode(ISD::BIT_CONVERT, dl, 456 PartVT, Part0); 457 Part1 = DAG.getNode(ISD::BIT_CONVERT, dl, 458 PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 466 return; 467 } 468 469 // Vector ValueVT. 470 if (NumParts == 1) { 471 if (PartVT != ValueVT) { 472 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 473 Val = DAG.getNode(ISD::BIT_CONVERT, dl, PartVT, Val); 474 } else { 475 assert(ValueVT.getVectorElementType() == PartVT && 476 ValueVT.getVectorNumElements() == 1 && 477 "Only trivial vector-to-scalar conversions should get here!"); 478 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 479 PartVT, Val, 480 DAG.getConstant(0, PtrVT)); 481 } 482 } 483 484 Parts[0] = Val; 485 return; 486 } 487 488 // Handle a multi-element vector. 489 EVT IntermediateVT, RegisterVT; 490 unsigned NumIntermediates; 491 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 492 IntermediateVT, NumIntermediates, RegisterVT); 493 unsigned NumElements = ValueVT.getVectorNumElements(); 494 495 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 496 NumParts = NumRegs; // Silence a compiler warning. 497 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 498 499 // Split the vector into intermediate operands. 500 SmallVector<SDValue, 8> Ops(NumIntermediates); 501 for (unsigned i = 0; i != NumIntermediates; ++i) { 502 if (IntermediateVT.isVector()) 503 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, 504 IntermediateVT, Val, 505 DAG.getConstant(i * (NumElements / NumIntermediates), 506 PtrVT)); 507 else 508 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 509 IntermediateVT, Val, 510 DAG.getConstant(i, PtrVT)); 511 } 512 513 // Split the intermediate operands into legal parts. 514 if (NumParts == NumIntermediates) { 515 // If the register was not expanded, promote or copy the value, 516 // as appropriate. 517 for (unsigned i = 0; i != NumParts; ++i) 518 getCopyToParts(DAG, dl, Ops[i], &Parts[i], 1, PartVT); 519 } else if (NumParts > 0) { 520 // If the intermediate type was expanded, split each the value into 521 // legal parts. 522 assert(NumParts % NumIntermediates == 0 && 523 "Must expand into a divisible number of parts!"); 524 unsigned Factor = NumParts / NumIntermediates; 525 for (unsigned i = 0; i != NumIntermediates; ++i) 526 getCopyToParts(DAG, dl, Ops[i], &Parts[i*Factor], Factor, PartVT); 527 } 528 } 529 530 531 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 532 AA = &aa; 533 GFI = gfi; 534 TD = DAG.getTarget().getTargetData(); 535 } 536 537 /// clear - Clear out the current SelectionDAG and the associated 538 /// state and prepare this SelectionDAGBuilder object to be used 539 /// for a new block. This doesn't clear out information about 540 /// additional blocks that are needed to complete switch lowering 541 /// or PHI node updating; that information is cleared out as it is 542 /// consumed. 543 void SelectionDAGBuilder::clear() { 544 NodeMap.clear(); 545 PendingLoads.clear(); 546 PendingExports.clear(); 547 EdgeMapping.clear(); 548 DAG.clear(); 549 CurDebugLoc = DebugLoc(); 550 HasTailCall = false; 551 } 552 553 /// getRoot - Return the current virtual root of the Selection DAG, 554 /// flushing any PendingLoad items. This must be done before emitting 555 /// a store or any other node that may need to be ordered after any 556 /// prior load instructions. 557 /// 558 SDValue SelectionDAGBuilder::getRoot() { 559 if (PendingLoads.empty()) 560 return DAG.getRoot(); 561 562 if (PendingLoads.size() == 1) { 563 SDValue Root = PendingLoads[0]; 564 DAG.setRoot(Root); 565 PendingLoads.clear(); 566 return Root; 567 } 568 569 // Otherwise, we have to make a token factor node. 570 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 571 &PendingLoads[0], PendingLoads.size()); 572 PendingLoads.clear(); 573 DAG.setRoot(Root); 574 return Root; 575 } 576 577 /// getControlRoot - Similar to getRoot, but instead of flushing all the 578 /// PendingLoad items, flush all the PendingExports items. It is necessary 579 /// to do this before emitting a terminator instruction. 580 /// 581 SDValue SelectionDAGBuilder::getControlRoot() { 582 SDValue Root = DAG.getRoot(); 583 584 if (PendingExports.empty()) 585 return Root; 586 587 // Turn all of the CopyToReg chains into one factored node. 588 if (Root.getOpcode() != ISD::EntryToken) { 589 unsigned i = 0, e = PendingExports.size(); 590 for (; i != e; ++i) { 591 assert(PendingExports[i].getNode()->getNumOperands() > 1); 592 if (PendingExports[i].getNode()->getOperand(0) == Root) 593 break; // Don't add the root if we already indirectly depend on it. 594 } 595 596 if (i == e) 597 PendingExports.push_back(Root); 598 } 599 600 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 601 &PendingExports[0], 602 PendingExports.size()); 603 PendingExports.clear(); 604 DAG.setRoot(Root); 605 return Root; 606 } 607 608 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 609 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 610 DAG.AssignOrdering(Node, SDNodeOrder); 611 612 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 613 AssignOrderingToNode(Node->getOperand(I).getNode()); 614 } 615 616 void SelectionDAGBuilder::visit(const Instruction &I) { 617 CurDebugLoc = I.getDebugLoc(); 618 619 visit(I.getOpcode(), I); 620 621 CurDebugLoc = DebugLoc(); 622 } 623 624 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 625 // Note: this doesn't use InstVisitor, because it has to work with 626 // ConstantExpr's in addition to instructions. 627 switch (Opcode) { 628 default: llvm_unreachable("Unknown instruction type encountered!"); 629 // Build the switch statement using the Instruction.def file. 630 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 631 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 632 #include "llvm/Instruction.def" 633 } 634 635 // Assign the ordering to the freshly created DAG nodes. 636 if (NodeMap.count(&I)) { 637 ++SDNodeOrder; 638 AssignOrderingToNode(getValue(&I).getNode()); 639 } 640 } 641 642 SDValue SelectionDAGBuilder::getValue(const Value *V) { 643 SDValue &N = NodeMap[V]; 644 if (N.getNode()) return N; 645 646 if (const Constant *C = dyn_cast<Constant>(V)) { 647 EVT VT = TLI.getValueType(V->getType(), true); 648 649 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 650 return N = DAG.getConstant(*CI, VT); 651 652 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 653 return N = DAG.getGlobalAddress(GV, VT); 654 655 if (isa<ConstantPointerNull>(C)) 656 return N = DAG.getConstant(0, TLI.getPointerTy()); 657 658 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 659 return N = DAG.getConstantFP(*CFP, VT); 660 661 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 662 return N = DAG.getUNDEF(VT); 663 664 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 665 visit(CE->getOpcode(), *CE); 666 SDValue N1 = NodeMap[V]; 667 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 668 return N1; 669 } 670 671 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 672 SmallVector<SDValue, 4> Constants; 673 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 674 OI != OE; ++OI) { 675 SDNode *Val = getValue(*OI).getNode(); 676 // If the operand is an empty aggregate, there are no values. 677 if (!Val) continue; 678 // Add each leaf value from the operand to the Constants list 679 // to form a flattened list of all the values. 680 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 681 Constants.push_back(SDValue(Val, i)); 682 } 683 684 return DAG.getMergeValues(&Constants[0], Constants.size(), 685 getCurDebugLoc()); 686 } 687 688 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 689 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 690 "Unknown struct or array constant!"); 691 692 SmallVector<EVT, 4> ValueVTs; 693 ComputeValueVTs(TLI, C->getType(), ValueVTs); 694 unsigned NumElts = ValueVTs.size(); 695 if (NumElts == 0) 696 return SDValue(); // empty struct 697 SmallVector<SDValue, 4> Constants(NumElts); 698 for (unsigned i = 0; i != NumElts; ++i) { 699 EVT EltVT = ValueVTs[i]; 700 if (isa<UndefValue>(C)) 701 Constants[i] = DAG.getUNDEF(EltVT); 702 else if (EltVT.isFloatingPoint()) 703 Constants[i] = DAG.getConstantFP(0, EltVT); 704 else 705 Constants[i] = DAG.getConstant(0, EltVT); 706 } 707 708 return DAG.getMergeValues(&Constants[0], NumElts, 709 getCurDebugLoc()); 710 } 711 712 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 713 return DAG.getBlockAddress(BA, VT); 714 715 const VectorType *VecTy = cast<VectorType>(V->getType()); 716 unsigned NumElements = VecTy->getNumElements(); 717 718 // Now that we know the number and type of the elements, get that number of 719 // elements into the Ops array based on what kind of constant it is. 720 SmallVector<SDValue, 16> Ops; 721 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 722 for (unsigned i = 0; i != NumElements; ++i) 723 Ops.push_back(getValue(CP->getOperand(i))); 724 } else { 725 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 726 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 727 728 SDValue Op; 729 if (EltVT.isFloatingPoint()) 730 Op = DAG.getConstantFP(0, EltVT); 731 else 732 Op = DAG.getConstant(0, EltVT); 733 Ops.assign(NumElements, Op); 734 } 735 736 // Create a BUILD_VECTOR node. 737 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 738 VT, &Ops[0], Ops.size()); 739 } 740 741 // If this is a static alloca, generate it as the frameindex instead of 742 // computation. 743 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 744 DenseMap<const AllocaInst*, int>::iterator SI = 745 FuncInfo.StaticAllocaMap.find(AI); 746 if (SI != FuncInfo.StaticAllocaMap.end()) 747 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 748 } 749 750 unsigned InReg = FuncInfo.ValueMap[V]; 751 assert(InReg && "Value not in map!"); 752 753 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 754 SDValue Chain = DAG.getEntryNode(); 755 return RFV.getCopyFromRegs(DAG, getCurDebugLoc(), Chain, NULL); 756 } 757 758 /// Get the EVTs and ArgFlags collections that represent the legalized return 759 /// type of the given function. This does not require a DAG or a return value, 760 /// and is suitable for use before any DAGs for the function are constructed. 761 static void getReturnInfo(const Type* ReturnType, 762 Attributes attr, SmallVectorImpl<EVT> &OutVTs, 763 SmallVectorImpl<ISD::ArgFlagsTy> &OutFlags, 764 const TargetLowering &TLI, 765 SmallVectorImpl<uint64_t> *Offsets = 0) { 766 SmallVector<EVT, 4> ValueVTs; 767 ComputeValueVTs(TLI, ReturnType, ValueVTs); 768 unsigned NumValues = ValueVTs.size(); 769 if (NumValues == 0) return; 770 unsigned Offset = 0; 771 772 for (unsigned j = 0, f = NumValues; j != f; ++j) { 773 EVT VT = ValueVTs[j]; 774 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 775 776 if (attr & Attribute::SExt) 777 ExtendKind = ISD::SIGN_EXTEND; 778 else if (attr & Attribute::ZExt) 779 ExtendKind = ISD::ZERO_EXTEND; 780 781 // FIXME: C calling convention requires the return type to be promoted to 782 // at least 32-bit. But this is not necessary for non-C calling 783 // conventions. The frontend should mark functions whose return values 784 // require promoting with signext or zeroext attributes. 785 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 786 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 787 if (VT.bitsLT(MinVT)) 788 VT = MinVT; 789 } 790 791 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 792 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 793 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 794 PartVT.getTypeForEVT(ReturnType->getContext())); 795 796 // 'inreg' on function refers to return value 797 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 798 if (attr & Attribute::InReg) 799 Flags.setInReg(); 800 801 // Propagate extension type if any 802 if (attr & Attribute::SExt) 803 Flags.setSExt(); 804 else if (attr & Attribute::ZExt) 805 Flags.setZExt(); 806 807 for (unsigned i = 0; i < NumParts; ++i) { 808 OutVTs.push_back(PartVT); 809 OutFlags.push_back(Flags); 810 if (Offsets) 811 { 812 Offsets->push_back(Offset); 813 Offset += PartSize; 814 } 815 } 816 } 817 } 818 819 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 820 SDValue Chain = getControlRoot(); 821 SmallVector<ISD::OutputArg, 8> Outs; 822 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 823 824 if (!FLI.CanLowerReturn) { 825 unsigned DemoteReg = FLI.DemoteRegister; 826 const Function *F = I.getParent()->getParent(); 827 828 // Emit a store of the return value through the virtual register. 829 // Leave Outs empty so that LowerReturn won't try to load return 830 // registers the usual way. 831 SmallVector<EVT, 1> PtrValueVTs; 832 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 833 PtrValueVTs); 834 835 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 836 SDValue RetOp = getValue(I.getOperand(0)); 837 838 SmallVector<EVT, 4> ValueVTs; 839 SmallVector<uint64_t, 4> Offsets; 840 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 841 unsigned NumValues = ValueVTs.size(); 842 843 SmallVector<SDValue, 4> Chains(NumValues); 844 EVT PtrVT = PtrValueVTs[0]; 845 for (unsigned i = 0; i != NumValues; ++i) { 846 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, RetPtr, 847 DAG.getConstant(Offsets[i], PtrVT)); 848 Chains[i] = 849 DAG.getStore(Chain, getCurDebugLoc(), 850 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 851 Add, NULL, Offsets[i], false, false, 0); 852 } 853 854 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 855 MVT::Other, &Chains[0], NumValues); 856 } else if (I.getNumOperands() != 0) { 857 SmallVector<EVT, 4> ValueVTs; 858 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 859 unsigned NumValues = ValueVTs.size(); 860 if (NumValues) { 861 SDValue RetOp = getValue(I.getOperand(0)); 862 for (unsigned j = 0, f = NumValues; j != f; ++j) { 863 EVT VT = ValueVTs[j]; 864 865 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 866 867 const Function *F = I.getParent()->getParent(); 868 if (F->paramHasAttr(0, Attribute::SExt)) 869 ExtendKind = ISD::SIGN_EXTEND; 870 else if (F->paramHasAttr(0, Attribute::ZExt)) 871 ExtendKind = ISD::ZERO_EXTEND; 872 873 // FIXME: C calling convention requires the return type to be promoted 874 // to at least 32-bit. But this is not necessary for non-C calling 875 // conventions. The frontend should mark functions whose return values 876 // require promoting with signext or zeroext attributes. 877 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 878 EVT MinVT = TLI.getRegisterType(*DAG.getContext(), MVT::i32); 879 if (VT.bitsLT(MinVT)) 880 VT = MinVT; 881 } 882 883 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 884 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 885 SmallVector<SDValue, 4> Parts(NumParts); 886 getCopyToParts(DAG, getCurDebugLoc(), 887 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 888 &Parts[0], NumParts, PartVT, ExtendKind); 889 890 // 'inreg' on function refers to return value 891 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 892 if (F->paramHasAttr(0, Attribute::InReg)) 893 Flags.setInReg(); 894 895 // Propagate extension type if any 896 if (F->paramHasAttr(0, Attribute::SExt)) 897 Flags.setSExt(); 898 else if (F->paramHasAttr(0, Attribute::ZExt)) 899 Flags.setZExt(); 900 901 for (unsigned i = 0; i < NumParts; ++i) 902 Outs.push_back(ISD::OutputArg(Flags, Parts[i], /*isfixed=*/true)); 903 } 904 } 905 } 906 907 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 908 CallingConv::ID CallConv = 909 DAG.getMachineFunction().getFunction()->getCallingConv(); 910 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 911 Outs, getCurDebugLoc(), DAG); 912 913 // Verify that the target's LowerReturn behaved as expected. 914 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 915 "LowerReturn didn't return a valid chain!"); 916 917 // Update the DAG with the new chain value resulting from return lowering. 918 DAG.setRoot(Chain); 919 } 920 921 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 922 /// created for it, emit nodes to copy the value into the virtual 923 /// registers. 924 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 925 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 926 if (VMI != FuncInfo.ValueMap.end()) { 927 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 928 CopyValueToVirtualRegister(V, VMI->second); 929 } 930 } 931 932 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 933 /// the current basic block, add it to ValueMap now so that we'll get a 934 /// CopyTo/FromReg. 935 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 936 // No need to export constants. 937 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 938 939 // Already exported? 940 if (FuncInfo.isExportedInst(V)) return; 941 942 unsigned Reg = FuncInfo.InitializeRegForValue(V); 943 CopyValueToVirtualRegister(V, Reg); 944 } 945 946 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 947 const BasicBlock *FromBB) { 948 // The operands of the setcc have to be in this block. We don't know 949 // how to export them from some other block. 950 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 951 // Can export from current BB. 952 if (VI->getParent() == FromBB) 953 return true; 954 955 // Is already exported, noop. 956 return FuncInfo.isExportedInst(V); 957 } 958 959 // If this is an argument, we can export it if the BB is the entry block or 960 // if it is already exported. 961 if (isa<Argument>(V)) { 962 if (FromBB == &FromBB->getParent()->getEntryBlock()) 963 return true; 964 965 // Otherwise, can only export this if it is already exported. 966 return FuncInfo.isExportedInst(V); 967 } 968 969 // Otherwise, constants can always be exported. 970 return true; 971 } 972 973 static bool InBlock(const Value *V, const BasicBlock *BB) { 974 if (const Instruction *I = dyn_cast<Instruction>(V)) 975 return I->getParent() == BB; 976 return true; 977 } 978 979 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 980 /// This function emits a branch and is used at the leaves of an OR or an 981 /// AND operator tree. 982 /// 983 void 984 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 985 MachineBasicBlock *TBB, 986 MachineBasicBlock *FBB, 987 MachineBasicBlock *CurBB, 988 MachineBasicBlock *SwitchBB) { 989 const BasicBlock *BB = CurBB->getBasicBlock(); 990 991 // If the leaf of the tree is a comparison, merge the condition into 992 // the caseblock. 993 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 994 // The operands of the cmp have to be in this block. We don't know 995 // how to export them from some other block. If this is the first block 996 // of the sequence, no exporting is needed. 997 if (CurBB == SwitchBB || 998 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 999 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1000 ISD::CondCode Condition; 1001 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1002 Condition = getICmpCondCode(IC->getPredicate()); 1003 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1004 Condition = getFCmpCondCode(FC->getPredicate()); 1005 } else { 1006 Condition = ISD::SETEQ; // silence warning. 1007 llvm_unreachable("Unknown compare instruction"); 1008 } 1009 1010 CaseBlock CB(Condition, BOp->getOperand(0), 1011 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1012 SwitchCases.push_back(CB); 1013 return; 1014 } 1015 } 1016 1017 // Create a CaseBlock record representing this branch. 1018 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1019 NULL, TBB, FBB, CurBB); 1020 SwitchCases.push_back(CB); 1021 } 1022 1023 /// FindMergedConditions - If Cond is an expression like 1024 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1025 MachineBasicBlock *TBB, 1026 MachineBasicBlock *FBB, 1027 MachineBasicBlock *CurBB, 1028 MachineBasicBlock *SwitchBB, 1029 unsigned Opc) { 1030 // If this node is not part of the or/and tree, emit it as a branch. 1031 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1032 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1033 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1034 BOp->getParent() != CurBB->getBasicBlock() || 1035 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1036 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1037 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1038 return; 1039 } 1040 1041 // Create TmpBB after CurBB. 1042 MachineFunction::iterator BBI = CurBB; 1043 MachineFunction &MF = DAG.getMachineFunction(); 1044 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1045 CurBB->getParent()->insert(++BBI, TmpBB); 1046 1047 if (Opc == Instruction::Or) { 1048 // Codegen X | Y as: 1049 // jmp_if_X TBB 1050 // jmp TmpBB 1051 // TmpBB: 1052 // jmp_if_Y TBB 1053 // jmp FBB 1054 // 1055 1056 // Emit the LHS condition. 1057 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1058 1059 // Emit the RHS condition into TmpBB. 1060 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1061 } else { 1062 assert(Opc == Instruction::And && "Unknown merge op!"); 1063 // Codegen X & Y as: 1064 // jmp_if_X TmpBB 1065 // jmp FBB 1066 // TmpBB: 1067 // jmp_if_Y TBB 1068 // jmp FBB 1069 // 1070 // This requires creation of TmpBB after CurBB. 1071 1072 // Emit the LHS condition. 1073 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1074 1075 // Emit the RHS condition into TmpBB. 1076 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1077 } 1078 } 1079 1080 /// If the set of cases should be emitted as a series of branches, return true. 1081 /// If we should emit this as a bunch of and/or'd together conditions, return 1082 /// false. 1083 bool 1084 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1085 if (Cases.size() != 2) return true; 1086 1087 // If this is two comparisons of the same values or'd or and'd together, they 1088 // will get folded into a single comparison, so don't emit two blocks. 1089 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1090 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1091 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1092 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1093 return false; 1094 } 1095 1096 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1097 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1098 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1099 Cases[0].CC == Cases[1].CC && 1100 isa<Constant>(Cases[0].CmpRHS) && 1101 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1102 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1103 return false; 1104 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1105 return false; 1106 } 1107 1108 return true; 1109 } 1110 1111 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1112 MachineBasicBlock *BrMBB = FuncInfo.MBBMap[I.getParent()]; 1113 1114 // Update machine-CFG edges. 1115 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1116 1117 // Figure out which block is immediately after the current one. 1118 MachineBasicBlock *NextBlock = 0; 1119 MachineFunction::iterator BBI = BrMBB; 1120 if (++BBI != FuncInfo.MF->end()) 1121 NextBlock = BBI; 1122 1123 if (I.isUnconditional()) { 1124 // Update machine-CFG edges. 1125 BrMBB->addSuccessor(Succ0MBB); 1126 1127 // If this is not a fall-through branch, emit the branch. 1128 if (Succ0MBB != NextBlock) 1129 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1130 MVT::Other, getControlRoot(), 1131 DAG.getBasicBlock(Succ0MBB))); 1132 1133 return; 1134 } 1135 1136 // If this condition is one of the special cases we handle, do special stuff 1137 // now. 1138 const Value *CondVal = I.getCondition(); 1139 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1140 1141 // If this is a series of conditions that are or'd or and'd together, emit 1142 // this as a sequence of branches instead of setcc's with and/or operations. 1143 // For example, instead of something like: 1144 // cmp A, B 1145 // C = seteq 1146 // cmp D, E 1147 // F = setle 1148 // or C, F 1149 // jnz foo 1150 // Emit: 1151 // cmp A, B 1152 // je foo 1153 // cmp D, E 1154 // jle foo 1155 // 1156 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1157 if (BOp->hasOneUse() && 1158 (BOp->getOpcode() == Instruction::And || 1159 BOp->getOpcode() == Instruction::Or)) { 1160 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1161 BOp->getOpcode()); 1162 // If the compares in later blocks need to use values not currently 1163 // exported from this block, export them now. This block should always 1164 // be the first entry. 1165 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1166 1167 // Allow some cases to be rejected. 1168 if (ShouldEmitAsBranches(SwitchCases)) { 1169 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1170 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1171 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1172 } 1173 1174 // Emit the branch for this block. 1175 visitSwitchCase(SwitchCases[0], BrMBB); 1176 SwitchCases.erase(SwitchCases.begin()); 1177 return; 1178 } 1179 1180 // Okay, we decided not to do this, remove any inserted MBB's and clear 1181 // SwitchCases. 1182 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1183 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1184 1185 SwitchCases.clear(); 1186 } 1187 } 1188 1189 // Create a CaseBlock record representing this branch. 1190 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1191 NULL, Succ0MBB, Succ1MBB, BrMBB); 1192 1193 // Use visitSwitchCase to actually insert the fast branch sequence for this 1194 // cond branch. 1195 visitSwitchCase(CB, BrMBB); 1196 } 1197 1198 /// visitSwitchCase - Emits the necessary code to represent a single node in 1199 /// the binary search tree resulting from lowering a switch instruction. 1200 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1201 MachineBasicBlock *SwitchBB) { 1202 SDValue Cond; 1203 SDValue CondLHS = getValue(CB.CmpLHS); 1204 DebugLoc dl = getCurDebugLoc(); 1205 1206 // Build the setcc now. 1207 if (CB.CmpMHS == NULL) { 1208 // Fold "(X == true)" to X and "(X == false)" to !X to 1209 // handle common cases produced by branch lowering. 1210 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1211 CB.CC == ISD::SETEQ) 1212 Cond = CondLHS; 1213 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1214 CB.CC == ISD::SETEQ) { 1215 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1216 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1217 } else 1218 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1219 } else { 1220 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1221 1222 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1223 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1224 1225 SDValue CmpOp = getValue(CB.CmpMHS); 1226 EVT VT = CmpOp.getValueType(); 1227 1228 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1229 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1230 ISD::SETLE); 1231 } else { 1232 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1233 VT, CmpOp, DAG.getConstant(Low, VT)); 1234 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1235 DAG.getConstant(High-Low, VT), ISD::SETULE); 1236 } 1237 } 1238 1239 // Update successor info 1240 SwitchBB->addSuccessor(CB.TrueBB); 1241 SwitchBB->addSuccessor(CB.FalseBB); 1242 1243 // Set NextBlock to be the MBB immediately after the current one, if any. 1244 // This is used to avoid emitting unnecessary branches to the next block. 1245 MachineBasicBlock *NextBlock = 0; 1246 MachineFunction::iterator BBI = SwitchBB; 1247 if (++BBI != FuncInfo.MF->end()) 1248 NextBlock = BBI; 1249 1250 // If the lhs block is the next block, invert the condition so that we can 1251 // fall through to the lhs instead of the rhs block. 1252 if (CB.TrueBB == NextBlock) { 1253 std::swap(CB.TrueBB, CB.FalseBB); 1254 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1255 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1256 } 1257 1258 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1259 MVT::Other, getControlRoot(), Cond, 1260 DAG.getBasicBlock(CB.TrueBB)); 1261 1262 // If the branch was constant folded, fix up the CFG. 1263 if (BrCond.getOpcode() == ISD::BR) { 1264 SwitchBB->removeSuccessor(CB.FalseBB); 1265 } else { 1266 // Otherwise, go ahead and insert the false branch. 1267 if (BrCond == getControlRoot()) 1268 SwitchBB->removeSuccessor(CB.TrueBB); 1269 1270 if (CB.FalseBB != NextBlock) 1271 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1272 DAG.getBasicBlock(CB.FalseBB)); 1273 } 1274 1275 DAG.setRoot(BrCond); 1276 } 1277 1278 /// visitJumpTable - Emit JumpTable node in the current MBB 1279 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1280 // Emit the code for the jump table 1281 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1282 EVT PTy = TLI.getPointerTy(); 1283 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1284 JT.Reg, PTy); 1285 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1286 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1287 MVT::Other, Index.getValue(1), 1288 Table, Index); 1289 DAG.setRoot(BrJumpTable); 1290 } 1291 1292 /// visitJumpTableHeader - This function emits necessary code to produce index 1293 /// in the JumpTable from switch case. 1294 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1295 JumpTableHeader &JTH, 1296 MachineBasicBlock *SwitchBB) { 1297 // Subtract the lowest switch case value from the value being switched on and 1298 // conditional branch to default mbb if the result is greater than the 1299 // difference between smallest and largest cases. 1300 SDValue SwitchOp = getValue(JTH.SValue); 1301 EVT VT = SwitchOp.getValueType(); 1302 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1303 DAG.getConstant(JTH.First, VT)); 1304 1305 // The SDNode we just created, which holds the value being switched on minus 1306 // the smallest case value, needs to be copied to a virtual register so it 1307 // can be used as an index into the jump table in a subsequent basic block. 1308 // This value may be smaller or larger than the target's pointer type, and 1309 // therefore require extension or truncating. 1310 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1311 1312 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy()); 1313 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1314 JumpTableReg, SwitchOp); 1315 JT.Reg = JumpTableReg; 1316 1317 // Emit the range check for the jump table, and branch to the default block 1318 // for the switch statement if the value being switched on exceeds the largest 1319 // case in the switch. 1320 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1321 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1322 DAG.getConstant(JTH.Last-JTH.First,VT), 1323 ISD::SETUGT); 1324 1325 // Set NextBlock to be the MBB immediately after the current one, if any. 1326 // This is used to avoid emitting unnecessary branches to the next block. 1327 MachineBasicBlock *NextBlock = 0; 1328 MachineFunction::iterator BBI = SwitchBB; 1329 1330 if (++BBI != FuncInfo.MF->end()) 1331 NextBlock = BBI; 1332 1333 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1334 MVT::Other, CopyTo, CMP, 1335 DAG.getBasicBlock(JT.Default)); 1336 1337 if (JT.MBB != NextBlock) 1338 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1339 DAG.getBasicBlock(JT.MBB)); 1340 1341 DAG.setRoot(BrCond); 1342 } 1343 1344 /// visitBitTestHeader - This function emits necessary code to produce value 1345 /// suitable for "bit tests" 1346 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1347 MachineBasicBlock *SwitchBB) { 1348 // Subtract the minimum value 1349 SDValue SwitchOp = getValue(B.SValue); 1350 EVT VT = SwitchOp.getValueType(); 1351 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1352 DAG.getConstant(B.First, VT)); 1353 1354 // Check range 1355 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1356 TLI.getSetCCResultType(Sub.getValueType()), 1357 Sub, DAG.getConstant(B.Range, VT), 1358 ISD::SETUGT); 1359 1360 SDValue ShiftOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), 1361 TLI.getPointerTy()); 1362 1363 B.Reg = FuncInfo.MakeReg(TLI.getPointerTy()); 1364 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1365 B.Reg, ShiftOp); 1366 1367 // Set NextBlock to be the MBB immediately after the current one, if any. 1368 // This is used to avoid emitting unnecessary branches to the next block. 1369 MachineBasicBlock *NextBlock = 0; 1370 MachineFunction::iterator BBI = SwitchBB; 1371 if (++BBI != FuncInfo.MF->end()) 1372 NextBlock = BBI; 1373 1374 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1375 1376 SwitchBB->addSuccessor(B.Default); 1377 SwitchBB->addSuccessor(MBB); 1378 1379 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1380 MVT::Other, CopyTo, RangeCmp, 1381 DAG.getBasicBlock(B.Default)); 1382 1383 if (MBB != NextBlock) 1384 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1385 DAG.getBasicBlock(MBB)); 1386 1387 DAG.setRoot(BrRange); 1388 } 1389 1390 /// visitBitTestCase - this function produces one "bit test" 1391 void SelectionDAGBuilder::visitBitTestCase(MachineBasicBlock* NextMBB, 1392 unsigned Reg, 1393 BitTestCase &B, 1394 MachineBasicBlock *SwitchBB) { 1395 // Make desired shift 1396 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), Reg, 1397 TLI.getPointerTy()); 1398 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), 1399 TLI.getPointerTy(), 1400 DAG.getConstant(1, TLI.getPointerTy()), 1401 ShiftOp); 1402 1403 // Emit bit tests and jumps 1404 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1405 TLI.getPointerTy(), SwitchVal, 1406 DAG.getConstant(B.Mask, TLI.getPointerTy())); 1407 SDValue AndCmp = DAG.getSetCC(getCurDebugLoc(), 1408 TLI.getSetCCResultType(AndOp.getValueType()), 1409 AndOp, DAG.getConstant(0, TLI.getPointerTy()), 1410 ISD::SETNE); 1411 1412 SwitchBB->addSuccessor(B.TargetBB); 1413 SwitchBB->addSuccessor(NextMBB); 1414 1415 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1416 MVT::Other, getControlRoot(), 1417 AndCmp, DAG.getBasicBlock(B.TargetBB)); 1418 1419 // Set NextBlock to be the MBB immediately after the current one, if any. 1420 // This is used to avoid emitting unnecessary branches to the next block. 1421 MachineBasicBlock *NextBlock = 0; 1422 MachineFunction::iterator BBI = SwitchBB; 1423 if (++BBI != FuncInfo.MF->end()) 1424 NextBlock = BBI; 1425 1426 if (NextMBB != NextBlock) 1427 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1428 DAG.getBasicBlock(NextMBB)); 1429 1430 DAG.setRoot(BrAnd); 1431 } 1432 1433 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1434 MachineBasicBlock *InvokeMBB = FuncInfo.MBBMap[I.getParent()]; 1435 1436 // Retrieve successors. 1437 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1438 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1439 1440 const Value *Callee(I.getCalledValue()); 1441 if (isa<InlineAsm>(Callee)) 1442 visitInlineAsm(&I); 1443 else 1444 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1445 1446 // If the value of the invoke is used outside of its defining block, make it 1447 // available as a virtual register. 1448 CopyToExportRegsIfNeeded(&I); 1449 1450 // Update successor info 1451 InvokeMBB->addSuccessor(Return); 1452 InvokeMBB->addSuccessor(LandingPad); 1453 1454 // Drop into normal successor. 1455 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1456 MVT::Other, getControlRoot(), 1457 DAG.getBasicBlock(Return))); 1458 } 1459 1460 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1461 } 1462 1463 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1464 /// small case ranges). 1465 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1466 CaseRecVector& WorkList, 1467 const Value* SV, 1468 MachineBasicBlock *Default, 1469 MachineBasicBlock *SwitchBB) { 1470 Case& BackCase = *(CR.Range.second-1); 1471 1472 // Size is the number of Cases represented by this range. 1473 size_t Size = CR.Range.second - CR.Range.first; 1474 if (Size > 3) 1475 return false; 1476 1477 // Get the MachineFunction which holds the current MBB. This is used when 1478 // inserting any additional MBBs necessary to represent the switch. 1479 MachineFunction *CurMF = FuncInfo.MF; 1480 1481 // Figure out which block is immediately after the current one. 1482 MachineBasicBlock *NextBlock = 0; 1483 MachineFunction::iterator BBI = CR.CaseBB; 1484 1485 if (++BBI != FuncInfo.MF->end()) 1486 NextBlock = BBI; 1487 1488 // TODO: If any two of the cases has the same destination, and if one value 1489 // is the same as the other, but has one bit unset that the other has set, 1490 // use bit manipulation to do two compares at once. For example: 1491 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1492 1493 // Rearrange the case blocks so that the last one falls through if possible. 1494 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1495 // The last case block won't fall through into 'NextBlock' if we emit the 1496 // branches in this order. See if rearranging a case value would help. 1497 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1498 if (I->BB == NextBlock) { 1499 std::swap(*I, BackCase); 1500 break; 1501 } 1502 } 1503 } 1504 1505 // Create a CaseBlock record representing a conditional branch to 1506 // the Case's target mbb if the value being switched on SV is equal 1507 // to C. 1508 MachineBasicBlock *CurBlock = CR.CaseBB; 1509 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1510 MachineBasicBlock *FallThrough; 1511 if (I != E-1) { 1512 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1513 CurMF->insert(BBI, FallThrough); 1514 1515 // Put SV in a virtual register to make it available from the new blocks. 1516 ExportFromCurrentBlock(SV); 1517 } else { 1518 // If the last case doesn't match, go to the default block. 1519 FallThrough = Default; 1520 } 1521 1522 const Value *RHS, *LHS, *MHS; 1523 ISD::CondCode CC; 1524 if (I->High == I->Low) { 1525 // This is just small small case range :) containing exactly 1 case 1526 CC = ISD::SETEQ; 1527 LHS = SV; RHS = I->High; MHS = NULL; 1528 } else { 1529 CC = ISD::SETLE; 1530 LHS = I->Low; MHS = SV; RHS = I->High; 1531 } 1532 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock); 1533 1534 // If emitting the first comparison, just call visitSwitchCase to emit the 1535 // code into the current block. Otherwise, push the CaseBlock onto the 1536 // vector to be later processed by SDISel, and insert the node's MBB 1537 // before the next MBB. 1538 if (CurBlock == SwitchBB) 1539 visitSwitchCase(CB, SwitchBB); 1540 else 1541 SwitchCases.push_back(CB); 1542 1543 CurBlock = FallThrough; 1544 } 1545 1546 return true; 1547 } 1548 1549 static inline bool areJTsAllowed(const TargetLowering &TLI) { 1550 return !DisableJumpTables && 1551 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 1552 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 1553 } 1554 1555 static APInt ComputeRange(const APInt &First, const APInt &Last) { 1556 APInt LastExt(Last), FirstExt(First); 1557 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 1558 LastExt.sext(BitWidth); FirstExt.sext(BitWidth); 1559 return (LastExt - FirstExt + 1ULL); 1560 } 1561 1562 /// handleJTSwitchCase - Emit jumptable for current switch case range 1563 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec& CR, 1564 CaseRecVector& WorkList, 1565 const Value* SV, 1566 MachineBasicBlock* Default, 1567 MachineBasicBlock *SwitchBB) { 1568 Case& FrontCase = *CR.Range.first; 1569 Case& BackCase = *(CR.Range.second-1); 1570 1571 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1572 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1573 1574 APInt TSize(First.getBitWidth(), 0); 1575 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1576 I!=E; ++I) 1577 TSize += I->size(); 1578 1579 if (!areJTsAllowed(TLI) || TSize.ult(4)) 1580 return false; 1581 1582 APInt Range = ComputeRange(First, Last); 1583 double Density = TSize.roundToDouble() / Range.roundToDouble(); 1584 if (Density < 0.4) 1585 return false; 1586 1587 DEBUG(dbgs() << "Lowering jump table\n" 1588 << "First entry: " << First << ". Last entry: " << Last << '\n' 1589 << "Range: " << Range 1590 << "Size: " << TSize << ". Density: " << Density << "\n\n"); 1591 1592 // Get the MachineFunction which holds the current MBB. This is used when 1593 // inserting any additional MBBs necessary to represent the switch. 1594 MachineFunction *CurMF = FuncInfo.MF; 1595 1596 // Figure out which block is immediately after the current one. 1597 MachineFunction::iterator BBI = CR.CaseBB; 1598 ++BBI; 1599 1600 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1601 1602 // Create a new basic block to hold the code for loading the address 1603 // of the jump table, and jumping to it. Update successor information; 1604 // we will either branch to the default case for the switch, or the jump 1605 // table. 1606 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1607 CurMF->insert(BBI, JumpTableBB); 1608 CR.CaseBB->addSuccessor(Default); 1609 CR.CaseBB->addSuccessor(JumpTableBB); 1610 1611 // Build a vector of destination BBs, corresponding to each target 1612 // of the jump table. If the value of the jump table slot corresponds to 1613 // a case statement, push the case's BB onto the vector, otherwise, push 1614 // the default BB. 1615 std::vector<MachineBasicBlock*> DestBBs; 1616 APInt TEI = First; 1617 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 1618 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 1619 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 1620 1621 if (Low.sle(TEI) && TEI.sle(High)) { 1622 DestBBs.push_back(I->BB); 1623 if (TEI==High) 1624 ++I; 1625 } else { 1626 DestBBs.push_back(Default); 1627 } 1628 } 1629 1630 // Update successor info. Add one edge to each unique successor. 1631 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 1632 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 1633 E = DestBBs.end(); I != E; ++I) { 1634 if (!SuccsHandled[(*I)->getNumber()]) { 1635 SuccsHandled[(*I)->getNumber()] = true; 1636 JumpTableBB->addSuccessor(*I); 1637 } 1638 } 1639 1640 // Create a jump table index for this jump table. 1641 unsigned JTEncoding = TLI.getJumpTableEncoding(); 1642 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 1643 ->createJumpTableIndex(DestBBs); 1644 1645 // Set the jump table information so that we can codegen it as a second 1646 // MachineBasicBlock 1647 JumpTable JT(-1U, JTI, JumpTableBB, Default); 1648 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 1649 if (CR.CaseBB == SwitchBB) 1650 visitJumpTableHeader(JT, JTH, SwitchBB); 1651 1652 JTCases.push_back(JumpTableBlock(JTH, JT)); 1653 1654 return true; 1655 } 1656 1657 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 1658 /// 2 subtrees. 1659 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 1660 CaseRecVector& WorkList, 1661 const Value* SV, 1662 MachineBasicBlock *Default, 1663 MachineBasicBlock *SwitchBB) { 1664 // Get the MachineFunction which holds the current MBB. This is used when 1665 // inserting any additional MBBs necessary to represent the switch. 1666 MachineFunction *CurMF = FuncInfo.MF; 1667 1668 // Figure out which block is immediately after the current one. 1669 MachineFunction::iterator BBI = CR.CaseBB; 1670 ++BBI; 1671 1672 Case& FrontCase = *CR.Range.first; 1673 Case& BackCase = *(CR.Range.second-1); 1674 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1675 1676 // Size is the number of Cases represented by this range. 1677 unsigned Size = CR.Range.second - CR.Range.first; 1678 1679 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 1680 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 1681 double FMetric = 0; 1682 CaseItr Pivot = CR.Range.first + Size/2; 1683 1684 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 1685 // (heuristically) allow us to emit JumpTable's later. 1686 APInt TSize(First.getBitWidth(), 0); 1687 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1688 I!=E; ++I) 1689 TSize += I->size(); 1690 1691 APInt LSize = FrontCase.size(); 1692 APInt RSize = TSize-LSize; 1693 DEBUG(dbgs() << "Selecting best pivot: \n" 1694 << "First: " << First << ", Last: " << Last <<'\n' 1695 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 1696 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 1697 J!=E; ++I, ++J) { 1698 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 1699 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 1700 APInt Range = ComputeRange(LEnd, RBegin); 1701 assert((Range - 2ULL).isNonNegative() && 1702 "Invalid case distance"); 1703 double LDensity = (double)LSize.roundToDouble() / 1704 (LEnd - First + 1ULL).roundToDouble(); 1705 double RDensity = (double)RSize.roundToDouble() / 1706 (Last - RBegin + 1ULL).roundToDouble(); 1707 double Metric = Range.logBase2()*(LDensity+RDensity); 1708 // Should always split in some non-trivial place 1709 DEBUG(dbgs() <<"=>Step\n" 1710 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 1711 << "LDensity: " << LDensity 1712 << ", RDensity: " << RDensity << '\n' 1713 << "Metric: " << Metric << '\n'); 1714 if (FMetric < Metric) { 1715 Pivot = J; 1716 FMetric = Metric; 1717 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 1718 } 1719 1720 LSize += J->size(); 1721 RSize -= J->size(); 1722 } 1723 if (areJTsAllowed(TLI)) { 1724 // If our case is dense we *really* should handle it earlier! 1725 assert((FMetric > 0) && "Should handle dense range earlier!"); 1726 } else { 1727 Pivot = CR.Range.first + Size/2; 1728 } 1729 1730 CaseRange LHSR(CR.Range.first, Pivot); 1731 CaseRange RHSR(Pivot, CR.Range.second); 1732 Constant *C = Pivot->Low; 1733 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 1734 1735 // We know that we branch to the LHS if the Value being switched on is 1736 // less than the Pivot value, C. We use this to optimize our binary 1737 // tree a bit, by recognizing that if SV is greater than or equal to the 1738 // LHS's Case Value, and that Case Value is exactly one less than the 1739 // Pivot's Value, then we can branch directly to the LHS's Target, 1740 // rather than creating a leaf node for it. 1741 if ((LHSR.second - LHSR.first) == 1 && 1742 LHSR.first->High == CR.GE && 1743 cast<ConstantInt>(C)->getValue() == 1744 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 1745 TrueBB = LHSR.first->BB; 1746 } else { 1747 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1748 CurMF->insert(BBI, TrueBB); 1749 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 1750 1751 // Put SV in a virtual register to make it available from the new blocks. 1752 ExportFromCurrentBlock(SV); 1753 } 1754 1755 // Similar to the optimization above, if the Value being switched on is 1756 // known to be less than the Constant CR.LT, and the current Case Value 1757 // is CR.LT - 1, then we can branch directly to the target block for 1758 // the current Case Value, rather than emitting a RHS leaf node for it. 1759 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 1760 cast<ConstantInt>(RHSR.first->Low)->getValue() == 1761 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 1762 FalseBB = RHSR.first->BB; 1763 } else { 1764 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1765 CurMF->insert(BBI, FalseBB); 1766 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 1767 1768 // Put SV in a virtual register to make it available from the new blocks. 1769 ExportFromCurrentBlock(SV); 1770 } 1771 1772 // Create a CaseBlock record representing a conditional branch to 1773 // the LHS node if the value being switched on SV is less than C. 1774 // Otherwise, branch to LHS. 1775 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 1776 1777 if (CR.CaseBB == SwitchBB) 1778 visitSwitchCase(CB, SwitchBB); 1779 else 1780 SwitchCases.push_back(CB); 1781 1782 return true; 1783 } 1784 1785 /// handleBitTestsSwitchCase - if current case range has few destination and 1786 /// range span less, than machine word bitwidth, encode case range into series 1787 /// of masks and emit bit tests with these masks. 1788 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 1789 CaseRecVector& WorkList, 1790 const Value* SV, 1791 MachineBasicBlock* Default, 1792 MachineBasicBlock *SwitchBB){ 1793 EVT PTy = TLI.getPointerTy(); 1794 unsigned IntPtrBits = PTy.getSizeInBits(); 1795 1796 Case& FrontCase = *CR.Range.first; 1797 Case& BackCase = *(CR.Range.second-1); 1798 1799 // Get the MachineFunction which holds the current MBB. This is used when 1800 // inserting any additional MBBs necessary to represent the switch. 1801 MachineFunction *CurMF = FuncInfo.MF; 1802 1803 // If target does not have legal shift left, do not emit bit tests at all. 1804 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 1805 return false; 1806 1807 size_t numCmps = 0; 1808 for (CaseItr I = CR.Range.first, E = CR.Range.second; 1809 I!=E; ++I) { 1810 // Single case counts one, case range - two. 1811 numCmps += (I->Low == I->High ? 1 : 2); 1812 } 1813 1814 // Count unique destinations 1815 SmallSet<MachineBasicBlock*, 4> Dests; 1816 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1817 Dests.insert(I->BB); 1818 if (Dests.size() > 3) 1819 // Don't bother the code below, if there are too much unique destinations 1820 return false; 1821 } 1822 DEBUG(dbgs() << "Total number of unique destinations: " 1823 << Dests.size() << '\n' 1824 << "Total number of comparisons: " << numCmps << '\n'); 1825 1826 // Compute span of values. 1827 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 1828 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 1829 APInt cmpRange = maxValue - minValue; 1830 1831 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 1832 << "Low bound: " << minValue << '\n' 1833 << "High bound: " << maxValue << '\n'); 1834 1835 if (cmpRange.uge(IntPtrBits) || 1836 (!(Dests.size() == 1 && numCmps >= 3) && 1837 !(Dests.size() == 2 && numCmps >= 5) && 1838 !(Dests.size() >= 3 && numCmps >= 6))) 1839 return false; 1840 1841 DEBUG(dbgs() << "Emitting bit tests\n"); 1842 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 1843 1844 // Optimize the case where all the case values fit in a 1845 // word without having to subtract minValue. In this case, 1846 // we can optimize away the subtraction. 1847 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 1848 cmpRange = maxValue; 1849 } else { 1850 lowBound = minValue; 1851 } 1852 1853 CaseBitsVector CasesBits; 1854 unsigned i, count = 0; 1855 1856 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 1857 MachineBasicBlock* Dest = I->BB; 1858 for (i = 0; i < count; ++i) 1859 if (Dest == CasesBits[i].BB) 1860 break; 1861 1862 if (i == count) { 1863 assert((count < 3) && "Too much destinations to test!"); 1864 CasesBits.push_back(CaseBits(0, Dest, 0)); 1865 count++; 1866 } 1867 1868 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 1869 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 1870 1871 uint64_t lo = (lowValue - lowBound).getZExtValue(); 1872 uint64_t hi = (highValue - lowBound).getZExtValue(); 1873 1874 for (uint64_t j = lo; j <= hi; j++) { 1875 CasesBits[i].Mask |= 1ULL << j; 1876 CasesBits[i].Bits++; 1877 } 1878 1879 } 1880 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 1881 1882 BitTestInfo BTC; 1883 1884 // Figure out which block is immediately after the current one. 1885 MachineFunction::iterator BBI = CR.CaseBB; 1886 ++BBI; 1887 1888 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 1889 1890 DEBUG(dbgs() << "Cases:\n"); 1891 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 1892 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 1893 << ", Bits: " << CasesBits[i].Bits 1894 << ", BB: " << CasesBits[i].BB << '\n'); 1895 1896 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 1897 CurMF->insert(BBI, CaseBB); 1898 BTC.push_back(BitTestCase(CasesBits[i].Mask, 1899 CaseBB, 1900 CasesBits[i].BB)); 1901 1902 // Put SV in a virtual register to make it available from the new blocks. 1903 ExportFromCurrentBlock(SV); 1904 } 1905 1906 BitTestBlock BTB(lowBound, cmpRange, SV, 1907 -1U, (CR.CaseBB == SwitchBB), 1908 CR.CaseBB, Default, BTC); 1909 1910 if (CR.CaseBB == SwitchBB) 1911 visitBitTestHeader(BTB, SwitchBB); 1912 1913 BitTestCases.push_back(BTB); 1914 1915 return true; 1916 } 1917 1918 /// Clusterify - Transform simple list of Cases into list of CaseRange's 1919 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 1920 const SwitchInst& SI) { 1921 size_t numCmps = 0; 1922 1923 // Start with "simple" cases 1924 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 1925 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)]; 1926 Cases.push_back(Case(SI.getSuccessorValue(i), 1927 SI.getSuccessorValue(i), 1928 SMBB)); 1929 } 1930 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 1931 1932 // Merge case into clusters 1933 if (Cases.size() >= 2) 1934 // Must recompute end() each iteration because it may be 1935 // invalidated by erase if we hold on to it 1936 for (CaseItr I = Cases.begin(), J = ++(Cases.begin()); J != Cases.end(); ) { 1937 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 1938 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 1939 MachineBasicBlock* nextBB = J->BB; 1940 MachineBasicBlock* currentBB = I->BB; 1941 1942 // If the two neighboring cases go to the same destination, merge them 1943 // into a single case. 1944 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 1945 I->High = J->High; 1946 J = Cases.erase(J); 1947 } else { 1948 I = J++; 1949 } 1950 } 1951 1952 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 1953 if (I->Low != I->High) 1954 // A range counts double, since it requires two compares. 1955 ++numCmps; 1956 } 1957 1958 return numCmps; 1959 } 1960 1961 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 1962 MachineBasicBlock *SwitchMBB = FuncInfo.MBBMap[SI.getParent()]; 1963 1964 // Figure out which block is immediately after the current one. 1965 MachineBasicBlock *NextBlock = 0; 1966 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 1967 1968 // If there is only the default destination, branch to it if it is not the 1969 // next basic block. Otherwise, just fall through. 1970 if (SI.getNumOperands() == 2) { 1971 // Update machine-CFG edges. 1972 1973 // If this is not a fall-through branch, emit the branch. 1974 SwitchMBB->addSuccessor(Default); 1975 if (Default != NextBlock) 1976 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1977 MVT::Other, getControlRoot(), 1978 DAG.getBasicBlock(Default))); 1979 1980 return; 1981 } 1982 1983 // If there are any non-default case statements, create a vector of Cases 1984 // representing each one, and sort the vector so that we can efficiently 1985 // create a binary search tree from them. 1986 CaseVector Cases; 1987 size_t numCmps = Clusterify(Cases, SI); 1988 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 1989 << ". Total compares: " << numCmps << '\n'); 1990 numCmps = 0; 1991 1992 // Get the Value to be switched on and default basic blocks, which will be 1993 // inserted into CaseBlock records, representing basic blocks in the binary 1994 // search tree. 1995 const Value *SV = SI.getOperand(0); 1996 1997 // Push the initial CaseRec onto the worklist 1998 CaseRecVector WorkList; 1999 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2000 CaseRange(Cases.begin(),Cases.end()))); 2001 2002 while (!WorkList.empty()) { 2003 // Grab a record representing a case range to process off the worklist 2004 CaseRec CR = WorkList.back(); 2005 WorkList.pop_back(); 2006 2007 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2008 continue; 2009 2010 // If the range has few cases (two or less) emit a series of specific 2011 // tests. 2012 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2013 continue; 2014 2015 // If the switch has more than 5 blocks, and at least 40% dense, and the 2016 // target supports indirect branches, then emit a jump table rather than 2017 // lowering the switch to a binary tree of conditional branches. 2018 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2019 continue; 2020 2021 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2022 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2023 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2024 } 2025 } 2026 2027 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2028 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBBMap[I.getParent()]; 2029 2030 // Update machine-CFG edges with unique successors. 2031 SmallVector<BasicBlock*, 32> succs; 2032 succs.reserve(I.getNumSuccessors()); 2033 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2034 succs.push_back(I.getSuccessor(i)); 2035 array_pod_sort(succs.begin(), succs.end()); 2036 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2037 for (unsigned i = 0, e = succs.size(); i != e; ++i) 2038 IndirectBrMBB->addSuccessor(FuncInfo.MBBMap[succs[i]]); 2039 2040 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2041 MVT::Other, getControlRoot(), 2042 getValue(I.getAddress()))); 2043 } 2044 2045 void SelectionDAGBuilder::visitFSub(const User &I) { 2046 // -0.0 - X --> fneg 2047 const Type *Ty = I.getType(); 2048 if (Ty->isVectorTy()) { 2049 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) { 2050 const VectorType *DestTy = cast<VectorType>(I.getType()); 2051 const Type *ElTy = DestTy->getElementType(); 2052 unsigned VL = DestTy->getNumElements(); 2053 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy)); 2054 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size()); 2055 if (CV == CNZ) { 2056 SDValue Op2 = getValue(I.getOperand(1)); 2057 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2058 Op2.getValueType(), Op2)); 2059 return; 2060 } 2061 } 2062 } 2063 2064 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) 2065 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) { 2066 SDValue Op2 = getValue(I.getOperand(1)); 2067 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2068 Op2.getValueType(), Op2)); 2069 return; 2070 } 2071 2072 visitBinary(I, ISD::FSUB); 2073 } 2074 2075 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2076 SDValue Op1 = getValue(I.getOperand(0)); 2077 SDValue Op2 = getValue(I.getOperand(1)); 2078 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2079 Op1.getValueType(), Op1, Op2)); 2080 } 2081 2082 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2083 SDValue Op1 = getValue(I.getOperand(0)); 2084 SDValue Op2 = getValue(I.getOperand(1)); 2085 if (!I.getType()->isVectorTy() && 2086 Op2.getValueType() != TLI.getShiftAmountTy()) { 2087 // If the operand is smaller than the shift count type, promote it. 2088 EVT PTy = TLI.getPointerTy(); 2089 EVT STy = TLI.getShiftAmountTy(); 2090 if (STy.bitsGT(Op2.getValueType())) 2091 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2092 TLI.getShiftAmountTy(), Op2); 2093 // If the operand is larger than the shift count type but the shift 2094 // count type has enough bits to represent any shift value, truncate 2095 // it now. This is a common case and it exposes the truncate to 2096 // optimization early. 2097 else if (STy.getSizeInBits() >= 2098 Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2099 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2100 TLI.getShiftAmountTy(), Op2); 2101 // Otherwise we'll need to temporarily settle for some other 2102 // convenient type; type legalization will make adjustments as 2103 // needed. 2104 else if (PTy.bitsLT(Op2.getValueType())) 2105 Op2 = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2106 TLI.getPointerTy(), Op2); 2107 else if (PTy.bitsGT(Op2.getValueType())) 2108 Op2 = DAG.getNode(ISD::ANY_EXTEND, getCurDebugLoc(), 2109 TLI.getPointerTy(), Op2); 2110 } 2111 2112 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2113 Op1.getValueType(), Op1, Op2)); 2114 } 2115 2116 void SelectionDAGBuilder::visitICmp(const User &I) { 2117 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2118 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2119 predicate = IC->getPredicate(); 2120 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2121 predicate = ICmpInst::Predicate(IC->getPredicate()); 2122 SDValue Op1 = getValue(I.getOperand(0)); 2123 SDValue Op2 = getValue(I.getOperand(1)); 2124 ISD::CondCode Opcode = getICmpCondCode(predicate); 2125 2126 EVT DestVT = TLI.getValueType(I.getType()); 2127 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2128 } 2129 2130 void SelectionDAGBuilder::visitFCmp(const User &I) { 2131 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2132 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2133 predicate = FC->getPredicate(); 2134 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2135 predicate = FCmpInst::Predicate(FC->getPredicate()); 2136 SDValue Op1 = getValue(I.getOperand(0)); 2137 SDValue Op2 = getValue(I.getOperand(1)); 2138 ISD::CondCode Condition = getFCmpCondCode(predicate); 2139 EVT DestVT = TLI.getValueType(I.getType()); 2140 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2141 } 2142 2143 void SelectionDAGBuilder::visitSelect(const User &I) { 2144 SmallVector<EVT, 4> ValueVTs; 2145 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2146 unsigned NumValues = ValueVTs.size(); 2147 if (NumValues == 0) return; 2148 2149 SmallVector<SDValue, 4> Values(NumValues); 2150 SDValue Cond = getValue(I.getOperand(0)); 2151 SDValue TrueVal = getValue(I.getOperand(1)); 2152 SDValue FalseVal = getValue(I.getOperand(2)); 2153 2154 for (unsigned i = 0; i != NumValues; ++i) 2155 Values[i] = DAG.getNode(ISD::SELECT, getCurDebugLoc(), 2156 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2157 Cond, 2158 SDValue(TrueVal.getNode(), 2159 TrueVal.getResNo() + i), 2160 SDValue(FalseVal.getNode(), 2161 FalseVal.getResNo() + i)); 2162 2163 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2164 DAG.getVTList(&ValueVTs[0], NumValues), 2165 &Values[0], NumValues)); 2166 } 2167 2168 void SelectionDAGBuilder::visitTrunc(const User &I) { 2169 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2170 SDValue N = getValue(I.getOperand(0)); 2171 EVT DestVT = TLI.getValueType(I.getType()); 2172 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2173 } 2174 2175 void SelectionDAGBuilder::visitZExt(const User &I) { 2176 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2177 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2178 SDValue N = getValue(I.getOperand(0)); 2179 EVT DestVT = TLI.getValueType(I.getType()); 2180 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2181 } 2182 2183 void SelectionDAGBuilder::visitSExt(const User &I) { 2184 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2185 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2186 SDValue N = getValue(I.getOperand(0)); 2187 EVT DestVT = TLI.getValueType(I.getType()); 2188 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2189 } 2190 2191 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2192 // FPTrunc is never a no-op cast, no need to check 2193 SDValue N = getValue(I.getOperand(0)); 2194 EVT DestVT = TLI.getValueType(I.getType()); 2195 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2196 DestVT, N, DAG.getIntPtrConstant(0))); 2197 } 2198 2199 void SelectionDAGBuilder::visitFPExt(const User &I){ 2200 // FPTrunc is never a no-op cast, no need to check 2201 SDValue N = getValue(I.getOperand(0)); 2202 EVT DestVT = TLI.getValueType(I.getType()); 2203 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2204 } 2205 2206 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2207 // FPToUI is never a no-op cast, no need to check 2208 SDValue N = getValue(I.getOperand(0)); 2209 EVT DestVT = TLI.getValueType(I.getType()); 2210 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2211 } 2212 2213 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2214 // FPToSI is never a no-op cast, no need to check 2215 SDValue N = getValue(I.getOperand(0)); 2216 EVT DestVT = TLI.getValueType(I.getType()); 2217 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2218 } 2219 2220 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2221 // UIToFP is never a no-op cast, no need to check 2222 SDValue N = getValue(I.getOperand(0)); 2223 EVT DestVT = TLI.getValueType(I.getType()); 2224 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2225 } 2226 2227 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2228 // SIToFP is never a no-op cast, no need to check 2229 SDValue N = getValue(I.getOperand(0)); 2230 EVT DestVT = TLI.getValueType(I.getType()); 2231 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2232 } 2233 2234 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2235 // What to do depends on the size of the integer and the size of the pointer. 2236 // We can either truncate, zero extend, or no-op, accordingly. 2237 SDValue N = getValue(I.getOperand(0)); 2238 EVT SrcVT = N.getValueType(); 2239 EVT DestVT = TLI.getValueType(I.getType()); 2240 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2241 } 2242 2243 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2244 // What to do depends on the size of the integer and the size of the pointer. 2245 // We can either truncate, zero extend, or no-op, accordingly. 2246 SDValue N = getValue(I.getOperand(0)); 2247 EVT SrcVT = N.getValueType(); 2248 EVT DestVT = TLI.getValueType(I.getType()); 2249 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2250 } 2251 2252 void SelectionDAGBuilder::visitBitCast(const User &I) { 2253 SDValue N = getValue(I.getOperand(0)); 2254 EVT DestVT = TLI.getValueType(I.getType()); 2255 2256 // BitCast assures us that source and destination are the same size so this is 2257 // either a BIT_CONVERT or a no-op. 2258 if (DestVT != N.getValueType()) 2259 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 2260 DestVT, N)); // convert types. 2261 else 2262 setValue(&I, N); // noop cast. 2263 } 2264 2265 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2266 SDValue InVec = getValue(I.getOperand(0)); 2267 SDValue InVal = getValue(I.getOperand(1)); 2268 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2269 TLI.getPointerTy(), 2270 getValue(I.getOperand(2))); 2271 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2272 TLI.getValueType(I.getType()), 2273 InVec, InVal, InIdx)); 2274 } 2275 2276 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2277 SDValue InVec = getValue(I.getOperand(0)); 2278 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2279 TLI.getPointerTy(), 2280 getValue(I.getOperand(1))); 2281 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2282 TLI.getValueType(I.getType()), InVec, InIdx)); 2283 } 2284 2285 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2286 // from SIndx and increasing to the element length (undefs are allowed). 2287 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2288 unsigned MaskNumElts = Mask.size(); 2289 for (unsigned i = 0; i != MaskNumElts; ++i) 2290 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2291 return false; 2292 return true; 2293 } 2294 2295 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2296 SmallVector<int, 8> Mask; 2297 SDValue Src1 = getValue(I.getOperand(0)); 2298 SDValue Src2 = getValue(I.getOperand(1)); 2299 2300 // Convert the ConstantVector mask operand into an array of ints, with -1 2301 // representing undef values. 2302 SmallVector<Constant*, 8> MaskElts; 2303 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2304 unsigned MaskNumElts = MaskElts.size(); 2305 for (unsigned i = 0; i != MaskNumElts; ++i) { 2306 if (isa<UndefValue>(MaskElts[i])) 2307 Mask.push_back(-1); 2308 else 2309 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2310 } 2311 2312 EVT VT = TLI.getValueType(I.getType()); 2313 EVT SrcVT = Src1.getValueType(); 2314 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2315 2316 if (SrcNumElts == MaskNumElts) { 2317 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2318 &Mask[0])); 2319 return; 2320 } 2321 2322 // Normalize the shuffle vector since mask and vector length don't match. 2323 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2324 // Mask is longer than the source vectors and is a multiple of the source 2325 // vectors. We can use concatenate vector to make the mask and vectors 2326 // lengths match. 2327 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2328 // The shuffle is concatenating two vectors together. 2329 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2330 VT, Src1, Src2)); 2331 return; 2332 } 2333 2334 // Pad both vectors with undefs to make them the same length as the mask. 2335 unsigned NumConcat = MaskNumElts / SrcNumElts; 2336 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2337 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2338 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2339 2340 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2341 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2342 MOps1[0] = Src1; 2343 MOps2[0] = Src2; 2344 2345 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2346 getCurDebugLoc(), VT, 2347 &MOps1[0], NumConcat); 2348 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2349 getCurDebugLoc(), VT, 2350 &MOps2[0], NumConcat); 2351 2352 // Readjust mask for new input vector length. 2353 SmallVector<int, 8> MappedOps; 2354 for (unsigned i = 0; i != MaskNumElts; ++i) { 2355 int Idx = Mask[i]; 2356 if (Idx < (int)SrcNumElts) 2357 MappedOps.push_back(Idx); 2358 else 2359 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2360 } 2361 2362 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2363 &MappedOps[0])); 2364 return; 2365 } 2366 2367 if (SrcNumElts > MaskNumElts) { 2368 // Analyze the access pattern of the vector to see if we can extract 2369 // two subvectors and do the shuffle. The analysis is done by calculating 2370 // the range of elements the mask access on both vectors. 2371 int MinRange[2] = { SrcNumElts+1, SrcNumElts+1}; 2372 int MaxRange[2] = {-1, -1}; 2373 2374 for (unsigned i = 0; i != MaskNumElts; ++i) { 2375 int Idx = Mask[i]; 2376 int Input = 0; 2377 if (Idx < 0) 2378 continue; 2379 2380 if (Idx >= (int)SrcNumElts) { 2381 Input = 1; 2382 Idx -= SrcNumElts; 2383 } 2384 if (Idx > MaxRange[Input]) 2385 MaxRange[Input] = Idx; 2386 if (Idx < MinRange[Input]) 2387 MinRange[Input] = Idx; 2388 } 2389 2390 // Check if the access is smaller than the vector size and can we find 2391 // a reasonable extract index. 2392 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2393 // Extract. 2394 int StartIdx[2]; // StartIdx to extract from 2395 for (int Input=0; Input < 2; ++Input) { 2396 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2397 RangeUse[Input] = 0; // Unused 2398 StartIdx[Input] = 0; 2399 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2400 // Fits within range but we should see if we can find a good 2401 // start index that is a multiple of the mask length. 2402 if (MaxRange[Input] < (int)MaskNumElts) { 2403 RangeUse[Input] = 1; // Extract from beginning of the vector 2404 StartIdx[Input] = 0; 2405 } else { 2406 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2407 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2408 StartIdx[Input] + MaskNumElts < SrcNumElts) 2409 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2410 } 2411 } 2412 } 2413 2414 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2415 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2416 return; 2417 } 2418 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2419 // Extract appropriate subvector and generate a vector shuffle 2420 for (int Input=0; Input < 2; ++Input) { 2421 SDValue &Src = Input == 0 ? Src1 : Src2; 2422 if (RangeUse[Input] == 0) 2423 Src = DAG.getUNDEF(VT); 2424 else 2425 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2426 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2427 } 2428 2429 // Calculate new mask. 2430 SmallVector<int, 8> MappedOps; 2431 for (unsigned i = 0; i != MaskNumElts; ++i) { 2432 int Idx = Mask[i]; 2433 if (Idx < 0) 2434 MappedOps.push_back(Idx); 2435 else if (Idx < (int)SrcNumElts) 2436 MappedOps.push_back(Idx - StartIdx[0]); 2437 else 2438 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2439 } 2440 2441 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2442 &MappedOps[0])); 2443 return; 2444 } 2445 } 2446 2447 // We can't use either concat vectors or extract subvectors so fall back to 2448 // replacing the shuffle with extract and build vector. 2449 // to insert and build vector. 2450 EVT EltVT = VT.getVectorElementType(); 2451 EVT PtrVT = TLI.getPointerTy(); 2452 SmallVector<SDValue,8> Ops; 2453 for (unsigned i = 0; i != MaskNumElts; ++i) { 2454 if (Mask[i] < 0) { 2455 Ops.push_back(DAG.getUNDEF(EltVT)); 2456 } else { 2457 int Idx = Mask[i]; 2458 SDValue Res; 2459 2460 if (Idx < (int)SrcNumElts) 2461 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2462 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2463 else 2464 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2465 EltVT, Src2, 2466 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2467 2468 Ops.push_back(Res); 2469 } 2470 } 2471 2472 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2473 VT, &Ops[0], Ops.size())); 2474 } 2475 2476 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2477 const Value *Op0 = I.getOperand(0); 2478 const Value *Op1 = I.getOperand(1); 2479 const Type *AggTy = I.getType(); 2480 const Type *ValTy = Op1->getType(); 2481 bool IntoUndef = isa<UndefValue>(Op0); 2482 bool FromUndef = isa<UndefValue>(Op1); 2483 2484 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2485 I.idx_begin(), I.idx_end()); 2486 2487 SmallVector<EVT, 4> AggValueVTs; 2488 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2489 SmallVector<EVT, 4> ValValueVTs; 2490 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2491 2492 unsigned NumAggValues = AggValueVTs.size(); 2493 unsigned NumValValues = ValValueVTs.size(); 2494 SmallVector<SDValue, 4> Values(NumAggValues); 2495 2496 SDValue Agg = getValue(Op0); 2497 SDValue Val = getValue(Op1); 2498 unsigned i = 0; 2499 // Copy the beginning value(s) from the original aggregate. 2500 for (; i != LinearIndex; ++i) 2501 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2502 SDValue(Agg.getNode(), Agg.getResNo() + i); 2503 // Copy values from the inserted value(s). 2504 for (; i != LinearIndex + NumValValues; ++i) 2505 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2506 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2507 // Copy remaining value(s) from the original aggregate. 2508 for (; i != NumAggValues; ++i) 2509 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2510 SDValue(Agg.getNode(), Agg.getResNo() + i); 2511 2512 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2513 DAG.getVTList(&AggValueVTs[0], NumAggValues), 2514 &Values[0], NumAggValues)); 2515 } 2516 2517 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2518 const Value *Op0 = I.getOperand(0); 2519 const Type *AggTy = Op0->getType(); 2520 const Type *ValTy = I.getType(); 2521 bool OutOfUndef = isa<UndefValue>(Op0); 2522 2523 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy, 2524 I.idx_begin(), I.idx_end()); 2525 2526 SmallVector<EVT, 4> ValValueVTs; 2527 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2528 2529 unsigned NumValValues = ValValueVTs.size(); 2530 SmallVector<SDValue, 4> Values(NumValValues); 2531 2532 SDValue Agg = getValue(Op0); 2533 // Copy out the selected value(s). 2534 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2535 Values[i - LinearIndex] = 2536 OutOfUndef ? 2537 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2538 SDValue(Agg.getNode(), Agg.getResNo() + i); 2539 2540 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2541 DAG.getVTList(&ValValueVTs[0], NumValValues), 2542 &Values[0], NumValValues)); 2543 } 2544 2545 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2546 SDValue N = getValue(I.getOperand(0)); 2547 const Type *Ty = I.getOperand(0)->getType(); 2548 2549 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2550 OI != E; ++OI) { 2551 const Value *Idx = *OI; 2552 if (const StructType *StTy = dyn_cast<StructType>(Ty)) { 2553 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2554 if (Field) { 2555 // N = N + Offset 2556 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 2557 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2558 DAG.getIntPtrConstant(Offset)); 2559 } 2560 2561 Ty = StTy->getElementType(Field); 2562 } else if (const UnionType *UnTy = dyn_cast<UnionType>(Ty)) { 2563 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 2564 2565 // Offset canonically 0 for unions, but type changes 2566 Ty = UnTy->getElementType(Field); 2567 } else { 2568 Ty = cast<SequentialType>(Ty)->getElementType(); 2569 2570 // If this is a constant subscript, handle it quickly. 2571 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 2572 if (CI->getZExtValue() == 0) continue; 2573 uint64_t Offs = 2574 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 2575 SDValue OffsVal; 2576 EVT PTy = TLI.getPointerTy(); 2577 unsigned PtrBits = PTy.getSizeInBits(); 2578 if (PtrBits < 64) 2579 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 2580 TLI.getPointerTy(), 2581 DAG.getConstant(Offs, MVT::i64)); 2582 else 2583 OffsVal = DAG.getIntPtrConstant(Offs); 2584 2585 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 2586 OffsVal); 2587 continue; 2588 } 2589 2590 // N = N + Idx * ElementSize; 2591 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 2592 TD->getTypeAllocSize(Ty)); 2593 SDValue IdxN = getValue(Idx); 2594 2595 // If the index is smaller or larger than intptr_t, truncate or extend 2596 // it. 2597 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 2598 2599 // If this is a multiply by a power of two, turn it into a shl 2600 // immediately. This is a very common case. 2601 if (ElementSize != 1) { 2602 if (ElementSize.isPowerOf2()) { 2603 unsigned Amt = ElementSize.logBase2(); 2604 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 2605 N.getValueType(), IdxN, 2606 DAG.getConstant(Amt, TLI.getPointerTy())); 2607 } else { 2608 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 2609 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 2610 N.getValueType(), IdxN, Scale); 2611 } 2612 } 2613 2614 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2615 N.getValueType(), N, IdxN); 2616 } 2617 } 2618 2619 setValue(&I, N); 2620 } 2621 2622 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2623 // If this is a fixed sized alloca in the entry block of the function, 2624 // allocate it statically on the stack. 2625 if (FuncInfo.StaticAllocaMap.count(&I)) 2626 return; // getValue will auto-populate this. 2627 2628 const Type *Ty = I.getAllocatedType(); 2629 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 2630 unsigned Align = 2631 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 2632 I.getAlignment()); 2633 2634 SDValue AllocSize = getValue(I.getArraySize()); 2635 2636 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), AllocSize.getValueType(), 2637 AllocSize, 2638 DAG.getConstant(TySize, AllocSize.getValueType())); 2639 2640 EVT IntPtr = TLI.getPointerTy(); 2641 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 2642 2643 // Handle alignment. If the requested alignment is less than or equal to 2644 // the stack alignment, ignore it. If the size is greater than or equal to 2645 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2646 unsigned StackAlign = TM.getFrameInfo()->getStackAlignment(); 2647 if (Align <= StackAlign) 2648 Align = 0; 2649 2650 // Round the size of the allocation up to the stack alignment size 2651 // by add SA-1 to the size. 2652 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2653 AllocSize.getValueType(), AllocSize, 2654 DAG.getIntPtrConstant(StackAlign-1)); 2655 2656 // Mask out the low bits for alignment purposes. 2657 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 2658 AllocSize.getValueType(), AllocSize, 2659 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 2660 2661 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 2662 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2663 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 2664 VTs, Ops, 3); 2665 setValue(&I, DSA); 2666 DAG.setRoot(DSA.getValue(1)); 2667 2668 // Inform the Frame Information that we have just allocated a variable-sized 2669 // object. 2670 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(); 2671 } 2672 2673 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2674 const Value *SV = I.getOperand(0); 2675 SDValue Ptr = getValue(SV); 2676 2677 const Type *Ty = I.getType(); 2678 2679 bool isVolatile = I.isVolatile(); 2680 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2681 unsigned Alignment = I.getAlignment(); 2682 2683 SmallVector<EVT, 4> ValueVTs; 2684 SmallVector<uint64_t, 4> Offsets; 2685 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2686 unsigned NumValues = ValueVTs.size(); 2687 if (NumValues == 0) 2688 return; 2689 2690 SDValue Root; 2691 bool ConstantMemory = false; 2692 if (I.isVolatile()) 2693 // Serialize volatile loads with other side effects. 2694 Root = getRoot(); 2695 else if (AA->pointsToConstantMemory(SV)) { 2696 // Do not serialize (non-volatile) loads of constant memory with anything. 2697 Root = DAG.getEntryNode(); 2698 ConstantMemory = true; 2699 } else { 2700 // Do not serialize non-volatile loads against each other. 2701 Root = DAG.getRoot(); 2702 } 2703 2704 SmallVector<SDValue, 4> Values(NumValues); 2705 SmallVector<SDValue, 4> Chains(NumValues); 2706 EVT PtrVT = Ptr.getValueType(); 2707 for (unsigned i = 0; i != NumValues; ++i) { 2708 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 2709 PtrVT, Ptr, 2710 DAG.getConstant(Offsets[i], PtrVT)); 2711 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 2712 A, SV, Offsets[i], isVolatile, 2713 isNonTemporal, Alignment); 2714 2715 Values[i] = L; 2716 Chains[i] = L.getValue(1); 2717 } 2718 2719 if (!ConstantMemory) { 2720 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2721 MVT::Other, &Chains[0], NumValues); 2722 if (isVolatile) 2723 DAG.setRoot(Chain); 2724 else 2725 PendingLoads.push_back(Chain); 2726 } 2727 2728 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2729 DAG.getVTList(&ValueVTs[0], NumValues), 2730 &Values[0], NumValues)); 2731 } 2732 2733 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2734 const Value *SrcV = I.getOperand(0); 2735 const Value *PtrV = I.getOperand(1); 2736 2737 SmallVector<EVT, 4> ValueVTs; 2738 SmallVector<uint64_t, 4> Offsets; 2739 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 2740 unsigned NumValues = ValueVTs.size(); 2741 if (NumValues == 0) 2742 return; 2743 2744 // Get the lowered operands. Note that we do this after 2745 // checking if NumResults is zero, because with zero results 2746 // the operands won't have values in the map. 2747 SDValue Src = getValue(SrcV); 2748 SDValue Ptr = getValue(PtrV); 2749 2750 SDValue Root = getRoot(); 2751 SmallVector<SDValue, 4> Chains(NumValues); 2752 EVT PtrVT = Ptr.getValueType(); 2753 bool isVolatile = I.isVolatile(); 2754 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 2755 unsigned Alignment = I.getAlignment(); 2756 2757 for (unsigned i = 0; i != NumValues; ++i) { 2758 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 2759 DAG.getConstant(Offsets[i], PtrVT)); 2760 Chains[i] = DAG.getStore(Root, getCurDebugLoc(), 2761 SDValue(Src.getNode(), Src.getResNo() + i), 2762 Add, PtrV, Offsets[i], isVolatile, 2763 isNonTemporal, Alignment); 2764 } 2765 2766 DAG.setRoot(DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 2767 MVT::Other, &Chains[0], NumValues)); 2768 } 2769 2770 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 2771 /// node. 2772 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 2773 unsigned Intrinsic) { 2774 bool HasChain = !I.doesNotAccessMemory(); 2775 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 2776 2777 // Build the operand list. 2778 SmallVector<SDValue, 8> Ops; 2779 if (HasChain) { // If this intrinsic has side-effects, chainify it. 2780 if (OnlyLoad) { 2781 // We don't need to serialize loads against other loads. 2782 Ops.push_back(DAG.getRoot()); 2783 } else { 2784 Ops.push_back(getRoot()); 2785 } 2786 } 2787 2788 // Info is set by getTgtMemInstrinsic 2789 TargetLowering::IntrinsicInfo Info; 2790 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 2791 2792 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 2793 if (!IsTgtIntrinsic) 2794 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 2795 2796 // Add all operands of the call to the operand list. 2797 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) { 2798 SDValue Op = getValue(I.getOperand(i)); 2799 assert(TLI.isTypeLegal(Op.getValueType()) && 2800 "Intrinsic uses a non-legal type?"); 2801 Ops.push_back(Op); 2802 } 2803 2804 SmallVector<EVT, 4> ValueVTs; 2805 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2806 #ifndef NDEBUG 2807 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 2808 assert(TLI.isTypeLegal(ValueVTs[Val]) && 2809 "Intrinsic uses a non-legal type?"); 2810 } 2811 #endif // NDEBUG 2812 2813 if (HasChain) 2814 ValueVTs.push_back(MVT::Other); 2815 2816 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 2817 2818 // Create the node. 2819 SDValue Result; 2820 if (IsTgtIntrinsic) { 2821 // This is target intrinsic that touches memory 2822 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 2823 VTs, &Ops[0], Ops.size(), 2824 Info.memVT, Info.ptrVal, Info.offset, 2825 Info.align, Info.vol, 2826 Info.readMem, Info.writeMem); 2827 } else if (!HasChain) { 2828 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 2829 VTs, &Ops[0], Ops.size()); 2830 } else if (!I.getType()->isVoidTy()) { 2831 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 2832 VTs, &Ops[0], Ops.size()); 2833 } else { 2834 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 2835 VTs, &Ops[0], Ops.size()); 2836 } 2837 2838 if (HasChain) { 2839 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 2840 if (OnlyLoad) 2841 PendingLoads.push_back(Chain); 2842 else 2843 DAG.setRoot(Chain); 2844 } 2845 2846 if (!I.getType()->isVoidTy()) { 2847 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 2848 EVT VT = TLI.getValueType(PTy); 2849 Result = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), VT, Result); 2850 } 2851 2852 setValue(&I, Result); 2853 } 2854 } 2855 2856 /// GetSignificand - Get the significand and build it into a floating-point 2857 /// number with exponent of 1: 2858 /// 2859 /// Op = (Op & 0x007fffff) | 0x3f800000; 2860 /// 2861 /// where Op is the hexidecimal representation of floating point value. 2862 static SDValue 2863 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 2864 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2865 DAG.getConstant(0x007fffff, MVT::i32)); 2866 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 2867 DAG.getConstant(0x3f800000, MVT::i32)); 2868 return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t2); 2869 } 2870 2871 /// GetExponent - Get the exponent: 2872 /// 2873 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 2874 /// 2875 /// where Op is the hexidecimal representation of floating point value. 2876 static SDValue 2877 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 2878 DebugLoc dl) { 2879 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 2880 DAG.getConstant(0x7f800000, MVT::i32)); 2881 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 2882 DAG.getConstant(23, TLI.getPointerTy())); 2883 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 2884 DAG.getConstant(127, MVT::i32)); 2885 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 2886 } 2887 2888 /// getF32Constant - Get 32-bit floating point constant. 2889 static SDValue 2890 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 2891 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 2892 } 2893 2894 /// Inlined utility function to implement binary input atomic intrinsics for 2895 /// visitIntrinsicCall: I is a call instruction 2896 /// Op is the associated NodeType for I 2897 const char * 2898 SelectionDAGBuilder::implVisitBinaryAtomic(const CallInst& I, 2899 ISD::NodeType Op) { 2900 SDValue Root = getRoot(); 2901 SDValue L = 2902 DAG.getAtomic(Op, getCurDebugLoc(), 2903 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 2904 Root, 2905 getValue(I.getOperand(1)), 2906 getValue(I.getOperand(2)), 2907 I.getOperand(1)); 2908 setValue(&I, L); 2909 DAG.setRoot(L.getValue(1)); 2910 return 0; 2911 } 2912 2913 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 2914 const char * 2915 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 2916 SDValue Op1 = getValue(I.getOperand(1)); 2917 SDValue Op2 = getValue(I.getOperand(2)); 2918 2919 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 2920 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 2921 return 0; 2922 } 2923 2924 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 2925 /// limited-precision mode. 2926 void 2927 SelectionDAGBuilder::visitExp(const CallInst &I) { 2928 SDValue result; 2929 DebugLoc dl = getCurDebugLoc(); 2930 2931 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 2932 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 2933 SDValue Op = getValue(I.getOperand(1)); 2934 2935 // Put the exponent in the right bit position for later addition to the 2936 // final result: 2937 // 2938 // #define LOG2OFe 1.4426950f 2939 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 2940 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 2941 getF32Constant(DAG, 0x3fb8aa3b)); 2942 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 2943 2944 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 2945 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 2946 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 2947 2948 // IntegerPartOfX <<= 23; 2949 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 2950 DAG.getConstant(23, TLI.getPointerTy())); 2951 2952 if (LimitFloatPrecision <= 6) { 2953 // For floating-point precision of 6: 2954 // 2955 // TwoToFractionalPartOfX = 2956 // 0.997535578f + 2957 // (0.735607626f + 0.252464424f * x) * x; 2958 // 2959 // error 0.0144103317, which is 6 bits 2960 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2961 getF32Constant(DAG, 0x3e814304)); 2962 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2963 getF32Constant(DAG, 0x3f3c50c8)); 2964 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2965 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2966 getF32Constant(DAG, 0x3f7f5e7e)); 2967 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t5); 2968 2969 // Add the exponent into the result in integer domain. 2970 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2971 TwoToFracPartOfX, IntegerPartOfX); 2972 2973 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t6); 2974 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 2975 // For floating-point precision of 12: 2976 // 2977 // TwoToFractionalPartOfX = 2978 // 0.999892986f + 2979 // (0.696457318f + 2980 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 2981 // 2982 // 0.000107046256 error, which is 13 to 14 bits 2983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 2984 getF32Constant(DAG, 0x3da235e3)); 2985 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 2986 getF32Constant(DAG, 0x3e65b8f3)); 2987 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 2988 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 2989 getF32Constant(DAG, 0x3f324b07)); 2990 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 2991 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 2992 getF32Constant(DAG, 0x3f7ff8fd)); 2993 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl,MVT::i32, t7); 2994 2995 // Add the exponent into the result in integer domain. 2996 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 2997 TwoToFracPartOfX, IntegerPartOfX); 2998 2999 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t8); 3000 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3001 // For floating-point precision of 18: 3002 // 3003 // TwoToFractionalPartOfX = 3004 // 0.999999982f + 3005 // (0.693148872f + 3006 // (0.240227044f + 3007 // (0.554906021e-1f + 3008 // (0.961591928e-2f + 3009 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3010 // 3011 // error 2.47208000*10^(-7), which is better than 18 bits 3012 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3013 getF32Constant(DAG, 0x3924b03e)); 3014 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3015 getF32Constant(DAG, 0x3ab24b87)); 3016 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3017 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3018 getF32Constant(DAG, 0x3c1d8c17)); 3019 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3020 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3021 getF32Constant(DAG, 0x3d634a1d)); 3022 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3023 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3024 getF32Constant(DAG, 0x3e75fe14)); 3025 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3026 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3027 getF32Constant(DAG, 0x3f317234)); 3028 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3029 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3030 getF32Constant(DAG, 0x3f800000)); 3031 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, dl, 3032 MVT::i32, t13); 3033 3034 // Add the exponent into the result in integer domain. 3035 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3036 TwoToFracPartOfX, IntegerPartOfX); 3037 3038 result = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, t14); 3039 } 3040 } else { 3041 // No special expansion. 3042 result = DAG.getNode(ISD::FEXP, dl, 3043 getValue(I.getOperand(1)).getValueType(), 3044 getValue(I.getOperand(1))); 3045 } 3046 3047 setValue(&I, result); 3048 } 3049 3050 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3051 /// limited-precision mode. 3052 void 3053 SelectionDAGBuilder::visitLog(const CallInst &I) { 3054 SDValue result; 3055 DebugLoc dl = getCurDebugLoc(); 3056 3057 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3058 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3059 SDValue Op = getValue(I.getOperand(1)); 3060 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3061 3062 // Scale the exponent by log(2) [0.69314718f]. 3063 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3064 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3065 getF32Constant(DAG, 0x3f317218)); 3066 3067 // Get the significand and build it into a floating-point number with 3068 // exponent of 1. 3069 SDValue X = GetSignificand(DAG, Op1, dl); 3070 3071 if (LimitFloatPrecision <= 6) { 3072 // For floating-point precision of 6: 3073 // 3074 // LogofMantissa = 3075 // -1.1609546f + 3076 // (1.4034025f - 0.23903021f * x) * x; 3077 // 3078 // error 0.0034276066, which is better than 8 bits 3079 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3080 getF32Constant(DAG, 0xbe74c456)); 3081 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3082 getF32Constant(DAG, 0x3fb3a2b1)); 3083 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3084 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3085 getF32Constant(DAG, 0x3f949a29)); 3086 3087 result = DAG.getNode(ISD::FADD, dl, 3088 MVT::f32, LogOfExponent, LogOfMantissa); 3089 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3090 // For floating-point precision of 12: 3091 // 3092 // LogOfMantissa = 3093 // -1.7417939f + 3094 // (2.8212026f + 3095 // (-1.4699568f + 3096 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3097 // 3098 // error 0.000061011436, which is 14 bits 3099 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3100 getF32Constant(DAG, 0xbd67b6d6)); 3101 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3102 getF32Constant(DAG, 0x3ee4f4b8)); 3103 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3104 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3105 getF32Constant(DAG, 0x3fbc278b)); 3106 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3107 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3108 getF32Constant(DAG, 0x40348e95)); 3109 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3110 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3111 getF32Constant(DAG, 0x3fdef31a)); 3112 3113 result = DAG.getNode(ISD::FADD, dl, 3114 MVT::f32, LogOfExponent, LogOfMantissa); 3115 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3116 // For floating-point precision of 18: 3117 // 3118 // LogOfMantissa = 3119 // -2.1072184f + 3120 // (4.2372794f + 3121 // (-3.7029485f + 3122 // (2.2781945f + 3123 // (-0.87823314f + 3124 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3125 // 3126 // error 0.0000023660568, which is better than 18 bits 3127 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3128 getF32Constant(DAG, 0xbc91e5ac)); 3129 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3130 getF32Constant(DAG, 0x3e4350aa)); 3131 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3132 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3133 getF32Constant(DAG, 0x3f60d3e3)); 3134 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3135 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3136 getF32Constant(DAG, 0x4011cdf0)); 3137 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3138 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3139 getF32Constant(DAG, 0x406cfd1c)); 3140 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3141 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3142 getF32Constant(DAG, 0x408797cb)); 3143 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3144 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3145 getF32Constant(DAG, 0x4006dcab)); 3146 3147 result = DAG.getNode(ISD::FADD, dl, 3148 MVT::f32, LogOfExponent, LogOfMantissa); 3149 } 3150 } else { 3151 // No special expansion. 3152 result = DAG.getNode(ISD::FLOG, dl, 3153 getValue(I.getOperand(1)).getValueType(), 3154 getValue(I.getOperand(1))); 3155 } 3156 3157 setValue(&I, result); 3158 } 3159 3160 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3161 /// limited-precision mode. 3162 void 3163 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3164 SDValue result; 3165 DebugLoc dl = getCurDebugLoc(); 3166 3167 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3169 SDValue Op = getValue(I.getOperand(1)); 3170 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3171 3172 // Get the exponent. 3173 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3174 3175 // Get the significand and build it into a floating-point number with 3176 // exponent of 1. 3177 SDValue X = GetSignificand(DAG, Op1, dl); 3178 3179 // Different possible minimax approximations of significand in 3180 // floating-point for various degrees of accuracy over [1,2]. 3181 if (LimitFloatPrecision <= 6) { 3182 // For floating-point precision of 6: 3183 // 3184 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3185 // 3186 // error 0.0049451742, which is more than 7 bits 3187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3188 getF32Constant(DAG, 0xbeb08fe0)); 3189 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3190 getF32Constant(DAG, 0x40019463)); 3191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3192 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3193 getF32Constant(DAG, 0x3fd6633d)); 3194 3195 result = DAG.getNode(ISD::FADD, dl, 3196 MVT::f32, LogOfExponent, Log2ofMantissa); 3197 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3198 // For floating-point precision of 12: 3199 // 3200 // Log2ofMantissa = 3201 // -2.51285454f + 3202 // (4.07009056f + 3203 // (-2.12067489f + 3204 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3205 // 3206 // error 0.0000876136000, which is better than 13 bits 3207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3208 getF32Constant(DAG, 0xbda7262e)); 3209 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3210 getF32Constant(DAG, 0x3f25280b)); 3211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3212 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3213 getF32Constant(DAG, 0x4007b923)); 3214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3215 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3216 getF32Constant(DAG, 0x40823e2f)); 3217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3218 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3219 getF32Constant(DAG, 0x4020d29c)); 3220 3221 result = DAG.getNode(ISD::FADD, dl, 3222 MVT::f32, LogOfExponent, Log2ofMantissa); 3223 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3224 // For floating-point precision of 18: 3225 // 3226 // Log2ofMantissa = 3227 // -3.0400495f + 3228 // (6.1129976f + 3229 // (-5.3420409f + 3230 // (3.2865683f + 3231 // (-1.2669343f + 3232 // (0.27515199f - 3233 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3234 // 3235 // error 0.0000018516, which is better than 18 bits 3236 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3237 getF32Constant(DAG, 0xbcd2769e)); 3238 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3239 getF32Constant(DAG, 0x3e8ce0b9)); 3240 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3241 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3242 getF32Constant(DAG, 0x3fa22ae7)); 3243 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3244 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3245 getF32Constant(DAG, 0x40525723)); 3246 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3247 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3248 getF32Constant(DAG, 0x40aaf200)); 3249 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3250 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3251 getF32Constant(DAG, 0x40c39dad)); 3252 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3253 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3254 getF32Constant(DAG, 0x4042902c)); 3255 3256 result = DAG.getNode(ISD::FADD, dl, 3257 MVT::f32, LogOfExponent, Log2ofMantissa); 3258 } 3259 } else { 3260 // No special expansion. 3261 result = DAG.getNode(ISD::FLOG2, dl, 3262 getValue(I.getOperand(1)).getValueType(), 3263 getValue(I.getOperand(1))); 3264 } 3265 3266 setValue(&I, result); 3267 } 3268 3269 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3270 /// limited-precision mode. 3271 void 3272 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3273 SDValue result; 3274 DebugLoc dl = getCurDebugLoc(); 3275 3276 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3277 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3278 SDValue Op = getValue(I.getOperand(1)); 3279 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); 3280 3281 // Scale the exponent by log10(2) [0.30102999f]. 3282 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3283 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3284 getF32Constant(DAG, 0x3e9a209a)); 3285 3286 // Get the significand and build it into a floating-point number with 3287 // exponent of 1. 3288 SDValue X = GetSignificand(DAG, Op1, dl); 3289 3290 if (LimitFloatPrecision <= 6) { 3291 // For floating-point precision of 6: 3292 // 3293 // Log10ofMantissa = 3294 // -0.50419619f + 3295 // (0.60948995f - 0.10380950f * x) * x; 3296 // 3297 // error 0.0014886165, which is 6 bits 3298 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3299 getF32Constant(DAG, 0xbdd49a13)); 3300 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3301 getF32Constant(DAG, 0x3f1c0789)); 3302 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3303 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3304 getF32Constant(DAG, 0x3f011300)); 3305 3306 result = DAG.getNode(ISD::FADD, dl, 3307 MVT::f32, LogOfExponent, Log10ofMantissa); 3308 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3309 // For floating-point precision of 12: 3310 // 3311 // Log10ofMantissa = 3312 // -0.64831180f + 3313 // (0.91751397f + 3314 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3315 // 3316 // error 0.00019228036, which is better than 12 bits 3317 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3318 getF32Constant(DAG, 0x3d431f31)); 3319 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3320 getF32Constant(DAG, 0x3ea21fb2)); 3321 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3322 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3323 getF32Constant(DAG, 0x3f6ae232)); 3324 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3325 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3326 getF32Constant(DAG, 0x3f25f7c3)); 3327 3328 result = DAG.getNode(ISD::FADD, dl, 3329 MVT::f32, LogOfExponent, Log10ofMantissa); 3330 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3331 // For floating-point precision of 18: 3332 // 3333 // Log10ofMantissa = 3334 // -0.84299375f + 3335 // (1.5327582f + 3336 // (-1.0688956f + 3337 // (0.49102474f + 3338 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3339 // 3340 // error 0.0000037995730, which is better than 18 bits 3341 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3342 getF32Constant(DAG, 0x3c5d51ce)); 3343 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3344 getF32Constant(DAG, 0x3e00685a)); 3345 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3346 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3347 getF32Constant(DAG, 0x3efb6798)); 3348 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3349 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3350 getF32Constant(DAG, 0x3f88d192)); 3351 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3352 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3353 getF32Constant(DAG, 0x3fc4316c)); 3354 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3355 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3356 getF32Constant(DAG, 0x3f57ce70)); 3357 3358 result = DAG.getNode(ISD::FADD, dl, 3359 MVT::f32, LogOfExponent, Log10ofMantissa); 3360 } 3361 } else { 3362 // No special expansion. 3363 result = DAG.getNode(ISD::FLOG10, dl, 3364 getValue(I.getOperand(1)).getValueType(), 3365 getValue(I.getOperand(1))); 3366 } 3367 3368 setValue(&I, result); 3369 } 3370 3371 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3372 /// limited-precision mode. 3373 void 3374 SelectionDAGBuilder::visitExp2(const CallInst &I) { 3375 SDValue result; 3376 DebugLoc dl = getCurDebugLoc(); 3377 3378 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 && 3379 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3380 SDValue Op = getValue(I.getOperand(1)); 3381 3382 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 3383 3384 // FractionalPartOfX = x - (float)IntegerPartOfX; 3385 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3386 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 3387 3388 // IntegerPartOfX <<= 23; 3389 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3390 DAG.getConstant(23, TLI.getPointerTy())); 3391 3392 if (LimitFloatPrecision <= 6) { 3393 // For floating-point precision of 6: 3394 // 3395 // TwoToFractionalPartOfX = 3396 // 0.997535578f + 3397 // (0.735607626f + 0.252464424f * x) * x; 3398 // 3399 // error 0.0144103317, which is 6 bits 3400 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3401 getF32Constant(DAG, 0x3e814304)); 3402 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3403 getF32Constant(DAG, 0x3f3c50c8)); 3404 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3405 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3406 getF32Constant(DAG, 0x3f7f5e7e)); 3407 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3408 SDValue TwoToFractionalPartOfX = 3409 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3410 3411 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3412 MVT::f32, TwoToFractionalPartOfX); 3413 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3414 // For floating-point precision of 12: 3415 // 3416 // TwoToFractionalPartOfX = 3417 // 0.999892986f + 3418 // (0.696457318f + 3419 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3420 // 3421 // error 0.000107046256, which is 13 to 14 bits 3422 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3423 getF32Constant(DAG, 0x3da235e3)); 3424 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3425 getF32Constant(DAG, 0x3e65b8f3)); 3426 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3427 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3428 getF32Constant(DAG, 0x3f324b07)); 3429 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3430 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3431 getF32Constant(DAG, 0x3f7ff8fd)); 3432 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3433 SDValue TwoToFractionalPartOfX = 3434 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3435 3436 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3437 MVT::f32, TwoToFractionalPartOfX); 3438 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3439 // For floating-point precision of 18: 3440 // 3441 // TwoToFractionalPartOfX = 3442 // 0.999999982f + 3443 // (0.693148872f + 3444 // (0.240227044f + 3445 // (0.554906021e-1f + 3446 // (0.961591928e-2f + 3447 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3448 // error 2.47208000*10^(-7), which is better than 18 bits 3449 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3450 getF32Constant(DAG, 0x3924b03e)); 3451 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3452 getF32Constant(DAG, 0x3ab24b87)); 3453 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3454 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3455 getF32Constant(DAG, 0x3c1d8c17)); 3456 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3457 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3458 getF32Constant(DAG, 0x3d634a1d)); 3459 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3460 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3461 getF32Constant(DAG, 0x3e75fe14)); 3462 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3463 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3464 getF32Constant(DAG, 0x3f317234)); 3465 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3466 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3467 getF32Constant(DAG, 0x3f800000)); 3468 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3469 SDValue TwoToFractionalPartOfX = 3470 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3471 3472 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3473 MVT::f32, TwoToFractionalPartOfX); 3474 } 3475 } else { 3476 // No special expansion. 3477 result = DAG.getNode(ISD::FEXP2, dl, 3478 getValue(I.getOperand(1)).getValueType(), 3479 getValue(I.getOperand(1))); 3480 } 3481 3482 setValue(&I, result); 3483 } 3484 3485 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3486 /// limited-precision mode with x == 10.0f. 3487 void 3488 SelectionDAGBuilder::visitPow(const CallInst &I) { 3489 SDValue result; 3490 const Value *Val = I.getOperand(1); 3491 DebugLoc dl = getCurDebugLoc(); 3492 bool IsExp10 = false; 3493 3494 if (getValue(Val).getValueType() == MVT::f32 && 3495 getValue(I.getOperand(2)).getValueType() == MVT::f32 && 3496 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3497 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 3498 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3499 APFloat Ten(10.0f); 3500 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 3501 } 3502 } 3503 } 3504 3505 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3506 SDValue Op = getValue(I.getOperand(2)); 3507 3508 // Put the exponent in the right bit position for later addition to the 3509 // final result: 3510 // 3511 // #define LOG2OF10 3.3219281f 3512 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 3513 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3514 getF32Constant(DAG, 0x40549a78)); 3515 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3516 3517 // FractionalPartOfX = x - (float)IntegerPartOfX; 3518 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3519 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3520 3521 // IntegerPartOfX <<= 23; 3522 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3523 DAG.getConstant(23, TLI.getPointerTy())); 3524 3525 if (LimitFloatPrecision <= 6) { 3526 // For floating-point precision of 6: 3527 // 3528 // twoToFractionalPartOfX = 3529 // 0.997535578f + 3530 // (0.735607626f + 0.252464424f * x) * x; 3531 // 3532 // error 0.0144103317, which is 6 bits 3533 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3534 getF32Constant(DAG, 0x3e814304)); 3535 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3536 getF32Constant(DAG, 0x3f3c50c8)); 3537 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3538 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3539 getF32Constant(DAG, 0x3f7f5e7e)); 3540 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t5); 3541 SDValue TwoToFractionalPartOfX = 3542 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 3543 3544 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3545 MVT::f32, TwoToFractionalPartOfX); 3546 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3547 // For floating-point precision of 12: 3548 // 3549 // TwoToFractionalPartOfX = 3550 // 0.999892986f + 3551 // (0.696457318f + 3552 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3553 // 3554 // error 0.000107046256, which is 13 to 14 bits 3555 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3556 getF32Constant(DAG, 0x3da235e3)); 3557 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3558 getF32Constant(DAG, 0x3e65b8f3)); 3559 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3560 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3561 getF32Constant(DAG, 0x3f324b07)); 3562 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3563 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3564 getF32Constant(DAG, 0x3f7ff8fd)); 3565 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t7); 3566 SDValue TwoToFractionalPartOfX = 3567 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 3568 3569 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3570 MVT::f32, TwoToFractionalPartOfX); 3571 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3572 // For floating-point precision of 18: 3573 // 3574 // TwoToFractionalPartOfX = 3575 // 0.999999982f + 3576 // (0.693148872f + 3577 // (0.240227044f + 3578 // (0.554906021e-1f + 3579 // (0.961591928e-2f + 3580 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3581 // error 2.47208000*10^(-7), which is better than 18 bits 3582 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3583 getF32Constant(DAG, 0x3924b03e)); 3584 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3585 getF32Constant(DAG, 0x3ab24b87)); 3586 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3587 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3588 getF32Constant(DAG, 0x3c1d8c17)); 3589 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3590 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3591 getF32Constant(DAG, 0x3d634a1d)); 3592 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3593 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3594 getF32Constant(DAG, 0x3e75fe14)); 3595 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3596 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3597 getF32Constant(DAG, 0x3f317234)); 3598 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3599 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3600 getF32Constant(DAG, 0x3f800000)); 3601 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, t13); 3602 SDValue TwoToFractionalPartOfX = 3603 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 3604 3605 result = DAG.getNode(ISD::BIT_CONVERT, dl, 3606 MVT::f32, TwoToFractionalPartOfX); 3607 } 3608 } else { 3609 // No special expansion. 3610 result = DAG.getNode(ISD::FPOW, dl, 3611 getValue(I.getOperand(1)).getValueType(), 3612 getValue(I.getOperand(1)), 3613 getValue(I.getOperand(2))); 3614 } 3615 3616 setValue(&I, result); 3617 } 3618 3619 3620 /// ExpandPowI - Expand a llvm.powi intrinsic. 3621 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 3622 SelectionDAG &DAG) { 3623 // If RHS is a constant, we can expand this out to a multiplication tree, 3624 // otherwise we end up lowering to a call to __powidf2 (for example). When 3625 // optimizing for size, we only want to do this if the expansion would produce 3626 // a small number of multiplies, otherwise we do the full expansion. 3627 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3628 // Get the exponent as a positive value. 3629 unsigned Val = RHSC->getSExtValue(); 3630 if ((int)Val < 0) Val = -Val; 3631 3632 // powi(x, 0) -> 1.0 3633 if (Val == 0) 3634 return DAG.getConstantFP(1.0, LHS.getValueType()); 3635 3636 const Function *F = DAG.getMachineFunction().getFunction(); 3637 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 3638 // If optimizing for size, don't insert too many multiplies. This 3639 // inserts up to 5 multiplies. 3640 CountPopulation_32(Val)+Log2_32(Val) < 7) { 3641 // We use the simple binary decomposition method to generate the multiply 3642 // sequence. There are more optimal ways to do this (for example, 3643 // powi(x,15) generates one more multiply than it should), but this has 3644 // the benefit of being both really simple and much better than a libcall. 3645 SDValue Res; // Logically starts equal to 1.0 3646 SDValue CurSquare = LHS; 3647 while (Val) { 3648 if (Val & 1) { 3649 if (Res.getNode()) 3650 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3651 else 3652 Res = CurSquare; // 1.0*CurSquare. 3653 } 3654 3655 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3656 CurSquare, CurSquare); 3657 Val >>= 1; 3658 } 3659 3660 // If the original was negative, invert the result, producing 1/(x*x*x). 3661 if (RHSC->getSExtValue() < 0) 3662 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3663 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 3664 return Res; 3665 } 3666 } 3667 3668 // Otherwise, expand to a libcall. 3669 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3670 } 3671 3672 3673 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 3674 /// we want to emit this as a call to a named external function, return the name 3675 /// otherwise lower it and return null. 3676 const char * 3677 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 3678 DebugLoc dl = getCurDebugLoc(); 3679 SDValue Res; 3680 3681 switch (Intrinsic) { 3682 default: 3683 // By default, turn this into a target intrinsic node. 3684 visitTargetIntrinsic(I, Intrinsic); 3685 return 0; 3686 case Intrinsic::vastart: visitVAStart(I); return 0; 3687 case Intrinsic::vaend: visitVAEnd(I); return 0; 3688 case Intrinsic::vacopy: visitVACopy(I); return 0; 3689 case Intrinsic::returnaddress: 3690 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 3691 getValue(I.getOperand(1)))); 3692 return 0; 3693 case Intrinsic::frameaddress: 3694 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 3695 getValue(I.getOperand(1)))); 3696 return 0; 3697 case Intrinsic::setjmp: 3698 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 3699 case Intrinsic::longjmp: 3700 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 3701 case Intrinsic::memcpy: { 3702 // Assert for address < 256 since we support only user defined address 3703 // spaces. 3704 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3705 < 256 && 3706 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3707 < 256 && 3708 "Unknown address space"); 3709 SDValue Op1 = getValue(I.getOperand(1)); 3710 SDValue Op2 = getValue(I.getOperand(2)); 3711 SDValue Op3 = getValue(I.getOperand(3)); 3712 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3713 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3714 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 3715 I.getOperand(1), 0, I.getOperand(2), 0)); 3716 return 0; 3717 } 3718 case Intrinsic::memset: { 3719 // Assert for address < 256 since we support only user defined address 3720 // spaces. 3721 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3722 < 256 && 3723 "Unknown address space"); 3724 SDValue Op1 = getValue(I.getOperand(1)); 3725 SDValue Op2 = getValue(I.getOperand(2)); 3726 SDValue Op3 = getValue(I.getOperand(3)); 3727 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3728 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3729 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3730 I.getOperand(1), 0)); 3731 return 0; 3732 } 3733 case Intrinsic::memmove: { 3734 // Assert for address < 256 since we support only user defined address 3735 // spaces. 3736 assert(cast<PointerType>(I.getOperand(1)->getType())->getAddressSpace() 3737 < 256 && 3738 cast<PointerType>(I.getOperand(2)->getType())->getAddressSpace() 3739 < 256 && 3740 "Unknown address space"); 3741 SDValue Op1 = getValue(I.getOperand(1)); 3742 SDValue Op2 = getValue(I.getOperand(2)); 3743 SDValue Op3 = getValue(I.getOperand(3)); 3744 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue(); 3745 bool isVol = cast<ConstantInt>(I.getOperand(5))->getZExtValue(); 3746 3747 // If the source and destination are known to not be aliases, we can 3748 // lower memmove as memcpy. 3749 uint64_t Size = -1ULL; 3750 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3)) 3751 Size = C->getZExtValue(); 3752 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) == 3753 AliasAnalysis::NoAlias) { 3754 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3755 false, I.getOperand(1), 0, I.getOperand(2), 0)); 3756 return 0; 3757 } 3758 3759 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 3760 I.getOperand(1), 0, I.getOperand(2), 0)); 3761 return 0; 3762 } 3763 case Intrinsic::dbg_declare: { 3764 // FIXME: currently, we get here only if OptLevel != CodeGenOpt::None. 3765 // The real handling of this intrinsic is in FastISel. 3766 if (OptLevel != CodeGenOpt::None) 3767 // FIXME: Variable debug info is not supported here. 3768 return 0; 3769 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 3770 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3771 return 0; 3772 3773 MDNode *Variable = DI.getVariable(); 3774 const Value *Address = DI.getAddress(); 3775 if (!Address) 3776 return 0; 3777 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 3778 Address = BCI->getOperand(0); 3779 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 3780 // Don't handle byval struct arguments or VLAs, for example. 3781 if (!AI) 3782 return 0; 3783 DenseMap<const AllocaInst*, int>::iterator SI = 3784 FuncInfo.StaticAllocaMap.find(AI); 3785 if (SI == FuncInfo.StaticAllocaMap.end()) 3786 return 0; // VLAs. 3787 int FI = SI->second; 3788 3789 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3790 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3791 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3792 return 0; 3793 } 3794 case Intrinsic::dbg_value: { 3795 const DbgValueInst &DI = cast<DbgValueInst>(I); 3796 if (!DIDescriptor::ValidDebugInfo(DI.getVariable(), CodeGenOpt::None)) 3797 return 0; 3798 3799 MDNode *Variable = DI.getVariable(); 3800 uint64_t Offset = DI.getOffset(); 3801 const Value *V = DI.getValue(); 3802 if (!V) 3803 return 0; 3804 3805 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 3806 // but do not always have a corresponding SDNode built. The SDNodeOrder 3807 // absolute, but not relative, values are different depending on whether 3808 // debug info exists. 3809 ++SDNodeOrder; 3810 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) { 3811 DAG.AddDbgValue(DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder)); 3812 } else { 3813 SDValue &N = NodeMap[V]; 3814 if (N.getNode()) 3815 DAG.AddDbgValue(DAG.getDbgValue(Variable, N.getNode(), 3816 N.getResNo(), Offset, dl, SDNodeOrder), 3817 N.getNode()); 3818 else 3819 // We may expand this to cover more cases. One case where we have no 3820 // data available is an unreferenced parameter; we need this fallback. 3821 DAG.AddDbgValue(DAG.getDbgValue(Variable, 3822 UndefValue::get(V->getType()), 3823 Offset, dl, SDNodeOrder)); 3824 } 3825 3826 // Build a debug info table entry. 3827 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 3828 V = BCI->getOperand(0); 3829 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 3830 // Don't handle byval struct arguments or VLAs, for example. 3831 if (!AI) 3832 return 0; 3833 DenseMap<const AllocaInst*, int>::iterator SI = 3834 FuncInfo.StaticAllocaMap.find(AI); 3835 if (SI == FuncInfo.StaticAllocaMap.end()) 3836 return 0; // VLAs. 3837 int FI = SI->second; 3838 3839 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3840 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 3841 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 3842 return 0; 3843 } 3844 case Intrinsic::eh_exception: { 3845 // Insert the EXCEPTIONADDR instruction. 3846 assert(FuncInfo.MBBMap[I.getParent()]->isLandingPad() && 3847 "Call to eh.exception not in landing pad!"); 3848 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3849 SDValue Ops[1]; 3850 Ops[0] = DAG.getRoot(); 3851 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 3852 setValue(&I, Op); 3853 DAG.setRoot(Op.getValue(1)); 3854 return 0; 3855 } 3856 3857 case Intrinsic::eh_selector: { 3858 MachineBasicBlock *CallMBB = FuncInfo.MBBMap[I.getParent()]; 3859 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3860 if (CallMBB->isLandingPad()) 3861 AddCatchInfo(I, &MMI, CallMBB); 3862 else { 3863 #ifndef NDEBUG 3864 FuncInfo.CatchInfoLost.insert(&I); 3865 #endif 3866 // FIXME: Mark exception selector register as live in. Hack for PR1508. 3867 unsigned Reg = TLI.getExceptionSelectorRegister(); 3868 if (Reg) FuncInfo.MBBMap[I.getParent()]->addLiveIn(Reg); 3869 } 3870 3871 // Insert the EHSELECTION instruction. 3872 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 3873 SDValue Ops[2]; 3874 Ops[0] = getValue(I.getOperand(1)); 3875 Ops[1] = getRoot(); 3876 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 3877 DAG.setRoot(Op.getValue(1)); 3878 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 3879 return 0; 3880 } 3881 3882 case Intrinsic::eh_typeid_for: { 3883 // Find the type id for the given typeinfo. 3884 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1)); 3885 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 3886 Res = DAG.getConstant(TypeID, MVT::i32); 3887 setValue(&I, Res); 3888 return 0; 3889 } 3890 3891 case Intrinsic::eh_return_i32: 3892 case Intrinsic::eh_return_i64: 3893 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 3894 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 3895 MVT::Other, 3896 getControlRoot(), 3897 getValue(I.getOperand(1)), 3898 getValue(I.getOperand(2)))); 3899 return 0; 3900 case Intrinsic::eh_unwind_init: 3901 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 3902 return 0; 3903 case Intrinsic::eh_dwarf_cfa: { 3904 EVT VT = getValue(I.getOperand(1)).getValueType(); 3905 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), dl, 3906 TLI.getPointerTy()); 3907 SDValue Offset = DAG.getNode(ISD::ADD, dl, 3908 TLI.getPointerTy(), 3909 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 3910 TLI.getPointerTy()), 3911 CfaArg); 3912 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 3913 TLI.getPointerTy(), 3914 DAG.getConstant(0, TLI.getPointerTy())); 3915 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 3916 FA, Offset)); 3917 return 0; 3918 } 3919 case Intrinsic::eh_sjlj_callsite: { 3920 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 3921 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1)); 3922 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 3923 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 3924 3925 MMI.setCurrentCallSite(CI->getZExtValue()); 3926 return 0; 3927 } 3928 3929 case Intrinsic::convertff: 3930 case Intrinsic::convertfsi: 3931 case Intrinsic::convertfui: 3932 case Intrinsic::convertsif: 3933 case Intrinsic::convertuif: 3934 case Intrinsic::convertss: 3935 case Intrinsic::convertsu: 3936 case Intrinsic::convertus: 3937 case Intrinsic::convertuu: { 3938 ISD::CvtCode Code = ISD::CVT_INVALID; 3939 switch (Intrinsic) { 3940 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 3941 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 3942 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 3943 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 3944 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 3945 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 3946 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 3947 case Intrinsic::convertus: Code = ISD::CVT_US; break; 3948 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 3949 } 3950 EVT DestVT = TLI.getValueType(I.getType()); 3951 const Value *Op1 = I.getOperand(1); 3952 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 3953 DAG.getValueType(DestVT), 3954 DAG.getValueType(getValue(Op1).getValueType()), 3955 getValue(I.getOperand(2)), 3956 getValue(I.getOperand(3)), 3957 Code); 3958 setValue(&I, Res); 3959 return 0; 3960 } 3961 case Intrinsic::sqrt: 3962 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 3963 getValue(I.getOperand(1)).getValueType(), 3964 getValue(I.getOperand(1)))); 3965 return 0; 3966 case Intrinsic::powi: 3967 setValue(&I, ExpandPowI(dl, getValue(I.getOperand(1)), 3968 getValue(I.getOperand(2)), DAG)); 3969 return 0; 3970 case Intrinsic::sin: 3971 setValue(&I, DAG.getNode(ISD::FSIN, dl, 3972 getValue(I.getOperand(1)).getValueType(), 3973 getValue(I.getOperand(1)))); 3974 return 0; 3975 case Intrinsic::cos: 3976 setValue(&I, DAG.getNode(ISD::FCOS, dl, 3977 getValue(I.getOperand(1)).getValueType(), 3978 getValue(I.getOperand(1)))); 3979 return 0; 3980 case Intrinsic::log: 3981 visitLog(I); 3982 return 0; 3983 case Intrinsic::log2: 3984 visitLog2(I); 3985 return 0; 3986 case Intrinsic::log10: 3987 visitLog10(I); 3988 return 0; 3989 case Intrinsic::exp: 3990 visitExp(I); 3991 return 0; 3992 case Intrinsic::exp2: 3993 visitExp2(I); 3994 return 0; 3995 case Intrinsic::pow: 3996 visitPow(I); 3997 return 0; 3998 case Intrinsic::convert_to_fp16: 3999 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4000 MVT::i16, getValue(I.getOperand(1)))); 4001 return 0; 4002 case Intrinsic::convert_from_fp16: 4003 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4004 MVT::f32, getValue(I.getOperand(1)))); 4005 return 0; 4006 case Intrinsic::pcmarker: { 4007 SDValue Tmp = getValue(I.getOperand(1)); 4008 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4009 return 0; 4010 } 4011 case Intrinsic::readcyclecounter: { 4012 SDValue Op = getRoot(); 4013 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4014 DAG.getVTList(MVT::i64, MVT::Other), 4015 &Op, 1); 4016 setValue(&I, Res); 4017 DAG.setRoot(Res.getValue(1)); 4018 return 0; 4019 } 4020 case Intrinsic::bswap: 4021 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4022 getValue(I.getOperand(1)).getValueType(), 4023 getValue(I.getOperand(1)))); 4024 return 0; 4025 case Intrinsic::cttz: { 4026 SDValue Arg = getValue(I.getOperand(1)); 4027 EVT Ty = Arg.getValueType(); 4028 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4029 return 0; 4030 } 4031 case Intrinsic::ctlz: { 4032 SDValue Arg = getValue(I.getOperand(1)); 4033 EVT Ty = Arg.getValueType(); 4034 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4035 return 0; 4036 } 4037 case Intrinsic::ctpop: { 4038 SDValue Arg = getValue(I.getOperand(1)); 4039 EVT Ty = Arg.getValueType(); 4040 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4041 return 0; 4042 } 4043 case Intrinsic::stacksave: { 4044 SDValue Op = getRoot(); 4045 Res = DAG.getNode(ISD::STACKSAVE, dl, 4046 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4047 setValue(&I, Res); 4048 DAG.setRoot(Res.getValue(1)); 4049 return 0; 4050 } 4051 case Intrinsic::stackrestore: { 4052 Res = getValue(I.getOperand(1)); 4053 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4054 return 0; 4055 } 4056 case Intrinsic::stackprotector: { 4057 // Emit code into the DAG to store the stack guard onto the stack. 4058 MachineFunction &MF = DAG.getMachineFunction(); 4059 MachineFrameInfo *MFI = MF.getFrameInfo(); 4060 EVT PtrTy = TLI.getPointerTy(); 4061 4062 SDValue Src = getValue(I.getOperand(1)); // The guard's value. 4063 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); 4064 4065 int FI = FuncInfo.StaticAllocaMap[Slot]; 4066 MFI->setStackProtectorIndex(FI); 4067 4068 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4069 4070 // Store the stack protector onto the stack. 4071 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4072 PseudoSourceValue::getFixedStack(FI), 4073 0, true, false, 0); 4074 setValue(&I, Res); 4075 DAG.setRoot(Res); 4076 return 0; 4077 } 4078 case Intrinsic::objectsize: { 4079 // If we don't know by now, we're never going to know. 4080 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); 4081 4082 assert(CI && "Non-constant type in __builtin_object_size?"); 4083 4084 SDValue Arg = getValue(I.getOperand(0)); 4085 EVT Ty = Arg.getValueType(); 4086 4087 if (CI->getZExtValue() == 0) 4088 Res = DAG.getConstant(-1ULL, Ty); 4089 else 4090 Res = DAG.getConstant(0, Ty); 4091 4092 setValue(&I, Res); 4093 return 0; 4094 } 4095 case Intrinsic::var_annotation: 4096 // Discard annotate attributes 4097 return 0; 4098 4099 case Intrinsic::init_trampoline: { 4100 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts()); 4101 4102 SDValue Ops[6]; 4103 Ops[0] = getRoot(); 4104 Ops[1] = getValue(I.getOperand(1)); 4105 Ops[2] = getValue(I.getOperand(2)); 4106 Ops[3] = getValue(I.getOperand(3)); 4107 Ops[4] = DAG.getSrcValue(I.getOperand(1)); 4108 Ops[5] = DAG.getSrcValue(F); 4109 4110 Res = DAG.getNode(ISD::TRAMPOLINE, dl, 4111 DAG.getVTList(TLI.getPointerTy(), MVT::Other), 4112 Ops, 6); 4113 4114 setValue(&I, Res); 4115 DAG.setRoot(Res.getValue(1)); 4116 return 0; 4117 } 4118 case Intrinsic::gcroot: 4119 if (GFI) { 4120 const Value *Alloca = I.getOperand(1); 4121 const Constant *TypeMap = cast<Constant>(I.getOperand(2)); 4122 4123 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4124 GFI->addStackRoot(FI->getIndex(), TypeMap); 4125 } 4126 return 0; 4127 case Intrinsic::gcread: 4128 case Intrinsic::gcwrite: 4129 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4130 return 0; 4131 case Intrinsic::flt_rounds: 4132 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 4133 return 0; 4134 case Intrinsic::trap: 4135 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 4136 return 0; 4137 case Intrinsic::uadd_with_overflow: 4138 return implVisitAluOverflow(I, ISD::UADDO); 4139 case Intrinsic::sadd_with_overflow: 4140 return implVisitAluOverflow(I, ISD::SADDO); 4141 case Intrinsic::usub_with_overflow: 4142 return implVisitAluOverflow(I, ISD::USUBO); 4143 case Intrinsic::ssub_with_overflow: 4144 return implVisitAluOverflow(I, ISD::SSUBO); 4145 case Intrinsic::umul_with_overflow: 4146 return implVisitAluOverflow(I, ISD::UMULO); 4147 case Intrinsic::smul_with_overflow: 4148 return implVisitAluOverflow(I, ISD::SMULO); 4149 4150 case Intrinsic::prefetch: { 4151 SDValue Ops[4]; 4152 Ops[0] = getRoot(); 4153 Ops[1] = getValue(I.getOperand(1)); 4154 Ops[2] = getValue(I.getOperand(2)); 4155 Ops[3] = getValue(I.getOperand(3)); 4156 DAG.setRoot(DAG.getNode(ISD::PREFETCH, dl, MVT::Other, &Ops[0], 4)); 4157 return 0; 4158 } 4159 4160 case Intrinsic::memory_barrier: { 4161 SDValue Ops[6]; 4162 Ops[0] = getRoot(); 4163 for (int x = 1; x < 6; ++x) 4164 Ops[x] = getValue(I.getOperand(x)); 4165 4166 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, dl, MVT::Other, &Ops[0], 6)); 4167 return 0; 4168 } 4169 case Intrinsic::atomic_cmp_swap: { 4170 SDValue Root = getRoot(); 4171 SDValue L = 4172 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, getCurDebugLoc(), 4173 getValue(I.getOperand(2)).getValueType().getSimpleVT(), 4174 Root, 4175 getValue(I.getOperand(1)), 4176 getValue(I.getOperand(2)), 4177 getValue(I.getOperand(3)), 4178 I.getOperand(1)); 4179 setValue(&I, L); 4180 DAG.setRoot(L.getValue(1)); 4181 return 0; 4182 } 4183 case Intrinsic::atomic_load_add: 4184 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD); 4185 case Intrinsic::atomic_load_sub: 4186 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB); 4187 case Intrinsic::atomic_load_or: 4188 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR); 4189 case Intrinsic::atomic_load_xor: 4190 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR); 4191 case Intrinsic::atomic_load_and: 4192 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND); 4193 case Intrinsic::atomic_load_nand: 4194 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND); 4195 case Intrinsic::atomic_load_max: 4196 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX); 4197 case Intrinsic::atomic_load_min: 4198 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN); 4199 case Intrinsic::atomic_load_umin: 4200 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN); 4201 case Intrinsic::atomic_load_umax: 4202 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX); 4203 case Intrinsic::atomic_swap: 4204 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP); 4205 4206 case Intrinsic::invariant_start: 4207 case Intrinsic::lifetime_start: 4208 // Discard region information. 4209 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4210 return 0; 4211 case Intrinsic::invariant_end: 4212 case Intrinsic::lifetime_end: 4213 // Discard region information. 4214 return 0; 4215 } 4216 } 4217 4218 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 4219 bool isTailCall, 4220 MachineBasicBlock *LandingPad) { 4221 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 4222 const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 4223 const Type *RetTy = FTy->getReturnType(); 4224 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4225 MCSymbol *BeginLabel = 0; 4226 4227 TargetLowering::ArgListTy Args; 4228 TargetLowering::ArgListEntry Entry; 4229 Args.reserve(CS.arg_size()); 4230 4231 // Check whether the function can return without sret-demotion. 4232 SmallVector<EVT, 4> OutVTs; 4233 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 4234 SmallVector<uint64_t, 4> Offsets; 4235 getReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 4236 OutVTs, OutsFlags, TLI, &Offsets); 4237 4238 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 4239 FTy->isVarArg(), OutVTs, OutsFlags, DAG); 4240 4241 SDValue DemoteStackSlot; 4242 4243 if (!CanLowerReturn) { 4244 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 4245 FTy->getReturnType()); 4246 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 4247 FTy->getReturnType()); 4248 MachineFunction &MF = DAG.getMachineFunction(); 4249 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 4250 const Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 4251 4252 DemoteStackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 4253 Entry.Node = DemoteStackSlot; 4254 Entry.Ty = StackSlotPtrType; 4255 Entry.isSExt = false; 4256 Entry.isZExt = false; 4257 Entry.isInReg = false; 4258 Entry.isSRet = true; 4259 Entry.isNest = false; 4260 Entry.isByVal = false; 4261 Entry.Alignment = Align; 4262 Args.push_back(Entry); 4263 RetTy = Type::getVoidTy(FTy->getContext()); 4264 } 4265 4266 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 4267 i != e; ++i) { 4268 SDValue ArgNode = getValue(*i); 4269 Entry.Node = ArgNode; Entry.Ty = (*i)->getType(); 4270 4271 unsigned attrInd = i - CS.arg_begin() + 1; 4272 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 4273 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 4274 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 4275 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 4276 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 4277 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 4278 Entry.Alignment = CS.getParamAlignment(attrInd); 4279 Args.push_back(Entry); 4280 } 4281 4282 if (LandingPad) { 4283 // Insert a label before the invoke call to mark the try range. This can be 4284 // used to detect deletion of the invoke via the MachineModuleInfo. 4285 BeginLabel = MMI.getContext().CreateTempSymbol(); 4286 4287 // For SjLj, keep track of which landing pads go with which invokes 4288 // so as to maintain the ordering of pads in the LSDA. 4289 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 4290 if (CallSiteIndex) { 4291 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 4292 // Now that the call site is handled, stop tracking it. 4293 MMI.setCurrentCallSite(0); 4294 } 4295 4296 // Both PendingLoads and PendingExports must be flushed here; 4297 // this call might not return. 4298 (void)getRoot(); 4299 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 4300 } 4301 4302 // Check if target-independent constraints permit a tail call here. 4303 // Target-dependent constraints are checked within TLI.LowerCallTo. 4304 if (isTailCall && 4305 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 4306 isTailCall = false; 4307 4308 std::pair<SDValue,SDValue> Result = 4309 TLI.LowerCallTo(getRoot(), RetTy, 4310 CS.paramHasAttr(0, Attribute::SExt), 4311 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 4312 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 4313 CS.getCallingConv(), 4314 isTailCall, 4315 !CS.getInstruction()->use_empty(), 4316 Callee, Args, DAG, getCurDebugLoc()); 4317 assert((isTailCall || Result.second.getNode()) && 4318 "Non-null chain expected with non-tail call!"); 4319 assert((Result.second.getNode() || !Result.first.getNode()) && 4320 "Null value expected with tail call!"); 4321 if (Result.first.getNode()) { 4322 setValue(CS.getInstruction(), Result.first); 4323 } else if (!CanLowerReturn && Result.second.getNode()) { 4324 // The instruction result is the result of loading from the 4325 // hidden sret parameter. 4326 SmallVector<EVT, 1> PVTs; 4327 const Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 4328 4329 ComputeValueVTs(TLI, PtrRetTy, PVTs); 4330 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 4331 EVT PtrVT = PVTs[0]; 4332 unsigned NumValues = OutVTs.size(); 4333 SmallVector<SDValue, 4> Values(NumValues); 4334 SmallVector<SDValue, 4> Chains(NumValues); 4335 4336 for (unsigned i = 0; i < NumValues; ++i) { 4337 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 4338 DemoteStackSlot, 4339 DAG.getConstant(Offsets[i], PtrVT)); 4340 SDValue L = DAG.getLoad(OutVTs[i], getCurDebugLoc(), Result.second, 4341 Add, NULL, Offsets[i], false, false, 1); 4342 Values[i] = L; 4343 Chains[i] = L.getValue(1); 4344 } 4345 4346 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 4347 MVT::Other, &Chains[0], NumValues); 4348 PendingLoads.push_back(Chain); 4349 4350 // Collect the legal value parts into potentially illegal values 4351 // that correspond to the original function's return values. 4352 SmallVector<EVT, 4> RetTys; 4353 RetTy = FTy->getReturnType(); 4354 ComputeValueVTs(TLI, RetTy, RetTys); 4355 ISD::NodeType AssertOp = ISD::DELETED_NODE; 4356 SmallVector<SDValue, 4> ReturnValues; 4357 unsigned CurReg = 0; 4358 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 4359 EVT VT = RetTys[I]; 4360 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 4361 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 4362 4363 SDValue ReturnValue = 4364 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 4365 RegisterVT, VT, AssertOp); 4366 ReturnValues.push_back(ReturnValue); 4367 CurReg += NumRegs; 4368 } 4369 4370 setValue(CS.getInstruction(), 4371 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 4372 DAG.getVTList(&RetTys[0], RetTys.size()), 4373 &ReturnValues[0], ReturnValues.size())); 4374 4375 } 4376 4377 // As a special case, a null chain means that a tail call has been emitted and 4378 // the DAG root is already updated. 4379 if (Result.second.getNode()) 4380 DAG.setRoot(Result.second); 4381 else 4382 HasTailCall = true; 4383 4384 if (LandingPad) { 4385 // Insert a label at the end of the invoke call to mark the try range. This 4386 // can be used to detect deletion of the invoke via the MachineModuleInfo. 4387 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 4388 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 4389 4390 // Inform MachineModuleInfo of range. 4391 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 4392 } 4393 } 4394 4395 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 4396 /// value is equal or not-equal to zero. 4397 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 4398 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 4399 UI != E; ++UI) { 4400 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 4401 if (IC->isEquality()) 4402 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 4403 if (C->isNullValue()) 4404 continue; 4405 // Unknown instruction. 4406 return false; 4407 } 4408 return true; 4409 } 4410 4411 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 4412 const Type *LoadTy, 4413 SelectionDAGBuilder &Builder) { 4414 4415 // Check to see if this load can be trivially constant folded, e.g. if the 4416 // input is from a string literal. 4417 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 4418 // Cast pointer to the type we really want to load. 4419 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 4420 PointerType::getUnqual(LoadTy)); 4421 4422 if (const Constant *LoadCst = 4423 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 4424 Builder.TD)) 4425 return Builder.getValue(LoadCst); 4426 } 4427 4428 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 4429 // still constant memory, the input chain can be the entry node. 4430 SDValue Root; 4431 bool ConstantMemory = false; 4432 4433 // Do not serialize (non-volatile) loads of constant memory with anything. 4434 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 4435 Root = Builder.DAG.getEntryNode(); 4436 ConstantMemory = true; 4437 } else { 4438 // Do not serialize non-volatile loads against each other. 4439 Root = Builder.DAG.getRoot(); 4440 } 4441 4442 SDValue Ptr = Builder.getValue(PtrVal); 4443 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 4444 Ptr, PtrVal /*SrcValue*/, 0/*SVOffset*/, 4445 false /*volatile*/, 4446 false /*nontemporal*/, 1 /* align=1 */); 4447 4448 if (!ConstantMemory) 4449 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 4450 return LoadVal; 4451 } 4452 4453 4454 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 4455 /// If so, return true and lower it, otherwise return false and it will be 4456 /// lowered like a normal call. 4457 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 4458 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 4459 if (I.getNumOperands() != 4) 4460 return false; 4461 4462 const Value *LHS = I.getOperand(1), *RHS = I.getOperand(2); 4463 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 4464 !I.getOperand(3)->getType()->isIntegerTy() || 4465 !I.getType()->isIntegerTy()) 4466 return false; 4467 4468 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getOperand(3)); 4469 4470 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 4471 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 4472 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 4473 bool ActuallyDoIt = true; 4474 MVT LoadVT; 4475 const Type *LoadTy; 4476 switch (Size->getZExtValue()) { 4477 default: 4478 LoadVT = MVT::Other; 4479 LoadTy = 0; 4480 ActuallyDoIt = false; 4481 break; 4482 case 2: 4483 LoadVT = MVT::i16; 4484 LoadTy = Type::getInt16Ty(Size->getContext()); 4485 break; 4486 case 4: 4487 LoadVT = MVT::i32; 4488 LoadTy = Type::getInt32Ty(Size->getContext()); 4489 break; 4490 case 8: 4491 LoadVT = MVT::i64; 4492 LoadTy = Type::getInt64Ty(Size->getContext()); 4493 break; 4494 /* 4495 case 16: 4496 LoadVT = MVT::v4i32; 4497 LoadTy = Type::getInt32Ty(Size->getContext()); 4498 LoadTy = VectorType::get(LoadTy, 4); 4499 break; 4500 */ 4501 } 4502 4503 // This turns into unaligned loads. We only do this if the target natively 4504 // supports the MVT we'll be loading or if it is small enough (<= 4) that 4505 // we'll only produce a small number of byte loads. 4506 4507 // Require that we can find a legal MVT, and only do this if the target 4508 // supports unaligned loads of that type. Expanding into byte loads would 4509 // bloat the code. 4510 if (ActuallyDoIt && Size->getZExtValue() > 4) { 4511 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 4512 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 4513 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 4514 ActuallyDoIt = false; 4515 } 4516 4517 if (ActuallyDoIt) { 4518 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 4519 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 4520 4521 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 4522 ISD::SETNE); 4523 EVT CallVT = TLI.getValueType(I.getType(), true); 4524 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 4525 return true; 4526 } 4527 } 4528 4529 4530 return false; 4531 } 4532 4533 4534 void SelectionDAGBuilder::visitCall(const CallInst &I) { 4535 const char *RenameFn = 0; 4536 if (Function *F = I.getCalledFunction()) { 4537 if (F->isDeclaration()) { 4538 const TargetIntrinsicInfo *II = TM.getIntrinsicInfo(); 4539 if (II) { 4540 if (unsigned IID = II->getIntrinsicID(F)) { 4541 RenameFn = visitIntrinsicCall(I, IID); 4542 if (!RenameFn) 4543 return; 4544 } 4545 } 4546 if (unsigned IID = F->getIntrinsicID()) { 4547 RenameFn = visitIntrinsicCall(I, IID); 4548 if (!RenameFn) 4549 return; 4550 } 4551 } 4552 4553 // Check for well-known libc/libm calls. If the function is internal, it 4554 // can't be a library call. 4555 if (!F->hasLocalLinkage() && F->hasName()) { 4556 StringRef Name = F->getName(); 4557 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 4558 if (I.getNumOperands() == 3 && // Basic sanity checks. 4559 I.getOperand(1)->getType()->isFloatingPointTy() && 4560 I.getType() == I.getOperand(1)->getType() && 4561 I.getType() == I.getOperand(2)->getType()) { 4562 SDValue LHS = getValue(I.getOperand(1)); 4563 SDValue RHS = getValue(I.getOperand(2)); 4564 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 4565 LHS.getValueType(), LHS, RHS)); 4566 return; 4567 } 4568 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 4569 if (I.getNumOperands() == 2 && // Basic sanity checks. 4570 I.getOperand(1)->getType()->isFloatingPointTy() && 4571 I.getType() == I.getOperand(1)->getType()) { 4572 SDValue Tmp = getValue(I.getOperand(1)); 4573 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 4574 Tmp.getValueType(), Tmp)); 4575 return; 4576 } 4577 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 4578 if (I.getNumOperands() == 2 && // Basic sanity checks. 4579 I.getOperand(1)->getType()->isFloatingPointTy() && 4580 I.getType() == I.getOperand(1)->getType() && 4581 I.onlyReadsMemory()) { 4582 SDValue Tmp = getValue(I.getOperand(1)); 4583 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 4584 Tmp.getValueType(), Tmp)); 4585 return; 4586 } 4587 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 4588 if (I.getNumOperands() == 2 && // Basic sanity checks. 4589 I.getOperand(1)->getType()->isFloatingPointTy() && 4590 I.getType() == I.getOperand(1)->getType() && 4591 I.onlyReadsMemory()) { 4592 SDValue Tmp = getValue(I.getOperand(1)); 4593 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 4594 Tmp.getValueType(), Tmp)); 4595 return; 4596 } 4597 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 4598 if (I.getNumOperands() == 2 && // Basic sanity checks. 4599 I.getOperand(1)->getType()->isFloatingPointTy() && 4600 I.getType() == I.getOperand(1)->getType() && 4601 I.onlyReadsMemory()) { 4602 SDValue Tmp = getValue(I.getOperand(1)); 4603 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 4604 Tmp.getValueType(), Tmp)); 4605 return; 4606 } 4607 } else if (Name == "memcmp") { 4608 if (visitMemCmpCall(I)) 4609 return; 4610 } 4611 } 4612 } else if (isa<InlineAsm>(I.getOperand(0))) { 4613 visitInlineAsm(&I); 4614 return; 4615 } 4616 4617 SDValue Callee; 4618 if (!RenameFn) 4619 Callee = getValue(I.getOperand(0)); 4620 else 4621 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 4622 4623 // Check if we can potentially perform a tail call. More detailed checking is 4624 // be done within LowerCallTo, after more information about the call is known. 4625 LowerCallTo(&I, Callee, I.isTailCall()); 4626 } 4627 4628 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 4629 /// this value and returns the result as a ValueVT value. This uses 4630 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4631 /// If the Flag pointer is NULL, no flag is used. 4632 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, DebugLoc dl, 4633 SDValue &Chain, SDValue *Flag) const { 4634 // Assemble the legal parts into the final values. 4635 SmallVector<SDValue, 4> Values(ValueVTs.size()); 4636 SmallVector<SDValue, 8> Parts; 4637 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4638 // Copy the legal parts from the registers. 4639 EVT ValueVT = ValueVTs[Value]; 4640 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4641 EVT RegisterVT = RegVTs[Value]; 4642 4643 Parts.resize(NumRegs); 4644 for (unsigned i = 0; i != NumRegs; ++i) { 4645 SDValue P; 4646 if (Flag == 0) { 4647 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 4648 } else { 4649 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 4650 *Flag = P.getValue(2); 4651 } 4652 4653 Chain = P.getValue(1); 4654 4655 // If the source register was virtual and if we know something about it, 4656 // add an assert node. 4657 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) && 4658 RegisterVT.isInteger() && !RegisterVT.isVector()) { 4659 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister; 4660 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 4661 if (FLI.LiveOutRegInfo.size() > SlotNo) { 4662 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo]; 4663 4664 unsigned RegSize = RegisterVT.getSizeInBits(); 4665 unsigned NumSignBits = LOI.NumSignBits; 4666 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes(); 4667 4668 // FIXME: We capture more information than the dag can represent. For 4669 // now, just use the tightest assertzext/assertsext possible. 4670 bool isSExt = true; 4671 EVT FromVT(MVT::Other); 4672 if (NumSignBits == RegSize) 4673 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 4674 else if (NumZeroBits >= RegSize-1) 4675 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 4676 else if (NumSignBits > RegSize-8) 4677 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 4678 else if (NumZeroBits >= RegSize-8) 4679 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 4680 else if (NumSignBits > RegSize-16) 4681 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 4682 else if (NumZeroBits >= RegSize-16) 4683 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 4684 else if (NumSignBits > RegSize-32) 4685 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 4686 else if (NumZeroBits >= RegSize-32) 4687 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 4688 4689 if (FromVT != MVT::Other) 4690 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 4691 RegisterVT, P, DAG.getValueType(FromVT)); 4692 } 4693 } 4694 4695 Parts[i] = P; 4696 } 4697 4698 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 4699 NumRegs, RegisterVT, ValueVT); 4700 Part += NumRegs; 4701 Parts.clear(); 4702 } 4703 4704 return DAG.getNode(ISD::MERGE_VALUES, dl, 4705 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 4706 &Values[0], ValueVTs.size()); 4707 } 4708 4709 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 4710 /// specified value into the registers specified by this object. This uses 4711 /// Chain/Flag as the input and updates them for the output Chain/Flag. 4712 /// If the Flag pointer is NULL, no flag is used. 4713 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 4714 SDValue &Chain, SDValue *Flag) const { 4715 // Get the list of the values's legal parts. 4716 unsigned NumRegs = Regs.size(); 4717 SmallVector<SDValue, 8> Parts(NumRegs); 4718 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 4719 EVT ValueVT = ValueVTs[Value]; 4720 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), ValueVT); 4721 EVT RegisterVT = RegVTs[Value]; 4722 4723 getCopyToParts(DAG, dl, 4724 Val.getValue(Val.getResNo() + Value), 4725 &Parts[Part], NumParts, RegisterVT); 4726 Part += NumParts; 4727 } 4728 4729 // Copy the parts into the registers. 4730 SmallVector<SDValue, 8> Chains(NumRegs); 4731 for (unsigned i = 0; i != NumRegs; ++i) { 4732 SDValue Part; 4733 if (Flag == 0) { 4734 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 4735 } else { 4736 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 4737 *Flag = Part.getValue(1); 4738 } 4739 4740 Chains[i] = Part.getValue(0); 4741 } 4742 4743 if (NumRegs == 1 || Flag) 4744 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 4745 // flagged to it. That is the CopyToReg nodes and the user are considered 4746 // a single scheduling unit. If we create a TokenFactor and return it as 4747 // chain, then the TokenFactor is both a predecessor (operand) of the 4748 // user as well as a successor (the TF operands are flagged to the user). 4749 // c1, f1 = CopyToReg 4750 // c2, f2 = CopyToReg 4751 // c3 = TokenFactor c1, c2 4752 // ... 4753 // = op c3, ..., f2 4754 Chain = Chains[NumRegs-1]; 4755 else 4756 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 4757 } 4758 4759 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 4760 /// operand list. This adds the code marker and includes the number of 4761 /// values added into it. 4762 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 4763 unsigned MatchingIdx, 4764 SelectionDAG &DAG, 4765 std::vector<SDValue> &Ops) const { 4766 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 4767 if (HasMatching) 4768 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 4769 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 4770 Ops.push_back(Res); 4771 4772 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 4773 unsigned NumRegs = TLI->getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 4774 EVT RegisterVT = RegVTs[Value]; 4775 for (unsigned i = 0; i != NumRegs; ++i) { 4776 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 4777 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 4778 } 4779 } 4780 } 4781 4782 /// isAllocatableRegister - If the specified register is safe to allocate, 4783 /// i.e. it isn't a stack pointer or some other special register, return the 4784 /// register class for the register. Otherwise, return null. 4785 static const TargetRegisterClass * 4786 isAllocatableRegister(unsigned Reg, MachineFunction &MF, 4787 const TargetLowering &TLI, 4788 const TargetRegisterInfo *TRI) { 4789 EVT FoundVT = MVT::Other; 4790 const TargetRegisterClass *FoundRC = 0; 4791 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(), 4792 E = TRI->regclass_end(); RCI != E; ++RCI) { 4793 EVT ThisVT = MVT::Other; 4794 4795 const TargetRegisterClass *RC = *RCI; 4796 // If none of the value types for this register class are valid, we 4797 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4798 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 4799 I != E; ++I) { 4800 if (TLI.isTypeLegal(*I)) { 4801 // If we have already found this register in a different register class, 4802 // choose the one with the largest VT specified. For example, on 4803 // PowerPC, we favor f64 register classes over f32. 4804 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) { 4805 ThisVT = *I; 4806 break; 4807 } 4808 } 4809 } 4810 4811 if (ThisVT == MVT::Other) continue; 4812 4813 // NOTE: This isn't ideal. In particular, this might allocate the 4814 // frame pointer in functions that need it (due to them not being taken 4815 // out of allocation, because a variable sized allocation hasn't been seen 4816 // yet). This is a slight code pessimization, but should still work. 4817 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF), 4818 E = RC->allocation_order_end(MF); I != E; ++I) 4819 if (*I == Reg) { 4820 // We found a matching register class. Keep looking at others in case 4821 // we find one with larger registers that this physreg is also in. 4822 FoundRC = RC; 4823 FoundVT = ThisVT; 4824 break; 4825 } 4826 } 4827 return FoundRC; 4828 } 4829 4830 4831 namespace llvm { 4832 /// AsmOperandInfo - This contains information for each constraint that we are 4833 /// lowering. 4834 class VISIBILITY_HIDDEN SDISelAsmOperandInfo : 4835 public TargetLowering::AsmOperandInfo { 4836 public: 4837 /// CallOperand - If this is the result output operand or a clobber 4838 /// this is null, otherwise it is the incoming operand to the CallInst. 4839 /// This gets modified as the asm is processed. 4840 SDValue CallOperand; 4841 4842 /// AssignedRegs - If this is a register or register class operand, this 4843 /// contains the set of register corresponding to the operand. 4844 RegsForValue AssignedRegs; 4845 4846 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info) 4847 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 4848 } 4849 4850 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 4851 /// busy in OutputRegs/InputRegs. 4852 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 4853 std::set<unsigned> &OutputRegs, 4854 std::set<unsigned> &InputRegs, 4855 const TargetRegisterInfo &TRI) const { 4856 if (isOutReg) { 4857 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4858 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 4859 } 4860 if (isInReg) { 4861 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 4862 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 4863 } 4864 } 4865 4866 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 4867 /// corresponds to. If there is no Value* for this operand, it returns 4868 /// MVT::Other. 4869 EVT getCallOperandValEVT(LLVMContext &Context, 4870 const TargetLowering &TLI, 4871 const TargetData *TD) const { 4872 if (CallOperandVal == 0) return MVT::Other; 4873 4874 if (isa<BasicBlock>(CallOperandVal)) 4875 return TLI.getPointerTy(); 4876 4877 const llvm::Type *OpTy = CallOperandVal->getType(); 4878 4879 // If this is an indirect operand, the operand is a pointer to the 4880 // accessed type. 4881 if (isIndirect) { 4882 const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4883 if (!PtrTy) 4884 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4885 OpTy = PtrTy->getElementType(); 4886 } 4887 4888 // If OpTy is not a single value, it may be a struct/union that we 4889 // can tile with integers. 4890 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4891 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 4892 switch (BitSize) { 4893 default: break; 4894 case 1: 4895 case 8: 4896 case 16: 4897 case 32: 4898 case 64: 4899 case 128: 4900 OpTy = IntegerType::get(Context, BitSize); 4901 break; 4902 } 4903 } 4904 4905 return TLI.getValueType(OpTy, true); 4906 } 4907 4908 private: 4909 /// MarkRegAndAliases - Mark the specified register and all aliases in the 4910 /// specified set. 4911 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 4912 const TargetRegisterInfo &TRI) { 4913 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 4914 Regs.insert(Reg); 4915 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 4916 for (; *Aliases; ++Aliases) 4917 Regs.insert(*Aliases); 4918 } 4919 }; 4920 } // end llvm namespace. 4921 4922 4923 /// GetRegistersForValue - Assign registers (virtual or physical) for the 4924 /// specified operand. We prefer to assign virtual registers, to allow the 4925 /// register allocator to handle the assignment process. However, if the asm 4926 /// uses features that we can't model on machineinstrs, we have SDISel do the 4927 /// allocation. This produces generally horrible, but correct, code. 4928 /// 4929 /// OpInfo describes the operand. 4930 /// Input and OutputRegs are the set of already allocated physical registers. 4931 /// 4932 void SelectionDAGBuilder:: 4933 GetRegistersForValue(SDISelAsmOperandInfo &OpInfo, 4934 std::set<unsigned> &OutputRegs, 4935 std::set<unsigned> &InputRegs) { 4936 LLVMContext &Context = FuncInfo.Fn->getContext(); 4937 4938 // Compute whether this value requires an input register, an output register, 4939 // or both. 4940 bool isOutReg = false; 4941 bool isInReg = false; 4942 switch (OpInfo.Type) { 4943 case InlineAsm::isOutput: 4944 isOutReg = true; 4945 4946 // If there is an input constraint that matches this, we need to reserve 4947 // the input register so no other inputs allocate to it. 4948 isInReg = OpInfo.hasMatchingInput(); 4949 break; 4950 case InlineAsm::isInput: 4951 isInReg = true; 4952 isOutReg = false; 4953 break; 4954 case InlineAsm::isClobber: 4955 isOutReg = true; 4956 isInReg = true; 4957 break; 4958 } 4959 4960 4961 MachineFunction &MF = DAG.getMachineFunction(); 4962 SmallVector<unsigned, 4> Regs; 4963 4964 // If this is a constraint for a single physreg, or a constraint for a 4965 // register class, find it. 4966 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 4967 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 4968 OpInfo.ConstraintVT); 4969 4970 unsigned NumRegs = 1; 4971 if (OpInfo.ConstraintVT != MVT::Other) { 4972 // If this is a FP input in an integer register (or visa versa) insert a bit 4973 // cast of the input value. More generally, handle any case where the input 4974 // value disagrees with the register class we plan to stick this in. 4975 if (OpInfo.Type == InlineAsm::isInput && 4976 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 4977 // Try to convert to the first EVT that the reg class contains. If the 4978 // types are identical size, use a bitcast to convert (e.g. two differing 4979 // vector types). 4980 EVT RegVT = *PhysReg.second->vt_begin(); 4981 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 4982 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4983 RegVT, OpInfo.CallOperand); 4984 OpInfo.ConstraintVT = RegVT; 4985 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 4986 // If the input is a FP value and we want it in FP registers, do a 4987 // bitcast to the corresponding integer type. This turns an f64 value 4988 // into i64, which can be passed with two i32 values on a 32-bit 4989 // machine. 4990 RegVT = EVT::getIntegerVT(Context, 4991 OpInfo.ConstraintVT.getSizeInBits()); 4992 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 4993 RegVT, OpInfo.CallOperand); 4994 OpInfo.ConstraintVT = RegVT; 4995 } 4996 } 4997 4998 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 4999 } 5000 5001 EVT RegVT; 5002 EVT ValueVT = OpInfo.ConstraintVT; 5003 5004 // If this is a constraint for a specific physical register, like {r17}, 5005 // assign it now. 5006 if (unsigned AssignedReg = PhysReg.first) { 5007 const TargetRegisterClass *RC = PhysReg.second; 5008 if (OpInfo.ConstraintVT == MVT::Other) 5009 ValueVT = *RC->vt_begin(); 5010 5011 // Get the actual register value type. This is important, because the user 5012 // may have asked for (e.g.) the AX register in i32 type. We need to 5013 // remember that AX is actually i16 to get the right extension. 5014 RegVT = *RC->vt_begin(); 5015 5016 // This is a explicit reference to a physical register. 5017 Regs.push_back(AssignedReg); 5018 5019 // If this is an expanded reference, add the rest of the regs to Regs. 5020 if (NumRegs != 1) { 5021 TargetRegisterClass::iterator I = RC->begin(); 5022 for (; *I != AssignedReg; ++I) 5023 assert(I != RC->end() && "Didn't find reg!"); 5024 5025 // Already added the first reg. 5026 --NumRegs; ++I; 5027 for (; NumRegs; --NumRegs, ++I) { 5028 assert(I != RC->end() && "Ran out of registers to allocate!"); 5029 Regs.push_back(*I); 5030 } 5031 } 5032 5033 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5034 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5035 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5036 return; 5037 } 5038 5039 // Otherwise, if this was a reference to an LLVM register class, create vregs 5040 // for this reference. 5041 if (const TargetRegisterClass *RC = PhysReg.second) { 5042 RegVT = *RC->vt_begin(); 5043 if (OpInfo.ConstraintVT == MVT::Other) 5044 ValueVT = RegVT; 5045 5046 // Create the appropriate number of virtual registers. 5047 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5048 for (; NumRegs; --NumRegs) 5049 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5050 5051 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT); 5052 return; 5053 } 5054 5055 // This is a reference to a register class that doesn't directly correspond 5056 // to an LLVM register class. Allocate NumRegs consecutive, available, 5057 // registers from the class. 5058 std::vector<unsigned> RegClassRegs 5059 = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode, 5060 OpInfo.ConstraintVT); 5061 5062 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5063 unsigned NumAllocated = 0; 5064 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) { 5065 unsigned Reg = RegClassRegs[i]; 5066 // See if this register is available. 5067 if ((isOutReg && OutputRegs.count(Reg)) || // Already used. 5068 (isInReg && InputRegs.count(Reg))) { // Already used. 5069 // Make sure we find consecutive registers. 5070 NumAllocated = 0; 5071 continue; 5072 } 5073 5074 // Check to see if this register is allocatable (i.e. don't give out the 5075 // stack pointer). 5076 const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, TRI); 5077 if (!RC) { // Couldn't allocate this register. 5078 // Reset NumAllocated to make sure we return consecutive registers. 5079 NumAllocated = 0; 5080 continue; 5081 } 5082 5083 // Okay, this register is good, we can use it. 5084 ++NumAllocated; 5085 5086 // If we allocated enough consecutive registers, succeed. 5087 if (NumAllocated == NumRegs) { 5088 unsigned RegStart = (i-NumAllocated)+1; 5089 unsigned RegEnd = i+1; 5090 // Mark all of the allocated registers used. 5091 for (unsigned i = RegStart; i != RegEnd; ++i) 5092 Regs.push_back(RegClassRegs[i]); 5093 5094 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(), 5095 OpInfo.ConstraintVT); 5096 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5097 return; 5098 } 5099 } 5100 5101 // Otherwise, we couldn't allocate enough registers for this. 5102 } 5103 5104 /// visitInlineAsm - Handle a call to an InlineAsm object. 5105 /// 5106 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5107 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5108 5109 /// ConstraintOperands - Information about all of the constraints. 5110 std::vector<SDISelAsmOperandInfo> ConstraintOperands; 5111 5112 std::set<unsigned> OutputRegs, InputRegs; 5113 5114 // Do a prepass over the constraints, canonicalizing them, and building up the 5115 // ConstraintOperands list. 5116 std::vector<InlineAsm::ConstraintInfo> 5117 ConstraintInfos = IA->ParseConstraints(); 5118 5119 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI); 5120 5121 SDValue Chain, Flag; 5122 5123 // We won't need to flush pending loads if this asm doesn't touch 5124 // memory and is nonvolatile. 5125 if (hasMemory || IA->hasSideEffects()) 5126 Chain = getRoot(); 5127 else 5128 Chain = DAG.getRoot(); 5129 5130 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5131 unsigned ResNo = 0; // ResNo - The result number of the next output. 5132 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5133 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i])); 5134 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5135 5136 EVT OpVT = MVT::Other; 5137 5138 // Compute the value type for each operand. 5139 switch (OpInfo.Type) { 5140 case InlineAsm::isOutput: 5141 // Indirect outputs just consume an argument. 5142 if (OpInfo.isIndirect) { 5143 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5144 break; 5145 } 5146 5147 // The return value of the call is this value. As such, there is no 5148 // corresponding argument. 5149 assert(!CS.getType()->isVoidTy() && 5150 "Bad inline asm!"); 5151 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) { 5152 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5153 } else { 5154 assert(ResNo == 0 && "Asm only has one result!"); 5155 OpVT = TLI.getValueType(CS.getType()); 5156 } 5157 ++ResNo; 5158 break; 5159 case InlineAsm::isInput: 5160 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5161 break; 5162 case InlineAsm::isClobber: 5163 // Nothing to do. 5164 break; 5165 } 5166 5167 // If this is an input or an indirect output, process the call argument. 5168 // BasicBlocks are labels, currently appearing only in asm's. 5169 if (OpInfo.CallOperandVal) { 5170 // Strip bitcasts, if any. This mostly comes up for functions. 5171 OpInfo.CallOperandVal = OpInfo.CallOperandVal->stripPointerCasts(); 5172 5173 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5174 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5175 } else { 5176 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5177 } 5178 5179 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5180 } 5181 5182 OpInfo.ConstraintVT = OpVT; 5183 } 5184 5185 // Second pass over the constraints: compute which constraint option to use 5186 // and assign registers to constraints that want a specific physreg. 5187 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 5188 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5189 5190 // If this is an output operand with a matching input operand, look up the 5191 // matching input. If their types mismatch, e.g. one is an integer, the 5192 // other is floating point, or their sizes are different, flag it as an 5193 // error. 5194 if (OpInfo.hasMatchingInput()) { 5195 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5196 5197 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5198 if ((OpInfo.ConstraintVT.isInteger() != 5199 Input.ConstraintVT.isInteger()) || 5200 (OpInfo.ConstraintVT.getSizeInBits() != 5201 Input.ConstraintVT.getSizeInBits())) { 5202 report_fatal_error("Unsupported asm: input constraint" 5203 " with a matching output constraint of" 5204 " incompatible type!"); 5205 } 5206 Input.ConstraintVT = OpInfo.ConstraintVT; 5207 } 5208 } 5209 5210 // Compute the constraint code and ConstraintType to use. 5211 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG); 5212 5213 // If this is a memory input, and if the operand is not indirect, do what we 5214 // need to to provide an address for the memory input. 5215 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5216 !OpInfo.isIndirect) { 5217 assert(OpInfo.Type == InlineAsm::isInput && 5218 "Can only indirectify direct input operands!"); 5219 5220 // Memory operands really want the address of the value. If we don't have 5221 // an indirect input, put it in the constpool if we can, otherwise spill 5222 // it to a stack slot. 5223 5224 // If the operand is a float, integer, or vector constant, spill to a 5225 // constant pool entry to get its address. 5226 const Value *OpVal = OpInfo.CallOperandVal; 5227 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5228 isa<ConstantVector>(OpVal)) { 5229 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5230 TLI.getPointerTy()); 5231 } else { 5232 // Otherwise, create a stack slot and emit a store to it before the 5233 // asm. 5234 const Type *Ty = OpVal->getType(); 5235 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5236 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5237 MachineFunction &MF = DAG.getMachineFunction(); 5238 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5239 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5240 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5241 OpInfo.CallOperand, StackSlot, NULL, 0, 5242 false, false, 0); 5243 OpInfo.CallOperand = StackSlot; 5244 } 5245 5246 // There is no longer a Value* corresponding to this operand. 5247 OpInfo.CallOperandVal = 0; 5248 5249 // It is now an indirect operand. 5250 OpInfo.isIndirect = true; 5251 } 5252 5253 // If this constraint is for a specific register, allocate it before 5254 // anything else. 5255 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5256 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5257 } 5258 5259 ConstraintInfos.clear(); 5260 5261 // Second pass - Loop over all of the operands, assigning virtual or physregs 5262 // to register class operands. 5263 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5264 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5265 5266 // C_Register operands have already been allocated, Other/Memory don't need 5267 // to be. 5268 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 5269 GetRegistersForValue(OpInfo, OutputRegs, InputRegs); 5270 } 5271 5272 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 5273 std::vector<SDValue> AsmNodeOperands; 5274 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 5275 AsmNodeOperands.push_back( 5276 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 5277 TLI.getPointerTy())); 5278 5279 // If we have a !srcloc metadata node associated with it, we want to attach 5280 // this to the ultimately generated inline asm machineinstr. To do this, we 5281 // pass in the third operand as this (potentially null) inline asm MDNode. 5282 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 5283 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 5284 5285 // Loop over all of the inputs, copying the operand values into the 5286 // appropriate registers and processing the output regs. 5287 RegsForValue RetValRegs; 5288 5289 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 5290 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 5291 5292 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5293 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5294 5295 switch (OpInfo.Type) { 5296 case InlineAsm::isOutput: { 5297 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 5298 OpInfo.ConstraintType != TargetLowering::C_Register) { 5299 // Memory output, or 'other' output (e.g. 'X' constraint). 5300 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 5301 5302 // Add information to the INLINEASM node to know about this output. 5303 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5304 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 5305 TLI.getPointerTy())); 5306 AsmNodeOperands.push_back(OpInfo.CallOperand); 5307 break; 5308 } 5309 5310 // Otherwise, this is a register or register class output. 5311 5312 // Copy the output from the appropriate register. Find a register that 5313 // we can use. 5314 if (OpInfo.AssignedRegs.Regs.empty()) 5315 report_fatal_error("Couldn't allocate output reg for constraint '" + 5316 Twine(OpInfo.ConstraintCode) + "'!"); 5317 5318 // If this is an indirect operand, store through the pointer after the 5319 // asm. 5320 if (OpInfo.isIndirect) { 5321 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 5322 OpInfo.CallOperandVal)); 5323 } else { 5324 // This is the result value of the call. 5325 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5326 // Concatenate this output onto the outputs list. 5327 RetValRegs.append(OpInfo.AssignedRegs); 5328 } 5329 5330 // Add information to the INLINEASM node to know that this register is 5331 // set. 5332 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 5333 InlineAsm::Kind_RegDefEarlyClobber : 5334 InlineAsm::Kind_RegDef, 5335 false, 5336 0, 5337 DAG, 5338 AsmNodeOperands); 5339 break; 5340 } 5341 case InlineAsm::isInput: { 5342 SDValue InOperandVal = OpInfo.CallOperand; 5343 5344 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 5345 // If this is required to match an output register we have already set, 5346 // just use its register. 5347 unsigned OperandNo = OpInfo.getMatchedOperand(); 5348 5349 // Scan until we find the definition we already emitted of this operand. 5350 // When we find it, create a RegsForValue operand. 5351 unsigned CurOp = InlineAsm::Op_FirstOperand; 5352 for (; OperandNo; --OperandNo) { 5353 // Advance to the next operand. 5354 unsigned OpFlag = 5355 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5356 assert((InlineAsm::isRegDefKind(OpFlag) || 5357 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 5358 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 5359 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 5360 } 5361 5362 unsigned OpFlag = 5363 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 5364 if (InlineAsm::isRegDefKind(OpFlag) || 5365 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 5366 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 5367 if (OpInfo.isIndirect) { 5368 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 5369 LLVMContext &Ctx = *DAG.getContext(); 5370 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 5371 " don't know how to handle tied " 5372 "indirect register inputs"); 5373 } 5374 5375 RegsForValue MatchedRegs; 5376 MatchedRegs.TLI = &TLI; 5377 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 5378 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 5379 MatchedRegs.RegVTs.push_back(RegVT); 5380 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 5381 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 5382 i != e; ++i) 5383 MatchedRegs.Regs.push_back 5384 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 5385 5386 // Use the produced MatchedRegs object to 5387 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5388 Chain, &Flag); 5389 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 5390 true, OpInfo.getMatchedOperand(), 5391 DAG, AsmNodeOperands); 5392 break; 5393 } 5394 5395 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 5396 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 5397 "Unexpected number of operands"); 5398 // Add information to the INLINEASM node to know about this input. 5399 // See InlineAsm.h isUseOperandTiedToDef. 5400 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 5401 OpInfo.getMatchedOperand()); 5402 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 5403 TLI.getPointerTy())); 5404 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 5405 break; 5406 } 5407 5408 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 5409 assert(!OpInfo.isIndirect && 5410 "Don't know how to handle indirect other inputs yet!"); 5411 5412 std::vector<SDValue> Ops; 5413 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0], 5414 hasMemory, Ops, DAG); 5415 if (Ops.empty()) 5416 report_fatal_error("Invalid operand for inline asm constraint '" + 5417 Twine(OpInfo.ConstraintCode) + "'!"); 5418 5419 // Add information to the INLINEASM node to know about this input. 5420 unsigned ResOpType = 5421 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 5422 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5423 TLI.getPointerTy())); 5424 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 5425 break; 5426 } 5427 5428 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 5429 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 5430 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 5431 "Memory operands expect pointer values"); 5432 5433 // Add information to the INLINEASM node to know about this input. 5434 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 5435 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 5436 TLI.getPointerTy())); 5437 AsmNodeOperands.push_back(InOperandVal); 5438 break; 5439 } 5440 5441 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 5442 OpInfo.ConstraintType == TargetLowering::C_Register) && 5443 "Unknown constraint type!"); 5444 assert(!OpInfo.isIndirect && 5445 "Don't know how to handle indirect register inputs yet!"); 5446 5447 // Copy the input into the appropriate registers. 5448 if (OpInfo.AssignedRegs.Regs.empty() || 5449 !OpInfo.AssignedRegs.areValueTypesLegal()) 5450 report_fatal_error("Couldn't allocate input reg for constraint '" + 5451 Twine(OpInfo.ConstraintCode) + "'!"); 5452 5453 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 5454 Chain, &Flag); 5455 5456 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 5457 DAG, AsmNodeOperands); 5458 break; 5459 } 5460 case InlineAsm::isClobber: { 5461 // Add the clobbered value to the operand list, so that the register 5462 // allocator is aware that the physreg got clobbered. 5463 if (!OpInfo.AssignedRegs.Regs.empty()) 5464 OpInfo.AssignedRegs.AddInlineAsmOperands( 5465 InlineAsm::Kind_RegDefEarlyClobber, 5466 false, 0, DAG, 5467 AsmNodeOperands); 5468 break; 5469 } 5470 } 5471 } 5472 5473 // Finish up input operands. Set the input chain and add the flag last. 5474 AsmNodeOperands[0] = Chain; 5475 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 5476 5477 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 5478 DAG.getVTList(MVT::Other, MVT::Flag), 5479 &AsmNodeOperands[0], AsmNodeOperands.size()); 5480 Flag = Chain.getValue(1); 5481 5482 // If this asm returns a register value, copy the result from that register 5483 // and set it as the value of the call. 5484 if (!RetValRegs.Regs.empty()) { 5485 SDValue Val = RetValRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5486 Chain, &Flag); 5487 5488 // FIXME: Why don't we do this for inline asms with MRVs? 5489 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 5490 EVT ResultType = TLI.getValueType(CS.getType()); 5491 5492 // If any of the results of the inline asm is a vector, it may have the 5493 // wrong width/num elts. This can happen for register classes that can 5494 // contain multiple different value types. The preg or vreg allocated may 5495 // not have the same VT as was expected. Convert it to the right type 5496 // with bit_convert. 5497 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 5498 Val = DAG.getNode(ISD::BIT_CONVERT, getCurDebugLoc(), 5499 ResultType, Val); 5500 5501 } else if (ResultType != Val.getValueType() && 5502 ResultType.isInteger() && Val.getValueType().isInteger()) { 5503 // If a result value was tied to an input value, the computed result may 5504 // have a wider width than the expected result. Extract the relevant 5505 // portion. 5506 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 5507 } 5508 5509 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 5510 } 5511 5512 setValue(CS.getInstruction(), Val); 5513 // Don't need to use this as a chain in this case. 5514 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 5515 return; 5516 } 5517 5518 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 5519 5520 // Process indirect outputs, first output all of the flagged copies out of 5521 // physregs. 5522 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 5523 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 5524 const Value *Ptr = IndirectStoresToEmit[i].second; 5525 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, getCurDebugLoc(), 5526 Chain, &Flag); 5527 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 5528 } 5529 5530 // Emit the non-flagged stores from the physregs. 5531 SmallVector<SDValue, 8> OutChains; 5532 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 5533 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 5534 StoresToEmit[i].first, 5535 getValue(StoresToEmit[i].second), 5536 StoresToEmit[i].second, 0, 5537 false, false, 0); 5538 OutChains.push_back(Val); 5539 } 5540 5541 if (!OutChains.empty()) 5542 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 5543 &OutChains[0], OutChains.size()); 5544 5545 DAG.setRoot(Chain); 5546 } 5547 5548 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 5549 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 5550 MVT::Other, getRoot(), 5551 getValue(I.getOperand(1)), 5552 DAG.getSrcValue(I.getOperand(1)))); 5553 } 5554 5555 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 5556 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 5557 getRoot(), getValue(I.getOperand(0)), 5558 DAG.getSrcValue(I.getOperand(0))); 5559 setValue(&I, V); 5560 DAG.setRoot(V.getValue(1)); 5561 } 5562 5563 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 5564 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 5565 MVT::Other, getRoot(), 5566 getValue(I.getOperand(1)), 5567 DAG.getSrcValue(I.getOperand(1)))); 5568 } 5569 5570 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 5571 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 5572 MVT::Other, getRoot(), 5573 getValue(I.getOperand(1)), 5574 getValue(I.getOperand(2)), 5575 DAG.getSrcValue(I.getOperand(1)), 5576 DAG.getSrcValue(I.getOperand(2)))); 5577 } 5578 5579 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 5580 /// implementation, which just calls LowerCall. 5581 /// FIXME: When all targets are 5582 /// migrated to using LowerCall, this hook should be integrated into SDISel. 5583 std::pair<SDValue, SDValue> 5584 TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy, 5585 bool RetSExt, bool RetZExt, bool isVarArg, 5586 bool isInreg, unsigned NumFixedArgs, 5587 CallingConv::ID CallConv, bool isTailCall, 5588 bool isReturnValueUsed, 5589 SDValue Callee, 5590 ArgListTy &Args, SelectionDAG &DAG, 5591 DebugLoc dl) const { 5592 // Handle all of the outgoing arguments. 5593 SmallVector<ISD::OutputArg, 32> Outs; 5594 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 5595 SmallVector<EVT, 4> ValueVTs; 5596 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 5597 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5598 Value != NumValues; ++Value) { 5599 EVT VT = ValueVTs[Value]; 5600 const Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 5601 SDValue Op = SDValue(Args[i].Node.getNode(), 5602 Args[i].Node.getResNo() + Value); 5603 ISD::ArgFlagsTy Flags; 5604 unsigned OriginalAlignment = 5605 getTargetData()->getABITypeAlignment(ArgTy); 5606 5607 if (Args[i].isZExt) 5608 Flags.setZExt(); 5609 if (Args[i].isSExt) 5610 Flags.setSExt(); 5611 if (Args[i].isInReg) 5612 Flags.setInReg(); 5613 if (Args[i].isSRet) 5614 Flags.setSRet(); 5615 if (Args[i].isByVal) { 5616 Flags.setByVal(); 5617 const PointerType *Ty = cast<PointerType>(Args[i].Ty); 5618 const Type *ElementTy = Ty->getElementType(); 5619 unsigned FrameAlign = getByValTypeAlignment(ElementTy); 5620 unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy); 5621 // For ByVal, alignment should come from FE. BE will guess if this 5622 // info is not there but there are cases it cannot get right. 5623 if (Args[i].Alignment) 5624 FrameAlign = Args[i].Alignment; 5625 Flags.setByValAlign(FrameAlign); 5626 Flags.setByValSize(FrameSize); 5627 } 5628 if (Args[i].isNest) 5629 Flags.setNest(); 5630 Flags.setOrigAlign(OriginalAlignment); 5631 5632 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 5633 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 5634 SmallVector<SDValue, 4> Parts(NumParts); 5635 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 5636 5637 if (Args[i].isSExt) 5638 ExtendKind = ISD::SIGN_EXTEND; 5639 else if (Args[i].isZExt) 5640 ExtendKind = ISD::ZERO_EXTEND; 5641 5642 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 5643 PartVT, ExtendKind); 5644 5645 for (unsigned j = 0; j != NumParts; ++j) { 5646 // if it isn't first piece, alignment must be 1 5647 ISD::OutputArg MyFlags(Flags, Parts[j], i < NumFixedArgs); 5648 if (NumParts > 1 && j == 0) 5649 MyFlags.Flags.setSplit(); 5650 else if (j != 0) 5651 MyFlags.Flags.setOrigAlign(1); 5652 5653 Outs.push_back(MyFlags); 5654 } 5655 } 5656 } 5657 5658 // Handle the incoming return values from the call. 5659 SmallVector<ISD::InputArg, 32> Ins; 5660 SmallVector<EVT, 4> RetTys; 5661 ComputeValueVTs(*this, RetTy, RetTys); 5662 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5663 EVT VT = RetTys[I]; 5664 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5665 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5666 for (unsigned i = 0; i != NumRegs; ++i) { 5667 ISD::InputArg MyFlags; 5668 MyFlags.VT = RegisterVT; 5669 MyFlags.Used = isReturnValueUsed; 5670 if (RetSExt) 5671 MyFlags.Flags.setSExt(); 5672 if (RetZExt) 5673 MyFlags.Flags.setZExt(); 5674 if (isInreg) 5675 MyFlags.Flags.setInReg(); 5676 Ins.push_back(MyFlags); 5677 } 5678 } 5679 5680 SmallVector<SDValue, 4> InVals; 5681 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 5682 Outs, Ins, dl, DAG, InVals); 5683 5684 // Verify that the target's LowerCall behaved as expected. 5685 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 5686 "LowerCall didn't return a valid chain!"); 5687 assert((!isTailCall || InVals.empty()) && 5688 "LowerCall emitted a return value for a tail call!"); 5689 assert((isTailCall || InVals.size() == Ins.size()) && 5690 "LowerCall didn't emit the correct number of values!"); 5691 5692 // For a tail call, the return value is merely live-out and there aren't 5693 // any nodes in the DAG representing it. Return a special value to 5694 // indicate that a tail call has been emitted and no more Instructions 5695 // should be processed in the current block. 5696 if (isTailCall) { 5697 DAG.setRoot(Chain); 5698 return std::make_pair(SDValue(), SDValue()); 5699 } 5700 5701 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5702 assert(InVals[i].getNode() && 5703 "LowerCall emitted a null value!"); 5704 assert(Ins[i].VT == InVals[i].getValueType() && 5705 "LowerCall emitted a value with the wrong type!"); 5706 }); 5707 5708 // Collect the legal value parts into potentially illegal values 5709 // that correspond to the original function's return values. 5710 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5711 if (RetSExt) 5712 AssertOp = ISD::AssertSext; 5713 else if (RetZExt) 5714 AssertOp = ISD::AssertZext; 5715 SmallVector<SDValue, 4> ReturnValues; 5716 unsigned CurReg = 0; 5717 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5718 EVT VT = RetTys[I]; 5719 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 5720 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 5721 5722 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 5723 NumRegs, RegisterVT, VT, 5724 AssertOp)); 5725 CurReg += NumRegs; 5726 } 5727 5728 // For a function returning void, there is no return value. We can't create 5729 // such a node, so we just return a null return value in that case. In 5730 // that case, nothing will actualy look at the value. 5731 if (ReturnValues.empty()) 5732 return std::make_pair(SDValue(), Chain); 5733 5734 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 5735 DAG.getVTList(&RetTys[0], RetTys.size()), 5736 &ReturnValues[0], ReturnValues.size()); 5737 return std::make_pair(Res, Chain); 5738 } 5739 5740 void TargetLowering::LowerOperationWrapper(SDNode *N, 5741 SmallVectorImpl<SDValue> &Results, 5742 SelectionDAG &DAG) const { 5743 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 5744 if (Res.getNode()) 5745 Results.push_back(Res); 5746 } 5747 5748 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 5749 llvm_unreachable("LowerOperation not implemented for this target!"); 5750 return SDValue(); 5751 } 5752 5753 void 5754 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 5755 SDValue Op = getValue(V); 5756 assert((Op.getOpcode() != ISD::CopyFromReg || 5757 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 5758 "Copy from a reg to the same reg!"); 5759 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 5760 5761 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 5762 SDValue Chain = DAG.getEntryNode(); 5763 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 5764 PendingExports.push_back(Chain); 5765 } 5766 5767 #include "llvm/CodeGen/SelectionDAGISel.h" 5768 5769 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 5770 // If this is the entry block, emit arguments. 5771 const Function &F = *LLVMBB->getParent(); 5772 SelectionDAG &DAG = SDB->DAG; 5773 SDValue OldRoot = DAG.getRoot(); 5774 DebugLoc dl = SDB->getCurDebugLoc(); 5775 const TargetData *TD = TLI.getTargetData(); 5776 SmallVector<ISD::InputArg, 16> Ins; 5777 5778 // Check whether the function can return without sret-demotion. 5779 SmallVector<EVT, 4> OutVTs; 5780 SmallVector<ISD::ArgFlagsTy, 4> OutsFlags; 5781 getReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 5782 OutVTs, OutsFlags, TLI); 5783 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo(); 5784 5785 FLI.CanLowerReturn = TLI.CanLowerReturn(F.getCallingConv(), F.isVarArg(), 5786 OutVTs, OutsFlags, DAG); 5787 if (!FLI.CanLowerReturn) { 5788 // Put in an sret pointer parameter before all the other parameters. 5789 SmallVector<EVT, 1> ValueVTs; 5790 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5791 5792 // NOTE: Assuming that a pointer will never break down to more than one VT 5793 // or one register. 5794 ISD::ArgFlagsTy Flags; 5795 Flags.setSRet(); 5796 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), ValueVTs[0]); 5797 ISD::InputArg RetArg(Flags, RegisterVT, true); 5798 Ins.push_back(RetArg); 5799 } 5800 5801 // Set up the incoming argument description vector. 5802 unsigned Idx = 1; 5803 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 5804 I != E; ++I, ++Idx) { 5805 SmallVector<EVT, 4> ValueVTs; 5806 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5807 bool isArgValueUsed = !I->use_empty(); 5808 for (unsigned Value = 0, NumValues = ValueVTs.size(); 5809 Value != NumValues; ++Value) { 5810 EVT VT = ValueVTs[Value]; 5811 const Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 5812 ISD::ArgFlagsTy Flags; 5813 unsigned OriginalAlignment = 5814 TD->getABITypeAlignment(ArgTy); 5815 5816 if (F.paramHasAttr(Idx, Attribute::ZExt)) 5817 Flags.setZExt(); 5818 if (F.paramHasAttr(Idx, Attribute::SExt)) 5819 Flags.setSExt(); 5820 if (F.paramHasAttr(Idx, Attribute::InReg)) 5821 Flags.setInReg(); 5822 if (F.paramHasAttr(Idx, Attribute::StructRet)) 5823 Flags.setSRet(); 5824 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 5825 Flags.setByVal(); 5826 const PointerType *Ty = cast<PointerType>(I->getType()); 5827 const Type *ElementTy = Ty->getElementType(); 5828 unsigned FrameAlign = TLI.getByValTypeAlignment(ElementTy); 5829 unsigned FrameSize = TD->getTypeAllocSize(ElementTy); 5830 // For ByVal, alignment should be passed from FE. BE will guess if 5831 // this info is not there but there are cases it cannot get right. 5832 if (F.getParamAlignment(Idx)) 5833 FrameAlign = F.getParamAlignment(Idx); 5834 Flags.setByValAlign(FrameAlign); 5835 Flags.setByValSize(FrameSize); 5836 } 5837 if (F.paramHasAttr(Idx, Attribute::Nest)) 5838 Flags.setNest(); 5839 Flags.setOrigAlign(OriginalAlignment); 5840 5841 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5842 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5843 for (unsigned i = 0; i != NumRegs; ++i) { 5844 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 5845 if (NumRegs > 1 && i == 0) 5846 MyFlags.Flags.setSplit(); 5847 // if it isn't first piece, alignment must be 1 5848 else if (i > 0) 5849 MyFlags.Flags.setOrigAlign(1); 5850 Ins.push_back(MyFlags); 5851 } 5852 } 5853 } 5854 5855 // Call the target to set up the argument values. 5856 SmallVector<SDValue, 8> InVals; 5857 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 5858 F.isVarArg(), Ins, 5859 dl, DAG, InVals); 5860 5861 // Verify that the target's LowerFormalArguments behaved as expected. 5862 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 5863 "LowerFormalArguments didn't return a valid chain!"); 5864 assert(InVals.size() == Ins.size() && 5865 "LowerFormalArguments didn't emit the correct number of values!"); 5866 DEBUG({ 5867 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 5868 assert(InVals[i].getNode() && 5869 "LowerFormalArguments emitted a null value!"); 5870 assert(Ins[i].VT == InVals[i].getValueType() && 5871 "LowerFormalArguments emitted a value with the wrong type!"); 5872 } 5873 }); 5874 5875 // Update the DAG with the new chain value resulting from argument lowering. 5876 DAG.setRoot(NewRoot); 5877 5878 // Set up the argument values. 5879 unsigned i = 0; 5880 Idx = 1; 5881 if (!FLI.CanLowerReturn) { 5882 // Create a virtual register for the sret pointer, and put in a copy 5883 // from the sret argument into it. 5884 SmallVector<EVT, 1> ValueVTs; 5885 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 5886 EVT VT = ValueVTs[0]; 5887 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5888 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5889 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 5890 RegVT, VT, AssertOp); 5891 5892 MachineFunction& MF = SDB->DAG.getMachineFunction(); 5893 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 5894 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 5895 FLI.DemoteRegister = SRetReg; 5896 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 5897 SRetReg, ArgValue); 5898 DAG.setRoot(NewRoot); 5899 5900 // i indexes lowered arguments. Bump it past the hidden sret argument. 5901 // Idx indexes LLVM arguments. Don't touch it. 5902 ++i; 5903 } 5904 5905 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 5906 ++I, ++Idx) { 5907 SmallVector<SDValue, 4> ArgValues; 5908 SmallVector<EVT, 4> ValueVTs; 5909 ComputeValueVTs(TLI, I->getType(), ValueVTs); 5910 unsigned NumValues = ValueVTs.size(); 5911 for (unsigned Value = 0; Value != NumValues; ++Value) { 5912 EVT VT = ValueVTs[Value]; 5913 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 5914 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 5915 5916 if (!I->use_empty()) { 5917 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5918 if (F.paramHasAttr(Idx, Attribute::SExt)) 5919 AssertOp = ISD::AssertSext; 5920 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 5921 AssertOp = ISD::AssertZext; 5922 5923 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 5924 NumParts, PartVT, VT, 5925 AssertOp)); 5926 } 5927 5928 i += NumParts; 5929 } 5930 5931 if (!I->use_empty()) { 5932 SDValue Res; 5933 if (!ArgValues.empty()) 5934 Res = DAG.getMergeValues(&ArgValues[0], NumValues, 5935 SDB->getCurDebugLoc()); 5936 SDB->setValue(I, Res); 5937 5938 // If this argument is live outside of the entry block, insert a copy from 5939 // whereever we got it to the vreg that other BB's will reference it as. 5940 SDB->CopyToExportRegsIfNeeded(I); 5941 } 5942 } 5943 5944 assert(i == InVals.size() && "Argument register count mismatch!"); 5945 5946 // Finally, if the target has anything special to do, allow it to do so. 5947 // FIXME: this should insert code into the DAG! 5948 EmitFunctionEntryCode(); 5949 } 5950 5951 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 5952 /// ensure constants are generated when needed. Remember the virtual registers 5953 /// that need to be added to the Machine PHI nodes as input. We cannot just 5954 /// directly add them, because expansion might result in multiple MBB's for one 5955 /// BB. As such, the start of the BB might correspond to a different MBB than 5956 /// the end. 5957 /// 5958 void 5959 SelectionDAGISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 5960 const TerminatorInst *TI = LLVMBB->getTerminator(); 5961 5962 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 5963 5964 // Check successor nodes' PHI nodes that expect a constant to be available 5965 // from this block. 5966 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 5967 const BasicBlock *SuccBB = TI->getSuccessor(succ); 5968 if (!isa<PHINode>(SuccBB->begin())) continue; 5969 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 5970 5971 // If this terminator has multiple identical successors (common for 5972 // switches), only handle each succ once. 5973 if (!SuccsHandled.insert(SuccMBB)) continue; 5974 5975 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 5976 5977 // At this point we know that there is a 1-1 correspondence between LLVM PHI 5978 // nodes and Machine PHI nodes, but the incoming operands have not been 5979 // emitted yet. 5980 for (BasicBlock::const_iterator I = SuccBB->begin(); 5981 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 5982 // Ignore dead phi's. 5983 if (PN->use_empty()) continue; 5984 5985 unsigned Reg; 5986 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 5987 5988 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 5989 unsigned &RegOut = SDB->ConstantsOut[C]; 5990 if (RegOut == 0) { 5991 RegOut = FuncInfo->CreateRegForValue(C); 5992 SDB->CopyValueToVirtualRegister(C, RegOut); 5993 } 5994 Reg = RegOut; 5995 } else { 5996 Reg = FuncInfo->ValueMap[PHIOp]; 5997 if (Reg == 0) { 5998 assert(isa<AllocaInst>(PHIOp) && 5999 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6000 "Didn't codegen value into a register!??"); 6001 Reg = FuncInfo->CreateRegForValue(PHIOp); 6002 SDB->CopyValueToVirtualRegister(PHIOp, Reg); 6003 } 6004 } 6005 6006 // Remember that this register needs to added to the machine PHI node as 6007 // the input for this MBB. 6008 SmallVector<EVT, 4> ValueVTs; 6009 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6010 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6011 EVT VT = ValueVTs[vti]; 6012 unsigned NumRegisters = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6013 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6014 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6015 Reg += NumRegisters; 6016 } 6017 } 6018 } 6019 SDB->ConstantsOut.clear(); 6020 } 6021 6022 /// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only 6023 /// supports legal types, and it emits MachineInstrs directly instead of 6024 /// creating SelectionDAG nodes. 6025 /// 6026 bool 6027 SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(const BasicBlock *LLVMBB, 6028 FastISel *F) { 6029 const TerminatorInst *TI = LLVMBB->getTerminator(); 6030 6031 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6032 unsigned OrigNumPHINodesToUpdate = SDB->PHINodesToUpdate.size(); 6033 6034 // Check successor nodes' PHI nodes that expect a constant to be available 6035 // from this block. 6036 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6037 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6038 if (!isa<PHINode>(SuccBB->begin())) continue; 6039 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB]; 6040 6041 // If this terminator has multiple identical successors (common for 6042 // switches), only handle each succ once. 6043 if (!SuccsHandled.insert(SuccMBB)) continue; 6044 6045 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6046 6047 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6048 // nodes and Machine PHI nodes, but the incoming operands have not been 6049 // emitted yet. 6050 for (BasicBlock::const_iterator I = SuccBB->begin(); 6051 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6052 // Ignore dead phi's. 6053 if (PN->use_empty()) continue; 6054 6055 // Only handle legal types. Two interesting things to note here. First, 6056 // by bailing out early, we may leave behind some dead instructions, 6057 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 6058 // own moves. Second, this check is necessary becuase FastISel doesn't 6059 // use CreateRegForValue to create registers, so it always creates 6060 // exactly one register for each non-void instruction. 6061 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 6062 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 6063 // Promote MVT::i1. 6064 if (VT == MVT::i1) 6065 VT = TLI.getTypeToTransformTo(*CurDAG->getContext(), VT); 6066 else { 6067 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6068 return false; 6069 } 6070 } 6071 6072 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6073 6074 unsigned Reg = F->getRegForValue(PHIOp); 6075 if (Reg == 0) { 6076 SDB->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 6077 return false; 6078 } 6079 SDB->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 6080 } 6081 } 6082 6083 return true; 6084 } 6085