xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e41be38efd9465d34a701476de455395f3512799)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // Return the calling convention if the Value passed requires ABI mangling as it
161 // is a parameter to a function or a return value from a function which is not
162 // an intrinsic.
163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
164   if (auto *R = dyn_cast<ReturnInst>(V))
165     return R->getParent()->getParent()->getCallingConv();
166 
167   if (auto *CI = dyn_cast<CallInst>(V)) {
168     const bool IsInlineAsm = CI->isInlineAsm();
169     const bool IsIndirectFunctionCall =
170         !IsInlineAsm && !CI->getCalledFunction();
171 
172     // It is possible that the call instruction is an inline asm statement or an
173     // indirect function call in which case the return value of
174     // getCalledFunction() would be nullptr.
175     const bool IsInstrinsicCall =
176         !IsInlineAsm && !IsIndirectFunctionCall &&
177         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
178 
179     if (!IsInlineAsm && !IsInstrinsicCall)
180       return CI->getCallingConv();
181   }
182 
183   return None;
184 }
185 
186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
187                                       const SDValue *Parts, unsigned NumParts,
188                                       MVT PartVT, EVT ValueVT, const Value *V,
189                                       Optional<CallingConv::ID> CC);
190 
191 /// getCopyFromParts - Create a value that contains the specified legal parts
192 /// combined into the value they represent.  If the parts combine to a type
193 /// larger than ValueVT then AssertOp can be used to specify whether the extra
194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
195 /// (ISD::AssertSext).
196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
197                                 const SDValue *Parts, unsigned NumParts,
198                                 MVT PartVT, EVT ValueVT, const Value *V,
199                                 Optional<CallingConv::ID> CC = None,
200                                 Optional<ISD::NodeType> AssertOp = None) {
201   if (ValueVT.isVector())
202     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
203                                   CC);
204 
205   assert(NumParts > 0 && "No parts to assemble!");
206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
207   SDValue Val = Parts[0];
208 
209   if (NumParts > 1) {
210     // Assemble the value from multiple parts.
211     if (ValueVT.isInteger()) {
212       unsigned PartBits = PartVT.getSizeInBits();
213       unsigned ValueBits = ValueVT.getSizeInBits();
214 
215       // Assemble the power of 2 part.
216       unsigned RoundParts = NumParts & (NumParts - 1) ?
217         1 << Log2_32(NumParts) : NumParts;
218       unsigned RoundBits = PartBits * RoundParts;
219       EVT RoundVT = RoundBits == ValueBits ?
220         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
221       SDValue Lo, Hi;
222 
223       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
224 
225       if (RoundParts > 2) {
226         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
227                               PartVT, HalfVT, V);
228         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
229                               RoundParts / 2, PartVT, HalfVT, V);
230       } else {
231         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
232         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
233       }
234 
235       if (DAG.getDataLayout().isBigEndian())
236         std::swap(Lo, Hi);
237 
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
239 
240       if (RoundParts < NumParts) {
241         // Assemble the trailing non-power-of-2 part.
242         unsigned OddParts = NumParts - RoundParts;
243         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
244         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
245                               OddVT, V, CC);
246 
247         // Combine the round and odd parts.
248         Lo = Val;
249         if (DAG.getDataLayout().isBigEndian())
250           std::swap(Lo, Hi);
251         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
252         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
253         Hi =
254             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
255                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
256                                         TLI.getPointerTy(DAG.getDataLayout())));
257         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
258         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
259       }
260     } else if (PartVT.isFloatingPoint()) {
261       // FP split into multiple FP parts (for ppcf128)
262       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
263              "Unexpected split");
264       SDValue Lo, Hi;
265       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
266       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
267       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
268         std::swap(Lo, Hi);
269       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
270     } else {
271       // FP split into integer parts (soft fp)
272       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
273              !PartVT.isVector() && "Unexpected split");
274       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
275       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
276     }
277   }
278 
279   // There is now one part, held in Val.  Correct it to match ValueVT.
280   // PartEVT is the type of the register class that holds the value.
281   // ValueVT is the type of the inline asm operation.
282   EVT PartEVT = Val.getValueType();
283 
284   if (PartEVT == ValueVT)
285     return Val;
286 
287   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
288       ValueVT.bitsLT(PartEVT)) {
289     // For an FP value in an integer part, we need to truncate to the right
290     // width first.
291     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
292     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
293   }
294 
295   // Handle types that have the same size.
296   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
297     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
298 
299   // Handle types with different sizes.
300   if (PartEVT.isInteger() && ValueVT.isInteger()) {
301     if (ValueVT.bitsLT(PartEVT)) {
302       // For a truncate, see if we have any information to
303       // indicate whether the truncated bits will always be
304       // zero or sign-extension.
305       if (AssertOp.hasValue())
306         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
307                           DAG.getValueType(ValueVT));
308       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
309     }
310     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
311   }
312 
313   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
314     // FP_ROUND's are always exact here.
315     if (ValueVT.bitsLT(Val.getValueType()))
316       return DAG.getNode(
317           ISD::FP_ROUND, DL, ValueVT, Val,
318           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
319 
320     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
321   }
322 
323   llvm_unreachable("Unknown mismatch!");
324 }
325 
326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
327                                               const Twine &ErrMsg) {
328   const Instruction *I = dyn_cast_or_null<Instruction>(V);
329   if (!V)
330     return Ctx.emitError(ErrMsg);
331 
332   const char *AsmError = ", possible invalid constraint for vector type";
333   if (const CallInst *CI = dyn_cast<CallInst>(I))
334     if (isa<InlineAsm>(CI->getCalledValue()))
335       return Ctx.emitError(I, ErrMsg + AsmError);
336 
337   return Ctx.emitError(I, ErrMsg);
338 }
339 
340 /// getCopyFromPartsVector - Create a value that contains the specified legal
341 /// parts combined into the value they represent.  If the parts combine to a
342 /// type larger than ValueVT then AssertOp can be used to specify whether the
343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
344 /// ValueVT (ISD::AssertSext).
345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
346                                       const SDValue *Parts, unsigned NumParts,
347                                       MVT PartVT, EVT ValueVT, const Value *V,
348                                       Optional<CallingConv::ID> CallConv) {
349   assert(ValueVT.isVector() && "Not a vector value");
350   assert(NumParts > 0 && "No parts to assemble!");
351   const bool IsABIRegCopy = CallConv.hasValue();
352 
353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
354   SDValue Val = Parts[0];
355 
356   // Handle a multi-element vector.
357   if (NumParts > 1) {
358     EVT IntermediateVT;
359     MVT RegisterVT;
360     unsigned NumIntermediates;
361     unsigned NumRegs;
362 
363     if (IsABIRegCopy) {
364       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
365           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
366           NumIntermediates, RegisterVT);
367     } else {
368       NumRegs =
369           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
370                                      NumIntermediates, RegisterVT);
371     }
372 
373     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
374     NumParts = NumRegs; // Silence a compiler warning.
375     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
376     assert(RegisterVT.getSizeInBits() ==
377            Parts[0].getSimpleValueType().getSizeInBits() &&
378            "Part type sizes don't match!");
379 
380     // Assemble the parts into intermediate operands.
381     SmallVector<SDValue, 8> Ops(NumIntermediates);
382     if (NumIntermediates == NumParts) {
383       // If the register was not expanded, truncate or copy the value,
384       // as appropriate.
385       for (unsigned i = 0; i != NumParts; ++i)
386         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
387                                   PartVT, IntermediateVT, V);
388     } else if (NumParts > 0) {
389       // If the intermediate type was expanded, build the intermediate
390       // operands from the parts.
391       assert(NumParts % NumIntermediates == 0 &&
392              "Must expand into a divisible number of parts!");
393       unsigned Factor = NumParts / NumIntermediates;
394       for (unsigned i = 0; i != NumIntermediates; ++i)
395         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
396                                   PartVT, IntermediateVT, V);
397     }
398 
399     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
400     // intermediate operands.
401     EVT BuiltVectorTy =
402         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
403                          (IntermediateVT.isVector()
404                               ? IntermediateVT.getVectorNumElements() * NumParts
405                               : NumIntermediates));
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // If the element type of the source/dest vectors are the same, but the
419     // parts vector has more elements than the value vector, then we have a
420     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
421     // elements we want.
422     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
423       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
424              "Cannot narrow, it would be a lossy transformation");
425       return DAG.getNode(
426           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
427           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
428     }
429 
430     // Vector/Vector bitcast.
431     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
432       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433 
434     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
435       "Cannot handle this kind of promotion");
436     // Promoted vector extract
437     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
438 
439   }
440 
441   // Trivial bitcast if the types are the same size and the destination
442   // vector type is legal.
443   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
444       TLI.isTypeLegal(ValueVT))
445     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
446 
447   if (ValueVT.getVectorNumElements() != 1) {
448      // Certain ABIs require that vectors are passed as integers. For vectors
449      // are the same size, this is an obvious bitcast.
450      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
451        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
453        // Bitcast Val back the original type and extract the corresponding
454        // vector we want.
455        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
456        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
457                                            ValueVT.getVectorElementType(), Elts);
458        Val = DAG.getBitcast(WiderVecType, Val);
459        return DAG.getNode(
460            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
461            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
462      }
463 
464      diagnosePossiblyInvalidConstraint(
465          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
466      return DAG.getUNDEF(ValueVT);
467   }
468 
469   // Handle cases such as i8 -> <1 x i1>
470   EVT ValueSVT = ValueVT.getVectorElementType();
471   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
472     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
473                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
474 
475   return DAG.getBuildVector(ValueVT, DL, Val);
476 }
477 
478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
479                                  SDValue Val, SDValue *Parts, unsigned NumParts,
480                                  MVT PartVT, const Value *V,
481                                  Optional<CallingConv::ID> CallConv);
482 
483 /// getCopyToParts - Create a series of nodes that contain the specified value
484 /// split into legal parts.  If the parts contain more bits than Val, then, for
485 /// integers, ExtendKind can be used to specify how to generate the extra bits.
486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
487                            SDValue *Parts, unsigned NumParts, MVT PartVT,
488                            const Value *V,
489                            Optional<CallingConv::ID> CallConv = None,
490                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = 1 << Log2_32(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574                                  DAG.getIntPtrConstant(RoundBits, DL));
575     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
576                    CallConv);
577 
578     if (DAG.getDataLayout().isBigEndian())
579       // The odd parts were reversed by getCopyToParts - unreverse them.
580       std::reverse(Parts + RoundParts, Parts + NumParts);
581 
582     NumParts = RoundParts;
583     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
584     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
585   }
586 
587   // The number of parts is a power of 2.  Repeatedly bisect the value using
588   // EXTRACT_ELEMENT.
589   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
590                          EVT::getIntegerVT(*DAG.getContext(),
591                                            ValueVT.getSizeInBits()),
592                          Val);
593 
594   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
595     for (unsigned i = 0; i < NumParts; i += StepSize) {
596       unsigned ThisBits = StepSize * PartBits / 2;
597       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
598       SDValue &Part0 = Parts[i];
599       SDValue &Part1 = Parts[i+StepSize/2];
600 
601       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
602                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
603       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
605 
606       if (ThisBits == PartBits && ThisVT != PartVT) {
607         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
608         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
609       }
610     }
611   }
612 
613   if (DAG.getDataLayout().isBigEndian())
614     std::reverse(Parts, Parts + OrigNumParts);
615 }
616 
617 static SDValue widenVectorToPartType(SelectionDAG &DAG,
618                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
619   if (!PartVT.isVector())
620     return SDValue();
621 
622   EVT ValueVT = Val.getValueType();
623   unsigned PartNumElts = PartVT.getVectorNumElements();
624   unsigned ValueNumElts = ValueVT.getVectorNumElements();
625   if (PartNumElts > ValueNumElts &&
626       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
627     EVT ElementVT = PartVT.getVectorElementType();
628     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
629     // undef elements.
630     SmallVector<SDValue, 16> Ops;
631     DAG.ExtractVectorElements(Val, Ops);
632     SDValue EltUndef = DAG.getUNDEF(ElementVT);
633     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
634       Ops.push_back(EltUndef);
635 
636     // FIXME: Use CONCAT for 2x -> 4x.
637     return DAG.getBuildVector(PartVT, DL, Ops);
638   }
639 
640   return SDValue();
641 }
642 
643 /// getCopyToPartsVector - Create a series of nodes that contain the specified
644 /// value split into legal parts.
645 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
646                                  SDValue Val, SDValue *Parts, unsigned NumParts,
647                                  MVT PartVT, const Value *V,
648                                  Optional<CallingConv::ID> CallConv) {
649   EVT ValueVT = Val.getValueType();
650   assert(ValueVT.isVector() && "Not a vector");
651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
652   const bool IsABIRegCopy = CallConv.hasValue();
653 
654   if (NumParts == 1) {
655     EVT PartEVT = PartVT;
656     if (PartEVT == ValueVT) {
657       // Nothing to do.
658     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
659       // Bitconvert vector->vector case.
660       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
661     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
662       Val = Widened;
663     } else if (PartVT.isVector() &&
664                PartEVT.getVectorElementType().bitsGE(
665                  ValueVT.getVectorElementType()) &&
666                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
667 
668       // Promoted vector extract
669       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
670     } else {
671       if (ValueVT.getVectorNumElements() == 1) {
672         Val = DAG.getNode(
673             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
674             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
675       } else {
676         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
677                "lossy conversion of vector to scalar type");
678         EVT IntermediateType =
679             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
680         Val = DAG.getBitcast(IntermediateType, Val);
681         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682       }
683     }
684 
685     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
686     Parts[0] = Val;
687     return;
688   }
689 
690   // Handle a multi-element vector.
691   EVT IntermediateVT;
692   MVT RegisterVT;
693   unsigned NumIntermediates;
694   unsigned NumRegs;
695   if (IsABIRegCopy) {
696     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
697         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
698         NumIntermediates, RegisterVT);
699   } else {
700     NumRegs =
701         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
702                                    NumIntermediates, RegisterVT);
703   }
704 
705   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
706   NumParts = NumRegs; // Silence a compiler warning.
707   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
708 
709   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
710     IntermediateVT.getVectorNumElements() : 1;
711 
712   // Convert the vector to the appropiate type if necessary.
713   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
714 
715   EVT BuiltVectorTy = EVT::getVectorVT(
716       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
717   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
718   if (ValueVT != BuiltVectorTy) {
719     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
720       Val = Widened;
721 
722     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
723   }
724 
725   // Split the vector into intermediate operands.
726   SmallVector<SDValue, 8> Ops(NumIntermediates);
727   for (unsigned i = 0; i != NumIntermediates; ++i) {
728     if (IntermediateVT.isVector()) {
729       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
730                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
731     } else {
732       Ops[i] = DAG.getNode(
733           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
734           DAG.getConstant(i, DL, IdxVT));
735     }
736   }
737 
738   // Split the intermediate operands into legal parts.
739   if (NumParts == NumIntermediates) {
740     // If the register was not expanded, promote or copy the value,
741     // as appropriate.
742     for (unsigned i = 0; i != NumParts; ++i)
743       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
744   } else if (NumParts > 0) {
745     // If the intermediate type was expanded, split each the value into
746     // legal parts.
747     assert(NumIntermediates != 0 && "division by zero");
748     assert(NumParts % NumIntermediates == 0 &&
749            "Must expand into a divisible number of parts!");
750     unsigned Factor = NumParts / NumIntermediates;
751     for (unsigned i = 0; i != NumIntermediates; ++i)
752       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
753                      CallConv);
754   }
755 }
756 
757 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
758                            EVT valuevt, Optional<CallingConv::ID> CC)
759     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
760       RegCount(1, regs.size()), CallConv(CC) {}
761 
762 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
763                            const DataLayout &DL, unsigned Reg, Type *Ty,
764                            Optional<CallingConv::ID> CC) {
765   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
766 
767   CallConv = CC;
768 
769   for (EVT ValueVT : ValueVTs) {
770     unsigned NumRegs =
771         isABIMangled()
772             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
773             : TLI.getNumRegisters(Context, ValueVT);
774     MVT RegisterVT =
775         isABIMangled()
776             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
777             : TLI.getRegisterType(Context, ValueVT);
778     for (unsigned i = 0; i != NumRegs; ++i)
779       Regs.push_back(Reg + i);
780     RegVTs.push_back(RegisterVT);
781     RegCount.push_back(NumRegs);
782     Reg += NumRegs;
783   }
784 }
785 
786 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
787                                       FunctionLoweringInfo &FuncInfo,
788                                       const SDLoc &dl, SDValue &Chain,
789                                       SDValue *Flag, const Value *V) const {
790   // A Value with type {} or [0 x %t] needs no registers.
791   if (ValueVTs.empty())
792     return SDValue();
793 
794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
795 
796   // Assemble the legal parts into the final values.
797   SmallVector<SDValue, 4> Values(ValueVTs.size());
798   SmallVector<SDValue, 8> Parts;
799   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
800     // Copy the legal parts from the registers.
801     EVT ValueVT = ValueVTs[Value];
802     unsigned NumRegs = RegCount[Value];
803     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
804                                           *DAG.getContext(),
805                                           CallConv.getValue(), RegVTs[Value])
806                                     : RegVTs[Value];
807 
808     Parts.resize(NumRegs);
809     for (unsigned i = 0; i != NumRegs; ++i) {
810       SDValue P;
811       if (!Flag) {
812         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
813       } else {
814         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
815         *Flag = P.getValue(2);
816       }
817 
818       Chain = P.getValue(1);
819       Parts[i] = P;
820 
821       // If the source register was virtual and if we know something about it,
822       // add an assert node.
823       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
824           !RegisterVT.isInteger() || RegisterVT.isVector())
825         continue;
826 
827       const FunctionLoweringInfo::LiveOutInfo *LOI =
828         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
829       if (!LOI)
830         continue;
831 
832       unsigned RegSize = RegisterVT.getSizeInBits();
833       unsigned NumSignBits = LOI->NumSignBits;
834       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
835 
836       if (NumZeroBits == RegSize) {
837         // The current value is a zero.
838         // Explicitly express that as it would be easier for
839         // optimizations to kick in.
840         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
841         continue;
842       }
843 
844       // FIXME: We capture more information than the dag can represent.  For
845       // now, just use the tightest assertzext/assertsext possible.
846       bool isSExt;
847       EVT FromVT(MVT::Other);
848       if (NumZeroBits) {
849         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
850         isSExt = false;
851       } else if (NumSignBits > 1) {
852         FromVT =
853             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
854         isSExt = true;
855       } else {
856         continue;
857       }
858       // Add an assertion node.
859       assert(FromVT != MVT::Other);
860       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
861                              RegisterVT, P, DAG.getValueType(FromVT));
862     }
863 
864     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
865                                      RegisterVT, ValueVT, V, CallConv);
866     Part += NumRegs;
867     Parts.clear();
868   }
869 
870   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
871 }
872 
873 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
874                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
875                                  const Value *V,
876                                  ISD::NodeType PreferredExtendType) const {
877   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
878   ISD::NodeType ExtendKind = PreferredExtendType;
879 
880   // Get the list of the values's legal parts.
881   unsigned NumRegs = Regs.size();
882   SmallVector<SDValue, 8> Parts(NumRegs);
883   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
884     unsigned NumParts = RegCount[Value];
885 
886     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
887                                           *DAG.getContext(),
888                                           CallConv.getValue(), RegVTs[Value])
889                                     : RegVTs[Value];
890 
891     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
892       ExtendKind = ISD::ZERO_EXTEND;
893 
894     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
895                    NumParts, RegisterVT, V, CallConv, ExtendKind);
896     Part += NumParts;
897   }
898 
899   // Copy the parts into the registers.
900   SmallVector<SDValue, 8> Chains(NumRegs);
901   for (unsigned i = 0; i != NumRegs; ++i) {
902     SDValue Part;
903     if (!Flag) {
904       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
905     } else {
906       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
907       *Flag = Part.getValue(1);
908     }
909 
910     Chains[i] = Part.getValue(0);
911   }
912 
913   if (NumRegs == 1 || Flag)
914     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
915     // flagged to it. That is the CopyToReg nodes and the user are considered
916     // a single scheduling unit. If we create a TokenFactor and return it as
917     // chain, then the TokenFactor is both a predecessor (operand) of the
918     // user as well as a successor (the TF operands are flagged to the user).
919     // c1, f1 = CopyToReg
920     // c2, f2 = CopyToReg
921     // c3     = TokenFactor c1, c2
922     // ...
923     //        = op c3, ..., f2
924     Chain = Chains[NumRegs-1];
925   else
926     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
927 }
928 
929 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
930                                         unsigned MatchingIdx, const SDLoc &dl,
931                                         SelectionDAG &DAG,
932                                         std::vector<SDValue> &Ops) const {
933   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
934 
935   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
936   if (HasMatching)
937     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
938   else if (!Regs.empty() &&
939            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
940     // Put the register class of the virtual registers in the flag word.  That
941     // way, later passes can recompute register class constraints for inline
942     // assembly as well as normal instructions.
943     // Don't do this for tied operands that can use the regclass information
944     // from the def.
945     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
946     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
947     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
948   }
949 
950   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
951   Ops.push_back(Res);
952 
953   if (Code == InlineAsm::Kind_Clobber) {
954     // Clobbers should always have a 1:1 mapping with registers, and may
955     // reference registers that have illegal (e.g. vector) types. Hence, we
956     // shouldn't try to apply any sort of splitting logic to them.
957     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
958            "No 1:1 mapping from clobbers to regs?");
959     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
960     (void)SP;
961     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
962       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
963       assert(
964           (Regs[I] != SP ||
965            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
966           "If we clobbered the stack pointer, MFI should know about it.");
967     }
968     return;
969   }
970 
971   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
972     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
973     MVT RegisterVT = RegVTs[Value];
974     for (unsigned i = 0; i != NumRegs; ++i) {
975       assert(Reg < Regs.size() && "Mismatch in # registers expected");
976       unsigned TheReg = Regs[Reg++];
977       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
978     }
979   }
980 }
981 
982 SmallVector<std::pair<unsigned, unsigned>, 4>
983 RegsForValue::getRegsAndSizes() const {
984   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
985   unsigned I = 0;
986   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
987     unsigned RegCount = std::get<0>(CountAndVT);
988     MVT RegisterVT = std::get<1>(CountAndVT);
989     unsigned RegisterSize = RegisterVT.getSizeInBits();
990     for (unsigned E = I + RegCount; I != E; ++I)
991       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
992   }
993   return OutVec;
994 }
995 
996 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
997                                const TargetLibraryInfo *li) {
998   AA = aa;
999   GFI = gfi;
1000   LibInfo = li;
1001   DL = &DAG.getDataLayout();
1002   Context = DAG.getContext();
1003   LPadToCallSiteMap.clear();
1004 }
1005 
1006 void SelectionDAGBuilder::clear() {
1007   NodeMap.clear();
1008   UnusedArgNodeMap.clear();
1009   PendingLoads.clear();
1010   PendingExports.clear();
1011   CurInst = nullptr;
1012   HasTailCall = false;
1013   SDNodeOrder = LowestSDNodeOrder;
1014   StatepointLowering.clear();
1015 }
1016 
1017 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1018   DanglingDebugInfoMap.clear();
1019 }
1020 
1021 SDValue SelectionDAGBuilder::getRoot() {
1022   if (PendingLoads.empty())
1023     return DAG.getRoot();
1024 
1025   if (PendingLoads.size() == 1) {
1026     SDValue Root = PendingLoads[0];
1027     DAG.setRoot(Root);
1028     PendingLoads.clear();
1029     return Root;
1030   }
1031 
1032   // Otherwise, we have to make a token factor node.
1033   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1034                              PendingLoads);
1035   PendingLoads.clear();
1036   DAG.setRoot(Root);
1037   return Root;
1038 }
1039 
1040 SDValue SelectionDAGBuilder::getControlRoot() {
1041   SDValue Root = DAG.getRoot();
1042 
1043   if (PendingExports.empty())
1044     return Root;
1045 
1046   // Turn all of the CopyToReg chains into one factored node.
1047   if (Root.getOpcode() != ISD::EntryToken) {
1048     unsigned i = 0, e = PendingExports.size();
1049     for (; i != e; ++i) {
1050       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1051       if (PendingExports[i].getNode()->getOperand(0) == Root)
1052         break;  // Don't add the root if we already indirectly depend on it.
1053     }
1054 
1055     if (i == e)
1056       PendingExports.push_back(Root);
1057   }
1058 
1059   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1060                      PendingExports);
1061   PendingExports.clear();
1062   DAG.setRoot(Root);
1063   return Root;
1064 }
1065 
1066 void SelectionDAGBuilder::visit(const Instruction &I) {
1067   // Set up outgoing PHI node register values before emitting the terminator.
1068   if (I.isTerminator()) {
1069     HandlePHINodesInSuccessorBlocks(I.getParent());
1070   }
1071 
1072   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1073   if (!isa<DbgInfoIntrinsic>(I))
1074     ++SDNodeOrder;
1075 
1076   CurInst = &I;
1077 
1078   visit(I.getOpcode(), I);
1079 
1080   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1081     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1082     // maps to this instruction.
1083     // TODO: We could handle all flags (nsw, etc) here.
1084     // TODO: If an IR instruction maps to >1 node, only the final node will have
1085     //       flags set.
1086     if (SDNode *Node = getNodeForIRValue(&I)) {
1087       SDNodeFlags IncomingFlags;
1088       IncomingFlags.copyFMF(*FPMO);
1089       if (!Node->getFlags().isDefined())
1090         Node->setFlags(IncomingFlags);
1091       else
1092         Node->intersectFlagsWith(IncomingFlags);
1093     }
1094   }
1095 
1096   if (!I.isTerminator() && !HasTailCall &&
1097       !isStatepoint(&I)) // statepoints handle their exports internally
1098     CopyToExportRegsIfNeeded(&I);
1099 
1100   CurInst = nullptr;
1101 }
1102 
1103 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1104   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1105 }
1106 
1107 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1108   // Note: this doesn't use InstVisitor, because it has to work with
1109   // ConstantExpr's in addition to instructions.
1110   switch (Opcode) {
1111   default: llvm_unreachable("Unknown instruction type encountered!");
1112     // Build the switch statement using the Instruction.def file.
1113 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1114     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1115 #include "llvm/IR/Instruction.def"
1116   }
1117 }
1118 
1119 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1120                                                 const DIExpression *Expr) {
1121   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1122     const DbgValueInst *DI = DDI.getDI();
1123     DIVariable *DanglingVariable = DI->getVariable();
1124     DIExpression *DanglingExpr = DI->getExpression();
1125     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1126       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1127       return true;
1128     }
1129     return false;
1130   };
1131 
1132   for (auto &DDIMI : DanglingDebugInfoMap) {
1133     DanglingDebugInfoVector &DDIV = DDIMI.second;
1134     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1135   }
1136 }
1137 
1138 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1139 // generate the debug data structures now that we've seen its definition.
1140 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1141                                                    SDValue Val) {
1142   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1143   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1144     return;
1145 
1146   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1147   for (auto &DDI : DDIV) {
1148     const DbgValueInst *DI = DDI.getDI();
1149     assert(DI && "Ill-formed DanglingDebugInfo");
1150     DebugLoc dl = DDI.getdl();
1151     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1152     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1153     DILocalVariable *Variable = DI->getVariable();
1154     DIExpression *Expr = DI->getExpression();
1155     assert(Variable->isValidLocationForIntrinsic(dl) &&
1156            "Expected inlined-at fields to agree");
1157     SDDbgValue *SDV;
1158     if (Val.getNode()) {
1159       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1160         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1161                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1162         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1163         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1164         // inserted after the definition of Val when emitting the instructions
1165         // after ISel. An alternative could be to teach
1166         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1167         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1168                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1169                    << ValSDNodeOrder << "\n");
1170         SDV = getDbgValue(Val, Variable, Expr, dl,
1171                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1172         DAG.AddDbgValue(SDV, Val.getNode(), false);
1173       } else
1174         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1175                           << "in EmitFuncArgumentDbgValue\n");
1176     } else
1177       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1178   }
1179   DDIV.clear();
1180 }
1181 
1182 /// getCopyFromRegs - If there was virtual register allocated for the value V
1183 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1184 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1185   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1186   SDValue Result;
1187 
1188   if (It != FuncInfo.ValueMap.end()) {
1189     unsigned InReg = It->second;
1190 
1191     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1192                      DAG.getDataLayout(), InReg, Ty,
1193                      None); // This is not an ABI copy.
1194     SDValue Chain = DAG.getEntryNode();
1195     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1196                                  V);
1197     resolveDanglingDebugInfo(V, Result);
1198   }
1199 
1200   return Result;
1201 }
1202 
1203 /// getValue - Return an SDValue for the given Value.
1204 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1205   // If we already have an SDValue for this value, use it. It's important
1206   // to do this first, so that we don't create a CopyFromReg if we already
1207   // have a regular SDValue.
1208   SDValue &N = NodeMap[V];
1209   if (N.getNode()) return N;
1210 
1211   // If there's a virtual register allocated and initialized for this
1212   // value, use it.
1213   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1214     return copyFromReg;
1215 
1216   // Otherwise create a new SDValue and remember it.
1217   SDValue Val = getValueImpl(V);
1218   NodeMap[V] = Val;
1219   resolveDanglingDebugInfo(V, Val);
1220   return Val;
1221 }
1222 
1223 // Return true if SDValue exists for the given Value
1224 bool SelectionDAGBuilder::findValue(const Value *V) const {
1225   return (NodeMap.find(V) != NodeMap.end()) ||
1226     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1227 }
1228 
1229 /// getNonRegisterValue - Return an SDValue for the given Value, but
1230 /// don't look in FuncInfo.ValueMap for a virtual register.
1231 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1232   // If we already have an SDValue for this value, use it.
1233   SDValue &N = NodeMap[V];
1234   if (N.getNode()) {
1235     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1236       // Remove the debug location from the node as the node is about to be used
1237       // in a location which may differ from the original debug location.  This
1238       // is relevant to Constant and ConstantFP nodes because they can appear
1239       // as constant expressions inside PHI nodes.
1240       N->setDebugLoc(DebugLoc());
1241     }
1242     return N;
1243   }
1244 
1245   // Otherwise create a new SDValue and remember it.
1246   SDValue Val = getValueImpl(V);
1247   NodeMap[V] = Val;
1248   resolveDanglingDebugInfo(V, Val);
1249   return Val;
1250 }
1251 
1252 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1253 /// Create an SDValue for the given value.
1254 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1255   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1256 
1257   if (const Constant *C = dyn_cast<Constant>(V)) {
1258     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1259 
1260     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1261       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1262 
1263     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1264       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1265 
1266     if (isa<ConstantPointerNull>(C)) {
1267       unsigned AS = V->getType()->getPointerAddressSpace();
1268       return DAG.getConstant(0, getCurSDLoc(),
1269                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1270     }
1271 
1272     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1273       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1274 
1275     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1276       return DAG.getUNDEF(VT);
1277 
1278     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1279       visit(CE->getOpcode(), *CE);
1280       SDValue N1 = NodeMap[V];
1281       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1282       return N1;
1283     }
1284 
1285     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1286       SmallVector<SDValue, 4> Constants;
1287       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1288            OI != OE; ++OI) {
1289         SDNode *Val = getValue(*OI).getNode();
1290         // If the operand is an empty aggregate, there are no values.
1291         if (!Val) continue;
1292         // Add each leaf value from the operand to the Constants list
1293         // to form a flattened list of all the values.
1294         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1295           Constants.push_back(SDValue(Val, i));
1296       }
1297 
1298       return DAG.getMergeValues(Constants, getCurSDLoc());
1299     }
1300 
1301     if (const ConstantDataSequential *CDS =
1302           dyn_cast<ConstantDataSequential>(C)) {
1303       SmallVector<SDValue, 4> Ops;
1304       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1305         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1306         // Add each leaf value from the operand to the Constants list
1307         // to form a flattened list of all the values.
1308         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1309           Ops.push_back(SDValue(Val, i));
1310       }
1311 
1312       if (isa<ArrayType>(CDS->getType()))
1313         return DAG.getMergeValues(Ops, getCurSDLoc());
1314       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1315     }
1316 
1317     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1318       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1319              "Unknown struct or array constant!");
1320 
1321       SmallVector<EVT, 4> ValueVTs;
1322       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1323       unsigned NumElts = ValueVTs.size();
1324       if (NumElts == 0)
1325         return SDValue(); // empty struct
1326       SmallVector<SDValue, 4> Constants(NumElts);
1327       for (unsigned i = 0; i != NumElts; ++i) {
1328         EVT EltVT = ValueVTs[i];
1329         if (isa<UndefValue>(C))
1330           Constants[i] = DAG.getUNDEF(EltVT);
1331         else if (EltVT.isFloatingPoint())
1332           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1333         else
1334           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1335       }
1336 
1337       return DAG.getMergeValues(Constants, getCurSDLoc());
1338     }
1339 
1340     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1341       return DAG.getBlockAddress(BA, VT);
1342 
1343     VectorType *VecTy = cast<VectorType>(V->getType());
1344     unsigned NumElements = VecTy->getNumElements();
1345 
1346     // Now that we know the number and type of the elements, get that number of
1347     // elements into the Ops array based on what kind of constant it is.
1348     SmallVector<SDValue, 16> Ops;
1349     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1350       for (unsigned i = 0; i != NumElements; ++i)
1351         Ops.push_back(getValue(CV->getOperand(i)));
1352     } else {
1353       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1354       EVT EltVT =
1355           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1356 
1357       SDValue Op;
1358       if (EltVT.isFloatingPoint())
1359         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1360       else
1361         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1362       Ops.assign(NumElements, Op);
1363     }
1364 
1365     // Create a BUILD_VECTOR node.
1366     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1367   }
1368 
1369   // If this is a static alloca, generate it as the frameindex instead of
1370   // computation.
1371   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1372     DenseMap<const AllocaInst*, int>::iterator SI =
1373       FuncInfo.StaticAllocaMap.find(AI);
1374     if (SI != FuncInfo.StaticAllocaMap.end())
1375       return DAG.getFrameIndex(SI->second,
1376                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1377   }
1378 
1379   // If this is an instruction which fast-isel has deferred, select it now.
1380   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1381     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1382 
1383     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1384                      Inst->getType(), getABIRegCopyCC(V));
1385     SDValue Chain = DAG.getEntryNode();
1386     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1387   }
1388 
1389   llvm_unreachable("Can't get register for value!");
1390 }
1391 
1392 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1393   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1394   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1395   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1396   bool IsSEH = isAsynchronousEHPersonality(Pers);
1397   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1398   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1399   if (!IsSEH)
1400     CatchPadMBB->setIsEHScopeEntry();
1401   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1402   if (IsMSVCCXX || IsCoreCLR)
1403     CatchPadMBB->setIsEHFuncletEntry();
1404   // Wasm does not need catchpads anymore
1405   if (!IsWasmCXX)
1406     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1407                             getControlRoot()));
1408 }
1409 
1410 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1411   // Update machine-CFG edge.
1412   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1413   FuncInfo.MBB->addSuccessor(TargetMBB);
1414 
1415   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1416   bool IsSEH = isAsynchronousEHPersonality(Pers);
1417   if (IsSEH) {
1418     // If this is not a fall-through branch or optimizations are switched off,
1419     // emit the branch.
1420     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1421         TM.getOptLevel() == CodeGenOpt::None)
1422       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1423                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1424     return;
1425   }
1426 
1427   // Figure out the funclet membership for the catchret's successor.
1428   // This will be used by the FuncletLayout pass to determine how to order the
1429   // BB's.
1430   // A 'catchret' returns to the outer scope's color.
1431   Value *ParentPad = I.getCatchSwitchParentPad();
1432   const BasicBlock *SuccessorColor;
1433   if (isa<ConstantTokenNone>(ParentPad))
1434     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1435   else
1436     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1437   assert(SuccessorColor && "No parent funclet for catchret!");
1438   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1439   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1440 
1441   // Create the terminator node.
1442   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1443                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1444                             DAG.getBasicBlock(SuccessorColorMBB));
1445   DAG.setRoot(Ret);
1446 }
1447 
1448 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1449   // Don't emit any special code for the cleanuppad instruction. It just marks
1450   // the start of an EH scope/funclet.
1451   FuncInfo.MBB->setIsEHScopeEntry();
1452   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1453   if (Pers != EHPersonality::Wasm_CXX) {
1454     FuncInfo.MBB->setIsEHFuncletEntry();
1455     FuncInfo.MBB->setIsCleanupFuncletEntry();
1456   }
1457 }
1458 
1459 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1460 /// many places it could ultimately go. In the IR, we have a single unwind
1461 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1462 /// This function skips over imaginary basic blocks that hold catchswitch
1463 /// instructions, and finds all the "real" machine
1464 /// basic block destinations. As those destinations may not be successors of
1465 /// EHPadBB, here we also calculate the edge probability to those destinations.
1466 /// The passed-in Prob is the edge probability to EHPadBB.
1467 static void findUnwindDestinations(
1468     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1469     BranchProbability Prob,
1470     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1471         &UnwindDests) {
1472   EHPersonality Personality =
1473     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1474   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1475   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1476   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1477   bool IsSEH = isAsynchronousEHPersonality(Personality);
1478 
1479   while (EHPadBB) {
1480     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1481     BasicBlock *NewEHPadBB = nullptr;
1482     if (isa<LandingPadInst>(Pad)) {
1483       // Stop on landingpads. They are not funclets.
1484       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1485       break;
1486     } else if (isa<CleanupPadInst>(Pad)) {
1487       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1488       // personalities.
1489       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1490       UnwindDests.back().first->setIsEHScopeEntry();
1491       if (!IsWasmCXX)
1492         UnwindDests.back().first->setIsEHFuncletEntry();
1493       break;
1494     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1495       // Add the catchpad handlers to the possible destinations.
1496       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1497         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1498         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1499         if (IsMSVCCXX || IsCoreCLR)
1500           UnwindDests.back().first->setIsEHFuncletEntry();
1501         if (!IsSEH)
1502           UnwindDests.back().first->setIsEHScopeEntry();
1503       }
1504       NewEHPadBB = CatchSwitch->getUnwindDest();
1505     } else {
1506       continue;
1507     }
1508 
1509     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1510     if (BPI && NewEHPadBB)
1511       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1512     EHPadBB = NewEHPadBB;
1513   }
1514 }
1515 
1516 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1517   // Update successor info.
1518   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1519   auto UnwindDest = I.getUnwindDest();
1520   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1521   BranchProbability UnwindDestProb =
1522       (BPI && UnwindDest)
1523           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1524           : BranchProbability::getZero();
1525   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1526   for (auto &UnwindDest : UnwindDests) {
1527     UnwindDest.first->setIsEHPad();
1528     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1529   }
1530   FuncInfo.MBB->normalizeSuccProbs();
1531 
1532   // Create the terminator node.
1533   SDValue Ret =
1534       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1535   DAG.setRoot(Ret);
1536 }
1537 
1538 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1539   report_fatal_error("visitCatchSwitch not yet implemented!");
1540 }
1541 
1542 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1543   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1544   auto &DL = DAG.getDataLayout();
1545   SDValue Chain = getControlRoot();
1546   SmallVector<ISD::OutputArg, 8> Outs;
1547   SmallVector<SDValue, 8> OutVals;
1548 
1549   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1550   // lower
1551   //
1552   //   %val = call <ty> @llvm.experimental.deoptimize()
1553   //   ret <ty> %val
1554   //
1555   // differently.
1556   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1557     LowerDeoptimizingReturn();
1558     return;
1559   }
1560 
1561   if (!FuncInfo.CanLowerReturn) {
1562     unsigned DemoteReg = FuncInfo.DemoteRegister;
1563     const Function *F = I.getParent()->getParent();
1564 
1565     // Emit a store of the return value through the virtual register.
1566     // Leave Outs empty so that LowerReturn won't try to load return
1567     // registers the usual way.
1568     SmallVector<EVT, 1> PtrValueVTs;
1569     ComputeValueVTs(TLI, DL,
1570                     F->getReturnType()->getPointerTo(
1571                         DAG.getDataLayout().getAllocaAddrSpace()),
1572                     PtrValueVTs);
1573 
1574     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1575                                         DemoteReg, PtrValueVTs[0]);
1576     SDValue RetOp = getValue(I.getOperand(0));
1577 
1578     SmallVector<EVT, 4> ValueVTs;
1579     SmallVector<uint64_t, 4> Offsets;
1580     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1581     unsigned NumValues = ValueVTs.size();
1582 
1583     SmallVector<SDValue, 4> Chains(NumValues);
1584     for (unsigned i = 0; i != NumValues; ++i) {
1585       // An aggregate return value cannot wrap around the address space, so
1586       // offsets to its parts don't wrap either.
1587       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1588       Chains[i] = DAG.getStore(
1589           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1590           // FIXME: better loc info would be nice.
1591           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1592     }
1593 
1594     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1595                         MVT::Other, Chains);
1596   } else if (I.getNumOperands() != 0) {
1597     SmallVector<EVT, 4> ValueVTs;
1598     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1599     unsigned NumValues = ValueVTs.size();
1600     if (NumValues) {
1601       SDValue RetOp = getValue(I.getOperand(0));
1602 
1603       const Function *F = I.getParent()->getParent();
1604 
1605       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1606       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1607                                           Attribute::SExt))
1608         ExtendKind = ISD::SIGN_EXTEND;
1609       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1610                                                Attribute::ZExt))
1611         ExtendKind = ISD::ZERO_EXTEND;
1612 
1613       LLVMContext &Context = F->getContext();
1614       bool RetInReg = F->getAttributes().hasAttribute(
1615           AttributeList::ReturnIndex, Attribute::InReg);
1616 
1617       for (unsigned j = 0; j != NumValues; ++j) {
1618         EVT VT = ValueVTs[j];
1619 
1620         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1621           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1622 
1623         CallingConv::ID CC = F->getCallingConv();
1624 
1625         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1626         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1627         SmallVector<SDValue, 4> Parts(NumParts);
1628         getCopyToParts(DAG, getCurSDLoc(),
1629                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1630                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1631 
1632         // 'inreg' on function refers to return value
1633         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1634         if (RetInReg)
1635           Flags.setInReg();
1636 
1637         // Propagate extension type if any
1638         if (ExtendKind == ISD::SIGN_EXTEND)
1639           Flags.setSExt();
1640         else if (ExtendKind == ISD::ZERO_EXTEND)
1641           Flags.setZExt();
1642 
1643         for (unsigned i = 0; i < NumParts; ++i) {
1644           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1645                                         VT, /*isfixed=*/true, 0, 0));
1646           OutVals.push_back(Parts[i]);
1647         }
1648       }
1649     }
1650   }
1651 
1652   // Push in swifterror virtual register as the last element of Outs. This makes
1653   // sure swifterror virtual register will be returned in the swifterror
1654   // physical register.
1655   const Function *F = I.getParent()->getParent();
1656   if (TLI.supportSwiftError() &&
1657       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1658     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1659     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1660     Flags.setSwiftError();
1661     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1662                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1663                                   true /*isfixed*/, 1 /*origidx*/,
1664                                   0 /*partOffs*/));
1665     // Create SDNode for the swifterror virtual register.
1666     OutVals.push_back(
1667         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1668                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1669                         EVT(TLI.getPointerTy(DL))));
1670   }
1671 
1672   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1673   CallingConv::ID CallConv =
1674     DAG.getMachineFunction().getFunction().getCallingConv();
1675   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1676       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1677 
1678   // Verify that the target's LowerReturn behaved as expected.
1679   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1680          "LowerReturn didn't return a valid chain!");
1681 
1682   // Update the DAG with the new chain value resulting from return lowering.
1683   DAG.setRoot(Chain);
1684 }
1685 
1686 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1687 /// created for it, emit nodes to copy the value into the virtual
1688 /// registers.
1689 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1690   // Skip empty types
1691   if (V->getType()->isEmptyTy())
1692     return;
1693 
1694   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1695   if (VMI != FuncInfo.ValueMap.end()) {
1696     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1697     CopyValueToVirtualRegister(V, VMI->second);
1698   }
1699 }
1700 
1701 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1702 /// the current basic block, add it to ValueMap now so that we'll get a
1703 /// CopyTo/FromReg.
1704 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1705   // No need to export constants.
1706   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1707 
1708   // Already exported?
1709   if (FuncInfo.isExportedInst(V)) return;
1710 
1711   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1712   CopyValueToVirtualRegister(V, Reg);
1713 }
1714 
1715 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1716                                                      const BasicBlock *FromBB) {
1717   // The operands of the setcc have to be in this block.  We don't know
1718   // how to export them from some other block.
1719   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1720     // Can export from current BB.
1721     if (VI->getParent() == FromBB)
1722       return true;
1723 
1724     // Is already exported, noop.
1725     return FuncInfo.isExportedInst(V);
1726   }
1727 
1728   // If this is an argument, we can export it if the BB is the entry block or
1729   // if it is already exported.
1730   if (isa<Argument>(V)) {
1731     if (FromBB == &FromBB->getParent()->getEntryBlock())
1732       return true;
1733 
1734     // Otherwise, can only export this if it is already exported.
1735     return FuncInfo.isExportedInst(V);
1736   }
1737 
1738   // Otherwise, constants can always be exported.
1739   return true;
1740 }
1741 
1742 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1743 BranchProbability
1744 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1745                                         const MachineBasicBlock *Dst) const {
1746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747   const BasicBlock *SrcBB = Src->getBasicBlock();
1748   const BasicBlock *DstBB = Dst->getBasicBlock();
1749   if (!BPI) {
1750     // If BPI is not available, set the default probability as 1 / N, where N is
1751     // the number of successors.
1752     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1753     return BranchProbability(1, SuccSize);
1754   }
1755   return BPI->getEdgeProbability(SrcBB, DstBB);
1756 }
1757 
1758 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1759                                                MachineBasicBlock *Dst,
1760                                                BranchProbability Prob) {
1761   if (!FuncInfo.BPI)
1762     Src->addSuccessorWithoutProb(Dst);
1763   else {
1764     if (Prob.isUnknown())
1765       Prob = getEdgeProbability(Src, Dst);
1766     Src->addSuccessor(Dst, Prob);
1767   }
1768 }
1769 
1770 static bool InBlock(const Value *V, const BasicBlock *BB) {
1771   if (const Instruction *I = dyn_cast<Instruction>(V))
1772     return I->getParent() == BB;
1773   return true;
1774 }
1775 
1776 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1777 /// This function emits a branch and is used at the leaves of an OR or an
1778 /// AND operator tree.
1779 void
1780 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1781                                                   MachineBasicBlock *TBB,
1782                                                   MachineBasicBlock *FBB,
1783                                                   MachineBasicBlock *CurBB,
1784                                                   MachineBasicBlock *SwitchBB,
1785                                                   BranchProbability TProb,
1786                                                   BranchProbability FProb,
1787                                                   bool InvertCond) {
1788   const BasicBlock *BB = CurBB->getBasicBlock();
1789 
1790   // If the leaf of the tree is a comparison, merge the condition into
1791   // the caseblock.
1792   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1793     // The operands of the cmp have to be in this block.  We don't know
1794     // how to export them from some other block.  If this is the first block
1795     // of the sequence, no exporting is needed.
1796     if (CurBB == SwitchBB ||
1797         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1798          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1799       ISD::CondCode Condition;
1800       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1801         ICmpInst::Predicate Pred =
1802             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1803         Condition = getICmpCondCode(Pred);
1804       } else {
1805         const FCmpInst *FC = cast<FCmpInst>(Cond);
1806         FCmpInst::Predicate Pred =
1807             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1808         Condition = getFCmpCondCode(Pred);
1809         if (TM.Options.NoNaNsFPMath)
1810           Condition = getFCmpCodeWithoutNaN(Condition);
1811       }
1812 
1813       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1814                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1815       SwitchCases.push_back(CB);
1816       return;
1817     }
1818   }
1819 
1820   // Create a CaseBlock record representing this branch.
1821   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1822   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1823                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1824   SwitchCases.push_back(CB);
1825 }
1826 
1827 /// FindMergedConditions - If Cond is an expression like
1828 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1829                                                MachineBasicBlock *TBB,
1830                                                MachineBasicBlock *FBB,
1831                                                MachineBasicBlock *CurBB,
1832                                                MachineBasicBlock *SwitchBB,
1833                                                Instruction::BinaryOps Opc,
1834                                                BranchProbability TProb,
1835                                                BranchProbability FProb,
1836                                                bool InvertCond) {
1837   // Skip over not part of the tree and remember to invert op and operands at
1838   // next level.
1839   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1840     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1841     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1842       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1843                            !InvertCond);
1844       return;
1845     }
1846   }
1847 
1848   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1849   // Compute the effective opcode for Cond, taking into account whether it needs
1850   // to be inverted, e.g.
1851   //   and (not (or A, B)), C
1852   // gets lowered as
1853   //   and (and (not A, not B), C)
1854   unsigned BOpc = 0;
1855   if (BOp) {
1856     BOpc = BOp->getOpcode();
1857     if (InvertCond) {
1858       if (BOpc == Instruction::And)
1859         BOpc = Instruction::Or;
1860       else if (BOpc == Instruction::Or)
1861         BOpc = Instruction::And;
1862     }
1863   }
1864 
1865   // If this node is not part of the or/and tree, emit it as a branch.
1866   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1867       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1868       BOp->getParent() != CurBB->getBasicBlock() ||
1869       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1870       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1871     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1872                                  TProb, FProb, InvertCond);
1873     return;
1874   }
1875 
1876   //  Create TmpBB after CurBB.
1877   MachineFunction::iterator BBI(CurBB);
1878   MachineFunction &MF = DAG.getMachineFunction();
1879   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1880   CurBB->getParent()->insert(++BBI, TmpBB);
1881 
1882   if (Opc == Instruction::Or) {
1883     // Codegen X | Y as:
1884     // BB1:
1885     //   jmp_if_X TBB
1886     //   jmp TmpBB
1887     // TmpBB:
1888     //   jmp_if_Y TBB
1889     //   jmp FBB
1890     //
1891 
1892     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1893     // The requirement is that
1894     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1895     //     = TrueProb for original BB.
1896     // Assuming the original probabilities are A and B, one choice is to set
1897     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1898     // A/(1+B) and 2B/(1+B). This choice assumes that
1899     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1900     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1901     // TmpBB, but the math is more complicated.
1902 
1903     auto NewTrueProb = TProb / 2;
1904     auto NewFalseProb = TProb / 2 + FProb;
1905     // Emit the LHS condition.
1906     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1907                          NewTrueProb, NewFalseProb, InvertCond);
1908 
1909     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1910     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1911     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1912     // Emit the RHS condition into TmpBB.
1913     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1914                          Probs[0], Probs[1], InvertCond);
1915   } else {
1916     assert(Opc == Instruction::And && "Unknown merge op!");
1917     // Codegen X & Y as:
1918     // BB1:
1919     //   jmp_if_X TmpBB
1920     //   jmp FBB
1921     // TmpBB:
1922     //   jmp_if_Y TBB
1923     //   jmp FBB
1924     //
1925     //  This requires creation of TmpBB after CurBB.
1926 
1927     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1928     // The requirement is that
1929     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1930     //     = FalseProb for original BB.
1931     // Assuming the original probabilities are A and B, one choice is to set
1932     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1933     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1934     // TrueProb for BB1 * FalseProb for TmpBB.
1935 
1936     auto NewTrueProb = TProb + FProb / 2;
1937     auto NewFalseProb = FProb / 2;
1938     // Emit the LHS condition.
1939     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1940                          NewTrueProb, NewFalseProb, InvertCond);
1941 
1942     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1943     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1944     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1945     // Emit the RHS condition into TmpBB.
1946     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1947                          Probs[0], Probs[1], InvertCond);
1948   }
1949 }
1950 
1951 /// If the set of cases should be emitted as a series of branches, return true.
1952 /// If we should emit this as a bunch of and/or'd together conditions, return
1953 /// false.
1954 bool
1955 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1956   if (Cases.size() != 2) return true;
1957 
1958   // If this is two comparisons of the same values or'd or and'd together, they
1959   // will get folded into a single comparison, so don't emit two blocks.
1960   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1961        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1962       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1963        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1964     return false;
1965   }
1966 
1967   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1968   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1969   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1970       Cases[0].CC == Cases[1].CC &&
1971       isa<Constant>(Cases[0].CmpRHS) &&
1972       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1973     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1974       return false;
1975     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1976       return false;
1977   }
1978 
1979   return true;
1980 }
1981 
1982 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1983   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1984 
1985   // Update machine-CFG edges.
1986   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1987 
1988   if (I.isUnconditional()) {
1989     // Update machine-CFG edges.
1990     BrMBB->addSuccessor(Succ0MBB);
1991 
1992     // If this is not a fall-through branch or optimizations are switched off,
1993     // emit the branch.
1994     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1995       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1996                               MVT::Other, getControlRoot(),
1997                               DAG.getBasicBlock(Succ0MBB)));
1998 
1999     return;
2000   }
2001 
2002   // If this condition is one of the special cases we handle, do special stuff
2003   // now.
2004   const Value *CondVal = I.getCondition();
2005   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2006 
2007   // If this is a series of conditions that are or'd or and'd together, emit
2008   // this as a sequence of branches instead of setcc's with and/or operations.
2009   // As long as jumps are not expensive, this should improve performance.
2010   // For example, instead of something like:
2011   //     cmp A, B
2012   //     C = seteq
2013   //     cmp D, E
2014   //     F = setle
2015   //     or C, F
2016   //     jnz foo
2017   // Emit:
2018   //     cmp A, B
2019   //     je foo
2020   //     cmp D, E
2021   //     jle foo
2022   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2023     Instruction::BinaryOps Opcode = BOp->getOpcode();
2024     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2025         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2026         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2027       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2028                            Opcode,
2029                            getEdgeProbability(BrMBB, Succ0MBB),
2030                            getEdgeProbability(BrMBB, Succ1MBB),
2031                            /*InvertCond=*/false);
2032       // If the compares in later blocks need to use values not currently
2033       // exported from this block, export them now.  This block should always
2034       // be the first entry.
2035       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2036 
2037       // Allow some cases to be rejected.
2038       if (ShouldEmitAsBranches(SwitchCases)) {
2039         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2040           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2041           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2042         }
2043 
2044         // Emit the branch for this block.
2045         visitSwitchCase(SwitchCases[0], BrMBB);
2046         SwitchCases.erase(SwitchCases.begin());
2047         return;
2048       }
2049 
2050       // Okay, we decided not to do this, remove any inserted MBB's and clear
2051       // SwitchCases.
2052       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2053         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2054 
2055       SwitchCases.clear();
2056     }
2057   }
2058 
2059   // Create a CaseBlock record representing this branch.
2060   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2061                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2062 
2063   // Use visitSwitchCase to actually insert the fast branch sequence for this
2064   // cond branch.
2065   visitSwitchCase(CB, BrMBB);
2066 }
2067 
2068 /// visitSwitchCase - Emits the necessary code to represent a single node in
2069 /// the binary search tree resulting from lowering a switch instruction.
2070 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2071                                           MachineBasicBlock *SwitchBB) {
2072   SDValue Cond;
2073   SDValue CondLHS = getValue(CB.CmpLHS);
2074   SDLoc dl = CB.DL;
2075 
2076   // Build the setcc now.
2077   if (!CB.CmpMHS) {
2078     // Fold "(X == true)" to X and "(X == false)" to !X to
2079     // handle common cases produced by branch lowering.
2080     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2081         CB.CC == ISD::SETEQ)
2082       Cond = CondLHS;
2083     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2084              CB.CC == ISD::SETEQ) {
2085       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2086       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2087     } else
2088       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2089   } else {
2090     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2091 
2092     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2093     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2094 
2095     SDValue CmpOp = getValue(CB.CmpMHS);
2096     EVT VT = CmpOp.getValueType();
2097 
2098     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2099       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2100                           ISD::SETLE);
2101     } else {
2102       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2103                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2104       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2105                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2106     }
2107   }
2108 
2109   // Update successor info
2110   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2111   // TrueBB and FalseBB are always different unless the incoming IR is
2112   // degenerate. This only happens when running llc on weird IR.
2113   if (CB.TrueBB != CB.FalseBB)
2114     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2115   SwitchBB->normalizeSuccProbs();
2116 
2117   // If the lhs block is the next block, invert the condition so that we can
2118   // fall through to the lhs instead of the rhs block.
2119   if (CB.TrueBB == NextBlock(SwitchBB)) {
2120     std::swap(CB.TrueBB, CB.FalseBB);
2121     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2122     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2123   }
2124 
2125   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2126                                MVT::Other, getControlRoot(), Cond,
2127                                DAG.getBasicBlock(CB.TrueBB));
2128 
2129   // Insert the false branch. Do this even if it's a fall through branch,
2130   // this makes it easier to do DAG optimizations which require inverting
2131   // the branch condition.
2132   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2133                        DAG.getBasicBlock(CB.FalseBB));
2134 
2135   DAG.setRoot(BrCond);
2136 }
2137 
2138 /// visitJumpTable - Emit JumpTable node in the current MBB
2139 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2140   // Emit the code for the jump table
2141   assert(JT.Reg != -1U && "Should lower JT Header first!");
2142   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2143   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2144                                      JT.Reg, PTy);
2145   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2146   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2147                                     MVT::Other, Index.getValue(1),
2148                                     Table, Index);
2149   DAG.setRoot(BrJumpTable);
2150 }
2151 
2152 /// visitJumpTableHeader - This function emits necessary code to produce index
2153 /// in the JumpTable from switch case.
2154 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2155                                                JumpTableHeader &JTH,
2156                                                MachineBasicBlock *SwitchBB) {
2157   SDLoc dl = getCurSDLoc();
2158 
2159   // Subtract the lowest switch case value from the value being switched on and
2160   // conditional branch to default mbb if the result is greater than the
2161   // difference between smallest and largest cases.
2162   SDValue SwitchOp = getValue(JTH.SValue);
2163   EVT VT = SwitchOp.getValueType();
2164   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2165                             DAG.getConstant(JTH.First, dl, VT));
2166 
2167   // The SDNode we just created, which holds the value being switched on minus
2168   // the smallest case value, needs to be copied to a virtual register so it
2169   // can be used as an index into the jump table in a subsequent basic block.
2170   // This value may be smaller or larger than the target's pointer type, and
2171   // therefore require extension or truncating.
2172   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2173   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2174 
2175   unsigned JumpTableReg =
2176       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2177   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2178                                     JumpTableReg, SwitchOp);
2179   JT.Reg = JumpTableReg;
2180 
2181   // Emit the range check for the jump table, and branch to the default block
2182   // for the switch statement if the value being switched on exceeds the largest
2183   // case in the switch.
2184   SDValue CMP = DAG.getSetCC(
2185       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2186                                  Sub.getValueType()),
2187       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2188 
2189   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2190                                MVT::Other, CopyTo, CMP,
2191                                DAG.getBasicBlock(JT.Default));
2192 
2193   // Avoid emitting unnecessary branches to the next block.
2194   if (JT.MBB != NextBlock(SwitchBB))
2195     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2196                          DAG.getBasicBlock(JT.MBB));
2197 
2198   DAG.setRoot(BrCond);
2199 }
2200 
2201 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2202 /// variable if there exists one.
2203 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2204                                  SDValue &Chain) {
2205   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2206   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2207   MachineFunction &MF = DAG.getMachineFunction();
2208   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2209   MachineSDNode *Node =
2210       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2211   if (Global) {
2212     MachinePointerInfo MPInfo(Global);
2213     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2214                  MachineMemOperand::MODereferenceable;
2215     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2216         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2217     DAG.setNodeMemRefs(Node, {MemRef});
2218   }
2219   return SDValue(Node, 0);
2220 }
2221 
2222 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2223 /// tail spliced into a stack protector check success bb.
2224 ///
2225 /// For a high level explanation of how this fits into the stack protector
2226 /// generation see the comment on the declaration of class
2227 /// StackProtectorDescriptor.
2228 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2229                                                   MachineBasicBlock *ParentBB) {
2230 
2231   // First create the loads to the guard/stack slot for the comparison.
2232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2233   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2234 
2235   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2236   int FI = MFI.getStackProtectorIndex();
2237 
2238   SDValue Guard;
2239   SDLoc dl = getCurSDLoc();
2240   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2241   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2242   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2243 
2244   // Generate code to load the content of the guard slot.
2245   SDValue GuardVal = DAG.getLoad(
2246       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2247       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2248       MachineMemOperand::MOVolatile);
2249 
2250   if (TLI.useStackGuardXorFP())
2251     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2252 
2253   // Retrieve guard check function, nullptr if instrumentation is inlined.
2254   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2255     // The target provides a guard check function to validate the guard value.
2256     // Generate a call to that function with the content of the guard slot as
2257     // argument.
2258     auto *Fn = cast<Function>(GuardCheck);
2259     FunctionType *FnTy = Fn->getFunctionType();
2260     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2261 
2262     TargetLowering::ArgListTy Args;
2263     TargetLowering::ArgListEntry Entry;
2264     Entry.Node = GuardVal;
2265     Entry.Ty = FnTy->getParamType(0);
2266     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2267       Entry.IsInReg = true;
2268     Args.push_back(Entry);
2269 
2270     TargetLowering::CallLoweringInfo CLI(DAG);
2271     CLI.setDebugLoc(getCurSDLoc())
2272       .setChain(DAG.getEntryNode())
2273       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2274                  getValue(GuardCheck), std::move(Args));
2275 
2276     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2277     DAG.setRoot(Result.second);
2278     return;
2279   }
2280 
2281   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2282   // Otherwise, emit a volatile load to retrieve the stack guard value.
2283   SDValue Chain = DAG.getEntryNode();
2284   if (TLI.useLoadStackGuardNode()) {
2285     Guard = getLoadStackGuard(DAG, dl, Chain);
2286   } else {
2287     const Value *IRGuard = TLI.getSDagStackGuard(M);
2288     SDValue GuardPtr = getValue(IRGuard);
2289 
2290     Guard =
2291         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2292                     Align, MachineMemOperand::MOVolatile);
2293   }
2294 
2295   // Perform the comparison via a subtract/getsetcc.
2296   EVT VT = Guard.getValueType();
2297   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2298 
2299   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2300                                                         *DAG.getContext(),
2301                                                         Sub.getValueType()),
2302                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2303 
2304   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2305   // branch to failure MBB.
2306   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2307                                MVT::Other, GuardVal.getOperand(0),
2308                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2309   // Otherwise branch to success MBB.
2310   SDValue Br = DAG.getNode(ISD::BR, dl,
2311                            MVT::Other, BrCond,
2312                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2313 
2314   DAG.setRoot(Br);
2315 }
2316 
2317 /// Codegen the failure basic block for a stack protector check.
2318 ///
2319 /// A failure stack protector machine basic block consists simply of a call to
2320 /// __stack_chk_fail().
2321 ///
2322 /// For a high level explanation of how this fits into the stack protector
2323 /// generation see the comment on the declaration of class
2324 /// StackProtectorDescriptor.
2325 void
2326 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2328   SDValue Chain =
2329       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2330                       None, false, getCurSDLoc(), false, false).second;
2331   DAG.setRoot(Chain);
2332 }
2333 
2334 /// visitBitTestHeader - This function emits necessary code to produce value
2335 /// suitable for "bit tests"
2336 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2337                                              MachineBasicBlock *SwitchBB) {
2338   SDLoc dl = getCurSDLoc();
2339 
2340   // Subtract the minimum value
2341   SDValue SwitchOp = getValue(B.SValue);
2342   EVT VT = SwitchOp.getValueType();
2343   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2344                             DAG.getConstant(B.First, dl, VT));
2345 
2346   // Check range
2347   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2348   SDValue RangeCmp = DAG.getSetCC(
2349       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2350                                  Sub.getValueType()),
2351       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2352 
2353   // Determine the type of the test operands.
2354   bool UsePtrType = false;
2355   if (!TLI.isTypeLegal(VT))
2356     UsePtrType = true;
2357   else {
2358     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2359       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2360         // Switch table case range are encoded into series of masks.
2361         // Just use pointer type, it's guaranteed to fit.
2362         UsePtrType = true;
2363         break;
2364       }
2365   }
2366   if (UsePtrType) {
2367     VT = TLI.getPointerTy(DAG.getDataLayout());
2368     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2369   }
2370 
2371   B.RegVT = VT.getSimpleVT();
2372   B.Reg = FuncInfo.CreateReg(B.RegVT);
2373   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2374 
2375   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2376 
2377   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2378   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2379   SwitchBB->normalizeSuccProbs();
2380 
2381   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2382                                 MVT::Other, CopyTo, RangeCmp,
2383                                 DAG.getBasicBlock(B.Default));
2384 
2385   // Avoid emitting unnecessary branches to the next block.
2386   if (MBB != NextBlock(SwitchBB))
2387     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2388                           DAG.getBasicBlock(MBB));
2389 
2390   DAG.setRoot(BrRange);
2391 }
2392 
2393 /// visitBitTestCase - this function produces one "bit test"
2394 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2395                                            MachineBasicBlock* NextMBB,
2396                                            BranchProbability BranchProbToNext,
2397                                            unsigned Reg,
2398                                            BitTestCase &B,
2399                                            MachineBasicBlock *SwitchBB) {
2400   SDLoc dl = getCurSDLoc();
2401   MVT VT = BB.RegVT;
2402   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2403   SDValue Cmp;
2404   unsigned PopCount = countPopulation(B.Mask);
2405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2406   if (PopCount == 1) {
2407     // Testing for a single bit; just compare the shift count with what it
2408     // would need to be to shift a 1 bit in that position.
2409     Cmp = DAG.getSetCC(
2410         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2411         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2412         ISD::SETEQ);
2413   } else if (PopCount == BB.Range) {
2414     // There is only one zero bit in the range, test for it directly.
2415     Cmp = DAG.getSetCC(
2416         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2417         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2418         ISD::SETNE);
2419   } else {
2420     // Make desired shift
2421     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2422                                     DAG.getConstant(1, dl, VT), ShiftOp);
2423 
2424     // Emit bit tests and jumps
2425     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2426                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2427     Cmp = DAG.getSetCC(
2428         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2429         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2430   }
2431 
2432   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2433   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2434   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2435   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2436   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2437   // one as they are relative probabilities (and thus work more like weights),
2438   // and hence we need to normalize them to let the sum of them become one.
2439   SwitchBB->normalizeSuccProbs();
2440 
2441   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2442                               MVT::Other, getControlRoot(),
2443                               Cmp, DAG.getBasicBlock(B.TargetBB));
2444 
2445   // Avoid emitting unnecessary branches to the next block.
2446   if (NextMBB != NextBlock(SwitchBB))
2447     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2448                         DAG.getBasicBlock(NextMBB));
2449 
2450   DAG.setRoot(BrAnd);
2451 }
2452 
2453 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2454   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2455 
2456   // Retrieve successors. Look through artificial IR level blocks like
2457   // catchswitch for successors.
2458   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2459   const BasicBlock *EHPadBB = I.getSuccessor(1);
2460 
2461   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2462   // have to do anything here to lower funclet bundles.
2463   assert(!I.hasOperandBundlesOtherThan(
2464              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2465          "Cannot lower invokes with arbitrary operand bundles yet!");
2466 
2467   const Value *Callee(I.getCalledValue());
2468   const Function *Fn = dyn_cast<Function>(Callee);
2469   if (isa<InlineAsm>(Callee))
2470     visitInlineAsm(&I);
2471   else if (Fn && Fn->isIntrinsic()) {
2472     switch (Fn->getIntrinsicID()) {
2473     default:
2474       llvm_unreachable("Cannot invoke this intrinsic");
2475     case Intrinsic::donothing:
2476       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2477       break;
2478     case Intrinsic::experimental_patchpoint_void:
2479     case Intrinsic::experimental_patchpoint_i64:
2480       visitPatchpoint(&I, EHPadBB);
2481       break;
2482     case Intrinsic::experimental_gc_statepoint:
2483       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2484       break;
2485     }
2486   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2487     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2488     // Eventually we will support lowering the @llvm.experimental.deoptimize
2489     // intrinsic, and right now there are no plans to support other intrinsics
2490     // with deopt state.
2491     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2492   } else {
2493     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2494   }
2495 
2496   // If the value of the invoke is used outside of its defining block, make it
2497   // available as a virtual register.
2498   // We already took care of the exported value for the statepoint instruction
2499   // during call to the LowerStatepoint.
2500   if (!isStatepoint(I)) {
2501     CopyToExportRegsIfNeeded(&I);
2502   }
2503 
2504   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2505   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2506   BranchProbability EHPadBBProb =
2507       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2508           : BranchProbability::getZero();
2509   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2510 
2511   // Update successor info.
2512   addSuccessorWithProb(InvokeMBB, Return);
2513   for (auto &UnwindDest : UnwindDests) {
2514     UnwindDest.first->setIsEHPad();
2515     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2516   }
2517   InvokeMBB->normalizeSuccProbs();
2518 
2519   // Drop into normal successor.
2520   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2521                           MVT::Other, getControlRoot(),
2522                           DAG.getBasicBlock(Return)));
2523 }
2524 
2525 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2526   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2527 }
2528 
2529 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2530   assert(FuncInfo.MBB->isEHPad() &&
2531          "Call to landingpad not in landing pad!");
2532 
2533   // If there aren't registers to copy the values into (e.g., during SjLj
2534   // exceptions), then don't bother to create these DAG nodes.
2535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2536   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2537   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2538       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2539     return;
2540 
2541   // If landingpad's return type is token type, we don't create DAG nodes
2542   // for its exception pointer and selector value. The extraction of exception
2543   // pointer or selector value from token type landingpads is not currently
2544   // supported.
2545   if (LP.getType()->isTokenTy())
2546     return;
2547 
2548   SmallVector<EVT, 2> ValueVTs;
2549   SDLoc dl = getCurSDLoc();
2550   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2551   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2552 
2553   // Get the two live-in registers as SDValues. The physregs have already been
2554   // copied into virtual registers.
2555   SDValue Ops[2];
2556   if (FuncInfo.ExceptionPointerVirtReg) {
2557     Ops[0] = DAG.getZExtOrTrunc(
2558         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2559                            FuncInfo.ExceptionPointerVirtReg,
2560                            TLI.getPointerTy(DAG.getDataLayout())),
2561         dl, ValueVTs[0]);
2562   } else {
2563     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2564   }
2565   Ops[1] = DAG.getZExtOrTrunc(
2566       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2567                          FuncInfo.ExceptionSelectorVirtReg,
2568                          TLI.getPointerTy(DAG.getDataLayout())),
2569       dl, ValueVTs[1]);
2570 
2571   // Merge into one.
2572   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2573                             DAG.getVTList(ValueVTs), Ops);
2574   setValue(&LP, Res);
2575 }
2576 
2577 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2578 #ifndef NDEBUG
2579   for (const CaseCluster &CC : Clusters)
2580     assert(CC.Low == CC.High && "Input clusters must be single-case");
2581 #endif
2582 
2583   llvm::sort(Clusters.begin(), Clusters.end(),
2584              [](const CaseCluster &a, const CaseCluster &b) {
2585     return a.Low->getValue().slt(b.Low->getValue());
2586   });
2587 
2588   // Merge adjacent clusters with the same destination.
2589   const unsigned N = Clusters.size();
2590   unsigned DstIndex = 0;
2591   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2592     CaseCluster &CC = Clusters[SrcIndex];
2593     const ConstantInt *CaseVal = CC.Low;
2594     MachineBasicBlock *Succ = CC.MBB;
2595 
2596     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2597         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2598       // If this case has the same successor and is a neighbour, merge it into
2599       // the previous cluster.
2600       Clusters[DstIndex - 1].High = CaseVal;
2601       Clusters[DstIndex - 1].Prob += CC.Prob;
2602     } else {
2603       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2604                    sizeof(Clusters[SrcIndex]));
2605     }
2606   }
2607   Clusters.resize(DstIndex);
2608 }
2609 
2610 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2611                                            MachineBasicBlock *Last) {
2612   // Update JTCases.
2613   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2614     if (JTCases[i].first.HeaderBB == First)
2615       JTCases[i].first.HeaderBB = Last;
2616 
2617   // Update BitTestCases.
2618   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2619     if (BitTestCases[i].Parent == First)
2620       BitTestCases[i].Parent = Last;
2621 }
2622 
2623 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2624   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2625 
2626   // Update machine-CFG edges with unique successors.
2627   SmallSet<BasicBlock*, 32> Done;
2628   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2629     BasicBlock *BB = I.getSuccessor(i);
2630     bool Inserted = Done.insert(BB).second;
2631     if (!Inserted)
2632         continue;
2633 
2634     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2635     addSuccessorWithProb(IndirectBrMBB, Succ);
2636   }
2637   IndirectBrMBB->normalizeSuccProbs();
2638 
2639   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2640                           MVT::Other, getControlRoot(),
2641                           getValue(I.getAddress())));
2642 }
2643 
2644 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2645   if (!DAG.getTarget().Options.TrapUnreachable)
2646     return;
2647 
2648   // We may be able to ignore unreachable behind a noreturn call.
2649   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2650     const BasicBlock &BB = *I.getParent();
2651     if (&I != &BB.front()) {
2652       BasicBlock::const_iterator PredI =
2653         std::prev(BasicBlock::const_iterator(&I));
2654       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2655         if (Call->doesNotReturn())
2656           return;
2657       }
2658     }
2659   }
2660 
2661   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2662 }
2663 
2664 void SelectionDAGBuilder::visitFSub(const User &I) {
2665   // -0.0 - X --> fneg
2666   Type *Ty = I.getType();
2667   if (isa<Constant>(I.getOperand(0)) &&
2668       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2669     SDValue Op2 = getValue(I.getOperand(1));
2670     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2671                              Op2.getValueType(), Op2));
2672     return;
2673   }
2674 
2675   visitBinary(I, ISD::FSUB);
2676 }
2677 
2678 /// Checks if the given instruction performs a vector reduction, in which case
2679 /// we have the freedom to alter the elements in the result as long as the
2680 /// reduction of them stays unchanged.
2681 static bool isVectorReductionOp(const User *I) {
2682   const Instruction *Inst = dyn_cast<Instruction>(I);
2683   if (!Inst || !Inst->getType()->isVectorTy())
2684     return false;
2685 
2686   auto OpCode = Inst->getOpcode();
2687   switch (OpCode) {
2688   case Instruction::Add:
2689   case Instruction::Mul:
2690   case Instruction::And:
2691   case Instruction::Or:
2692   case Instruction::Xor:
2693     break;
2694   case Instruction::FAdd:
2695   case Instruction::FMul:
2696     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2697       if (FPOp->getFastMathFlags().isFast())
2698         break;
2699     LLVM_FALLTHROUGH;
2700   default:
2701     return false;
2702   }
2703 
2704   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2705   // Ensure the reduction size is a power of 2.
2706   if (!isPowerOf2_32(ElemNum))
2707     return false;
2708 
2709   unsigned ElemNumToReduce = ElemNum;
2710 
2711   // Do DFS search on the def-use chain from the given instruction. We only
2712   // allow four kinds of operations during the search until we reach the
2713   // instruction that extracts the first element from the vector:
2714   //
2715   //   1. The reduction operation of the same opcode as the given instruction.
2716   //
2717   //   2. PHI node.
2718   //
2719   //   3. ShuffleVector instruction together with a reduction operation that
2720   //      does a partial reduction.
2721   //
2722   //   4. ExtractElement that extracts the first element from the vector, and we
2723   //      stop searching the def-use chain here.
2724   //
2725   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2726   // from 1-3 to the stack to continue the DFS. The given instruction is not
2727   // a reduction operation if we meet any other instructions other than those
2728   // listed above.
2729 
2730   SmallVector<const User *, 16> UsersToVisit{Inst};
2731   SmallPtrSet<const User *, 16> Visited;
2732   bool ReduxExtracted = false;
2733 
2734   while (!UsersToVisit.empty()) {
2735     auto User = UsersToVisit.back();
2736     UsersToVisit.pop_back();
2737     if (!Visited.insert(User).second)
2738       continue;
2739 
2740     for (const auto &U : User->users()) {
2741       auto Inst = dyn_cast<Instruction>(U);
2742       if (!Inst)
2743         return false;
2744 
2745       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2746         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2747           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2748             return false;
2749         UsersToVisit.push_back(U);
2750       } else if (const ShuffleVectorInst *ShufInst =
2751                      dyn_cast<ShuffleVectorInst>(U)) {
2752         // Detect the following pattern: A ShuffleVector instruction together
2753         // with a reduction that do partial reduction on the first and second
2754         // ElemNumToReduce / 2 elements, and store the result in
2755         // ElemNumToReduce / 2 elements in another vector.
2756 
2757         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2758         if (ResultElements < ElemNum)
2759           return false;
2760 
2761         if (ElemNumToReduce == 1)
2762           return false;
2763         if (!isa<UndefValue>(U->getOperand(1)))
2764           return false;
2765         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2766           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2767             return false;
2768         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2769           if (ShufInst->getMaskValue(i) != -1)
2770             return false;
2771 
2772         // There is only one user of this ShuffleVector instruction, which
2773         // must be a reduction operation.
2774         if (!U->hasOneUse())
2775           return false;
2776 
2777         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2778         if (!U2 || U2->getOpcode() != OpCode)
2779           return false;
2780 
2781         // Check operands of the reduction operation.
2782         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2783             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2784           UsersToVisit.push_back(U2);
2785           ElemNumToReduce /= 2;
2786         } else
2787           return false;
2788       } else if (isa<ExtractElementInst>(U)) {
2789         // At this moment we should have reduced all elements in the vector.
2790         if (ElemNumToReduce != 1)
2791           return false;
2792 
2793         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2794         if (!Val || !Val->isZero())
2795           return false;
2796 
2797         ReduxExtracted = true;
2798       } else
2799         return false;
2800     }
2801   }
2802   return ReduxExtracted;
2803 }
2804 
2805 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2806   SDNodeFlags Flags;
2807   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2808     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2809     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2810   }
2811   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2812     Flags.setExact(ExactOp->isExact());
2813   }
2814   if (isVectorReductionOp(&I)) {
2815     Flags.setVectorReduction(true);
2816     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2817   }
2818 
2819   SDValue Op1 = getValue(I.getOperand(0));
2820   SDValue Op2 = getValue(I.getOperand(1));
2821   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2822                                      Op1, Op2, Flags);
2823   setValue(&I, BinNodeValue);
2824 }
2825 
2826 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2827   SDValue Op1 = getValue(I.getOperand(0));
2828   SDValue Op2 = getValue(I.getOperand(1));
2829 
2830   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2831       Op2.getValueType(), DAG.getDataLayout());
2832 
2833   // Coerce the shift amount to the right type if we can.
2834   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2835     unsigned ShiftSize = ShiftTy.getSizeInBits();
2836     unsigned Op2Size = Op2.getValueSizeInBits();
2837     SDLoc DL = getCurSDLoc();
2838 
2839     // If the operand is smaller than the shift count type, promote it.
2840     if (ShiftSize > Op2Size)
2841       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2842 
2843     // If the operand is larger than the shift count type but the shift
2844     // count type has enough bits to represent any shift value, truncate
2845     // it now. This is a common case and it exposes the truncate to
2846     // optimization early.
2847     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2848       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2849     // Otherwise we'll need to temporarily settle for some other convenient
2850     // type.  Type legalization will make adjustments once the shiftee is split.
2851     else
2852       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2853   }
2854 
2855   bool nuw = false;
2856   bool nsw = false;
2857   bool exact = false;
2858 
2859   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2860 
2861     if (const OverflowingBinaryOperator *OFBinOp =
2862             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2863       nuw = OFBinOp->hasNoUnsignedWrap();
2864       nsw = OFBinOp->hasNoSignedWrap();
2865     }
2866     if (const PossiblyExactOperator *ExactOp =
2867             dyn_cast<const PossiblyExactOperator>(&I))
2868       exact = ExactOp->isExact();
2869   }
2870   SDNodeFlags Flags;
2871   Flags.setExact(exact);
2872   Flags.setNoSignedWrap(nsw);
2873   Flags.setNoUnsignedWrap(nuw);
2874   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2875                             Flags);
2876   setValue(&I, Res);
2877 }
2878 
2879 void SelectionDAGBuilder::visitSDiv(const User &I) {
2880   SDValue Op1 = getValue(I.getOperand(0));
2881   SDValue Op2 = getValue(I.getOperand(1));
2882 
2883   SDNodeFlags Flags;
2884   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2885                  cast<PossiblyExactOperator>(&I)->isExact());
2886   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2887                            Op2, Flags));
2888 }
2889 
2890 void SelectionDAGBuilder::visitICmp(const User &I) {
2891   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2892   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2893     predicate = IC->getPredicate();
2894   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2895     predicate = ICmpInst::Predicate(IC->getPredicate());
2896   SDValue Op1 = getValue(I.getOperand(0));
2897   SDValue Op2 = getValue(I.getOperand(1));
2898   ISD::CondCode Opcode = getICmpCondCode(predicate);
2899 
2900   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2901                                                         I.getType());
2902   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2903 }
2904 
2905 void SelectionDAGBuilder::visitFCmp(const User &I) {
2906   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2907   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2908     predicate = FC->getPredicate();
2909   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2910     predicate = FCmpInst::Predicate(FC->getPredicate());
2911   SDValue Op1 = getValue(I.getOperand(0));
2912   SDValue Op2 = getValue(I.getOperand(1));
2913 
2914   ISD::CondCode Condition = getFCmpCondCode(predicate);
2915   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2916   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2917     Condition = getFCmpCodeWithoutNaN(Condition);
2918 
2919   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2920                                                         I.getType());
2921   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2922 }
2923 
2924 // Check if the condition of the select has one use or two users that are both
2925 // selects with the same condition.
2926 static bool hasOnlySelectUsers(const Value *Cond) {
2927   return llvm::all_of(Cond->users(), [](const Value *V) {
2928     return isa<SelectInst>(V);
2929   });
2930 }
2931 
2932 void SelectionDAGBuilder::visitSelect(const User &I) {
2933   SmallVector<EVT, 4> ValueVTs;
2934   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2935                   ValueVTs);
2936   unsigned NumValues = ValueVTs.size();
2937   if (NumValues == 0) return;
2938 
2939   SmallVector<SDValue, 4> Values(NumValues);
2940   SDValue Cond     = getValue(I.getOperand(0));
2941   SDValue LHSVal   = getValue(I.getOperand(1));
2942   SDValue RHSVal   = getValue(I.getOperand(2));
2943   auto BaseOps = {Cond};
2944   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2945     ISD::VSELECT : ISD::SELECT;
2946 
2947   // Min/max matching is only viable if all output VTs are the same.
2948   if (is_splat(ValueVTs)) {
2949     EVT VT = ValueVTs[0];
2950     LLVMContext &Ctx = *DAG.getContext();
2951     auto &TLI = DAG.getTargetLoweringInfo();
2952 
2953     // We care about the legality of the operation after it has been type
2954     // legalized.
2955     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2956            VT != TLI.getTypeToTransformTo(Ctx, VT))
2957       VT = TLI.getTypeToTransformTo(Ctx, VT);
2958 
2959     // If the vselect is legal, assume we want to leave this as a vector setcc +
2960     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2961     // min/max is legal on the scalar type.
2962     bool UseScalarMinMax = VT.isVector() &&
2963       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2964 
2965     Value *LHS, *RHS;
2966     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2967     ISD::NodeType Opc = ISD::DELETED_NODE;
2968     switch (SPR.Flavor) {
2969     case SPF_UMAX:    Opc = ISD::UMAX; break;
2970     case SPF_UMIN:    Opc = ISD::UMIN; break;
2971     case SPF_SMAX:    Opc = ISD::SMAX; break;
2972     case SPF_SMIN:    Opc = ISD::SMIN; break;
2973     case SPF_FMINNUM:
2974       switch (SPR.NaNBehavior) {
2975       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2976       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2977       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2978       case SPNB_RETURNS_ANY: {
2979         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2980           Opc = ISD::FMINNUM;
2981         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2982           Opc = ISD::FMINNAN;
2983         else if (UseScalarMinMax)
2984           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2985             ISD::FMINNUM : ISD::FMINNAN;
2986         break;
2987       }
2988       }
2989       break;
2990     case SPF_FMAXNUM:
2991       switch (SPR.NaNBehavior) {
2992       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2993       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2994       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2995       case SPNB_RETURNS_ANY:
2996 
2997         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2998           Opc = ISD::FMAXNUM;
2999         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
3000           Opc = ISD::FMAXNAN;
3001         else if (UseScalarMinMax)
3002           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3003             ISD::FMAXNUM : ISD::FMAXNAN;
3004         break;
3005       }
3006       break;
3007     default: break;
3008     }
3009 
3010     if (Opc != ISD::DELETED_NODE &&
3011         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3012          (UseScalarMinMax &&
3013           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3014         // If the underlying comparison instruction is used by any other
3015         // instruction, the consumed instructions won't be destroyed, so it is
3016         // not profitable to convert to a min/max.
3017         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3018       OpCode = Opc;
3019       LHSVal = getValue(LHS);
3020       RHSVal = getValue(RHS);
3021       BaseOps = {};
3022     }
3023   }
3024 
3025   for (unsigned i = 0; i != NumValues; ++i) {
3026     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3027     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3028     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3029     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3030                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3031                             Ops);
3032   }
3033 
3034   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3035                            DAG.getVTList(ValueVTs), Values));
3036 }
3037 
3038 void SelectionDAGBuilder::visitTrunc(const User &I) {
3039   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3040   SDValue N = getValue(I.getOperand(0));
3041   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3042                                                         I.getType());
3043   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3044 }
3045 
3046 void SelectionDAGBuilder::visitZExt(const User &I) {
3047   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3048   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3049   SDValue N = getValue(I.getOperand(0));
3050   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3051                                                         I.getType());
3052   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3053 }
3054 
3055 void SelectionDAGBuilder::visitSExt(const User &I) {
3056   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3057   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3058   SDValue N = getValue(I.getOperand(0));
3059   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3060                                                         I.getType());
3061   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3062 }
3063 
3064 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3065   // FPTrunc is never a no-op cast, no need to check
3066   SDValue N = getValue(I.getOperand(0));
3067   SDLoc dl = getCurSDLoc();
3068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3069   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3070   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3071                            DAG.getTargetConstant(
3072                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3073 }
3074 
3075 void SelectionDAGBuilder::visitFPExt(const User &I) {
3076   // FPExt is never a no-op cast, no need to check
3077   SDValue N = getValue(I.getOperand(0));
3078   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3079                                                         I.getType());
3080   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3081 }
3082 
3083 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3084   // FPToUI is never a no-op cast, no need to check
3085   SDValue N = getValue(I.getOperand(0));
3086   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3087                                                         I.getType());
3088   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3089 }
3090 
3091 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3092   // FPToSI is never a no-op cast, no need to check
3093   SDValue N = getValue(I.getOperand(0));
3094   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3095                                                         I.getType());
3096   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3097 }
3098 
3099 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3100   // UIToFP is never a no-op cast, no need to check
3101   SDValue N = getValue(I.getOperand(0));
3102   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3103                                                         I.getType());
3104   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3105 }
3106 
3107 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3108   // SIToFP is never a no-op cast, no need to check
3109   SDValue N = getValue(I.getOperand(0));
3110   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3111                                                         I.getType());
3112   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3113 }
3114 
3115 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3116   // What to do depends on the size of the integer and the size of the pointer.
3117   // We can either truncate, zero extend, or no-op, accordingly.
3118   SDValue N = getValue(I.getOperand(0));
3119   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3120                                                         I.getType());
3121   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3122 }
3123 
3124 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3125   // What to do depends on the size of the integer and the size of the pointer.
3126   // We can either truncate, zero extend, or no-op, accordingly.
3127   SDValue N = getValue(I.getOperand(0));
3128   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3129                                                         I.getType());
3130   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3131 }
3132 
3133 void SelectionDAGBuilder::visitBitCast(const User &I) {
3134   SDValue N = getValue(I.getOperand(0));
3135   SDLoc dl = getCurSDLoc();
3136   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3137                                                         I.getType());
3138 
3139   // BitCast assures us that source and destination are the same size so this is
3140   // either a BITCAST or a no-op.
3141   if (DestVT != N.getValueType())
3142     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3143                              DestVT, N)); // convert types.
3144   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3145   // might fold any kind of constant expression to an integer constant and that
3146   // is not what we are looking for. Only recognize a bitcast of a genuine
3147   // constant integer as an opaque constant.
3148   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3149     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3150                                  /*isOpaque*/true));
3151   else
3152     setValue(&I, N);            // noop cast.
3153 }
3154 
3155 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3156   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3157   const Value *SV = I.getOperand(0);
3158   SDValue N = getValue(SV);
3159   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3160 
3161   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3162   unsigned DestAS = I.getType()->getPointerAddressSpace();
3163 
3164   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3165     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3166 
3167   setValue(&I, N);
3168 }
3169 
3170 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3172   SDValue InVec = getValue(I.getOperand(0));
3173   SDValue InVal = getValue(I.getOperand(1));
3174   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3175                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3176   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3177                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3178                            InVec, InVal, InIdx));
3179 }
3180 
3181 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3182   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3183   SDValue InVec = getValue(I.getOperand(0));
3184   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3185                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3186   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3187                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3188                            InVec, InIdx));
3189 }
3190 
3191 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3192   SDValue Src1 = getValue(I.getOperand(0));
3193   SDValue Src2 = getValue(I.getOperand(1));
3194   SDLoc DL = getCurSDLoc();
3195 
3196   SmallVector<int, 8> Mask;
3197   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3198   unsigned MaskNumElts = Mask.size();
3199 
3200   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3201   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3202   EVT SrcVT = Src1.getValueType();
3203   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3204 
3205   if (SrcNumElts == MaskNumElts) {
3206     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3207     return;
3208   }
3209 
3210   // Normalize the shuffle vector since mask and vector length don't match.
3211   if (SrcNumElts < MaskNumElts) {
3212     // Mask is longer than the source vectors. We can use concatenate vector to
3213     // make the mask and vectors lengths match.
3214 
3215     if (MaskNumElts % SrcNumElts == 0) {
3216       // Mask length is a multiple of the source vector length.
3217       // Check if the shuffle is some kind of concatenation of the input
3218       // vectors.
3219       unsigned NumConcat = MaskNumElts / SrcNumElts;
3220       bool IsConcat = true;
3221       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3222       for (unsigned i = 0; i != MaskNumElts; ++i) {
3223         int Idx = Mask[i];
3224         if (Idx < 0)
3225           continue;
3226         // Ensure the indices in each SrcVT sized piece are sequential and that
3227         // the same source is used for the whole piece.
3228         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3229             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3230              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3231           IsConcat = false;
3232           break;
3233         }
3234         // Remember which source this index came from.
3235         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3236       }
3237 
3238       // The shuffle is concatenating multiple vectors together. Just emit
3239       // a CONCAT_VECTORS operation.
3240       if (IsConcat) {
3241         SmallVector<SDValue, 8> ConcatOps;
3242         for (auto Src : ConcatSrcs) {
3243           if (Src < 0)
3244             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3245           else if (Src == 0)
3246             ConcatOps.push_back(Src1);
3247           else
3248             ConcatOps.push_back(Src2);
3249         }
3250         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3251         return;
3252       }
3253     }
3254 
3255     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3256     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3257     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3258                                     PaddedMaskNumElts);
3259 
3260     // Pad both vectors with undefs to make them the same length as the mask.
3261     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3262 
3263     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3264     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3265     MOps1[0] = Src1;
3266     MOps2[0] = Src2;
3267 
3268     Src1 = Src1.isUndef()
3269                ? DAG.getUNDEF(PaddedVT)
3270                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3271     Src2 = Src2.isUndef()
3272                ? DAG.getUNDEF(PaddedVT)
3273                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3274 
3275     // Readjust mask for new input vector length.
3276     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3277     for (unsigned i = 0; i != MaskNumElts; ++i) {
3278       int Idx = Mask[i];
3279       if (Idx >= (int)SrcNumElts)
3280         Idx -= SrcNumElts - PaddedMaskNumElts;
3281       MappedOps[i] = Idx;
3282     }
3283 
3284     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3285 
3286     // If the concatenated vector was padded, extract a subvector with the
3287     // correct number of elements.
3288     if (MaskNumElts != PaddedMaskNumElts)
3289       Result = DAG.getNode(
3290           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3291           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3292 
3293     setValue(&I, Result);
3294     return;
3295   }
3296 
3297   if (SrcNumElts > MaskNumElts) {
3298     // Analyze the access pattern of the vector to see if we can extract
3299     // two subvectors and do the shuffle.
3300     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3301     bool CanExtract = true;
3302     for (int Idx : Mask) {
3303       unsigned Input = 0;
3304       if (Idx < 0)
3305         continue;
3306 
3307       if (Idx >= (int)SrcNumElts) {
3308         Input = 1;
3309         Idx -= SrcNumElts;
3310       }
3311 
3312       // If all the indices come from the same MaskNumElts sized portion of
3313       // the sources we can use extract. Also make sure the extract wouldn't
3314       // extract past the end of the source.
3315       int NewStartIdx = alignDown(Idx, MaskNumElts);
3316       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3317           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3318         CanExtract = false;
3319       // Make sure we always update StartIdx as we use it to track if all
3320       // elements are undef.
3321       StartIdx[Input] = NewStartIdx;
3322     }
3323 
3324     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3325       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3326       return;
3327     }
3328     if (CanExtract) {
3329       // Extract appropriate subvector and generate a vector shuffle
3330       for (unsigned Input = 0; Input < 2; ++Input) {
3331         SDValue &Src = Input == 0 ? Src1 : Src2;
3332         if (StartIdx[Input] < 0)
3333           Src = DAG.getUNDEF(VT);
3334         else {
3335           Src = DAG.getNode(
3336               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3337               DAG.getConstant(StartIdx[Input], DL,
3338                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3339         }
3340       }
3341 
3342       // Calculate new mask.
3343       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3344       for (int &Idx : MappedOps) {
3345         if (Idx >= (int)SrcNumElts)
3346           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3347         else if (Idx >= 0)
3348           Idx -= StartIdx[0];
3349       }
3350 
3351       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3352       return;
3353     }
3354   }
3355 
3356   // We can't use either concat vectors or extract subvectors so fall back to
3357   // replacing the shuffle with extract and build vector.
3358   // to insert and build vector.
3359   EVT EltVT = VT.getVectorElementType();
3360   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3361   SmallVector<SDValue,8> Ops;
3362   for (int Idx : Mask) {
3363     SDValue Res;
3364 
3365     if (Idx < 0) {
3366       Res = DAG.getUNDEF(EltVT);
3367     } else {
3368       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3369       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3370 
3371       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3372                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3373     }
3374 
3375     Ops.push_back(Res);
3376   }
3377 
3378   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3379 }
3380 
3381 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3382   ArrayRef<unsigned> Indices;
3383   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3384     Indices = IV->getIndices();
3385   else
3386     Indices = cast<ConstantExpr>(&I)->getIndices();
3387 
3388   const Value *Op0 = I.getOperand(0);
3389   const Value *Op1 = I.getOperand(1);
3390   Type *AggTy = I.getType();
3391   Type *ValTy = Op1->getType();
3392   bool IntoUndef = isa<UndefValue>(Op0);
3393   bool FromUndef = isa<UndefValue>(Op1);
3394 
3395   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3396 
3397   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3398   SmallVector<EVT, 4> AggValueVTs;
3399   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3400   SmallVector<EVT, 4> ValValueVTs;
3401   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3402 
3403   unsigned NumAggValues = AggValueVTs.size();
3404   unsigned NumValValues = ValValueVTs.size();
3405   SmallVector<SDValue, 4> Values(NumAggValues);
3406 
3407   // Ignore an insertvalue that produces an empty object
3408   if (!NumAggValues) {
3409     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3410     return;
3411   }
3412 
3413   SDValue Agg = getValue(Op0);
3414   unsigned i = 0;
3415   // Copy the beginning value(s) from the original aggregate.
3416   for (; i != LinearIndex; ++i)
3417     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3418                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3419   // Copy values from the inserted value(s).
3420   if (NumValValues) {
3421     SDValue Val = getValue(Op1);
3422     for (; i != LinearIndex + NumValValues; ++i)
3423       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3424                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3425   }
3426   // Copy remaining value(s) from the original aggregate.
3427   for (; i != NumAggValues; ++i)
3428     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3429                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3430 
3431   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3432                            DAG.getVTList(AggValueVTs), Values));
3433 }
3434 
3435 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3436   ArrayRef<unsigned> Indices;
3437   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3438     Indices = EV->getIndices();
3439   else
3440     Indices = cast<ConstantExpr>(&I)->getIndices();
3441 
3442   const Value *Op0 = I.getOperand(0);
3443   Type *AggTy = Op0->getType();
3444   Type *ValTy = I.getType();
3445   bool OutOfUndef = isa<UndefValue>(Op0);
3446 
3447   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3448 
3449   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3450   SmallVector<EVT, 4> ValValueVTs;
3451   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3452 
3453   unsigned NumValValues = ValValueVTs.size();
3454 
3455   // Ignore a extractvalue that produces an empty object
3456   if (!NumValValues) {
3457     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3458     return;
3459   }
3460 
3461   SmallVector<SDValue, 4> Values(NumValValues);
3462 
3463   SDValue Agg = getValue(Op0);
3464   // Copy out the selected value(s).
3465   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3466     Values[i - LinearIndex] =
3467       OutOfUndef ?
3468         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3469         SDValue(Agg.getNode(), Agg.getResNo() + i);
3470 
3471   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3472                            DAG.getVTList(ValValueVTs), Values));
3473 }
3474 
3475 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3476   Value *Op0 = I.getOperand(0);
3477   // Note that the pointer operand may be a vector of pointers. Take the scalar
3478   // element which holds a pointer.
3479   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3480   SDValue N = getValue(Op0);
3481   SDLoc dl = getCurSDLoc();
3482 
3483   // Normalize Vector GEP - all scalar operands should be converted to the
3484   // splat vector.
3485   unsigned VectorWidth = I.getType()->isVectorTy() ?
3486     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3487 
3488   if (VectorWidth && !N.getValueType().isVector()) {
3489     LLVMContext &Context = *DAG.getContext();
3490     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3491     N = DAG.getSplatBuildVector(VT, dl, N);
3492   }
3493 
3494   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3495        GTI != E; ++GTI) {
3496     const Value *Idx = GTI.getOperand();
3497     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3498       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3499       if (Field) {
3500         // N = N + Offset
3501         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3502 
3503         // In an inbounds GEP with an offset that is nonnegative even when
3504         // interpreted as signed, assume there is no unsigned overflow.
3505         SDNodeFlags Flags;
3506         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3507           Flags.setNoUnsignedWrap(true);
3508 
3509         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3510                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3511       }
3512     } else {
3513       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3514       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3515       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3516 
3517       // If this is a scalar constant or a splat vector of constants,
3518       // handle it quickly.
3519       const auto *CI = dyn_cast<ConstantInt>(Idx);
3520       if (!CI && isa<ConstantDataVector>(Idx) &&
3521           cast<ConstantDataVector>(Idx)->getSplatValue())
3522         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3523 
3524       if (CI) {
3525         if (CI->isZero())
3526           continue;
3527         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3528         LLVMContext &Context = *DAG.getContext();
3529         SDValue OffsVal = VectorWidth ?
3530           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3531           DAG.getConstant(Offs, dl, IdxTy);
3532 
3533         // In an inbouds GEP with an offset that is nonnegative even when
3534         // interpreted as signed, assume there is no unsigned overflow.
3535         SDNodeFlags Flags;
3536         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3537           Flags.setNoUnsignedWrap(true);
3538 
3539         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3540         continue;
3541       }
3542 
3543       // N = N + Idx * ElementSize;
3544       SDValue IdxN = getValue(Idx);
3545 
3546       if (!IdxN.getValueType().isVector() && VectorWidth) {
3547         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3548         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3549       }
3550 
3551       // If the index is smaller or larger than intptr_t, truncate or extend
3552       // it.
3553       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3554 
3555       // If this is a multiply by a power of two, turn it into a shl
3556       // immediately.  This is a very common case.
3557       if (ElementSize != 1) {
3558         if (ElementSize.isPowerOf2()) {
3559           unsigned Amt = ElementSize.logBase2();
3560           IdxN = DAG.getNode(ISD::SHL, dl,
3561                              N.getValueType(), IdxN,
3562                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3563         } else {
3564           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3565           IdxN = DAG.getNode(ISD::MUL, dl,
3566                              N.getValueType(), IdxN, Scale);
3567         }
3568       }
3569 
3570       N = DAG.getNode(ISD::ADD, dl,
3571                       N.getValueType(), N, IdxN);
3572     }
3573   }
3574 
3575   setValue(&I, N);
3576 }
3577 
3578 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3579   // If this is a fixed sized alloca in the entry block of the function,
3580   // allocate it statically on the stack.
3581   if (FuncInfo.StaticAllocaMap.count(&I))
3582     return;   // getValue will auto-populate this.
3583 
3584   SDLoc dl = getCurSDLoc();
3585   Type *Ty = I.getAllocatedType();
3586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3587   auto &DL = DAG.getDataLayout();
3588   uint64_t TySize = DL.getTypeAllocSize(Ty);
3589   unsigned Align =
3590       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3591 
3592   SDValue AllocSize = getValue(I.getArraySize());
3593 
3594   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3595   if (AllocSize.getValueType() != IntPtr)
3596     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3597 
3598   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3599                           AllocSize,
3600                           DAG.getConstant(TySize, dl, IntPtr));
3601 
3602   // Handle alignment.  If the requested alignment is less than or equal to
3603   // the stack alignment, ignore it.  If the size is greater than or equal to
3604   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3605   unsigned StackAlign =
3606       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3607   if (Align <= StackAlign)
3608     Align = 0;
3609 
3610   // Round the size of the allocation up to the stack alignment size
3611   // by add SA-1 to the size. This doesn't overflow because we're computing
3612   // an address inside an alloca.
3613   SDNodeFlags Flags;
3614   Flags.setNoUnsignedWrap(true);
3615   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3616                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3617 
3618   // Mask out the low bits for alignment purposes.
3619   AllocSize =
3620       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3621                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3622 
3623   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3624   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3625   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3626   setValue(&I, DSA);
3627   DAG.setRoot(DSA.getValue(1));
3628 
3629   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3630 }
3631 
3632 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3633   if (I.isAtomic())
3634     return visitAtomicLoad(I);
3635 
3636   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3637   const Value *SV = I.getOperand(0);
3638   if (TLI.supportSwiftError()) {
3639     // Swifterror values can come from either a function parameter with
3640     // swifterror attribute or an alloca with swifterror attribute.
3641     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3642       if (Arg->hasSwiftErrorAttr())
3643         return visitLoadFromSwiftError(I);
3644     }
3645 
3646     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3647       if (Alloca->isSwiftError())
3648         return visitLoadFromSwiftError(I);
3649     }
3650   }
3651 
3652   SDValue Ptr = getValue(SV);
3653 
3654   Type *Ty = I.getType();
3655 
3656   bool isVolatile = I.isVolatile();
3657   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3658   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3659   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3660   unsigned Alignment = I.getAlignment();
3661 
3662   AAMDNodes AAInfo;
3663   I.getAAMetadata(AAInfo);
3664   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3665 
3666   SmallVector<EVT, 4> ValueVTs;
3667   SmallVector<uint64_t, 4> Offsets;
3668   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3669   unsigned NumValues = ValueVTs.size();
3670   if (NumValues == 0)
3671     return;
3672 
3673   SDValue Root;
3674   bool ConstantMemory = false;
3675   if (isVolatile || NumValues > MaxParallelChains)
3676     // Serialize volatile loads with other side effects.
3677     Root = getRoot();
3678   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3679                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3680     // Do not serialize (non-volatile) loads of constant memory with anything.
3681     Root = DAG.getEntryNode();
3682     ConstantMemory = true;
3683   } else {
3684     // Do not serialize non-volatile loads against each other.
3685     Root = DAG.getRoot();
3686   }
3687 
3688   SDLoc dl = getCurSDLoc();
3689 
3690   if (isVolatile)
3691     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3692 
3693   // An aggregate load cannot wrap around the address space, so offsets to its
3694   // parts don't wrap either.
3695   SDNodeFlags Flags;
3696   Flags.setNoUnsignedWrap(true);
3697 
3698   SmallVector<SDValue, 4> Values(NumValues);
3699   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3700   EVT PtrVT = Ptr.getValueType();
3701   unsigned ChainI = 0;
3702   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3703     // Serializing loads here may result in excessive register pressure, and
3704     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3705     // could recover a bit by hoisting nodes upward in the chain by recognizing
3706     // they are side-effect free or do not alias. The optimizer should really
3707     // avoid this case by converting large object/array copies to llvm.memcpy
3708     // (MaxParallelChains should always remain as failsafe).
3709     if (ChainI == MaxParallelChains) {
3710       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3711       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3712                                   makeArrayRef(Chains.data(), ChainI));
3713       Root = Chain;
3714       ChainI = 0;
3715     }
3716     SDValue A = DAG.getNode(ISD::ADD, dl,
3717                             PtrVT, Ptr,
3718                             DAG.getConstant(Offsets[i], dl, PtrVT),
3719                             Flags);
3720     auto MMOFlags = MachineMemOperand::MONone;
3721     if (isVolatile)
3722       MMOFlags |= MachineMemOperand::MOVolatile;
3723     if (isNonTemporal)
3724       MMOFlags |= MachineMemOperand::MONonTemporal;
3725     if (isInvariant)
3726       MMOFlags |= MachineMemOperand::MOInvariant;
3727     if (isDereferenceable)
3728       MMOFlags |= MachineMemOperand::MODereferenceable;
3729     MMOFlags |= TLI.getMMOFlags(I);
3730 
3731     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3732                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3733                             MMOFlags, AAInfo, Ranges);
3734 
3735     Values[i] = L;
3736     Chains[ChainI] = L.getValue(1);
3737   }
3738 
3739   if (!ConstantMemory) {
3740     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3741                                 makeArrayRef(Chains.data(), ChainI));
3742     if (isVolatile)
3743       DAG.setRoot(Chain);
3744     else
3745       PendingLoads.push_back(Chain);
3746   }
3747 
3748   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3749                            DAG.getVTList(ValueVTs), Values));
3750 }
3751 
3752 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3753   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3754          "call visitStoreToSwiftError when backend supports swifterror");
3755 
3756   SmallVector<EVT, 4> ValueVTs;
3757   SmallVector<uint64_t, 4> Offsets;
3758   const Value *SrcV = I.getOperand(0);
3759   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3760                   SrcV->getType(), ValueVTs, &Offsets);
3761   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3762          "expect a single EVT for swifterror");
3763 
3764   SDValue Src = getValue(SrcV);
3765   // Create a virtual register, then update the virtual register.
3766   unsigned VReg; bool CreatedVReg;
3767   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3768   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3769   // Chain can be getRoot or getControlRoot.
3770   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3771                                       SDValue(Src.getNode(), Src.getResNo()));
3772   DAG.setRoot(CopyNode);
3773   if (CreatedVReg)
3774     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3775 }
3776 
3777 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3778   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3779          "call visitLoadFromSwiftError when backend supports swifterror");
3780 
3781   assert(!I.isVolatile() &&
3782          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3783          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3784          "Support volatile, non temporal, invariant for load_from_swift_error");
3785 
3786   const Value *SV = I.getOperand(0);
3787   Type *Ty = I.getType();
3788   AAMDNodes AAInfo;
3789   I.getAAMetadata(AAInfo);
3790   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3791              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3792          "load_from_swift_error should not be constant memory");
3793 
3794   SmallVector<EVT, 4> ValueVTs;
3795   SmallVector<uint64_t, 4> Offsets;
3796   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3797                   ValueVTs, &Offsets);
3798   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3799          "expect a single EVT for swifterror");
3800 
3801   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3802   SDValue L = DAG.getCopyFromReg(
3803       getRoot(), getCurSDLoc(),
3804       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3805       ValueVTs[0]);
3806 
3807   setValue(&I, L);
3808 }
3809 
3810 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3811   if (I.isAtomic())
3812     return visitAtomicStore(I);
3813 
3814   const Value *SrcV = I.getOperand(0);
3815   const Value *PtrV = I.getOperand(1);
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   if (TLI.supportSwiftError()) {
3819     // Swifterror values can come from either a function parameter with
3820     // swifterror attribute or an alloca with swifterror attribute.
3821     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3822       if (Arg->hasSwiftErrorAttr())
3823         return visitStoreToSwiftError(I);
3824     }
3825 
3826     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3827       if (Alloca->isSwiftError())
3828         return visitStoreToSwiftError(I);
3829     }
3830   }
3831 
3832   SmallVector<EVT, 4> ValueVTs;
3833   SmallVector<uint64_t, 4> Offsets;
3834   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3835                   SrcV->getType(), ValueVTs, &Offsets);
3836   unsigned NumValues = ValueVTs.size();
3837   if (NumValues == 0)
3838     return;
3839 
3840   // Get the lowered operands. Note that we do this after
3841   // checking if NumResults is zero, because with zero results
3842   // the operands won't have values in the map.
3843   SDValue Src = getValue(SrcV);
3844   SDValue Ptr = getValue(PtrV);
3845 
3846   SDValue Root = getRoot();
3847   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3848   SDLoc dl = getCurSDLoc();
3849   EVT PtrVT = Ptr.getValueType();
3850   unsigned Alignment = I.getAlignment();
3851   AAMDNodes AAInfo;
3852   I.getAAMetadata(AAInfo);
3853 
3854   auto MMOFlags = MachineMemOperand::MONone;
3855   if (I.isVolatile())
3856     MMOFlags |= MachineMemOperand::MOVolatile;
3857   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3858     MMOFlags |= MachineMemOperand::MONonTemporal;
3859   MMOFlags |= TLI.getMMOFlags(I);
3860 
3861   // An aggregate load cannot wrap around the address space, so offsets to its
3862   // parts don't wrap either.
3863   SDNodeFlags Flags;
3864   Flags.setNoUnsignedWrap(true);
3865 
3866   unsigned ChainI = 0;
3867   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3868     // See visitLoad comments.
3869     if (ChainI == MaxParallelChains) {
3870       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3871                                   makeArrayRef(Chains.data(), ChainI));
3872       Root = Chain;
3873       ChainI = 0;
3874     }
3875     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3876                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3877     SDValue St = DAG.getStore(
3878         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3879         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3880     Chains[ChainI] = St;
3881   }
3882 
3883   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3884                                   makeArrayRef(Chains.data(), ChainI));
3885   DAG.setRoot(StoreNode);
3886 }
3887 
3888 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3889                                            bool IsCompressing) {
3890   SDLoc sdl = getCurSDLoc();
3891 
3892   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3893                            unsigned& Alignment) {
3894     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3895     Src0 = I.getArgOperand(0);
3896     Ptr = I.getArgOperand(1);
3897     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3898     Mask = I.getArgOperand(3);
3899   };
3900   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3901                            unsigned& Alignment) {
3902     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3903     Src0 = I.getArgOperand(0);
3904     Ptr = I.getArgOperand(1);
3905     Mask = I.getArgOperand(2);
3906     Alignment = 0;
3907   };
3908 
3909   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3910   unsigned Alignment;
3911   if (IsCompressing)
3912     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3913   else
3914     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3915 
3916   SDValue Ptr = getValue(PtrOperand);
3917   SDValue Src0 = getValue(Src0Operand);
3918   SDValue Mask = getValue(MaskOperand);
3919 
3920   EVT VT = Src0.getValueType();
3921   if (!Alignment)
3922     Alignment = DAG.getEVTAlignment(VT);
3923 
3924   AAMDNodes AAInfo;
3925   I.getAAMetadata(AAInfo);
3926 
3927   MachineMemOperand *MMO =
3928     DAG.getMachineFunction().
3929     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3930                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3931                           Alignment, AAInfo);
3932   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3933                                          MMO, false /* Truncating */,
3934                                          IsCompressing);
3935   DAG.setRoot(StoreNode);
3936   setValue(&I, StoreNode);
3937 }
3938 
3939 // Get a uniform base for the Gather/Scatter intrinsic.
3940 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3941 // We try to represent it as a base pointer + vector of indices.
3942 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3943 // The first operand of the GEP may be a single pointer or a vector of pointers
3944 // Example:
3945 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3946 //  or
3947 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3948 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3949 //
3950 // When the first GEP operand is a single pointer - it is the uniform base we
3951 // are looking for. If first operand of the GEP is a splat vector - we
3952 // extract the splat value and use it as a uniform base.
3953 // In all other cases the function returns 'false'.
3954 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3955                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3956   SelectionDAG& DAG = SDB->DAG;
3957   LLVMContext &Context = *DAG.getContext();
3958 
3959   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3960   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3961   if (!GEP)
3962     return false;
3963 
3964   const Value *GEPPtr = GEP->getPointerOperand();
3965   if (!GEPPtr->getType()->isVectorTy())
3966     Ptr = GEPPtr;
3967   else if (!(Ptr = getSplatValue(GEPPtr)))
3968     return false;
3969 
3970   unsigned FinalIndex = GEP->getNumOperands() - 1;
3971   Value *IndexVal = GEP->getOperand(FinalIndex);
3972 
3973   // Ensure all the other indices are 0.
3974   for (unsigned i = 1; i < FinalIndex; ++i) {
3975     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3976     if (!C || !C->isZero())
3977       return false;
3978   }
3979 
3980   // The operands of the GEP may be defined in another basic block.
3981   // In this case we'll not find nodes for the operands.
3982   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3983     return false;
3984 
3985   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3986   const DataLayout &DL = DAG.getDataLayout();
3987   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3988                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3989   Base = SDB->getValue(Ptr);
3990   Index = SDB->getValue(IndexVal);
3991 
3992   if (!Index.getValueType().isVector()) {
3993     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3994     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3995     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3996   }
3997   return true;
3998 }
3999 
4000 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4001   SDLoc sdl = getCurSDLoc();
4002 
4003   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4004   const Value *Ptr = I.getArgOperand(1);
4005   SDValue Src0 = getValue(I.getArgOperand(0));
4006   SDValue Mask = getValue(I.getArgOperand(3));
4007   EVT VT = Src0.getValueType();
4008   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4009   if (!Alignment)
4010     Alignment = DAG.getEVTAlignment(VT);
4011   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4012 
4013   AAMDNodes AAInfo;
4014   I.getAAMetadata(AAInfo);
4015 
4016   SDValue Base;
4017   SDValue Index;
4018   SDValue Scale;
4019   const Value *BasePtr = Ptr;
4020   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4021 
4022   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4023   MachineMemOperand *MMO = DAG.getMachineFunction().
4024     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4025                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4026                          Alignment, AAInfo);
4027   if (!UniformBase) {
4028     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4029     Index = getValue(Ptr);
4030     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4031   }
4032   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4033   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4034                                          Ops, MMO);
4035   DAG.setRoot(Scatter);
4036   setValue(&I, Scatter);
4037 }
4038 
4039 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4040   SDLoc sdl = getCurSDLoc();
4041 
4042   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4043                            unsigned& Alignment) {
4044     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4045     Ptr = I.getArgOperand(0);
4046     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4047     Mask = I.getArgOperand(2);
4048     Src0 = I.getArgOperand(3);
4049   };
4050   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4051                            unsigned& Alignment) {
4052     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4053     Ptr = I.getArgOperand(0);
4054     Alignment = 0;
4055     Mask = I.getArgOperand(1);
4056     Src0 = I.getArgOperand(2);
4057   };
4058 
4059   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4060   unsigned Alignment;
4061   if (IsExpanding)
4062     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4063   else
4064     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4065 
4066   SDValue Ptr = getValue(PtrOperand);
4067   SDValue Src0 = getValue(Src0Operand);
4068   SDValue Mask = getValue(MaskOperand);
4069 
4070   EVT VT = Src0.getValueType();
4071   if (!Alignment)
4072     Alignment = DAG.getEVTAlignment(VT);
4073 
4074   AAMDNodes AAInfo;
4075   I.getAAMetadata(AAInfo);
4076   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4077 
4078   // Do not serialize masked loads of constant memory with anything.
4079   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4080       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4081   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4082 
4083   MachineMemOperand *MMO =
4084     DAG.getMachineFunction().
4085     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4086                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4087                           Alignment, AAInfo, Ranges);
4088 
4089   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4090                                    ISD::NON_EXTLOAD, IsExpanding);
4091   if (AddToChain)
4092     PendingLoads.push_back(Load.getValue(1));
4093   setValue(&I, Load);
4094 }
4095 
4096 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4097   SDLoc sdl = getCurSDLoc();
4098 
4099   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4100   const Value *Ptr = I.getArgOperand(0);
4101   SDValue Src0 = getValue(I.getArgOperand(3));
4102   SDValue Mask = getValue(I.getArgOperand(2));
4103 
4104   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4105   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4106   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4107   if (!Alignment)
4108     Alignment = DAG.getEVTAlignment(VT);
4109 
4110   AAMDNodes AAInfo;
4111   I.getAAMetadata(AAInfo);
4112   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4113 
4114   SDValue Root = DAG.getRoot();
4115   SDValue Base;
4116   SDValue Index;
4117   SDValue Scale;
4118   const Value *BasePtr = Ptr;
4119   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4120   bool ConstantMemory = false;
4121   if (UniformBase &&
4122       AA && AA->pointsToConstantMemory(MemoryLocation(
4123           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4124           AAInfo))) {
4125     // Do not serialize (non-volatile) loads of constant memory with anything.
4126     Root = DAG.getEntryNode();
4127     ConstantMemory = true;
4128   }
4129 
4130   MachineMemOperand *MMO =
4131     DAG.getMachineFunction().
4132     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4133                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4134                          Alignment, AAInfo, Ranges);
4135 
4136   if (!UniformBase) {
4137     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4138     Index = getValue(Ptr);
4139     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4140   }
4141   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4142   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4143                                        Ops, MMO);
4144 
4145   SDValue OutChain = Gather.getValue(1);
4146   if (!ConstantMemory)
4147     PendingLoads.push_back(OutChain);
4148   setValue(&I, Gather);
4149 }
4150 
4151 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4152   SDLoc dl = getCurSDLoc();
4153   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4154   AtomicOrdering FailureOrder = I.getFailureOrdering();
4155   SyncScope::ID SSID = I.getSyncScopeID();
4156 
4157   SDValue InChain = getRoot();
4158 
4159   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4160   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4161   SDValue L = DAG.getAtomicCmpSwap(
4162       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4163       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4164       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4165       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4166 
4167   SDValue OutChain = L.getValue(2);
4168 
4169   setValue(&I, L);
4170   DAG.setRoot(OutChain);
4171 }
4172 
4173 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4174   SDLoc dl = getCurSDLoc();
4175   ISD::NodeType NT;
4176   switch (I.getOperation()) {
4177   default: llvm_unreachable("Unknown atomicrmw operation");
4178   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4179   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4180   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4181   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4182   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4183   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4184   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4185   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4186   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4187   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4188   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4189   }
4190   AtomicOrdering Order = I.getOrdering();
4191   SyncScope::ID SSID = I.getSyncScopeID();
4192 
4193   SDValue InChain = getRoot();
4194 
4195   SDValue L =
4196     DAG.getAtomic(NT, dl,
4197                   getValue(I.getValOperand()).getSimpleValueType(),
4198                   InChain,
4199                   getValue(I.getPointerOperand()),
4200                   getValue(I.getValOperand()),
4201                   I.getPointerOperand(),
4202                   /* Alignment=*/ 0, Order, SSID);
4203 
4204   SDValue OutChain = L.getValue(1);
4205 
4206   setValue(&I, L);
4207   DAG.setRoot(OutChain);
4208 }
4209 
4210 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4211   SDLoc dl = getCurSDLoc();
4212   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4213   SDValue Ops[3];
4214   Ops[0] = getRoot();
4215   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4216                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4217   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4218                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4219   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4220 }
4221 
4222 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4223   SDLoc dl = getCurSDLoc();
4224   AtomicOrdering Order = I.getOrdering();
4225   SyncScope::ID SSID = I.getSyncScopeID();
4226 
4227   SDValue InChain = getRoot();
4228 
4229   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4230   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4231 
4232   if (!TLI.supportsUnalignedAtomics() &&
4233       I.getAlignment() < VT.getStoreSize())
4234     report_fatal_error("Cannot generate unaligned atomic load");
4235 
4236   MachineMemOperand *MMO =
4237       DAG.getMachineFunction().
4238       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4239                            MachineMemOperand::MOVolatile |
4240                            MachineMemOperand::MOLoad,
4241                            VT.getStoreSize(),
4242                            I.getAlignment() ? I.getAlignment() :
4243                                               DAG.getEVTAlignment(VT),
4244                            AAMDNodes(), nullptr, SSID, Order);
4245 
4246   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4247   SDValue L =
4248       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4249                     getValue(I.getPointerOperand()), MMO);
4250 
4251   SDValue OutChain = L.getValue(1);
4252 
4253   setValue(&I, L);
4254   DAG.setRoot(OutChain);
4255 }
4256 
4257 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4258   SDLoc dl = getCurSDLoc();
4259 
4260   AtomicOrdering Order = I.getOrdering();
4261   SyncScope::ID SSID = I.getSyncScopeID();
4262 
4263   SDValue InChain = getRoot();
4264 
4265   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4266   EVT VT =
4267       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4268 
4269   if (I.getAlignment() < VT.getStoreSize())
4270     report_fatal_error("Cannot generate unaligned atomic store");
4271 
4272   SDValue OutChain =
4273     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4274                   InChain,
4275                   getValue(I.getPointerOperand()),
4276                   getValue(I.getValueOperand()),
4277                   I.getPointerOperand(), I.getAlignment(),
4278                   Order, SSID);
4279 
4280   DAG.setRoot(OutChain);
4281 }
4282 
4283 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4284 /// node.
4285 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4286                                                unsigned Intrinsic) {
4287   // Ignore the callsite's attributes. A specific call site may be marked with
4288   // readnone, but the lowering code will expect the chain based on the
4289   // definition.
4290   const Function *F = I.getCalledFunction();
4291   bool HasChain = !F->doesNotAccessMemory();
4292   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4293 
4294   // Build the operand list.
4295   SmallVector<SDValue, 8> Ops;
4296   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4297     if (OnlyLoad) {
4298       // We don't need to serialize loads against other loads.
4299       Ops.push_back(DAG.getRoot());
4300     } else {
4301       Ops.push_back(getRoot());
4302     }
4303   }
4304 
4305   // Info is set by getTgtMemInstrinsic
4306   TargetLowering::IntrinsicInfo Info;
4307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4308   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4309                                                DAG.getMachineFunction(),
4310                                                Intrinsic);
4311 
4312   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4313   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4314       Info.opc == ISD::INTRINSIC_W_CHAIN)
4315     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4316                                         TLI.getPointerTy(DAG.getDataLayout())));
4317 
4318   // Add all operands of the call to the operand list.
4319   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4320     SDValue Op = getValue(I.getArgOperand(i));
4321     Ops.push_back(Op);
4322   }
4323 
4324   SmallVector<EVT, 4> ValueVTs;
4325   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4326 
4327   if (HasChain)
4328     ValueVTs.push_back(MVT::Other);
4329 
4330   SDVTList VTs = DAG.getVTList(ValueVTs);
4331 
4332   // Create the node.
4333   SDValue Result;
4334   if (IsTgtIntrinsic) {
4335     // This is target intrinsic that touches memory
4336     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4337       Ops, Info.memVT,
4338       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4339       Info.flags, Info.size);
4340   } else if (!HasChain) {
4341     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4342   } else if (!I.getType()->isVoidTy()) {
4343     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4344   } else {
4345     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4346   }
4347 
4348   if (HasChain) {
4349     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4350     if (OnlyLoad)
4351       PendingLoads.push_back(Chain);
4352     else
4353       DAG.setRoot(Chain);
4354   }
4355 
4356   if (!I.getType()->isVoidTy()) {
4357     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4358       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4359       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4360     } else
4361       Result = lowerRangeToAssertZExt(DAG, I, Result);
4362 
4363     setValue(&I, Result);
4364   }
4365 }
4366 
4367 /// GetSignificand - Get the significand and build it into a floating-point
4368 /// number with exponent of 1:
4369 ///
4370 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4371 ///
4372 /// where Op is the hexadecimal representation of floating point value.
4373 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4374   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4375                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4376   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4377                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4378   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4379 }
4380 
4381 /// GetExponent - Get the exponent:
4382 ///
4383 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4384 ///
4385 /// where Op is the hexadecimal representation of floating point value.
4386 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4387                            const TargetLowering &TLI, const SDLoc &dl) {
4388   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4389                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4390   SDValue t1 = DAG.getNode(
4391       ISD::SRL, dl, MVT::i32, t0,
4392       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4393   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4394                            DAG.getConstant(127, dl, MVT::i32));
4395   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4396 }
4397 
4398 /// getF32Constant - Get 32-bit floating point constant.
4399 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4400                               const SDLoc &dl) {
4401   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4402                            MVT::f32);
4403 }
4404 
4405 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4406                                        SelectionDAG &DAG) {
4407   // TODO: What fast-math-flags should be set on the floating-point nodes?
4408 
4409   //   IntegerPartOfX = ((int32_t)(t0);
4410   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4411 
4412   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4413   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4414   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4415 
4416   //   IntegerPartOfX <<= 23;
4417   IntegerPartOfX = DAG.getNode(
4418       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4419       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4420                                   DAG.getDataLayout())));
4421 
4422   SDValue TwoToFractionalPartOfX;
4423   if (LimitFloatPrecision <= 6) {
4424     // For floating-point precision of 6:
4425     //
4426     //   TwoToFractionalPartOfX =
4427     //     0.997535578f +
4428     //       (0.735607626f + 0.252464424f * x) * x;
4429     //
4430     // error 0.0144103317, which is 6 bits
4431     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4432                              getF32Constant(DAG, 0x3e814304, dl));
4433     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4434                              getF32Constant(DAG, 0x3f3c50c8, dl));
4435     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4436     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4437                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4438   } else if (LimitFloatPrecision <= 12) {
4439     // For floating-point precision of 12:
4440     //
4441     //   TwoToFractionalPartOfX =
4442     //     0.999892986f +
4443     //       (0.696457318f +
4444     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4445     //
4446     // error 0.000107046256, which is 13 to 14 bits
4447     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4448                              getF32Constant(DAG, 0x3da235e3, dl));
4449     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4450                              getF32Constant(DAG, 0x3e65b8f3, dl));
4451     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4452     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4453                              getF32Constant(DAG, 0x3f324b07, dl));
4454     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4455     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4456                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4457   } else { // LimitFloatPrecision <= 18
4458     // For floating-point precision of 18:
4459     //
4460     //   TwoToFractionalPartOfX =
4461     //     0.999999982f +
4462     //       (0.693148872f +
4463     //         (0.240227044f +
4464     //           (0.554906021e-1f +
4465     //             (0.961591928e-2f +
4466     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4467     // error 2.47208000*10^(-7), which is better than 18 bits
4468     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4469                              getF32Constant(DAG, 0x3924b03e, dl));
4470     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4471                              getF32Constant(DAG, 0x3ab24b87, dl));
4472     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4473     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4474                              getF32Constant(DAG, 0x3c1d8c17, dl));
4475     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4476     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4477                              getF32Constant(DAG, 0x3d634a1d, dl));
4478     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4479     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4480                              getF32Constant(DAG, 0x3e75fe14, dl));
4481     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4482     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4483                               getF32Constant(DAG, 0x3f317234, dl));
4484     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4485     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4486                                          getF32Constant(DAG, 0x3f800000, dl));
4487   }
4488 
4489   // Add the exponent into the result in integer domain.
4490   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4491   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4492                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4493 }
4494 
4495 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4496 /// limited-precision mode.
4497 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4498                          const TargetLowering &TLI) {
4499   if (Op.getValueType() == MVT::f32 &&
4500       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4501 
4502     // Put the exponent in the right bit position for later addition to the
4503     // final result:
4504     //
4505     //   #define LOG2OFe 1.4426950f
4506     //   t0 = Op * LOG2OFe
4507 
4508     // TODO: What fast-math-flags should be set here?
4509     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4510                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4511     return getLimitedPrecisionExp2(t0, dl, DAG);
4512   }
4513 
4514   // No special expansion.
4515   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4516 }
4517 
4518 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4519 /// limited-precision mode.
4520 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4521                          const TargetLowering &TLI) {
4522   // TODO: What fast-math-flags should be set on the floating-point nodes?
4523 
4524   if (Op.getValueType() == MVT::f32 &&
4525       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4526     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4527 
4528     // Scale the exponent by log(2) [0.69314718f].
4529     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4530     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4531                                         getF32Constant(DAG, 0x3f317218, dl));
4532 
4533     // Get the significand and build it into a floating-point number with
4534     // exponent of 1.
4535     SDValue X = GetSignificand(DAG, Op1, dl);
4536 
4537     SDValue LogOfMantissa;
4538     if (LimitFloatPrecision <= 6) {
4539       // For floating-point precision of 6:
4540       //
4541       //   LogofMantissa =
4542       //     -1.1609546f +
4543       //       (1.4034025f - 0.23903021f * x) * x;
4544       //
4545       // error 0.0034276066, which is better than 8 bits
4546       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4547                                getF32Constant(DAG, 0xbe74c456, dl));
4548       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4549                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4550       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4551       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4552                                   getF32Constant(DAG, 0x3f949a29, dl));
4553     } else if (LimitFloatPrecision <= 12) {
4554       // For floating-point precision of 12:
4555       //
4556       //   LogOfMantissa =
4557       //     -1.7417939f +
4558       //       (2.8212026f +
4559       //         (-1.4699568f +
4560       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4561       //
4562       // error 0.000061011436, which is 14 bits
4563       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4564                                getF32Constant(DAG, 0xbd67b6d6, dl));
4565       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4566                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4567       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4568       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4569                                getF32Constant(DAG, 0x3fbc278b, dl));
4570       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4571       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4572                                getF32Constant(DAG, 0x40348e95, dl));
4573       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4574       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4575                                   getF32Constant(DAG, 0x3fdef31a, dl));
4576     } else { // LimitFloatPrecision <= 18
4577       // For floating-point precision of 18:
4578       //
4579       //   LogOfMantissa =
4580       //     -2.1072184f +
4581       //       (4.2372794f +
4582       //         (-3.7029485f +
4583       //           (2.2781945f +
4584       //             (-0.87823314f +
4585       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4586       //
4587       // error 0.0000023660568, which is better than 18 bits
4588       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4589                                getF32Constant(DAG, 0xbc91e5ac, dl));
4590       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4591                                getF32Constant(DAG, 0x3e4350aa, dl));
4592       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4593       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4594                                getF32Constant(DAG, 0x3f60d3e3, dl));
4595       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4596       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4597                                getF32Constant(DAG, 0x4011cdf0, dl));
4598       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4599       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4600                                getF32Constant(DAG, 0x406cfd1c, dl));
4601       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4602       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4603                                getF32Constant(DAG, 0x408797cb, dl));
4604       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4605       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4606                                   getF32Constant(DAG, 0x4006dcab, dl));
4607     }
4608 
4609     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4610   }
4611 
4612   // No special expansion.
4613   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4614 }
4615 
4616 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4617 /// limited-precision mode.
4618 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4619                           const TargetLowering &TLI) {
4620   // TODO: What fast-math-flags should be set on the floating-point nodes?
4621 
4622   if (Op.getValueType() == MVT::f32 &&
4623       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4624     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4625 
4626     // Get the exponent.
4627     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4628 
4629     // Get the significand and build it into a floating-point number with
4630     // exponent of 1.
4631     SDValue X = GetSignificand(DAG, Op1, dl);
4632 
4633     // Different possible minimax approximations of significand in
4634     // floating-point for various degrees of accuracy over [1,2].
4635     SDValue Log2ofMantissa;
4636     if (LimitFloatPrecision <= 6) {
4637       // For floating-point precision of 6:
4638       //
4639       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4640       //
4641       // error 0.0049451742, which is more than 7 bits
4642       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4643                                getF32Constant(DAG, 0xbeb08fe0, dl));
4644       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4645                                getF32Constant(DAG, 0x40019463, dl));
4646       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4647       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4648                                    getF32Constant(DAG, 0x3fd6633d, dl));
4649     } else if (LimitFloatPrecision <= 12) {
4650       // For floating-point precision of 12:
4651       //
4652       //   Log2ofMantissa =
4653       //     -2.51285454f +
4654       //       (4.07009056f +
4655       //         (-2.12067489f +
4656       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4657       //
4658       // error 0.0000876136000, which is better than 13 bits
4659       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4660                                getF32Constant(DAG, 0xbda7262e, dl));
4661       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4662                                getF32Constant(DAG, 0x3f25280b, dl));
4663       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4664       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4665                                getF32Constant(DAG, 0x4007b923, dl));
4666       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4667       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4668                                getF32Constant(DAG, 0x40823e2f, dl));
4669       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4670       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4671                                    getF32Constant(DAG, 0x4020d29c, dl));
4672     } else { // LimitFloatPrecision <= 18
4673       // For floating-point precision of 18:
4674       //
4675       //   Log2ofMantissa =
4676       //     -3.0400495f +
4677       //       (6.1129976f +
4678       //         (-5.3420409f +
4679       //           (3.2865683f +
4680       //             (-1.2669343f +
4681       //               (0.27515199f -
4682       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4683       //
4684       // error 0.0000018516, which is better than 18 bits
4685       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4686                                getF32Constant(DAG, 0xbcd2769e, dl));
4687       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4688                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4689       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4690       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4691                                getF32Constant(DAG, 0x3fa22ae7, dl));
4692       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4693       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4694                                getF32Constant(DAG, 0x40525723, dl));
4695       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4696       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4697                                getF32Constant(DAG, 0x40aaf200, dl));
4698       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4699       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4700                                getF32Constant(DAG, 0x40c39dad, dl));
4701       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4702       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4703                                    getF32Constant(DAG, 0x4042902c, dl));
4704     }
4705 
4706     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4707   }
4708 
4709   // No special expansion.
4710   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4711 }
4712 
4713 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4714 /// limited-precision mode.
4715 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4716                            const TargetLowering &TLI) {
4717   // TODO: What fast-math-flags should be set on the floating-point nodes?
4718 
4719   if (Op.getValueType() == MVT::f32 &&
4720       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4721     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4722 
4723     // Scale the exponent by log10(2) [0.30102999f].
4724     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4725     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4726                                         getF32Constant(DAG, 0x3e9a209a, dl));
4727 
4728     // Get the significand and build it into a floating-point number with
4729     // exponent of 1.
4730     SDValue X = GetSignificand(DAG, Op1, dl);
4731 
4732     SDValue Log10ofMantissa;
4733     if (LimitFloatPrecision <= 6) {
4734       // For floating-point precision of 6:
4735       //
4736       //   Log10ofMantissa =
4737       //     -0.50419619f +
4738       //       (0.60948995f - 0.10380950f * x) * x;
4739       //
4740       // error 0.0014886165, which is 6 bits
4741       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4742                                getF32Constant(DAG, 0xbdd49a13, dl));
4743       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4744                                getF32Constant(DAG, 0x3f1c0789, dl));
4745       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4746       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4747                                     getF32Constant(DAG, 0x3f011300, dl));
4748     } else if (LimitFloatPrecision <= 12) {
4749       // For floating-point precision of 12:
4750       //
4751       //   Log10ofMantissa =
4752       //     -0.64831180f +
4753       //       (0.91751397f +
4754       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4755       //
4756       // error 0.00019228036, which is better than 12 bits
4757       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4758                                getF32Constant(DAG, 0x3d431f31, dl));
4759       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4760                                getF32Constant(DAG, 0x3ea21fb2, dl));
4761       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4762       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4763                                getF32Constant(DAG, 0x3f6ae232, dl));
4764       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4765       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4766                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4767     } else { // LimitFloatPrecision <= 18
4768       // For floating-point precision of 18:
4769       //
4770       //   Log10ofMantissa =
4771       //     -0.84299375f +
4772       //       (1.5327582f +
4773       //         (-1.0688956f +
4774       //           (0.49102474f +
4775       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4776       //
4777       // error 0.0000037995730, which is better than 18 bits
4778       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4779                                getF32Constant(DAG, 0x3c5d51ce, dl));
4780       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4781                                getF32Constant(DAG, 0x3e00685a, dl));
4782       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4783       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4784                                getF32Constant(DAG, 0x3efb6798, dl));
4785       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4786       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4787                                getF32Constant(DAG, 0x3f88d192, dl));
4788       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4789       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4790                                getF32Constant(DAG, 0x3fc4316c, dl));
4791       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4792       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4793                                     getF32Constant(DAG, 0x3f57ce70, dl));
4794     }
4795 
4796     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4797   }
4798 
4799   // No special expansion.
4800   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4801 }
4802 
4803 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4804 /// limited-precision mode.
4805 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4806                           const TargetLowering &TLI) {
4807   if (Op.getValueType() == MVT::f32 &&
4808       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4809     return getLimitedPrecisionExp2(Op, dl, DAG);
4810 
4811   // No special expansion.
4812   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4813 }
4814 
4815 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4816 /// limited-precision mode with x == 10.0f.
4817 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4818                          SelectionDAG &DAG, const TargetLowering &TLI) {
4819   bool IsExp10 = false;
4820   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4821       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4822     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4823       APFloat Ten(10.0f);
4824       IsExp10 = LHSC->isExactlyValue(Ten);
4825     }
4826   }
4827 
4828   // TODO: What fast-math-flags should be set on the FMUL node?
4829   if (IsExp10) {
4830     // Put the exponent in the right bit position for later addition to the
4831     // final result:
4832     //
4833     //   #define LOG2OF10 3.3219281f
4834     //   t0 = Op * LOG2OF10;
4835     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4836                              getF32Constant(DAG, 0x40549a78, dl));
4837     return getLimitedPrecisionExp2(t0, dl, DAG);
4838   }
4839 
4840   // No special expansion.
4841   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4842 }
4843 
4844 /// ExpandPowI - Expand a llvm.powi intrinsic.
4845 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4846                           SelectionDAG &DAG) {
4847   // If RHS is a constant, we can expand this out to a multiplication tree,
4848   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4849   // optimizing for size, we only want to do this if the expansion would produce
4850   // a small number of multiplies, otherwise we do the full expansion.
4851   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4852     // Get the exponent as a positive value.
4853     unsigned Val = RHSC->getSExtValue();
4854     if ((int)Val < 0) Val = -Val;
4855 
4856     // powi(x, 0) -> 1.0
4857     if (Val == 0)
4858       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4859 
4860     const Function &F = DAG.getMachineFunction().getFunction();
4861     if (!F.optForSize() ||
4862         // If optimizing for size, don't insert too many multiplies.
4863         // This inserts up to 5 multiplies.
4864         countPopulation(Val) + Log2_32(Val) < 7) {
4865       // We use the simple binary decomposition method to generate the multiply
4866       // sequence.  There are more optimal ways to do this (for example,
4867       // powi(x,15) generates one more multiply than it should), but this has
4868       // the benefit of being both really simple and much better than a libcall.
4869       SDValue Res;  // Logically starts equal to 1.0
4870       SDValue CurSquare = LHS;
4871       // TODO: Intrinsics should have fast-math-flags that propagate to these
4872       // nodes.
4873       while (Val) {
4874         if (Val & 1) {
4875           if (Res.getNode())
4876             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4877           else
4878             Res = CurSquare;  // 1.0*CurSquare.
4879         }
4880 
4881         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4882                                 CurSquare, CurSquare);
4883         Val >>= 1;
4884       }
4885 
4886       // If the original was negative, invert the result, producing 1/(x*x*x).
4887       if (RHSC->getSExtValue() < 0)
4888         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4889                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4890       return Res;
4891     }
4892   }
4893 
4894   // Otherwise, expand to a libcall.
4895   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4896 }
4897 
4898 // getUnderlyingArgReg - Find underlying register used for a truncated or
4899 // bitcasted argument.
4900 static unsigned getUnderlyingArgReg(const SDValue &N) {
4901   switch (N.getOpcode()) {
4902   case ISD::CopyFromReg:
4903     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4904   case ISD::BITCAST:
4905   case ISD::AssertZext:
4906   case ISD::AssertSext:
4907   case ISD::TRUNCATE:
4908     return getUnderlyingArgReg(N.getOperand(0));
4909   default:
4910     return 0;
4911   }
4912 }
4913 
4914 /// If the DbgValueInst is a dbg_value of a function argument, create the
4915 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4916 /// instruction selection, they will be inserted to the entry BB.
4917 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4918     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4919     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4920   const Argument *Arg = dyn_cast<Argument>(V);
4921   if (!Arg)
4922     return false;
4923 
4924   MachineFunction &MF = DAG.getMachineFunction();
4925   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4926 
4927   bool IsIndirect = false;
4928   Optional<MachineOperand> Op;
4929   // Some arguments' frame index is recorded during argument lowering.
4930   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4931   if (FI != std::numeric_limits<int>::max())
4932     Op = MachineOperand::CreateFI(FI);
4933 
4934   if (!Op && N.getNode()) {
4935     unsigned Reg = getUnderlyingArgReg(N);
4936     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4937       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4938       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4939       if (PR)
4940         Reg = PR;
4941     }
4942     if (Reg) {
4943       Op = MachineOperand::CreateReg(Reg, false);
4944       IsIndirect = IsDbgDeclare;
4945     }
4946   }
4947 
4948   if (!Op && N.getNode())
4949     // Check if frame index is available.
4950     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4951       if (FrameIndexSDNode *FINode =
4952           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4953         Op = MachineOperand::CreateFI(FINode->getIndex());
4954 
4955   if (!Op) {
4956     // Check if ValueMap has reg number.
4957     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4958     if (VMI != FuncInfo.ValueMap.end()) {
4959       const auto &TLI = DAG.getTargetLoweringInfo();
4960       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4961                        V->getType(), getABIRegCopyCC(V));
4962       if (RFV.occupiesMultipleRegs()) {
4963         unsigned Offset = 0;
4964         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4965           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4966           auto FragmentExpr = DIExpression::createFragmentExpression(
4967               Expr, Offset, RegAndSize.second);
4968           if (!FragmentExpr)
4969             continue;
4970           FuncInfo.ArgDbgValues.push_back(
4971               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4972                       Op->getReg(), Variable, *FragmentExpr));
4973           Offset += RegAndSize.second;
4974         }
4975         return true;
4976       }
4977       Op = MachineOperand::CreateReg(VMI->second, false);
4978       IsIndirect = IsDbgDeclare;
4979     }
4980   }
4981 
4982   if (!Op)
4983     return false;
4984 
4985   assert(Variable->isValidLocationForIntrinsic(DL) &&
4986          "Expected inlined-at fields to agree");
4987   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4988   FuncInfo.ArgDbgValues.push_back(
4989       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4990               *Op, Variable, Expr));
4991 
4992   return true;
4993 }
4994 
4995 /// Return the appropriate SDDbgValue based on N.
4996 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4997                                              DILocalVariable *Variable,
4998                                              DIExpression *Expr,
4999                                              const DebugLoc &dl,
5000                                              unsigned DbgSDNodeOrder) {
5001   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5002     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5003     // stack slot locations.
5004     //
5005     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5006     // debug values here after optimization:
5007     //
5008     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5009     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5010     //
5011     // Both describe the direct values of their associated variables.
5012     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5013                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5014   }
5015   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5016                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5017 }
5018 
5019 // VisualStudio defines setjmp as _setjmp
5020 #if defined(_MSC_VER) && defined(setjmp) && \
5021                          !defined(setjmp_undefined_for_msvc)
5022 #  pragma push_macro("setjmp")
5023 #  undef setjmp
5024 #  define setjmp_undefined_for_msvc
5025 #endif
5026 
5027 /// Lower the call to the specified intrinsic function. If we want to emit this
5028 /// as a call to a named external function, return the name. Otherwise, lower it
5029 /// and return null.
5030 const char *
5031 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5032   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5033   SDLoc sdl = getCurSDLoc();
5034   DebugLoc dl = getCurDebugLoc();
5035   SDValue Res;
5036 
5037   switch (Intrinsic) {
5038   default:
5039     // By default, turn this into a target intrinsic node.
5040     visitTargetIntrinsic(I, Intrinsic);
5041     return nullptr;
5042   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5043   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5044   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5045   case Intrinsic::returnaddress:
5046     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5047                              TLI.getPointerTy(DAG.getDataLayout()),
5048                              getValue(I.getArgOperand(0))));
5049     return nullptr;
5050   case Intrinsic::addressofreturnaddress:
5051     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5052                              TLI.getPointerTy(DAG.getDataLayout())));
5053     return nullptr;
5054   case Intrinsic::frameaddress:
5055     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5056                              TLI.getPointerTy(DAG.getDataLayout()),
5057                              getValue(I.getArgOperand(0))));
5058     return nullptr;
5059   case Intrinsic::read_register: {
5060     Value *Reg = I.getArgOperand(0);
5061     SDValue Chain = getRoot();
5062     SDValue RegName =
5063         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5064     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5065     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5066       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5067     setValue(&I, Res);
5068     DAG.setRoot(Res.getValue(1));
5069     return nullptr;
5070   }
5071   case Intrinsic::write_register: {
5072     Value *Reg = I.getArgOperand(0);
5073     Value *RegValue = I.getArgOperand(1);
5074     SDValue Chain = getRoot();
5075     SDValue RegName =
5076         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5077     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5078                             RegName, getValue(RegValue)));
5079     return nullptr;
5080   }
5081   case Intrinsic::setjmp:
5082     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5083   case Intrinsic::longjmp:
5084     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5085   case Intrinsic::memcpy: {
5086     const auto &MCI = cast<MemCpyInst>(I);
5087     SDValue Op1 = getValue(I.getArgOperand(0));
5088     SDValue Op2 = getValue(I.getArgOperand(1));
5089     SDValue Op3 = getValue(I.getArgOperand(2));
5090     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5091     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5092     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5093     unsigned Align = MinAlign(DstAlign, SrcAlign);
5094     bool isVol = MCI.isVolatile();
5095     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5096     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5097     // node.
5098     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5099                                false, isTC,
5100                                MachinePointerInfo(I.getArgOperand(0)),
5101                                MachinePointerInfo(I.getArgOperand(1)));
5102     updateDAGForMaybeTailCall(MC);
5103     return nullptr;
5104   }
5105   case Intrinsic::memset: {
5106     const auto &MSI = cast<MemSetInst>(I);
5107     SDValue Op1 = getValue(I.getArgOperand(0));
5108     SDValue Op2 = getValue(I.getArgOperand(1));
5109     SDValue Op3 = getValue(I.getArgOperand(2));
5110     // @llvm.memset defines 0 and 1 to both mean no alignment.
5111     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5112     bool isVol = MSI.isVolatile();
5113     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5114     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5115                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5116     updateDAGForMaybeTailCall(MS);
5117     return nullptr;
5118   }
5119   case Intrinsic::memmove: {
5120     const auto &MMI = cast<MemMoveInst>(I);
5121     SDValue Op1 = getValue(I.getArgOperand(0));
5122     SDValue Op2 = getValue(I.getArgOperand(1));
5123     SDValue Op3 = getValue(I.getArgOperand(2));
5124     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5125     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5126     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5127     unsigned Align = MinAlign(DstAlign, SrcAlign);
5128     bool isVol = MMI.isVolatile();
5129     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5130     // FIXME: Support passing different dest/src alignments to the memmove DAG
5131     // node.
5132     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5133                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5134                                 MachinePointerInfo(I.getArgOperand(1)));
5135     updateDAGForMaybeTailCall(MM);
5136     return nullptr;
5137   }
5138   case Intrinsic::memcpy_element_unordered_atomic: {
5139     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5140     SDValue Dst = getValue(MI.getRawDest());
5141     SDValue Src = getValue(MI.getRawSource());
5142     SDValue Length = getValue(MI.getLength());
5143 
5144     unsigned DstAlign = MI.getDestAlignment();
5145     unsigned SrcAlign = MI.getSourceAlignment();
5146     Type *LengthTy = MI.getLength()->getType();
5147     unsigned ElemSz = MI.getElementSizeInBytes();
5148     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5149     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5150                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5151                                      MachinePointerInfo(MI.getRawDest()),
5152                                      MachinePointerInfo(MI.getRawSource()));
5153     updateDAGForMaybeTailCall(MC);
5154     return nullptr;
5155   }
5156   case Intrinsic::memmove_element_unordered_atomic: {
5157     auto &MI = cast<AtomicMemMoveInst>(I);
5158     SDValue Dst = getValue(MI.getRawDest());
5159     SDValue Src = getValue(MI.getRawSource());
5160     SDValue Length = getValue(MI.getLength());
5161 
5162     unsigned DstAlign = MI.getDestAlignment();
5163     unsigned SrcAlign = MI.getSourceAlignment();
5164     Type *LengthTy = MI.getLength()->getType();
5165     unsigned ElemSz = MI.getElementSizeInBytes();
5166     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5167     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5168                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5169                                       MachinePointerInfo(MI.getRawDest()),
5170                                       MachinePointerInfo(MI.getRawSource()));
5171     updateDAGForMaybeTailCall(MC);
5172     return nullptr;
5173   }
5174   case Intrinsic::memset_element_unordered_atomic: {
5175     auto &MI = cast<AtomicMemSetInst>(I);
5176     SDValue Dst = getValue(MI.getRawDest());
5177     SDValue Val = getValue(MI.getValue());
5178     SDValue Length = getValue(MI.getLength());
5179 
5180     unsigned DstAlign = MI.getDestAlignment();
5181     Type *LengthTy = MI.getLength()->getType();
5182     unsigned ElemSz = MI.getElementSizeInBytes();
5183     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5184     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5185                                      LengthTy, ElemSz, isTC,
5186                                      MachinePointerInfo(MI.getRawDest()));
5187     updateDAGForMaybeTailCall(MC);
5188     return nullptr;
5189   }
5190   case Intrinsic::dbg_addr:
5191   case Intrinsic::dbg_declare: {
5192     const auto &DI = cast<DbgVariableIntrinsic>(I);
5193     DILocalVariable *Variable = DI.getVariable();
5194     DIExpression *Expression = DI.getExpression();
5195     dropDanglingDebugInfo(Variable, Expression);
5196     assert(Variable && "Missing variable");
5197 
5198     // Check if address has undef value.
5199     const Value *Address = DI.getVariableLocation();
5200     if (!Address || isa<UndefValue>(Address) ||
5201         (Address->use_empty() && !isa<Argument>(Address))) {
5202       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5203       return nullptr;
5204     }
5205 
5206     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5207 
5208     // Check if this variable can be described by a frame index, typically
5209     // either as a static alloca or a byval parameter.
5210     int FI = std::numeric_limits<int>::max();
5211     if (const auto *AI =
5212             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5213       if (AI->isStaticAlloca()) {
5214         auto I = FuncInfo.StaticAllocaMap.find(AI);
5215         if (I != FuncInfo.StaticAllocaMap.end())
5216           FI = I->second;
5217       }
5218     } else if (const auto *Arg = dyn_cast<Argument>(
5219                    Address->stripInBoundsConstantOffsets())) {
5220       FI = FuncInfo.getArgumentFrameIndex(Arg);
5221     }
5222 
5223     // llvm.dbg.addr is control dependent and always generates indirect
5224     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5225     // the MachineFunction variable table.
5226     if (FI != std::numeric_limits<int>::max()) {
5227       if (Intrinsic == Intrinsic::dbg_addr) {
5228         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5229             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5230         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5231       }
5232       return nullptr;
5233     }
5234 
5235     SDValue &N = NodeMap[Address];
5236     if (!N.getNode() && isa<Argument>(Address))
5237       // Check unused arguments map.
5238       N = UnusedArgNodeMap[Address];
5239     SDDbgValue *SDV;
5240     if (N.getNode()) {
5241       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5242         Address = BCI->getOperand(0);
5243       // Parameters are handled specially.
5244       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5245       if (isParameter && FINode) {
5246         // Byval parameter. We have a frame index at this point.
5247         SDV =
5248             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5249                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5250       } else if (isa<Argument>(Address)) {
5251         // Address is an argument, so try to emit its dbg value using
5252         // virtual register info from the FuncInfo.ValueMap.
5253         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5254         return nullptr;
5255       } else {
5256         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5257                               true, dl, SDNodeOrder);
5258       }
5259       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5260     } else {
5261       // If Address is an argument then try to emit its dbg value using
5262       // virtual register info from the FuncInfo.ValueMap.
5263       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5264                                     N)) {
5265         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5266       }
5267     }
5268     return nullptr;
5269   }
5270   case Intrinsic::dbg_label: {
5271     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5272     DILabel *Label = DI.getLabel();
5273     assert(Label && "Missing label");
5274 
5275     SDDbgLabel *SDV;
5276     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5277     DAG.AddDbgLabel(SDV);
5278     return nullptr;
5279   }
5280   case Intrinsic::dbg_value: {
5281     const DbgValueInst &DI = cast<DbgValueInst>(I);
5282     assert(DI.getVariable() && "Missing variable");
5283 
5284     DILocalVariable *Variable = DI.getVariable();
5285     DIExpression *Expression = DI.getExpression();
5286     dropDanglingDebugInfo(Variable, Expression);
5287     const Value *V = DI.getValue();
5288     if (!V)
5289       return nullptr;
5290 
5291     SDDbgValue *SDV;
5292     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5293       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5294       DAG.AddDbgValue(SDV, nullptr, false);
5295       return nullptr;
5296     }
5297 
5298     // Do not use getValue() in here; we don't want to generate code at
5299     // this point if it hasn't been done yet.
5300     SDValue N = NodeMap[V];
5301     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5302       N = UnusedArgNodeMap[V];
5303     if (N.getNode()) {
5304       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5305         return nullptr;
5306       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5307       DAG.AddDbgValue(SDV, N.getNode(), false);
5308       return nullptr;
5309     }
5310 
5311     // PHI nodes have already been selected, so we should know which VReg that
5312     // is assigns to already.
5313     if (isa<PHINode>(V)) {
5314       auto VMI = FuncInfo.ValueMap.find(V);
5315       if (VMI != FuncInfo.ValueMap.end()) {
5316         unsigned Reg = VMI->second;
5317         // The PHI node may be split up into several MI PHI nodes (in
5318         // FunctionLoweringInfo::set).
5319         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5320                          V->getType(), None);
5321         if (RFV.occupiesMultipleRegs()) {
5322           unsigned Offset = 0;
5323           unsigned BitsToDescribe = 0;
5324           if (auto VarSize = Variable->getSizeInBits())
5325             BitsToDescribe = *VarSize;
5326           if (auto Fragment = Expression->getFragmentInfo())
5327             BitsToDescribe = Fragment->SizeInBits;
5328           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5329             unsigned RegisterSize = RegAndSize.second;
5330             // Bail out if all bits are described already.
5331             if (Offset >= BitsToDescribe)
5332               break;
5333             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5334                 ? BitsToDescribe - Offset
5335                 : RegisterSize;
5336             auto FragmentExpr = DIExpression::createFragmentExpression(
5337                 Expression, Offset, FragmentSize);
5338             if (!FragmentExpr)
5339                 continue;
5340             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5341                                       false, dl, SDNodeOrder);
5342             DAG.AddDbgValue(SDV, nullptr, false);
5343             Offset += RegisterSize;
5344           }
5345         } else {
5346           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5347                                     SDNodeOrder);
5348           DAG.AddDbgValue(SDV, nullptr, false);
5349         }
5350         return nullptr;
5351       }
5352     }
5353 
5354     // TODO: When we get here we will either drop the dbg.value completely, or
5355     // we try to move it forward by letting it dangle for awhile. So we should
5356     // probably add an extra DbgValue to the DAG here, with a reference to
5357     // "noreg", to indicate that we have lost the debug location for the
5358     // variable.
5359 
5360     if (!V->use_empty() ) {
5361       // Do not call getValue(V) yet, as we don't want to generate code.
5362       // Remember it for later.
5363       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5364       return nullptr;
5365     }
5366 
5367     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5368     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5369     return nullptr;
5370   }
5371 
5372   case Intrinsic::eh_typeid_for: {
5373     // Find the type id for the given typeinfo.
5374     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5375     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5376     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5377     setValue(&I, Res);
5378     return nullptr;
5379   }
5380 
5381   case Intrinsic::eh_return_i32:
5382   case Intrinsic::eh_return_i64:
5383     DAG.getMachineFunction().setCallsEHReturn(true);
5384     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5385                             MVT::Other,
5386                             getControlRoot(),
5387                             getValue(I.getArgOperand(0)),
5388                             getValue(I.getArgOperand(1))));
5389     return nullptr;
5390   case Intrinsic::eh_unwind_init:
5391     DAG.getMachineFunction().setCallsUnwindInit(true);
5392     return nullptr;
5393   case Intrinsic::eh_dwarf_cfa:
5394     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5395                              TLI.getPointerTy(DAG.getDataLayout()),
5396                              getValue(I.getArgOperand(0))));
5397     return nullptr;
5398   case Intrinsic::eh_sjlj_callsite: {
5399     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5400     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5401     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5402     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5403 
5404     MMI.setCurrentCallSite(CI->getZExtValue());
5405     return nullptr;
5406   }
5407   case Intrinsic::eh_sjlj_functioncontext: {
5408     // Get and store the index of the function context.
5409     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5410     AllocaInst *FnCtx =
5411       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5412     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5413     MFI.setFunctionContextIndex(FI);
5414     return nullptr;
5415   }
5416   case Intrinsic::eh_sjlj_setjmp: {
5417     SDValue Ops[2];
5418     Ops[0] = getRoot();
5419     Ops[1] = getValue(I.getArgOperand(0));
5420     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5421                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5422     setValue(&I, Op.getValue(0));
5423     DAG.setRoot(Op.getValue(1));
5424     return nullptr;
5425   }
5426   case Intrinsic::eh_sjlj_longjmp:
5427     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5428                             getRoot(), getValue(I.getArgOperand(0))));
5429     return nullptr;
5430   case Intrinsic::eh_sjlj_setup_dispatch:
5431     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5432                             getRoot()));
5433     return nullptr;
5434   case Intrinsic::masked_gather:
5435     visitMaskedGather(I);
5436     return nullptr;
5437   case Intrinsic::masked_load:
5438     visitMaskedLoad(I);
5439     return nullptr;
5440   case Intrinsic::masked_scatter:
5441     visitMaskedScatter(I);
5442     return nullptr;
5443   case Intrinsic::masked_store:
5444     visitMaskedStore(I);
5445     return nullptr;
5446   case Intrinsic::masked_expandload:
5447     visitMaskedLoad(I, true /* IsExpanding */);
5448     return nullptr;
5449   case Intrinsic::masked_compressstore:
5450     visitMaskedStore(I, true /* IsCompressing */);
5451     return nullptr;
5452   case Intrinsic::x86_mmx_pslli_w:
5453   case Intrinsic::x86_mmx_pslli_d:
5454   case Intrinsic::x86_mmx_pslli_q:
5455   case Intrinsic::x86_mmx_psrli_w:
5456   case Intrinsic::x86_mmx_psrli_d:
5457   case Intrinsic::x86_mmx_psrli_q:
5458   case Intrinsic::x86_mmx_psrai_w:
5459   case Intrinsic::x86_mmx_psrai_d: {
5460     SDValue ShAmt = getValue(I.getArgOperand(1));
5461     if (isa<ConstantSDNode>(ShAmt)) {
5462       visitTargetIntrinsic(I, Intrinsic);
5463       return nullptr;
5464     }
5465     unsigned NewIntrinsic = 0;
5466     EVT ShAmtVT = MVT::v2i32;
5467     switch (Intrinsic) {
5468     case Intrinsic::x86_mmx_pslli_w:
5469       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5470       break;
5471     case Intrinsic::x86_mmx_pslli_d:
5472       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5473       break;
5474     case Intrinsic::x86_mmx_pslli_q:
5475       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5476       break;
5477     case Intrinsic::x86_mmx_psrli_w:
5478       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5479       break;
5480     case Intrinsic::x86_mmx_psrli_d:
5481       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5482       break;
5483     case Intrinsic::x86_mmx_psrli_q:
5484       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5485       break;
5486     case Intrinsic::x86_mmx_psrai_w:
5487       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5488       break;
5489     case Intrinsic::x86_mmx_psrai_d:
5490       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5491       break;
5492     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5493     }
5494 
5495     // The vector shift intrinsics with scalars uses 32b shift amounts but
5496     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5497     // to be zero.
5498     // We must do this early because v2i32 is not a legal type.
5499     SDValue ShOps[2];
5500     ShOps[0] = ShAmt;
5501     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5502     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5503     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5504     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5505     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5506                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5507                        getValue(I.getArgOperand(0)), ShAmt);
5508     setValue(&I, Res);
5509     return nullptr;
5510   }
5511   case Intrinsic::powi:
5512     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5513                             getValue(I.getArgOperand(1)), DAG));
5514     return nullptr;
5515   case Intrinsic::log:
5516     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5517     return nullptr;
5518   case Intrinsic::log2:
5519     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5520     return nullptr;
5521   case Intrinsic::log10:
5522     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5523     return nullptr;
5524   case Intrinsic::exp:
5525     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5526     return nullptr;
5527   case Intrinsic::exp2:
5528     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5529     return nullptr;
5530   case Intrinsic::pow:
5531     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5532                            getValue(I.getArgOperand(1)), DAG, TLI));
5533     return nullptr;
5534   case Intrinsic::sqrt:
5535   case Intrinsic::fabs:
5536   case Intrinsic::sin:
5537   case Intrinsic::cos:
5538   case Intrinsic::floor:
5539   case Intrinsic::ceil:
5540   case Intrinsic::trunc:
5541   case Intrinsic::rint:
5542   case Intrinsic::nearbyint:
5543   case Intrinsic::round:
5544   case Intrinsic::canonicalize: {
5545     unsigned Opcode;
5546     switch (Intrinsic) {
5547     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5548     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5549     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5550     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5551     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5552     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5553     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5554     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5555     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5556     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5557     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5558     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5559     }
5560 
5561     setValue(&I, DAG.getNode(Opcode, sdl,
5562                              getValue(I.getArgOperand(0)).getValueType(),
5563                              getValue(I.getArgOperand(0))));
5564     return nullptr;
5565   }
5566   case Intrinsic::minnum: {
5567     auto VT = getValue(I.getArgOperand(0)).getValueType();
5568     unsigned Opc =
5569         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5570             ? ISD::FMINNAN
5571             : ISD::FMINNUM;
5572     setValue(&I, DAG.getNode(Opc, sdl, VT,
5573                              getValue(I.getArgOperand(0)),
5574                              getValue(I.getArgOperand(1))));
5575     return nullptr;
5576   }
5577   case Intrinsic::maxnum: {
5578     auto VT = getValue(I.getArgOperand(0)).getValueType();
5579     unsigned Opc =
5580         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5581             ? ISD::FMAXNAN
5582             : ISD::FMAXNUM;
5583     setValue(&I, DAG.getNode(Opc, sdl, VT,
5584                              getValue(I.getArgOperand(0)),
5585                              getValue(I.getArgOperand(1))));
5586     return nullptr;
5587   }
5588   case Intrinsic::copysign:
5589     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5590                              getValue(I.getArgOperand(0)).getValueType(),
5591                              getValue(I.getArgOperand(0)),
5592                              getValue(I.getArgOperand(1))));
5593     return nullptr;
5594   case Intrinsic::fma:
5595     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5596                              getValue(I.getArgOperand(0)).getValueType(),
5597                              getValue(I.getArgOperand(0)),
5598                              getValue(I.getArgOperand(1)),
5599                              getValue(I.getArgOperand(2))));
5600     return nullptr;
5601   case Intrinsic::experimental_constrained_fadd:
5602   case Intrinsic::experimental_constrained_fsub:
5603   case Intrinsic::experimental_constrained_fmul:
5604   case Intrinsic::experimental_constrained_fdiv:
5605   case Intrinsic::experimental_constrained_frem:
5606   case Intrinsic::experimental_constrained_fma:
5607   case Intrinsic::experimental_constrained_sqrt:
5608   case Intrinsic::experimental_constrained_pow:
5609   case Intrinsic::experimental_constrained_powi:
5610   case Intrinsic::experimental_constrained_sin:
5611   case Intrinsic::experimental_constrained_cos:
5612   case Intrinsic::experimental_constrained_exp:
5613   case Intrinsic::experimental_constrained_exp2:
5614   case Intrinsic::experimental_constrained_log:
5615   case Intrinsic::experimental_constrained_log10:
5616   case Intrinsic::experimental_constrained_log2:
5617   case Intrinsic::experimental_constrained_rint:
5618   case Intrinsic::experimental_constrained_nearbyint:
5619     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5620     return nullptr;
5621   case Intrinsic::fmuladd: {
5622     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5623     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5624         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5625       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5626                                getValue(I.getArgOperand(0)).getValueType(),
5627                                getValue(I.getArgOperand(0)),
5628                                getValue(I.getArgOperand(1)),
5629                                getValue(I.getArgOperand(2))));
5630     } else {
5631       // TODO: Intrinsic calls should have fast-math-flags.
5632       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5633                                 getValue(I.getArgOperand(0)).getValueType(),
5634                                 getValue(I.getArgOperand(0)),
5635                                 getValue(I.getArgOperand(1)));
5636       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5637                                 getValue(I.getArgOperand(0)).getValueType(),
5638                                 Mul,
5639                                 getValue(I.getArgOperand(2)));
5640       setValue(&I, Add);
5641     }
5642     return nullptr;
5643   }
5644   case Intrinsic::convert_to_fp16:
5645     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5646                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5647                                          getValue(I.getArgOperand(0)),
5648                                          DAG.getTargetConstant(0, sdl,
5649                                                                MVT::i32))));
5650     return nullptr;
5651   case Intrinsic::convert_from_fp16:
5652     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5653                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5654                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5655                                          getValue(I.getArgOperand(0)))));
5656     return nullptr;
5657   case Intrinsic::pcmarker: {
5658     SDValue Tmp = getValue(I.getArgOperand(0));
5659     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5660     return nullptr;
5661   }
5662   case Intrinsic::readcyclecounter: {
5663     SDValue Op = getRoot();
5664     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5665                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5666     setValue(&I, Res);
5667     DAG.setRoot(Res.getValue(1));
5668     return nullptr;
5669   }
5670   case Intrinsic::bitreverse:
5671     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5672                              getValue(I.getArgOperand(0)).getValueType(),
5673                              getValue(I.getArgOperand(0))));
5674     return nullptr;
5675   case Intrinsic::bswap:
5676     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5677                              getValue(I.getArgOperand(0)).getValueType(),
5678                              getValue(I.getArgOperand(0))));
5679     return nullptr;
5680   case Intrinsic::cttz: {
5681     SDValue Arg = getValue(I.getArgOperand(0));
5682     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5683     EVT Ty = Arg.getValueType();
5684     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5685                              sdl, Ty, Arg));
5686     return nullptr;
5687   }
5688   case Intrinsic::ctlz: {
5689     SDValue Arg = getValue(I.getArgOperand(0));
5690     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5691     EVT Ty = Arg.getValueType();
5692     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5693                              sdl, Ty, Arg));
5694     return nullptr;
5695   }
5696   case Intrinsic::ctpop: {
5697     SDValue Arg = getValue(I.getArgOperand(0));
5698     EVT Ty = Arg.getValueType();
5699     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5700     return nullptr;
5701   }
5702   case Intrinsic::fshl:
5703   case Intrinsic::fshr: {
5704     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5705     SDValue X = getValue(I.getArgOperand(0));
5706     SDValue Y = getValue(I.getArgOperand(1));
5707     SDValue Z = getValue(I.getArgOperand(2));
5708     EVT VT = X.getValueType();
5709     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5710     SDValue Zero = DAG.getConstant(0, sdl, VT);
5711     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5712 
5713     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5714     // avoid the select that is necessary in the general case to filter out
5715     // the 0-shift possibility that leads to UB.
5716     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5717       // TODO: This should also be done if the operation is custom, but we have
5718       // to make sure targets are handling the modulo shift amount as expected.
5719       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5720       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5721         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5722         return nullptr;
5723       }
5724 
5725       // Some targets only rotate one way. Try the opposite direction.
5726       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5727       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5728         // Negate the shift amount because it is safe to ignore the high bits.
5729         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5730         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5731         return nullptr;
5732       }
5733 
5734       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5735       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5736       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5737       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5738       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5739       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5740       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5741       return nullptr;
5742     }
5743 
5744     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5745     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5746     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5747     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5748     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5749     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5750 
5751     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5752     // and that is undefined. We must compare and select to avoid UB.
5753     EVT CCVT = MVT::i1;
5754     if (VT.isVector())
5755       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5756 
5757     // For fshl, 0-shift returns the 1st arg (X).
5758     // For fshr, 0-shift returns the 2nd arg (Y).
5759     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5760     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5761     return nullptr;
5762   }
5763   case Intrinsic::stacksave: {
5764     SDValue Op = getRoot();
5765     Res = DAG.getNode(
5766         ISD::STACKSAVE, sdl,
5767         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5768     setValue(&I, Res);
5769     DAG.setRoot(Res.getValue(1));
5770     return nullptr;
5771   }
5772   case Intrinsic::stackrestore:
5773     Res = getValue(I.getArgOperand(0));
5774     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5775     return nullptr;
5776   case Intrinsic::get_dynamic_area_offset: {
5777     SDValue Op = getRoot();
5778     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5779     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5780     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5781     // target.
5782     if (PtrTy != ResTy)
5783       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5784                          " intrinsic!");
5785     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5786                       Op);
5787     DAG.setRoot(Op);
5788     setValue(&I, Res);
5789     return nullptr;
5790   }
5791   case Intrinsic::stackguard: {
5792     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5793     MachineFunction &MF = DAG.getMachineFunction();
5794     const Module &M = *MF.getFunction().getParent();
5795     SDValue Chain = getRoot();
5796     if (TLI.useLoadStackGuardNode()) {
5797       Res = getLoadStackGuard(DAG, sdl, Chain);
5798     } else {
5799       const Value *Global = TLI.getSDagStackGuard(M);
5800       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5801       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5802                         MachinePointerInfo(Global, 0), Align,
5803                         MachineMemOperand::MOVolatile);
5804     }
5805     if (TLI.useStackGuardXorFP())
5806       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5807     DAG.setRoot(Chain);
5808     setValue(&I, Res);
5809     return nullptr;
5810   }
5811   case Intrinsic::stackprotector: {
5812     // Emit code into the DAG to store the stack guard onto the stack.
5813     MachineFunction &MF = DAG.getMachineFunction();
5814     MachineFrameInfo &MFI = MF.getFrameInfo();
5815     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5816     SDValue Src, Chain = getRoot();
5817 
5818     if (TLI.useLoadStackGuardNode())
5819       Src = getLoadStackGuard(DAG, sdl, Chain);
5820     else
5821       Src = getValue(I.getArgOperand(0));   // The guard's value.
5822 
5823     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5824 
5825     int FI = FuncInfo.StaticAllocaMap[Slot];
5826     MFI.setStackProtectorIndex(FI);
5827 
5828     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5829 
5830     // Store the stack protector onto the stack.
5831     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5832                                                  DAG.getMachineFunction(), FI),
5833                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5834     setValue(&I, Res);
5835     DAG.setRoot(Res);
5836     return nullptr;
5837   }
5838   case Intrinsic::objectsize: {
5839     // If we don't know by now, we're never going to know.
5840     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5841 
5842     assert(CI && "Non-constant type in __builtin_object_size?");
5843 
5844     SDValue Arg = getValue(I.getCalledValue());
5845     EVT Ty = Arg.getValueType();
5846 
5847     if (CI->isZero())
5848       Res = DAG.getConstant(-1ULL, sdl, Ty);
5849     else
5850       Res = DAG.getConstant(0, sdl, Ty);
5851 
5852     setValue(&I, Res);
5853     return nullptr;
5854   }
5855   case Intrinsic::annotation:
5856   case Intrinsic::ptr_annotation:
5857   case Intrinsic::launder_invariant_group:
5858   case Intrinsic::strip_invariant_group:
5859     // Drop the intrinsic, but forward the value
5860     setValue(&I, getValue(I.getOperand(0)));
5861     return nullptr;
5862   case Intrinsic::assume:
5863   case Intrinsic::var_annotation:
5864   case Intrinsic::sideeffect:
5865     // Discard annotate attributes, assumptions, and artificial side-effects.
5866     return nullptr;
5867 
5868   case Intrinsic::codeview_annotation: {
5869     // Emit a label associated with this metadata.
5870     MachineFunction &MF = DAG.getMachineFunction();
5871     MCSymbol *Label =
5872         MF.getMMI().getContext().createTempSymbol("annotation", true);
5873     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5874     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5875     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5876     DAG.setRoot(Res);
5877     return nullptr;
5878   }
5879 
5880   case Intrinsic::init_trampoline: {
5881     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5882 
5883     SDValue Ops[6];
5884     Ops[0] = getRoot();
5885     Ops[1] = getValue(I.getArgOperand(0));
5886     Ops[2] = getValue(I.getArgOperand(1));
5887     Ops[3] = getValue(I.getArgOperand(2));
5888     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5889     Ops[5] = DAG.getSrcValue(F);
5890 
5891     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5892 
5893     DAG.setRoot(Res);
5894     return nullptr;
5895   }
5896   case Intrinsic::adjust_trampoline:
5897     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5898                              TLI.getPointerTy(DAG.getDataLayout()),
5899                              getValue(I.getArgOperand(0))));
5900     return nullptr;
5901   case Intrinsic::gcroot: {
5902     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5903            "only valid in functions with gc specified, enforced by Verifier");
5904     assert(GFI && "implied by previous");
5905     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5906     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5907 
5908     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5909     GFI->addStackRoot(FI->getIndex(), TypeMap);
5910     return nullptr;
5911   }
5912   case Intrinsic::gcread:
5913   case Intrinsic::gcwrite:
5914     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5915   case Intrinsic::flt_rounds:
5916     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5917     return nullptr;
5918 
5919   case Intrinsic::expect:
5920     // Just replace __builtin_expect(exp, c) with EXP.
5921     setValue(&I, getValue(I.getArgOperand(0)));
5922     return nullptr;
5923 
5924   case Intrinsic::debugtrap:
5925   case Intrinsic::trap: {
5926     StringRef TrapFuncName =
5927         I.getAttributes()
5928             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5929             .getValueAsString();
5930     if (TrapFuncName.empty()) {
5931       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5932         ISD::TRAP : ISD::DEBUGTRAP;
5933       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5934       return nullptr;
5935     }
5936     TargetLowering::ArgListTy Args;
5937 
5938     TargetLowering::CallLoweringInfo CLI(DAG);
5939     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5940         CallingConv::C, I.getType(),
5941         DAG.getExternalSymbol(TrapFuncName.data(),
5942                               TLI.getPointerTy(DAG.getDataLayout())),
5943         std::move(Args));
5944 
5945     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5946     DAG.setRoot(Result.second);
5947     return nullptr;
5948   }
5949 
5950   case Intrinsic::uadd_with_overflow:
5951   case Intrinsic::sadd_with_overflow:
5952   case Intrinsic::usub_with_overflow:
5953   case Intrinsic::ssub_with_overflow:
5954   case Intrinsic::umul_with_overflow:
5955   case Intrinsic::smul_with_overflow: {
5956     ISD::NodeType Op;
5957     switch (Intrinsic) {
5958     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5959     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5960     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5961     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5962     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5963     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5964     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5965     }
5966     SDValue Op1 = getValue(I.getArgOperand(0));
5967     SDValue Op2 = getValue(I.getArgOperand(1));
5968 
5969     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5970     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5971     return nullptr;
5972   }
5973   case Intrinsic::prefetch: {
5974     SDValue Ops[5];
5975     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5976     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5977     Ops[0] = DAG.getRoot();
5978     Ops[1] = getValue(I.getArgOperand(0));
5979     Ops[2] = getValue(I.getArgOperand(1));
5980     Ops[3] = getValue(I.getArgOperand(2));
5981     Ops[4] = getValue(I.getArgOperand(3));
5982     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5983                                              DAG.getVTList(MVT::Other), Ops,
5984                                              EVT::getIntegerVT(*Context, 8),
5985                                              MachinePointerInfo(I.getArgOperand(0)),
5986                                              0, /* align */
5987                                              Flags);
5988 
5989     // Chain the prefetch in parallell with any pending loads, to stay out of
5990     // the way of later optimizations.
5991     PendingLoads.push_back(Result);
5992     Result = getRoot();
5993     DAG.setRoot(Result);
5994     return nullptr;
5995   }
5996   case Intrinsic::lifetime_start:
5997   case Intrinsic::lifetime_end: {
5998     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5999     // Stack coloring is not enabled in O0, discard region information.
6000     if (TM.getOptLevel() == CodeGenOpt::None)
6001       return nullptr;
6002 
6003     SmallVector<Value *, 4> Allocas;
6004     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
6005 
6006     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6007            E = Allocas.end(); Object != E; ++Object) {
6008       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6009 
6010       // Could not find an Alloca.
6011       if (!LifetimeObject)
6012         continue;
6013 
6014       // First check that the Alloca is static, otherwise it won't have a
6015       // valid frame index.
6016       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6017       if (SI == FuncInfo.StaticAllocaMap.end())
6018         return nullptr;
6019 
6020       int FI = SI->second;
6021 
6022       SDValue Ops[2];
6023       Ops[0] = getRoot();
6024       Ops[1] =
6025           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6026       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6027 
6028       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6029       DAG.setRoot(Res);
6030     }
6031     return nullptr;
6032   }
6033   case Intrinsic::invariant_start:
6034     // Discard region information.
6035     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6036     return nullptr;
6037   case Intrinsic::invariant_end:
6038     // Discard region information.
6039     return nullptr;
6040   case Intrinsic::clear_cache:
6041     return TLI.getClearCacheBuiltinName();
6042   case Intrinsic::donothing:
6043     // ignore
6044     return nullptr;
6045   case Intrinsic::experimental_stackmap:
6046     visitStackmap(I);
6047     return nullptr;
6048   case Intrinsic::experimental_patchpoint_void:
6049   case Intrinsic::experimental_patchpoint_i64:
6050     visitPatchpoint(&I);
6051     return nullptr;
6052   case Intrinsic::experimental_gc_statepoint:
6053     LowerStatepoint(ImmutableStatepoint(&I));
6054     return nullptr;
6055   case Intrinsic::experimental_gc_result:
6056     visitGCResult(cast<GCResultInst>(I));
6057     return nullptr;
6058   case Intrinsic::experimental_gc_relocate:
6059     visitGCRelocate(cast<GCRelocateInst>(I));
6060     return nullptr;
6061   case Intrinsic::instrprof_increment:
6062     llvm_unreachable("instrprof failed to lower an increment");
6063   case Intrinsic::instrprof_value_profile:
6064     llvm_unreachable("instrprof failed to lower a value profiling call");
6065   case Intrinsic::localescape: {
6066     MachineFunction &MF = DAG.getMachineFunction();
6067     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6068 
6069     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6070     // is the same on all targets.
6071     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6072       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6073       if (isa<ConstantPointerNull>(Arg))
6074         continue; // Skip null pointers. They represent a hole in index space.
6075       AllocaInst *Slot = cast<AllocaInst>(Arg);
6076       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6077              "can only escape static allocas");
6078       int FI = FuncInfo.StaticAllocaMap[Slot];
6079       MCSymbol *FrameAllocSym =
6080           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6081               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6082       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6083               TII->get(TargetOpcode::LOCAL_ESCAPE))
6084           .addSym(FrameAllocSym)
6085           .addFrameIndex(FI);
6086     }
6087 
6088     return nullptr;
6089   }
6090 
6091   case Intrinsic::localrecover: {
6092     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6093     MachineFunction &MF = DAG.getMachineFunction();
6094     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6095 
6096     // Get the symbol that defines the frame offset.
6097     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6098     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6099     unsigned IdxVal =
6100         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6101     MCSymbol *FrameAllocSym =
6102         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6103             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6104 
6105     // Create a MCSymbol for the label to avoid any target lowering
6106     // that would make this PC relative.
6107     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6108     SDValue OffsetVal =
6109         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6110 
6111     // Add the offset to the FP.
6112     Value *FP = I.getArgOperand(1);
6113     SDValue FPVal = getValue(FP);
6114     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6115     setValue(&I, Add);
6116 
6117     return nullptr;
6118   }
6119 
6120   case Intrinsic::eh_exceptionpointer:
6121   case Intrinsic::eh_exceptioncode: {
6122     // Get the exception pointer vreg, copy from it, and resize it to fit.
6123     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6124     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6125     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6126     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6127     SDValue N =
6128         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6129     if (Intrinsic == Intrinsic::eh_exceptioncode)
6130       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6131     setValue(&I, N);
6132     return nullptr;
6133   }
6134   case Intrinsic::xray_customevent: {
6135     // Here we want to make sure that the intrinsic behaves as if it has a
6136     // specific calling convention, and only for x86_64.
6137     // FIXME: Support other platforms later.
6138     const auto &Triple = DAG.getTarget().getTargetTriple();
6139     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6140       return nullptr;
6141 
6142     SDLoc DL = getCurSDLoc();
6143     SmallVector<SDValue, 8> Ops;
6144 
6145     // We want to say that we always want the arguments in registers.
6146     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6147     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6148     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6149     SDValue Chain = getRoot();
6150     Ops.push_back(LogEntryVal);
6151     Ops.push_back(StrSizeVal);
6152     Ops.push_back(Chain);
6153 
6154     // We need to enforce the calling convention for the callsite, so that
6155     // argument ordering is enforced correctly, and that register allocation can
6156     // see that some registers may be assumed clobbered and have to preserve
6157     // them across calls to the intrinsic.
6158     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6159                                            DL, NodeTys, Ops);
6160     SDValue patchableNode = SDValue(MN, 0);
6161     DAG.setRoot(patchableNode);
6162     setValue(&I, patchableNode);
6163     return nullptr;
6164   }
6165   case Intrinsic::xray_typedevent: {
6166     // Here we want to make sure that the intrinsic behaves as if it has a
6167     // specific calling convention, and only for x86_64.
6168     // FIXME: Support other platforms later.
6169     const auto &Triple = DAG.getTarget().getTargetTriple();
6170     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6171       return nullptr;
6172 
6173     SDLoc DL = getCurSDLoc();
6174     SmallVector<SDValue, 8> Ops;
6175 
6176     // We want to say that we always want the arguments in registers.
6177     // It's unclear to me how manipulating the selection DAG here forces callers
6178     // to provide arguments in registers instead of on the stack.
6179     SDValue LogTypeId = getValue(I.getArgOperand(0));
6180     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6181     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6182     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6183     SDValue Chain = getRoot();
6184     Ops.push_back(LogTypeId);
6185     Ops.push_back(LogEntryVal);
6186     Ops.push_back(StrSizeVal);
6187     Ops.push_back(Chain);
6188 
6189     // We need to enforce the calling convention for the callsite, so that
6190     // argument ordering is enforced correctly, and that register allocation can
6191     // see that some registers may be assumed clobbered and have to preserve
6192     // them across calls to the intrinsic.
6193     MachineSDNode *MN = DAG.getMachineNode(
6194         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6195     SDValue patchableNode = SDValue(MN, 0);
6196     DAG.setRoot(patchableNode);
6197     setValue(&I, patchableNode);
6198     return nullptr;
6199   }
6200   case Intrinsic::experimental_deoptimize:
6201     LowerDeoptimizeCall(&I);
6202     return nullptr;
6203 
6204   case Intrinsic::experimental_vector_reduce_fadd:
6205   case Intrinsic::experimental_vector_reduce_fmul:
6206   case Intrinsic::experimental_vector_reduce_add:
6207   case Intrinsic::experimental_vector_reduce_mul:
6208   case Intrinsic::experimental_vector_reduce_and:
6209   case Intrinsic::experimental_vector_reduce_or:
6210   case Intrinsic::experimental_vector_reduce_xor:
6211   case Intrinsic::experimental_vector_reduce_smax:
6212   case Intrinsic::experimental_vector_reduce_smin:
6213   case Intrinsic::experimental_vector_reduce_umax:
6214   case Intrinsic::experimental_vector_reduce_umin:
6215   case Intrinsic::experimental_vector_reduce_fmax:
6216   case Intrinsic::experimental_vector_reduce_fmin:
6217     visitVectorReduce(I, Intrinsic);
6218     return nullptr;
6219 
6220   case Intrinsic::icall_branch_funnel: {
6221     SmallVector<SDValue, 16> Ops;
6222     Ops.push_back(DAG.getRoot());
6223     Ops.push_back(getValue(I.getArgOperand(0)));
6224 
6225     int64_t Offset;
6226     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6227         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6228     if (!Base)
6229       report_fatal_error(
6230           "llvm.icall.branch.funnel operand must be a GlobalValue");
6231     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6232 
6233     struct BranchFunnelTarget {
6234       int64_t Offset;
6235       SDValue Target;
6236     };
6237     SmallVector<BranchFunnelTarget, 8> Targets;
6238 
6239     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6240       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6241           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6242       if (ElemBase != Base)
6243         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6244                            "to the same GlobalValue");
6245 
6246       SDValue Val = getValue(I.getArgOperand(Op + 1));
6247       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6248       if (!GA)
6249         report_fatal_error(
6250             "llvm.icall.branch.funnel operand must be a GlobalValue");
6251       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6252                                      GA->getGlobal(), getCurSDLoc(),
6253                                      Val.getValueType(), GA->getOffset())});
6254     }
6255     llvm::sort(Targets.begin(), Targets.end(),
6256                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6257                  return T1.Offset < T2.Offset;
6258                });
6259 
6260     for (auto &T : Targets) {
6261       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6262       Ops.push_back(T.Target);
6263     }
6264 
6265     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6266                                  getCurSDLoc(), MVT::Other, Ops),
6267               0);
6268     DAG.setRoot(N);
6269     setValue(&I, N);
6270     HasTailCall = true;
6271     return nullptr;
6272   }
6273 
6274   case Intrinsic::wasm_landingpad_index: {
6275     // TODO store landing pad index in a map, which will be used when generating
6276     // LSDA information
6277     return nullptr;
6278   }
6279   }
6280 }
6281 
6282 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6283     const ConstrainedFPIntrinsic &FPI) {
6284   SDLoc sdl = getCurSDLoc();
6285   unsigned Opcode;
6286   switch (FPI.getIntrinsicID()) {
6287   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6288   case Intrinsic::experimental_constrained_fadd:
6289     Opcode = ISD::STRICT_FADD;
6290     break;
6291   case Intrinsic::experimental_constrained_fsub:
6292     Opcode = ISD::STRICT_FSUB;
6293     break;
6294   case Intrinsic::experimental_constrained_fmul:
6295     Opcode = ISD::STRICT_FMUL;
6296     break;
6297   case Intrinsic::experimental_constrained_fdiv:
6298     Opcode = ISD::STRICT_FDIV;
6299     break;
6300   case Intrinsic::experimental_constrained_frem:
6301     Opcode = ISD::STRICT_FREM;
6302     break;
6303   case Intrinsic::experimental_constrained_fma:
6304     Opcode = ISD::STRICT_FMA;
6305     break;
6306   case Intrinsic::experimental_constrained_sqrt:
6307     Opcode = ISD::STRICT_FSQRT;
6308     break;
6309   case Intrinsic::experimental_constrained_pow:
6310     Opcode = ISD::STRICT_FPOW;
6311     break;
6312   case Intrinsic::experimental_constrained_powi:
6313     Opcode = ISD::STRICT_FPOWI;
6314     break;
6315   case Intrinsic::experimental_constrained_sin:
6316     Opcode = ISD::STRICT_FSIN;
6317     break;
6318   case Intrinsic::experimental_constrained_cos:
6319     Opcode = ISD::STRICT_FCOS;
6320     break;
6321   case Intrinsic::experimental_constrained_exp:
6322     Opcode = ISD::STRICT_FEXP;
6323     break;
6324   case Intrinsic::experimental_constrained_exp2:
6325     Opcode = ISD::STRICT_FEXP2;
6326     break;
6327   case Intrinsic::experimental_constrained_log:
6328     Opcode = ISD::STRICT_FLOG;
6329     break;
6330   case Intrinsic::experimental_constrained_log10:
6331     Opcode = ISD::STRICT_FLOG10;
6332     break;
6333   case Intrinsic::experimental_constrained_log2:
6334     Opcode = ISD::STRICT_FLOG2;
6335     break;
6336   case Intrinsic::experimental_constrained_rint:
6337     Opcode = ISD::STRICT_FRINT;
6338     break;
6339   case Intrinsic::experimental_constrained_nearbyint:
6340     Opcode = ISD::STRICT_FNEARBYINT;
6341     break;
6342   }
6343   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6344   SDValue Chain = getRoot();
6345   SmallVector<EVT, 4> ValueVTs;
6346   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6347   ValueVTs.push_back(MVT::Other); // Out chain
6348 
6349   SDVTList VTs = DAG.getVTList(ValueVTs);
6350   SDValue Result;
6351   if (FPI.isUnaryOp())
6352     Result = DAG.getNode(Opcode, sdl, VTs,
6353                          { Chain, getValue(FPI.getArgOperand(0)) });
6354   else if (FPI.isTernaryOp())
6355     Result = DAG.getNode(Opcode, sdl, VTs,
6356                          { Chain, getValue(FPI.getArgOperand(0)),
6357                                   getValue(FPI.getArgOperand(1)),
6358                                   getValue(FPI.getArgOperand(2)) });
6359   else
6360     Result = DAG.getNode(Opcode, sdl, VTs,
6361                          { Chain, getValue(FPI.getArgOperand(0)),
6362                            getValue(FPI.getArgOperand(1))  });
6363 
6364   assert(Result.getNode()->getNumValues() == 2);
6365   SDValue OutChain = Result.getValue(1);
6366   DAG.setRoot(OutChain);
6367   SDValue FPResult = Result.getValue(0);
6368   setValue(&FPI, FPResult);
6369 }
6370 
6371 std::pair<SDValue, SDValue>
6372 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6373                                     const BasicBlock *EHPadBB) {
6374   MachineFunction &MF = DAG.getMachineFunction();
6375   MachineModuleInfo &MMI = MF.getMMI();
6376   MCSymbol *BeginLabel = nullptr;
6377 
6378   if (EHPadBB) {
6379     // Insert a label before the invoke call to mark the try range.  This can be
6380     // used to detect deletion of the invoke via the MachineModuleInfo.
6381     BeginLabel = MMI.getContext().createTempSymbol();
6382 
6383     // For SjLj, keep track of which landing pads go with which invokes
6384     // so as to maintain the ordering of pads in the LSDA.
6385     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6386     if (CallSiteIndex) {
6387       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6388       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6389 
6390       // Now that the call site is handled, stop tracking it.
6391       MMI.setCurrentCallSite(0);
6392     }
6393 
6394     // Both PendingLoads and PendingExports must be flushed here;
6395     // this call might not return.
6396     (void)getRoot();
6397     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6398 
6399     CLI.setChain(getRoot());
6400   }
6401   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6402   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6403 
6404   assert((CLI.IsTailCall || Result.second.getNode()) &&
6405          "Non-null chain expected with non-tail call!");
6406   assert((Result.second.getNode() || !Result.first.getNode()) &&
6407          "Null value expected with tail call!");
6408 
6409   if (!Result.second.getNode()) {
6410     // As a special case, a null chain means that a tail call has been emitted
6411     // and the DAG root is already updated.
6412     HasTailCall = true;
6413 
6414     // Since there's no actual continuation from this block, nothing can be
6415     // relying on us setting vregs for them.
6416     PendingExports.clear();
6417   } else {
6418     DAG.setRoot(Result.second);
6419   }
6420 
6421   if (EHPadBB) {
6422     // Insert a label at the end of the invoke call to mark the try range.  This
6423     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6424     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6425     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6426 
6427     // Inform MachineModuleInfo of range.
6428     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6429     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6430     // actually use outlined funclets and their LSDA info style.
6431     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6432       assert(CLI.CS);
6433       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6434       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6435                                 BeginLabel, EndLabel);
6436     } else {
6437       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6438     }
6439   }
6440 
6441   return Result;
6442 }
6443 
6444 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6445                                       bool isTailCall,
6446                                       const BasicBlock *EHPadBB) {
6447   auto &DL = DAG.getDataLayout();
6448   FunctionType *FTy = CS.getFunctionType();
6449   Type *RetTy = CS.getType();
6450 
6451   TargetLowering::ArgListTy Args;
6452   Args.reserve(CS.arg_size());
6453 
6454   const Value *SwiftErrorVal = nullptr;
6455   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6456 
6457   // We can't tail call inside a function with a swifterror argument. Lowering
6458   // does not support this yet. It would have to move into the swifterror
6459   // register before the call.
6460   auto *Caller = CS.getInstruction()->getParent()->getParent();
6461   if (TLI.supportSwiftError() &&
6462       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6463     isTailCall = false;
6464 
6465   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6466        i != e; ++i) {
6467     TargetLowering::ArgListEntry Entry;
6468     const Value *V = *i;
6469 
6470     // Skip empty types
6471     if (V->getType()->isEmptyTy())
6472       continue;
6473 
6474     SDValue ArgNode = getValue(V);
6475     Entry.Node = ArgNode; Entry.Ty = V->getType();
6476 
6477     Entry.setAttributes(&CS, i - CS.arg_begin());
6478 
6479     // Use swifterror virtual register as input to the call.
6480     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6481       SwiftErrorVal = V;
6482       // We find the virtual register for the actual swifterror argument.
6483       // Instead of using the Value, we use the virtual register instead.
6484       Entry.Node = DAG.getRegister(FuncInfo
6485                                        .getOrCreateSwiftErrorVRegUseAt(
6486                                            CS.getInstruction(), FuncInfo.MBB, V)
6487                                        .first,
6488                                    EVT(TLI.getPointerTy(DL)));
6489     }
6490 
6491     Args.push_back(Entry);
6492 
6493     // If we have an explicit sret argument that is an Instruction, (i.e., it
6494     // might point to function-local memory), we can't meaningfully tail-call.
6495     if (Entry.IsSRet && isa<Instruction>(V))
6496       isTailCall = false;
6497   }
6498 
6499   // Check if target-independent constraints permit a tail call here.
6500   // Target-dependent constraints are checked within TLI->LowerCallTo.
6501   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6502     isTailCall = false;
6503 
6504   // Disable tail calls if there is an swifterror argument. Targets have not
6505   // been updated to support tail calls.
6506   if (TLI.supportSwiftError() && SwiftErrorVal)
6507     isTailCall = false;
6508 
6509   TargetLowering::CallLoweringInfo CLI(DAG);
6510   CLI.setDebugLoc(getCurSDLoc())
6511       .setChain(getRoot())
6512       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6513       .setTailCall(isTailCall)
6514       .setConvergent(CS.isConvergent());
6515   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6516 
6517   if (Result.first.getNode()) {
6518     const Instruction *Inst = CS.getInstruction();
6519     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6520     setValue(Inst, Result.first);
6521   }
6522 
6523   // The last element of CLI.InVals has the SDValue for swifterror return.
6524   // Here we copy it to a virtual register and update SwiftErrorMap for
6525   // book-keeping.
6526   if (SwiftErrorVal && TLI.supportSwiftError()) {
6527     // Get the last element of InVals.
6528     SDValue Src = CLI.InVals.back();
6529     unsigned VReg; bool CreatedVReg;
6530     std::tie(VReg, CreatedVReg) =
6531         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6532     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6533     // We update the virtual register for the actual swifterror argument.
6534     if (CreatedVReg)
6535       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6536     DAG.setRoot(CopyNode);
6537   }
6538 }
6539 
6540 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6541                              SelectionDAGBuilder &Builder) {
6542   // Check to see if this load can be trivially constant folded, e.g. if the
6543   // input is from a string literal.
6544   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6545     // Cast pointer to the type we really want to load.
6546     Type *LoadTy =
6547         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6548     if (LoadVT.isVector())
6549       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6550 
6551     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6552                                          PointerType::getUnqual(LoadTy));
6553 
6554     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6555             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6556       return Builder.getValue(LoadCst);
6557   }
6558 
6559   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6560   // still constant memory, the input chain can be the entry node.
6561   SDValue Root;
6562   bool ConstantMemory = false;
6563 
6564   // Do not serialize (non-volatile) loads of constant memory with anything.
6565   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6566     Root = Builder.DAG.getEntryNode();
6567     ConstantMemory = true;
6568   } else {
6569     // Do not serialize non-volatile loads against each other.
6570     Root = Builder.DAG.getRoot();
6571   }
6572 
6573   SDValue Ptr = Builder.getValue(PtrVal);
6574   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6575                                         Ptr, MachinePointerInfo(PtrVal),
6576                                         /* Alignment = */ 1);
6577 
6578   if (!ConstantMemory)
6579     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6580   return LoadVal;
6581 }
6582 
6583 /// Record the value for an instruction that produces an integer result,
6584 /// converting the type where necessary.
6585 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6586                                                   SDValue Value,
6587                                                   bool IsSigned) {
6588   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6589                                                     I.getType(), true);
6590   if (IsSigned)
6591     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6592   else
6593     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6594   setValue(&I, Value);
6595 }
6596 
6597 /// See if we can lower a memcmp call into an optimized form. If so, return
6598 /// true and lower it. Otherwise return false, and it will be lowered like a
6599 /// normal call.
6600 /// The caller already checked that \p I calls the appropriate LibFunc with a
6601 /// correct prototype.
6602 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6603   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6604   const Value *Size = I.getArgOperand(2);
6605   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6606   if (CSize && CSize->getZExtValue() == 0) {
6607     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6608                                                           I.getType(), true);
6609     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6610     return true;
6611   }
6612 
6613   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6614   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6615       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6616       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6617   if (Res.first.getNode()) {
6618     processIntegerCallValue(I, Res.first, true);
6619     PendingLoads.push_back(Res.second);
6620     return true;
6621   }
6622 
6623   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6624   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6625   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6626     return false;
6627 
6628   // If the target has a fast compare for the given size, it will return a
6629   // preferred load type for that size. Require that the load VT is legal and
6630   // that the target supports unaligned loads of that type. Otherwise, return
6631   // INVALID.
6632   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6633     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6634     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6635     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6636       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6637       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6638       // TODO: Check alignment of src and dest ptrs.
6639       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6640       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6641       if (!TLI.isTypeLegal(LVT) ||
6642           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6643           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6644         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6645     }
6646 
6647     return LVT;
6648   };
6649 
6650   // This turns into unaligned loads. We only do this if the target natively
6651   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6652   // we'll only produce a small number of byte loads.
6653   MVT LoadVT;
6654   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6655   switch (NumBitsToCompare) {
6656   default:
6657     return false;
6658   case 16:
6659     LoadVT = MVT::i16;
6660     break;
6661   case 32:
6662     LoadVT = MVT::i32;
6663     break;
6664   case 64:
6665   case 128:
6666   case 256:
6667     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6668     break;
6669   }
6670 
6671   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6672     return false;
6673 
6674   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6675   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6676 
6677   // Bitcast to a wide integer type if the loads are vectors.
6678   if (LoadVT.isVector()) {
6679     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6680     LoadL = DAG.getBitcast(CmpVT, LoadL);
6681     LoadR = DAG.getBitcast(CmpVT, LoadR);
6682   }
6683 
6684   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6685   processIntegerCallValue(I, Cmp, false);
6686   return true;
6687 }
6688 
6689 /// See if we can lower a memchr call into an optimized form. If so, return
6690 /// true and lower it. Otherwise return false, and it will be lowered like a
6691 /// normal call.
6692 /// The caller already checked that \p I calls the appropriate LibFunc with a
6693 /// correct prototype.
6694 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6695   const Value *Src = I.getArgOperand(0);
6696   const Value *Char = I.getArgOperand(1);
6697   const Value *Length = I.getArgOperand(2);
6698 
6699   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6700   std::pair<SDValue, SDValue> Res =
6701     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6702                                 getValue(Src), getValue(Char), getValue(Length),
6703                                 MachinePointerInfo(Src));
6704   if (Res.first.getNode()) {
6705     setValue(&I, Res.first);
6706     PendingLoads.push_back(Res.second);
6707     return true;
6708   }
6709 
6710   return false;
6711 }
6712 
6713 /// See if we can lower a mempcpy call into an optimized form. If so, return
6714 /// true and lower it. Otherwise return false, and it will be lowered like a
6715 /// normal call.
6716 /// The caller already checked that \p I calls the appropriate LibFunc with a
6717 /// correct prototype.
6718 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6719   SDValue Dst = getValue(I.getArgOperand(0));
6720   SDValue Src = getValue(I.getArgOperand(1));
6721   SDValue Size = getValue(I.getArgOperand(2));
6722 
6723   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6724   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6725   unsigned Align = std::min(DstAlign, SrcAlign);
6726   if (Align == 0) // Alignment of one or both could not be inferred.
6727     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6728 
6729   bool isVol = false;
6730   SDLoc sdl = getCurSDLoc();
6731 
6732   // In the mempcpy context we need to pass in a false value for isTailCall
6733   // because the return pointer needs to be adjusted by the size of
6734   // the copied memory.
6735   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6736                              false, /*isTailCall=*/false,
6737                              MachinePointerInfo(I.getArgOperand(0)),
6738                              MachinePointerInfo(I.getArgOperand(1)));
6739   assert(MC.getNode() != nullptr &&
6740          "** memcpy should not be lowered as TailCall in mempcpy context **");
6741   DAG.setRoot(MC);
6742 
6743   // Check if Size needs to be truncated or extended.
6744   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6745 
6746   // Adjust return pointer to point just past the last dst byte.
6747   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6748                                     Dst, Size);
6749   setValue(&I, DstPlusSize);
6750   return true;
6751 }
6752 
6753 /// See if we can lower a strcpy call into an optimized form.  If so, return
6754 /// true and lower it, otherwise return false and it will be lowered like a
6755 /// normal call.
6756 /// The caller already checked that \p I calls the appropriate LibFunc with a
6757 /// correct prototype.
6758 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6759   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6760 
6761   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6762   std::pair<SDValue, SDValue> Res =
6763     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6764                                 getValue(Arg0), getValue(Arg1),
6765                                 MachinePointerInfo(Arg0),
6766                                 MachinePointerInfo(Arg1), isStpcpy);
6767   if (Res.first.getNode()) {
6768     setValue(&I, Res.first);
6769     DAG.setRoot(Res.second);
6770     return true;
6771   }
6772 
6773   return false;
6774 }
6775 
6776 /// See if we can lower a strcmp call into an optimized form.  If so, return
6777 /// true and lower it, otherwise return false and it will be lowered like a
6778 /// normal call.
6779 /// The caller already checked that \p I calls the appropriate LibFunc with a
6780 /// correct prototype.
6781 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6782   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6783 
6784   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6785   std::pair<SDValue, SDValue> Res =
6786     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6787                                 getValue(Arg0), getValue(Arg1),
6788                                 MachinePointerInfo(Arg0),
6789                                 MachinePointerInfo(Arg1));
6790   if (Res.first.getNode()) {
6791     processIntegerCallValue(I, Res.first, true);
6792     PendingLoads.push_back(Res.second);
6793     return true;
6794   }
6795 
6796   return false;
6797 }
6798 
6799 /// See if we can lower a strlen call into an optimized form.  If so, return
6800 /// true and lower it, otherwise return false and it will be lowered like a
6801 /// normal call.
6802 /// The caller already checked that \p I calls the appropriate LibFunc with a
6803 /// correct prototype.
6804 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6805   const Value *Arg0 = I.getArgOperand(0);
6806 
6807   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6808   std::pair<SDValue, SDValue> Res =
6809     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6810                                 getValue(Arg0), MachinePointerInfo(Arg0));
6811   if (Res.first.getNode()) {
6812     processIntegerCallValue(I, Res.first, false);
6813     PendingLoads.push_back(Res.second);
6814     return true;
6815   }
6816 
6817   return false;
6818 }
6819 
6820 /// See if we can lower a strnlen call into an optimized form.  If so, return
6821 /// true and lower it, otherwise return false and it will be lowered like a
6822 /// normal call.
6823 /// The caller already checked that \p I calls the appropriate LibFunc with a
6824 /// correct prototype.
6825 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6826   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6827 
6828   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6829   std::pair<SDValue, SDValue> Res =
6830     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6831                                  getValue(Arg0), getValue(Arg1),
6832                                  MachinePointerInfo(Arg0));
6833   if (Res.first.getNode()) {
6834     processIntegerCallValue(I, Res.first, false);
6835     PendingLoads.push_back(Res.second);
6836     return true;
6837   }
6838 
6839   return false;
6840 }
6841 
6842 /// See if we can lower a unary floating-point operation into an SDNode with
6843 /// the specified Opcode.  If so, return true and lower it, otherwise return
6844 /// false and it will be lowered like a normal call.
6845 /// The caller already checked that \p I calls the appropriate LibFunc with a
6846 /// correct prototype.
6847 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6848                                               unsigned Opcode) {
6849   // We already checked this call's prototype; verify it doesn't modify errno.
6850   if (!I.onlyReadsMemory())
6851     return false;
6852 
6853   SDValue Tmp = getValue(I.getArgOperand(0));
6854   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6855   return true;
6856 }
6857 
6858 /// See if we can lower a binary floating-point operation into an SDNode with
6859 /// the specified Opcode. If so, return true and lower it. Otherwise return
6860 /// false, and it will be lowered like a normal call.
6861 /// The caller already checked that \p I calls the appropriate LibFunc with a
6862 /// correct prototype.
6863 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6864                                                unsigned Opcode) {
6865   // We already checked this call's prototype; verify it doesn't modify errno.
6866   if (!I.onlyReadsMemory())
6867     return false;
6868 
6869   SDValue Tmp0 = getValue(I.getArgOperand(0));
6870   SDValue Tmp1 = getValue(I.getArgOperand(1));
6871   EVT VT = Tmp0.getValueType();
6872   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6873   return true;
6874 }
6875 
6876 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6877   // Handle inline assembly differently.
6878   if (isa<InlineAsm>(I.getCalledValue())) {
6879     visitInlineAsm(&I);
6880     return;
6881   }
6882 
6883   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6884   computeUsesVAFloatArgument(I, MMI);
6885 
6886   const char *RenameFn = nullptr;
6887   if (Function *F = I.getCalledFunction()) {
6888     if (F->isDeclaration()) {
6889       // Is this an LLVM intrinsic or a target-specific intrinsic?
6890       unsigned IID = F->getIntrinsicID();
6891       if (!IID)
6892         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6893           IID = II->getIntrinsicID(F);
6894 
6895       if (IID) {
6896         RenameFn = visitIntrinsicCall(I, IID);
6897         if (!RenameFn)
6898           return;
6899       }
6900     }
6901 
6902     // Check for well-known libc/libm calls.  If the function is internal, it
6903     // can't be a library call.  Don't do the check if marked as nobuiltin for
6904     // some reason or the call site requires strict floating point semantics.
6905     LibFunc Func;
6906     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6907         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6908         LibInfo->hasOptimizedCodeGen(Func)) {
6909       switch (Func) {
6910       default: break;
6911       case LibFunc_copysign:
6912       case LibFunc_copysignf:
6913       case LibFunc_copysignl:
6914         // We already checked this call's prototype; verify it doesn't modify
6915         // errno.
6916         if (I.onlyReadsMemory()) {
6917           SDValue LHS = getValue(I.getArgOperand(0));
6918           SDValue RHS = getValue(I.getArgOperand(1));
6919           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6920                                    LHS.getValueType(), LHS, RHS));
6921           return;
6922         }
6923         break;
6924       case LibFunc_fabs:
6925       case LibFunc_fabsf:
6926       case LibFunc_fabsl:
6927         if (visitUnaryFloatCall(I, ISD::FABS))
6928           return;
6929         break;
6930       case LibFunc_fmin:
6931       case LibFunc_fminf:
6932       case LibFunc_fminl:
6933         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6934           return;
6935         break;
6936       case LibFunc_fmax:
6937       case LibFunc_fmaxf:
6938       case LibFunc_fmaxl:
6939         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6940           return;
6941         break;
6942       case LibFunc_sin:
6943       case LibFunc_sinf:
6944       case LibFunc_sinl:
6945         if (visitUnaryFloatCall(I, ISD::FSIN))
6946           return;
6947         break;
6948       case LibFunc_cos:
6949       case LibFunc_cosf:
6950       case LibFunc_cosl:
6951         if (visitUnaryFloatCall(I, ISD::FCOS))
6952           return;
6953         break;
6954       case LibFunc_sqrt:
6955       case LibFunc_sqrtf:
6956       case LibFunc_sqrtl:
6957       case LibFunc_sqrt_finite:
6958       case LibFunc_sqrtf_finite:
6959       case LibFunc_sqrtl_finite:
6960         if (visitUnaryFloatCall(I, ISD::FSQRT))
6961           return;
6962         break;
6963       case LibFunc_floor:
6964       case LibFunc_floorf:
6965       case LibFunc_floorl:
6966         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6967           return;
6968         break;
6969       case LibFunc_nearbyint:
6970       case LibFunc_nearbyintf:
6971       case LibFunc_nearbyintl:
6972         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6973           return;
6974         break;
6975       case LibFunc_ceil:
6976       case LibFunc_ceilf:
6977       case LibFunc_ceill:
6978         if (visitUnaryFloatCall(I, ISD::FCEIL))
6979           return;
6980         break;
6981       case LibFunc_rint:
6982       case LibFunc_rintf:
6983       case LibFunc_rintl:
6984         if (visitUnaryFloatCall(I, ISD::FRINT))
6985           return;
6986         break;
6987       case LibFunc_round:
6988       case LibFunc_roundf:
6989       case LibFunc_roundl:
6990         if (visitUnaryFloatCall(I, ISD::FROUND))
6991           return;
6992         break;
6993       case LibFunc_trunc:
6994       case LibFunc_truncf:
6995       case LibFunc_truncl:
6996         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6997           return;
6998         break;
6999       case LibFunc_log2:
7000       case LibFunc_log2f:
7001       case LibFunc_log2l:
7002         if (visitUnaryFloatCall(I, ISD::FLOG2))
7003           return;
7004         break;
7005       case LibFunc_exp2:
7006       case LibFunc_exp2f:
7007       case LibFunc_exp2l:
7008         if (visitUnaryFloatCall(I, ISD::FEXP2))
7009           return;
7010         break;
7011       case LibFunc_memcmp:
7012         if (visitMemCmpCall(I))
7013           return;
7014         break;
7015       case LibFunc_mempcpy:
7016         if (visitMemPCpyCall(I))
7017           return;
7018         break;
7019       case LibFunc_memchr:
7020         if (visitMemChrCall(I))
7021           return;
7022         break;
7023       case LibFunc_strcpy:
7024         if (visitStrCpyCall(I, false))
7025           return;
7026         break;
7027       case LibFunc_stpcpy:
7028         if (visitStrCpyCall(I, true))
7029           return;
7030         break;
7031       case LibFunc_strcmp:
7032         if (visitStrCmpCall(I))
7033           return;
7034         break;
7035       case LibFunc_strlen:
7036         if (visitStrLenCall(I))
7037           return;
7038         break;
7039       case LibFunc_strnlen:
7040         if (visitStrNLenCall(I))
7041           return;
7042         break;
7043       }
7044     }
7045   }
7046 
7047   SDValue Callee;
7048   if (!RenameFn)
7049     Callee = getValue(I.getCalledValue());
7050   else
7051     Callee = DAG.getExternalSymbol(
7052         RenameFn,
7053         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7054 
7055   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7056   // have to do anything here to lower funclet bundles.
7057   assert(!I.hasOperandBundlesOtherThan(
7058              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7059          "Cannot lower calls with arbitrary operand bundles!");
7060 
7061   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7062     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7063   else
7064     // Check if we can potentially perform a tail call. More detailed checking
7065     // is be done within LowerCallTo, after more information about the call is
7066     // known.
7067     LowerCallTo(&I, Callee, I.isTailCall());
7068 }
7069 
7070 namespace {
7071 
7072 /// AsmOperandInfo - This contains information for each constraint that we are
7073 /// lowering.
7074 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7075 public:
7076   /// CallOperand - If this is the result output operand or a clobber
7077   /// this is null, otherwise it is the incoming operand to the CallInst.
7078   /// This gets modified as the asm is processed.
7079   SDValue CallOperand;
7080 
7081   /// AssignedRegs - If this is a register or register class operand, this
7082   /// contains the set of register corresponding to the operand.
7083   RegsForValue AssignedRegs;
7084 
7085   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7086     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7087   }
7088 
7089   /// Whether or not this operand accesses memory
7090   bool hasMemory(const TargetLowering &TLI) const {
7091     // Indirect operand accesses access memory.
7092     if (isIndirect)
7093       return true;
7094 
7095     for (const auto &Code : Codes)
7096       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7097         return true;
7098 
7099     return false;
7100   }
7101 
7102   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7103   /// corresponds to.  If there is no Value* for this operand, it returns
7104   /// MVT::Other.
7105   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7106                            const DataLayout &DL) const {
7107     if (!CallOperandVal) return MVT::Other;
7108 
7109     if (isa<BasicBlock>(CallOperandVal))
7110       return TLI.getPointerTy(DL);
7111 
7112     llvm::Type *OpTy = CallOperandVal->getType();
7113 
7114     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7115     // If this is an indirect operand, the operand is a pointer to the
7116     // accessed type.
7117     if (isIndirect) {
7118       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7119       if (!PtrTy)
7120         report_fatal_error("Indirect operand for inline asm not a pointer!");
7121       OpTy = PtrTy->getElementType();
7122     }
7123 
7124     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7125     if (StructType *STy = dyn_cast<StructType>(OpTy))
7126       if (STy->getNumElements() == 1)
7127         OpTy = STy->getElementType(0);
7128 
7129     // If OpTy is not a single value, it may be a struct/union that we
7130     // can tile with integers.
7131     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7132       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7133       switch (BitSize) {
7134       default: break;
7135       case 1:
7136       case 8:
7137       case 16:
7138       case 32:
7139       case 64:
7140       case 128:
7141         OpTy = IntegerType::get(Context, BitSize);
7142         break;
7143       }
7144     }
7145 
7146     return TLI.getValueType(DL, OpTy, true);
7147   }
7148 };
7149 
7150 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7151 
7152 } // end anonymous namespace
7153 
7154 /// Make sure that the output operand \p OpInfo and its corresponding input
7155 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7156 /// out).
7157 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7158                                SDISelAsmOperandInfo &MatchingOpInfo,
7159                                SelectionDAG &DAG) {
7160   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7161     return;
7162 
7163   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7164   const auto &TLI = DAG.getTargetLoweringInfo();
7165 
7166   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7167       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7168                                        OpInfo.ConstraintVT);
7169   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7170       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7171                                        MatchingOpInfo.ConstraintVT);
7172   if ((OpInfo.ConstraintVT.isInteger() !=
7173        MatchingOpInfo.ConstraintVT.isInteger()) ||
7174       (MatchRC.second != InputRC.second)) {
7175     // FIXME: error out in a more elegant fashion
7176     report_fatal_error("Unsupported asm: input constraint"
7177                        " with a matching output constraint of"
7178                        " incompatible type!");
7179   }
7180   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7181 }
7182 
7183 /// Get a direct memory input to behave well as an indirect operand.
7184 /// This may introduce stores, hence the need for a \p Chain.
7185 /// \return The (possibly updated) chain.
7186 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7187                                         SDISelAsmOperandInfo &OpInfo,
7188                                         SelectionDAG &DAG) {
7189   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7190 
7191   // If we don't have an indirect input, put it in the constpool if we can,
7192   // otherwise spill it to a stack slot.
7193   // TODO: This isn't quite right. We need to handle these according to
7194   // the addressing mode that the constraint wants. Also, this may take
7195   // an additional register for the computation and we don't want that
7196   // either.
7197 
7198   // If the operand is a float, integer, or vector constant, spill to a
7199   // constant pool entry to get its address.
7200   const Value *OpVal = OpInfo.CallOperandVal;
7201   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7202       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7203     OpInfo.CallOperand = DAG.getConstantPool(
7204         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7205     return Chain;
7206   }
7207 
7208   // Otherwise, create a stack slot and emit a store to it before the asm.
7209   Type *Ty = OpVal->getType();
7210   auto &DL = DAG.getDataLayout();
7211   uint64_t TySize = DL.getTypeAllocSize(Ty);
7212   unsigned Align = DL.getPrefTypeAlignment(Ty);
7213   MachineFunction &MF = DAG.getMachineFunction();
7214   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7215   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7216   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7217                        MachinePointerInfo::getFixedStack(MF, SSFI));
7218   OpInfo.CallOperand = StackSlot;
7219 
7220   return Chain;
7221 }
7222 
7223 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7224 /// specified operand.  We prefer to assign virtual registers, to allow the
7225 /// register allocator to handle the assignment process.  However, if the asm
7226 /// uses features that we can't model on machineinstrs, we have SDISel do the
7227 /// allocation.  This produces generally horrible, but correct, code.
7228 ///
7229 ///   OpInfo describes the operand
7230 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7231 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7232                                  const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7233                                  SDISelAsmOperandInfo &RefOpInfo) {
7234   LLVMContext &Context = *DAG.getContext();
7235 
7236   MachineFunction &MF = DAG.getMachineFunction();
7237   SmallVector<unsigned, 4> Regs;
7238   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7239 
7240   // If this is a constraint for a single physreg, or a constraint for a
7241   // register class, find it.
7242   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7243       TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7244                                        RefOpInfo.ConstraintVT);
7245 
7246   unsigned NumRegs = 1;
7247   if (OpInfo.ConstraintVT != MVT::Other) {
7248     // If this is an FP operand in an integer register (or visa versa), or more
7249     // generally if the operand value disagrees with the register class we plan
7250     // to stick it in, fix the operand type.
7251     //
7252     // If this is an input value, the bitcast to the new type is done now.
7253     // Bitcast for output value is done at the end of visitInlineAsm().
7254     if ((OpInfo.Type == InlineAsm::isOutput ||
7255          OpInfo.Type == InlineAsm::isInput) &&
7256         PhysReg.second &&
7257         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7258       // Try to convert to the first EVT that the reg class contains.  If the
7259       // types are identical size, use a bitcast to convert (e.g. two differing
7260       // vector types).  Note: output bitcast is done at the end of
7261       // visitInlineAsm().
7262       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7263       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7264         // Exclude indirect inputs while they are unsupported because the code
7265         // to perform the load is missing and thus OpInfo.CallOperand still
7266         // refers to the input address rather than the pointed-to value.
7267         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7268           OpInfo.CallOperand =
7269               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7270         OpInfo.ConstraintVT = RegVT;
7271         // If the operand is an FP value and we want it in integer registers,
7272         // use the corresponding integer type. This turns an f64 value into
7273         // i64, which can be passed with two i32 values on a 32-bit machine.
7274       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7275         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7276         if (OpInfo.Type == InlineAsm::isInput)
7277           OpInfo.CallOperand =
7278               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7279         OpInfo.ConstraintVT = RegVT;
7280       }
7281     }
7282 
7283     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7284   }
7285 
7286   // No need to allocate a matching input constraint since the constraint it's
7287   // matching to has already been allocated.
7288   if (OpInfo.isMatchingInputConstraint())
7289     return;
7290 
7291   MVT RegVT;
7292   EVT ValueVT = OpInfo.ConstraintVT;
7293 
7294   // If this is a constraint for a specific physical register, like {r17},
7295   // assign it now.
7296   if (unsigned AssignedReg = PhysReg.first) {
7297     const TargetRegisterClass *RC = PhysReg.second;
7298     if (OpInfo.ConstraintVT == MVT::Other)
7299       ValueVT = *TRI.legalclasstypes_begin(*RC);
7300 
7301     // Get the actual register value type.  This is important, because the user
7302     // may have asked for (e.g.) the AX register in i32 type.  We need to
7303     // remember that AX is actually i16 to get the right extension.
7304     RegVT = *TRI.legalclasstypes_begin(*RC);
7305 
7306     // This is an explicit reference to a physical register.
7307     Regs.push_back(AssignedReg);
7308 
7309     // If this is an expanded reference, add the rest of the regs to Regs.
7310     if (NumRegs != 1) {
7311       TargetRegisterClass::iterator I = RC->begin();
7312       for (; *I != AssignedReg; ++I)
7313         assert(I != RC->end() && "Didn't find reg!");
7314 
7315       // Already added the first reg.
7316       --NumRegs; ++I;
7317       for (; NumRegs; --NumRegs, ++I) {
7318         assert(I != RC->end() && "Ran out of registers to allocate!");
7319         Regs.push_back(*I);
7320       }
7321     }
7322 
7323     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7324     return;
7325   }
7326 
7327   // Otherwise, if this was a reference to an LLVM register class, create vregs
7328   // for this reference.
7329   if (const TargetRegisterClass *RC = PhysReg.second) {
7330     RegVT = *TRI.legalclasstypes_begin(*RC);
7331     if (OpInfo.ConstraintVT == MVT::Other)
7332       ValueVT = RegVT;
7333 
7334     // Create the appropriate number of virtual registers.
7335     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7336     for (; NumRegs; --NumRegs)
7337       Regs.push_back(RegInfo.createVirtualRegister(RC));
7338 
7339     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7340     return;
7341   }
7342 
7343   // Otherwise, we couldn't allocate enough registers for this.
7344 }
7345 
7346 static unsigned
7347 findMatchingInlineAsmOperand(unsigned OperandNo,
7348                              const std::vector<SDValue> &AsmNodeOperands) {
7349   // Scan until we find the definition we already emitted of this operand.
7350   unsigned CurOp = InlineAsm::Op_FirstOperand;
7351   for (; OperandNo; --OperandNo) {
7352     // Advance to the next operand.
7353     unsigned OpFlag =
7354         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7355     assert((InlineAsm::isRegDefKind(OpFlag) ||
7356             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7357             InlineAsm::isMemKind(OpFlag)) &&
7358            "Skipped past definitions?");
7359     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7360   }
7361   return CurOp;
7362 }
7363 
7364 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7365 /// \return true if it has succeeded, false otherwise
7366 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7367                               MVT RegVT, SelectionDAG &DAG) {
7368   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7369   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7370   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7371     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7372       Regs.push_back(RegInfo.createVirtualRegister(RC));
7373     else
7374       return false;
7375   }
7376   return true;
7377 }
7378 
7379 namespace {
7380 
7381 class ExtraFlags {
7382   unsigned Flags = 0;
7383 
7384 public:
7385   explicit ExtraFlags(ImmutableCallSite CS) {
7386     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7387     if (IA->hasSideEffects())
7388       Flags |= InlineAsm::Extra_HasSideEffects;
7389     if (IA->isAlignStack())
7390       Flags |= InlineAsm::Extra_IsAlignStack;
7391     if (CS.isConvergent())
7392       Flags |= InlineAsm::Extra_IsConvergent;
7393     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7394   }
7395 
7396   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7397     // Ideally, we would only check against memory constraints.  However, the
7398     // meaning of an Other constraint can be target-specific and we can't easily
7399     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7400     // for Other constraints as well.
7401     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7402         OpInfo.ConstraintType == TargetLowering::C_Other) {
7403       if (OpInfo.Type == InlineAsm::isInput)
7404         Flags |= InlineAsm::Extra_MayLoad;
7405       else if (OpInfo.Type == InlineAsm::isOutput)
7406         Flags |= InlineAsm::Extra_MayStore;
7407       else if (OpInfo.Type == InlineAsm::isClobber)
7408         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7409     }
7410   }
7411 
7412   unsigned get() const { return Flags; }
7413 };
7414 
7415 } // end anonymous namespace
7416 
7417 /// visitInlineAsm - Handle a call to an InlineAsm object.
7418 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7419   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7420 
7421   /// ConstraintOperands - Information about all of the constraints.
7422   SDISelAsmOperandInfoVector ConstraintOperands;
7423 
7424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7425   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7426       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7427 
7428   bool hasMemory = false;
7429 
7430   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7431   ExtraFlags ExtraInfo(CS);
7432 
7433   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7434   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7435   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7436     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7437     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7438 
7439     MVT OpVT = MVT::Other;
7440 
7441     // Compute the value type for each operand.
7442     if (OpInfo.Type == InlineAsm::isInput ||
7443         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7444       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7445 
7446       // Process the call argument. BasicBlocks are labels, currently appearing
7447       // only in asm's.
7448       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7449         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7450       } else {
7451         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7452       }
7453 
7454       OpVT =
7455           OpInfo
7456               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7457               .getSimpleVT();
7458     }
7459 
7460     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7461       // The return value of the call is this value.  As such, there is no
7462       // corresponding argument.
7463       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7464       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7465         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7466                                       STy->getElementType(ResNo));
7467       } else {
7468         assert(ResNo == 0 && "Asm only has one result!");
7469         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7470       }
7471       ++ResNo;
7472     }
7473 
7474     OpInfo.ConstraintVT = OpVT;
7475 
7476     if (!hasMemory)
7477       hasMemory = OpInfo.hasMemory(TLI);
7478 
7479     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7480     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7481     auto TargetConstraint = TargetConstraints[i];
7482 
7483     // Compute the constraint code and ConstraintType to use.
7484     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7485 
7486     ExtraInfo.update(TargetConstraint);
7487   }
7488 
7489   SDValue Chain, Flag;
7490 
7491   // We won't need to flush pending loads if this asm doesn't touch
7492   // memory and is nonvolatile.
7493   if (hasMemory || IA->hasSideEffects())
7494     Chain = getRoot();
7495   else
7496     Chain = DAG.getRoot();
7497 
7498   // Second pass over the constraints: compute which constraint option to use
7499   // and assign registers to constraints that want a specific physreg.
7500   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7501     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7502 
7503     // If this is an output operand with a matching input operand, look up the
7504     // matching input. If their types mismatch, e.g. one is an integer, the
7505     // other is floating point, or their sizes are different, flag it as an
7506     // error.
7507     if (OpInfo.hasMatchingInput()) {
7508       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7509       patchMatchingInput(OpInfo, Input, DAG);
7510     }
7511 
7512     // Compute the constraint code and ConstraintType to use.
7513     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7514 
7515     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7516         OpInfo.Type == InlineAsm::isClobber)
7517       continue;
7518 
7519     // If this is a memory input, and if the operand is not indirect, do what we
7520     // need to provide an address for the memory input.
7521     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7522         !OpInfo.isIndirect) {
7523       assert((OpInfo.isMultipleAlternative ||
7524               (OpInfo.Type == InlineAsm::isInput)) &&
7525              "Can only indirectify direct input operands!");
7526 
7527       // Memory operands really want the address of the value.
7528       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7529 
7530       // There is no longer a Value* corresponding to this operand.
7531       OpInfo.CallOperandVal = nullptr;
7532 
7533       // It is now an indirect operand.
7534       OpInfo.isIndirect = true;
7535     }
7536 
7537     // If this constraint is for a specific register, allocate it before
7538     // anything else.
7539     SDISelAsmOperandInfo &RefOpInfo =
7540         OpInfo.isMatchingInputConstraint()
7541             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7542             : ConstraintOperands[i];
7543     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7544       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7545   }
7546 
7547   // Third pass - Loop over all of the operands, assigning virtual or physregs
7548   // to register class operands.
7549   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7550     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7551     SDISelAsmOperandInfo &RefOpInfo =
7552         OpInfo.isMatchingInputConstraint()
7553             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7554             : ConstraintOperands[i];
7555 
7556     // C_Register operands have already been allocated, Other/Memory don't need
7557     // to be.
7558     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7559       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7560   }
7561 
7562   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7563   std::vector<SDValue> AsmNodeOperands;
7564   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7565   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7566       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7567 
7568   // If we have a !srcloc metadata node associated with it, we want to attach
7569   // this to the ultimately generated inline asm machineinstr.  To do this, we
7570   // pass in the third operand as this (potentially null) inline asm MDNode.
7571   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7572   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7573 
7574   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7575   // bits as operand 3.
7576   AsmNodeOperands.push_back(DAG.getTargetConstant(
7577       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7578 
7579   // Loop over all of the inputs, copying the operand values into the
7580   // appropriate registers and processing the output regs.
7581   RegsForValue RetValRegs;
7582 
7583   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7584   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7585 
7586   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7587     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7588 
7589     switch (OpInfo.Type) {
7590     case InlineAsm::isOutput:
7591       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7592           OpInfo.ConstraintType != TargetLowering::C_Register) {
7593         // Memory output, or 'other' output (e.g. 'X' constraint).
7594         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7595 
7596         unsigned ConstraintID =
7597             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7598         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7599                "Failed to convert memory constraint code to constraint id.");
7600 
7601         // Add information to the INLINEASM node to know about this output.
7602         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7603         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7604         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7605                                                         MVT::i32));
7606         AsmNodeOperands.push_back(OpInfo.CallOperand);
7607         break;
7608       }
7609 
7610       // Otherwise, this is a register or register class output.
7611 
7612       // Copy the output from the appropriate register.  Find a register that
7613       // we can use.
7614       if (OpInfo.AssignedRegs.Regs.empty()) {
7615         emitInlineAsmError(
7616             CS, "couldn't allocate output register for constraint '" +
7617                     Twine(OpInfo.ConstraintCode) + "'");
7618         return;
7619       }
7620 
7621       // If this is an indirect operand, store through the pointer after the
7622       // asm.
7623       if (OpInfo.isIndirect) {
7624         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7625                                                       OpInfo.CallOperandVal));
7626       } else {
7627         // This is the result value of the call.
7628         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7629         // Concatenate this output onto the outputs list.
7630         RetValRegs.append(OpInfo.AssignedRegs);
7631       }
7632 
7633       // Add information to the INLINEASM node to know that this register is
7634       // set.
7635       OpInfo.AssignedRegs
7636           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7637                                     ? InlineAsm::Kind_RegDefEarlyClobber
7638                                     : InlineAsm::Kind_RegDef,
7639                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7640       break;
7641 
7642     case InlineAsm::isInput: {
7643       SDValue InOperandVal = OpInfo.CallOperand;
7644 
7645       if (OpInfo.isMatchingInputConstraint()) {
7646         // If this is required to match an output register we have already set,
7647         // just use its register.
7648         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7649                                                   AsmNodeOperands);
7650         unsigned OpFlag =
7651           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7652         if (InlineAsm::isRegDefKind(OpFlag) ||
7653             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7654           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7655           if (OpInfo.isIndirect) {
7656             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7657             emitInlineAsmError(CS, "inline asm not supported yet:"
7658                                    " don't know how to handle tied "
7659                                    "indirect register inputs");
7660             return;
7661           }
7662 
7663           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7664           SmallVector<unsigned, 4> Regs;
7665 
7666           if (!createVirtualRegs(Regs,
7667                                  InlineAsm::getNumOperandRegisters(OpFlag),
7668                                  RegVT, DAG)) {
7669             emitInlineAsmError(CS, "inline asm error: This value type register "
7670                                    "class is not natively supported!");
7671             return;
7672           }
7673 
7674           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7675 
7676           SDLoc dl = getCurSDLoc();
7677           // Use the produced MatchedRegs object to
7678           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7679                                     CS.getInstruction());
7680           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7681                                            true, OpInfo.getMatchedOperand(), dl,
7682                                            DAG, AsmNodeOperands);
7683           break;
7684         }
7685 
7686         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7687         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7688                "Unexpected number of operands");
7689         // Add information to the INLINEASM node to know about this input.
7690         // See InlineAsm.h isUseOperandTiedToDef.
7691         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7692         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7693                                                     OpInfo.getMatchedOperand());
7694         AsmNodeOperands.push_back(DAG.getTargetConstant(
7695             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7696         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7697         break;
7698       }
7699 
7700       // Treat indirect 'X' constraint as memory.
7701       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7702           OpInfo.isIndirect)
7703         OpInfo.ConstraintType = TargetLowering::C_Memory;
7704 
7705       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7706         std::vector<SDValue> Ops;
7707         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7708                                           Ops, DAG);
7709         if (Ops.empty()) {
7710           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7711                                      Twine(OpInfo.ConstraintCode) + "'");
7712           return;
7713         }
7714 
7715         // Add information to the INLINEASM node to know about this input.
7716         unsigned ResOpType =
7717           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7718         AsmNodeOperands.push_back(DAG.getTargetConstant(
7719             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7720         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7721         break;
7722       }
7723 
7724       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7725         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7726         assert(InOperandVal.getValueType() ==
7727                    TLI.getPointerTy(DAG.getDataLayout()) &&
7728                "Memory operands expect pointer values");
7729 
7730         unsigned ConstraintID =
7731             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7732         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7733                "Failed to convert memory constraint code to constraint id.");
7734 
7735         // Add information to the INLINEASM node to know about this input.
7736         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7737         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7738         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7739                                                         getCurSDLoc(),
7740                                                         MVT::i32));
7741         AsmNodeOperands.push_back(InOperandVal);
7742         break;
7743       }
7744 
7745       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7746               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7747              "Unknown constraint type!");
7748 
7749       // TODO: Support this.
7750       if (OpInfo.isIndirect) {
7751         emitInlineAsmError(
7752             CS, "Don't know how to handle indirect register inputs yet "
7753                 "for constraint '" +
7754                     Twine(OpInfo.ConstraintCode) + "'");
7755         return;
7756       }
7757 
7758       // Copy the input into the appropriate registers.
7759       if (OpInfo.AssignedRegs.Regs.empty()) {
7760         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7761                                    Twine(OpInfo.ConstraintCode) + "'");
7762         return;
7763       }
7764 
7765       SDLoc dl = getCurSDLoc();
7766 
7767       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7768                                         Chain, &Flag, CS.getInstruction());
7769 
7770       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7771                                                dl, DAG, AsmNodeOperands);
7772       break;
7773     }
7774     case InlineAsm::isClobber:
7775       // Add the clobbered value to the operand list, so that the register
7776       // allocator is aware that the physreg got clobbered.
7777       if (!OpInfo.AssignedRegs.Regs.empty())
7778         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7779                                                  false, 0, getCurSDLoc(), DAG,
7780                                                  AsmNodeOperands);
7781       break;
7782     }
7783   }
7784 
7785   // Finish up input operands.  Set the input chain and add the flag last.
7786   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7787   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7788 
7789   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7790                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7791   Flag = Chain.getValue(1);
7792 
7793   // If this asm returns a register value, copy the result from that register
7794   // and set it as the value of the call.
7795   if (!RetValRegs.Regs.empty()) {
7796     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7797                                              Chain, &Flag, CS.getInstruction());
7798 
7799     llvm::Type *CSResultType = CS.getType();
7800     unsigned numRet;
7801     ArrayRef<Type *> ResultTypes;
7802     SmallVector<SDValue, 1> ResultValues(1);
7803     if (CSResultType->isSingleValueType()) {
7804       numRet = 1;
7805       ResultValues[0] = Val;
7806       ResultTypes = makeArrayRef(CSResultType);
7807     } else {
7808       numRet = CSResultType->getNumContainedTypes();
7809       assert(Val->getNumOperands() == numRet &&
7810              "Mismatch in number of output operands in asm result");
7811       ResultTypes = CSResultType->subtypes();
7812       ArrayRef<SDUse> ValueUses = Val->ops();
7813       ResultValues.resize(numRet);
7814       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7815                      [](const SDUse &u) -> SDValue { return u.get(); });
7816     }
7817     SmallVector<EVT, 1> ResultVTs(numRet);
7818     for (unsigned i = 0; i < numRet; i++) {
7819       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7820       SDValue Val = ResultValues[i];
7821       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7822       // If the type of the inline asm call site return value is different but
7823       // has same size as the type of the asm output bitcast it.  One example
7824       // of this is for vectors with different width / number of elements.
7825       // This can happen for register classes that can contain multiple
7826       // different value types.  The preg or vreg allocated may not have the
7827       // same VT as was expected.
7828       //
7829       // This can also happen for a return value that disagrees with the
7830       // register class it is put in, eg. a double in a general-purpose
7831       // register on a 32-bit machine.
7832       if (ResultVT != Val.getValueType() &&
7833           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7834         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7835       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7836                Val.getValueType().isInteger()) {
7837         // If a result value was tied to an input value, the computed result
7838         // may have a wider width than the expected result.  Extract the
7839         // relevant portion.
7840         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7841       }
7842 
7843       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7844       ResultVTs[i] = ResultVT;
7845       ResultValues[i] = Val;
7846     }
7847 
7848     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7849                       DAG.getVTList(ResultVTs), ResultValues);
7850     setValue(CS.getInstruction(), Val);
7851     // Don't need to use this as a chain in this case.
7852     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7853       return;
7854   }
7855 
7856   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7857 
7858   // Process indirect outputs, first output all of the flagged copies out of
7859   // physregs.
7860   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7861     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7862     const Value *Ptr = IndirectStoresToEmit[i].second;
7863     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7864                                              Chain, &Flag, IA);
7865     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7866   }
7867 
7868   // Emit the non-flagged stores from the physregs.
7869   SmallVector<SDValue, 8> OutChains;
7870   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7871     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7872                                getValue(StoresToEmit[i].second),
7873                                MachinePointerInfo(StoresToEmit[i].second));
7874     OutChains.push_back(Val);
7875   }
7876 
7877   if (!OutChains.empty())
7878     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7879 
7880   DAG.setRoot(Chain);
7881 }
7882 
7883 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7884                                              const Twine &Message) {
7885   LLVMContext &Ctx = *DAG.getContext();
7886   Ctx.emitError(CS.getInstruction(), Message);
7887 
7888   // Make sure we leave the DAG in a valid state
7889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7890   SmallVector<EVT, 1> ValueVTs;
7891   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7892 
7893   if (ValueVTs.empty())
7894     return;
7895 
7896   SmallVector<SDValue, 1> Ops;
7897   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7898     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7899 
7900   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7901 }
7902 
7903 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7904   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7905                           MVT::Other, getRoot(),
7906                           getValue(I.getArgOperand(0)),
7907                           DAG.getSrcValue(I.getArgOperand(0))));
7908 }
7909 
7910 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7911   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7912   const DataLayout &DL = DAG.getDataLayout();
7913   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7914                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7915                            DAG.getSrcValue(I.getOperand(0)),
7916                            DL.getABITypeAlignment(I.getType()));
7917   setValue(&I, V);
7918   DAG.setRoot(V.getValue(1));
7919 }
7920 
7921 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7922   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7923                           MVT::Other, getRoot(),
7924                           getValue(I.getArgOperand(0)),
7925                           DAG.getSrcValue(I.getArgOperand(0))));
7926 }
7927 
7928 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7929   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7930                           MVT::Other, getRoot(),
7931                           getValue(I.getArgOperand(0)),
7932                           getValue(I.getArgOperand(1)),
7933                           DAG.getSrcValue(I.getArgOperand(0)),
7934                           DAG.getSrcValue(I.getArgOperand(1))));
7935 }
7936 
7937 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7938                                                     const Instruction &I,
7939                                                     SDValue Op) {
7940   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7941   if (!Range)
7942     return Op;
7943 
7944   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7945   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7946     return Op;
7947 
7948   APInt Lo = CR.getUnsignedMin();
7949   if (!Lo.isMinValue())
7950     return Op;
7951 
7952   APInt Hi = CR.getUnsignedMax();
7953   unsigned Bits = Hi.getActiveBits();
7954 
7955   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7956 
7957   SDLoc SL = getCurSDLoc();
7958 
7959   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7960                              DAG.getValueType(SmallVT));
7961   unsigned NumVals = Op.getNode()->getNumValues();
7962   if (NumVals == 1)
7963     return ZExt;
7964 
7965   SmallVector<SDValue, 4> Ops;
7966 
7967   Ops.push_back(ZExt);
7968   for (unsigned I = 1; I != NumVals; ++I)
7969     Ops.push_back(Op.getValue(I));
7970 
7971   return DAG.getMergeValues(Ops, SL);
7972 }
7973 
7974 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7975 /// the call being lowered.
7976 ///
7977 /// This is a helper for lowering intrinsics that follow a target calling
7978 /// convention or require stack pointer adjustment. Only a subset of the
7979 /// intrinsic's operands need to participate in the calling convention.
7980 void SelectionDAGBuilder::populateCallLoweringInfo(
7981     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7982     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7983     bool IsPatchPoint) {
7984   TargetLowering::ArgListTy Args;
7985   Args.reserve(NumArgs);
7986 
7987   // Populate the argument list.
7988   // Attributes for args start at offset 1, after the return attribute.
7989   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7990        ArgI != ArgE; ++ArgI) {
7991     const Value *V = CS->getOperand(ArgI);
7992 
7993     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7994 
7995     TargetLowering::ArgListEntry Entry;
7996     Entry.Node = getValue(V);
7997     Entry.Ty = V->getType();
7998     Entry.setAttributes(&CS, ArgI);
7999     Args.push_back(Entry);
8000   }
8001 
8002   CLI.setDebugLoc(getCurSDLoc())
8003       .setChain(getRoot())
8004       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
8005       .setDiscardResult(CS->use_empty())
8006       .setIsPatchPoint(IsPatchPoint);
8007 }
8008 
8009 /// Add a stack map intrinsic call's live variable operands to a stackmap
8010 /// or patchpoint target node's operand list.
8011 ///
8012 /// Constants are converted to TargetConstants purely as an optimization to
8013 /// avoid constant materialization and register allocation.
8014 ///
8015 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8016 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8017 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8018 /// address materialization and register allocation, but may also be required
8019 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8020 /// alloca in the entry block, then the runtime may assume that the alloca's
8021 /// StackMap location can be read immediately after compilation and that the
8022 /// location is valid at any point during execution (this is similar to the
8023 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8024 /// only available in a register, then the runtime would need to trap when
8025 /// execution reaches the StackMap in order to read the alloca's location.
8026 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8027                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8028                                 SelectionDAGBuilder &Builder) {
8029   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8030     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8031     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8032       Ops.push_back(
8033         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8034       Ops.push_back(
8035         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8036     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8037       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8038       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8039           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8040     } else
8041       Ops.push_back(OpVal);
8042   }
8043 }
8044 
8045 /// Lower llvm.experimental.stackmap directly to its target opcode.
8046 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8047   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8048   //                                  [live variables...])
8049 
8050   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8051 
8052   SDValue Chain, InFlag, Callee, NullPtr;
8053   SmallVector<SDValue, 32> Ops;
8054 
8055   SDLoc DL = getCurSDLoc();
8056   Callee = getValue(CI.getCalledValue());
8057   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8058 
8059   // The stackmap intrinsic only records the live variables (the arguemnts
8060   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8061   // intrinsic, this won't be lowered to a function call. This means we don't
8062   // have to worry about calling conventions and target specific lowering code.
8063   // Instead we perform the call lowering right here.
8064   //
8065   // chain, flag = CALLSEQ_START(chain, 0, 0)
8066   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8067   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8068   //
8069   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8070   InFlag = Chain.getValue(1);
8071 
8072   // Add the <id> and <numBytes> constants.
8073   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8074   Ops.push_back(DAG.getTargetConstant(
8075                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8076   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8077   Ops.push_back(DAG.getTargetConstant(
8078                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8079                   MVT::i32));
8080 
8081   // Push live variables for the stack map.
8082   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8083 
8084   // We are not pushing any register mask info here on the operands list,
8085   // because the stackmap doesn't clobber anything.
8086 
8087   // Push the chain and the glue flag.
8088   Ops.push_back(Chain);
8089   Ops.push_back(InFlag);
8090 
8091   // Create the STACKMAP node.
8092   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8093   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8094   Chain = SDValue(SM, 0);
8095   InFlag = Chain.getValue(1);
8096 
8097   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8098 
8099   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8100 
8101   // Set the root to the target-lowered call chain.
8102   DAG.setRoot(Chain);
8103 
8104   // Inform the Frame Information that we have a stackmap in this function.
8105   FuncInfo.MF->getFrameInfo().setHasStackMap();
8106 }
8107 
8108 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8109 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8110                                           const BasicBlock *EHPadBB) {
8111   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8112   //                                                 i32 <numBytes>,
8113   //                                                 i8* <target>,
8114   //                                                 i32 <numArgs>,
8115   //                                                 [Args...],
8116   //                                                 [live variables...])
8117 
8118   CallingConv::ID CC = CS.getCallingConv();
8119   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8120   bool HasDef = !CS->getType()->isVoidTy();
8121   SDLoc dl = getCurSDLoc();
8122   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8123 
8124   // Handle immediate and symbolic callees.
8125   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8126     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8127                                    /*isTarget=*/true);
8128   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8129     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8130                                          SDLoc(SymbolicCallee),
8131                                          SymbolicCallee->getValueType(0));
8132 
8133   // Get the real number of arguments participating in the call <numArgs>
8134   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8135   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8136 
8137   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8138   // Intrinsics include all meta-operands up to but not including CC.
8139   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8140   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8141          "Not enough arguments provided to the patchpoint intrinsic");
8142 
8143   // For AnyRegCC the arguments are lowered later on manually.
8144   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8145   Type *ReturnTy =
8146     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8147 
8148   TargetLowering::CallLoweringInfo CLI(DAG);
8149   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8150                            true);
8151   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8152 
8153   SDNode *CallEnd = Result.second.getNode();
8154   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8155     CallEnd = CallEnd->getOperand(0).getNode();
8156 
8157   /// Get a call instruction from the call sequence chain.
8158   /// Tail calls are not allowed.
8159   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8160          "Expected a callseq node.");
8161   SDNode *Call = CallEnd->getOperand(0).getNode();
8162   bool HasGlue = Call->getGluedNode();
8163 
8164   // Replace the target specific call node with the patchable intrinsic.
8165   SmallVector<SDValue, 8> Ops;
8166 
8167   // Add the <id> and <numBytes> constants.
8168   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8169   Ops.push_back(DAG.getTargetConstant(
8170                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8171   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8172   Ops.push_back(DAG.getTargetConstant(
8173                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8174                   MVT::i32));
8175 
8176   // Add the callee.
8177   Ops.push_back(Callee);
8178 
8179   // Adjust <numArgs> to account for any arguments that have been passed on the
8180   // stack instead.
8181   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8182   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8183   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8184   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8185 
8186   // Add the calling convention
8187   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8188 
8189   // Add the arguments we omitted previously. The register allocator should
8190   // place these in any free register.
8191   if (IsAnyRegCC)
8192     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8193       Ops.push_back(getValue(CS.getArgument(i)));
8194 
8195   // Push the arguments from the call instruction up to the register mask.
8196   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8197   Ops.append(Call->op_begin() + 2, e);
8198 
8199   // Push live variables for the stack map.
8200   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8201 
8202   // Push the register mask info.
8203   if (HasGlue)
8204     Ops.push_back(*(Call->op_end()-2));
8205   else
8206     Ops.push_back(*(Call->op_end()-1));
8207 
8208   // Push the chain (this is originally the first operand of the call, but
8209   // becomes now the last or second to last operand).
8210   Ops.push_back(*(Call->op_begin()));
8211 
8212   // Push the glue flag (last operand).
8213   if (HasGlue)
8214     Ops.push_back(*(Call->op_end()-1));
8215 
8216   SDVTList NodeTys;
8217   if (IsAnyRegCC && HasDef) {
8218     // Create the return types based on the intrinsic definition
8219     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8220     SmallVector<EVT, 3> ValueVTs;
8221     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8222     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8223 
8224     // There is always a chain and a glue type at the end
8225     ValueVTs.push_back(MVT::Other);
8226     ValueVTs.push_back(MVT::Glue);
8227     NodeTys = DAG.getVTList(ValueVTs);
8228   } else
8229     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8230 
8231   // Replace the target specific call node with a PATCHPOINT node.
8232   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8233                                          dl, NodeTys, Ops);
8234 
8235   // Update the NodeMap.
8236   if (HasDef) {
8237     if (IsAnyRegCC)
8238       setValue(CS.getInstruction(), SDValue(MN, 0));
8239     else
8240       setValue(CS.getInstruction(), Result.first);
8241   }
8242 
8243   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8244   // call sequence. Furthermore the location of the chain and glue can change
8245   // when the AnyReg calling convention is used and the intrinsic returns a
8246   // value.
8247   if (IsAnyRegCC && HasDef) {
8248     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8249     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8250     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8251   } else
8252     DAG.ReplaceAllUsesWith(Call, MN);
8253   DAG.DeleteNode(Call);
8254 
8255   // Inform the Frame Information that we have a patchpoint in this function.
8256   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8257 }
8258 
8259 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8260                                             unsigned Intrinsic) {
8261   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8262   SDValue Op1 = getValue(I.getArgOperand(0));
8263   SDValue Op2;
8264   if (I.getNumArgOperands() > 1)
8265     Op2 = getValue(I.getArgOperand(1));
8266   SDLoc dl = getCurSDLoc();
8267   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8268   SDValue Res;
8269   FastMathFlags FMF;
8270   if (isa<FPMathOperator>(I))
8271     FMF = I.getFastMathFlags();
8272 
8273   switch (Intrinsic) {
8274   case Intrinsic::experimental_vector_reduce_fadd:
8275     if (FMF.isFast())
8276       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8277     else
8278       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8279     break;
8280   case Intrinsic::experimental_vector_reduce_fmul:
8281     if (FMF.isFast())
8282       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8283     else
8284       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8285     break;
8286   case Intrinsic::experimental_vector_reduce_add:
8287     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8288     break;
8289   case Intrinsic::experimental_vector_reduce_mul:
8290     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8291     break;
8292   case Intrinsic::experimental_vector_reduce_and:
8293     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8294     break;
8295   case Intrinsic::experimental_vector_reduce_or:
8296     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8297     break;
8298   case Intrinsic::experimental_vector_reduce_xor:
8299     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8300     break;
8301   case Intrinsic::experimental_vector_reduce_smax:
8302     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8303     break;
8304   case Intrinsic::experimental_vector_reduce_smin:
8305     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8306     break;
8307   case Intrinsic::experimental_vector_reduce_umax:
8308     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8309     break;
8310   case Intrinsic::experimental_vector_reduce_umin:
8311     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8312     break;
8313   case Intrinsic::experimental_vector_reduce_fmax:
8314     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8315     break;
8316   case Intrinsic::experimental_vector_reduce_fmin:
8317     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8318     break;
8319   default:
8320     llvm_unreachable("Unhandled vector reduce intrinsic");
8321   }
8322   setValue(&I, Res);
8323 }
8324 
8325 /// Returns an AttributeList representing the attributes applied to the return
8326 /// value of the given call.
8327 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8328   SmallVector<Attribute::AttrKind, 2> Attrs;
8329   if (CLI.RetSExt)
8330     Attrs.push_back(Attribute::SExt);
8331   if (CLI.RetZExt)
8332     Attrs.push_back(Attribute::ZExt);
8333   if (CLI.IsInReg)
8334     Attrs.push_back(Attribute::InReg);
8335 
8336   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8337                             Attrs);
8338 }
8339 
8340 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8341 /// implementation, which just calls LowerCall.
8342 /// FIXME: When all targets are
8343 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8344 std::pair<SDValue, SDValue>
8345 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8346   // Handle the incoming return values from the call.
8347   CLI.Ins.clear();
8348   Type *OrigRetTy = CLI.RetTy;
8349   SmallVector<EVT, 4> RetTys;
8350   SmallVector<uint64_t, 4> Offsets;
8351   auto &DL = CLI.DAG.getDataLayout();
8352   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8353 
8354   if (CLI.IsPostTypeLegalization) {
8355     // If we are lowering a libcall after legalization, split the return type.
8356     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8357     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8358     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8359       EVT RetVT = OldRetTys[i];
8360       uint64_t Offset = OldOffsets[i];
8361       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8362       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8363       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8364       RetTys.append(NumRegs, RegisterVT);
8365       for (unsigned j = 0; j != NumRegs; ++j)
8366         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8367     }
8368   }
8369 
8370   SmallVector<ISD::OutputArg, 4> Outs;
8371   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8372 
8373   bool CanLowerReturn =
8374       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8375                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8376 
8377   SDValue DemoteStackSlot;
8378   int DemoteStackIdx = -100;
8379   if (!CanLowerReturn) {
8380     // FIXME: equivalent assert?
8381     // assert(!CS.hasInAllocaArgument() &&
8382     //        "sret demotion is incompatible with inalloca");
8383     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8384     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8385     MachineFunction &MF = CLI.DAG.getMachineFunction();
8386     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8387     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8388                                               DL.getAllocaAddrSpace());
8389 
8390     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8391     ArgListEntry Entry;
8392     Entry.Node = DemoteStackSlot;
8393     Entry.Ty = StackSlotPtrType;
8394     Entry.IsSExt = false;
8395     Entry.IsZExt = false;
8396     Entry.IsInReg = false;
8397     Entry.IsSRet = true;
8398     Entry.IsNest = false;
8399     Entry.IsByVal = false;
8400     Entry.IsReturned = false;
8401     Entry.IsSwiftSelf = false;
8402     Entry.IsSwiftError = false;
8403     Entry.Alignment = Align;
8404     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8405     CLI.NumFixedArgs += 1;
8406     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8407 
8408     // sret demotion isn't compatible with tail-calls, since the sret argument
8409     // points into the callers stack frame.
8410     CLI.IsTailCall = false;
8411   } else {
8412     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8413       EVT VT = RetTys[I];
8414       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8415                                                      CLI.CallConv, VT);
8416       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8417                                                        CLI.CallConv, VT);
8418       for (unsigned i = 0; i != NumRegs; ++i) {
8419         ISD::InputArg MyFlags;
8420         MyFlags.VT = RegisterVT;
8421         MyFlags.ArgVT = VT;
8422         MyFlags.Used = CLI.IsReturnValueUsed;
8423         if (CLI.RetSExt)
8424           MyFlags.Flags.setSExt();
8425         if (CLI.RetZExt)
8426           MyFlags.Flags.setZExt();
8427         if (CLI.IsInReg)
8428           MyFlags.Flags.setInReg();
8429         CLI.Ins.push_back(MyFlags);
8430       }
8431     }
8432   }
8433 
8434   // We push in swifterror return as the last element of CLI.Ins.
8435   ArgListTy &Args = CLI.getArgs();
8436   if (supportSwiftError()) {
8437     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8438       if (Args[i].IsSwiftError) {
8439         ISD::InputArg MyFlags;
8440         MyFlags.VT = getPointerTy(DL);
8441         MyFlags.ArgVT = EVT(getPointerTy(DL));
8442         MyFlags.Flags.setSwiftError();
8443         CLI.Ins.push_back(MyFlags);
8444       }
8445     }
8446   }
8447 
8448   // Handle all of the outgoing arguments.
8449   CLI.Outs.clear();
8450   CLI.OutVals.clear();
8451   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8452     SmallVector<EVT, 4> ValueVTs;
8453     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8454     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8455     Type *FinalType = Args[i].Ty;
8456     if (Args[i].IsByVal)
8457       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8458     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8459         FinalType, CLI.CallConv, CLI.IsVarArg);
8460     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8461          ++Value) {
8462       EVT VT = ValueVTs[Value];
8463       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8464       SDValue Op = SDValue(Args[i].Node.getNode(),
8465                            Args[i].Node.getResNo() + Value);
8466       ISD::ArgFlagsTy Flags;
8467 
8468       // Certain targets (such as MIPS), may have a different ABI alignment
8469       // for a type depending on the context. Give the target a chance to
8470       // specify the alignment it wants.
8471       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8472 
8473       if (Args[i].IsZExt)
8474         Flags.setZExt();
8475       if (Args[i].IsSExt)
8476         Flags.setSExt();
8477       if (Args[i].IsInReg) {
8478         // If we are using vectorcall calling convention, a structure that is
8479         // passed InReg - is surely an HVA
8480         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8481             isa<StructType>(FinalType)) {
8482           // The first value of a structure is marked
8483           if (0 == Value)
8484             Flags.setHvaStart();
8485           Flags.setHva();
8486         }
8487         // Set InReg Flag
8488         Flags.setInReg();
8489       }
8490       if (Args[i].IsSRet)
8491         Flags.setSRet();
8492       if (Args[i].IsSwiftSelf)
8493         Flags.setSwiftSelf();
8494       if (Args[i].IsSwiftError)
8495         Flags.setSwiftError();
8496       if (Args[i].IsByVal)
8497         Flags.setByVal();
8498       if (Args[i].IsInAlloca) {
8499         Flags.setInAlloca();
8500         // Set the byval flag for CCAssignFn callbacks that don't know about
8501         // inalloca.  This way we can know how many bytes we should've allocated
8502         // and how many bytes a callee cleanup function will pop.  If we port
8503         // inalloca to more targets, we'll have to add custom inalloca handling
8504         // in the various CC lowering callbacks.
8505         Flags.setByVal();
8506       }
8507       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8508         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8509         Type *ElementTy = Ty->getElementType();
8510         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8511         // For ByVal, alignment should come from FE.  BE will guess if this
8512         // info is not there but there are cases it cannot get right.
8513         unsigned FrameAlign;
8514         if (Args[i].Alignment)
8515           FrameAlign = Args[i].Alignment;
8516         else
8517           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8518         Flags.setByValAlign(FrameAlign);
8519       }
8520       if (Args[i].IsNest)
8521         Flags.setNest();
8522       if (NeedsRegBlock)
8523         Flags.setInConsecutiveRegs();
8524       Flags.setOrigAlign(OriginalAlignment);
8525 
8526       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8527                                                  CLI.CallConv, VT);
8528       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8529                                                         CLI.CallConv, VT);
8530       SmallVector<SDValue, 4> Parts(NumParts);
8531       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8532 
8533       if (Args[i].IsSExt)
8534         ExtendKind = ISD::SIGN_EXTEND;
8535       else if (Args[i].IsZExt)
8536         ExtendKind = ISD::ZERO_EXTEND;
8537 
8538       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8539       // for now.
8540       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8541           CanLowerReturn) {
8542         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8543                "unexpected use of 'returned'");
8544         // Before passing 'returned' to the target lowering code, ensure that
8545         // either the register MVT and the actual EVT are the same size or that
8546         // the return value and argument are extended in the same way; in these
8547         // cases it's safe to pass the argument register value unchanged as the
8548         // return register value (although it's at the target's option whether
8549         // to do so)
8550         // TODO: allow code generation to take advantage of partially preserved
8551         // registers rather than clobbering the entire register when the
8552         // parameter extension method is not compatible with the return
8553         // extension method
8554         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8555             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8556              CLI.RetZExt == Args[i].IsZExt))
8557           Flags.setReturned();
8558       }
8559 
8560       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8561                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8562 
8563       for (unsigned j = 0; j != NumParts; ++j) {
8564         // if it isn't first piece, alignment must be 1
8565         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8566                                i < CLI.NumFixedArgs,
8567                                i, j*Parts[j].getValueType().getStoreSize());
8568         if (NumParts > 1 && j == 0)
8569           MyFlags.Flags.setSplit();
8570         else if (j != 0) {
8571           MyFlags.Flags.setOrigAlign(1);
8572           if (j == NumParts - 1)
8573             MyFlags.Flags.setSplitEnd();
8574         }
8575 
8576         CLI.Outs.push_back(MyFlags);
8577         CLI.OutVals.push_back(Parts[j]);
8578       }
8579 
8580       if (NeedsRegBlock && Value == NumValues - 1)
8581         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8582     }
8583   }
8584 
8585   SmallVector<SDValue, 4> InVals;
8586   CLI.Chain = LowerCall(CLI, InVals);
8587 
8588   // Update CLI.InVals to use outside of this function.
8589   CLI.InVals = InVals;
8590 
8591   // Verify that the target's LowerCall behaved as expected.
8592   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8593          "LowerCall didn't return a valid chain!");
8594   assert((!CLI.IsTailCall || InVals.empty()) &&
8595          "LowerCall emitted a return value for a tail call!");
8596   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8597          "LowerCall didn't emit the correct number of values!");
8598 
8599   // For a tail call, the return value is merely live-out and there aren't
8600   // any nodes in the DAG representing it. Return a special value to
8601   // indicate that a tail call has been emitted and no more Instructions
8602   // should be processed in the current block.
8603   if (CLI.IsTailCall) {
8604     CLI.DAG.setRoot(CLI.Chain);
8605     return std::make_pair(SDValue(), SDValue());
8606   }
8607 
8608 #ifndef NDEBUG
8609   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8610     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8611     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8612            "LowerCall emitted a value with the wrong type!");
8613   }
8614 #endif
8615 
8616   SmallVector<SDValue, 4> ReturnValues;
8617   if (!CanLowerReturn) {
8618     // The instruction result is the result of loading from the
8619     // hidden sret parameter.
8620     SmallVector<EVT, 1> PVTs;
8621     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8622 
8623     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8624     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8625     EVT PtrVT = PVTs[0];
8626 
8627     unsigned NumValues = RetTys.size();
8628     ReturnValues.resize(NumValues);
8629     SmallVector<SDValue, 4> Chains(NumValues);
8630 
8631     // An aggregate return value cannot wrap around the address space, so
8632     // offsets to its parts don't wrap either.
8633     SDNodeFlags Flags;
8634     Flags.setNoUnsignedWrap(true);
8635 
8636     for (unsigned i = 0; i < NumValues; ++i) {
8637       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8638                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8639                                                         PtrVT), Flags);
8640       SDValue L = CLI.DAG.getLoad(
8641           RetTys[i], CLI.DL, CLI.Chain, Add,
8642           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8643                                             DemoteStackIdx, Offsets[i]),
8644           /* Alignment = */ 1);
8645       ReturnValues[i] = L;
8646       Chains[i] = L.getValue(1);
8647     }
8648 
8649     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8650   } else {
8651     // Collect the legal value parts into potentially illegal values
8652     // that correspond to the original function's return values.
8653     Optional<ISD::NodeType> AssertOp;
8654     if (CLI.RetSExt)
8655       AssertOp = ISD::AssertSext;
8656     else if (CLI.RetZExt)
8657       AssertOp = ISD::AssertZext;
8658     unsigned CurReg = 0;
8659     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8660       EVT VT = RetTys[I];
8661       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8662                                                      CLI.CallConv, VT);
8663       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8664                                                        CLI.CallConv, VT);
8665 
8666       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8667                                               NumRegs, RegisterVT, VT, nullptr,
8668                                               CLI.CallConv, AssertOp));
8669       CurReg += NumRegs;
8670     }
8671 
8672     // For a function returning void, there is no return value. We can't create
8673     // such a node, so we just return a null return value in that case. In
8674     // that case, nothing will actually look at the value.
8675     if (ReturnValues.empty())
8676       return std::make_pair(SDValue(), CLI.Chain);
8677   }
8678 
8679   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8680                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8681   return std::make_pair(Res, CLI.Chain);
8682 }
8683 
8684 void TargetLowering::LowerOperationWrapper(SDNode *N,
8685                                            SmallVectorImpl<SDValue> &Results,
8686                                            SelectionDAG &DAG) const {
8687   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8688     Results.push_back(Res);
8689 }
8690 
8691 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8692   llvm_unreachable("LowerOperation not implemented for this target!");
8693 }
8694 
8695 void
8696 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8697   SDValue Op = getNonRegisterValue(V);
8698   assert((Op.getOpcode() != ISD::CopyFromReg ||
8699           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8700          "Copy from a reg to the same reg!");
8701   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8702 
8703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8704   // If this is an InlineAsm we have to match the registers required, not the
8705   // notional registers required by the type.
8706 
8707   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8708                    None); // This is not an ABI copy.
8709   SDValue Chain = DAG.getEntryNode();
8710 
8711   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8712                               FuncInfo.PreferredExtendType.end())
8713                                  ? ISD::ANY_EXTEND
8714                                  : FuncInfo.PreferredExtendType[V];
8715   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8716   PendingExports.push_back(Chain);
8717 }
8718 
8719 #include "llvm/CodeGen/SelectionDAGISel.h"
8720 
8721 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8722 /// entry block, return true.  This includes arguments used by switches, since
8723 /// the switch may expand into multiple basic blocks.
8724 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8725   // With FastISel active, we may be splitting blocks, so force creation
8726   // of virtual registers for all non-dead arguments.
8727   if (FastISel)
8728     return A->use_empty();
8729 
8730   const BasicBlock &Entry = A->getParent()->front();
8731   for (const User *U : A->users())
8732     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8733       return false;  // Use not in entry block.
8734 
8735   return true;
8736 }
8737 
8738 using ArgCopyElisionMapTy =
8739     DenseMap<const Argument *,
8740              std::pair<const AllocaInst *, const StoreInst *>>;
8741 
8742 /// Scan the entry block of the function in FuncInfo for arguments that look
8743 /// like copies into a local alloca. Record any copied arguments in
8744 /// ArgCopyElisionCandidates.
8745 static void
8746 findArgumentCopyElisionCandidates(const DataLayout &DL,
8747                                   FunctionLoweringInfo *FuncInfo,
8748                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8749   // Record the state of every static alloca used in the entry block. Argument
8750   // allocas are all used in the entry block, so we need approximately as many
8751   // entries as we have arguments.
8752   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8753   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8754   unsigned NumArgs = FuncInfo->Fn->arg_size();
8755   StaticAllocas.reserve(NumArgs * 2);
8756 
8757   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8758     if (!V)
8759       return nullptr;
8760     V = V->stripPointerCasts();
8761     const auto *AI = dyn_cast<AllocaInst>(V);
8762     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8763       return nullptr;
8764     auto Iter = StaticAllocas.insert({AI, Unknown});
8765     return &Iter.first->second;
8766   };
8767 
8768   // Look for stores of arguments to static allocas. Look through bitcasts and
8769   // GEPs to handle type coercions, as long as the alloca is fully initialized
8770   // by the store. Any non-store use of an alloca escapes it and any subsequent
8771   // unanalyzed store might write it.
8772   // FIXME: Handle structs initialized with multiple stores.
8773   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8774     // Look for stores, and handle non-store uses conservatively.
8775     const auto *SI = dyn_cast<StoreInst>(&I);
8776     if (!SI) {
8777       // We will look through cast uses, so ignore them completely.
8778       if (I.isCast())
8779         continue;
8780       // Ignore debug info intrinsics, they don't escape or store to allocas.
8781       if (isa<DbgInfoIntrinsic>(I))
8782         continue;
8783       // This is an unknown instruction. Assume it escapes or writes to all
8784       // static alloca operands.
8785       for (const Use &U : I.operands()) {
8786         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8787           *Info = StaticAllocaInfo::Clobbered;
8788       }
8789       continue;
8790     }
8791 
8792     // If the stored value is a static alloca, mark it as escaped.
8793     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8794       *Info = StaticAllocaInfo::Clobbered;
8795 
8796     // Check if the destination is a static alloca.
8797     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8798     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8799     if (!Info)
8800       continue;
8801     const AllocaInst *AI = cast<AllocaInst>(Dst);
8802 
8803     // Skip allocas that have been initialized or clobbered.
8804     if (*Info != StaticAllocaInfo::Unknown)
8805       continue;
8806 
8807     // Check if the stored value is an argument, and that this store fully
8808     // initializes the alloca. Don't elide copies from the same argument twice.
8809     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8810     const auto *Arg = dyn_cast<Argument>(Val);
8811     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8812         Arg->getType()->isEmptyTy() ||
8813         DL.getTypeStoreSize(Arg->getType()) !=
8814             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8815         ArgCopyElisionCandidates.count(Arg)) {
8816       *Info = StaticAllocaInfo::Clobbered;
8817       continue;
8818     }
8819 
8820     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8821                       << '\n');
8822 
8823     // Mark this alloca and store for argument copy elision.
8824     *Info = StaticAllocaInfo::Elidable;
8825     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8826 
8827     // Stop scanning if we've seen all arguments. This will happen early in -O0
8828     // builds, which is useful, because -O0 builds have large entry blocks and
8829     // many allocas.
8830     if (ArgCopyElisionCandidates.size() == NumArgs)
8831       break;
8832   }
8833 }
8834 
8835 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8836 /// ArgVal is a load from a suitable fixed stack object.
8837 static void tryToElideArgumentCopy(
8838     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8839     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8840     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8841     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8842     SDValue ArgVal, bool &ArgHasUses) {
8843   // Check if this is a load from a fixed stack object.
8844   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8845   if (!LNode)
8846     return;
8847   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8848   if (!FINode)
8849     return;
8850 
8851   // Check that the fixed stack object is the right size and alignment.
8852   // Look at the alignment that the user wrote on the alloca instead of looking
8853   // at the stack object.
8854   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8855   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8856   const AllocaInst *AI = ArgCopyIter->second.first;
8857   int FixedIndex = FINode->getIndex();
8858   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8859   int OldIndex = AllocaIndex;
8860   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8861   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8862     LLVM_DEBUG(
8863         dbgs() << "  argument copy elision failed due to bad fixed stack "
8864                   "object size\n");
8865     return;
8866   }
8867   unsigned RequiredAlignment = AI->getAlignment();
8868   if (!RequiredAlignment) {
8869     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8870         AI->getAllocatedType());
8871   }
8872   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8873     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8874                          "greater than stack argument alignment ("
8875                       << RequiredAlignment << " vs "
8876                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8877     return;
8878   }
8879 
8880   // Perform the elision. Delete the old stack object and replace its only use
8881   // in the variable info map. Mark the stack object as mutable.
8882   LLVM_DEBUG({
8883     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8884            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8885            << '\n';
8886   });
8887   MFI.RemoveStackObject(OldIndex);
8888   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8889   AllocaIndex = FixedIndex;
8890   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8891   Chains.push_back(ArgVal.getValue(1));
8892 
8893   // Avoid emitting code for the store implementing the copy.
8894   const StoreInst *SI = ArgCopyIter->second.second;
8895   ElidedArgCopyInstrs.insert(SI);
8896 
8897   // Check for uses of the argument again so that we can avoid exporting ArgVal
8898   // if it is't used by anything other than the store.
8899   for (const Value *U : Arg.users()) {
8900     if (U != SI) {
8901       ArgHasUses = true;
8902       break;
8903     }
8904   }
8905 }
8906 
8907 void SelectionDAGISel::LowerArguments(const Function &F) {
8908   SelectionDAG &DAG = SDB->DAG;
8909   SDLoc dl = SDB->getCurSDLoc();
8910   const DataLayout &DL = DAG.getDataLayout();
8911   SmallVector<ISD::InputArg, 16> Ins;
8912 
8913   if (!FuncInfo->CanLowerReturn) {
8914     // Put in an sret pointer parameter before all the other parameters.
8915     SmallVector<EVT, 1> ValueVTs;
8916     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8917                     F.getReturnType()->getPointerTo(
8918                         DAG.getDataLayout().getAllocaAddrSpace()),
8919                     ValueVTs);
8920 
8921     // NOTE: Assuming that a pointer will never break down to more than one VT
8922     // or one register.
8923     ISD::ArgFlagsTy Flags;
8924     Flags.setSRet();
8925     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8926     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8927                          ISD::InputArg::NoArgIndex, 0);
8928     Ins.push_back(RetArg);
8929   }
8930 
8931   // Look for stores of arguments to static allocas. Mark such arguments with a
8932   // flag to ask the target to give us the memory location of that argument if
8933   // available.
8934   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8935   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8936 
8937   // Set up the incoming argument description vector.
8938   for (const Argument &Arg : F.args()) {
8939     unsigned ArgNo = Arg.getArgNo();
8940     SmallVector<EVT, 4> ValueVTs;
8941     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8942     bool isArgValueUsed = !Arg.use_empty();
8943     unsigned PartBase = 0;
8944     Type *FinalType = Arg.getType();
8945     if (Arg.hasAttribute(Attribute::ByVal))
8946       FinalType = cast<PointerType>(FinalType)->getElementType();
8947     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8948         FinalType, F.getCallingConv(), F.isVarArg());
8949     for (unsigned Value = 0, NumValues = ValueVTs.size();
8950          Value != NumValues; ++Value) {
8951       EVT VT = ValueVTs[Value];
8952       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8953       ISD::ArgFlagsTy Flags;
8954 
8955       // Certain targets (such as MIPS), may have a different ABI alignment
8956       // for a type depending on the context. Give the target a chance to
8957       // specify the alignment it wants.
8958       unsigned OriginalAlignment =
8959           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8960 
8961       if (Arg.hasAttribute(Attribute::ZExt))
8962         Flags.setZExt();
8963       if (Arg.hasAttribute(Attribute::SExt))
8964         Flags.setSExt();
8965       if (Arg.hasAttribute(Attribute::InReg)) {
8966         // If we are using vectorcall calling convention, a structure that is
8967         // passed InReg - is surely an HVA
8968         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8969             isa<StructType>(Arg.getType())) {
8970           // The first value of a structure is marked
8971           if (0 == Value)
8972             Flags.setHvaStart();
8973           Flags.setHva();
8974         }
8975         // Set InReg Flag
8976         Flags.setInReg();
8977       }
8978       if (Arg.hasAttribute(Attribute::StructRet))
8979         Flags.setSRet();
8980       if (Arg.hasAttribute(Attribute::SwiftSelf))
8981         Flags.setSwiftSelf();
8982       if (Arg.hasAttribute(Attribute::SwiftError))
8983         Flags.setSwiftError();
8984       if (Arg.hasAttribute(Attribute::ByVal))
8985         Flags.setByVal();
8986       if (Arg.hasAttribute(Attribute::InAlloca)) {
8987         Flags.setInAlloca();
8988         // Set the byval flag for CCAssignFn callbacks that don't know about
8989         // inalloca.  This way we can know how many bytes we should've allocated
8990         // and how many bytes a callee cleanup function will pop.  If we port
8991         // inalloca to more targets, we'll have to add custom inalloca handling
8992         // in the various CC lowering callbacks.
8993         Flags.setByVal();
8994       }
8995       if (F.getCallingConv() == CallingConv::X86_INTR) {
8996         // IA Interrupt passes frame (1st parameter) by value in the stack.
8997         if (ArgNo == 0)
8998           Flags.setByVal();
8999       }
9000       if (Flags.isByVal() || Flags.isInAlloca()) {
9001         PointerType *Ty = cast<PointerType>(Arg.getType());
9002         Type *ElementTy = Ty->getElementType();
9003         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9004         // For ByVal, alignment should be passed from FE.  BE will guess if
9005         // this info is not there but there are cases it cannot get right.
9006         unsigned FrameAlign;
9007         if (Arg.getParamAlignment())
9008           FrameAlign = Arg.getParamAlignment();
9009         else
9010           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9011         Flags.setByValAlign(FrameAlign);
9012       }
9013       if (Arg.hasAttribute(Attribute::Nest))
9014         Flags.setNest();
9015       if (NeedsRegBlock)
9016         Flags.setInConsecutiveRegs();
9017       Flags.setOrigAlign(OriginalAlignment);
9018       if (ArgCopyElisionCandidates.count(&Arg))
9019         Flags.setCopyElisionCandidate();
9020 
9021       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9022           *CurDAG->getContext(), F.getCallingConv(), VT);
9023       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9024           *CurDAG->getContext(), F.getCallingConv(), VT);
9025       for (unsigned i = 0; i != NumRegs; ++i) {
9026         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9027                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9028         if (NumRegs > 1 && i == 0)
9029           MyFlags.Flags.setSplit();
9030         // if it isn't first piece, alignment must be 1
9031         else if (i > 0) {
9032           MyFlags.Flags.setOrigAlign(1);
9033           if (i == NumRegs - 1)
9034             MyFlags.Flags.setSplitEnd();
9035         }
9036         Ins.push_back(MyFlags);
9037       }
9038       if (NeedsRegBlock && Value == NumValues - 1)
9039         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9040       PartBase += VT.getStoreSize();
9041     }
9042   }
9043 
9044   // Call the target to set up the argument values.
9045   SmallVector<SDValue, 8> InVals;
9046   SDValue NewRoot = TLI->LowerFormalArguments(
9047       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9048 
9049   // Verify that the target's LowerFormalArguments behaved as expected.
9050   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9051          "LowerFormalArguments didn't return a valid chain!");
9052   assert(InVals.size() == Ins.size() &&
9053          "LowerFormalArguments didn't emit the correct number of values!");
9054   LLVM_DEBUG({
9055     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9056       assert(InVals[i].getNode() &&
9057              "LowerFormalArguments emitted a null value!");
9058       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9059              "LowerFormalArguments emitted a value with the wrong type!");
9060     }
9061   });
9062 
9063   // Update the DAG with the new chain value resulting from argument lowering.
9064   DAG.setRoot(NewRoot);
9065 
9066   // Set up the argument values.
9067   unsigned i = 0;
9068   if (!FuncInfo->CanLowerReturn) {
9069     // Create a virtual register for the sret pointer, and put in a copy
9070     // from the sret argument into it.
9071     SmallVector<EVT, 1> ValueVTs;
9072     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9073                     F.getReturnType()->getPointerTo(
9074                         DAG.getDataLayout().getAllocaAddrSpace()),
9075                     ValueVTs);
9076     MVT VT = ValueVTs[0].getSimpleVT();
9077     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9078     Optional<ISD::NodeType> AssertOp = None;
9079     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9080                                         nullptr, F.getCallingConv(), AssertOp);
9081 
9082     MachineFunction& MF = SDB->DAG.getMachineFunction();
9083     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9084     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9085     FuncInfo->DemoteRegister = SRetReg;
9086     NewRoot =
9087         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9088     DAG.setRoot(NewRoot);
9089 
9090     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9091     ++i;
9092   }
9093 
9094   SmallVector<SDValue, 4> Chains;
9095   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9096   for (const Argument &Arg : F.args()) {
9097     SmallVector<SDValue, 4> ArgValues;
9098     SmallVector<EVT, 4> ValueVTs;
9099     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9100     unsigned NumValues = ValueVTs.size();
9101     if (NumValues == 0)
9102       continue;
9103 
9104     bool ArgHasUses = !Arg.use_empty();
9105 
9106     // Elide the copying store if the target loaded this argument from a
9107     // suitable fixed stack object.
9108     if (Ins[i].Flags.isCopyElisionCandidate()) {
9109       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9110                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9111                              InVals[i], ArgHasUses);
9112     }
9113 
9114     // If this argument is unused then remember its value. It is used to generate
9115     // debugging information.
9116     bool isSwiftErrorArg =
9117         TLI->supportSwiftError() &&
9118         Arg.hasAttribute(Attribute::SwiftError);
9119     if (!ArgHasUses && !isSwiftErrorArg) {
9120       SDB->setUnusedArgValue(&Arg, InVals[i]);
9121 
9122       // Also remember any frame index for use in FastISel.
9123       if (FrameIndexSDNode *FI =
9124           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9125         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9126     }
9127 
9128     for (unsigned Val = 0; Val != NumValues; ++Val) {
9129       EVT VT = ValueVTs[Val];
9130       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9131                                                       F.getCallingConv(), VT);
9132       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9133           *CurDAG->getContext(), F.getCallingConv(), VT);
9134 
9135       // Even an apparant 'unused' swifterror argument needs to be returned. So
9136       // we do generate a copy for it that can be used on return from the
9137       // function.
9138       if (ArgHasUses || isSwiftErrorArg) {
9139         Optional<ISD::NodeType> AssertOp;
9140         if (Arg.hasAttribute(Attribute::SExt))
9141           AssertOp = ISD::AssertSext;
9142         else if (Arg.hasAttribute(Attribute::ZExt))
9143           AssertOp = ISD::AssertZext;
9144 
9145         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9146                                              PartVT, VT, nullptr,
9147                                              F.getCallingConv(), AssertOp));
9148       }
9149 
9150       i += NumParts;
9151     }
9152 
9153     // We don't need to do anything else for unused arguments.
9154     if (ArgValues.empty())
9155       continue;
9156 
9157     // Note down frame index.
9158     if (FrameIndexSDNode *FI =
9159         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9160       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9161 
9162     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9163                                      SDB->getCurSDLoc());
9164 
9165     SDB->setValue(&Arg, Res);
9166     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9167       // We want to associate the argument with the frame index, among
9168       // involved operands, that correspond to the lowest address. The
9169       // getCopyFromParts function, called earlier, is swapping the order of
9170       // the operands to BUILD_PAIR depending on endianness. The result of
9171       // that swapping is that the least significant bits of the argument will
9172       // be in the first operand of the BUILD_PAIR node, and the most
9173       // significant bits will be in the second operand.
9174       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9175       if (LoadSDNode *LNode =
9176           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9177         if (FrameIndexSDNode *FI =
9178             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9179           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9180     }
9181 
9182     // Update the SwiftErrorVRegDefMap.
9183     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9184       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9185       if (TargetRegisterInfo::isVirtualRegister(Reg))
9186         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9187                                            FuncInfo->SwiftErrorArg, Reg);
9188     }
9189 
9190     // If this argument is live outside of the entry block, insert a copy from
9191     // wherever we got it to the vreg that other BB's will reference it as.
9192     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9193       // If we can, though, try to skip creating an unnecessary vreg.
9194       // FIXME: This isn't very clean... it would be nice to make this more
9195       // general.  It's also subtly incompatible with the hacks FastISel
9196       // uses with vregs.
9197       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9198       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9199         FuncInfo->ValueMap[&Arg] = Reg;
9200         continue;
9201       }
9202     }
9203     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9204       FuncInfo->InitializeRegForValue(&Arg);
9205       SDB->CopyToExportRegsIfNeeded(&Arg);
9206     }
9207   }
9208 
9209   if (!Chains.empty()) {
9210     Chains.push_back(NewRoot);
9211     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9212   }
9213 
9214   DAG.setRoot(NewRoot);
9215 
9216   assert(i == InVals.size() && "Argument register count mismatch!");
9217 
9218   // If any argument copy elisions occurred and we have debug info, update the
9219   // stale frame indices used in the dbg.declare variable info table.
9220   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9221   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9222     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9223       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9224       if (I != ArgCopyElisionFrameIndexMap.end())
9225         VI.Slot = I->second;
9226     }
9227   }
9228 
9229   // Finally, if the target has anything special to do, allow it to do so.
9230   EmitFunctionEntryCode();
9231 }
9232 
9233 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9234 /// ensure constants are generated when needed.  Remember the virtual registers
9235 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9236 /// directly add them, because expansion might result in multiple MBB's for one
9237 /// BB.  As such, the start of the BB might correspond to a different MBB than
9238 /// the end.
9239 void
9240 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9241   const TerminatorInst *TI = LLVMBB->getTerminator();
9242 
9243   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9244 
9245   // Check PHI nodes in successors that expect a value to be available from this
9246   // block.
9247   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9248     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9249     if (!isa<PHINode>(SuccBB->begin())) continue;
9250     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9251 
9252     // If this terminator has multiple identical successors (common for
9253     // switches), only handle each succ once.
9254     if (!SuccsHandled.insert(SuccMBB).second)
9255       continue;
9256 
9257     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9258 
9259     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9260     // nodes and Machine PHI nodes, but the incoming operands have not been
9261     // emitted yet.
9262     for (const PHINode &PN : SuccBB->phis()) {
9263       // Ignore dead phi's.
9264       if (PN.use_empty())
9265         continue;
9266 
9267       // Skip empty types
9268       if (PN.getType()->isEmptyTy())
9269         continue;
9270 
9271       unsigned Reg;
9272       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9273 
9274       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9275         unsigned &RegOut = ConstantsOut[C];
9276         if (RegOut == 0) {
9277           RegOut = FuncInfo.CreateRegs(C->getType());
9278           CopyValueToVirtualRegister(C, RegOut);
9279         }
9280         Reg = RegOut;
9281       } else {
9282         DenseMap<const Value *, unsigned>::iterator I =
9283           FuncInfo.ValueMap.find(PHIOp);
9284         if (I != FuncInfo.ValueMap.end())
9285           Reg = I->second;
9286         else {
9287           assert(isa<AllocaInst>(PHIOp) &&
9288                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9289                  "Didn't codegen value into a register!??");
9290           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9291           CopyValueToVirtualRegister(PHIOp, Reg);
9292         }
9293       }
9294 
9295       // Remember that this register needs to added to the machine PHI node as
9296       // the input for this MBB.
9297       SmallVector<EVT, 4> ValueVTs;
9298       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9299       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9300       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9301         EVT VT = ValueVTs[vti];
9302         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9303         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9304           FuncInfo.PHINodesToUpdate.push_back(
9305               std::make_pair(&*MBBI++, Reg + i));
9306         Reg += NumRegisters;
9307       }
9308     }
9309   }
9310 
9311   ConstantsOut.clear();
9312 }
9313 
9314 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9315 /// is 0.
9316 MachineBasicBlock *
9317 SelectionDAGBuilder::StackProtectorDescriptor::
9318 AddSuccessorMBB(const BasicBlock *BB,
9319                 MachineBasicBlock *ParentMBB,
9320                 bool IsLikely,
9321                 MachineBasicBlock *SuccMBB) {
9322   // If SuccBB has not been created yet, create it.
9323   if (!SuccMBB) {
9324     MachineFunction *MF = ParentMBB->getParent();
9325     MachineFunction::iterator BBI(ParentMBB);
9326     SuccMBB = MF->CreateMachineBasicBlock(BB);
9327     MF->insert(++BBI, SuccMBB);
9328   }
9329   // Add it as a successor of ParentMBB.
9330   ParentMBB->addSuccessor(
9331       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9332   return SuccMBB;
9333 }
9334 
9335 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9336   MachineFunction::iterator I(MBB);
9337   if (++I == FuncInfo.MF->end())
9338     return nullptr;
9339   return &*I;
9340 }
9341 
9342 /// During lowering new call nodes can be created (such as memset, etc.).
9343 /// Those will become new roots of the current DAG, but complications arise
9344 /// when they are tail calls. In such cases, the call lowering will update
9345 /// the root, but the builder still needs to know that a tail call has been
9346 /// lowered in order to avoid generating an additional return.
9347 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9348   // If the node is null, we do have a tail call.
9349   if (MaybeTC.getNode() != nullptr)
9350     DAG.setRoot(MaybeTC);
9351   else
9352     HasTailCall = true;
9353 }
9354 
9355 uint64_t
9356 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9357                                        unsigned First, unsigned Last) const {
9358   assert(Last >= First);
9359   const APInt &LowCase = Clusters[First].Low->getValue();
9360   const APInt &HighCase = Clusters[Last].High->getValue();
9361   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9362 
9363   // FIXME: A range of consecutive cases has 100% density, but only requires one
9364   // comparison to lower. We should discriminate against such consecutive ranges
9365   // in jump tables.
9366 
9367   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9368 }
9369 
9370 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9371     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9372     unsigned Last) const {
9373   assert(Last >= First);
9374   assert(TotalCases[Last] >= TotalCases[First]);
9375   uint64_t NumCases =
9376       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9377   return NumCases;
9378 }
9379 
9380 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9381                                          unsigned First, unsigned Last,
9382                                          const SwitchInst *SI,
9383                                          MachineBasicBlock *DefaultMBB,
9384                                          CaseCluster &JTCluster) {
9385   assert(First <= Last);
9386 
9387   auto Prob = BranchProbability::getZero();
9388   unsigned NumCmps = 0;
9389   std::vector<MachineBasicBlock*> Table;
9390   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9391 
9392   // Initialize probabilities in JTProbs.
9393   for (unsigned I = First; I <= Last; ++I)
9394     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9395 
9396   for (unsigned I = First; I <= Last; ++I) {
9397     assert(Clusters[I].Kind == CC_Range);
9398     Prob += Clusters[I].Prob;
9399     const APInt &Low = Clusters[I].Low->getValue();
9400     const APInt &High = Clusters[I].High->getValue();
9401     NumCmps += (Low == High) ? 1 : 2;
9402     if (I != First) {
9403       // Fill the gap between this and the previous cluster.
9404       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9405       assert(PreviousHigh.slt(Low));
9406       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9407       for (uint64_t J = 0; J < Gap; J++)
9408         Table.push_back(DefaultMBB);
9409     }
9410     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9411     for (uint64_t J = 0; J < ClusterSize; ++J)
9412       Table.push_back(Clusters[I].MBB);
9413     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9414   }
9415 
9416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9417   unsigned NumDests = JTProbs.size();
9418   if (TLI.isSuitableForBitTests(
9419           NumDests, NumCmps, Clusters[First].Low->getValue(),
9420           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9421     // Clusters[First..Last] should be lowered as bit tests instead.
9422     return false;
9423   }
9424 
9425   // Create the MBB that will load from and jump through the table.
9426   // Note: We create it here, but it's not inserted into the function yet.
9427   MachineFunction *CurMF = FuncInfo.MF;
9428   MachineBasicBlock *JumpTableMBB =
9429       CurMF->CreateMachineBasicBlock(SI->getParent());
9430 
9431   // Add successors. Note: use table order for determinism.
9432   SmallPtrSet<MachineBasicBlock *, 8> Done;
9433   for (MachineBasicBlock *Succ : Table) {
9434     if (Done.count(Succ))
9435       continue;
9436     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9437     Done.insert(Succ);
9438   }
9439   JumpTableMBB->normalizeSuccProbs();
9440 
9441   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9442                      ->createJumpTableIndex(Table);
9443 
9444   // Set up the jump table info.
9445   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9446   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9447                       Clusters[Last].High->getValue(), SI->getCondition(),
9448                       nullptr, false);
9449   JTCases.emplace_back(std::move(JTH), std::move(JT));
9450 
9451   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9452                                      JTCases.size() - 1, Prob);
9453   return true;
9454 }
9455 
9456 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9457                                          const SwitchInst *SI,
9458                                          MachineBasicBlock *DefaultMBB) {
9459 #ifndef NDEBUG
9460   // Clusters must be non-empty, sorted, and only contain Range clusters.
9461   assert(!Clusters.empty());
9462   for (CaseCluster &C : Clusters)
9463     assert(C.Kind == CC_Range);
9464   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9465     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9466 #endif
9467 
9468   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9469   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9470     return;
9471 
9472   const int64_t N = Clusters.size();
9473   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9474   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9475 
9476   if (N < 2 || N < MinJumpTableEntries)
9477     return;
9478 
9479   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9480   SmallVector<unsigned, 8> TotalCases(N);
9481   for (unsigned i = 0; i < N; ++i) {
9482     const APInt &Hi = Clusters[i].High->getValue();
9483     const APInt &Lo = Clusters[i].Low->getValue();
9484     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9485     if (i != 0)
9486       TotalCases[i] += TotalCases[i - 1];
9487   }
9488 
9489   // Cheap case: the whole range may be suitable for jump table.
9490   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9491   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9492   assert(NumCases < UINT64_MAX / 100);
9493   assert(Range >= NumCases);
9494   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9495     CaseCluster JTCluster;
9496     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9497       Clusters[0] = JTCluster;
9498       Clusters.resize(1);
9499       return;
9500     }
9501   }
9502 
9503   // The algorithm below is not suitable for -O0.
9504   if (TM.getOptLevel() == CodeGenOpt::None)
9505     return;
9506 
9507   // Split Clusters into minimum number of dense partitions. The algorithm uses
9508   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9509   // for the Case Statement'" (1994), but builds the MinPartitions array in
9510   // reverse order to make it easier to reconstruct the partitions in ascending
9511   // order. In the choice between two optimal partitionings, it picks the one
9512   // which yields more jump tables.
9513 
9514   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9515   SmallVector<unsigned, 8> MinPartitions(N);
9516   // LastElement[i] is the last element of the partition starting at i.
9517   SmallVector<unsigned, 8> LastElement(N);
9518   // PartitionsScore[i] is used to break ties when choosing between two
9519   // partitionings resulting in the same number of partitions.
9520   SmallVector<unsigned, 8> PartitionsScore(N);
9521   // For PartitionsScore, a small number of comparisons is considered as good as
9522   // a jump table and a single comparison is considered better than a jump
9523   // table.
9524   enum PartitionScores : unsigned {
9525     NoTable = 0,
9526     Table = 1,
9527     FewCases = 1,
9528     SingleCase = 2
9529   };
9530 
9531   // Base case: There is only one way to partition Clusters[N-1].
9532   MinPartitions[N - 1] = 1;
9533   LastElement[N - 1] = N - 1;
9534   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9535 
9536   // Note: loop indexes are signed to avoid underflow.
9537   for (int64_t i = N - 2; i >= 0; i--) {
9538     // Find optimal partitioning of Clusters[i..N-1].
9539     // Baseline: Put Clusters[i] into a partition on its own.
9540     MinPartitions[i] = MinPartitions[i + 1] + 1;
9541     LastElement[i] = i;
9542     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9543 
9544     // Search for a solution that results in fewer partitions.
9545     for (int64_t j = N - 1; j > i; j--) {
9546       // Try building a partition from Clusters[i..j].
9547       uint64_t Range = getJumpTableRange(Clusters, i, j);
9548       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9549       assert(NumCases < UINT64_MAX / 100);
9550       assert(Range >= NumCases);
9551       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9552         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9553         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9554         int64_t NumEntries = j - i + 1;
9555 
9556         if (NumEntries == 1)
9557           Score += PartitionScores::SingleCase;
9558         else if (NumEntries <= SmallNumberOfEntries)
9559           Score += PartitionScores::FewCases;
9560         else if (NumEntries >= MinJumpTableEntries)
9561           Score += PartitionScores::Table;
9562 
9563         // If this leads to fewer partitions, or to the same number of
9564         // partitions with better score, it is a better partitioning.
9565         if (NumPartitions < MinPartitions[i] ||
9566             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9567           MinPartitions[i] = NumPartitions;
9568           LastElement[i] = j;
9569           PartitionsScore[i] = Score;
9570         }
9571       }
9572     }
9573   }
9574 
9575   // Iterate over the partitions, replacing some with jump tables in-place.
9576   unsigned DstIndex = 0;
9577   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9578     Last = LastElement[First];
9579     assert(Last >= First);
9580     assert(DstIndex <= First);
9581     unsigned NumClusters = Last - First + 1;
9582 
9583     CaseCluster JTCluster;
9584     if (NumClusters >= MinJumpTableEntries &&
9585         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9586       Clusters[DstIndex++] = JTCluster;
9587     } else {
9588       for (unsigned I = First; I <= Last; ++I)
9589         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9590     }
9591   }
9592   Clusters.resize(DstIndex);
9593 }
9594 
9595 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9596                                         unsigned First, unsigned Last,
9597                                         const SwitchInst *SI,
9598                                         CaseCluster &BTCluster) {
9599   assert(First <= Last);
9600   if (First == Last)
9601     return false;
9602 
9603   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9604   unsigned NumCmps = 0;
9605   for (int64_t I = First; I <= Last; ++I) {
9606     assert(Clusters[I].Kind == CC_Range);
9607     Dests.set(Clusters[I].MBB->getNumber());
9608     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9609   }
9610   unsigned NumDests = Dests.count();
9611 
9612   APInt Low = Clusters[First].Low->getValue();
9613   APInt High = Clusters[Last].High->getValue();
9614   assert(Low.slt(High));
9615 
9616   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9617   const DataLayout &DL = DAG.getDataLayout();
9618   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9619     return false;
9620 
9621   APInt LowBound;
9622   APInt CmpRange;
9623 
9624   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9625   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9626          "Case range must fit in bit mask!");
9627 
9628   // Check if the clusters cover a contiguous range such that no value in the
9629   // range will jump to the default statement.
9630   bool ContiguousRange = true;
9631   for (int64_t I = First + 1; I <= Last; ++I) {
9632     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9633       ContiguousRange = false;
9634       break;
9635     }
9636   }
9637 
9638   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9639     // Optimize the case where all the case values fit in a word without having
9640     // to subtract minValue. In this case, we can optimize away the subtraction.
9641     LowBound = APInt::getNullValue(Low.getBitWidth());
9642     CmpRange = High;
9643     ContiguousRange = false;
9644   } else {
9645     LowBound = Low;
9646     CmpRange = High - Low;
9647   }
9648 
9649   CaseBitsVector CBV;
9650   auto TotalProb = BranchProbability::getZero();
9651   for (unsigned i = First; i <= Last; ++i) {
9652     // Find the CaseBits for this destination.
9653     unsigned j;
9654     for (j = 0; j < CBV.size(); ++j)
9655       if (CBV[j].BB == Clusters[i].MBB)
9656         break;
9657     if (j == CBV.size())
9658       CBV.push_back(
9659           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9660     CaseBits *CB = &CBV[j];
9661 
9662     // Update Mask, Bits and ExtraProb.
9663     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9664     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9665     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9666     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9667     CB->Bits += Hi - Lo + 1;
9668     CB->ExtraProb += Clusters[i].Prob;
9669     TotalProb += Clusters[i].Prob;
9670   }
9671 
9672   BitTestInfo BTI;
9673   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9674     // Sort by probability first, number of bits second, bit mask third.
9675     if (a.ExtraProb != b.ExtraProb)
9676       return a.ExtraProb > b.ExtraProb;
9677     if (a.Bits != b.Bits)
9678       return a.Bits > b.Bits;
9679     return a.Mask < b.Mask;
9680   });
9681 
9682   for (auto &CB : CBV) {
9683     MachineBasicBlock *BitTestBB =
9684         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9685     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9686   }
9687   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9688                             SI->getCondition(), -1U, MVT::Other, false,
9689                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9690                             TotalProb);
9691 
9692   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9693                                     BitTestCases.size() - 1, TotalProb);
9694   return true;
9695 }
9696 
9697 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9698                                               const SwitchInst *SI) {
9699 // Partition Clusters into as few subsets as possible, where each subset has a
9700 // range that fits in a machine word and has <= 3 unique destinations.
9701 
9702 #ifndef NDEBUG
9703   // Clusters must be sorted and contain Range or JumpTable clusters.
9704   assert(!Clusters.empty());
9705   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9706   for (const CaseCluster &C : Clusters)
9707     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9708   for (unsigned i = 1; i < Clusters.size(); ++i)
9709     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9710 #endif
9711 
9712   // The algorithm below is not suitable for -O0.
9713   if (TM.getOptLevel() == CodeGenOpt::None)
9714     return;
9715 
9716   // If target does not have legal shift left, do not emit bit tests at all.
9717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9718   const DataLayout &DL = DAG.getDataLayout();
9719 
9720   EVT PTy = TLI.getPointerTy(DL);
9721   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9722     return;
9723 
9724   int BitWidth = PTy.getSizeInBits();
9725   const int64_t N = Clusters.size();
9726 
9727   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9728   SmallVector<unsigned, 8> MinPartitions(N);
9729   // LastElement[i] is the last element of the partition starting at i.
9730   SmallVector<unsigned, 8> LastElement(N);
9731 
9732   // FIXME: This might not be the best algorithm for finding bit test clusters.
9733 
9734   // Base case: There is only one way to partition Clusters[N-1].
9735   MinPartitions[N - 1] = 1;
9736   LastElement[N - 1] = N - 1;
9737 
9738   // Note: loop indexes are signed to avoid underflow.
9739   for (int64_t i = N - 2; i >= 0; --i) {
9740     // Find optimal partitioning of Clusters[i..N-1].
9741     // Baseline: Put Clusters[i] into a partition on its own.
9742     MinPartitions[i] = MinPartitions[i + 1] + 1;
9743     LastElement[i] = i;
9744 
9745     // Search for a solution that results in fewer partitions.
9746     // Note: the search is limited by BitWidth, reducing time complexity.
9747     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9748       // Try building a partition from Clusters[i..j].
9749 
9750       // Check the range.
9751       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9752                                Clusters[j].High->getValue(), DL))
9753         continue;
9754 
9755       // Check nbr of destinations and cluster types.
9756       // FIXME: This works, but doesn't seem very efficient.
9757       bool RangesOnly = true;
9758       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9759       for (int64_t k = i; k <= j; k++) {
9760         if (Clusters[k].Kind != CC_Range) {
9761           RangesOnly = false;
9762           break;
9763         }
9764         Dests.set(Clusters[k].MBB->getNumber());
9765       }
9766       if (!RangesOnly || Dests.count() > 3)
9767         break;
9768 
9769       // Check if it's a better partition.
9770       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9771       if (NumPartitions < MinPartitions[i]) {
9772         // Found a better partition.
9773         MinPartitions[i] = NumPartitions;
9774         LastElement[i] = j;
9775       }
9776     }
9777   }
9778 
9779   // Iterate over the partitions, replacing with bit-test clusters in-place.
9780   unsigned DstIndex = 0;
9781   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9782     Last = LastElement[First];
9783     assert(First <= Last);
9784     assert(DstIndex <= First);
9785 
9786     CaseCluster BitTestCluster;
9787     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9788       Clusters[DstIndex++] = BitTestCluster;
9789     } else {
9790       size_t NumClusters = Last - First + 1;
9791       std::memmove(&Clusters[DstIndex], &Clusters[First],
9792                    sizeof(Clusters[0]) * NumClusters);
9793       DstIndex += NumClusters;
9794     }
9795   }
9796   Clusters.resize(DstIndex);
9797 }
9798 
9799 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9800                                         MachineBasicBlock *SwitchMBB,
9801                                         MachineBasicBlock *DefaultMBB) {
9802   MachineFunction *CurMF = FuncInfo.MF;
9803   MachineBasicBlock *NextMBB = nullptr;
9804   MachineFunction::iterator BBI(W.MBB);
9805   if (++BBI != FuncInfo.MF->end())
9806     NextMBB = &*BBI;
9807 
9808   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9809 
9810   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9811 
9812   if (Size == 2 && W.MBB == SwitchMBB) {
9813     // If any two of the cases has the same destination, and if one value
9814     // is the same as the other, but has one bit unset that the other has set,
9815     // use bit manipulation to do two compares at once.  For example:
9816     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9817     // TODO: This could be extended to merge any 2 cases in switches with 3
9818     // cases.
9819     // TODO: Handle cases where W.CaseBB != SwitchBB.
9820     CaseCluster &Small = *W.FirstCluster;
9821     CaseCluster &Big = *W.LastCluster;
9822 
9823     if (Small.Low == Small.High && Big.Low == Big.High &&
9824         Small.MBB == Big.MBB) {
9825       const APInt &SmallValue = Small.Low->getValue();
9826       const APInt &BigValue = Big.Low->getValue();
9827 
9828       // Check that there is only one bit different.
9829       APInt CommonBit = BigValue ^ SmallValue;
9830       if (CommonBit.isPowerOf2()) {
9831         SDValue CondLHS = getValue(Cond);
9832         EVT VT = CondLHS.getValueType();
9833         SDLoc DL = getCurSDLoc();
9834 
9835         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9836                                  DAG.getConstant(CommonBit, DL, VT));
9837         SDValue Cond = DAG.getSetCC(
9838             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9839             ISD::SETEQ);
9840 
9841         // Update successor info.
9842         // Both Small and Big will jump to Small.BB, so we sum up the
9843         // probabilities.
9844         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9845         if (BPI)
9846           addSuccessorWithProb(
9847               SwitchMBB, DefaultMBB,
9848               // The default destination is the first successor in IR.
9849               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9850         else
9851           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9852 
9853         // Insert the true branch.
9854         SDValue BrCond =
9855             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9856                         DAG.getBasicBlock(Small.MBB));
9857         // Insert the false branch.
9858         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9859                              DAG.getBasicBlock(DefaultMBB));
9860 
9861         DAG.setRoot(BrCond);
9862         return;
9863       }
9864     }
9865   }
9866 
9867   if (TM.getOptLevel() != CodeGenOpt::None) {
9868     // Here, we order cases by probability so the most likely case will be
9869     // checked first. However, two clusters can have the same probability in
9870     // which case their relative ordering is non-deterministic. So we use Low
9871     // as a tie-breaker as clusters are guaranteed to never overlap.
9872     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9873                [](const CaseCluster &a, const CaseCluster &b) {
9874       return a.Prob != b.Prob ?
9875              a.Prob > b.Prob :
9876              a.Low->getValue().slt(b.Low->getValue());
9877     });
9878 
9879     // Rearrange the case blocks so that the last one falls through if possible
9880     // without changing the order of probabilities.
9881     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9882       --I;
9883       if (I->Prob > W.LastCluster->Prob)
9884         break;
9885       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9886         std::swap(*I, *W.LastCluster);
9887         break;
9888       }
9889     }
9890   }
9891 
9892   // Compute total probability.
9893   BranchProbability DefaultProb = W.DefaultProb;
9894   BranchProbability UnhandledProbs = DefaultProb;
9895   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9896     UnhandledProbs += I->Prob;
9897 
9898   MachineBasicBlock *CurMBB = W.MBB;
9899   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9900     MachineBasicBlock *Fallthrough;
9901     if (I == W.LastCluster) {
9902       // For the last cluster, fall through to the default destination.
9903       Fallthrough = DefaultMBB;
9904     } else {
9905       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9906       CurMF->insert(BBI, Fallthrough);
9907       // Put Cond in a virtual register to make it available from the new blocks.
9908       ExportFromCurrentBlock(Cond);
9909     }
9910     UnhandledProbs -= I->Prob;
9911 
9912     switch (I->Kind) {
9913       case CC_JumpTable: {
9914         // FIXME: Optimize away range check based on pivot comparisons.
9915         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9916         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9917 
9918         // The jump block hasn't been inserted yet; insert it here.
9919         MachineBasicBlock *JumpMBB = JT->MBB;
9920         CurMF->insert(BBI, JumpMBB);
9921 
9922         auto JumpProb = I->Prob;
9923         auto FallthroughProb = UnhandledProbs;
9924 
9925         // If the default statement is a target of the jump table, we evenly
9926         // distribute the default probability to successors of CurMBB. Also
9927         // update the probability on the edge from JumpMBB to Fallthrough.
9928         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9929                                               SE = JumpMBB->succ_end();
9930              SI != SE; ++SI) {
9931           if (*SI == DefaultMBB) {
9932             JumpProb += DefaultProb / 2;
9933             FallthroughProb -= DefaultProb / 2;
9934             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9935             JumpMBB->normalizeSuccProbs();
9936             break;
9937           }
9938         }
9939 
9940         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9941         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9942         CurMBB->normalizeSuccProbs();
9943 
9944         // The jump table header will be inserted in our current block, do the
9945         // range check, and fall through to our fallthrough block.
9946         JTH->HeaderBB = CurMBB;
9947         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9948 
9949         // If we're in the right place, emit the jump table header right now.
9950         if (CurMBB == SwitchMBB) {
9951           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9952           JTH->Emitted = true;
9953         }
9954         break;
9955       }
9956       case CC_BitTests: {
9957         // FIXME: Optimize away range check based on pivot comparisons.
9958         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9959 
9960         // The bit test blocks haven't been inserted yet; insert them here.
9961         for (BitTestCase &BTC : BTB->Cases)
9962           CurMF->insert(BBI, BTC.ThisBB);
9963 
9964         // Fill in fields of the BitTestBlock.
9965         BTB->Parent = CurMBB;
9966         BTB->Default = Fallthrough;
9967 
9968         BTB->DefaultProb = UnhandledProbs;
9969         // If the cases in bit test don't form a contiguous range, we evenly
9970         // distribute the probability on the edge to Fallthrough to two
9971         // successors of CurMBB.
9972         if (!BTB->ContiguousRange) {
9973           BTB->Prob += DefaultProb / 2;
9974           BTB->DefaultProb -= DefaultProb / 2;
9975         }
9976 
9977         // If we're in the right place, emit the bit test header right now.
9978         if (CurMBB == SwitchMBB) {
9979           visitBitTestHeader(*BTB, SwitchMBB);
9980           BTB->Emitted = true;
9981         }
9982         break;
9983       }
9984       case CC_Range: {
9985         const Value *RHS, *LHS, *MHS;
9986         ISD::CondCode CC;
9987         if (I->Low == I->High) {
9988           // Check Cond == I->Low.
9989           CC = ISD::SETEQ;
9990           LHS = Cond;
9991           RHS=I->Low;
9992           MHS = nullptr;
9993         } else {
9994           // Check I->Low <= Cond <= I->High.
9995           CC = ISD::SETLE;
9996           LHS = I->Low;
9997           MHS = Cond;
9998           RHS = I->High;
9999         }
10000 
10001         // The false probability is the sum of all unhandled cases.
10002         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10003                      getCurSDLoc(), I->Prob, UnhandledProbs);
10004 
10005         if (CurMBB == SwitchMBB)
10006           visitSwitchCase(CB, SwitchMBB);
10007         else
10008           SwitchCases.push_back(CB);
10009 
10010         break;
10011       }
10012     }
10013     CurMBB = Fallthrough;
10014   }
10015 }
10016 
10017 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10018                                               CaseClusterIt First,
10019                                               CaseClusterIt Last) {
10020   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10021     if (X.Prob != CC.Prob)
10022       return X.Prob > CC.Prob;
10023 
10024     // Ties are broken by comparing the case value.
10025     return X.Low->getValue().slt(CC.Low->getValue());
10026   });
10027 }
10028 
10029 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10030                                         const SwitchWorkListItem &W,
10031                                         Value *Cond,
10032                                         MachineBasicBlock *SwitchMBB) {
10033   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10034          "Clusters not sorted?");
10035 
10036   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10037 
10038   // Balance the tree based on branch probabilities to create a near-optimal (in
10039   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10040   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10041   CaseClusterIt LastLeft = W.FirstCluster;
10042   CaseClusterIt FirstRight = W.LastCluster;
10043   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10044   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10045 
10046   // Move LastLeft and FirstRight towards each other from opposite directions to
10047   // find a partitioning of the clusters which balances the probability on both
10048   // sides. If LeftProb and RightProb are equal, alternate which side is
10049   // taken to ensure 0-probability nodes are distributed evenly.
10050   unsigned I = 0;
10051   while (LastLeft + 1 < FirstRight) {
10052     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10053       LeftProb += (++LastLeft)->Prob;
10054     else
10055       RightProb += (--FirstRight)->Prob;
10056     I++;
10057   }
10058 
10059   while (true) {
10060     // Our binary search tree differs from a typical BST in that ours can have up
10061     // to three values in each leaf. The pivot selection above doesn't take that
10062     // into account, which means the tree might require more nodes and be less
10063     // efficient. We compensate for this here.
10064 
10065     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10066     unsigned NumRight = W.LastCluster - FirstRight + 1;
10067 
10068     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10069       // If one side has less than 3 clusters, and the other has more than 3,
10070       // consider taking a cluster from the other side.
10071 
10072       if (NumLeft < NumRight) {
10073         // Consider moving the first cluster on the right to the left side.
10074         CaseCluster &CC = *FirstRight;
10075         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10076         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10077         if (LeftSideRank <= RightSideRank) {
10078           // Moving the cluster to the left does not demote it.
10079           ++LastLeft;
10080           ++FirstRight;
10081           continue;
10082         }
10083       } else {
10084         assert(NumRight < NumLeft);
10085         // Consider moving the last element on the left to the right side.
10086         CaseCluster &CC = *LastLeft;
10087         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10088         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10089         if (RightSideRank <= LeftSideRank) {
10090           // Moving the cluster to the right does not demot it.
10091           --LastLeft;
10092           --FirstRight;
10093           continue;
10094         }
10095       }
10096     }
10097     break;
10098   }
10099 
10100   assert(LastLeft + 1 == FirstRight);
10101   assert(LastLeft >= W.FirstCluster);
10102   assert(FirstRight <= W.LastCluster);
10103 
10104   // Use the first element on the right as pivot since we will make less-than
10105   // comparisons against it.
10106   CaseClusterIt PivotCluster = FirstRight;
10107   assert(PivotCluster > W.FirstCluster);
10108   assert(PivotCluster <= W.LastCluster);
10109 
10110   CaseClusterIt FirstLeft = W.FirstCluster;
10111   CaseClusterIt LastRight = W.LastCluster;
10112 
10113   const ConstantInt *Pivot = PivotCluster->Low;
10114 
10115   // New blocks will be inserted immediately after the current one.
10116   MachineFunction::iterator BBI(W.MBB);
10117   ++BBI;
10118 
10119   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10120   // we can branch to its destination directly if it's squeezed exactly in
10121   // between the known lower bound and Pivot - 1.
10122   MachineBasicBlock *LeftMBB;
10123   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10124       FirstLeft->Low == W.GE &&
10125       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10126     LeftMBB = FirstLeft->MBB;
10127   } else {
10128     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10129     FuncInfo.MF->insert(BBI, LeftMBB);
10130     WorkList.push_back(
10131         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10132     // Put Cond in a virtual register to make it available from the new blocks.
10133     ExportFromCurrentBlock(Cond);
10134   }
10135 
10136   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10137   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10138   // directly if RHS.High equals the current upper bound.
10139   MachineBasicBlock *RightMBB;
10140   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10141       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10142     RightMBB = FirstRight->MBB;
10143   } else {
10144     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10145     FuncInfo.MF->insert(BBI, RightMBB);
10146     WorkList.push_back(
10147         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10148     // Put Cond in a virtual register to make it available from the new blocks.
10149     ExportFromCurrentBlock(Cond);
10150   }
10151 
10152   // Create the CaseBlock record that will be used to lower the branch.
10153   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10154                getCurSDLoc(), LeftProb, RightProb);
10155 
10156   if (W.MBB == SwitchMBB)
10157     visitSwitchCase(CB, SwitchMBB);
10158   else
10159     SwitchCases.push_back(CB);
10160 }
10161 
10162 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10163 // from the swith statement.
10164 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10165                                             BranchProbability PeeledCaseProb) {
10166   if (PeeledCaseProb == BranchProbability::getOne())
10167     return BranchProbability::getZero();
10168   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10169 
10170   uint32_t Numerator = CaseProb.getNumerator();
10171   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10172   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10173 }
10174 
10175 // Try to peel the top probability case if it exceeds the threshold.
10176 // Return current MachineBasicBlock for the switch statement if the peeling
10177 // does not occur.
10178 // If the peeling is performed, return the newly created MachineBasicBlock
10179 // for the peeled switch statement. Also update Clusters to remove the peeled
10180 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10181 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10182     const SwitchInst &SI, CaseClusterVector &Clusters,
10183     BranchProbability &PeeledCaseProb) {
10184   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10185   // Don't perform if there is only one cluster or optimizing for size.
10186   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10187       TM.getOptLevel() == CodeGenOpt::None ||
10188       SwitchMBB->getParent()->getFunction().optForMinSize())
10189     return SwitchMBB;
10190 
10191   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10192   unsigned PeeledCaseIndex = 0;
10193   bool SwitchPeeled = false;
10194   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10195     CaseCluster &CC = Clusters[Index];
10196     if (CC.Prob < TopCaseProb)
10197       continue;
10198     TopCaseProb = CC.Prob;
10199     PeeledCaseIndex = Index;
10200     SwitchPeeled = true;
10201   }
10202   if (!SwitchPeeled)
10203     return SwitchMBB;
10204 
10205   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10206                     << TopCaseProb << "\n");
10207 
10208   // Record the MBB for the peeled switch statement.
10209   MachineFunction::iterator BBI(SwitchMBB);
10210   ++BBI;
10211   MachineBasicBlock *PeeledSwitchMBB =
10212       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10213   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10214 
10215   ExportFromCurrentBlock(SI.getCondition());
10216   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10217   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10218                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10219   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10220 
10221   Clusters.erase(PeeledCaseIt);
10222   for (CaseCluster &CC : Clusters) {
10223     LLVM_DEBUG(
10224         dbgs() << "Scale the probablity for one cluster, before scaling: "
10225                << CC.Prob << "\n");
10226     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10227     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10228   }
10229   PeeledCaseProb = TopCaseProb;
10230   return PeeledSwitchMBB;
10231 }
10232 
10233 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10234   // Extract cases from the switch.
10235   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10236   CaseClusterVector Clusters;
10237   Clusters.reserve(SI.getNumCases());
10238   for (auto I : SI.cases()) {
10239     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10240     const ConstantInt *CaseVal = I.getCaseValue();
10241     BranchProbability Prob =
10242         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10243             : BranchProbability(1, SI.getNumCases() + 1);
10244     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10245   }
10246 
10247   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10248 
10249   // Cluster adjacent cases with the same destination. We do this at all
10250   // optimization levels because it's cheap to do and will make codegen faster
10251   // if there are many clusters.
10252   sortAndRangeify(Clusters);
10253 
10254   if (TM.getOptLevel() != CodeGenOpt::None) {
10255     // Replace an unreachable default with the most popular destination.
10256     // FIXME: Exploit unreachable default more aggressively.
10257     bool UnreachableDefault =
10258         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10259     if (UnreachableDefault && !Clusters.empty()) {
10260       DenseMap<const BasicBlock *, unsigned> Popularity;
10261       unsigned MaxPop = 0;
10262       const BasicBlock *MaxBB = nullptr;
10263       for (auto I : SI.cases()) {
10264         const BasicBlock *BB = I.getCaseSuccessor();
10265         if (++Popularity[BB] > MaxPop) {
10266           MaxPop = Popularity[BB];
10267           MaxBB = BB;
10268         }
10269       }
10270       // Set new default.
10271       assert(MaxPop > 0 && MaxBB);
10272       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10273 
10274       // Remove cases that were pointing to the destination that is now the
10275       // default.
10276       CaseClusterVector New;
10277       New.reserve(Clusters.size());
10278       for (CaseCluster &CC : Clusters) {
10279         if (CC.MBB != DefaultMBB)
10280           New.push_back(CC);
10281       }
10282       Clusters = std::move(New);
10283     }
10284   }
10285 
10286   // The branch probablity of the peeled case.
10287   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10288   MachineBasicBlock *PeeledSwitchMBB =
10289       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10290 
10291   // If there is only the default destination, jump there directly.
10292   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10293   if (Clusters.empty()) {
10294     assert(PeeledSwitchMBB == SwitchMBB);
10295     SwitchMBB->addSuccessor(DefaultMBB);
10296     if (DefaultMBB != NextBlock(SwitchMBB)) {
10297       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10298                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10299     }
10300     return;
10301   }
10302 
10303   findJumpTables(Clusters, &SI, DefaultMBB);
10304   findBitTestClusters(Clusters, &SI);
10305 
10306   LLVM_DEBUG({
10307     dbgs() << "Case clusters: ";
10308     for (const CaseCluster &C : Clusters) {
10309       if (C.Kind == CC_JumpTable)
10310         dbgs() << "JT:";
10311       if (C.Kind == CC_BitTests)
10312         dbgs() << "BT:";
10313 
10314       C.Low->getValue().print(dbgs(), true);
10315       if (C.Low != C.High) {
10316         dbgs() << '-';
10317         C.High->getValue().print(dbgs(), true);
10318       }
10319       dbgs() << ' ';
10320     }
10321     dbgs() << '\n';
10322   });
10323 
10324   assert(!Clusters.empty());
10325   SwitchWorkList WorkList;
10326   CaseClusterIt First = Clusters.begin();
10327   CaseClusterIt Last = Clusters.end() - 1;
10328   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10329   // Scale the branchprobability for DefaultMBB if the peel occurs and
10330   // DefaultMBB is not replaced.
10331   if (PeeledCaseProb != BranchProbability::getZero() &&
10332       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10333     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10334   WorkList.push_back(
10335       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10336 
10337   while (!WorkList.empty()) {
10338     SwitchWorkListItem W = WorkList.back();
10339     WorkList.pop_back();
10340     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10341 
10342     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10343         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10344       // For optimized builds, lower large range as a balanced binary tree.
10345       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10346       continue;
10347     }
10348 
10349     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10350   }
10351 }
10352