1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI.getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = 1771 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1805 EVT PtrTy = TLI.getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 1817 SDValue Guard; 1818 1819 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1820 // guard value from the virtual register holding the value. Otherwise, emit a 1821 // volatile load to retrieve the stack guard value. 1822 unsigned GuardReg = SPD.getGuardReg(); 1823 1824 if (GuardReg && TLI.useLoadStackGuardNode()) 1825 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1826 PtrTy); 1827 else 1828 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = 1842 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1845 1846 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1847 // branch to failure MBB. 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1849 MVT::Other, StackSlot.getOperand(0), 1850 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1851 // Otherwise branch to success MBB. 1852 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1853 MVT::Other, BrCond, 1854 DAG.getBasicBlock(SPD.getSuccessMBB())); 1855 1856 DAG.setRoot(Br); 1857 } 1858 1859 /// Codegen the failure basic block for a stack protector check. 1860 /// 1861 /// A failure stack protector machine basic block consists simply of a call to 1862 /// __stack_chk_fail(). 1863 /// 1864 /// For a high level explanation of how this fits into the stack protector 1865 /// generation see the comment on the declaration of class 1866 /// StackProtectorDescriptor. 1867 void 1868 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SDValue Chain = 1871 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1872 nullptr, 0, false, getCurSDLoc(), false, false).second; 1873 DAG.setRoot(Chain); 1874 } 1875 1876 /// visitBitTestHeader - This function emits necessary code to produce value 1877 /// suitable for "bit tests" 1878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1879 MachineBasicBlock *SwitchBB) { 1880 // Subtract the minimum value 1881 SDValue SwitchOp = getValue(B.SValue); 1882 EVT VT = SwitchOp.getValueType(); 1883 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1884 DAG.getConstant(B.First, VT)); 1885 1886 // Check range 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SDValue RangeCmp = 1889 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI.isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI.getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC( 1961 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1962 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1963 } else { 1964 // Make desired shift 1965 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1966 DAG.getConstant(1, VT), ShiftOp); 1967 1968 // Emit bit tests and jumps 1969 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1970 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1971 Cmp = DAG.getSetCC(getCurSDLoc(), 1972 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1973 DAG.getConstant(0, VT), ISD::SETNE); 1974 } 1975 1976 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1977 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1978 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1979 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1980 1981 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 Cmp, DAG.getBasicBlock(B.TargetBB)); 1984 1985 // Set NextBlock to be the MBB immediately after the current one, if any. 1986 // This is used to avoid emitting unnecessary branches to the next block. 1987 MachineBasicBlock *NextBlock = nullptr; 1988 MachineFunction::iterator BBI = SwitchBB; 1989 if (++BBI != FuncInfo.MF->end()) 1990 NextBlock = BBI; 1991 1992 if (NextMBB != NextBlock) 1993 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2012 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2013 } else 2014 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2015 2016 // If the value of the invoke is used outside of its defining block, make it 2017 // available as a virtual register. 2018 CopyToExportRegsIfNeeded(&I); 2019 2020 // Update successor info 2021 addSuccessorWithWeight(InvokeMBB, Return); 2022 addSuccessorWithWeight(InvokeMBB, LandingPad); 2023 2024 // Drop into normal successor. 2025 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2026 MVT::Other, getControlRoot(), 2027 DAG.getBasicBlock(Return))); 2028 } 2029 2030 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2031 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2032 } 2033 2034 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2035 assert(FuncInfo.MBB->isLandingPad() && 2036 "Call to landingpad not in landing pad!"); 2037 2038 MachineBasicBlock *MBB = FuncInfo.MBB; 2039 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2040 AddLandingPadInfo(LP, MMI, MBB); 2041 2042 // If there aren't registers to copy the values into (e.g., during SjLj 2043 // exceptions), then don't bother to create these DAG nodes. 2044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2045 if (TLI.getExceptionPointerRegister() == 0 && 2046 TLI.getExceptionSelectorRegister() == 0) 2047 return; 2048 2049 SmallVector<EVT, 2> ValueVTs; 2050 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2051 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2052 2053 // Get the two live-in registers as SDValues. The physregs have already been 2054 // copied into virtual registers. 2055 SDValue Ops[2]; 2056 Ops[0] = DAG.getZExtOrTrunc( 2057 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2058 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2059 getCurSDLoc(), ValueVTs[0]); 2060 Ops[1] = DAG.getZExtOrTrunc( 2061 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2062 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2063 getCurSDLoc(), ValueVTs[1]); 2064 2065 // Merge into one. 2066 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2067 DAG.getVTList(ValueVTs), Ops); 2068 setValue(&LP, Res); 2069 } 2070 2071 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2072 /// small case ranges). 2073 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2074 CaseRecVector& WorkList, 2075 const Value* SV, 2076 MachineBasicBlock *Default, 2077 MachineBasicBlock *SwitchBB) { 2078 // Size is the number of Cases represented by this range. 2079 size_t Size = CR.Range.second - CR.Range.first; 2080 if (Size > 3) 2081 return false; 2082 2083 // Get the MachineFunction which holds the current MBB. This is used when 2084 // inserting any additional MBBs necessary to represent the switch. 2085 MachineFunction *CurMF = FuncInfo.MF; 2086 2087 // Figure out which block is immediately after the current one. 2088 MachineBasicBlock *NextBlock = nullptr; 2089 MachineFunction::iterator BBI = CR.CaseBB; 2090 2091 if (++BBI != FuncInfo.MF->end()) 2092 NextBlock = BBI; 2093 2094 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2095 // If any two of the cases has the same destination, and if one value 2096 // is the same as the other, but has one bit unset that the other has set, 2097 // use bit manipulation to do two compares at once. For example: 2098 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2099 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2100 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2101 if (Size == 2 && CR.CaseBB == SwitchBB) { 2102 Case &Small = *CR.Range.first; 2103 Case &Big = *(CR.Range.second-1); 2104 2105 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2106 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2107 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2108 2109 // Check that there is only one bit different. 2110 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2111 (SmallValue | BigValue) == BigValue) { 2112 // Isolate the common bit. 2113 APInt CommonBit = BigValue & ~SmallValue; 2114 assert((SmallValue | CommonBit) == BigValue && 2115 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2116 2117 SDValue CondLHS = getValue(SV); 2118 EVT VT = CondLHS.getValueType(); 2119 SDLoc DL = getCurSDLoc(); 2120 2121 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2122 DAG.getConstant(CommonBit, VT)); 2123 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2124 Or, DAG.getConstant(BigValue, VT), 2125 ISD::SETEQ); 2126 2127 // Update successor info. 2128 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2129 addSuccessorWithWeight(SwitchBB, Small.BB, 2130 Small.ExtraWeight + Big.ExtraWeight); 2131 addSuccessorWithWeight(SwitchBB, Default, 2132 // The default destination is the first successor in IR. 2133 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2134 2135 // Insert the true branch. 2136 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2137 getControlRoot(), Cond, 2138 DAG.getBasicBlock(Small.BB)); 2139 2140 // Insert the false branch. 2141 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2142 DAG.getBasicBlock(Default)); 2143 2144 DAG.setRoot(BrCond); 2145 return true; 2146 } 2147 } 2148 } 2149 2150 // Order cases by weight so the most likely case will be checked first. 2151 uint32_t UnhandledWeights = 0; 2152 if (BPI) { 2153 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2154 uint32_t IWeight = I->ExtraWeight; 2155 UnhandledWeights += IWeight; 2156 for (CaseItr J = CR.Range.first; J < I; ++J) { 2157 uint32_t JWeight = J->ExtraWeight; 2158 if (IWeight > JWeight) 2159 std::swap(*I, *J); 2160 } 2161 } 2162 } 2163 // Rearrange the case blocks so that the last one falls through if possible. 2164 Case &BackCase = *(CR.Range.second-1); 2165 if (Size > 1 && 2166 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2167 // The last case block won't fall through into 'NextBlock' if we emit the 2168 // branches in this order. See if rearranging a case value would help. 2169 // We start at the bottom as it's the case with the least weight. 2170 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2171 if (I->BB == NextBlock) { 2172 std::swap(*I, BackCase); 2173 break; 2174 } 2175 } 2176 2177 // Create a CaseBlock record representing a conditional branch to 2178 // the Case's target mbb if the value being switched on SV is equal 2179 // to C. 2180 MachineBasicBlock *CurBlock = CR.CaseBB; 2181 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2182 MachineBasicBlock *FallThrough; 2183 if (I != E-1) { 2184 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2185 CurMF->insert(BBI, FallThrough); 2186 2187 // Put SV in a virtual register to make it available from the new blocks. 2188 ExportFromCurrentBlock(SV); 2189 } else { 2190 // If the last case doesn't match, go to the default block. 2191 FallThrough = Default; 2192 } 2193 2194 const Value *RHS, *LHS, *MHS; 2195 ISD::CondCode CC; 2196 if (I->High == I->Low) { 2197 // This is just small small case range :) containing exactly 1 case 2198 CC = ISD::SETEQ; 2199 LHS = SV; RHS = I->High; MHS = nullptr; 2200 } else { 2201 CC = ISD::SETLE; 2202 LHS = I->Low; MHS = SV; RHS = I->High; 2203 } 2204 2205 // The false weight should be sum of all un-handled cases. 2206 UnhandledWeights -= I->ExtraWeight; 2207 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2208 /* me */ CurBlock, 2209 /* trueweight */ I->ExtraWeight, 2210 /* falseweight */ UnhandledWeights); 2211 2212 // If emitting the first comparison, just call visitSwitchCase to emit the 2213 // code into the current block. Otherwise, push the CaseBlock onto the 2214 // vector to be later processed by SDISel, and insert the node's MBB 2215 // before the next MBB. 2216 if (CurBlock == SwitchBB) 2217 visitSwitchCase(CB, SwitchBB); 2218 else 2219 SwitchCases.push_back(CB); 2220 2221 CurBlock = FallThrough; 2222 } 2223 2224 return true; 2225 } 2226 2227 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2228 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2229 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2230 } 2231 2232 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2233 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2234 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2235 return (LastExt - FirstExt + 1ULL); 2236 } 2237 2238 /// handleJTSwitchCase - Emit jumptable for current switch case range 2239 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2240 CaseRecVector &WorkList, 2241 const Value *SV, 2242 MachineBasicBlock *Default, 2243 MachineBasicBlock *SwitchBB) { 2244 Case& FrontCase = *CR.Range.first; 2245 Case& BackCase = *(CR.Range.second-1); 2246 2247 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2248 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2249 2250 APInt TSize(First.getBitWidth(), 0); 2251 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2252 TSize += I->size(); 2253 2254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2255 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2256 return false; 2257 2258 APInt Range = ComputeRange(First, Last); 2259 // The density is TSize / Range. Require at least 40%. 2260 // It should not be possible for IntTSize to saturate for sane code, but make 2261 // sure we handle Range saturation correctly. 2262 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2263 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2264 if (IntTSize * 10 < IntRange * 4) 2265 return false; 2266 2267 DEBUG(dbgs() << "Lowering jump table\n" 2268 << "First entry: " << First << ". Last entry: " << Last << '\n' 2269 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2270 2271 // Get the MachineFunction which holds the current MBB. This is used when 2272 // inserting any additional MBBs necessary to represent the switch. 2273 MachineFunction *CurMF = FuncInfo.MF; 2274 2275 // Figure out which block is immediately after the current one. 2276 MachineFunction::iterator BBI = CR.CaseBB; 2277 ++BBI; 2278 2279 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2280 2281 // Create a new basic block to hold the code for loading the address 2282 // of the jump table, and jumping to it. Update successor information; 2283 // we will either branch to the default case for the switch, or the jump 2284 // table. 2285 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2286 CurMF->insert(BBI, JumpTableBB); 2287 2288 addSuccessorWithWeight(CR.CaseBB, Default); 2289 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2290 2291 // Build a vector of destination BBs, corresponding to each target 2292 // of the jump table. If the value of the jump table slot corresponds to 2293 // a case statement, push the case's BB onto the vector, otherwise, push 2294 // the default BB. 2295 std::vector<MachineBasicBlock*> DestBBs; 2296 APInt TEI = First; 2297 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2298 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2299 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2300 2301 if (Low.sle(TEI) && TEI.sle(High)) { 2302 DestBBs.push_back(I->BB); 2303 if (TEI==High) 2304 ++I; 2305 } else { 2306 DestBBs.push_back(Default); 2307 } 2308 } 2309 2310 // Calculate weight for each unique destination in CR. 2311 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2312 if (FuncInfo.BPI) 2313 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2314 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2315 DestWeights.find(I->BB); 2316 if (Itr != DestWeights.end()) 2317 Itr->second += I->ExtraWeight; 2318 else 2319 DestWeights[I->BB] = I->ExtraWeight; 2320 } 2321 2322 // Update successor info. Add one edge to each unique successor. 2323 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2324 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2325 E = DestBBs.end(); I != E; ++I) { 2326 if (!SuccsHandled[(*I)->getNumber()]) { 2327 SuccsHandled[(*I)->getNumber()] = true; 2328 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2329 DestWeights.find(*I); 2330 addSuccessorWithWeight(JumpTableBB, *I, 2331 Itr != DestWeights.end() ? Itr->second : 0); 2332 } 2333 } 2334 2335 // Create a jump table index for this jump table. 2336 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2337 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2338 ->createJumpTableIndex(DestBBs); 2339 2340 // Set the jump table information so that we can codegen it as a second 2341 // MachineBasicBlock 2342 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2343 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2344 if (CR.CaseBB == SwitchBB) 2345 visitJumpTableHeader(JT, JTH, SwitchBB); 2346 2347 JTCases.push_back(JumpTableBlock(JTH, JT)); 2348 return true; 2349 } 2350 2351 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2352 /// 2 subtrees. 2353 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2354 CaseRecVector& WorkList, 2355 const Value* SV, 2356 MachineBasicBlock* SwitchBB) { 2357 // Get the MachineFunction which holds the current MBB. This is used when 2358 // inserting any additional MBBs necessary to represent the switch. 2359 MachineFunction *CurMF = FuncInfo.MF; 2360 2361 // Figure out which block is immediately after the current one. 2362 MachineFunction::iterator BBI = CR.CaseBB; 2363 ++BBI; 2364 2365 Case& FrontCase = *CR.Range.first; 2366 Case& BackCase = *(CR.Range.second-1); 2367 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2368 2369 // Size is the number of Cases represented by this range. 2370 unsigned Size = CR.Range.second - CR.Range.first; 2371 2372 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2373 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2374 double FMetric = 0; 2375 CaseItr Pivot = CR.Range.first + Size/2; 2376 2377 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2378 // (heuristically) allow us to emit JumpTable's later. 2379 APInt TSize(First.getBitWidth(), 0); 2380 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2381 I!=E; ++I) 2382 TSize += I->size(); 2383 2384 APInt LSize = FrontCase.size(); 2385 APInt RSize = TSize-LSize; 2386 DEBUG(dbgs() << "Selecting best pivot: \n" 2387 << "First: " << First << ", Last: " << Last <<'\n' 2388 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2389 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2390 J!=E; ++I, ++J) { 2391 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2392 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2393 APInt Range = ComputeRange(LEnd, RBegin); 2394 assert((Range - 2ULL).isNonNegative() && 2395 "Invalid case distance"); 2396 // Use volatile double here to avoid excess precision issues on some hosts, 2397 // e.g. that use 80-bit X87 registers. 2398 volatile double LDensity = 2399 (double)LSize.roundToDouble() / 2400 (LEnd - First + 1ULL).roundToDouble(); 2401 volatile double RDensity = 2402 (double)RSize.roundToDouble() / 2403 (Last - RBegin + 1ULL).roundToDouble(); 2404 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2405 // Should always split in some non-trivial place 2406 DEBUG(dbgs() <<"=>Step\n" 2407 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2408 << "LDensity: " << LDensity 2409 << ", RDensity: " << RDensity << '\n' 2410 << "Metric: " << Metric << '\n'); 2411 if (FMetric < Metric) { 2412 Pivot = J; 2413 FMetric = Metric; 2414 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2415 } 2416 2417 LSize += J->size(); 2418 RSize -= J->size(); 2419 } 2420 2421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2422 if (areJTsAllowed(TLI)) { 2423 // If our case is dense we *really* should handle it earlier! 2424 assert((FMetric > 0) && "Should handle dense range earlier!"); 2425 } else { 2426 Pivot = CR.Range.first + Size/2; 2427 } 2428 2429 CaseRange LHSR(CR.Range.first, Pivot); 2430 CaseRange RHSR(Pivot, CR.Range.second); 2431 const Constant *C = Pivot->Low; 2432 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2433 2434 // We know that we branch to the LHS if the Value being switched on is 2435 // less than the Pivot value, C. We use this to optimize our binary 2436 // tree a bit, by recognizing that if SV is greater than or equal to the 2437 // LHS's Case Value, and that Case Value is exactly one less than the 2438 // Pivot's Value, then we can branch directly to the LHS's Target, 2439 // rather than creating a leaf node for it. 2440 if ((LHSR.second - LHSR.first) == 1 && 2441 LHSR.first->High == CR.GE && 2442 cast<ConstantInt>(C)->getValue() == 2443 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2444 TrueBB = LHSR.first->BB; 2445 } else { 2446 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2447 CurMF->insert(BBI, TrueBB); 2448 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2449 2450 // Put SV in a virtual register to make it available from the new blocks. 2451 ExportFromCurrentBlock(SV); 2452 } 2453 2454 // Similar to the optimization above, if the Value being switched on is 2455 // known to be less than the Constant CR.LT, and the current Case Value 2456 // is CR.LT - 1, then we can branch directly to the target block for 2457 // the current Case Value, rather than emitting a RHS leaf node for it. 2458 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2459 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2460 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2461 FalseBB = RHSR.first->BB; 2462 } else { 2463 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2464 CurMF->insert(BBI, FalseBB); 2465 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2466 2467 // Put SV in a virtual register to make it available from the new blocks. 2468 ExportFromCurrentBlock(SV); 2469 } 2470 2471 // Create a CaseBlock record representing a conditional branch to 2472 // the LHS node if the value being switched on SV is less than C. 2473 // Otherwise, branch to LHS. 2474 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2475 2476 if (CR.CaseBB == SwitchBB) 2477 visitSwitchCase(CB, SwitchBB); 2478 else 2479 SwitchCases.push_back(CB); 2480 2481 return true; 2482 } 2483 2484 /// handleBitTestsSwitchCase - if current case range has few destination and 2485 /// range span less, than machine word bitwidth, encode case range into series 2486 /// of masks and emit bit tests with these masks. 2487 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2488 CaseRecVector& WorkList, 2489 const Value* SV, 2490 MachineBasicBlock* Default, 2491 MachineBasicBlock* SwitchBB) { 2492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2493 EVT PTy = TLI.getPointerTy(); 2494 unsigned IntPtrBits = PTy.getSizeInBits(); 2495 2496 Case& FrontCase = *CR.Range.first; 2497 Case& BackCase = *(CR.Range.second-1); 2498 2499 // Get the MachineFunction which holds the current MBB. This is used when 2500 // inserting any additional MBBs necessary to represent the switch. 2501 MachineFunction *CurMF = FuncInfo.MF; 2502 2503 // If target does not have legal shift left, do not emit bit tests at all. 2504 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2505 return false; 2506 2507 size_t numCmps = 0; 2508 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2509 I!=E; ++I) { 2510 // Single case counts one, case range - two. 2511 numCmps += (I->Low == I->High ? 1 : 2); 2512 } 2513 2514 // Count unique destinations 2515 SmallSet<MachineBasicBlock*, 4> Dests; 2516 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2517 Dests.insert(I->BB); 2518 if (Dests.size() > 3) 2519 // Don't bother the code below, if there are too much unique destinations 2520 return false; 2521 } 2522 DEBUG(dbgs() << "Total number of unique destinations: " 2523 << Dests.size() << '\n' 2524 << "Total number of comparisons: " << numCmps << '\n'); 2525 2526 // Compute span of values. 2527 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2528 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2529 APInt cmpRange = maxValue - minValue; 2530 2531 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2532 << "Low bound: " << minValue << '\n' 2533 << "High bound: " << maxValue << '\n'); 2534 2535 if (cmpRange.uge(IntPtrBits) || 2536 (!(Dests.size() == 1 && numCmps >= 3) && 2537 !(Dests.size() == 2 && numCmps >= 5) && 2538 !(Dests.size() >= 3 && numCmps >= 6))) 2539 return false; 2540 2541 DEBUG(dbgs() << "Emitting bit tests\n"); 2542 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2543 2544 // Optimize the case where all the case values fit in a 2545 // word without having to subtract minValue. In this case, 2546 // we can optimize away the subtraction. 2547 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2548 cmpRange = maxValue; 2549 } else { 2550 lowBound = minValue; 2551 } 2552 2553 CaseBitsVector CasesBits; 2554 unsigned i, count = 0; 2555 2556 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2557 MachineBasicBlock* Dest = I->BB; 2558 for (i = 0; i < count; ++i) 2559 if (Dest == CasesBits[i].BB) 2560 break; 2561 2562 if (i == count) { 2563 assert((count < 3) && "Too much destinations to test!"); 2564 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2565 count++; 2566 } 2567 2568 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2569 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2570 2571 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2572 uint64_t hi = (highValue - lowBound).getZExtValue(); 2573 CasesBits[i].ExtraWeight += I->ExtraWeight; 2574 2575 for (uint64_t j = lo; j <= hi; j++) { 2576 CasesBits[i].Mask |= 1ULL << j; 2577 CasesBits[i].Bits++; 2578 } 2579 2580 } 2581 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2582 2583 BitTestInfo BTC; 2584 2585 // Figure out which block is immediately after the current one. 2586 MachineFunction::iterator BBI = CR.CaseBB; 2587 ++BBI; 2588 2589 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2590 2591 DEBUG(dbgs() << "Cases:\n"); 2592 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2593 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2594 << ", Bits: " << CasesBits[i].Bits 2595 << ", BB: " << CasesBits[i].BB << '\n'); 2596 2597 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2598 CurMF->insert(BBI, CaseBB); 2599 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2600 CaseBB, 2601 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2602 2603 // Put SV in a virtual register to make it available from the new blocks. 2604 ExportFromCurrentBlock(SV); 2605 } 2606 2607 BitTestBlock BTB(lowBound, cmpRange, SV, 2608 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2609 CR.CaseBB, Default, std::move(BTC)); 2610 2611 if (CR.CaseBB == SwitchBB) 2612 visitBitTestHeader(BTB, SwitchBB); 2613 2614 BitTestCases.push_back(std::move(BTB)); 2615 2616 return true; 2617 } 2618 2619 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2620 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2621 const SwitchInst& SI) { 2622 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2623 // Start with "simple" cases 2624 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2625 i != e; ++i) { 2626 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2627 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2628 2629 uint32_t ExtraWeight = 2630 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2631 2632 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2633 SMBB, ExtraWeight)); 2634 } 2635 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2636 2637 // Merge case into clusters 2638 if (Cases.size() >= 2) 2639 // Must recompute end() each iteration because it may be 2640 // invalidated by erase if we hold on to it 2641 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2642 J != Cases.end(); ) { 2643 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2644 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2645 MachineBasicBlock* nextBB = J->BB; 2646 MachineBasicBlock* currentBB = I->BB; 2647 2648 // If the two neighboring cases go to the same destination, merge them 2649 // into a single case. 2650 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2651 I->High = J->High; 2652 I->ExtraWeight += J->ExtraWeight; 2653 J = Cases.erase(J); 2654 } else { 2655 I = J++; 2656 } 2657 } 2658 2659 DEBUG({ 2660 size_t numCmps = 0; 2661 for (auto &I : Cases) 2662 // A range counts double, since it requires two compares. 2663 numCmps += I.Low != I.High ? 2 : 1; 2664 2665 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2666 << ". Total compares: " << numCmps << '\n'; 2667 }); 2668 } 2669 2670 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2671 MachineBasicBlock *Last) { 2672 // Update JTCases. 2673 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2674 if (JTCases[i].first.HeaderBB == First) 2675 JTCases[i].first.HeaderBB = Last; 2676 2677 // Update BitTestCases. 2678 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2679 if (BitTestCases[i].Parent == First) 2680 BitTestCases[i].Parent = Last; 2681 } 2682 2683 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2684 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2685 2686 // Figure out which block is immediately after the current one. 2687 MachineBasicBlock *NextBlock = nullptr; 2688 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2689 2690 // If there is only the default destination, branch to it if it is not the 2691 // next basic block. Otherwise, just fall through. 2692 if (!SI.getNumCases()) { 2693 // Update machine-CFG edges. 2694 2695 // If this is not a fall-through branch, emit the branch. 2696 SwitchMBB->addSuccessor(Default); 2697 if (Default != NextBlock) 2698 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2699 MVT::Other, getControlRoot(), 2700 DAG.getBasicBlock(Default))); 2701 2702 return; 2703 } 2704 2705 // If there are any non-default case statements, create a vector of Cases 2706 // representing each one, and sort the vector so that we can efficiently 2707 // create a binary search tree from them. 2708 CaseVector Cases; 2709 Clusterify(Cases, SI); 2710 2711 // Get the Value to be switched on and default basic blocks, which will be 2712 // inserted into CaseBlock records, representing basic blocks in the binary 2713 // search tree. 2714 const Value *SV = SI.getCondition(); 2715 2716 // Push the initial CaseRec onto the worklist 2717 CaseRecVector WorkList; 2718 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2719 CaseRange(Cases.begin(),Cases.end()))); 2720 2721 while (!WorkList.empty()) { 2722 // Grab a record representing a case range to process off the worklist 2723 CaseRec CR = WorkList.back(); 2724 WorkList.pop_back(); 2725 2726 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2727 continue; 2728 2729 // If the range has few cases (two or less) emit a series of specific 2730 // tests. 2731 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2732 continue; 2733 2734 // If the switch has more than N blocks, and is at least 40% dense, and the 2735 // target supports indirect branches, then emit a jump table rather than 2736 // lowering the switch to a binary tree of conditional branches. 2737 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2738 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2739 continue; 2740 2741 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2742 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2743 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2744 } 2745 } 2746 2747 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2748 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2749 2750 // Update machine-CFG edges with unique successors. 2751 SmallSet<BasicBlock*, 32> Done; 2752 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2753 BasicBlock *BB = I.getSuccessor(i); 2754 bool Inserted = Done.insert(BB); 2755 if (!Inserted) 2756 continue; 2757 2758 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2759 addSuccessorWithWeight(IndirectBrMBB, Succ); 2760 } 2761 2762 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2763 MVT::Other, getControlRoot(), 2764 getValue(I.getAddress()))); 2765 } 2766 2767 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2768 if (DAG.getTarget().Options.TrapUnreachable) 2769 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2770 } 2771 2772 void SelectionDAGBuilder::visitFSub(const User &I) { 2773 // -0.0 - X --> fneg 2774 Type *Ty = I.getType(); 2775 if (isa<Constant>(I.getOperand(0)) && 2776 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2777 SDValue Op2 = getValue(I.getOperand(1)); 2778 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2779 Op2.getValueType(), Op2)); 2780 return; 2781 } 2782 2783 visitBinary(I, ISD::FSUB); 2784 } 2785 2786 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2787 SDValue Op1 = getValue(I.getOperand(0)); 2788 SDValue Op2 = getValue(I.getOperand(1)); 2789 2790 bool nuw = false; 2791 bool nsw = false; 2792 bool exact = false; 2793 if (const OverflowingBinaryOperator *OFBinOp = 2794 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2795 nuw = OFBinOp->hasNoUnsignedWrap(); 2796 nsw = OFBinOp->hasNoSignedWrap(); 2797 } 2798 if (const PossiblyExactOperator *ExactOp = 2799 dyn_cast<const PossiblyExactOperator>(&I)) 2800 exact = ExactOp->isExact(); 2801 2802 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2803 Op1, Op2, nuw, nsw, exact); 2804 setValue(&I, BinNodeValue); 2805 } 2806 2807 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2808 SDValue Op1 = getValue(I.getOperand(0)); 2809 SDValue Op2 = getValue(I.getOperand(1)); 2810 2811 EVT ShiftTy = 2812 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2813 2814 // Coerce the shift amount to the right type if we can. 2815 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2816 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2817 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2818 SDLoc DL = getCurSDLoc(); 2819 2820 // If the operand is smaller than the shift count type, promote it. 2821 if (ShiftSize > Op2Size) 2822 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2823 2824 // If the operand is larger than the shift count type but the shift 2825 // count type has enough bits to represent any shift value, truncate 2826 // it now. This is a common case and it exposes the truncate to 2827 // optimization early. 2828 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2829 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2830 // Otherwise we'll need to temporarily settle for some other convenient 2831 // type. Type legalization will make adjustments once the shiftee is split. 2832 else 2833 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2834 } 2835 2836 bool nuw = false; 2837 bool nsw = false; 2838 bool exact = false; 2839 2840 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2841 2842 if (const OverflowingBinaryOperator *OFBinOp = 2843 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2844 nuw = OFBinOp->hasNoUnsignedWrap(); 2845 nsw = OFBinOp->hasNoSignedWrap(); 2846 } 2847 if (const PossiblyExactOperator *ExactOp = 2848 dyn_cast<const PossiblyExactOperator>(&I)) 2849 exact = ExactOp->isExact(); 2850 } 2851 2852 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2853 nuw, nsw, exact); 2854 setValue(&I, Res); 2855 } 2856 2857 void SelectionDAGBuilder::visitSDiv(const User &I) { 2858 SDValue Op1 = getValue(I.getOperand(0)); 2859 SDValue Op2 = getValue(I.getOperand(1)); 2860 2861 // Turn exact SDivs into multiplications. 2862 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2863 // exact bit. 2864 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2865 !isa<ConstantSDNode>(Op1) && 2866 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2867 setValue(&I, DAG.getTargetLoweringInfo() 2868 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2869 else 2870 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2871 Op1, Op2)); 2872 } 2873 2874 void SelectionDAGBuilder::visitICmp(const User &I) { 2875 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2876 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2877 predicate = IC->getPredicate(); 2878 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2879 predicate = ICmpInst::Predicate(IC->getPredicate()); 2880 SDValue Op1 = getValue(I.getOperand(0)); 2881 SDValue Op2 = getValue(I.getOperand(1)); 2882 ISD::CondCode Opcode = getICmpCondCode(predicate); 2883 2884 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2885 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2886 } 2887 2888 void SelectionDAGBuilder::visitFCmp(const User &I) { 2889 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2890 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2891 predicate = FC->getPredicate(); 2892 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2893 predicate = FCmpInst::Predicate(FC->getPredicate()); 2894 SDValue Op1 = getValue(I.getOperand(0)); 2895 SDValue Op2 = getValue(I.getOperand(1)); 2896 ISD::CondCode Condition = getFCmpCondCode(predicate); 2897 if (TM.Options.NoNaNsFPMath) 2898 Condition = getFCmpCodeWithoutNaN(Condition); 2899 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2900 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2901 } 2902 2903 void SelectionDAGBuilder::visitSelect(const User &I) { 2904 SmallVector<EVT, 4> ValueVTs; 2905 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2906 unsigned NumValues = ValueVTs.size(); 2907 if (NumValues == 0) return; 2908 2909 SmallVector<SDValue, 4> Values(NumValues); 2910 SDValue Cond = getValue(I.getOperand(0)); 2911 SDValue TrueVal = getValue(I.getOperand(1)); 2912 SDValue FalseVal = getValue(I.getOperand(2)); 2913 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2914 ISD::VSELECT : ISD::SELECT; 2915 2916 for (unsigned i = 0; i != NumValues; ++i) 2917 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2918 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2919 Cond, 2920 SDValue(TrueVal.getNode(), 2921 TrueVal.getResNo() + i), 2922 SDValue(FalseVal.getNode(), 2923 FalseVal.getResNo() + i)); 2924 2925 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2926 DAG.getVTList(ValueVTs), Values)); 2927 } 2928 2929 void SelectionDAGBuilder::visitTrunc(const User &I) { 2930 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2931 SDValue N = getValue(I.getOperand(0)); 2932 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2933 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2934 } 2935 2936 void SelectionDAGBuilder::visitZExt(const User &I) { 2937 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2938 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2939 SDValue N = getValue(I.getOperand(0)); 2940 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2941 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2942 } 2943 2944 void SelectionDAGBuilder::visitSExt(const User &I) { 2945 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2946 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2947 SDValue N = getValue(I.getOperand(0)); 2948 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2949 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2950 } 2951 2952 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2953 // FPTrunc is never a no-op cast, no need to check 2954 SDValue N = getValue(I.getOperand(0)); 2955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2956 EVT DestVT = TLI.getValueType(I.getType()); 2957 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2958 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2959 } 2960 2961 void SelectionDAGBuilder::visitFPExt(const User &I) { 2962 // FPExt is never a no-op cast, no need to check 2963 SDValue N = getValue(I.getOperand(0)); 2964 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2965 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2966 } 2967 2968 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2969 // FPToUI is never a no-op cast, no need to check 2970 SDValue N = getValue(I.getOperand(0)); 2971 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2972 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2973 } 2974 2975 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2976 // FPToSI is never a no-op cast, no need to check 2977 SDValue N = getValue(I.getOperand(0)); 2978 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2979 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2980 } 2981 2982 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2983 // UIToFP is never a no-op cast, no need to check 2984 SDValue N = getValue(I.getOperand(0)); 2985 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2986 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2987 } 2988 2989 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2990 // SIToFP is never a no-op cast, no need to check 2991 SDValue N = getValue(I.getOperand(0)); 2992 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2993 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2994 } 2995 2996 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2997 // What to do depends on the size of the integer and the size of the pointer. 2998 // We can either truncate, zero extend, or no-op, accordingly. 2999 SDValue N = getValue(I.getOperand(0)); 3000 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3001 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3002 } 3003 3004 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3005 // What to do depends on the size of the integer and the size of the pointer. 3006 // We can either truncate, zero extend, or no-op, accordingly. 3007 SDValue N = getValue(I.getOperand(0)); 3008 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3009 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3010 } 3011 3012 void SelectionDAGBuilder::visitBitCast(const User &I) { 3013 SDValue N = getValue(I.getOperand(0)); 3014 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3015 3016 // BitCast assures us that source and destination are the same size so this is 3017 // either a BITCAST or a no-op. 3018 if (DestVT != N.getValueType()) 3019 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3020 DestVT, N)); // convert types. 3021 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3022 // might fold any kind of constant expression to an integer constant and that 3023 // is not what we are looking for. Only regcognize a bitcast of a genuine 3024 // constant integer as an opaque constant. 3025 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3026 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3027 /*isOpaque*/true)); 3028 else 3029 setValue(&I, N); // noop cast. 3030 } 3031 3032 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3034 const Value *SV = I.getOperand(0); 3035 SDValue N = getValue(SV); 3036 EVT DestVT = TLI.getValueType(I.getType()); 3037 3038 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3039 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3040 3041 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3042 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3043 3044 setValue(&I, N); 3045 } 3046 3047 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3049 SDValue InVec = getValue(I.getOperand(0)); 3050 SDValue InVal = getValue(I.getOperand(1)); 3051 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3052 getCurSDLoc(), TLI.getVectorIdxTy()); 3053 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3054 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3055 } 3056 3057 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 SDValue InVec = getValue(I.getOperand(0)); 3060 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3061 getCurSDLoc(), TLI.getVectorIdxTy()); 3062 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3063 TLI.getValueType(I.getType()), InVec, InIdx)); 3064 } 3065 3066 // Utility for visitShuffleVector - Return true if every element in Mask, 3067 // beginning from position Pos and ending in Pos+Size, falls within the 3068 // specified sequential range [L, L+Pos). or is undef. 3069 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3070 unsigned Pos, unsigned Size, int Low) { 3071 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3072 if (Mask[i] >= 0 && Mask[i] != Low) 3073 return false; 3074 return true; 3075 } 3076 3077 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3078 SDValue Src1 = getValue(I.getOperand(0)); 3079 SDValue Src2 = getValue(I.getOperand(1)); 3080 3081 SmallVector<int, 8> Mask; 3082 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3083 unsigned MaskNumElts = Mask.size(); 3084 3085 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3086 EVT VT = TLI.getValueType(I.getType()); 3087 EVT SrcVT = Src1.getValueType(); 3088 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3089 3090 if (SrcNumElts == MaskNumElts) { 3091 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3092 &Mask[0])); 3093 return; 3094 } 3095 3096 // Normalize the shuffle vector since mask and vector length don't match. 3097 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3098 // Mask is longer than the source vectors and is a multiple of the source 3099 // vectors. We can use concatenate vector to make the mask and vectors 3100 // lengths match. 3101 if (SrcNumElts*2 == MaskNumElts) { 3102 // First check for Src1 in low and Src2 in high 3103 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3104 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3105 // The shuffle is concatenating two vectors together. 3106 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3107 VT, Src1, Src2)); 3108 return; 3109 } 3110 // Then check for Src2 in low and Src1 in high 3111 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3112 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3113 // The shuffle is concatenating two vectors together. 3114 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3115 VT, Src2, Src1)); 3116 return; 3117 } 3118 } 3119 3120 // Pad both vectors with undefs to make them the same length as the mask. 3121 unsigned NumConcat = MaskNumElts / SrcNumElts; 3122 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3123 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3124 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3125 3126 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3127 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3128 MOps1[0] = Src1; 3129 MOps2[0] = Src2; 3130 3131 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3132 getCurSDLoc(), VT, MOps1); 3133 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3134 getCurSDLoc(), VT, MOps2); 3135 3136 // Readjust mask for new input vector length. 3137 SmallVector<int, 8> MappedOps; 3138 for (unsigned i = 0; i != MaskNumElts; ++i) { 3139 int Idx = Mask[i]; 3140 if (Idx >= (int)SrcNumElts) 3141 Idx -= SrcNumElts - MaskNumElts; 3142 MappedOps.push_back(Idx); 3143 } 3144 3145 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3146 &MappedOps[0])); 3147 return; 3148 } 3149 3150 if (SrcNumElts > MaskNumElts) { 3151 // Analyze the access pattern of the vector to see if we can extract 3152 // two subvectors and do the shuffle. The analysis is done by calculating 3153 // the range of elements the mask access on both vectors. 3154 int MinRange[2] = { static_cast<int>(SrcNumElts), 3155 static_cast<int>(SrcNumElts)}; 3156 int MaxRange[2] = {-1, -1}; 3157 3158 for (unsigned i = 0; i != MaskNumElts; ++i) { 3159 int Idx = Mask[i]; 3160 unsigned Input = 0; 3161 if (Idx < 0) 3162 continue; 3163 3164 if (Idx >= (int)SrcNumElts) { 3165 Input = 1; 3166 Idx -= SrcNumElts; 3167 } 3168 if (Idx > MaxRange[Input]) 3169 MaxRange[Input] = Idx; 3170 if (Idx < MinRange[Input]) 3171 MinRange[Input] = Idx; 3172 } 3173 3174 // Check if the access is smaller than the vector size and can we find 3175 // a reasonable extract index. 3176 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3177 // Extract. 3178 int StartIdx[2]; // StartIdx to extract from 3179 for (unsigned Input = 0; Input < 2; ++Input) { 3180 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3181 RangeUse[Input] = 0; // Unused 3182 StartIdx[Input] = 0; 3183 continue; 3184 } 3185 3186 // Find a good start index that is a multiple of the mask length. Then 3187 // see if the rest of the elements are in range. 3188 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3189 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3190 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3191 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3192 } 3193 3194 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3195 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3196 return; 3197 } 3198 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3199 // Extract appropriate subvector and generate a vector shuffle 3200 for (unsigned Input = 0; Input < 2; ++Input) { 3201 SDValue &Src = Input == 0 ? Src1 : Src2; 3202 if (RangeUse[Input] == 0) 3203 Src = DAG.getUNDEF(VT); 3204 else 3205 Src = DAG.getNode( 3206 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3207 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3208 } 3209 3210 // Calculate new mask. 3211 SmallVector<int, 8> MappedOps; 3212 for (unsigned i = 0; i != MaskNumElts; ++i) { 3213 int Idx = Mask[i]; 3214 if (Idx >= 0) { 3215 if (Idx < (int)SrcNumElts) 3216 Idx -= StartIdx[0]; 3217 else 3218 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3219 } 3220 MappedOps.push_back(Idx); 3221 } 3222 3223 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3224 &MappedOps[0])); 3225 return; 3226 } 3227 } 3228 3229 // We can't use either concat vectors or extract subvectors so fall back to 3230 // replacing the shuffle with extract and build vector. 3231 // to insert and build vector. 3232 EVT EltVT = VT.getVectorElementType(); 3233 EVT IdxVT = TLI.getVectorIdxTy(); 3234 SmallVector<SDValue,8> Ops; 3235 for (unsigned i = 0; i != MaskNumElts; ++i) { 3236 int Idx = Mask[i]; 3237 SDValue Res; 3238 3239 if (Idx < 0) { 3240 Res = DAG.getUNDEF(EltVT); 3241 } else { 3242 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3243 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3244 3245 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3246 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3247 } 3248 3249 Ops.push_back(Res); 3250 } 3251 3252 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3253 } 3254 3255 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3256 const Value *Op0 = I.getOperand(0); 3257 const Value *Op1 = I.getOperand(1); 3258 Type *AggTy = I.getType(); 3259 Type *ValTy = Op1->getType(); 3260 bool IntoUndef = isa<UndefValue>(Op0); 3261 bool FromUndef = isa<UndefValue>(Op1); 3262 3263 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3264 3265 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3266 SmallVector<EVT, 4> AggValueVTs; 3267 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3268 SmallVector<EVT, 4> ValValueVTs; 3269 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3270 3271 unsigned NumAggValues = AggValueVTs.size(); 3272 unsigned NumValValues = ValValueVTs.size(); 3273 SmallVector<SDValue, 4> Values(NumAggValues); 3274 3275 // Ignore an insertvalue that produces an empty object 3276 if (!NumAggValues) { 3277 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3278 return; 3279 } 3280 3281 SDValue Agg = getValue(Op0); 3282 unsigned i = 0; 3283 // Copy the beginning value(s) from the original aggregate. 3284 for (; i != LinearIndex; ++i) 3285 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3286 SDValue(Agg.getNode(), Agg.getResNo() + i); 3287 // Copy values from the inserted value(s). 3288 if (NumValValues) { 3289 SDValue Val = getValue(Op1); 3290 for (; i != LinearIndex + NumValValues; ++i) 3291 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3292 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3293 } 3294 // Copy remaining value(s) from the original aggregate. 3295 for (; i != NumAggValues; ++i) 3296 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3297 SDValue(Agg.getNode(), Agg.getResNo() + i); 3298 3299 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3300 DAG.getVTList(AggValueVTs), Values)); 3301 } 3302 3303 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3304 const Value *Op0 = I.getOperand(0); 3305 Type *AggTy = Op0->getType(); 3306 Type *ValTy = I.getType(); 3307 bool OutOfUndef = isa<UndefValue>(Op0); 3308 3309 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3310 3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3312 SmallVector<EVT, 4> ValValueVTs; 3313 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3314 3315 unsigned NumValValues = ValValueVTs.size(); 3316 3317 // Ignore a extractvalue that produces an empty object 3318 if (!NumValValues) { 3319 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3320 return; 3321 } 3322 3323 SmallVector<SDValue, 4> Values(NumValValues); 3324 3325 SDValue Agg = getValue(Op0); 3326 // Copy out the selected value(s). 3327 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3328 Values[i - LinearIndex] = 3329 OutOfUndef ? 3330 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3331 SDValue(Agg.getNode(), Agg.getResNo() + i); 3332 3333 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3334 DAG.getVTList(ValValueVTs), Values)); 3335 } 3336 3337 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3338 Value *Op0 = I.getOperand(0); 3339 // Note that the pointer operand may be a vector of pointers. Take the scalar 3340 // element which holds a pointer. 3341 Type *Ty = Op0->getType()->getScalarType(); 3342 unsigned AS = Ty->getPointerAddressSpace(); 3343 SDValue N = getValue(Op0); 3344 3345 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3346 OI != E; ++OI) { 3347 const Value *Idx = *OI; 3348 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3349 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3350 if (Field) { 3351 // N = N + Offset 3352 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3353 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3354 DAG.getConstant(Offset, N.getValueType())); 3355 } 3356 3357 Ty = StTy->getElementType(Field); 3358 } else { 3359 Ty = cast<SequentialType>(Ty)->getElementType(); 3360 3361 // If this is a constant subscript, handle it quickly. 3362 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3363 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3364 if (CI->isZero()) continue; 3365 uint64_t Offs = 3366 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3367 SDValue OffsVal; 3368 EVT PTy = TLI.getPointerTy(AS); 3369 unsigned PtrBits = PTy.getSizeInBits(); 3370 if (PtrBits < 64) 3371 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3372 DAG.getConstant(Offs, MVT::i64)); 3373 else 3374 OffsVal = DAG.getConstant(Offs, PTy); 3375 3376 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3377 OffsVal); 3378 continue; 3379 } 3380 3381 // N = N + Idx * ElementSize; 3382 APInt ElementSize = 3383 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3384 SDValue IdxN = getValue(Idx); 3385 3386 // If the index is smaller or larger than intptr_t, truncate or extend 3387 // it. 3388 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3389 3390 // If this is a multiply by a power of two, turn it into a shl 3391 // immediately. This is a very common case. 3392 if (ElementSize != 1) { 3393 if (ElementSize.isPowerOf2()) { 3394 unsigned Amt = ElementSize.logBase2(); 3395 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3396 N.getValueType(), IdxN, 3397 DAG.getConstant(Amt, IdxN.getValueType())); 3398 } else { 3399 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3400 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3401 N.getValueType(), IdxN, Scale); 3402 } 3403 } 3404 3405 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3406 N.getValueType(), N, IdxN); 3407 } 3408 } 3409 3410 setValue(&I, N); 3411 } 3412 3413 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3414 // If this is a fixed sized alloca in the entry block of the function, 3415 // allocate it statically on the stack. 3416 if (FuncInfo.StaticAllocaMap.count(&I)) 3417 return; // getValue will auto-populate this. 3418 3419 Type *Ty = I.getAllocatedType(); 3420 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3421 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3422 unsigned Align = 3423 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3424 I.getAlignment()); 3425 3426 SDValue AllocSize = getValue(I.getArraySize()); 3427 3428 EVT IntPtr = TLI.getPointerTy(); 3429 if (AllocSize.getValueType() != IntPtr) 3430 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3431 3432 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3433 AllocSize, 3434 DAG.getConstant(TySize, IntPtr)); 3435 3436 // Handle alignment. If the requested alignment is less than or equal to 3437 // the stack alignment, ignore it. If the size is greater than or equal to 3438 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3439 unsigned StackAlign = 3440 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3441 if (Align <= StackAlign) 3442 Align = 0; 3443 3444 // Round the size of the allocation up to the stack alignment size 3445 // by add SA-1 to the size. 3446 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3447 AllocSize.getValueType(), AllocSize, 3448 DAG.getIntPtrConstant(StackAlign-1)); 3449 3450 // Mask out the low bits for alignment purposes. 3451 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3452 AllocSize.getValueType(), AllocSize, 3453 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3454 3455 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3456 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3457 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3458 setValue(&I, DSA); 3459 DAG.setRoot(DSA.getValue(1)); 3460 3461 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3462 } 3463 3464 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3465 if (I.isAtomic()) 3466 return visitAtomicLoad(I); 3467 3468 const Value *SV = I.getOperand(0); 3469 SDValue Ptr = getValue(SV); 3470 3471 Type *Ty = I.getType(); 3472 3473 bool isVolatile = I.isVolatile(); 3474 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3475 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3476 unsigned Alignment = I.getAlignment(); 3477 3478 AAMDNodes AAInfo; 3479 I.getAAMetadata(AAInfo); 3480 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3481 3482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3483 SmallVector<EVT, 4> ValueVTs; 3484 SmallVector<uint64_t, 4> Offsets; 3485 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3486 unsigned NumValues = ValueVTs.size(); 3487 if (NumValues == 0) 3488 return; 3489 3490 SDValue Root; 3491 bool ConstantMemory = false; 3492 if (isVolatile || NumValues > MaxParallelChains) 3493 // Serialize volatile loads with other side effects. 3494 Root = getRoot(); 3495 else if (AA->pointsToConstantMemory( 3496 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3497 // Do not serialize (non-volatile) loads of constant memory with anything. 3498 Root = DAG.getEntryNode(); 3499 ConstantMemory = true; 3500 } else { 3501 // Do not serialize non-volatile loads against each other. 3502 Root = DAG.getRoot(); 3503 } 3504 3505 if (isVolatile) 3506 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3507 3508 SmallVector<SDValue, 4> Values(NumValues); 3509 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3510 NumValues)); 3511 EVT PtrVT = Ptr.getValueType(); 3512 unsigned ChainI = 0; 3513 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3514 // Serializing loads here may result in excessive register pressure, and 3515 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3516 // could recover a bit by hoisting nodes upward in the chain by recognizing 3517 // they are side-effect free or do not alias. The optimizer should really 3518 // avoid this case by converting large object/array copies to llvm.memcpy 3519 // (MaxParallelChains should always remain as failsafe). 3520 if (ChainI == MaxParallelChains) { 3521 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3522 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3523 makeArrayRef(Chains.data(), ChainI)); 3524 Root = Chain; 3525 ChainI = 0; 3526 } 3527 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3528 PtrVT, Ptr, 3529 DAG.getConstant(Offsets[i], PtrVT)); 3530 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3531 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3532 isNonTemporal, isInvariant, Alignment, AAInfo, 3533 Ranges); 3534 3535 Values[i] = L; 3536 Chains[ChainI] = L.getValue(1); 3537 } 3538 3539 if (!ConstantMemory) { 3540 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3541 makeArrayRef(Chains.data(), ChainI)); 3542 if (isVolatile) 3543 DAG.setRoot(Chain); 3544 else 3545 PendingLoads.push_back(Chain); 3546 } 3547 3548 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3549 DAG.getVTList(ValueVTs), Values)); 3550 } 3551 3552 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3553 if (I.isAtomic()) 3554 return visitAtomicStore(I); 3555 3556 const Value *SrcV = I.getOperand(0); 3557 const Value *PtrV = I.getOperand(1); 3558 3559 SmallVector<EVT, 4> ValueVTs; 3560 SmallVector<uint64_t, 4> Offsets; 3561 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3562 ValueVTs, &Offsets); 3563 unsigned NumValues = ValueVTs.size(); 3564 if (NumValues == 0) 3565 return; 3566 3567 // Get the lowered operands. Note that we do this after 3568 // checking if NumResults is zero, because with zero results 3569 // the operands won't have values in the map. 3570 SDValue Src = getValue(SrcV); 3571 SDValue Ptr = getValue(PtrV); 3572 3573 SDValue Root = getRoot(); 3574 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3575 NumValues)); 3576 EVT PtrVT = Ptr.getValueType(); 3577 bool isVolatile = I.isVolatile(); 3578 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3579 unsigned Alignment = I.getAlignment(); 3580 3581 AAMDNodes AAInfo; 3582 I.getAAMetadata(AAInfo); 3583 3584 unsigned ChainI = 0; 3585 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3586 // See visitLoad comments. 3587 if (ChainI == MaxParallelChains) { 3588 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3589 makeArrayRef(Chains.data(), ChainI)); 3590 Root = Chain; 3591 ChainI = 0; 3592 } 3593 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3594 DAG.getConstant(Offsets[i], PtrVT)); 3595 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3596 SDValue(Src.getNode(), Src.getResNo() + i), 3597 Add, MachinePointerInfo(PtrV, Offsets[i]), 3598 isVolatile, isNonTemporal, Alignment, AAInfo); 3599 Chains[ChainI] = St; 3600 } 3601 3602 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3603 makeArrayRef(Chains.data(), ChainI)); 3604 DAG.setRoot(StoreNode); 3605 } 3606 3607 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3608 SDLoc dl = getCurSDLoc(); 3609 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3610 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3611 SynchronizationScope Scope = I.getSynchScope(); 3612 3613 SDValue InChain = getRoot(); 3614 3615 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3616 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3617 SDValue L = DAG.getAtomicCmpSwap( 3618 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3619 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3620 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3621 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3622 3623 SDValue OutChain = L.getValue(2); 3624 3625 setValue(&I, L); 3626 DAG.setRoot(OutChain); 3627 } 3628 3629 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3630 SDLoc dl = getCurSDLoc(); 3631 ISD::NodeType NT; 3632 switch (I.getOperation()) { 3633 default: llvm_unreachable("Unknown atomicrmw operation"); 3634 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3635 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3636 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3637 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3638 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3639 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3640 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3641 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3642 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3643 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3644 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3645 } 3646 AtomicOrdering Order = I.getOrdering(); 3647 SynchronizationScope Scope = I.getSynchScope(); 3648 3649 SDValue InChain = getRoot(); 3650 3651 SDValue L = 3652 DAG.getAtomic(NT, dl, 3653 getValue(I.getValOperand()).getSimpleValueType(), 3654 InChain, 3655 getValue(I.getPointerOperand()), 3656 getValue(I.getValOperand()), 3657 I.getPointerOperand(), 3658 /* Alignment=*/ 0, Order, Scope); 3659 3660 SDValue OutChain = L.getValue(1); 3661 3662 setValue(&I, L); 3663 DAG.setRoot(OutChain); 3664 } 3665 3666 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3667 SDLoc dl = getCurSDLoc(); 3668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3669 SDValue Ops[3]; 3670 Ops[0] = getRoot(); 3671 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3672 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3673 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3674 } 3675 3676 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3677 SDLoc dl = getCurSDLoc(); 3678 AtomicOrdering Order = I.getOrdering(); 3679 SynchronizationScope Scope = I.getSynchScope(); 3680 3681 SDValue InChain = getRoot(); 3682 3683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3684 EVT VT = TLI.getValueType(I.getType()); 3685 3686 if (I.getAlignment() < VT.getSizeInBits() / 8) 3687 report_fatal_error("Cannot generate unaligned atomic load"); 3688 3689 MachineMemOperand *MMO = 3690 DAG.getMachineFunction(). 3691 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3692 MachineMemOperand::MOVolatile | 3693 MachineMemOperand::MOLoad, 3694 VT.getStoreSize(), 3695 I.getAlignment() ? I.getAlignment() : 3696 DAG.getEVTAlignment(VT)); 3697 3698 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3699 SDValue L = 3700 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3701 getValue(I.getPointerOperand()), MMO, 3702 Order, Scope); 3703 3704 SDValue OutChain = L.getValue(1); 3705 3706 setValue(&I, L); 3707 DAG.setRoot(OutChain); 3708 } 3709 3710 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3711 SDLoc dl = getCurSDLoc(); 3712 3713 AtomicOrdering Order = I.getOrdering(); 3714 SynchronizationScope Scope = I.getSynchScope(); 3715 3716 SDValue InChain = getRoot(); 3717 3718 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3719 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3720 3721 if (I.getAlignment() < VT.getSizeInBits() / 8) 3722 report_fatal_error("Cannot generate unaligned atomic store"); 3723 3724 SDValue OutChain = 3725 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3726 InChain, 3727 getValue(I.getPointerOperand()), 3728 getValue(I.getValueOperand()), 3729 I.getPointerOperand(), I.getAlignment(), 3730 Order, Scope); 3731 3732 DAG.setRoot(OutChain); 3733 } 3734 3735 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3736 /// node. 3737 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3738 unsigned Intrinsic) { 3739 bool HasChain = !I.doesNotAccessMemory(); 3740 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3741 3742 // Build the operand list. 3743 SmallVector<SDValue, 8> Ops; 3744 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3745 if (OnlyLoad) { 3746 // We don't need to serialize loads against other loads. 3747 Ops.push_back(DAG.getRoot()); 3748 } else { 3749 Ops.push_back(getRoot()); 3750 } 3751 } 3752 3753 // Info is set by getTgtMemInstrinsic 3754 TargetLowering::IntrinsicInfo Info; 3755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3756 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3757 3758 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3759 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3760 Info.opc == ISD::INTRINSIC_W_CHAIN) 3761 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3762 3763 // Add all operands of the call to the operand list. 3764 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3765 SDValue Op = getValue(I.getArgOperand(i)); 3766 Ops.push_back(Op); 3767 } 3768 3769 SmallVector<EVT, 4> ValueVTs; 3770 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3771 3772 if (HasChain) 3773 ValueVTs.push_back(MVT::Other); 3774 3775 SDVTList VTs = DAG.getVTList(ValueVTs); 3776 3777 // Create the node. 3778 SDValue Result; 3779 if (IsTgtIntrinsic) { 3780 // This is target intrinsic that touches memory 3781 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3782 VTs, Ops, Info.memVT, 3783 MachinePointerInfo(Info.ptrVal, Info.offset), 3784 Info.align, Info.vol, 3785 Info.readMem, Info.writeMem, Info.size); 3786 } else if (!HasChain) { 3787 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3788 } else if (!I.getType()->isVoidTy()) { 3789 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3790 } else { 3791 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3792 } 3793 3794 if (HasChain) { 3795 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3796 if (OnlyLoad) 3797 PendingLoads.push_back(Chain); 3798 else 3799 DAG.setRoot(Chain); 3800 } 3801 3802 if (!I.getType()->isVoidTy()) { 3803 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3804 EVT VT = TLI.getValueType(PTy); 3805 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3806 } 3807 3808 setValue(&I, Result); 3809 } 3810 } 3811 3812 /// GetSignificand - Get the significand and build it into a floating-point 3813 /// number with exponent of 1: 3814 /// 3815 /// Op = (Op & 0x007fffff) | 0x3f800000; 3816 /// 3817 /// where Op is the hexadecimal representation of floating point value. 3818 static SDValue 3819 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3820 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3821 DAG.getConstant(0x007fffff, MVT::i32)); 3822 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3823 DAG.getConstant(0x3f800000, MVT::i32)); 3824 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3825 } 3826 3827 /// GetExponent - Get the exponent: 3828 /// 3829 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3830 /// 3831 /// where Op is the hexadecimal representation of floating point value. 3832 static SDValue 3833 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3834 SDLoc dl) { 3835 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3836 DAG.getConstant(0x7f800000, MVT::i32)); 3837 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3838 DAG.getConstant(23, TLI.getPointerTy())); 3839 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3840 DAG.getConstant(127, MVT::i32)); 3841 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3842 } 3843 3844 /// getF32Constant - Get 32-bit floating point constant. 3845 static SDValue 3846 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3847 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3848 MVT::f32); 3849 } 3850 3851 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3852 /// limited-precision mode. 3853 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3854 const TargetLowering &TLI) { 3855 if (Op.getValueType() == MVT::f32 && 3856 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3857 3858 // Put the exponent in the right bit position for later addition to the 3859 // final result: 3860 // 3861 // #define LOG2OFe 1.4426950f 3862 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3863 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3864 getF32Constant(DAG, 0x3fb8aa3b)); 3865 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3866 3867 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3868 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3869 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3870 3871 // IntegerPartOfX <<= 23; 3872 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3873 DAG.getConstant(23, TLI.getPointerTy())); 3874 3875 SDValue TwoToFracPartOfX; 3876 if (LimitFloatPrecision <= 6) { 3877 // For floating-point precision of 6: 3878 // 3879 // TwoToFractionalPartOfX = 3880 // 0.997535578f + 3881 // (0.735607626f + 0.252464424f * x) * x; 3882 // 3883 // error 0.0144103317, which is 6 bits 3884 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3885 getF32Constant(DAG, 0x3e814304)); 3886 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3887 getF32Constant(DAG, 0x3f3c50c8)); 3888 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3889 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3890 getF32Constant(DAG, 0x3f7f5e7e)); 3891 } else if (LimitFloatPrecision <= 12) { 3892 // For floating-point precision of 12: 3893 // 3894 // TwoToFractionalPartOfX = 3895 // 0.999892986f + 3896 // (0.696457318f + 3897 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3898 // 3899 // 0.000107046256 error, which is 13 to 14 bits 3900 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3901 getF32Constant(DAG, 0x3da235e3)); 3902 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3903 getF32Constant(DAG, 0x3e65b8f3)); 3904 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3905 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3906 getF32Constant(DAG, 0x3f324b07)); 3907 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3908 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3909 getF32Constant(DAG, 0x3f7ff8fd)); 3910 } else { // LimitFloatPrecision <= 18 3911 // For floating-point precision of 18: 3912 // 3913 // TwoToFractionalPartOfX = 3914 // 0.999999982f + 3915 // (0.693148872f + 3916 // (0.240227044f + 3917 // (0.554906021e-1f + 3918 // (0.961591928e-2f + 3919 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3920 // 3921 // error 2.47208000*10^(-7), which is better than 18 bits 3922 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3923 getF32Constant(DAG, 0x3924b03e)); 3924 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3925 getF32Constant(DAG, 0x3ab24b87)); 3926 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3927 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3928 getF32Constant(DAG, 0x3c1d8c17)); 3929 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3930 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3931 getF32Constant(DAG, 0x3d634a1d)); 3932 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3933 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3934 getF32Constant(DAG, 0x3e75fe14)); 3935 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3936 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3937 getF32Constant(DAG, 0x3f317234)); 3938 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3939 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3940 getF32Constant(DAG, 0x3f800000)); 3941 } 3942 3943 // Add the exponent into the result in integer domain. 3944 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3945 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3946 DAG.getNode(ISD::ADD, dl, MVT::i32, 3947 t13, IntegerPartOfX)); 3948 } 3949 3950 // No special expansion. 3951 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3952 } 3953 3954 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3955 /// limited-precision mode. 3956 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3957 const TargetLowering &TLI) { 3958 if (Op.getValueType() == MVT::f32 && 3959 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3960 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3961 3962 // Scale the exponent by log(2) [0.69314718f]. 3963 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3964 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3965 getF32Constant(DAG, 0x3f317218)); 3966 3967 // Get the significand and build it into a floating-point number with 3968 // exponent of 1. 3969 SDValue X = GetSignificand(DAG, Op1, dl); 3970 3971 SDValue LogOfMantissa; 3972 if (LimitFloatPrecision <= 6) { 3973 // For floating-point precision of 6: 3974 // 3975 // LogofMantissa = 3976 // -1.1609546f + 3977 // (1.4034025f - 0.23903021f * x) * x; 3978 // 3979 // error 0.0034276066, which is better than 8 bits 3980 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3981 getF32Constant(DAG, 0xbe74c456)); 3982 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3983 getF32Constant(DAG, 0x3fb3a2b1)); 3984 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3985 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3986 getF32Constant(DAG, 0x3f949a29)); 3987 } else if (LimitFloatPrecision <= 12) { 3988 // For floating-point precision of 12: 3989 // 3990 // LogOfMantissa = 3991 // -1.7417939f + 3992 // (2.8212026f + 3993 // (-1.4699568f + 3994 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3995 // 3996 // error 0.000061011436, which is 14 bits 3997 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3998 getF32Constant(DAG, 0xbd67b6d6)); 3999 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4000 getF32Constant(DAG, 0x3ee4f4b8)); 4001 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4002 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4003 getF32Constant(DAG, 0x3fbc278b)); 4004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4005 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4006 getF32Constant(DAG, 0x40348e95)); 4007 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4008 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4009 getF32Constant(DAG, 0x3fdef31a)); 4010 } else { // LimitFloatPrecision <= 18 4011 // For floating-point precision of 18: 4012 // 4013 // LogOfMantissa = 4014 // -2.1072184f + 4015 // (4.2372794f + 4016 // (-3.7029485f + 4017 // (2.2781945f + 4018 // (-0.87823314f + 4019 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4020 // 4021 // error 0.0000023660568, which is better than 18 bits 4022 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4023 getF32Constant(DAG, 0xbc91e5ac)); 4024 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4025 getF32Constant(DAG, 0x3e4350aa)); 4026 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4027 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4028 getF32Constant(DAG, 0x3f60d3e3)); 4029 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4030 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4031 getF32Constant(DAG, 0x4011cdf0)); 4032 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4033 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4034 getF32Constant(DAG, 0x406cfd1c)); 4035 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4036 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4037 getF32Constant(DAG, 0x408797cb)); 4038 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4039 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4040 getF32Constant(DAG, 0x4006dcab)); 4041 } 4042 4043 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4044 } 4045 4046 // No special expansion. 4047 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4048 } 4049 4050 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4051 /// limited-precision mode. 4052 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4053 const TargetLowering &TLI) { 4054 if (Op.getValueType() == MVT::f32 && 4055 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4056 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4057 4058 // Get the exponent. 4059 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4060 4061 // Get the significand and build it into a floating-point number with 4062 // exponent of 1. 4063 SDValue X = GetSignificand(DAG, Op1, dl); 4064 4065 // Different possible minimax approximations of significand in 4066 // floating-point for various degrees of accuracy over [1,2]. 4067 SDValue Log2ofMantissa; 4068 if (LimitFloatPrecision <= 6) { 4069 // For floating-point precision of 6: 4070 // 4071 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4072 // 4073 // error 0.0049451742, which is more than 7 bits 4074 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4075 getF32Constant(DAG, 0xbeb08fe0)); 4076 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4077 getF32Constant(DAG, 0x40019463)); 4078 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4079 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4080 getF32Constant(DAG, 0x3fd6633d)); 4081 } else if (LimitFloatPrecision <= 12) { 4082 // For floating-point precision of 12: 4083 // 4084 // Log2ofMantissa = 4085 // -2.51285454f + 4086 // (4.07009056f + 4087 // (-2.12067489f + 4088 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4089 // 4090 // error 0.0000876136000, which is better than 13 bits 4091 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4092 getF32Constant(DAG, 0xbda7262e)); 4093 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4094 getF32Constant(DAG, 0x3f25280b)); 4095 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4096 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4097 getF32Constant(DAG, 0x4007b923)); 4098 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4099 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4100 getF32Constant(DAG, 0x40823e2f)); 4101 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4102 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4103 getF32Constant(DAG, 0x4020d29c)); 4104 } else { // LimitFloatPrecision <= 18 4105 // For floating-point precision of 18: 4106 // 4107 // Log2ofMantissa = 4108 // -3.0400495f + 4109 // (6.1129976f + 4110 // (-5.3420409f + 4111 // (3.2865683f + 4112 // (-1.2669343f + 4113 // (0.27515199f - 4114 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4115 // 4116 // error 0.0000018516, which is better than 18 bits 4117 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4118 getF32Constant(DAG, 0xbcd2769e)); 4119 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4120 getF32Constant(DAG, 0x3e8ce0b9)); 4121 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4122 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4123 getF32Constant(DAG, 0x3fa22ae7)); 4124 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4125 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4126 getF32Constant(DAG, 0x40525723)); 4127 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4128 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4129 getF32Constant(DAG, 0x40aaf200)); 4130 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4131 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4132 getF32Constant(DAG, 0x40c39dad)); 4133 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4134 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4135 getF32Constant(DAG, 0x4042902c)); 4136 } 4137 4138 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4139 } 4140 4141 // No special expansion. 4142 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4143 } 4144 4145 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4146 /// limited-precision mode. 4147 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4148 const TargetLowering &TLI) { 4149 if (Op.getValueType() == MVT::f32 && 4150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4151 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4152 4153 // Scale the exponent by log10(2) [0.30102999f]. 4154 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4155 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4156 getF32Constant(DAG, 0x3e9a209a)); 4157 4158 // Get the significand and build it into a floating-point number with 4159 // exponent of 1. 4160 SDValue X = GetSignificand(DAG, Op1, dl); 4161 4162 SDValue Log10ofMantissa; 4163 if (LimitFloatPrecision <= 6) { 4164 // For floating-point precision of 6: 4165 // 4166 // Log10ofMantissa = 4167 // -0.50419619f + 4168 // (0.60948995f - 0.10380950f * x) * x; 4169 // 4170 // error 0.0014886165, which is 6 bits 4171 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4172 getF32Constant(DAG, 0xbdd49a13)); 4173 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4174 getF32Constant(DAG, 0x3f1c0789)); 4175 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4176 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4177 getF32Constant(DAG, 0x3f011300)); 4178 } else if (LimitFloatPrecision <= 12) { 4179 // For floating-point precision of 12: 4180 // 4181 // Log10ofMantissa = 4182 // -0.64831180f + 4183 // (0.91751397f + 4184 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4185 // 4186 // error 0.00019228036, which is better than 12 bits 4187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4188 getF32Constant(DAG, 0x3d431f31)); 4189 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4190 getF32Constant(DAG, 0x3ea21fb2)); 4191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4192 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4193 getF32Constant(DAG, 0x3f6ae232)); 4194 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4195 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4196 getF32Constant(DAG, 0x3f25f7c3)); 4197 } else { // LimitFloatPrecision <= 18 4198 // For floating-point precision of 18: 4199 // 4200 // Log10ofMantissa = 4201 // -0.84299375f + 4202 // (1.5327582f + 4203 // (-1.0688956f + 4204 // (0.49102474f + 4205 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4206 // 4207 // error 0.0000037995730, which is better than 18 bits 4208 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4209 getF32Constant(DAG, 0x3c5d51ce)); 4210 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4211 getF32Constant(DAG, 0x3e00685a)); 4212 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4213 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4214 getF32Constant(DAG, 0x3efb6798)); 4215 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4216 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4217 getF32Constant(DAG, 0x3f88d192)); 4218 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4219 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4220 getF32Constant(DAG, 0x3fc4316c)); 4221 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4222 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4223 getF32Constant(DAG, 0x3f57ce70)); 4224 } 4225 4226 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4227 } 4228 4229 // No special expansion. 4230 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4231 } 4232 4233 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4234 /// limited-precision mode. 4235 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4236 const TargetLowering &TLI) { 4237 if (Op.getValueType() == MVT::f32 && 4238 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4239 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4240 4241 // FractionalPartOfX = x - (float)IntegerPartOfX; 4242 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4243 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4244 4245 // IntegerPartOfX <<= 23; 4246 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4247 DAG.getConstant(23, TLI.getPointerTy())); 4248 4249 SDValue TwoToFractionalPartOfX; 4250 if (LimitFloatPrecision <= 6) { 4251 // For floating-point precision of 6: 4252 // 4253 // TwoToFractionalPartOfX = 4254 // 0.997535578f + 4255 // (0.735607626f + 0.252464424f * x) * x; 4256 // 4257 // error 0.0144103317, which is 6 bits 4258 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4259 getF32Constant(DAG, 0x3e814304)); 4260 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4261 getF32Constant(DAG, 0x3f3c50c8)); 4262 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4263 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4264 getF32Constant(DAG, 0x3f7f5e7e)); 4265 } else if (LimitFloatPrecision <= 12) { 4266 // For floating-point precision of 12: 4267 // 4268 // TwoToFractionalPartOfX = 4269 // 0.999892986f + 4270 // (0.696457318f + 4271 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4272 // 4273 // error 0.000107046256, which is 13 to 14 bits 4274 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4275 getF32Constant(DAG, 0x3da235e3)); 4276 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4277 getF32Constant(DAG, 0x3e65b8f3)); 4278 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4279 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4280 getF32Constant(DAG, 0x3f324b07)); 4281 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4282 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4283 getF32Constant(DAG, 0x3f7ff8fd)); 4284 } else { // LimitFloatPrecision <= 18 4285 // For floating-point precision of 18: 4286 // 4287 // TwoToFractionalPartOfX = 4288 // 0.999999982f + 4289 // (0.693148872f + 4290 // (0.240227044f + 4291 // (0.554906021e-1f + 4292 // (0.961591928e-2f + 4293 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4294 // error 2.47208000*10^(-7), which is better than 18 bits 4295 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4296 getF32Constant(DAG, 0x3924b03e)); 4297 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4298 getF32Constant(DAG, 0x3ab24b87)); 4299 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4300 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4301 getF32Constant(DAG, 0x3c1d8c17)); 4302 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4303 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4304 getF32Constant(DAG, 0x3d634a1d)); 4305 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4306 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4307 getF32Constant(DAG, 0x3e75fe14)); 4308 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4309 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4310 getF32Constant(DAG, 0x3f317234)); 4311 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4312 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4313 getF32Constant(DAG, 0x3f800000)); 4314 } 4315 4316 // Add the exponent into the result in integer domain. 4317 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4318 TwoToFractionalPartOfX); 4319 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4320 DAG.getNode(ISD::ADD, dl, MVT::i32, 4321 t13, IntegerPartOfX)); 4322 } 4323 4324 // No special expansion. 4325 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4326 } 4327 4328 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4329 /// limited-precision mode with x == 10.0f. 4330 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4331 SelectionDAG &DAG, const TargetLowering &TLI) { 4332 bool IsExp10 = false; 4333 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4334 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4335 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4336 APFloat Ten(10.0f); 4337 IsExp10 = LHSC->isExactlyValue(Ten); 4338 } 4339 } 4340 4341 if (IsExp10) { 4342 // Put the exponent in the right bit position for later addition to the 4343 // final result: 4344 // 4345 // #define LOG2OF10 3.3219281f 4346 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4347 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4348 getF32Constant(DAG, 0x40549a78)); 4349 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4350 4351 // FractionalPartOfX = x - (float)IntegerPartOfX; 4352 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4353 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4354 4355 // IntegerPartOfX <<= 23; 4356 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4357 DAG.getConstant(23, TLI.getPointerTy())); 4358 4359 SDValue TwoToFractionalPartOfX; 4360 if (LimitFloatPrecision <= 6) { 4361 // For floating-point precision of 6: 4362 // 4363 // twoToFractionalPartOfX = 4364 // 0.997535578f + 4365 // (0.735607626f + 0.252464424f * x) * x; 4366 // 4367 // error 0.0144103317, which is 6 bits 4368 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4369 getF32Constant(DAG, 0x3e814304)); 4370 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4371 getF32Constant(DAG, 0x3f3c50c8)); 4372 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4373 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4374 getF32Constant(DAG, 0x3f7f5e7e)); 4375 } else if (LimitFloatPrecision <= 12) { 4376 // For floating-point precision of 12: 4377 // 4378 // TwoToFractionalPartOfX = 4379 // 0.999892986f + 4380 // (0.696457318f + 4381 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4382 // 4383 // error 0.000107046256, which is 13 to 14 bits 4384 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4385 getF32Constant(DAG, 0x3da235e3)); 4386 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4387 getF32Constant(DAG, 0x3e65b8f3)); 4388 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4389 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4390 getF32Constant(DAG, 0x3f324b07)); 4391 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4392 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4393 getF32Constant(DAG, 0x3f7ff8fd)); 4394 } else { // LimitFloatPrecision <= 18 4395 // For floating-point precision of 18: 4396 // 4397 // TwoToFractionalPartOfX = 4398 // 0.999999982f + 4399 // (0.693148872f + 4400 // (0.240227044f + 4401 // (0.554906021e-1f + 4402 // (0.961591928e-2f + 4403 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4404 // error 2.47208000*10^(-7), which is better than 18 bits 4405 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4406 getF32Constant(DAG, 0x3924b03e)); 4407 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4408 getF32Constant(DAG, 0x3ab24b87)); 4409 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4410 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4411 getF32Constant(DAG, 0x3c1d8c17)); 4412 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4413 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4414 getF32Constant(DAG, 0x3d634a1d)); 4415 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4416 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4417 getF32Constant(DAG, 0x3e75fe14)); 4418 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4419 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4420 getF32Constant(DAG, 0x3f317234)); 4421 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4422 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4423 getF32Constant(DAG, 0x3f800000)); 4424 } 4425 4426 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4427 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4428 DAG.getNode(ISD::ADD, dl, MVT::i32, 4429 t13, IntegerPartOfX)); 4430 } 4431 4432 // No special expansion. 4433 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4434 } 4435 4436 4437 /// ExpandPowI - Expand a llvm.powi intrinsic. 4438 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4439 SelectionDAG &DAG) { 4440 // If RHS is a constant, we can expand this out to a multiplication tree, 4441 // otherwise we end up lowering to a call to __powidf2 (for example). When 4442 // optimizing for size, we only want to do this if the expansion would produce 4443 // a small number of multiplies, otherwise we do the full expansion. 4444 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4445 // Get the exponent as a positive value. 4446 unsigned Val = RHSC->getSExtValue(); 4447 if ((int)Val < 0) Val = -Val; 4448 4449 // powi(x, 0) -> 1.0 4450 if (Val == 0) 4451 return DAG.getConstantFP(1.0, LHS.getValueType()); 4452 4453 const Function *F = DAG.getMachineFunction().getFunction(); 4454 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4455 Attribute::OptimizeForSize) || 4456 // If optimizing for size, don't insert too many multiplies. This 4457 // inserts up to 5 multiplies. 4458 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4459 // We use the simple binary decomposition method to generate the multiply 4460 // sequence. There are more optimal ways to do this (for example, 4461 // powi(x,15) generates one more multiply than it should), but this has 4462 // the benefit of being both really simple and much better than a libcall. 4463 SDValue Res; // Logically starts equal to 1.0 4464 SDValue CurSquare = LHS; 4465 while (Val) { 4466 if (Val & 1) { 4467 if (Res.getNode()) 4468 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4469 else 4470 Res = CurSquare; // 1.0*CurSquare. 4471 } 4472 4473 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4474 CurSquare, CurSquare); 4475 Val >>= 1; 4476 } 4477 4478 // If the original was negative, invert the result, producing 1/(x*x*x). 4479 if (RHSC->getSExtValue() < 0) 4480 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4481 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4482 return Res; 4483 } 4484 } 4485 4486 // Otherwise, expand to a libcall. 4487 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4488 } 4489 4490 // getTruncatedArgReg - Find underlying register used for an truncated 4491 // argument. 4492 static unsigned getTruncatedArgReg(const SDValue &N) { 4493 if (N.getOpcode() != ISD::TRUNCATE) 4494 return 0; 4495 4496 const SDValue &Ext = N.getOperand(0); 4497 if (Ext.getOpcode() == ISD::AssertZext || 4498 Ext.getOpcode() == ISD::AssertSext) { 4499 const SDValue &CFR = Ext.getOperand(0); 4500 if (CFR.getOpcode() == ISD::CopyFromReg) 4501 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4502 if (CFR.getOpcode() == ISD::TRUNCATE) 4503 return getTruncatedArgReg(CFR); 4504 } 4505 return 0; 4506 } 4507 4508 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4509 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4510 /// At the end of instruction selection, they will be inserted to the entry BB. 4511 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4512 MDNode *Variable, 4513 MDNode *Expr, int64_t Offset, 4514 bool IsIndirect, 4515 const SDValue &N) { 4516 const Argument *Arg = dyn_cast<Argument>(V); 4517 if (!Arg) 4518 return false; 4519 4520 MachineFunction &MF = DAG.getMachineFunction(); 4521 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4522 4523 // Ignore inlined function arguments here. 4524 DIVariable DV(Variable); 4525 if (DV.isInlinedFnArgument(MF.getFunction())) 4526 return false; 4527 4528 Optional<MachineOperand> Op; 4529 // Some arguments' frame index is recorded during argument lowering. 4530 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4531 Op = MachineOperand::CreateFI(FI); 4532 4533 if (!Op && N.getNode()) { 4534 unsigned Reg; 4535 if (N.getOpcode() == ISD::CopyFromReg) 4536 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4537 else 4538 Reg = getTruncatedArgReg(N); 4539 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4540 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4541 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4542 if (PR) 4543 Reg = PR; 4544 } 4545 if (Reg) 4546 Op = MachineOperand::CreateReg(Reg, false); 4547 } 4548 4549 if (!Op) { 4550 // Check if ValueMap has reg number. 4551 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4552 if (VMI != FuncInfo.ValueMap.end()) 4553 Op = MachineOperand::CreateReg(VMI->second, false); 4554 } 4555 4556 if (!Op && N.getNode()) 4557 // Check if frame index is available. 4558 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4559 if (FrameIndexSDNode *FINode = 4560 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4561 Op = MachineOperand::CreateFI(FINode->getIndex()); 4562 4563 if (!Op) 4564 return false; 4565 4566 if (Op->isReg()) 4567 FuncInfo.ArgDbgValues.push_back( 4568 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4569 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4570 else 4571 FuncInfo.ArgDbgValues.push_back( 4572 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4573 .addOperand(*Op) 4574 .addImm(Offset) 4575 .addMetadata(Variable) 4576 .addMetadata(Expr)); 4577 4578 return true; 4579 } 4580 4581 // VisualStudio defines setjmp as _setjmp 4582 #if defined(_MSC_VER) && defined(setjmp) && \ 4583 !defined(setjmp_undefined_for_msvc) 4584 # pragma push_macro("setjmp") 4585 # undef setjmp 4586 # define setjmp_undefined_for_msvc 4587 #endif 4588 4589 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4590 /// we want to emit this as a call to a named external function, return the name 4591 /// otherwise lower it and return null. 4592 const char * 4593 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4594 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4595 SDLoc sdl = getCurSDLoc(); 4596 DebugLoc dl = getCurDebugLoc(); 4597 SDValue Res; 4598 4599 switch (Intrinsic) { 4600 default: 4601 // By default, turn this into a target intrinsic node. 4602 visitTargetIntrinsic(I, Intrinsic); 4603 return nullptr; 4604 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4605 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4606 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4607 case Intrinsic::returnaddress: 4608 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4609 getValue(I.getArgOperand(0)))); 4610 return nullptr; 4611 case Intrinsic::frameaddress: 4612 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4613 getValue(I.getArgOperand(0)))); 4614 return nullptr; 4615 case Intrinsic::read_register: { 4616 Value *Reg = I.getArgOperand(0); 4617 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4618 EVT VT = TLI.getValueType(I.getType()); 4619 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4620 return nullptr; 4621 } 4622 case Intrinsic::write_register: { 4623 Value *Reg = I.getArgOperand(0); 4624 Value *RegValue = I.getArgOperand(1); 4625 SDValue Chain = getValue(RegValue).getOperand(0); 4626 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4627 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4628 RegName, getValue(RegValue))); 4629 return nullptr; 4630 } 4631 case Intrinsic::setjmp: 4632 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4633 case Intrinsic::longjmp: 4634 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4635 case Intrinsic::memcpy: { 4636 // Assert for address < 256 since we support only user defined address 4637 // spaces. 4638 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4639 < 256 && 4640 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4641 < 256 && 4642 "Unknown address space"); 4643 SDValue Op1 = getValue(I.getArgOperand(0)); 4644 SDValue Op2 = getValue(I.getArgOperand(1)); 4645 SDValue Op3 = getValue(I.getArgOperand(2)); 4646 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4647 if (!Align) 4648 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4649 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4650 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4651 MachinePointerInfo(I.getArgOperand(0)), 4652 MachinePointerInfo(I.getArgOperand(1)))); 4653 return nullptr; 4654 } 4655 case Intrinsic::memset: { 4656 // Assert for address < 256 since we support only user defined address 4657 // spaces. 4658 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4659 < 256 && 4660 "Unknown address space"); 4661 SDValue Op1 = getValue(I.getArgOperand(0)); 4662 SDValue Op2 = getValue(I.getArgOperand(1)); 4663 SDValue Op3 = getValue(I.getArgOperand(2)); 4664 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4665 if (!Align) 4666 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4667 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4668 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4669 MachinePointerInfo(I.getArgOperand(0)))); 4670 return nullptr; 4671 } 4672 case Intrinsic::memmove: { 4673 // Assert for address < 256 since we support only user defined address 4674 // spaces. 4675 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4676 < 256 && 4677 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4678 < 256 && 4679 "Unknown address space"); 4680 SDValue Op1 = getValue(I.getArgOperand(0)); 4681 SDValue Op2 = getValue(I.getArgOperand(1)); 4682 SDValue Op3 = getValue(I.getArgOperand(2)); 4683 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4684 if (!Align) 4685 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4686 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4687 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4688 MachinePointerInfo(I.getArgOperand(0)), 4689 MachinePointerInfo(I.getArgOperand(1)))); 4690 return nullptr; 4691 } 4692 case Intrinsic::dbg_declare: { 4693 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4694 MDNode *Variable = DI.getVariable(); 4695 MDNode *Expression = DI.getExpression(); 4696 const Value *Address = DI.getAddress(); 4697 DIVariable DIVar(Variable); 4698 assert((!DIVar || DIVar.isVariable()) && 4699 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4700 if (!Address || !DIVar) { 4701 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4702 return nullptr; 4703 } 4704 4705 // Check if address has undef value. 4706 if (isa<UndefValue>(Address) || 4707 (Address->use_empty() && !isa<Argument>(Address))) { 4708 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4709 return nullptr; 4710 } 4711 4712 SDValue &N = NodeMap[Address]; 4713 if (!N.getNode() && isa<Argument>(Address)) 4714 // Check unused arguments map. 4715 N = UnusedArgNodeMap[Address]; 4716 SDDbgValue *SDV; 4717 if (N.getNode()) { 4718 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4719 Address = BCI->getOperand(0); 4720 // Parameters are handled specially. 4721 bool isParameter = 4722 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4723 isa<Argument>(Address)); 4724 4725 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4726 4727 if (isParameter && !AI) { 4728 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4729 if (FINode) 4730 // Byval parameter. We have a frame index at this point. 4731 SDV = DAG.getFrameIndexDbgValue( 4732 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4733 else { 4734 // Address is an argument, so try to emit its dbg value using 4735 // virtual register info from the FuncInfo.ValueMap. 4736 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4737 return nullptr; 4738 } 4739 } else if (AI) 4740 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4741 true, 0, dl, SDNodeOrder); 4742 else { 4743 // Can't do anything with other non-AI cases yet. 4744 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4745 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4746 DEBUG(Address->dump()); 4747 return nullptr; 4748 } 4749 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4750 } else { 4751 // If Address is an argument then try to emit its dbg value using 4752 // virtual register info from the FuncInfo.ValueMap. 4753 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4754 N)) { 4755 // If variable is pinned by a alloca in dominating bb then 4756 // use StaticAllocaMap. 4757 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4758 if (AI->getParent() != DI.getParent()) { 4759 DenseMap<const AllocaInst*, int>::iterator SI = 4760 FuncInfo.StaticAllocaMap.find(AI); 4761 if (SI != FuncInfo.StaticAllocaMap.end()) { 4762 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4763 0, dl, SDNodeOrder); 4764 DAG.AddDbgValue(SDV, nullptr, false); 4765 return nullptr; 4766 } 4767 } 4768 } 4769 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4770 } 4771 } 4772 return nullptr; 4773 } 4774 case Intrinsic::dbg_value: { 4775 const DbgValueInst &DI = cast<DbgValueInst>(I); 4776 DIVariable DIVar(DI.getVariable()); 4777 assert((!DIVar || DIVar.isVariable()) && 4778 "Variable in DbgValueInst should be either null or a DIVariable."); 4779 if (!DIVar) 4780 return nullptr; 4781 4782 MDNode *Variable = DI.getVariable(); 4783 MDNode *Expression = DI.getExpression(); 4784 uint64_t Offset = DI.getOffset(); 4785 const Value *V = DI.getValue(); 4786 if (!V) 4787 return nullptr; 4788 4789 SDDbgValue *SDV; 4790 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4791 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4792 SDNodeOrder); 4793 DAG.AddDbgValue(SDV, nullptr, false); 4794 } else { 4795 // Do not use getValue() in here; we don't want to generate code at 4796 // this point if it hasn't been done yet. 4797 SDValue N = NodeMap[V]; 4798 if (!N.getNode() && isa<Argument>(V)) 4799 // Check unused arguments map. 4800 N = UnusedArgNodeMap[V]; 4801 if (N.getNode()) { 4802 // A dbg.value for an alloca is always indirect. 4803 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4804 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4805 IsIndirect, N)) { 4806 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4807 IsIndirect, Offset, dl, SDNodeOrder); 4808 DAG.AddDbgValue(SDV, N.getNode(), false); 4809 } 4810 } else if (!V->use_empty() ) { 4811 // Do not call getValue(V) yet, as we don't want to generate code. 4812 // Remember it for later. 4813 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4814 DanglingDebugInfoMap[V] = DDI; 4815 } else { 4816 // We may expand this to cover more cases. One case where we have no 4817 // data available is an unreferenced parameter. 4818 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4819 } 4820 } 4821 4822 // Build a debug info table entry. 4823 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4824 V = BCI->getOperand(0); 4825 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4826 // Don't handle byval struct arguments or VLAs, for example. 4827 if (!AI) { 4828 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4829 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4830 return nullptr; 4831 } 4832 DenseMap<const AllocaInst*, int>::iterator SI = 4833 FuncInfo.StaticAllocaMap.find(AI); 4834 if (SI == FuncInfo.StaticAllocaMap.end()) 4835 return nullptr; // VLAs. 4836 return nullptr; 4837 } 4838 4839 case Intrinsic::eh_typeid_for: { 4840 // Find the type id for the given typeinfo. 4841 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4842 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4843 Res = DAG.getConstant(TypeID, MVT::i32); 4844 setValue(&I, Res); 4845 return nullptr; 4846 } 4847 4848 case Intrinsic::eh_return_i32: 4849 case Intrinsic::eh_return_i64: 4850 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4851 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4852 MVT::Other, 4853 getControlRoot(), 4854 getValue(I.getArgOperand(0)), 4855 getValue(I.getArgOperand(1)))); 4856 return nullptr; 4857 case Intrinsic::eh_unwind_init: 4858 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4859 return nullptr; 4860 case Intrinsic::eh_dwarf_cfa: { 4861 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4862 TLI.getPointerTy()); 4863 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4864 CfaArg.getValueType(), 4865 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4866 CfaArg.getValueType()), 4867 CfaArg); 4868 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4869 DAG.getConstant(0, TLI.getPointerTy())); 4870 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4871 FA, Offset)); 4872 return nullptr; 4873 } 4874 case Intrinsic::eh_sjlj_callsite: { 4875 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4876 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4877 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4878 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4879 4880 MMI.setCurrentCallSite(CI->getZExtValue()); 4881 return nullptr; 4882 } 4883 case Intrinsic::eh_sjlj_functioncontext: { 4884 // Get and store the index of the function context. 4885 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4886 AllocaInst *FnCtx = 4887 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4888 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4889 MFI->setFunctionContextIndex(FI); 4890 return nullptr; 4891 } 4892 case Intrinsic::eh_sjlj_setjmp: { 4893 SDValue Ops[2]; 4894 Ops[0] = getRoot(); 4895 Ops[1] = getValue(I.getArgOperand(0)); 4896 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4897 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4898 setValue(&I, Op.getValue(0)); 4899 DAG.setRoot(Op.getValue(1)); 4900 return nullptr; 4901 } 4902 case Intrinsic::eh_sjlj_longjmp: { 4903 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4904 getRoot(), getValue(I.getArgOperand(0)))); 4905 return nullptr; 4906 } 4907 4908 case Intrinsic::x86_mmx_pslli_w: 4909 case Intrinsic::x86_mmx_pslli_d: 4910 case Intrinsic::x86_mmx_pslli_q: 4911 case Intrinsic::x86_mmx_psrli_w: 4912 case Intrinsic::x86_mmx_psrli_d: 4913 case Intrinsic::x86_mmx_psrli_q: 4914 case Intrinsic::x86_mmx_psrai_w: 4915 case Intrinsic::x86_mmx_psrai_d: { 4916 SDValue ShAmt = getValue(I.getArgOperand(1)); 4917 if (isa<ConstantSDNode>(ShAmt)) { 4918 visitTargetIntrinsic(I, Intrinsic); 4919 return nullptr; 4920 } 4921 unsigned NewIntrinsic = 0; 4922 EVT ShAmtVT = MVT::v2i32; 4923 switch (Intrinsic) { 4924 case Intrinsic::x86_mmx_pslli_w: 4925 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4926 break; 4927 case Intrinsic::x86_mmx_pslli_d: 4928 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4929 break; 4930 case Intrinsic::x86_mmx_pslli_q: 4931 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4932 break; 4933 case Intrinsic::x86_mmx_psrli_w: 4934 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4935 break; 4936 case Intrinsic::x86_mmx_psrli_d: 4937 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4938 break; 4939 case Intrinsic::x86_mmx_psrli_q: 4940 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4941 break; 4942 case Intrinsic::x86_mmx_psrai_w: 4943 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4944 break; 4945 case Intrinsic::x86_mmx_psrai_d: 4946 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4947 break; 4948 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4949 } 4950 4951 // The vector shift intrinsics with scalars uses 32b shift amounts but 4952 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4953 // to be zero. 4954 // We must do this early because v2i32 is not a legal type. 4955 SDValue ShOps[2]; 4956 ShOps[0] = ShAmt; 4957 ShOps[1] = DAG.getConstant(0, MVT::i32); 4958 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4959 EVT DestVT = TLI.getValueType(I.getType()); 4960 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4961 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4962 DAG.getConstant(NewIntrinsic, MVT::i32), 4963 getValue(I.getArgOperand(0)), ShAmt); 4964 setValue(&I, Res); 4965 return nullptr; 4966 } 4967 case Intrinsic::x86_avx_vinsertf128_pd_256: 4968 case Intrinsic::x86_avx_vinsertf128_ps_256: 4969 case Intrinsic::x86_avx_vinsertf128_si_256: 4970 case Intrinsic::x86_avx2_vinserti128: { 4971 EVT DestVT = TLI.getValueType(I.getType()); 4972 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4973 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4974 ElVT.getVectorNumElements(); 4975 Res = 4976 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 4977 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 4978 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4979 setValue(&I, Res); 4980 return nullptr; 4981 } 4982 case Intrinsic::x86_avx_vextractf128_pd_256: 4983 case Intrinsic::x86_avx_vextractf128_ps_256: 4984 case Intrinsic::x86_avx_vextractf128_si_256: 4985 case Intrinsic::x86_avx2_vextracti128: { 4986 EVT DestVT = TLI.getValueType(I.getType()); 4987 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4988 DestVT.getVectorNumElements(); 4989 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 4990 getValue(I.getArgOperand(0)), 4991 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 4992 setValue(&I, Res); 4993 return nullptr; 4994 } 4995 case Intrinsic::convertff: 4996 case Intrinsic::convertfsi: 4997 case Intrinsic::convertfui: 4998 case Intrinsic::convertsif: 4999 case Intrinsic::convertuif: 5000 case Intrinsic::convertss: 5001 case Intrinsic::convertsu: 5002 case Intrinsic::convertus: 5003 case Intrinsic::convertuu: { 5004 ISD::CvtCode Code = ISD::CVT_INVALID; 5005 switch (Intrinsic) { 5006 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5007 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5008 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5009 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5010 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5011 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5012 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5013 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5014 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5015 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5016 } 5017 EVT DestVT = TLI.getValueType(I.getType()); 5018 const Value *Op1 = I.getArgOperand(0); 5019 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5020 DAG.getValueType(DestVT), 5021 DAG.getValueType(getValue(Op1).getValueType()), 5022 getValue(I.getArgOperand(1)), 5023 getValue(I.getArgOperand(2)), 5024 Code); 5025 setValue(&I, Res); 5026 return nullptr; 5027 } 5028 case Intrinsic::powi: 5029 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5030 getValue(I.getArgOperand(1)), DAG)); 5031 return nullptr; 5032 case Intrinsic::log: 5033 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5034 return nullptr; 5035 case Intrinsic::log2: 5036 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5037 return nullptr; 5038 case Intrinsic::log10: 5039 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5040 return nullptr; 5041 case Intrinsic::exp: 5042 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5043 return nullptr; 5044 case Intrinsic::exp2: 5045 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5046 return nullptr; 5047 case Intrinsic::pow: 5048 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5049 getValue(I.getArgOperand(1)), DAG, TLI)); 5050 return nullptr; 5051 case Intrinsic::sqrt: 5052 case Intrinsic::fabs: 5053 case Intrinsic::sin: 5054 case Intrinsic::cos: 5055 case Intrinsic::floor: 5056 case Intrinsic::ceil: 5057 case Intrinsic::trunc: 5058 case Intrinsic::rint: 5059 case Intrinsic::nearbyint: 5060 case Intrinsic::round: { 5061 unsigned Opcode; 5062 switch (Intrinsic) { 5063 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5064 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5065 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5066 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5067 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5068 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5069 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5070 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5071 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5072 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5073 case Intrinsic::round: Opcode = ISD::FROUND; break; 5074 } 5075 5076 setValue(&I, DAG.getNode(Opcode, sdl, 5077 getValue(I.getArgOperand(0)).getValueType(), 5078 getValue(I.getArgOperand(0)))); 5079 return nullptr; 5080 } 5081 case Intrinsic::copysign: 5082 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5083 getValue(I.getArgOperand(0)).getValueType(), 5084 getValue(I.getArgOperand(0)), 5085 getValue(I.getArgOperand(1)))); 5086 return nullptr; 5087 case Intrinsic::fma: 5088 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5089 getValue(I.getArgOperand(0)).getValueType(), 5090 getValue(I.getArgOperand(0)), 5091 getValue(I.getArgOperand(1)), 5092 getValue(I.getArgOperand(2)))); 5093 return nullptr; 5094 case Intrinsic::fmuladd: { 5095 EVT VT = TLI.getValueType(I.getType()); 5096 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5097 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5098 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5099 getValue(I.getArgOperand(0)).getValueType(), 5100 getValue(I.getArgOperand(0)), 5101 getValue(I.getArgOperand(1)), 5102 getValue(I.getArgOperand(2)))); 5103 } else { 5104 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5105 getValue(I.getArgOperand(0)).getValueType(), 5106 getValue(I.getArgOperand(0)), 5107 getValue(I.getArgOperand(1))); 5108 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5109 getValue(I.getArgOperand(0)).getValueType(), 5110 Mul, 5111 getValue(I.getArgOperand(2))); 5112 setValue(&I, Add); 5113 } 5114 return nullptr; 5115 } 5116 case Intrinsic::convert_to_fp16: 5117 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5118 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5119 getValue(I.getArgOperand(0)), 5120 DAG.getTargetConstant(0, MVT::i32)))); 5121 return nullptr; 5122 case Intrinsic::convert_from_fp16: 5123 setValue(&I, 5124 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5125 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5126 getValue(I.getArgOperand(0))))); 5127 return nullptr; 5128 case Intrinsic::pcmarker: { 5129 SDValue Tmp = getValue(I.getArgOperand(0)); 5130 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5131 return nullptr; 5132 } 5133 case Intrinsic::readcyclecounter: { 5134 SDValue Op = getRoot(); 5135 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5136 DAG.getVTList(MVT::i64, MVT::Other), Op); 5137 setValue(&I, Res); 5138 DAG.setRoot(Res.getValue(1)); 5139 return nullptr; 5140 } 5141 case Intrinsic::bswap: 5142 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5143 getValue(I.getArgOperand(0)).getValueType(), 5144 getValue(I.getArgOperand(0)))); 5145 return nullptr; 5146 case Intrinsic::cttz: { 5147 SDValue Arg = getValue(I.getArgOperand(0)); 5148 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5149 EVT Ty = Arg.getValueType(); 5150 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5151 sdl, Ty, Arg)); 5152 return nullptr; 5153 } 5154 case Intrinsic::ctlz: { 5155 SDValue Arg = getValue(I.getArgOperand(0)); 5156 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5157 EVT Ty = Arg.getValueType(); 5158 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5159 sdl, Ty, Arg)); 5160 return nullptr; 5161 } 5162 case Intrinsic::ctpop: { 5163 SDValue Arg = getValue(I.getArgOperand(0)); 5164 EVT Ty = Arg.getValueType(); 5165 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5166 return nullptr; 5167 } 5168 case Intrinsic::stacksave: { 5169 SDValue Op = getRoot(); 5170 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5171 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5172 setValue(&I, Res); 5173 DAG.setRoot(Res.getValue(1)); 5174 return nullptr; 5175 } 5176 case Intrinsic::stackrestore: { 5177 Res = getValue(I.getArgOperand(0)); 5178 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5179 return nullptr; 5180 } 5181 case Intrinsic::stackprotector: { 5182 // Emit code into the DAG to store the stack guard onto the stack. 5183 MachineFunction &MF = DAG.getMachineFunction(); 5184 MachineFrameInfo *MFI = MF.getFrameInfo(); 5185 EVT PtrTy = TLI.getPointerTy(); 5186 SDValue Src, Chain = getRoot(); 5187 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5188 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5189 5190 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5191 // global variable __stack_chk_guard. 5192 if (!GV) 5193 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5194 if (BC->getOpcode() == Instruction::BitCast) 5195 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5196 5197 if (GV && TLI.useLoadStackGuardNode()) { 5198 // Emit a LOAD_STACK_GUARD node. 5199 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5200 sdl, PtrTy, Chain); 5201 MachinePointerInfo MPInfo(GV); 5202 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5203 unsigned Flags = MachineMemOperand::MOLoad | 5204 MachineMemOperand::MOInvariant; 5205 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5206 PtrTy.getSizeInBits() / 8, 5207 DAG.getEVTAlignment(PtrTy)); 5208 Node->setMemRefs(MemRefs, MemRefs + 1); 5209 5210 // Copy the guard value to a virtual register so that it can be 5211 // retrieved in the epilogue. 5212 Src = SDValue(Node, 0); 5213 const TargetRegisterClass *RC = 5214 TLI.getRegClassFor(Src.getSimpleValueType()); 5215 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5216 5217 SPDescriptor.setGuardReg(Reg); 5218 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5219 } else { 5220 Src = getValue(I.getArgOperand(0)); // The guard's value. 5221 } 5222 5223 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5224 5225 int FI = FuncInfo.StaticAllocaMap[Slot]; 5226 MFI->setStackProtectorIndex(FI); 5227 5228 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5229 5230 // Store the stack protector onto the stack. 5231 Res = DAG.getStore(Chain, sdl, Src, FIN, 5232 MachinePointerInfo::getFixedStack(FI), 5233 true, false, 0); 5234 setValue(&I, Res); 5235 DAG.setRoot(Res); 5236 return nullptr; 5237 } 5238 case Intrinsic::objectsize: { 5239 // If we don't know by now, we're never going to know. 5240 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5241 5242 assert(CI && "Non-constant type in __builtin_object_size?"); 5243 5244 SDValue Arg = getValue(I.getCalledValue()); 5245 EVT Ty = Arg.getValueType(); 5246 5247 if (CI->isZero()) 5248 Res = DAG.getConstant(-1ULL, Ty); 5249 else 5250 Res = DAG.getConstant(0, Ty); 5251 5252 setValue(&I, Res); 5253 return nullptr; 5254 } 5255 case Intrinsic::annotation: 5256 case Intrinsic::ptr_annotation: 5257 // Drop the intrinsic, but forward the value 5258 setValue(&I, getValue(I.getOperand(0))); 5259 return nullptr; 5260 case Intrinsic::assume: 5261 case Intrinsic::var_annotation: 5262 // Discard annotate attributes and assumptions 5263 return nullptr; 5264 5265 case Intrinsic::init_trampoline: { 5266 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5267 5268 SDValue Ops[6]; 5269 Ops[0] = getRoot(); 5270 Ops[1] = getValue(I.getArgOperand(0)); 5271 Ops[2] = getValue(I.getArgOperand(1)); 5272 Ops[3] = getValue(I.getArgOperand(2)); 5273 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5274 Ops[5] = DAG.getSrcValue(F); 5275 5276 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5277 5278 DAG.setRoot(Res); 5279 return nullptr; 5280 } 5281 case Intrinsic::adjust_trampoline: { 5282 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5283 TLI.getPointerTy(), 5284 getValue(I.getArgOperand(0)))); 5285 return nullptr; 5286 } 5287 case Intrinsic::gcroot: 5288 if (GFI) { 5289 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5290 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5291 5292 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5293 GFI->addStackRoot(FI->getIndex(), TypeMap); 5294 } 5295 return nullptr; 5296 case Intrinsic::gcread: 5297 case Intrinsic::gcwrite: 5298 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5299 case Intrinsic::flt_rounds: 5300 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5301 return nullptr; 5302 5303 case Intrinsic::expect: { 5304 // Just replace __builtin_expect(exp, c) with EXP. 5305 setValue(&I, getValue(I.getArgOperand(0))); 5306 return nullptr; 5307 } 5308 5309 case Intrinsic::debugtrap: 5310 case Intrinsic::trap: { 5311 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5312 if (TrapFuncName.empty()) { 5313 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5314 ISD::TRAP : ISD::DEBUGTRAP; 5315 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5316 return nullptr; 5317 } 5318 TargetLowering::ArgListTy Args; 5319 5320 TargetLowering::CallLoweringInfo CLI(DAG); 5321 CLI.setDebugLoc(sdl).setChain(getRoot()) 5322 .setCallee(CallingConv::C, I.getType(), 5323 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5324 std::move(Args), 0); 5325 5326 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5327 DAG.setRoot(Result.second); 5328 return nullptr; 5329 } 5330 5331 case Intrinsic::uadd_with_overflow: 5332 case Intrinsic::sadd_with_overflow: 5333 case Intrinsic::usub_with_overflow: 5334 case Intrinsic::ssub_with_overflow: 5335 case Intrinsic::umul_with_overflow: 5336 case Intrinsic::smul_with_overflow: { 5337 ISD::NodeType Op; 5338 switch (Intrinsic) { 5339 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5340 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5341 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5342 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5343 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5344 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5345 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5346 } 5347 SDValue Op1 = getValue(I.getArgOperand(0)); 5348 SDValue Op2 = getValue(I.getArgOperand(1)); 5349 5350 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5351 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5352 return nullptr; 5353 } 5354 case Intrinsic::prefetch: { 5355 SDValue Ops[5]; 5356 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5357 Ops[0] = getRoot(); 5358 Ops[1] = getValue(I.getArgOperand(0)); 5359 Ops[2] = getValue(I.getArgOperand(1)); 5360 Ops[3] = getValue(I.getArgOperand(2)); 5361 Ops[4] = getValue(I.getArgOperand(3)); 5362 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5363 DAG.getVTList(MVT::Other), Ops, 5364 EVT::getIntegerVT(*Context, 8), 5365 MachinePointerInfo(I.getArgOperand(0)), 5366 0, /* align */ 5367 false, /* volatile */ 5368 rw==0, /* read */ 5369 rw==1)); /* write */ 5370 return nullptr; 5371 } 5372 case Intrinsic::lifetime_start: 5373 case Intrinsic::lifetime_end: { 5374 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5375 // Stack coloring is not enabled in O0, discard region information. 5376 if (TM.getOptLevel() == CodeGenOpt::None) 5377 return nullptr; 5378 5379 SmallVector<Value *, 4> Allocas; 5380 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5381 5382 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5383 E = Allocas.end(); Object != E; ++Object) { 5384 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5385 5386 // Could not find an Alloca. 5387 if (!LifetimeObject) 5388 continue; 5389 5390 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5391 5392 SDValue Ops[2]; 5393 Ops[0] = getRoot(); 5394 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5395 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5396 5397 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5398 DAG.setRoot(Res); 5399 } 5400 return nullptr; 5401 } 5402 case Intrinsic::invariant_start: 5403 // Discard region information. 5404 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5405 return nullptr; 5406 case Intrinsic::invariant_end: 5407 // Discard region information. 5408 return nullptr; 5409 case Intrinsic::stackprotectorcheck: { 5410 // Do not actually emit anything for this basic block. Instead we initialize 5411 // the stack protector descriptor and export the guard variable so we can 5412 // access it in FinishBasicBlock. 5413 const BasicBlock *BB = I.getParent(); 5414 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5415 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5416 5417 // Flush our exports since we are going to process a terminator. 5418 (void)getControlRoot(); 5419 return nullptr; 5420 } 5421 case Intrinsic::clear_cache: 5422 return TLI.getClearCacheBuiltinName(); 5423 case Intrinsic::donothing: 5424 // ignore 5425 return nullptr; 5426 case Intrinsic::experimental_stackmap: { 5427 visitStackmap(I); 5428 return nullptr; 5429 } 5430 case Intrinsic::experimental_patchpoint_void: 5431 case Intrinsic::experimental_patchpoint_i64: { 5432 visitPatchpoint(I); 5433 return nullptr; 5434 } 5435 } 5436 } 5437 5438 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5439 bool isTailCall, 5440 MachineBasicBlock *LandingPad) { 5441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5442 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5443 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5444 Type *RetTy = FTy->getReturnType(); 5445 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5446 MCSymbol *BeginLabel = nullptr; 5447 5448 TargetLowering::ArgListTy Args; 5449 TargetLowering::ArgListEntry Entry; 5450 Args.reserve(CS.arg_size()); 5451 5452 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5453 i != e; ++i) { 5454 const Value *V = *i; 5455 5456 // Skip empty types 5457 if (V->getType()->isEmptyTy()) 5458 continue; 5459 5460 SDValue ArgNode = getValue(V); 5461 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5462 5463 // Skip the first return-type Attribute to get to params. 5464 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5465 Args.push_back(Entry); 5466 } 5467 5468 if (LandingPad) { 5469 // Insert a label before the invoke call to mark the try range. This can be 5470 // used to detect deletion of the invoke via the MachineModuleInfo. 5471 BeginLabel = MMI.getContext().CreateTempSymbol(); 5472 5473 // For SjLj, keep track of which landing pads go with which invokes 5474 // so as to maintain the ordering of pads in the LSDA. 5475 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5476 if (CallSiteIndex) { 5477 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5478 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5479 5480 // Now that the call site is handled, stop tracking it. 5481 MMI.setCurrentCallSite(0); 5482 } 5483 5484 // Both PendingLoads and PendingExports must be flushed here; 5485 // this call might not return. 5486 (void)getRoot(); 5487 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5488 } 5489 5490 // Check if target-independent constraints permit a tail call here. 5491 // Target-dependent constraints are checked within TLI.LowerCallTo. 5492 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5493 isTailCall = false; 5494 5495 TargetLowering::CallLoweringInfo CLI(DAG); 5496 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5497 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5498 5499 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5500 assert((isTailCall || Result.second.getNode()) && 5501 "Non-null chain expected with non-tail call!"); 5502 assert((Result.second.getNode() || !Result.first.getNode()) && 5503 "Null value expected with tail call!"); 5504 if (Result.first.getNode()) 5505 setValue(CS.getInstruction(), Result.first); 5506 5507 if (!Result.second.getNode()) { 5508 // As a special case, a null chain means that a tail call has been emitted 5509 // and the DAG root is already updated. 5510 HasTailCall = true; 5511 5512 // Since there's no actual continuation from this block, nothing can be 5513 // relying on us setting vregs for them. 5514 PendingExports.clear(); 5515 } else { 5516 DAG.setRoot(Result.second); 5517 } 5518 5519 if (LandingPad) { 5520 // Insert a label at the end of the invoke call to mark the try range. This 5521 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5522 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5523 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5524 5525 // Inform MachineModuleInfo of range. 5526 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5527 } 5528 } 5529 5530 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5531 /// value is equal or not-equal to zero. 5532 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5533 for (const User *U : V->users()) { 5534 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5535 if (IC->isEquality()) 5536 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5537 if (C->isNullValue()) 5538 continue; 5539 // Unknown instruction. 5540 return false; 5541 } 5542 return true; 5543 } 5544 5545 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5546 Type *LoadTy, 5547 SelectionDAGBuilder &Builder) { 5548 5549 // Check to see if this load can be trivially constant folded, e.g. if the 5550 // input is from a string literal. 5551 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5552 // Cast pointer to the type we really want to load. 5553 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5554 PointerType::getUnqual(LoadTy)); 5555 5556 if (const Constant *LoadCst = 5557 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5558 Builder.DL)) 5559 return Builder.getValue(LoadCst); 5560 } 5561 5562 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5563 // still constant memory, the input chain can be the entry node. 5564 SDValue Root; 5565 bool ConstantMemory = false; 5566 5567 // Do not serialize (non-volatile) loads of constant memory with anything. 5568 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5569 Root = Builder.DAG.getEntryNode(); 5570 ConstantMemory = true; 5571 } else { 5572 // Do not serialize non-volatile loads against each other. 5573 Root = Builder.DAG.getRoot(); 5574 } 5575 5576 SDValue Ptr = Builder.getValue(PtrVal); 5577 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5578 Ptr, MachinePointerInfo(PtrVal), 5579 false /*volatile*/, 5580 false /*nontemporal*/, 5581 false /*isinvariant*/, 1 /* align=1 */); 5582 5583 if (!ConstantMemory) 5584 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5585 return LoadVal; 5586 } 5587 5588 /// processIntegerCallValue - Record the value for an instruction that 5589 /// produces an integer result, converting the type where necessary. 5590 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5591 SDValue Value, 5592 bool IsSigned) { 5593 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5594 if (IsSigned) 5595 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5596 else 5597 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5598 setValue(&I, Value); 5599 } 5600 5601 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5602 /// If so, return true and lower it, otherwise return false and it will be 5603 /// lowered like a normal call. 5604 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5605 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5606 if (I.getNumArgOperands() != 3) 5607 return false; 5608 5609 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5610 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5611 !I.getArgOperand(2)->getType()->isIntegerTy() || 5612 !I.getType()->isIntegerTy()) 5613 return false; 5614 5615 const Value *Size = I.getArgOperand(2); 5616 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5617 if (CSize && CSize->getZExtValue() == 0) { 5618 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5619 setValue(&I, DAG.getConstant(0, CallVT)); 5620 return true; 5621 } 5622 5623 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5624 std::pair<SDValue, SDValue> Res = 5625 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5626 getValue(LHS), getValue(RHS), getValue(Size), 5627 MachinePointerInfo(LHS), 5628 MachinePointerInfo(RHS)); 5629 if (Res.first.getNode()) { 5630 processIntegerCallValue(I, Res.first, true); 5631 PendingLoads.push_back(Res.second); 5632 return true; 5633 } 5634 5635 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5636 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5637 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5638 bool ActuallyDoIt = true; 5639 MVT LoadVT; 5640 Type *LoadTy; 5641 switch (CSize->getZExtValue()) { 5642 default: 5643 LoadVT = MVT::Other; 5644 LoadTy = nullptr; 5645 ActuallyDoIt = false; 5646 break; 5647 case 2: 5648 LoadVT = MVT::i16; 5649 LoadTy = Type::getInt16Ty(CSize->getContext()); 5650 break; 5651 case 4: 5652 LoadVT = MVT::i32; 5653 LoadTy = Type::getInt32Ty(CSize->getContext()); 5654 break; 5655 case 8: 5656 LoadVT = MVT::i64; 5657 LoadTy = Type::getInt64Ty(CSize->getContext()); 5658 break; 5659 /* 5660 case 16: 5661 LoadVT = MVT::v4i32; 5662 LoadTy = Type::getInt32Ty(CSize->getContext()); 5663 LoadTy = VectorType::get(LoadTy, 4); 5664 break; 5665 */ 5666 } 5667 5668 // This turns into unaligned loads. We only do this if the target natively 5669 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5670 // we'll only produce a small number of byte loads. 5671 5672 // Require that we can find a legal MVT, and only do this if the target 5673 // supports unaligned loads of that type. Expanding into byte loads would 5674 // bloat the code. 5675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5676 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5677 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5678 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5679 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5680 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5681 // TODO: Check alignment of src and dest ptrs. 5682 if (!TLI.isTypeLegal(LoadVT) || 5683 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5684 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5685 ActuallyDoIt = false; 5686 } 5687 5688 if (ActuallyDoIt) { 5689 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5690 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5691 5692 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5693 ISD::SETNE); 5694 processIntegerCallValue(I, Res, false); 5695 return true; 5696 } 5697 } 5698 5699 5700 return false; 5701 } 5702 5703 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5704 /// form. If so, return true and lower it, otherwise return false and it 5705 /// will be lowered like a normal call. 5706 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5707 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5708 if (I.getNumArgOperands() != 3) 5709 return false; 5710 5711 const Value *Src = I.getArgOperand(0); 5712 const Value *Char = I.getArgOperand(1); 5713 const Value *Length = I.getArgOperand(2); 5714 if (!Src->getType()->isPointerTy() || 5715 !Char->getType()->isIntegerTy() || 5716 !Length->getType()->isIntegerTy() || 5717 !I.getType()->isPointerTy()) 5718 return false; 5719 5720 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5721 std::pair<SDValue, SDValue> Res = 5722 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5723 getValue(Src), getValue(Char), getValue(Length), 5724 MachinePointerInfo(Src)); 5725 if (Res.first.getNode()) { 5726 setValue(&I, Res.first); 5727 PendingLoads.push_back(Res.second); 5728 return true; 5729 } 5730 5731 return false; 5732 } 5733 5734 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5735 /// optimized form. If so, return true and lower it, otherwise return false 5736 /// and it will be lowered like a normal call. 5737 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5738 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5739 if (I.getNumArgOperands() != 2) 5740 return false; 5741 5742 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5743 if (!Arg0->getType()->isPointerTy() || 5744 !Arg1->getType()->isPointerTy() || 5745 !I.getType()->isPointerTy()) 5746 return false; 5747 5748 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5749 std::pair<SDValue, SDValue> Res = 5750 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5751 getValue(Arg0), getValue(Arg1), 5752 MachinePointerInfo(Arg0), 5753 MachinePointerInfo(Arg1), isStpcpy); 5754 if (Res.first.getNode()) { 5755 setValue(&I, Res.first); 5756 DAG.setRoot(Res.second); 5757 return true; 5758 } 5759 5760 return false; 5761 } 5762 5763 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5764 /// If so, return true and lower it, otherwise return false and it will be 5765 /// lowered like a normal call. 5766 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5767 // Verify that the prototype makes sense. int strcmp(void*,void*) 5768 if (I.getNumArgOperands() != 2) 5769 return false; 5770 5771 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5772 if (!Arg0->getType()->isPointerTy() || 5773 !Arg1->getType()->isPointerTy() || 5774 !I.getType()->isIntegerTy()) 5775 return false; 5776 5777 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5778 std::pair<SDValue, SDValue> Res = 5779 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5780 getValue(Arg0), getValue(Arg1), 5781 MachinePointerInfo(Arg0), 5782 MachinePointerInfo(Arg1)); 5783 if (Res.first.getNode()) { 5784 processIntegerCallValue(I, Res.first, true); 5785 PendingLoads.push_back(Res.second); 5786 return true; 5787 } 5788 5789 return false; 5790 } 5791 5792 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5793 /// form. If so, return true and lower it, otherwise return false and it 5794 /// will be lowered like a normal call. 5795 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5796 // Verify that the prototype makes sense. size_t strlen(char *) 5797 if (I.getNumArgOperands() != 1) 5798 return false; 5799 5800 const Value *Arg0 = I.getArgOperand(0); 5801 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5802 return false; 5803 5804 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5805 std::pair<SDValue, SDValue> Res = 5806 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5807 getValue(Arg0), MachinePointerInfo(Arg0)); 5808 if (Res.first.getNode()) { 5809 processIntegerCallValue(I, Res.first, false); 5810 PendingLoads.push_back(Res.second); 5811 return true; 5812 } 5813 5814 return false; 5815 } 5816 5817 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5818 /// form. If so, return true and lower it, otherwise return false and it 5819 /// will be lowered like a normal call. 5820 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5821 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5822 if (I.getNumArgOperands() != 2) 5823 return false; 5824 5825 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5826 if (!Arg0->getType()->isPointerTy() || 5827 !Arg1->getType()->isIntegerTy() || 5828 !I.getType()->isIntegerTy()) 5829 return false; 5830 5831 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5832 std::pair<SDValue, SDValue> Res = 5833 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5834 getValue(Arg0), getValue(Arg1), 5835 MachinePointerInfo(Arg0)); 5836 if (Res.first.getNode()) { 5837 processIntegerCallValue(I, Res.first, false); 5838 PendingLoads.push_back(Res.second); 5839 return true; 5840 } 5841 5842 return false; 5843 } 5844 5845 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5846 /// operation (as expected), translate it to an SDNode with the specified opcode 5847 /// and return true. 5848 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5849 unsigned Opcode) { 5850 // Sanity check that it really is a unary floating-point call. 5851 if (I.getNumArgOperands() != 1 || 5852 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5853 I.getType() != I.getArgOperand(0)->getType() || 5854 !I.onlyReadsMemory()) 5855 return false; 5856 5857 SDValue Tmp = getValue(I.getArgOperand(0)); 5858 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5859 return true; 5860 } 5861 5862 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5863 // Handle inline assembly differently. 5864 if (isa<InlineAsm>(I.getCalledValue())) { 5865 visitInlineAsm(&I); 5866 return; 5867 } 5868 5869 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5870 ComputeUsesVAFloatArgument(I, &MMI); 5871 5872 const char *RenameFn = nullptr; 5873 if (Function *F = I.getCalledFunction()) { 5874 if (F->isDeclaration()) { 5875 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5876 if (unsigned IID = II->getIntrinsicID(F)) { 5877 RenameFn = visitIntrinsicCall(I, IID); 5878 if (!RenameFn) 5879 return; 5880 } 5881 } 5882 if (unsigned IID = F->getIntrinsicID()) { 5883 RenameFn = visitIntrinsicCall(I, IID); 5884 if (!RenameFn) 5885 return; 5886 } 5887 } 5888 5889 // Check for well-known libc/libm calls. If the function is internal, it 5890 // can't be a library call. 5891 LibFunc::Func Func; 5892 if (!F->hasLocalLinkage() && F->hasName() && 5893 LibInfo->getLibFunc(F->getName(), Func) && 5894 LibInfo->hasOptimizedCodeGen(Func)) { 5895 switch (Func) { 5896 default: break; 5897 case LibFunc::copysign: 5898 case LibFunc::copysignf: 5899 case LibFunc::copysignl: 5900 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5901 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5902 I.getType() == I.getArgOperand(0)->getType() && 5903 I.getType() == I.getArgOperand(1)->getType() && 5904 I.onlyReadsMemory()) { 5905 SDValue LHS = getValue(I.getArgOperand(0)); 5906 SDValue RHS = getValue(I.getArgOperand(1)); 5907 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5908 LHS.getValueType(), LHS, RHS)); 5909 return; 5910 } 5911 break; 5912 case LibFunc::fabs: 5913 case LibFunc::fabsf: 5914 case LibFunc::fabsl: 5915 if (visitUnaryFloatCall(I, ISD::FABS)) 5916 return; 5917 break; 5918 case LibFunc::sin: 5919 case LibFunc::sinf: 5920 case LibFunc::sinl: 5921 if (visitUnaryFloatCall(I, ISD::FSIN)) 5922 return; 5923 break; 5924 case LibFunc::cos: 5925 case LibFunc::cosf: 5926 case LibFunc::cosl: 5927 if (visitUnaryFloatCall(I, ISD::FCOS)) 5928 return; 5929 break; 5930 case LibFunc::sqrt: 5931 case LibFunc::sqrtf: 5932 case LibFunc::sqrtl: 5933 case LibFunc::sqrt_finite: 5934 case LibFunc::sqrtf_finite: 5935 case LibFunc::sqrtl_finite: 5936 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5937 return; 5938 break; 5939 case LibFunc::floor: 5940 case LibFunc::floorf: 5941 case LibFunc::floorl: 5942 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5943 return; 5944 break; 5945 case LibFunc::nearbyint: 5946 case LibFunc::nearbyintf: 5947 case LibFunc::nearbyintl: 5948 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5949 return; 5950 break; 5951 case LibFunc::ceil: 5952 case LibFunc::ceilf: 5953 case LibFunc::ceill: 5954 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5955 return; 5956 break; 5957 case LibFunc::rint: 5958 case LibFunc::rintf: 5959 case LibFunc::rintl: 5960 if (visitUnaryFloatCall(I, ISD::FRINT)) 5961 return; 5962 break; 5963 case LibFunc::round: 5964 case LibFunc::roundf: 5965 case LibFunc::roundl: 5966 if (visitUnaryFloatCall(I, ISD::FROUND)) 5967 return; 5968 break; 5969 case LibFunc::trunc: 5970 case LibFunc::truncf: 5971 case LibFunc::truncl: 5972 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5973 return; 5974 break; 5975 case LibFunc::log2: 5976 case LibFunc::log2f: 5977 case LibFunc::log2l: 5978 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5979 return; 5980 break; 5981 case LibFunc::exp2: 5982 case LibFunc::exp2f: 5983 case LibFunc::exp2l: 5984 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5985 return; 5986 break; 5987 case LibFunc::memcmp: 5988 if (visitMemCmpCall(I)) 5989 return; 5990 break; 5991 case LibFunc::memchr: 5992 if (visitMemChrCall(I)) 5993 return; 5994 break; 5995 case LibFunc::strcpy: 5996 if (visitStrCpyCall(I, false)) 5997 return; 5998 break; 5999 case LibFunc::stpcpy: 6000 if (visitStrCpyCall(I, true)) 6001 return; 6002 break; 6003 case LibFunc::strcmp: 6004 if (visitStrCmpCall(I)) 6005 return; 6006 break; 6007 case LibFunc::strlen: 6008 if (visitStrLenCall(I)) 6009 return; 6010 break; 6011 case LibFunc::strnlen: 6012 if (visitStrNLenCall(I)) 6013 return; 6014 break; 6015 } 6016 } 6017 } 6018 6019 SDValue Callee; 6020 if (!RenameFn) 6021 Callee = getValue(I.getCalledValue()); 6022 else 6023 Callee = DAG.getExternalSymbol(RenameFn, 6024 DAG.getTargetLoweringInfo().getPointerTy()); 6025 6026 // Check if we can potentially perform a tail call. More detailed checking is 6027 // be done within LowerCallTo, after more information about the call is known. 6028 LowerCallTo(&I, Callee, I.isTailCall()); 6029 } 6030 6031 namespace { 6032 6033 /// AsmOperandInfo - This contains information for each constraint that we are 6034 /// lowering. 6035 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6036 public: 6037 /// CallOperand - If this is the result output operand or a clobber 6038 /// this is null, otherwise it is the incoming operand to the CallInst. 6039 /// This gets modified as the asm is processed. 6040 SDValue CallOperand; 6041 6042 /// AssignedRegs - If this is a register or register class operand, this 6043 /// contains the set of register corresponding to the operand. 6044 RegsForValue AssignedRegs; 6045 6046 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6047 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6048 } 6049 6050 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6051 /// corresponds to. If there is no Value* for this operand, it returns 6052 /// MVT::Other. 6053 EVT getCallOperandValEVT(LLVMContext &Context, 6054 const TargetLowering &TLI, 6055 const DataLayout *DL) const { 6056 if (!CallOperandVal) return MVT::Other; 6057 6058 if (isa<BasicBlock>(CallOperandVal)) 6059 return TLI.getPointerTy(); 6060 6061 llvm::Type *OpTy = CallOperandVal->getType(); 6062 6063 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6064 // If this is an indirect operand, the operand is a pointer to the 6065 // accessed type. 6066 if (isIndirect) { 6067 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6068 if (!PtrTy) 6069 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6070 OpTy = PtrTy->getElementType(); 6071 } 6072 6073 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6074 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6075 if (STy->getNumElements() == 1) 6076 OpTy = STy->getElementType(0); 6077 6078 // If OpTy is not a single value, it may be a struct/union that we 6079 // can tile with integers. 6080 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6081 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6082 switch (BitSize) { 6083 default: break; 6084 case 1: 6085 case 8: 6086 case 16: 6087 case 32: 6088 case 64: 6089 case 128: 6090 OpTy = IntegerType::get(Context, BitSize); 6091 break; 6092 } 6093 } 6094 6095 return TLI.getValueType(OpTy, true); 6096 } 6097 }; 6098 6099 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6100 6101 } // end anonymous namespace 6102 6103 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6104 /// specified operand. We prefer to assign virtual registers, to allow the 6105 /// register allocator to handle the assignment process. However, if the asm 6106 /// uses features that we can't model on machineinstrs, we have SDISel do the 6107 /// allocation. This produces generally horrible, but correct, code. 6108 /// 6109 /// OpInfo describes the operand. 6110 /// 6111 static void GetRegistersForValue(SelectionDAG &DAG, 6112 const TargetLowering &TLI, 6113 SDLoc DL, 6114 SDISelAsmOperandInfo &OpInfo) { 6115 LLVMContext &Context = *DAG.getContext(); 6116 6117 MachineFunction &MF = DAG.getMachineFunction(); 6118 SmallVector<unsigned, 4> Regs; 6119 6120 // If this is a constraint for a single physreg, or a constraint for a 6121 // register class, find it. 6122 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6123 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6124 OpInfo.ConstraintVT); 6125 6126 unsigned NumRegs = 1; 6127 if (OpInfo.ConstraintVT != MVT::Other) { 6128 // If this is a FP input in an integer register (or visa versa) insert a bit 6129 // cast of the input value. More generally, handle any case where the input 6130 // value disagrees with the register class we plan to stick this in. 6131 if (OpInfo.Type == InlineAsm::isInput && 6132 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6133 // Try to convert to the first EVT that the reg class contains. If the 6134 // types are identical size, use a bitcast to convert (e.g. two differing 6135 // vector types). 6136 MVT RegVT = *PhysReg.second->vt_begin(); 6137 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6138 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6139 RegVT, OpInfo.CallOperand); 6140 OpInfo.ConstraintVT = RegVT; 6141 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6142 // If the input is a FP value and we want it in FP registers, do a 6143 // bitcast to the corresponding integer type. This turns an f64 value 6144 // into i64, which can be passed with two i32 values on a 32-bit 6145 // machine. 6146 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6147 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6148 RegVT, OpInfo.CallOperand); 6149 OpInfo.ConstraintVT = RegVT; 6150 } 6151 } 6152 6153 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6154 } 6155 6156 MVT RegVT; 6157 EVT ValueVT = OpInfo.ConstraintVT; 6158 6159 // If this is a constraint for a specific physical register, like {r17}, 6160 // assign it now. 6161 if (unsigned AssignedReg = PhysReg.first) { 6162 const TargetRegisterClass *RC = PhysReg.second; 6163 if (OpInfo.ConstraintVT == MVT::Other) 6164 ValueVT = *RC->vt_begin(); 6165 6166 // Get the actual register value type. This is important, because the user 6167 // may have asked for (e.g.) the AX register in i32 type. We need to 6168 // remember that AX is actually i16 to get the right extension. 6169 RegVT = *RC->vt_begin(); 6170 6171 // This is a explicit reference to a physical register. 6172 Regs.push_back(AssignedReg); 6173 6174 // If this is an expanded reference, add the rest of the regs to Regs. 6175 if (NumRegs != 1) { 6176 TargetRegisterClass::iterator I = RC->begin(); 6177 for (; *I != AssignedReg; ++I) 6178 assert(I != RC->end() && "Didn't find reg!"); 6179 6180 // Already added the first reg. 6181 --NumRegs; ++I; 6182 for (; NumRegs; --NumRegs, ++I) { 6183 assert(I != RC->end() && "Ran out of registers to allocate!"); 6184 Regs.push_back(*I); 6185 } 6186 } 6187 6188 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6189 return; 6190 } 6191 6192 // Otherwise, if this was a reference to an LLVM register class, create vregs 6193 // for this reference. 6194 if (const TargetRegisterClass *RC = PhysReg.second) { 6195 RegVT = *RC->vt_begin(); 6196 if (OpInfo.ConstraintVT == MVT::Other) 6197 ValueVT = RegVT; 6198 6199 // Create the appropriate number of virtual registers. 6200 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6201 for (; NumRegs; --NumRegs) 6202 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6203 6204 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6205 return; 6206 } 6207 6208 // Otherwise, we couldn't allocate enough registers for this. 6209 } 6210 6211 /// visitInlineAsm - Handle a call to an InlineAsm object. 6212 /// 6213 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6214 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6215 6216 /// ConstraintOperands - Information about all of the constraints. 6217 SDISelAsmOperandInfoVector ConstraintOperands; 6218 6219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6220 TargetLowering::AsmOperandInfoVector 6221 TargetConstraints = TLI.ParseConstraints(CS); 6222 6223 bool hasMemory = false; 6224 6225 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6226 unsigned ResNo = 0; // ResNo - The result number of the next output. 6227 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6228 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6229 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6230 6231 MVT OpVT = MVT::Other; 6232 6233 // Compute the value type for each operand. 6234 switch (OpInfo.Type) { 6235 case InlineAsm::isOutput: 6236 // Indirect outputs just consume an argument. 6237 if (OpInfo.isIndirect) { 6238 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6239 break; 6240 } 6241 6242 // The return value of the call is this value. As such, there is no 6243 // corresponding argument. 6244 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6245 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6246 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6247 } else { 6248 assert(ResNo == 0 && "Asm only has one result!"); 6249 OpVT = TLI.getSimpleValueType(CS.getType()); 6250 } 6251 ++ResNo; 6252 break; 6253 case InlineAsm::isInput: 6254 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6255 break; 6256 case InlineAsm::isClobber: 6257 // Nothing to do. 6258 break; 6259 } 6260 6261 // If this is an input or an indirect output, process the call argument. 6262 // BasicBlocks are labels, currently appearing only in asm's. 6263 if (OpInfo.CallOperandVal) { 6264 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6265 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6266 } else { 6267 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6268 } 6269 6270 OpVT = 6271 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6272 } 6273 6274 OpInfo.ConstraintVT = OpVT; 6275 6276 // Indirect operand accesses access memory. 6277 if (OpInfo.isIndirect) 6278 hasMemory = true; 6279 else { 6280 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6281 TargetLowering::ConstraintType 6282 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6283 if (CType == TargetLowering::C_Memory) { 6284 hasMemory = true; 6285 break; 6286 } 6287 } 6288 } 6289 } 6290 6291 SDValue Chain, Flag; 6292 6293 // We won't need to flush pending loads if this asm doesn't touch 6294 // memory and is nonvolatile. 6295 if (hasMemory || IA->hasSideEffects()) 6296 Chain = getRoot(); 6297 else 6298 Chain = DAG.getRoot(); 6299 6300 // Second pass over the constraints: compute which constraint option to use 6301 // and assign registers to constraints that want a specific physreg. 6302 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6303 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6304 6305 // If this is an output operand with a matching input operand, look up the 6306 // matching input. If their types mismatch, e.g. one is an integer, the 6307 // other is floating point, or their sizes are different, flag it as an 6308 // error. 6309 if (OpInfo.hasMatchingInput()) { 6310 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6311 6312 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6313 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6314 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6315 OpInfo.ConstraintVT); 6316 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6317 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6318 Input.ConstraintVT); 6319 if ((OpInfo.ConstraintVT.isInteger() != 6320 Input.ConstraintVT.isInteger()) || 6321 (MatchRC.second != InputRC.second)) { 6322 report_fatal_error("Unsupported asm: input constraint" 6323 " with a matching output constraint of" 6324 " incompatible type!"); 6325 } 6326 Input.ConstraintVT = OpInfo.ConstraintVT; 6327 } 6328 } 6329 6330 // Compute the constraint code and ConstraintType to use. 6331 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6332 6333 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6334 OpInfo.Type == InlineAsm::isClobber) 6335 continue; 6336 6337 // If this is a memory input, and if the operand is not indirect, do what we 6338 // need to to provide an address for the memory input. 6339 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6340 !OpInfo.isIndirect) { 6341 assert((OpInfo.isMultipleAlternative || 6342 (OpInfo.Type == InlineAsm::isInput)) && 6343 "Can only indirectify direct input operands!"); 6344 6345 // Memory operands really want the address of the value. If we don't have 6346 // an indirect input, put it in the constpool if we can, otherwise spill 6347 // it to a stack slot. 6348 // TODO: This isn't quite right. We need to handle these according to 6349 // the addressing mode that the constraint wants. Also, this may take 6350 // an additional register for the computation and we don't want that 6351 // either. 6352 6353 // If the operand is a float, integer, or vector constant, spill to a 6354 // constant pool entry to get its address. 6355 const Value *OpVal = OpInfo.CallOperandVal; 6356 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6357 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6358 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6359 TLI.getPointerTy()); 6360 } else { 6361 // Otherwise, create a stack slot and emit a store to it before the 6362 // asm. 6363 Type *Ty = OpVal->getType(); 6364 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6365 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6366 MachineFunction &MF = DAG.getMachineFunction(); 6367 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6368 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6369 Chain = DAG.getStore(Chain, getCurSDLoc(), 6370 OpInfo.CallOperand, StackSlot, 6371 MachinePointerInfo::getFixedStack(SSFI), 6372 false, false, 0); 6373 OpInfo.CallOperand = StackSlot; 6374 } 6375 6376 // There is no longer a Value* corresponding to this operand. 6377 OpInfo.CallOperandVal = nullptr; 6378 6379 // It is now an indirect operand. 6380 OpInfo.isIndirect = true; 6381 } 6382 6383 // If this constraint is for a specific register, allocate it before 6384 // anything else. 6385 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6386 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6387 } 6388 6389 // Second pass - Loop over all of the operands, assigning virtual or physregs 6390 // to register class operands. 6391 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6392 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6393 6394 // C_Register operands have already been allocated, Other/Memory don't need 6395 // to be. 6396 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6397 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6398 } 6399 6400 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6401 std::vector<SDValue> AsmNodeOperands; 6402 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6403 AsmNodeOperands.push_back( 6404 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6405 TLI.getPointerTy())); 6406 6407 // If we have a !srcloc metadata node associated with it, we want to attach 6408 // this to the ultimately generated inline asm machineinstr. To do this, we 6409 // pass in the third operand as this (potentially null) inline asm MDNode. 6410 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6411 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6412 6413 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6414 // bits as operand 3. 6415 unsigned ExtraInfo = 0; 6416 if (IA->hasSideEffects()) 6417 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6418 if (IA->isAlignStack()) 6419 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6420 // Set the asm dialect. 6421 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6422 6423 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6424 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6425 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6426 6427 // Compute the constraint code and ConstraintType to use. 6428 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6429 6430 // Ideally, we would only check against memory constraints. However, the 6431 // meaning of an other constraint can be target-specific and we can't easily 6432 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6433 // for other constriants as well. 6434 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6435 OpInfo.ConstraintType == TargetLowering::C_Other) { 6436 if (OpInfo.Type == InlineAsm::isInput) 6437 ExtraInfo |= InlineAsm::Extra_MayLoad; 6438 else if (OpInfo.Type == InlineAsm::isOutput) 6439 ExtraInfo |= InlineAsm::Extra_MayStore; 6440 else if (OpInfo.Type == InlineAsm::isClobber) 6441 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6442 } 6443 } 6444 6445 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6446 TLI.getPointerTy())); 6447 6448 // Loop over all of the inputs, copying the operand values into the 6449 // appropriate registers and processing the output regs. 6450 RegsForValue RetValRegs; 6451 6452 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6453 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6454 6455 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6456 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6457 6458 switch (OpInfo.Type) { 6459 case InlineAsm::isOutput: { 6460 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6461 OpInfo.ConstraintType != TargetLowering::C_Register) { 6462 // Memory output, or 'other' output (e.g. 'X' constraint). 6463 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6464 6465 // Add information to the INLINEASM node to know about this output. 6466 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6467 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6468 TLI.getPointerTy())); 6469 AsmNodeOperands.push_back(OpInfo.CallOperand); 6470 break; 6471 } 6472 6473 // Otherwise, this is a register or register class output. 6474 6475 // Copy the output from the appropriate register. Find a register that 6476 // we can use. 6477 if (OpInfo.AssignedRegs.Regs.empty()) { 6478 LLVMContext &Ctx = *DAG.getContext(); 6479 Ctx.emitError(CS.getInstruction(), 6480 "couldn't allocate output register for constraint '" + 6481 Twine(OpInfo.ConstraintCode) + "'"); 6482 return; 6483 } 6484 6485 // If this is an indirect operand, store through the pointer after the 6486 // asm. 6487 if (OpInfo.isIndirect) { 6488 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6489 OpInfo.CallOperandVal)); 6490 } else { 6491 // This is the result value of the call. 6492 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6493 // Concatenate this output onto the outputs list. 6494 RetValRegs.append(OpInfo.AssignedRegs); 6495 } 6496 6497 // Add information to the INLINEASM node to know that this register is 6498 // set. 6499 OpInfo.AssignedRegs 6500 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6501 ? InlineAsm::Kind_RegDefEarlyClobber 6502 : InlineAsm::Kind_RegDef, 6503 false, 0, DAG, AsmNodeOperands); 6504 break; 6505 } 6506 case InlineAsm::isInput: { 6507 SDValue InOperandVal = OpInfo.CallOperand; 6508 6509 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6510 // If this is required to match an output register we have already set, 6511 // just use its register. 6512 unsigned OperandNo = OpInfo.getMatchedOperand(); 6513 6514 // Scan until we find the definition we already emitted of this operand. 6515 // When we find it, create a RegsForValue operand. 6516 unsigned CurOp = InlineAsm::Op_FirstOperand; 6517 for (; OperandNo; --OperandNo) { 6518 // Advance to the next operand. 6519 unsigned OpFlag = 6520 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6521 assert((InlineAsm::isRegDefKind(OpFlag) || 6522 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6523 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6524 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6525 } 6526 6527 unsigned OpFlag = 6528 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6529 if (InlineAsm::isRegDefKind(OpFlag) || 6530 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6531 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6532 if (OpInfo.isIndirect) { 6533 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6534 LLVMContext &Ctx = *DAG.getContext(); 6535 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6536 " don't know how to handle tied " 6537 "indirect register inputs"); 6538 return; 6539 } 6540 6541 RegsForValue MatchedRegs; 6542 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6543 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6544 MatchedRegs.RegVTs.push_back(RegVT); 6545 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6546 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6547 i != e; ++i) { 6548 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6549 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6550 else { 6551 LLVMContext &Ctx = *DAG.getContext(); 6552 Ctx.emitError(CS.getInstruction(), 6553 "inline asm error: This value" 6554 " type register class is not natively supported!"); 6555 return; 6556 } 6557 } 6558 // Use the produced MatchedRegs object to 6559 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6560 Chain, &Flag, CS.getInstruction()); 6561 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6562 true, OpInfo.getMatchedOperand(), 6563 DAG, AsmNodeOperands); 6564 break; 6565 } 6566 6567 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6568 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6569 "Unexpected number of operands"); 6570 // Add information to the INLINEASM node to know about this input. 6571 // See InlineAsm.h isUseOperandTiedToDef. 6572 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6573 OpInfo.getMatchedOperand()); 6574 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6575 TLI.getPointerTy())); 6576 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6577 break; 6578 } 6579 6580 // Treat indirect 'X' constraint as memory. 6581 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6582 OpInfo.isIndirect) 6583 OpInfo.ConstraintType = TargetLowering::C_Memory; 6584 6585 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6586 std::vector<SDValue> Ops; 6587 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6588 Ops, DAG); 6589 if (Ops.empty()) { 6590 LLVMContext &Ctx = *DAG.getContext(); 6591 Ctx.emitError(CS.getInstruction(), 6592 "invalid operand for inline asm constraint '" + 6593 Twine(OpInfo.ConstraintCode) + "'"); 6594 return; 6595 } 6596 6597 // Add information to the INLINEASM node to know about this input. 6598 unsigned ResOpType = 6599 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6600 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6601 TLI.getPointerTy())); 6602 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6603 break; 6604 } 6605 6606 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6607 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6608 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6609 "Memory operands expect pointer values"); 6610 6611 // Add information to the INLINEASM node to know about this input. 6612 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6613 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6614 TLI.getPointerTy())); 6615 AsmNodeOperands.push_back(InOperandVal); 6616 break; 6617 } 6618 6619 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6620 OpInfo.ConstraintType == TargetLowering::C_Register) && 6621 "Unknown constraint type!"); 6622 6623 // TODO: Support this. 6624 if (OpInfo.isIndirect) { 6625 LLVMContext &Ctx = *DAG.getContext(); 6626 Ctx.emitError(CS.getInstruction(), 6627 "Don't know how to handle indirect register inputs yet " 6628 "for constraint '" + 6629 Twine(OpInfo.ConstraintCode) + "'"); 6630 return; 6631 } 6632 6633 // Copy the input into the appropriate registers. 6634 if (OpInfo.AssignedRegs.Regs.empty()) { 6635 LLVMContext &Ctx = *DAG.getContext(); 6636 Ctx.emitError(CS.getInstruction(), 6637 "couldn't allocate input reg for constraint '" + 6638 Twine(OpInfo.ConstraintCode) + "'"); 6639 return; 6640 } 6641 6642 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6643 Chain, &Flag, CS.getInstruction()); 6644 6645 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6646 DAG, AsmNodeOperands); 6647 break; 6648 } 6649 case InlineAsm::isClobber: { 6650 // Add the clobbered value to the operand list, so that the register 6651 // allocator is aware that the physreg got clobbered. 6652 if (!OpInfo.AssignedRegs.Regs.empty()) 6653 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6654 false, 0, DAG, 6655 AsmNodeOperands); 6656 break; 6657 } 6658 } 6659 } 6660 6661 // Finish up input operands. Set the input chain and add the flag last. 6662 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6663 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6664 6665 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6666 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6667 Flag = Chain.getValue(1); 6668 6669 // If this asm returns a register value, copy the result from that register 6670 // and set it as the value of the call. 6671 if (!RetValRegs.Regs.empty()) { 6672 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6673 Chain, &Flag, CS.getInstruction()); 6674 6675 // FIXME: Why don't we do this for inline asms with MRVs? 6676 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6677 EVT ResultType = TLI.getValueType(CS.getType()); 6678 6679 // If any of the results of the inline asm is a vector, it may have the 6680 // wrong width/num elts. This can happen for register classes that can 6681 // contain multiple different value types. The preg or vreg allocated may 6682 // not have the same VT as was expected. Convert it to the right type 6683 // with bit_convert. 6684 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6685 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6686 ResultType, Val); 6687 6688 } else if (ResultType != Val.getValueType() && 6689 ResultType.isInteger() && Val.getValueType().isInteger()) { 6690 // If a result value was tied to an input value, the computed result may 6691 // have a wider width than the expected result. Extract the relevant 6692 // portion. 6693 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6694 } 6695 6696 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6697 } 6698 6699 setValue(CS.getInstruction(), Val); 6700 // Don't need to use this as a chain in this case. 6701 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6702 return; 6703 } 6704 6705 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6706 6707 // Process indirect outputs, first output all of the flagged copies out of 6708 // physregs. 6709 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6710 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6711 const Value *Ptr = IndirectStoresToEmit[i].second; 6712 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6713 Chain, &Flag, IA); 6714 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6715 } 6716 6717 // Emit the non-flagged stores from the physregs. 6718 SmallVector<SDValue, 8> OutChains; 6719 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6720 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6721 StoresToEmit[i].first, 6722 getValue(StoresToEmit[i].second), 6723 MachinePointerInfo(StoresToEmit[i].second), 6724 false, false, 0); 6725 OutChains.push_back(Val); 6726 } 6727 6728 if (!OutChains.empty()) 6729 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6730 6731 DAG.setRoot(Chain); 6732 } 6733 6734 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6735 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6736 MVT::Other, getRoot(), 6737 getValue(I.getArgOperand(0)), 6738 DAG.getSrcValue(I.getArgOperand(0)))); 6739 } 6740 6741 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6742 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6743 const DataLayout &DL = *TLI.getDataLayout(); 6744 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6745 getRoot(), getValue(I.getOperand(0)), 6746 DAG.getSrcValue(I.getOperand(0)), 6747 DL.getABITypeAlignment(I.getType())); 6748 setValue(&I, V); 6749 DAG.setRoot(V.getValue(1)); 6750 } 6751 6752 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6753 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6754 MVT::Other, getRoot(), 6755 getValue(I.getArgOperand(0)), 6756 DAG.getSrcValue(I.getArgOperand(0)))); 6757 } 6758 6759 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6760 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6761 MVT::Other, getRoot(), 6762 getValue(I.getArgOperand(0)), 6763 getValue(I.getArgOperand(1)), 6764 DAG.getSrcValue(I.getArgOperand(0)), 6765 DAG.getSrcValue(I.getArgOperand(1)))); 6766 } 6767 6768 /// \brief Lower an argument list according to the target calling convention. 6769 /// 6770 /// \return A tuple of <return-value, token-chain> 6771 /// 6772 /// This is a helper for lowering intrinsics that follow a target calling 6773 /// convention or require stack pointer adjustment. Only a subset of the 6774 /// intrinsic's operands need to participate in the calling convention. 6775 std::pair<SDValue, SDValue> 6776 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6777 unsigned NumArgs, SDValue Callee, 6778 bool useVoidTy) { 6779 TargetLowering::ArgListTy Args; 6780 Args.reserve(NumArgs); 6781 6782 // Populate the argument list. 6783 // Attributes for args start at offset 1, after the return attribute. 6784 ImmutableCallSite CS(&CI); 6785 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6786 ArgI != ArgE; ++ArgI) { 6787 const Value *V = CI.getOperand(ArgI); 6788 6789 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6790 6791 TargetLowering::ArgListEntry Entry; 6792 Entry.Node = getValue(V); 6793 Entry.Ty = V->getType(); 6794 Entry.setAttributes(&CS, AttrI); 6795 Args.push_back(Entry); 6796 } 6797 6798 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6799 TargetLowering::CallLoweringInfo CLI(DAG); 6800 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6801 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6802 .setDiscardResult(!CI.use_empty()); 6803 6804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6805 return TLI.LowerCallTo(CLI); 6806 } 6807 6808 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6809 /// or patchpoint target node's operand list. 6810 /// 6811 /// Constants are converted to TargetConstants purely as an optimization to 6812 /// avoid constant materialization and register allocation. 6813 /// 6814 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6815 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6816 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6817 /// address materialization and register allocation, but may also be required 6818 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6819 /// alloca in the entry block, then the runtime may assume that the alloca's 6820 /// StackMap location can be read immediately after compilation and that the 6821 /// location is valid at any point during execution (this is similar to the 6822 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6823 /// only available in a register, then the runtime would need to trap when 6824 /// execution reaches the StackMap in order to read the alloca's location. 6825 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6826 SmallVectorImpl<SDValue> &Ops, 6827 SelectionDAGBuilder &Builder) { 6828 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6829 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6830 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6831 Ops.push_back( 6832 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6833 Ops.push_back( 6834 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6835 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6836 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6837 Ops.push_back( 6838 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6839 } else 6840 Ops.push_back(OpVal); 6841 } 6842 } 6843 6844 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6845 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6846 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6847 // [live variables...]) 6848 6849 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6850 6851 SDValue Chain, InFlag, Callee, NullPtr; 6852 SmallVector<SDValue, 32> Ops; 6853 6854 SDLoc DL = getCurSDLoc(); 6855 Callee = getValue(CI.getCalledValue()); 6856 NullPtr = DAG.getIntPtrConstant(0, true); 6857 6858 // The stackmap intrinsic only records the live variables (the arguemnts 6859 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6860 // intrinsic, this won't be lowered to a function call. This means we don't 6861 // have to worry about calling conventions and target specific lowering code. 6862 // Instead we perform the call lowering right here. 6863 // 6864 // chain, flag = CALLSEQ_START(chain, 0) 6865 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6866 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6867 // 6868 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6869 InFlag = Chain.getValue(1); 6870 6871 // Add the <id> and <numBytes> constants. 6872 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6873 Ops.push_back(DAG.getTargetConstant( 6874 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6875 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6876 Ops.push_back(DAG.getTargetConstant( 6877 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6878 6879 // Push live variables for the stack map. 6880 addStackMapLiveVars(CI, 2, Ops, *this); 6881 6882 // We are not pushing any register mask info here on the operands list, 6883 // because the stackmap doesn't clobber anything. 6884 6885 // Push the chain and the glue flag. 6886 Ops.push_back(Chain); 6887 Ops.push_back(InFlag); 6888 6889 // Create the STACKMAP node. 6890 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6891 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6892 Chain = SDValue(SM, 0); 6893 InFlag = Chain.getValue(1); 6894 6895 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6896 6897 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6898 6899 // Set the root to the target-lowered call chain. 6900 DAG.setRoot(Chain); 6901 6902 // Inform the Frame Information that we have a stackmap in this function. 6903 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6904 } 6905 6906 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6907 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6908 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6909 // i32 <numBytes>, 6910 // i8* <target>, 6911 // i32 <numArgs>, 6912 // [Args...], 6913 // [live variables...]) 6914 6915 CallingConv::ID CC = CI.getCallingConv(); 6916 bool isAnyRegCC = CC == CallingConv::AnyReg; 6917 bool hasDef = !CI.getType()->isVoidTy(); 6918 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6919 6920 // Get the real number of arguments participating in the call <numArgs> 6921 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6922 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6923 6924 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6925 // Intrinsics include all meta-operands up to but not including CC. 6926 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6927 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6928 "Not enough arguments provided to the patchpoint intrinsic"); 6929 6930 // For AnyRegCC the arguments are lowered later on manually. 6931 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6932 std::pair<SDValue, SDValue> Result = 6933 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6934 6935 // Set the root to the target-lowered call chain. 6936 SDValue Chain = Result.second; 6937 DAG.setRoot(Chain); 6938 6939 SDNode *CallEnd = Chain.getNode(); 6940 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6941 CallEnd = CallEnd->getOperand(0).getNode(); 6942 6943 /// Get a call instruction from the call sequence chain. 6944 /// Tail calls are not allowed. 6945 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6946 "Expected a callseq node."); 6947 SDNode *Call = CallEnd->getOperand(0).getNode(); 6948 bool hasGlue = Call->getGluedNode(); 6949 6950 // Replace the target specific call node with the patchable intrinsic. 6951 SmallVector<SDValue, 8> Ops; 6952 6953 // Add the <id> and <numBytes> constants. 6954 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6955 Ops.push_back(DAG.getTargetConstant( 6956 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6957 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6958 Ops.push_back(DAG.getTargetConstant( 6959 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6960 6961 // Assume that the Callee is a constant address. 6962 // FIXME: handle function symbols in the future. 6963 Ops.push_back( 6964 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 6965 /*isTarget=*/true)); 6966 6967 // Adjust <numArgs> to account for any arguments that have been passed on the 6968 // stack instead. 6969 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6970 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 6971 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 6972 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 6973 6974 // Add the calling convention 6975 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 6976 6977 // Add the arguments we omitted previously. The register allocator should 6978 // place these in any free register. 6979 if (isAnyRegCC) 6980 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6981 Ops.push_back(getValue(CI.getArgOperand(i))); 6982 6983 // Push the arguments from the call instruction up to the register mask. 6984 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 6985 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 6986 Ops.push_back(*i); 6987 6988 // Push live variables for the stack map. 6989 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 6990 6991 // Push the register mask info. 6992 if (hasGlue) 6993 Ops.push_back(*(Call->op_end()-2)); 6994 else 6995 Ops.push_back(*(Call->op_end()-1)); 6996 6997 // Push the chain (this is originally the first operand of the call, but 6998 // becomes now the last or second to last operand). 6999 Ops.push_back(*(Call->op_begin())); 7000 7001 // Push the glue flag (last operand). 7002 if (hasGlue) 7003 Ops.push_back(*(Call->op_end()-1)); 7004 7005 SDVTList NodeTys; 7006 if (isAnyRegCC && hasDef) { 7007 // Create the return types based on the intrinsic definition 7008 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7009 SmallVector<EVT, 3> ValueVTs; 7010 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7011 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7012 7013 // There is always a chain and a glue type at the end 7014 ValueVTs.push_back(MVT::Other); 7015 ValueVTs.push_back(MVT::Glue); 7016 NodeTys = DAG.getVTList(ValueVTs); 7017 } else 7018 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7019 7020 // Replace the target specific call node with a PATCHPOINT node. 7021 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7022 getCurSDLoc(), NodeTys, Ops); 7023 7024 // Update the NodeMap. 7025 if (hasDef) { 7026 if (isAnyRegCC) 7027 setValue(&CI, SDValue(MN, 0)); 7028 else 7029 setValue(&CI, Result.first); 7030 } 7031 7032 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7033 // call sequence. Furthermore the location of the chain and glue can change 7034 // when the AnyReg calling convention is used and the intrinsic returns a 7035 // value. 7036 if (isAnyRegCC && hasDef) { 7037 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7038 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7039 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7040 } else 7041 DAG.ReplaceAllUsesWith(Call, MN); 7042 DAG.DeleteNode(Call); 7043 7044 // Inform the Frame Information that we have a patchpoint in this function. 7045 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7046 } 7047 7048 /// Returns an AttributeSet representing the attributes applied to the return 7049 /// value of the given call. 7050 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7051 SmallVector<Attribute::AttrKind, 2> Attrs; 7052 if (CLI.RetSExt) 7053 Attrs.push_back(Attribute::SExt); 7054 if (CLI.RetZExt) 7055 Attrs.push_back(Attribute::ZExt); 7056 if (CLI.IsInReg) 7057 Attrs.push_back(Attribute::InReg); 7058 7059 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7060 Attrs); 7061 } 7062 7063 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7064 /// implementation, which just calls LowerCall. 7065 /// FIXME: When all targets are 7066 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7067 std::pair<SDValue, SDValue> 7068 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7069 // Handle the incoming return values from the call. 7070 CLI.Ins.clear(); 7071 Type *OrigRetTy = CLI.RetTy; 7072 SmallVector<EVT, 4> RetTys; 7073 SmallVector<uint64_t, 4> Offsets; 7074 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7075 7076 SmallVector<ISD::OutputArg, 4> Outs; 7077 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7078 7079 bool CanLowerReturn = 7080 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7081 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7082 7083 SDValue DemoteStackSlot; 7084 int DemoteStackIdx = -100; 7085 if (!CanLowerReturn) { 7086 // FIXME: equivalent assert? 7087 // assert(!CS.hasInAllocaArgument() && 7088 // "sret demotion is incompatible with inalloca"); 7089 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7090 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7091 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7092 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7093 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7094 7095 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7096 ArgListEntry Entry; 7097 Entry.Node = DemoteStackSlot; 7098 Entry.Ty = StackSlotPtrType; 7099 Entry.isSExt = false; 7100 Entry.isZExt = false; 7101 Entry.isInReg = false; 7102 Entry.isSRet = true; 7103 Entry.isNest = false; 7104 Entry.isByVal = false; 7105 Entry.isReturned = false; 7106 Entry.Alignment = Align; 7107 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7108 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7109 } else { 7110 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7111 EVT VT = RetTys[I]; 7112 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7113 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7114 for (unsigned i = 0; i != NumRegs; ++i) { 7115 ISD::InputArg MyFlags; 7116 MyFlags.VT = RegisterVT; 7117 MyFlags.ArgVT = VT; 7118 MyFlags.Used = CLI.IsReturnValueUsed; 7119 if (CLI.RetSExt) 7120 MyFlags.Flags.setSExt(); 7121 if (CLI.RetZExt) 7122 MyFlags.Flags.setZExt(); 7123 if (CLI.IsInReg) 7124 MyFlags.Flags.setInReg(); 7125 CLI.Ins.push_back(MyFlags); 7126 } 7127 } 7128 } 7129 7130 // Handle all of the outgoing arguments. 7131 CLI.Outs.clear(); 7132 CLI.OutVals.clear(); 7133 ArgListTy &Args = CLI.getArgs(); 7134 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7135 SmallVector<EVT, 4> ValueVTs; 7136 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7137 Type *FinalType = Args[i].Ty; 7138 if (Args[i].isByVal) 7139 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7140 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7141 FinalType, CLI.CallConv, CLI.IsVarArg); 7142 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7143 ++Value) { 7144 EVT VT = ValueVTs[Value]; 7145 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7146 SDValue Op = SDValue(Args[i].Node.getNode(), 7147 Args[i].Node.getResNo() + Value); 7148 ISD::ArgFlagsTy Flags; 7149 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7150 7151 if (Args[i].isZExt) 7152 Flags.setZExt(); 7153 if (Args[i].isSExt) 7154 Flags.setSExt(); 7155 if (Args[i].isInReg) 7156 Flags.setInReg(); 7157 if (Args[i].isSRet) 7158 Flags.setSRet(); 7159 if (Args[i].isByVal) 7160 Flags.setByVal(); 7161 if (Args[i].isInAlloca) { 7162 Flags.setInAlloca(); 7163 // Set the byval flag for CCAssignFn callbacks that don't know about 7164 // inalloca. This way we can know how many bytes we should've allocated 7165 // and how many bytes a callee cleanup function will pop. If we port 7166 // inalloca to more targets, we'll have to add custom inalloca handling 7167 // in the various CC lowering callbacks. 7168 Flags.setByVal(); 7169 } 7170 if (Args[i].isByVal || Args[i].isInAlloca) { 7171 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7172 Type *ElementTy = Ty->getElementType(); 7173 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7174 // For ByVal, alignment should come from FE. BE will guess if this 7175 // info is not there but there are cases it cannot get right. 7176 unsigned FrameAlign; 7177 if (Args[i].Alignment) 7178 FrameAlign = Args[i].Alignment; 7179 else 7180 FrameAlign = getByValTypeAlignment(ElementTy); 7181 Flags.setByValAlign(FrameAlign); 7182 } 7183 if (Args[i].isNest) 7184 Flags.setNest(); 7185 if (NeedsRegBlock) { 7186 Flags.setInConsecutiveRegs(); 7187 if (Value == NumValues - 1) 7188 Flags.setInConsecutiveRegsLast(); 7189 } 7190 Flags.setOrigAlign(OriginalAlignment); 7191 7192 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7193 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7194 SmallVector<SDValue, 4> Parts(NumParts); 7195 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7196 7197 if (Args[i].isSExt) 7198 ExtendKind = ISD::SIGN_EXTEND; 7199 else if (Args[i].isZExt) 7200 ExtendKind = ISD::ZERO_EXTEND; 7201 7202 // Conservatively only handle 'returned' on non-vectors for now 7203 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7204 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7205 "unexpected use of 'returned'"); 7206 // Before passing 'returned' to the target lowering code, ensure that 7207 // either the register MVT and the actual EVT are the same size or that 7208 // the return value and argument are extended in the same way; in these 7209 // cases it's safe to pass the argument register value unchanged as the 7210 // return register value (although it's at the target's option whether 7211 // to do so) 7212 // TODO: allow code generation to take advantage of partially preserved 7213 // registers rather than clobbering the entire register when the 7214 // parameter extension method is not compatible with the return 7215 // extension method 7216 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7217 (ExtendKind != ISD::ANY_EXTEND && 7218 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7219 Flags.setReturned(); 7220 } 7221 7222 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7223 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7224 7225 for (unsigned j = 0; j != NumParts; ++j) { 7226 // if it isn't first piece, alignment must be 1 7227 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7228 i < CLI.NumFixedArgs, 7229 i, j*Parts[j].getValueType().getStoreSize()); 7230 if (NumParts > 1 && j == 0) 7231 MyFlags.Flags.setSplit(); 7232 else if (j != 0) 7233 MyFlags.Flags.setOrigAlign(1); 7234 7235 CLI.Outs.push_back(MyFlags); 7236 CLI.OutVals.push_back(Parts[j]); 7237 } 7238 } 7239 } 7240 7241 SmallVector<SDValue, 4> InVals; 7242 CLI.Chain = LowerCall(CLI, InVals); 7243 7244 // Verify that the target's LowerCall behaved as expected. 7245 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7246 "LowerCall didn't return a valid chain!"); 7247 assert((!CLI.IsTailCall || InVals.empty()) && 7248 "LowerCall emitted a return value for a tail call!"); 7249 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7250 "LowerCall didn't emit the correct number of values!"); 7251 7252 // For a tail call, the return value is merely live-out and there aren't 7253 // any nodes in the DAG representing it. Return a special value to 7254 // indicate that a tail call has been emitted and no more Instructions 7255 // should be processed in the current block. 7256 if (CLI.IsTailCall) { 7257 CLI.DAG.setRoot(CLI.Chain); 7258 return std::make_pair(SDValue(), SDValue()); 7259 } 7260 7261 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7262 assert(InVals[i].getNode() && 7263 "LowerCall emitted a null value!"); 7264 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7265 "LowerCall emitted a value with the wrong type!"); 7266 }); 7267 7268 SmallVector<SDValue, 4> ReturnValues; 7269 if (!CanLowerReturn) { 7270 // The instruction result is the result of loading from the 7271 // hidden sret parameter. 7272 SmallVector<EVT, 1> PVTs; 7273 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7274 7275 ComputeValueVTs(*this, PtrRetTy, PVTs); 7276 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7277 EVT PtrVT = PVTs[0]; 7278 7279 unsigned NumValues = RetTys.size(); 7280 ReturnValues.resize(NumValues); 7281 SmallVector<SDValue, 4> Chains(NumValues); 7282 7283 for (unsigned i = 0; i < NumValues; ++i) { 7284 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7285 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7286 SDValue L = CLI.DAG.getLoad( 7287 RetTys[i], CLI.DL, CLI.Chain, Add, 7288 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7289 false, false, 1); 7290 ReturnValues[i] = L; 7291 Chains[i] = L.getValue(1); 7292 } 7293 7294 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7295 } else { 7296 // Collect the legal value parts into potentially illegal values 7297 // that correspond to the original function's return values. 7298 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7299 if (CLI.RetSExt) 7300 AssertOp = ISD::AssertSext; 7301 else if (CLI.RetZExt) 7302 AssertOp = ISD::AssertZext; 7303 unsigned CurReg = 0; 7304 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7305 EVT VT = RetTys[I]; 7306 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7307 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7308 7309 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7310 NumRegs, RegisterVT, VT, nullptr, 7311 AssertOp)); 7312 CurReg += NumRegs; 7313 } 7314 7315 // For a function returning void, there is no return value. We can't create 7316 // such a node, so we just return a null return value in that case. In 7317 // that case, nothing will actually look at the value. 7318 if (ReturnValues.empty()) 7319 return std::make_pair(SDValue(), CLI.Chain); 7320 } 7321 7322 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7323 CLI.DAG.getVTList(RetTys), ReturnValues); 7324 return std::make_pair(Res, CLI.Chain); 7325 } 7326 7327 void TargetLowering::LowerOperationWrapper(SDNode *N, 7328 SmallVectorImpl<SDValue> &Results, 7329 SelectionDAG &DAG) const { 7330 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7331 if (Res.getNode()) 7332 Results.push_back(Res); 7333 } 7334 7335 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7336 llvm_unreachable("LowerOperation not implemented for this target!"); 7337 } 7338 7339 void 7340 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7341 SDValue Op = getNonRegisterValue(V); 7342 assert((Op.getOpcode() != ISD::CopyFromReg || 7343 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7344 "Copy from a reg to the same reg!"); 7345 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7346 7347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7348 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7349 SDValue Chain = DAG.getEntryNode(); 7350 7351 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7352 FuncInfo.PreferredExtendType.end()) 7353 ? ISD::ANY_EXTEND 7354 : FuncInfo.PreferredExtendType[V]; 7355 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7356 PendingExports.push_back(Chain); 7357 } 7358 7359 #include "llvm/CodeGen/SelectionDAGISel.h" 7360 7361 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7362 /// entry block, return true. This includes arguments used by switches, since 7363 /// the switch may expand into multiple basic blocks. 7364 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7365 // With FastISel active, we may be splitting blocks, so force creation 7366 // of virtual registers for all non-dead arguments. 7367 if (FastISel) 7368 return A->use_empty(); 7369 7370 const BasicBlock *Entry = A->getParent()->begin(); 7371 for (const User *U : A->users()) 7372 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7373 return false; // Use not in entry block. 7374 7375 return true; 7376 } 7377 7378 void SelectionDAGISel::LowerArguments(const Function &F) { 7379 SelectionDAG &DAG = SDB->DAG; 7380 SDLoc dl = SDB->getCurSDLoc(); 7381 const DataLayout *DL = TLI->getDataLayout(); 7382 SmallVector<ISD::InputArg, 16> Ins; 7383 7384 if (!FuncInfo->CanLowerReturn) { 7385 // Put in an sret pointer parameter before all the other parameters. 7386 SmallVector<EVT, 1> ValueVTs; 7387 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7388 7389 // NOTE: Assuming that a pointer will never break down to more than one VT 7390 // or one register. 7391 ISD::ArgFlagsTy Flags; 7392 Flags.setSRet(); 7393 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7394 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7395 Ins.push_back(RetArg); 7396 } 7397 7398 // Set up the incoming argument description vector. 7399 unsigned Idx = 1; 7400 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7401 I != E; ++I, ++Idx) { 7402 SmallVector<EVT, 4> ValueVTs; 7403 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7404 bool isArgValueUsed = !I->use_empty(); 7405 unsigned PartBase = 0; 7406 Type *FinalType = I->getType(); 7407 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7408 FinalType = cast<PointerType>(FinalType)->getElementType(); 7409 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7410 FinalType, F.getCallingConv(), F.isVarArg()); 7411 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7412 Value != NumValues; ++Value) { 7413 EVT VT = ValueVTs[Value]; 7414 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7415 ISD::ArgFlagsTy Flags; 7416 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7417 7418 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7419 Flags.setZExt(); 7420 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7421 Flags.setSExt(); 7422 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7423 Flags.setInReg(); 7424 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7425 Flags.setSRet(); 7426 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7427 Flags.setByVal(); 7428 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7429 Flags.setInAlloca(); 7430 // Set the byval flag for CCAssignFn callbacks that don't know about 7431 // inalloca. This way we can know how many bytes we should've allocated 7432 // and how many bytes a callee cleanup function will pop. If we port 7433 // inalloca to more targets, we'll have to add custom inalloca handling 7434 // in the various CC lowering callbacks. 7435 Flags.setByVal(); 7436 } 7437 if (Flags.isByVal() || Flags.isInAlloca()) { 7438 PointerType *Ty = cast<PointerType>(I->getType()); 7439 Type *ElementTy = Ty->getElementType(); 7440 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7441 // For ByVal, alignment should be passed from FE. BE will guess if 7442 // this info is not there but there are cases it cannot get right. 7443 unsigned FrameAlign; 7444 if (F.getParamAlignment(Idx)) 7445 FrameAlign = F.getParamAlignment(Idx); 7446 else 7447 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7448 Flags.setByValAlign(FrameAlign); 7449 } 7450 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7451 Flags.setNest(); 7452 if (NeedsRegBlock) { 7453 Flags.setInConsecutiveRegs(); 7454 if (Value == NumValues - 1) 7455 Flags.setInConsecutiveRegsLast(); 7456 } 7457 Flags.setOrigAlign(OriginalAlignment); 7458 7459 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7460 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7461 for (unsigned i = 0; i != NumRegs; ++i) { 7462 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7463 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7464 if (NumRegs > 1 && i == 0) 7465 MyFlags.Flags.setSplit(); 7466 // if it isn't first piece, alignment must be 1 7467 else if (i > 0) 7468 MyFlags.Flags.setOrigAlign(1); 7469 Ins.push_back(MyFlags); 7470 } 7471 PartBase += VT.getStoreSize(); 7472 } 7473 } 7474 7475 // Call the target to set up the argument values. 7476 SmallVector<SDValue, 8> InVals; 7477 SDValue NewRoot = TLI->LowerFormalArguments( 7478 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7479 7480 // Verify that the target's LowerFormalArguments behaved as expected. 7481 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7482 "LowerFormalArguments didn't return a valid chain!"); 7483 assert(InVals.size() == Ins.size() && 7484 "LowerFormalArguments didn't emit the correct number of values!"); 7485 DEBUG({ 7486 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7487 assert(InVals[i].getNode() && 7488 "LowerFormalArguments emitted a null value!"); 7489 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7490 "LowerFormalArguments emitted a value with the wrong type!"); 7491 } 7492 }); 7493 7494 // Update the DAG with the new chain value resulting from argument lowering. 7495 DAG.setRoot(NewRoot); 7496 7497 // Set up the argument values. 7498 unsigned i = 0; 7499 Idx = 1; 7500 if (!FuncInfo->CanLowerReturn) { 7501 // Create a virtual register for the sret pointer, and put in a copy 7502 // from the sret argument into it. 7503 SmallVector<EVT, 1> ValueVTs; 7504 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7505 MVT VT = ValueVTs[0].getSimpleVT(); 7506 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7507 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7508 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7509 RegVT, VT, nullptr, AssertOp); 7510 7511 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7512 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7513 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7514 FuncInfo->DemoteRegister = SRetReg; 7515 NewRoot = 7516 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7517 DAG.setRoot(NewRoot); 7518 7519 // i indexes lowered arguments. Bump it past the hidden sret argument. 7520 // Idx indexes LLVM arguments. Don't touch it. 7521 ++i; 7522 } 7523 7524 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7525 ++I, ++Idx) { 7526 SmallVector<SDValue, 4> ArgValues; 7527 SmallVector<EVT, 4> ValueVTs; 7528 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7529 unsigned NumValues = ValueVTs.size(); 7530 7531 // If this argument is unused then remember its value. It is used to generate 7532 // debugging information. 7533 if (I->use_empty() && NumValues) { 7534 SDB->setUnusedArgValue(I, InVals[i]); 7535 7536 // Also remember any frame index for use in FastISel. 7537 if (FrameIndexSDNode *FI = 7538 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7539 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7540 } 7541 7542 for (unsigned Val = 0; Val != NumValues; ++Val) { 7543 EVT VT = ValueVTs[Val]; 7544 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7545 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7546 7547 if (!I->use_empty()) { 7548 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7549 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7550 AssertOp = ISD::AssertSext; 7551 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7552 AssertOp = ISD::AssertZext; 7553 7554 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7555 NumParts, PartVT, VT, 7556 nullptr, AssertOp)); 7557 } 7558 7559 i += NumParts; 7560 } 7561 7562 // We don't need to do anything else for unused arguments. 7563 if (ArgValues.empty()) 7564 continue; 7565 7566 // Note down frame index. 7567 if (FrameIndexSDNode *FI = 7568 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7569 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7570 7571 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7572 SDB->getCurSDLoc()); 7573 7574 SDB->setValue(I, Res); 7575 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7576 if (LoadSDNode *LNode = 7577 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7578 if (FrameIndexSDNode *FI = 7579 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7580 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7581 } 7582 7583 // If this argument is live outside of the entry block, insert a copy from 7584 // wherever we got it to the vreg that other BB's will reference it as. 7585 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7586 // If we can, though, try to skip creating an unnecessary vreg. 7587 // FIXME: This isn't very clean... it would be nice to make this more 7588 // general. It's also subtly incompatible with the hacks FastISel 7589 // uses with vregs. 7590 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7591 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7592 FuncInfo->ValueMap[I] = Reg; 7593 continue; 7594 } 7595 } 7596 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7597 FuncInfo->InitializeRegForValue(I); 7598 SDB->CopyToExportRegsIfNeeded(I); 7599 } 7600 } 7601 7602 assert(i == InVals.size() && "Argument register count mismatch!"); 7603 7604 // Finally, if the target has anything special to do, allow it to do so. 7605 // FIXME: this should insert code into the DAG! 7606 EmitFunctionEntryCode(); 7607 } 7608 7609 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7610 /// ensure constants are generated when needed. Remember the virtual registers 7611 /// that need to be added to the Machine PHI nodes as input. We cannot just 7612 /// directly add them, because expansion might result in multiple MBB's for one 7613 /// BB. As such, the start of the BB might correspond to a different MBB than 7614 /// the end. 7615 /// 7616 void 7617 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7618 const TerminatorInst *TI = LLVMBB->getTerminator(); 7619 7620 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7621 7622 // Check successor nodes' PHI nodes that expect a constant to be available 7623 // from this block. 7624 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7625 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7626 if (!isa<PHINode>(SuccBB->begin())) continue; 7627 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7628 7629 // If this terminator has multiple identical successors (common for 7630 // switches), only handle each succ once. 7631 if (!SuccsHandled.insert(SuccMBB)) continue; 7632 7633 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7634 7635 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7636 // nodes and Machine PHI nodes, but the incoming operands have not been 7637 // emitted yet. 7638 for (BasicBlock::const_iterator I = SuccBB->begin(); 7639 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7640 // Ignore dead phi's. 7641 if (PN->use_empty()) continue; 7642 7643 // Skip empty types 7644 if (PN->getType()->isEmptyTy()) 7645 continue; 7646 7647 unsigned Reg; 7648 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7649 7650 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7651 unsigned &RegOut = ConstantsOut[C]; 7652 if (RegOut == 0) { 7653 RegOut = FuncInfo.CreateRegs(C->getType()); 7654 CopyValueToVirtualRegister(C, RegOut); 7655 } 7656 Reg = RegOut; 7657 } else { 7658 DenseMap<const Value *, unsigned>::iterator I = 7659 FuncInfo.ValueMap.find(PHIOp); 7660 if (I != FuncInfo.ValueMap.end()) 7661 Reg = I->second; 7662 else { 7663 assert(isa<AllocaInst>(PHIOp) && 7664 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7665 "Didn't codegen value into a register!??"); 7666 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7667 CopyValueToVirtualRegister(PHIOp, Reg); 7668 } 7669 } 7670 7671 // Remember that this register needs to added to the machine PHI node as 7672 // the input for this MBB. 7673 SmallVector<EVT, 4> ValueVTs; 7674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7675 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7676 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7677 EVT VT = ValueVTs[vti]; 7678 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7679 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7680 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7681 Reg += NumRegisters; 7682 } 7683 } 7684 } 7685 7686 ConstantsOut.clear(); 7687 } 7688 7689 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7690 /// is 0. 7691 MachineBasicBlock * 7692 SelectionDAGBuilder::StackProtectorDescriptor:: 7693 AddSuccessorMBB(const BasicBlock *BB, 7694 MachineBasicBlock *ParentMBB, 7695 MachineBasicBlock *SuccMBB) { 7696 // If SuccBB has not been created yet, create it. 7697 if (!SuccMBB) { 7698 MachineFunction *MF = ParentMBB->getParent(); 7699 MachineFunction::iterator BBI = ParentMBB; 7700 SuccMBB = MF->CreateMachineBasicBlock(BB); 7701 MF->insert(++BBI, SuccMBB); 7702 } 7703 // Add it as a successor of ParentMBB. 7704 ParentMBB->addSuccessor(SuccMBB); 7705 return SuccMBB; 7706 } 7707