xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e2d47dd1bb0dcae478db891273635672c3dc969e)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/Analysis/VectorUtils.h"
39 #include "llvm/CodeGen/Analysis.h"
40 #include "llvm/CodeGen/FunctionLoweringInfo.h"
41 #include "llvm/CodeGen/GCMetadata.h"
42 #include "llvm/CodeGen/ISDOpcodes.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBuilder.h"
48 #include "llvm/CodeGen/MachineJumpTableInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RuntimeLibcalls.h"
54 #include "llvm/CodeGen/SelectionDAG.h"
55 #include "llvm/CodeGen/SelectionDAGNodes.h"
56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstring>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "isel"
126 
127 /// LimitFloatPrecision - Generate low-precision inline sequences for
128 /// some float libcalls (6, 8 or 12 bits).
129 static unsigned LimitFloatPrecision;
130 
131 static cl::opt<unsigned, true>
132     LimitFPPrecision("limit-float-precision",
133                      cl::desc("Generate low-precision inline sequences "
134                               "for some float libcalls"),
135                      cl::location(LimitFloatPrecision), cl::Hidden,
136                      cl::init(0));
137 
138 static cl::opt<unsigned> SwitchPeelThreshold(
139     "switch-peel-threshold", cl::Hidden, cl::init(66),
140     cl::desc("Set the case probability threshold for peeling the case from a "
141              "switch statement. A value greater than 100 will void this "
142              "optimization"));
143 
144 // Limit the width of DAG chains. This is important in general to prevent
145 // DAG-based analysis from blowing up. For example, alias analysis and
146 // load clustering may not complete in reasonable time. It is difficult to
147 // recognize and avoid this situation within each individual analysis, and
148 // future analyses are likely to have the same behavior. Limiting DAG width is
149 // the safe approach and will be especially important with global DAGs.
150 //
151 // MaxParallelChains default is arbitrarily high to avoid affecting
152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
153 // sequence over this should have been converted to llvm.memcpy by the
154 // frontend. It is easy to induce this behavior with .ll code such as:
155 // %buffer = alloca [4096 x i8]
156 // %data = load [4096 x i8]* %argPtr
157 // store [4096 x i8] %data, [4096 x i8]* %buffer
158 static const unsigned MaxParallelChains = 64;
159 
160 // Return the calling convention if the Value passed requires ABI mangling as it
161 // is a parameter to a function or a return value from a function which is not
162 // an intrinsic.
163 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
164   if (auto *R = dyn_cast<ReturnInst>(V))
165     return R->getParent()->getParent()->getCallingConv();
166 
167   if (auto *CI = dyn_cast<CallInst>(V)) {
168     const bool IsInlineAsm = CI->isInlineAsm();
169     const bool IsIndirectFunctionCall =
170         !IsInlineAsm && !CI->getCalledFunction();
171 
172     // It is possible that the call instruction is an inline asm statement or an
173     // indirect function call in which case the return value of
174     // getCalledFunction() would be nullptr.
175     const bool IsInstrinsicCall =
176         !IsInlineAsm && !IsIndirectFunctionCall &&
177         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
178 
179     if (!IsInlineAsm && !IsInstrinsicCall)
180       return CI->getCallingConv();
181   }
182 
183   return None;
184 }
185 
186 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
187                                       const SDValue *Parts, unsigned NumParts,
188                                       MVT PartVT, EVT ValueVT, const Value *V,
189                                       Optional<CallingConv::ID> CC);
190 
191 /// getCopyFromParts - Create a value that contains the specified legal parts
192 /// combined into the value they represent.  If the parts combine to a type
193 /// larger than ValueVT then AssertOp can be used to specify whether the extra
194 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
195 /// (ISD::AssertSext).
196 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
197                                 const SDValue *Parts, unsigned NumParts,
198                                 MVT PartVT, EVT ValueVT, const Value *V,
199                                 Optional<CallingConv::ID> CC = None,
200                                 Optional<ISD::NodeType> AssertOp = None) {
201   if (ValueVT.isVector())
202     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
203                                   CC);
204 
205   assert(NumParts > 0 && "No parts to assemble!");
206   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
207   SDValue Val = Parts[0];
208 
209   if (NumParts > 1) {
210     // Assemble the value from multiple parts.
211     if (ValueVT.isInteger()) {
212       unsigned PartBits = PartVT.getSizeInBits();
213       unsigned ValueBits = ValueVT.getSizeInBits();
214 
215       // Assemble the power of 2 part.
216       unsigned RoundParts = NumParts & (NumParts - 1) ?
217         1 << Log2_32(NumParts) : NumParts;
218       unsigned RoundBits = PartBits * RoundParts;
219       EVT RoundVT = RoundBits == ValueBits ?
220         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
221       SDValue Lo, Hi;
222 
223       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
224 
225       if (RoundParts > 2) {
226         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
227                               PartVT, HalfVT, V);
228         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
229                               RoundParts / 2, PartVT, HalfVT, V);
230       } else {
231         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
232         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
233       }
234 
235       if (DAG.getDataLayout().isBigEndian())
236         std::swap(Lo, Hi);
237 
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
239 
240       if (RoundParts < NumParts) {
241         // Assemble the trailing non-power-of-2 part.
242         unsigned OddParts = NumParts - RoundParts;
243         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
244         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
245                               OddVT, V, CC);
246 
247         // Combine the round and odd parts.
248         Lo = Val;
249         if (DAG.getDataLayout().isBigEndian())
250           std::swap(Lo, Hi);
251         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
252         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
253         Hi =
254             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
255                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
256                                         TLI.getPointerTy(DAG.getDataLayout())));
257         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
258         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
259       }
260     } else if (PartVT.isFloatingPoint()) {
261       // FP split into multiple FP parts (for ppcf128)
262       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
263              "Unexpected split");
264       SDValue Lo, Hi;
265       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
266       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
267       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
268         std::swap(Lo, Hi);
269       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
270     } else {
271       // FP split into integer parts (soft fp)
272       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
273              !PartVT.isVector() && "Unexpected split");
274       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
275       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
276     }
277   }
278 
279   // There is now one part, held in Val.  Correct it to match ValueVT.
280   // PartEVT is the type of the register class that holds the value.
281   // ValueVT is the type of the inline asm operation.
282   EVT PartEVT = Val.getValueType();
283 
284   if (PartEVT == ValueVT)
285     return Val;
286 
287   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
288       ValueVT.bitsLT(PartEVT)) {
289     // For an FP value in an integer part, we need to truncate to the right
290     // width first.
291     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
292     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
293   }
294 
295   // Handle types that have the same size.
296   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
297     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
298 
299   // Handle types with different sizes.
300   if (PartEVT.isInteger() && ValueVT.isInteger()) {
301     if (ValueVT.bitsLT(PartEVT)) {
302       // For a truncate, see if we have any information to
303       // indicate whether the truncated bits will always be
304       // zero or sign-extension.
305       if (AssertOp.hasValue())
306         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
307                           DAG.getValueType(ValueVT));
308       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
309     }
310     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
311   }
312 
313   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
314     // FP_ROUND's are always exact here.
315     if (ValueVT.bitsLT(Val.getValueType()))
316       return DAG.getNode(
317           ISD::FP_ROUND, DL, ValueVT, Val,
318           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
319 
320     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
321   }
322 
323   llvm_unreachable("Unknown mismatch!");
324 }
325 
326 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
327                                               const Twine &ErrMsg) {
328   const Instruction *I = dyn_cast_or_null<Instruction>(V);
329   if (!V)
330     return Ctx.emitError(ErrMsg);
331 
332   const char *AsmError = ", possible invalid constraint for vector type";
333   if (const CallInst *CI = dyn_cast<CallInst>(I))
334     if (isa<InlineAsm>(CI->getCalledValue()))
335       return Ctx.emitError(I, ErrMsg + AsmError);
336 
337   return Ctx.emitError(I, ErrMsg);
338 }
339 
340 /// getCopyFromPartsVector - Create a value that contains the specified legal
341 /// parts combined into the value they represent.  If the parts combine to a
342 /// type larger than ValueVT then AssertOp can be used to specify whether the
343 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
344 /// ValueVT (ISD::AssertSext).
345 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
346                                       const SDValue *Parts, unsigned NumParts,
347                                       MVT PartVT, EVT ValueVT, const Value *V,
348                                       Optional<CallingConv::ID> CallConv) {
349   assert(ValueVT.isVector() && "Not a vector value");
350   assert(NumParts > 0 && "No parts to assemble!");
351   const bool IsABIRegCopy = CallConv.hasValue();
352 
353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
354   SDValue Val = Parts[0];
355 
356   // Handle a multi-element vector.
357   if (NumParts > 1) {
358     EVT IntermediateVT;
359     MVT RegisterVT;
360     unsigned NumIntermediates;
361     unsigned NumRegs;
362 
363     if (IsABIRegCopy) {
364       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
365           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
366           NumIntermediates, RegisterVT);
367     } else {
368       NumRegs =
369           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
370                                      NumIntermediates, RegisterVT);
371     }
372 
373     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
374     NumParts = NumRegs; // Silence a compiler warning.
375     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
376     assert(RegisterVT.getSizeInBits() ==
377            Parts[0].getSimpleValueType().getSizeInBits() &&
378            "Part type sizes don't match!");
379 
380     // Assemble the parts into intermediate operands.
381     SmallVector<SDValue, 8> Ops(NumIntermediates);
382     if (NumIntermediates == NumParts) {
383       // If the register was not expanded, truncate or copy the value,
384       // as appropriate.
385       for (unsigned i = 0; i != NumParts; ++i)
386         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
387                                   PartVT, IntermediateVT, V);
388     } else if (NumParts > 0) {
389       // If the intermediate type was expanded, build the intermediate
390       // operands from the parts.
391       assert(NumParts % NumIntermediates == 0 &&
392              "Must expand into a divisible number of parts!");
393       unsigned Factor = NumParts / NumIntermediates;
394       for (unsigned i = 0; i != NumIntermediates; ++i)
395         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
396                                   PartVT, IntermediateVT, V);
397     }
398 
399     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
400     // intermediate operands.
401     EVT BuiltVectorTy =
402         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
403                          (IntermediateVT.isVector()
404                               ? IntermediateVT.getVectorNumElements() * NumParts
405                               : NumIntermediates));
406     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
407                                                 : ISD::BUILD_VECTOR,
408                       DL, BuiltVectorTy, Ops);
409   }
410 
411   // There is now one part, held in Val.  Correct it to match ValueVT.
412   EVT PartEVT = Val.getValueType();
413 
414   if (PartEVT == ValueVT)
415     return Val;
416 
417   if (PartEVT.isVector()) {
418     // If the element type of the source/dest vectors are the same, but the
419     // parts vector has more elements than the value vector, then we have a
420     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
421     // elements we want.
422     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
423       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
424              "Cannot narrow, it would be a lossy transformation");
425       return DAG.getNode(
426           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
427           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
428     }
429 
430     // Vector/Vector bitcast.
431     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
432       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433 
434     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
435       "Cannot handle this kind of promotion");
436     // Promoted vector extract
437     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
438 
439   }
440 
441   // Trivial bitcast if the types are the same size and the destination
442   // vector type is legal.
443   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
444       TLI.isTypeLegal(ValueVT))
445     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
446 
447   if (ValueVT.getVectorNumElements() != 1) {
448      // Certain ABIs require that vectors are passed as integers. For vectors
449      // are the same size, this is an obvious bitcast.
450      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
451        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
452      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
453        // Bitcast Val back the original type and extract the corresponding
454        // vector we want.
455        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
456        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
457                                            ValueVT.getVectorElementType(), Elts);
458        Val = DAG.getBitcast(WiderVecType, Val);
459        return DAG.getNode(
460            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
461            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
462      }
463 
464      diagnosePossiblyInvalidConstraint(
465          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
466      return DAG.getUNDEF(ValueVT);
467   }
468 
469   // Handle cases such as i8 -> <1 x i1>
470   EVT ValueSVT = ValueVT.getVectorElementType();
471   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
472     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
473                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
474 
475   return DAG.getBuildVector(ValueVT, DL, Val);
476 }
477 
478 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
479                                  SDValue Val, SDValue *Parts, unsigned NumParts,
480                                  MVT PartVT, const Value *V,
481                                  Optional<CallingConv::ID> CallConv);
482 
483 /// getCopyToParts - Create a series of nodes that contain the specified value
484 /// split into legal parts.  If the parts contain more bits than Val, then, for
485 /// integers, ExtendKind can be used to specify how to generate the extra bits.
486 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
487                            SDValue *Parts, unsigned NumParts, MVT PartVT,
488                            const Value *V,
489                            Optional<CallingConv::ID> CallConv = None,
490                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
491   EVT ValueVT = Val.getValueType();
492 
493   // Handle the vector case separately.
494   if (ValueVT.isVector())
495     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
496                                 CallConv);
497 
498   unsigned PartBits = PartVT.getSizeInBits();
499   unsigned OrigNumParts = NumParts;
500   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
501          "Copying to an illegal type!");
502 
503   if (NumParts == 0)
504     return;
505 
506   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
507   EVT PartEVT = PartVT;
508   if (PartEVT == ValueVT) {
509     assert(NumParts == 1 && "No-op copy with multiple parts!");
510     Parts[0] = Val;
511     return;
512   }
513 
514   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
515     // If the parts cover more bits than the value has, promote the value.
516     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
517       assert(NumParts == 1 && "Do not know what to promote to!");
518       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
519     } else {
520       if (ValueVT.isFloatingPoint()) {
521         // FP values need to be bitcast, then extended if they are being put
522         // into a larger container.
523         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
524         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
525       }
526       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
527              ValueVT.isInteger() &&
528              "Unknown mismatch!");
529       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
530       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
531       if (PartVT == MVT::x86mmx)
532         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533     }
534   } else if (PartBits == ValueVT.getSizeInBits()) {
535     // Different types of the same size.
536     assert(NumParts == 1 && PartEVT != ValueVT);
537     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
538   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
539     // If the parts cover less bits than value has, truncate the value.
540     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
541            ValueVT.isInteger() &&
542            "Unknown mismatch!");
543     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
544     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
545     if (PartVT == MVT::x86mmx)
546       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
547   }
548 
549   // The value may have changed - recompute ValueVT.
550   ValueVT = Val.getValueType();
551   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
552          "Failed to tile the value with PartVT!");
553 
554   if (NumParts == 1) {
555     if (PartEVT != ValueVT) {
556       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
557                                         "scalar-to-vector conversion failed");
558       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559     }
560 
561     Parts[0] = Val;
562     return;
563   }
564 
565   // Expand the value into multiple parts.
566   if (NumParts & (NumParts - 1)) {
567     // The number of parts is not a power of 2.  Split off and copy the tail.
568     assert(PartVT.isInteger() && ValueVT.isInteger() &&
569            "Do not know what to expand to!");
570     unsigned RoundParts = 1 << Log2_32(NumParts);
571     unsigned RoundBits = RoundParts * PartBits;
572     unsigned OddParts = NumParts - RoundParts;
573     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
574                                  DAG.getIntPtrConstant(RoundBits, DL));
575     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
576                    CallConv);
577 
578     if (DAG.getDataLayout().isBigEndian())
579       // The odd parts were reversed by getCopyToParts - unreverse them.
580       std::reverse(Parts + RoundParts, Parts + NumParts);
581 
582     NumParts = RoundParts;
583     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
584     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
585   }
586 
587   // The number of parts is a power of 2.  Repeatedly bisect the value using
588   // EXTRACT_ELEMENT.
589   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
590                          EVT::getIntegerVT(*DAG.getContext(),
591                                            ValueVT.getSizeInBits()),
592                          Val);
593 
594   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
595     for (unsigned i = 0; i < NumParts; i += StepSize) {
596       unsigned ThisBits = StepSize * PartBits / 2;
597       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
598       SDValue &Part0 = Parts[i];
599       SDValue &Part1 = Parts[i+StepSize/2];
600 
601       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
602                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
603       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
605 
606       if (ThisBits == PartBits && ThisVT != PartVT) {
607         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
608         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
609       }
610     }
611   }
612 
613   if (DAG.getDataLayout().isBigEndian())
614     std::reverse(Parts, Parts + OrigNumParts);
615 }
616 
617 /// getCopyToPartsVector - Create a series of nodes that contain the specified
618 /// value split into legal parts.
619 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
620                                  SDValue Val, SDValue *Parts, unsigned NumParts,
621                                  MVT PartVT, const Value *V,
622                                  Optional<CallingConv::ID> CallConv) {
623   EVT ValueVT = Val.getValueType();
624   assert(ValueVT.isVector() && "Not a vector");
625   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
626   const bool IsABIRegCopy = CallConv.hasValue();
627 
628   if (NumParts == 1) {
629     EVT PartEVT = PartVT;
630     if (PartEVT == ValueVT) {
631       // Nothing to do.
632     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
633       // Bitconvert vector->vector case.
634       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
635     } else if (PartVT.isVector() &&
636                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
637                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
638       EVT ElementVT = PartVT.getVectorElementType();
639       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
640       // undef elements.
641       SmallVector<SDValue, 16> Ops;
642       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
643         Ops.push_back(DAG.getNode(
644             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
645             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
646 
647       for (unsigned i = ValueVT.getVectorNumElements(),
648            e = PartVT.getVectorNumElements(); i != e; ++i)
649         Ops.push_back(DAG.getUNDEF(ElementVT));
650 
651       Val = DAG.getBuildVector(PartVT, DL, Ops);
652 
653       // FIXME: Use CONCAT for 2x -> 4x.
654 
655       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
656       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
657     } else if (PartVT.isVector() &&
658                PartEVT.getVectorElementType().bitsGE(
659                  ValueVT.getVectorElementType()) &&
660                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
661 
662       // Promoted vector extract
663       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
664     } else {
665       if (ValueVT.getVectorNumElements() == 1) {
666         Val = DAG.getNode(
667             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
668             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
669       } else {
670         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
671                "lossy conversion of vector to scalar type");
672         EVT IntermediateType =
673             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
674         Val = DAG.getBitcast(IntermediateType, Val);
675         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
676       }
677     }
678 
679     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
680     Parts[0] = Val;
681     return;
682   }
683 
684   // Handle a multi-element vector.
685   EVT IntermediateVT;
686   MVT RegisterVT;
687   unsigned NumIntermediates;
688   unsigned NumRegs;
689   if (IsABIRegCopy) {
690     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
691         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
692         NumIntermediates, RegisterVT);
693   } else {
694     NumRegs =
695         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
696                                    NumIntermediates, RegisterVT);
697   }
698   unsigned NumElements = ValueVT.getVectorNumElements();
699 
700   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
701   NumParts = NumRegs; // Silence a compiler warning.
702   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
703 
704   // Convert the vector to the appropiate type if necessary.
705   unsigned DestVectorNoElts =
706       NumIntermediates *
707       (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1);
708   EVT BuiltVectorTy = EVT::getVectorVT(
709       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
710   if (Val.getValueType() != BuiltVectorTy)
711     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
712 
713   // Split the vector into intermediate operands.
714   SmallVector<SDValue, 8> Ops(NumIntermediates);
715   for (unsigned i = 0; i != NumIntermediates; ++i) {
716     if (IntermediateVT.isVector())
717       Ops[i] =
718           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
719                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
720                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
721     else
722       Ops[i] = DAG.getNode(
723           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
724           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
725   }
726 
727   // Split the intermediate operands into legal parts.
728   if (NumParts == NumIntermediates) {
729     // If the register was not expanded, promote or copy the value,
730     // as appropriate.
731     for (unsigned i = 0; i != NumParts; ++i)
732       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
733   } else if (NumParts > 0) {
734     // If the intermediate type was expanded, split each the value into
735     // legal parts.
736     assert(NumIntermediates != 0 && "division by zero");
737     assert(NumParts % NumIntermediates == 0 &&
738            "Must expand into a divisible number of parts!");
739     unsigned Factor = NumParts / NumIntermediates;
740     for (unsigned i = 0; i != NumIntermediates; ++i)
741       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
742                      CallConv);
743   }
744 }
745 
746 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
747                            EVT valuevt, Optional<CallingConv::ID> CC)
748     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
749       RegCount(1, regs.size()), CallConv(CC) {}
750 
751 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
752                            const DataLayout &DL, unsigned Reg, Type *Ty,
753                            Optional<CallingConv::ID> CC) {
754   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
755 
756   CallConv = CC;
757 
758   for (EVT ValueVT : ValueVTs) {
759     unsigned NumRegs =
760         isABIMangled()
761             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
762             : TLI.getNumRegisters(Context, ValueVT);
763     MVT RegisterVT =
764         isABIMangled()
765             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
766             : TLI.getRegisterType(Context, ValueVT);
767     for (unsigned i = 0; i != NumRegs; ++i)
768       Regs.push_back(Reg + i);
769     RegVTs.push_back(RegisterVT);
770     RegCount.push_back(NumRegs);
771     Reg += NumRegs;
772   }
773 }
774 
775 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
776                                       FunctionLoweringInfo &FuncInfo,
777                                       const SDLoc &dl, SDValue &Chain,
778                                       SDValue *Flag, const Value *V) const {
779   // A Value with type {} or [0 x %t] needs no registers.
780   if (ValueVTs.empty())
781     return SDValue();
782 
783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
784 
785   // Assemble the legal parts into the final values.
786   SmallVector<SDValue, 4> Values(ValueVTs.size());
787   SmallVector<SDValue, 8> Parts;
788   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
789     // Copy the legal parts from the registers.
790     EVT ValueVT = ValueVTs[Value];
791     unsigned NumRegs = RegCount[Value];
792     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
793                                           *DAG.getContext(),
794                                           CallConv.getValue(), RegVTs[Value])
795                                     : RegVTs[Value];
796 
797     Parts.resize(NumRegs);
798     for (unsigned i = 0; i != NumRegs; ++i) {
799       SDValue P;
800       if (!Flag) {
801         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
802       } else {
803         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
804         *Flag = P.getValue(2);
805       }
806 
807       Chain = P.getValue(1);
808       Parts[i] = P;
809 
810       // If the source register was virtual and if we know something about it,
811       // add an assert node.
812       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
813           !RegisterVT.isInteger() || RegisterVT.isVector())
814         continue;
815 
816       const FunctionLoweringInfo::LiveOutInfo *LOI =
817         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
818       if (!LOI)
819         continue;
820 
821       unsigned RegSize = RegisterVT.getSizeInBits();
822       unsigned NumSignBits = LOI->NumSignBits;
823       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
824 
825       if (NumZeroBits == RegSize) {
826         // The current value is a zero.
827         // Explicitly express that as it would be easier for
828         // optimizations to kick in.
829         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
830         continue;
831       }
832 
833       // FIXME: We capture more information than the dag can represent.  For
834       // now, just use the tightest assertzext/assertsext possible.
835       bool isSExt;
836       EVT FromVT(MVT::Other);
837       if (NumZeroBits) {
838         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
839         isSExt = false;
840       } else if (NumSignBits > 1) {
841         FromVT =
842             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
843         isSExt = true;
844       } else {
845         continue;
846       }
847       // Add an assertion node.
848       assert(FromVT != MVT::Other);
849       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
850                              RegisterVT, P, DAG.getValueType(FromVT));
851     }
852 
853     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
854                                      RegisterVT, ValueVT, V, CallConv);
855     Part += NumRegs;
856     Parts.clear();
857   }
858 
859   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
860 }
861 
862 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
863                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
864                                  const Value *V,
865                                  ISD::NodeType PreferredExtendType) const {
866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
867   ISD::NodeType ExtendKind = PreferredExtendType;
868 
869   // Get the list of the values's legal parts.
870   unsigned NumRegs = Regs.size();
871   SmallVector<SDValue, 8> Parts(NumRegs);
872   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
873     unsigned NumParts = RegCount[Value];
874 
875     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
876                                           *DAG.getContext(),
877                                           CallConv.getValue(), RegVTs[Value])
878                                     : RegVTs[Value];
879 
880     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
881       ExtendKind = ISD::ZERO_EXTEND;
882 
883     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
884                    NumParts, RegisterVT, V, CallConv, ExtendKind);
885     Part += NumParts;
886   }
887 
888   // Copy the parts into the registers.
889   SmallVector<SDValue, 8> Chains(NumRegs);
890   for (unsigned i = 0; i != NumRegs; ++i) {
891     SDValue Part;
892     if (!Flag) {
893       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
894     } else {
895       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
896       *Flag = Part.getValue(1);
897     }
898 
899     Chains[i] = Part.getValue(0);
900   }
901 
902   if (NumRegs == 1 || Flag)
903     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
904     // flagged to it. That is the CopyToReg nodes and the user are considered
905     // a single scheduling unit. If we create a TokenFactor and return it as
906     // chain, then the TokenFactor is both a predecessor (operand) of the
907     // user as well as a successor (the TF operands are flagged to the user).
908     // c1, f1 = CopyToReg
909     // c2, f2 = CopyToReg
910     // c3     = TokenFactor c1, c2
911     // ...
912     //        = op c3, ..., f2
913     Chain = Chains[NumRegs-1];
914   else
915     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
916 }
917 
918 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
919                                         unsigned MatchingIdx, const SDLoc &dl,
920                                         SelectionDAG &DAG,
921                                         std::vector<SDValue> &Ops) const {
922   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
923 
924   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
925   if (HasMatching)
926     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
927   else if (!Regs.empty() &&
928            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
929     // Put the register class of the virtual registers in the flag word.  That
930     // way, later passes can recompute register class constraints for inline
931     // assembly as well as normal instructions.
932     // Don't do this for tied operands that can use the regclass information
933     // from the def.
934     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
935     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
936     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
937   }
938 
939   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
940   Ops.push_back(Res);
941 
942   if (Code == InlineAsm::Kind_Clobber) {
943     // Clobbers should always have a 1:1 mapping with registers, and may
944     // reference registers that have illegal (e.g. vector) types. Hence, we
945     // shouldn't try to apply any sort of splitting logic to them.
946     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
947            "No 1:1 mapping from clobbers to regs?");
948     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
949     (void)SP;
950     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
951       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
952       assert(
953           (Regs[I] != SP ||
954            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
955           "If we clobbered the stack pointer, MFI should know about it.");
956     }
957     return;
958   }
959 
960   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
961     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
962     MVT RegisterVT = RegVTs[Value];
963     for (unsigned i = 0; i != NumRegs; ++i) {
964       assert(Reg < Regs.size() && "Mismatch in # registers expected");
965       unsigned TheReg = Regs[Reg++];
966       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
967     }
968   }
969 }
970 
971 SmallVector<std::pair<unsigned, unsigned>, 4>
972 RegsForValue::getRegsAndSizes() const {
973   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
974   unsigned I = 0;
975   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
976     unsigned RegCount = std::get<0>(CountAndVT);
977     MVT RegisterVT = std::get<1>(CountAndVT);
978     unsigned RegisterSize = RegisterVT.getSizeInBits();
979     for (unsigned E = I + RegCount; I != E; ++I)
980       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
981   }
982   return OutVec;
983 }
984 
985 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
986                                const TargetLibraryInfo *li) {
987   AA = aa;
988   GFI = gfi;
989   LibInfo = li;
990   DL = &DAG.getDataLayout();
991   Context = DAG.getContext();
992   LPadToCallSiteMap.clear();
993 }
994 
995 void SelectionDAGBuilder::clear() {
996   NodeMap.clear();
997   UnusedArgNodeMap.clear();
998   PendingLoads.clear();
999   PendingExports.clear();
1000   CurInst = nullptr;
1001   HasTailCall = false;
1002   SDNodeOrder = LowestSDNodeOrder;
1003   StatepointLowering.clear();
1004 }
1005 
1006 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1007   DanglingDebugInfoMap.clear();
1008 }
1009 
1010 SDValue SelectionDAGBuilder::getRoot() {
1011   if (PendingLoads.empty())
1012     return DAG.getRoot();
1013 
1014   if (PendingLoads.size() == 1) {
1015     SDValue Root = PendingLoads[0];
1016     DAG.setRoot(Root);
1017     PendingLoads.clear();
1018     return Root;
1019   }
1020 
1021   // Otherwise, we have to make a token factor node.
1022   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1023                              PendingLoads);
1024   PendingLoads.clear();
1025   DAG.setRoot(Root);
1026   return Root;
1027 }
1028 
1029 SDValue SelectionDAGBuilder::getControlRoot() {
1030   SDValue Root = DAG.getRoot();
1031 
1032   if (PendingExports.empty())
1033     return Root;
1034 
1035   // Turn all of the CopyToReg chains into one factored node.
1036   if (Root.getOpcode() != ISD::EntryToken) {
1037     unsigned i = 0, e = PendingExports.size();
1038     for (; i != e; ++i) {
1039       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1040       if (PendingExports[i].getNode()->getOperand(0) == Root)
1041         break;  // Don't add the root if we already indirectly depend on it.
1042     }
1043 
1044     if (i == e)
1045       PendingExports.push_back(Root);
1046   }
1047 
1048   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1049                      PendingExports);
1050   PendingExports.clear();
1051   DAG.setRoot(Root);
1052   return Root;
1053 }
1054 
1055 void SelectionDAGBuilder::visit(const Instruction &I) {
1056   // Set up outgoing PHI node register values before emitting the terminator.
1057   if (isa<TerminatorInst>(&I)) {
1058     HandlePHINodesInSuccessorBlocks(I.getParent());
1059   }
1060 
1061   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1062   if (!isa<DbgInfoIntrinsic>(I))
1063     ++SDNodeOrder;
1064 
1065   CurInst = &I;
1066 
1067   visit(I.getOpcode(), I);
1068 
1069   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1070     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1071     // maps to this instruction.
1072     // TODO: We could handle all flags (nsw, etc) here.
1073     // TODO: If an IR instruction maps to >1 node, only the final node will have
1074     //       flags set.
1075     if (SDNode *Node = getNodeForIRValue(&I)) {
1076       SDNodeFlags IncomingFlags;
1077       IncomingFlags.copyFMF(*FPMO);
1078       if (!Node->getFlags().isDefined())
1079         Node->setFlags(IncomingFlags);
1080       else
1081         Node->intersectFlagsWith(IncomingFlags);
1082     }
1083   }
1084 
1085   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
1086       !isStatepoint(&I)) // statepoints handle their exports internally
1087     CopyToExportRegsIfNeeded(&I);
1088 
1089   CurInst = nullptr;
1090 }
1091 
1092 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1093   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1094 }
1095 
1096 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1097   // Note: this doesn't use InstVisitor, because it has to work with
1098   // ConstantExpr's in addition to instructions.
1099   switch (Opcode) {
1100   default: llvm_unreachable("Unknown instruction type encountered!");
1101     // Build the switch statement using the Instruction.def file.
1102 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1103     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1104 #include "llvm/IR/Instruction.def"
1105   }
1106 }
1107 
1108 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1109                                                 const DIExpression *Expr) {
1110   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1111     const DbgValueInst *DI = DDI.getDI();
1112     DIVariable *DanglingVariable = DI->getVariable();
1113     DIExpression *DanglingExpr = DI->getExpression();
1114     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1115       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1116       return true;
1117     }
1118     return false;
1119   };
1120 
1121   for (auto &DDIMI : DanglingDebugInfoMap) {
1122     DanglingDebugInfoVector &DDIV = DDIMI.second;
1123     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1124   }
1125 }
1126 
1127 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1128 // generate the debug data structures now that we've seen its definition.
1129 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1130                                                    SDValue Val) {
1131   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1132   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1133     return;
1134 
1135   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1136   for (auto &DDI : DDIV) {
1137     const DbgValueInst *DI = DDI.getDI();
1138     assert(DI && "Ill-formed DanglingDebugInfo");
1139     DebugLoc dl = DDI.getdl();
1140     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1141     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1142     DILocalVariable *Variable = DI->getVariable();
1143     DIExpression *Expr = DI->getExpression();
1144     assert(Variable->isValidLocationForIntrinsic(dl) &&
1145            "Expected inlined-at fields to agree");
1146     SDDbgValue *SDV;
1147     if (Val.getNode()) {
1148       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1149         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1150                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1151         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1152         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1153         // inserted after the definition of Val when emitting the instructions
1154         // after ISel. An alternative could be to teach
1155         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1156         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1157                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1158                    << ValSDNodeOrder << "\n");
1159         SDV = getDbgValue(Val, Variable, Expr, dl,
1160                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1161         DAG.AddDbgValue(SDV, Val.getNode(), false);
1162       } else
1163         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1164                           << "in EmitFuncArgumentDbgValue\n");
1165     } else
1166       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1167   }
1168   DDIV.clear();
1169 }
1170 
1171 /// getCopyFromRegs - If there was virtual register allocated for the value V
1172 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1173 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1174   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1175   SDValue Result;
1176 
1177   if (It != FuncInfo.ValueMap.end()) {
1178     unsigned InReg = It->second;
1179 
1180     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1181                      DAG.getDataLayout(), InReg, Ty, getABIRegCopyCC(V));
1182     SDValue Chain = DAG.getEntryNode();
1183     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1184                                  V);
1185     resolveDanglingDebugInfo(V, Result);
1186   }
1187 
1188   return Result;
1189 }
1190 
1191 /// getValue - Return an SDValue for the given Value.
1192 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1193   // If we already have an SDValue for this value, use it. It's important
1194   // to do this first, so that we don't create a CopyFromReg if we already
1195   // have a regular SDValue.
1196   SDValue &N = NodeMap[V];
1197   if (N.getNode()) return N;
1198 
1199   // If there's a virtual register allocated and initialized for this
1200   // value, use it.
1201   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1202     return copyFromReg;
1203 
1204   // Otherwise create a new SDValue and remember it.
1205   SDValue Val = getValueImpl(V);
1206   NodeMap[V] = Val;
1207   resolveDanglingDebugInfo(V, Val);
1208   return Val;
1209 }
1210 
1211 // Return true if SDValue exists for the given Value
1212 bool SelectionDAGBuilder::findValue(const Value *V) const {
1213   return (NodeMap.find(V) != NodeMap.end()) ||
1214     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1215 }
1216 
1217 /// getNonRegisterValue - Return an SDValue for the given Value, but
1218 /// don't look in FuncInfo.ValueMap for a virtual register.
1219 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1220   // If we already have an SDValue for this value, use it.
1221   SDValue &N = NodeMap[V];
1222   if (N.getNode()) {
1223     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1224       // Remove the debug location from the node as the node is about to be used
1225       // in a location which may differ from the original debug location.  This
1226       // is relevant to Constant and ConstantFP nodes because they can appear
1227       // as constant expressions inside PHI nodes.
1228       N->setDebugLoc(DebugLoc());
1229     }
1230     return N;
1231   }
1232 
1233   // Otherwise create a new SDValue and remember it.
1234   SDValue Val = getValueImpl(V);
1235   NodeMap[V] = Val;
1236   resolveDanglingDebugInfo(V, Val);
1237   return Val;
1238 }
1239 
1240 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1241 /// Create an SDValue for the given value.
1242 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1243   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1244 
1245   if (const Constant *C = dyn_cast<Constant>(V)) {
1246     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1247 
1248     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1249       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1250 
1251     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1252       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1253 
1254     if (isa<ConstantPointerNull>(C)) {
1255       unsigned AS = V->getType()->getPointerAddressSpace();
1256       return DAG.getConstant(0, getCurSDLoc(),
1257                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1258     }
1259 
1260     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1261       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1262 
1263     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1264       return DAG.getUNDEF(VT);
1265 
1266     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1267       visit(CE->getOpcode(), *CE);
1268       SDValue N1 = NodeMap[V];
1269       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1270       return N1;
1271     }
1272 
1273     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1274       SmallVector<SDValue, 4> Constants;
1275       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1276            OI != OE; ++OI) {
1277         SDNode *Val = getValue(*OI).getNode();
1278         // If the operand is an empty aggregate, there are no values.
1279         if (!Val) continue;
1280         // Add each leaf value from the operand to the Constants list
1281         // to form a flattened list of all the values.
1282         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1283           Constants.push_back(SDValue(Val, i));
1284       }
1285 
1286       return DAG.getMergeValues(Constants, getCurSDLoc());
1287     }
1288 
1289     if (const ConstantDataSequential *CDS =
1290           dyn_cast<ConstantDataSequential>(C)) {
1291       SmallVector<SDValue, 4> Ops;
1292       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1293         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1294         // Add each leaf value from the operand to the Constants list
1295         // to form a flattened list of all the values.
1296         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1297           Ops.push_back(SDValue(Val, i));
1298       }
1299 
1300       if (isa<ArrayType>(CDS->getType()))
1301         return DAG.getMergeValues(Ops, getCurSDLoc());
1302       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1303     }
1304 
1305     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1306       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1307              "Unknown struct or array constant!");
1308 
1309       SmallVector<EVT, 4> ValueVTs;
1310       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1311       unsigned NumElts = ValueVTs.size();
1312       if (NumElts == 0)
1313         return SDValue(); // empty struct
1314       SmallVector<SDValue, 4> Constants(NumElts);
1315       for (unsigned i = 0; i != NumElts; ++i) {
1316         EVT EltVT = ValueVTs[i];
1317         if (isa<UndefValue>(C))
1318           Constants[i] = DAG.getUNDEF(EltVT);
1319         else if (EltVT.isFloatingPoint())
1320           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1321         else
1322           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1323       }
1324 
1325       return DAG.getMergeValues(Constants, getCurSDLoc());
1326     }
1327 
1328     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1329       return DAG.getBlockAddress(BA, VT);
1330 
1331     VectorType *VecTy = cast<VectorType>(V->getType());
1332     unsigned NumElements = VecTy->getNumElements();
1333 
1334     // Now that we know the number and type of the elements, get that number of
1335     // elements into the Ops array based on what kind of constant it is.
1336     SmallVector<SDValue, 16> Ops;
1337     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1338       for (unsigned i = 0; i != NumElements; ++i)
1339         Ops.push_back(getValue(CV->getOperand(i)));
1340     } else {
1341       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1342       EVT EltVT =
1343           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1344 
1345       SDValue Op;
1346       if (EltVT.isFloatingPoint())
1347         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1348       else
1349         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1350       Ops.assign(NumElements, Op);
1351     }
1352 
1353     // Create a BUILD_VECTOR node.
1354     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1355   }
1356 
1357   // If this is a static alloca, generate it as the frameindex instead of
1358   // computation.
1359   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1360     DenseMap<const AllocaInst*, int>::iterator SI =
1361       FuncInfo.StaticAllocaMap.find(AI);
1362     if (SI != FuncInfo.StaticAllocaMap.end())
1363       return DAG.getFrameIndex(SI->second,
1364                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1365   }
1366 
1367   // If this is an instruction which fast-isel has deferred, select it now.
1368   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1369     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1370 
1371     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1372                      Inst->getType(), getABIRegCopyCC(V));
1373     SDValue Chain = DAG.getEntryNode();
1374     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1375   }
1376 
1377   llvm_unreachable("Can't get register for value!");
1378 }
1379 
1380 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1381   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1382   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1383   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1384   bool IsSEH = isAsynchronousEHPersonality(Pers);
1385   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1386   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1387   if (!IsSEH)
1388     CatchPadMBB->setIsEHScopeEntry();
1389   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1390   if (IsMSVCCXX || IsCoreCLR)
1391     CatchPadMBB->setIsEHFuncletEntry();
1392   // Wasm does not need catchpads anymore
1393   if (!IsWasmCXX)
1394     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1395                             getControlRoot()));
1396 }
1397 
1398 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1399   // Update machine-CFG edge.
1400   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1401   FuncInfo.MBB->addSuccessor(TargetMBB);
1402 
1403   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1404   bool IsSEH = isAsynchronousEHPersonality(Pers);
1405   if (IsSEH) {
1406     // If this is not a fall-through branch or optimizations are switched off,
1407     // emit the branch.
1408     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1409         TM.getOptLevel() == CodeGenOpt::None)
1410       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1411                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1412     return;
1413   }
1414 
1415   // Figure out the funclet membership for the catchret's successor.
1416   // This will be used by the FuncletLayout pass to determine how to order the
1417   // BB's.
1418   // A 'catchret' returns to the outer scope's color.
1419   Value *ParentPad = I.getCatchSwitchParentPad();
1420   const BasicBlock *SuccessorColor;
1421   if (isa<ConstantTokenNone>(ParentPad))
1422     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1423   else
1424     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1425   assert(SuccessorColor && "No parent funclet for catchret!");
1426   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1427   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1428 
1429   // Create the terminator node.
1430   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1431                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1432                             DAG.getBasicBlock(SuccessorColorMBB));
1433   DAG.setRoot(Ret);
1434 }
1435 
1436 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1437   // Don't emit any special code for the cleanuppad instruction. It just marks
1438   // the start of an EH scope/funclet.
1439   FuncInfo.MBB->setIsEHScopeEntry();
1440   FuncInfo.MBB->setIsEHFuncletEntry();
1441   FuncInfo.MBB->setIsCleanupFuncletEntry();
1442 }
1443 
1444 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1445 /// many places it could ultimately go. In the IR, we have a single unwind
1446 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1447 /// This function skips over imaginary basic blocks that hold catchswitch
1448 /// instructions, and finds all the "real" machine
1449 /// basic block destinations. As those destinations may not be successors of
1450 /// EHPadBB, here we also calculate the edge probability to those destinations.
1451 /// The passed-in Prob is the edge probability to EHPadBB.
1452 static void findUnwindDestinations(
1453     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1454     BranchProbability Prob,
1455     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1456         &UnwindDests) {
1457   EHPersonality Personality =
1458     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1459   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1460   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1461   bool IsSEH = isAsynchronousEHPersonality(Personality);
1462 
1463   while (EHPadBB) {
1464     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1465     BasicBlock *NewEHPadBB = nullptr;
1466     if (isa<LandingPadInst>(Pad)) {
1467       // Stop on landingpads. They are not funclets.
1468       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1469       break;
1470     } else if (isa<CleanupPadInst>(Pad)) {
1471       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1472       // personalities.
1473       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1474       UnwindDests.back().first->setIsEHScopeEntry();
1475       UnwindDests.back().first->setIsEHFuncletEntry();
1476       break;
1477     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1478       // Add the catchpad handlers to the possible destinations.
1479       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1480         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1481         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1482         if (IsMSVCCXX || IsCoreCLR)
1483           UnwindDests.back().first->setIsEHFuncletEntry();
1484         if (!IsSEH)
1485           UnwindDests.back().first->setIsEHScopeEntry();
1486       }
1487       NewEHPadBB = CatchSwitch->getUnwindDest();
1488     } else {
1489       continue;
1490     }
1491 
1492     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1493     if (BPI && NewEHPadBB)
1494       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1495     EHPadBB = NewEHPadBB;
1496   }
1497 }
1498 
1499 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1500   // Update successor info.
1501   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1502   auto UnwindDest = I.getUnwindDest();
1503   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1504   BranchProbability UnwindDestProb =
1505       (BPI && UnwindDest)
1506           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1507           : BranchProbability::getZero();
1508   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1509   for (auto &UnwindDest : UnwindDests) {
1510     UnwindDest.first->setIsEHPad();
1511     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1512   }
1513   FuncInfo.MBB->normalizeSuccProbs();
1514 
1515   // Create the terminator node.
1516   SDValue Ret =
1517       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1518   DAG.setRoot(Ret);
1519 }
1520 
1521 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1522   report_fatal_error("visitCatchSwitch not yet implemented!");
1523 }
1524 
1525 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1526   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1527   auto &DL = DAG.getDataLayout();
1528   SDValue Chain = getControlRoot();
1529   SmallVector<ISD::OutputArg, 8> Outs;
1530   SmallVector<SDValue, 8> OutVals;
1531 
1532   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1533   // lower
1534   //
1535   //   %val = call <ty> @llvm.experimental.deoptimize()
1536   //   ret <ty> %val
1537   //
1538   // differently.
1539   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1540     LowerDeoptimizingReturn();
1541     return;
1542   }
1543 
1544   if (!FuncInfo.CanLowerReturn) {
1545     unsigned DemoteReg = FuncInfo.DemoteRegister;
1546     const Function *F = I.getParent()->getParent();
1547 
1548     // Emit a store of the return value through the virtual register.
1549     // Leave Outs empty so that LowerReturn won't try to load return
1550     // registers the usual way.
1551     SmallVector<EVT, 1> PtrValueVTs;
1552     ComputeValueVTs(TLI, DL,
1553                     F->getReturnType()->getPointerTo(
1554                         DAG.getDataLayout().getAllocaAddrSpace()),
1555                     PtrValueVTs);
1556 
1557     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1558                                         DemoteReg, PtrValueVTs[0]);
1559     SDValue RetOp = getValue(I.getOperand(0));
1560 
1561     SmallVector<EVT, 4> ValueVTs;
1562     SmallVector<uint64_t, 4> Offsets;
1563     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1564     unsigned NumValues = ValueVTs.size();
1565 
1566     SmallVector<SDValue, 4> Chains(NumValues);
1567     for (unsigned i = 0; i != NumValues; ++i) {
1568       // An aggregate return value cannot wrap around the address space, so
1569       // offsets to its parts don't wrap either.
1570       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1571       Chains[i] = DAG.getStore(
1572           Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1573           // FIXME: better loc info would be nice.
1574           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1575     }
1576 
1577     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1578                         MVT::Other, Chains);
1579   } else if (I.getNumOperands() != 0) {
1580     SmallVector<EVT, 4> ValueVTs;
1581     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1582     unsigned NumValues = ValueVTs.size();
1583     if (NumValues) {
1584       SDValue RetOp = getValue(I.getOperand(0));
1585 
1586       const Function *F = I.getParent()->getParent();
1587 
1588       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1589       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1590                                           Attribute::SExt))
1591         ExtendKind = ISD::SIGN_EXTEND;
1592       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1593                                                Attribute::ZExt))
1594         ExtendKind = ISD::ZERO_EXTEND;
1595 
1596       LLVMContext &Context = F->getContext();
1597       bool RetInReg = F->getAttributes().hasAttribute(
1598           AttributeList::ReturnIndex, Attribute::InReg);
1599 
1600       for (unsigned j = 0; j != NumValues; ++j) {
1601         EVT VT = ValueVTs[j];
1602 
1603         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1604           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1605 
1606         CallingConv::ID CC = F->getCallingConv();
1607 
1608         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1609         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1610         SmallVector<SDValue, 4> Parts(NumParts);
1611         getCopyToParts(DAG, getCurSDLoc(),
1612                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1613                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1614 
1615         // 'inreg' on function refers to return value
1616         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1617         if (RetInReg)
1618           Flags.setInReg();
1619 
1620         // Propagate extension type if any
1621         if (ExtendKind == ISD::SIGN_EXTEND)
1622           Flags.setSExt();
1623         else if (ExtendKind == ISD::ZERO_EXTEND)
1624           Flags.setZExt();
1625 
1626         for (unsigned i = 0; i < NumParts; ++i) {
1627           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1628                                         VT, /*isfixed=*/true, 0, 0));
1629           OutVals.push_back(Parts[i]);
1630         }
1631       }
1632     }
1633   }
1634 
1635   // Push in swifterror virtual register as the last element of Outs. This makes
1636   // sure swifterror virtual register will be returned in the swifterror
1637   // physical register.
1638   const Function *F = I.getParent()->getParent();
1639   if (TLI.supportSwiftError() &&
1640       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1641     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1642     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1643     Flags.setSwiftError();
1644     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1645                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1646                                   true /*isfixed*/, 1 /*origidx*/,
1647                                   0 /*partOffs*/));
1648     // Create SDNode for the swifterror virtual register.
1649     OutVals.push_back(
1650         DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1651                             &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1652                         EVT(TLI.getPointerTy(DL))));
1653   }
1654 
1655   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1656   CallingConv::ID CallConv =
1657     DAG.getMachineFunction().getFunction().getCallingConv();
1658   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1659       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1660 
1661   // Verify that the target's LowerReturn behaved as expected.
1662   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1663          "LowerReturn didn't return a valid chain!");
1664 
1665   // Update the DAG with the new chain value resulting from return lowering.
1666   DAG.setRoot(Chain);
1667 }
1668 
1669 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1670 /// created for it, emit nodes to copy the value into the virtual
1671 /// registers.
1672 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1673   // Skip empty types
1674   if (V->getType()->isEmptyTy())
1675     return;
1676 
1677   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1678   if (VMI != FuncInfo.ValueMap.end()) {
1679     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1680     CopyValueToVirtualRegister(V, VMI->second);
1681   }
1682 }
1683 
1684 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1685 /// the current basic block, add it to ValueMap now so that we'll get a
1686 /// CopyTo/FromReg.
1687 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1688   // No need to export constants.
1689   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1690 
1691   // Already exported?
1692   if (FuncInfo.isExportedInst(V)) return;
1693 
1694   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1695   CopyValueToVirtualRegister(V, Reg);
1696 }
1697 
1698 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1699                                                      const BasicBlock *FromBB) {
1700   // The operands of the setcc have to be in this block.  We don't know
1701   // how to export them from some other block.
1702   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1703     // Can export from current BB.
1704     if (VI->getParent() == FromBB)
1705       return true;
1706 
1707     // Is already exported, noop.
1708     return FuncInfo.isExportedInst(V);
1709   }
1710 
1711   // If this is an argument, we can export it if the BB is the entry block or
1712   // if it is already exported.
1713   if (isa<Argument>(V)) {
1714     if (FromBB == &FromBB->getParent()->getEntryBlock())
1715       return true;
1716 
1717     // Otherwise, can only export this if it is already exported.
1718     return FuncInfo.isExportedInst(V);
1719   }
1720 
1721   // Otherwise, constants can always be exported.
1722   return true;
1723 }
1724 
1725 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1726 BranchProbability
1727 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1728                                         const MachineBasicBlock *Dst) const {
1729   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730   const BasicBlock *SrcBB = Src->getBasicBlock();
1731   const BasicBlock *DstBB = Dst->getBasicBlock();
1732   if (!BPI) {
1733     // If BPI is not available, set the default probability as 1 / N, where N is
1734     // the number of successors.
1735     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1736     return BranchProbability(1, SuccSize);
1737   }
1738   return BPI->getEdgeProbability(SrcBB, DstBB);
1739 }
1740 
1741 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1742                                                MachineBasicBlock *Dst,
1743                                                BranchProbability Prob) {
1744   if (!FuncInfo.BPI)
1745     Src->addSuccessorWithoutProb(Dst);
1746   else {
1747     if (Prob.isUnknown())
1748       Prob = getEdgeProbability(Src, Dst);
1749     Src->addSuccessor(Dst, Prob);
1750   }
1751 }
1752 
1753 static bool InBlock(const Value *V, const BasicBlock *BB) {
1754   if (const Instruction *I = dyn_cast<Instruction>(V))
1755     return I->getParent() == BB;
1756   return true;
1757 }
1758 
1759 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1760 /// This function emits a branch and is used at the leaves of an OR or an
1761 /// AND operator tree.
1762 void
1763 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1764                                                   MachineBasicBlock *TBB,
1765                                                   MachineBasicBlock *FBB,
1766                                                   MachineBasicBlock *CurBB,
1767                                                   MachineBasicBlock *SwitchBB,
1768                                                   BranchProbability TProb,
1769                                                   BranchProbability FProb,
1770                                                   bool InvertCond) {
1771   const BasicBlock *BB = CurBB->getBasicBlock();
1772 
1773   // If the leaf of the tree is a comparison, merge the condition into
1774   // the caseblock.
1775   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1776     // The operands of the cmp have to be in this block.  We don't know
1777     // how to export them from some other block.  If this is the first block
1778     // of the sequence, no exporting is needed.
1779     if (CurBB == SwitchBB ||
1780         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1781          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1782       ISD::CondCode Condition;
1783       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1784         ICmpInst::Predicate Pred =
1785             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1786         Condition = getICmpCondCode(Pred);
1787       } else {
1788         const FCmpInst *FC = cast<FCmpInst>(Cond);
1789         FCmpInst::Predicate Pred =
1790             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1791         Condition = getFCmpCondCode(Pred);
1792         if (TM.Options.NoNaNsFPMath)
1793           Condition = getFCmpCodeWithoutNaN(Condition);
1794       }
1795 
1796       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1797                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1798       SwitchCases.push_back(CB);
1799       return;
1800     }
1801   }
1802 
1803   // Create a CaseBlock record representing this branch.
1804   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1805   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1806                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1807   SwitchCases.push_back(CB);
1808 }
1809 
1810 /// FindMergedConditions - If Cond is an expression like
1811 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1812                                                MachineBasicBlock *TBB,
1813                                                MachineBasicBlock *FBB,
1814                                                MachineBasicBlock *CurBB,
1815                                                MachineBasicBlock *SwitchBB,
1816                                                Instruction::BinaryOps Opc,
1817                                                BranchProbability TProb,
1818                                                BranchProbability FProb,
1819                                                bool InvertCond) {
1820   // Skip over not part of the tree and remember to invert op and operands at
1821   // next level.
1822   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1823     const Value *CondOp = BinaryOperator::getNotArgument(Cond);
1824     if (InBlock(CondOp, CurBB->getBasicBlock())) {
1825       FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1826                            !InvertCond);
1827       return;
1828     }
1829   }
1830 
1831   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1832   // Compute the effective opcode for Cond, taking into account whether it needs
1833   // to be inverted, e.g.
1834   //   and (not (or A, B)), C
1835   // gets lowered as
1836   //   and (and (not A, not B), C)
1837   unsigned BOpc = 0;
1838   if (BOp) {
1839     BOpc = BOp->getOpcode();
1840     if (InvertCond) {
1841       if (BOpc == Instruction::And)
1842         BOpc = Instruction::Or;
1843       else if (BOpc == Instruction::Or)
1844         BOpc = Instruction::And;
1845     }
1846   }
1847 
1848   // If this node is not part of the or/and tree, emit it as a branch.
1849   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1850       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1851       BOp->getParent() != CurBB->getBasicBlock() ||
1852       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1853       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1854     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1855                                  TProb, FProb, InvertCond);
1856     return;
1857   }
1858 
1859   //  Create TmpBB after CurBB.
1860   MachineFunction::iterator BBI(CurBB);
1861   MachineFunction &MF = DAG.getMachineFunction();
1862   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1863   CurBB->getParent()->insert(++BBI, TmpBB);
1864 
1865   if (Opc == Instruction::Or) {
1866     // Codegen X | Y as:
1867     // BB1:
1868     //   jmp_if_X TBB
1869     //   jmp TmpBB
1870     // TmpBB:
1871     //   jmp_if_Y TBB
1872     //   jmp FBB
1873     //
1874 
1875     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1876     // The requirement is that
1877     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1878     //     = TrueProb for original BB.
1879     // Assuming the original probabilities are A and B, one choice is to set
1880     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1881     // A/(1+B) and 2B/(1+B). This choice assumes that
1882     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1883     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1884     // TmpBB, but the math is more complicated.
1885 
1886     auto NewTrueProb = TProb / 2;
1887     auto NewFalseProb = TProb / 2 + FProb;
1888     // Emit the LHS condition.
1889     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1890                          NewTrueProb, NewFalseProb, InvertCond);
1891 
1892     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1893     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1894     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1895     // Emit the RHS condition into TmpBB.
1896     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1897                          Probs[0], Probs[1], InvertCond);
1898   } else {
1899     assert(Opc == Instruction::And && "Unknown merge op!");
1900     // Codegen X & Y as:
1901     // BB1:
1902     //   jmp_if_X TmpBB
1903     //   jmp FBB
1904     // TmpBB:
1905     //   jmp_if_Y TBB
1906     //   jmp FBB
1907     //
1908     //  This requires creation of TmpBB after CurBB.
1909 
1910     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1911     // The requirement is that
1912     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1913     //     = FalseProb for original BB.
1914     // Assuming the original probabilities are A and B, one choice is to set
1915     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1916     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1917     // TrueProb for BB1 * FalseProb for TmpBB.
1918 
1919     auto NewTrueProb = TProb + FProb / 2;
1920     auto NewFalseProb = FProb / 2;
1921     // Emit the LHS condition.
1922     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1923                          NewTrueProb, NewFalseProb, InvertCond);
1924 
1925     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1926     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1927     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1928     // Emit the RHS condition into TmpBB.
1929     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1930                          Probs[0], Probs[1], InvertCond);
1931   }
1932 }
1933 
1934 /// If the set of cases should be emitted as a series of branches, return true.
1935 /// If we should emit this as a bunch of and/or'd together conditions, return
1936 /// false.
1937 bool
1938 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1939   if (Cases.size() != 2) return true;
1940 
1941   // If this is two comparisons of the same values or'd or and'd together, they
1942   // will get folded into a single comparison, so don't emit two blocks.
1943   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1944        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1945       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1946        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1947     return false;
1948   }
1949 
1950   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1951   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1952   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1953       Cases[0].CC == Cases[1].CC &&
1954       isa<Constant>(Cases[0].CmpRHS) &&
1955       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1956     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1957       return false;
1958     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1959       return false;
1960   }
1961 
1962   return true;
1963 }
1964 
1965 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1966   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1967 
1968   // Update machine-CFG edges.
1969   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1970 
1971   if (I.isUnconditional()) {
1972     // Update machine-CFG edges.
1973     BrMBB->addSuccessor(Succ0MBB);
1974 
1975     // If this is not a fall-through branch or optimizations are switched off,
1976     // emit the branch.
1977     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1978       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1979                               MVT::Other, getControlRoot(),
1980                               DAG.getBasicBlock(Succ0MBB)));
1981 
1982     return;
1983   }
1984 
1985   // If this condition is one of the special cases we handle, do special stuff
1986   // now.
1987   const Value *CondVal = I.getCondition();
1988   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1989 
1990   // If this is a series of conditions that are or'd or and'd together, emit
1991   // this as a sequence of branches instead of setcc's with and/or operations.
1992   // As long as jumps are not expensive, this should improve performance.
1993   // For example, instead of something like:
1994   //     cmp A, B
1995   //     C = seteq
1996   //     cmp D, E
1997   //     F = setle
1998   //     or C, F
1999   //     jnz foo
2000   // Emit:
2001   //     cmp A, B
2002   //     je foo
2003   //     cmp D, E
2004   //     jle foo
2005   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2006     Instruction::BinaryOps Opcode = BOp->getOpcode();
2007     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2008         !I.getMetadata(LLVMContext::MD_unpredictable) &&
2009         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2010       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2011                            Opcode,
2012                            getEdgeProbability(BrMBB, Succ0MBB),
2013                            getEdgeProbability(BrMBB, Succ1MBB),
2014                            /*InvertCond=*/false);
2015       // If the compares in later blocks need to use values not currently
2016       // exported from this block, export them now.  This block should always
2017       // be the first entry.
2018       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2019 
2020       // Allow some cases to be rejected.
2021       if (ShouldEmitAsBranches(SwitchCases)) {
2022         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2023           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2024           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2025         }
2026 
2027         // Emit the branch for this block.
2028         visitSwitchCase(SwitchCases[0], BrMBB);
2029         SwitchCases.erase(SwitchCases.begin());
2030         return;
2031       }
2032 
2033       // Okay, we decided not to do this, remove any inserted MBB's and clear
2034       // SwitchCases.
2035       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2036         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2037 
2038       SwitchCases.clear();
2039     }
2040   }
2041 
2042   // Create a CaseBlock record representing this branch.
2043   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2044                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2045 
2046   // Use visitSwitchCase to actually insert the fast branch sequence for this
2047   // cond branch.
2048   visitSwitchCase(CB, BrMBB);
2049 }
2050 
2051 /// visitSwitchCase - Emits the necessary code to represent a single node in
2052 /// the binary search tree resulting from lowering a switch instruction.
2053 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2054                                           MachineBasicBlock *SwitchBB) {
2055   SDValue Cond;
2056   SDValue CondLHS = getValue(CB.CmpLHS);
2057   SDLoc dl = CB.DL;
2058 
2059   // Build the setcc now.
2060   if (!CB.CmpMHS) {
2061     // Fold "(X == true)" to X and "(X == false)" to !X to
2062     // handle common cases produced by branch lowering.
2063     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2064         CB.CC == ISD::SETEQ)
2065       Cond = CondLHS;
2066     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2067              CB.CC == ISD::SETEQ) {
2068       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2069       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2070     } else
2071       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2072   } else {
2073     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2074 
2075     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2076     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2077 
2078     SDValue CmpOp = getValue(CB.CmpMHS);
2079     EVT VT = CmpOp.getValueType();
2080 
2081     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2082       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2083                           ISD::SETLE);
2084     } else {
2085       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2086                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2087       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2088                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2089     }
2090   }
2091 
2092   // Update successor info
2093   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2094   // TrueBB and FalseBB are always different unless the incoming IR is
2095   // degenerate. This only happens when running llc on weird IR.
2096   if (CB.TrueBB != CB.FalseBB)
2097     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2098   SwitchBB->normalizeSuccProbs();
2099 
2100   // If the lhs block is the next block, invert the condition so that we can
2101   // fall through to the lhs instead of the rhs block.
2102   if (CB.TrueBB == NextBlock(SwitchBB)) {
2103     std::swap(CB.TrueBB, CB.FalseBB);
2104     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2105     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2106   }
2107 
2108   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2109                                MVT::Other, getControlRoot(), Cond,
2110                                DAG.getBasicBlock(CB.TrueBB));
2111 
2112   // Insert the false branch. Do this even if it's a fall through branch,
2113   // this makes it easier to do DAG optimizations which require inverting
2114   // the branch condition.
2115   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2116                        DAG.getBasicBlock(CB.FalseBB));
2117 
2118   DAG.setRoot(BrCond);
2119 }
2120 
2121 /// visitJumpTable - Emit JumpTable node in the current MBB
2122 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2123   // Emit the code for the jump table
2124   assert(JT.Reg != -1U && "Should lower JT Header first!");
2125   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2126   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2127                                      JT.Reg, PTy);
2128   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2129   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2130                                     MVT::Other, Index.getValue(1),
2131                                     Table, Index);
2132   DAG.setRoot(BrJumpTable);
2133 }
2134 
2135 /// visitJumpTableHeader - This function emits necessary code to produce index
2136 /// in the JumpTable from switch case.
2137 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2138                                                JumpTableHeader &JTH,
2139                                                MachineBasicBlock *SwitchBB) {
2140   SDLoc dl = getCurSDLoc();
2141 
2142   // Subtract the lowest switch case value from the value being switched on and
2143   // conditional branch to default mbb if the result is greater than the
2144   // difference between smallest and largest cases.
2145   SDValue SwitchOp = getValue(JTH.SValue);
2146   EVT VT = SwitchOp.getValueType();
2147   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2148                             DAG.getConstant(JTH.First, dl, VT));
2149 
2150   // The SDNode we just created, which holds the value being switched on minus
2151   // the smallest case value, needs to be copied to a virtual register so it
2152   // can be used as an index into the jump table in a subsequent basic block.
2153   // This value may be smaller or larger than the target's pointer type, and
2154   // therefore require extension or truncating.
2155   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2156   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2157 
2158   unsigned JumpTableReg =
2159       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2160   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2161                                     JumpTableReg, SwitchOp);
2162   JT.Reg = JumpTableReg;
2163 
2164   // Emit the range check for the jump table, and branch to the default block
2165   // for the switch statement if the value being switched on exceeds the largest
2166   // case in the switch.
2167   SDValue CMP = DAG.getSetCC(
2168       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2169                                  Sub.getValueType()),
2170       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2171 
2172   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2173                                MVT::Other, CopyTo, CMP,
2174                                DAG.getBasicBlock(JT.Default));
2175 
2176   // Avoid emitting unnecessary branches to the next block.
2177   if (JT.MBB != NextBlock(SwitchBB))
2178     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2179                          DAG.getBasicBlock(JT.MBB));
2180 
2181   DAG.setRoot(BrCond);
2182 }
2183 
2184 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2185 /// variable if there exists one.
2186 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2187                                  SDValue &Chain) {
2188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2189   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2190   MachineFunction &MF = DAG.getMachineFunction();
2191   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2192   MachineSDNode *Node =
2193       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2194   if (Global) {
2195     MachinePointerInfo MPInfo(Global);
2196     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2197                  MachineMemOperand::MODereferenceable;
2198     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2199         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2200     DAG.setNodeMemRefs(Node, {MemRef});
2201   }
2202   return SDValue(Node, 0);
2203 }
2204 
2205 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2206 /// tail spliced into a stack protector check success bb.
2207 ///
2208 /// For a high level explanation of how this fits into the stack protector
2209 /// generation see the comment on the declaration of class
2210 /// StackProtectorDescriptor.
2211 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2212                                                   MachineBasicBlock *ParentBB) {
2213 
2214   // First create the loads to the guard/stack slot for the comparison.
2215   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2216   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2217 
2218   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2219   int FI = MFI.getStackProtectorIndex();
2220 
2221   SDValue Guard;
2222   SDLoc dl = getCurSDLoc();
2223   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2224   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2225   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2226 
2227   // Generate code to load the content of the guard slot.
2228   SDValue GuardVal = DAG.getLoad(
2229       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2230       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2231       MachineMemOperand::MOVolatile);
2232 
2233   if (TLI.useStackGuardXorFP())
2234     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2235 
2236   // Retrieve guard check function, nullptr if instrumentation is inlined.
2237   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2238     // The target provides a guard check function to validate the guard value.
2239     // Generate a call to that function with the content of the guard slot as
2240     // argument.
2241     auto *Fn = cast<Function>(GuardCheck);
2242     FunctionType *FnTy = Fn->getFunctionType();
2243     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2244 
2245     TargetLowering::ArgListTy Args;
2246     TargetLowering::ArgListEntry Entry;
2247     Entry.Node = GuardVal;
2248     Entry.Ty = FnTy->getParamType(0);
2249     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2250       Entry.IsInReg = true;
2251     Args.push_back(Entry);
2252 
2253     TargetLowering::CallLoweringInfo CLI(DAG);
2254     CLI.setDebugLoc(getCurSDLoc())
2255       .setChain(DAG.getEntryNode())
2256       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2257                  getValue(GuardCheck), std::move(Args));
2258 
2259     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2260     DAG.setRoot(Result.second);
2261     return;
2262   }
2263 
2264   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2265   // Otherwise, emit a volatile load to retrieve the stack guard value.
2266   SDValue Chain = DAG.getEntryNode();
2267   if (TLI.useLoadStackGuardNode()) {
2268     Guard = getLoadStackGuard(DAG, dl, Chain);
2269   } else {
2270     const Value *IRGuard = TLI.getSDagStackGuard(M);
2271     SDValue GuardPtr = getValue(IRGuard);
2272 
2273     Guard =
2274         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2275                     Align, MachineMemOperand::MOVolatile);
2276   }
2277 
2278   // Perform the comparison via a subtract/getsetcc.
2279   EVT VT = Guard.getValueType();
2280   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2281 
2282   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2283                                                         *DAG.getContext(),
2284                                                         Sub.getValueType()),
2285                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2286 
2287   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2288   // branch to failure MBB.
2289   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2290                                MVT::Other, GuardVal.getOperand(0),
2291                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2292   // Otherwise branch to success MBB.
2293   SDValue Br = DAG.getNode(ISD::BR, dl,
2294                            MVT::Other, BrCond,
2295                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2296 
2297   DAG.setRoot(Br);
2298 }
2299 
2300 /// Codegen the failure basic block for a stack protector check.
2301 ///
2302 /// A failure stack protector machine basic block consists simply of a call to
2303 /// __stack_chk_fail().
2304 ///
2305 /// For a high level explanation of how this fits into the stack protector
2306 /// generation see the comment on the declaration of class
2307 /// StackProtectorDescriptor.
2308 void
2309 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2310   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2311   SDValue Chain =
2312       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2313                       None, false, getCurSDLoc(), false, false).second;
2314   DAG.setRoot(Chain);
2315 }
2316 
2317 /// visitBitTestHeader - This function emits necessary code to produce value
2318 /// suitable for "bit tests"
2319 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2320                                              MachineBasicBlock *SwitchBB) {
2321   SDLoc dl = getCurSDLoc();
2322 
2323   // Subtract the minimum value
2324   SDValue SwitchOp = getValue(B.SValue);
2325   EVT VT = SwitchOp.getValueType();
2326   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2327                             DAG.getConstant(B.First, dl, VT));
2328 
2329   // Check range
2330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2331   SDValue RangeCmp = DAG.getSetCC(
2332       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2333                                  Sub.getValueType()),
2334       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2335 
2336   // Determine the type of the test operands.
2337   bool UsePtrType = false;
2338   if (!TLI.isTypeLegal(VT))
2339     UsePtrType = true;
2340   else {
2341     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2342       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2343         // Switch table case range are encoded into series of masks.
2344         // Just use pointer type, it's guaranteed to fit.
2345         UsePtrType = true;
2346         break;
2347       }
2348   }
2349   if (UsePtrType) {
2350     VT = TLI.getPointerTy(DAG.getDataLayout());
2351     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2352   }
2353 
2354   B.RegVT = VT.getSimpleVT();
2355   B.Reg = FuncInfo.CreateReg(B.RegVT);
2356   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2357 
2358   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2359 
2360   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2361   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2362   SwitchBB->normalizeSuccProbs();
2363 
2364   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2365                                 MVT::Other, CopyTo, RangeCmp,
2366                                 DAG.getBasicBlock(B.Default));
2367 
2368   // Avoid emitting unnecessary branches to the next block.
2369   if (MBB != NextBlock(SwitchBB))
2370     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2371                           DAG.getBasicBlock(MBB));
2372 
2373   DAG.setRoot(BrRange);
2374 }
2375 
2376 /// visitBitTestCase - this function produces one "bit test"
2377 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2378                                            MachineBasicBlock* NextMBB,
2379                                            BranchProbability BranchProbToNext,
2380                                            unsigned Reg,
2381                                            BitTestCase &B,
2382                                            MachineBasicBlock *SwitchBB) {
2383   SDLoc dl = getCurSDLoc();
2384   MVT VT = BB.RegVT;
2385   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2386   SDValue Cmp;
2387   unsigned PopCount = countPopulation(B.Mask);
2388   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2389   if (PopCount == 1) {
2390     // Testing for a single bit; just compare the shift count with what it
2391     // would need to be to shift a 1 bit in that position.
2392     Cmp = DAG.getSetCC(
2393         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2394         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2395         ISD::SETEQ);
2396   } else if (PopCount == BB.Range) {
2397     // There is only one zero bit in the range, test for it directly.
2398     Cmp = DAG.getSetCC(
2399         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2400         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2401         ISD::SETNE);
2402   } else {
2403     // Make desired shift
2404     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2405                                     DAG.getConstant(1, dl, VT), ShiftOp);
2406 
2407     // Emit bit tests and jumps
2408     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2409                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2410     Cmp = DAG.getSetCC(
2411         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2412         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2413   }
2414 
2415   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2416   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2417   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2418   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2419   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2420   // one as they are relative probabilities (and thus work more like weights),
2421   // and hence we need to normalize them to let the sum of them become one.
2422   SwitchBB->normalizeSuccProbs();
2423 
2424   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2425                               MVT::Other, getControlRoot(),
2426                               Cmp, DAG.getBasicBlock(B.TargetBB));
2427 
2428   // Avoid emitting unnecessary branches to the next block.
2429   if (NextMBB != NextBlock(SwitchBB))
2430     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2431                         DAG.getBasicBlock(NextMBB));
2432 
2433   DAG.setRoot(BrAnd);
2434 }
2435 
2436 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2437   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2438 
2439   // Retrieve successors. Look through artificial IR level blocks like
2440   // catchswitch for successors.
2441   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2442   const BasicBlock *EHPadBB = I.getSuccessor(1);
2443 
2444   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2445   // have to do anything here to lower funclet bundles.
2446   assert(!I.hasOperandBundlesOtherThan(
2447              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2448          "Cannot lower invokes with arbitrary operand bundles yet!");
2449 
2450   const Value *Callee(I.getCalledValue());
2451   const Function *Fn = dyn_cast<Function>(Callee);
2452   if (isa<InlineAsm>(Callee))
2453     visitInlineAsm(&I);
2454   else if (Fn && Fn->isIntrinsic()) {
2455     switch (Fn->getIntrinsicID()) {
2456     default:
2457       llvm_unreachable("Cannot invoke this intrinsic");
2458     case Intrinsic::donothing:
2459       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2460       break;
2461     case Intrinsic::experimental_patchpoint_void:
2462     case Intrinsic::experimental_patchpoint_i64:
2463       visitPatchpoint(&I, EHPadBB);
2464       break;
2465     case Intrinsic::experimental_gc_statepoint:
2466       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2467       break;
2468     }
2469   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2470     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2471     // Eventually we will support lowering the @llvm.experimental.deoptimize
2472     // intrinsic, and right now there are no plans to support other intrinsics
2473     // with deopt state.
2474     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2475   } else {
2476     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2477   }
2478 
2479   // If the value of the invoke is used outside of its defining block, make it
2480   // available as a virtual register.
2481   // We already took care of the exported value for the statepoint instruction
2482   // during call to the LowerStatepoint.
2483   if (!isStatepoint(I)) {
2484     CopyToExportRegsIfNeeded(&I);
2485   }
2486 
2487   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2488   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2489   BranchProbability EHPadBBProb =
2490       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2491           : BranchProbability::getZero();
2492   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2493 
2494   // Update successor info.
2495   addSuccessorWithProb(InvokeMBB, Return);
2496   for (auto &UnwindDest : UnwindDests) {
2497     UnwindDest.first->setIsEHPad();
2498     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2499   }
2500   InvokeMBB->normalizeSuccProbs();
2501 
2502   // Drop into normal successor.
2503   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2504                           MVT::Other, getControlRoot(),
2505                           DAG.getBasicBlock(Return)));
2506 }
2507 
2508 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2509   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2510 }
2511 
2512 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2513   assert(FuncInfo.MBB->isEHPad() &&
2514          "Call to landingpad not in landing pad!");
2515 
2516   MachineBasicBlock *MBB = FuncInfo.MBB;
2517   addLandingPadInfo(LP, *MBB);
2518 
2519   // If there aren't registers to copy the values into (e.g., during SjLj
2520   // exceptions), then don't bother to create these DAG nodes.
2521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2522   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2523   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2524       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2525     return;
2526 
2527   // If landingpad's return type is token type, we don't create DAG nodes
2528   // for its exception pointer and selector value. The extraction of exception
2529   // pointer or selector value from token type landingpads is not currently
2530   // supported.
2531   if (LP.getType()->isTokenTy())
2532     return;
2533 
2534   SmallVector<EVT, 2> ValueVTs;
2535   SDLoc dl = getCurSDLoc();
2536   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2537   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2538 
2539   // Get the two live-in registers as SDValues. The physregs have already been
2540   // copied into virtual registers.
2541   SDValue Ops[2];
2542   if (FuncInfo.ExceptionPointerVirtReg) {
2543     Ops[0] = DAG.getZExtOrTrunc(
2544         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2545                            FuncInfo.ExceptionPointerVirtReg,
2546                            TLI.getPointerTy(DAG.getDataLayout())),
2547         dl, ValueVTs[0]);
2548   } else {
2549     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2550   }
2551   Ops[1] = DAG.getZExtOrTrunc(
2552       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2553                          FuncInfo.ExceptionSelectorVirtReg,
2554                          TLI.getPointerTy(DAG.getDataLayout())),
2555       dl, ValueVTs[1]);
2556 
2557   // Merge into one.
2558   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2559                             DAG.getVTList(ValueVTs), Ops);
2560   setValue(&LP, Res);
2561 }
2562 
2563 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2564 #ifndef NDEBUG
2565   for (const CaseCluster &CC : Clusters)
2566     assert(CC.Low == CC.High && "Input clusters must be single-case");
2567 #endif
2568 
2569   llvm::sort(Clusters.begin(), Clusters.end(),
2570              [](const CaseCluster &a, const CaseCluster &b) {
2571     return a.Low->getValue().slt(b.Low->getValue());
2572   });
2573 
2574   // Merge adjacent clusters with the same destination.
2575   const unsigned N = Clusters.size();
2576   unsigned DstIndex = 0;
2577   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2578     CaseCluster &CC = Clusters[SrcIndex];
2579     const ConstantInt *CaseVal = CC.Low;
2580     MachineBasicBlock *Succ = CC.MBB;
2581 
2582     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2583         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2584       // If this case has the same successor and is a neighbour, merge it into
2585       // the previous cluster.
2586       Clusters[DstIndex - 1].High = CaseVal;
2587       Clusters[DstIndex - 1].Prob += CC.Prob;
2588     } else {
2589       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2590                    sizeof(Clusters[SrcIndex]));
2591     }
2592   }
2593   Clusters.resize(DstIndex);
2594 }
2595 
2596 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2597                                            MachineBasicBlock *Last) {
2598   // Update JTCases.
2599   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2600     if (JTCases[i].first.HeaderBB == First)
2601       JTCases[i].first.HeaderBB = Last;
2602 
2603   // Update BitTestCases.
2604   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2605     if (BitTestCases[i].Parent == First)
2606       BitTestCases[i].Parent = Last;
2607 }
2608 
2609 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2610   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2611 
2612   // Update machine-CFG edges with unique successors.
2613   SmallSet<BasicBlock*, 32> Done;
2614   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2615     BasicBlock *BB = I.getSuccessor(i);
2616     bool Inserted = Done.insert(BB).second;
2617     if (!Inserted)
2618         continue;
2619 
2620     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2621     addSuccessorWithProb(IndirectBrMBB, Succ);
2622   }
2623   IndirectBrMBB->normalizeSuccProbs();
2624 
2625   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2626                           MVT::Other, getControlRoot(),
2627                           getValue(I.getAddress())));
2628 }
2629 
2630 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2631   if (!DAG.getTarget().Options.TrapUnreachable)
2632     return;
2633 
2634   // We may be able to ignore unreachable behind a noreturn call.
2635   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2636     const BasicBlock &BB = *I.getParent();
2637     if (&I != &BB.front()) {
2638       BasicBlock::const_iterator PredI =
2639         std::prev(BasicBlock::const_iterator(&I));
2640       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2641         if (Call->doesNotReturn())
2642           return;
2643       }
2644     }
2645   }
2646 
2647   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2648 }
2649 
2650 void SelectionDAGBuilder::visitFSub(const User &I) {
2651   // -0.0 - X --> fneg
2652   Type *Ty = I.getType();
2653   if (isa<Constant>(I.getOperand(0)) &&
2654       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2655     SDValue Op2 = getValue(I.getOperand(1));
2656     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2657                              Op2.getValueType(), Op2));
2658     return;
2659   }
2660 
2661   visitBinary(I, ISD::FSUB);
2662 }
2663 
2664 /// Checks if the given instruction performs a vector reduction, in which case
2665 /// we have the freedom to alter the elements in the result as long as the
2666 /// reduction of them stays unchanged.
2667 static bool isVectorReductionOp(const User *I) {
2668   const Instruction *Inst = dyn_cast<Instruction>(I);
2669   if (!Inst || !Inst->getType()->isVectorTy())
2670     return false;
2671 
2672   auto OpCode = Inst->getOpcode();
2673   switch (OpCode) {
2674   case Instruction::Add:
2675   case Instruction::Mul:
2676   case Instruction::And:
2677   case Instruction::Or:
2678   case Instruction::Xor:
2679     break;
2680   case Instruction::FAdd:
2681   case Instruction::FMul:
2682     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2683       if (FPOp->getFastMathFlags().isFast())
2684         break;
2685     LLVM_FALLTHROUGH;
2686   default:
2687     return false;
2688   }
2689 
2690   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2691   // Ensure the reduction size is a power of 2.
2692   if (!isPowerOf2_32(ElemNum))
2693     return false;
2694 
2695   unsigned ElemNumToReduce = ElemNum;
2696 
2697   // Do DFS search on the def-use chain from the given instruction. We only
2698   // allow four kinds of operations during the search until we reach the
2699   // instruction that extracts the first element from the vector:
2700   //
2701   //   1. The reduction operation of the same opcode as the given instruction.
2702   //
2703   //   2. PHI node.
2704   //
2705   //   3. ShuffleVector instruction together with a reduction operation that
2706   //      does a partial reduction.
2707   //
2708   //   4. ExtractElement that extracts the first element from the vector, and we
2709   //      stop searching the def-use chain here.
2710   //
2711   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2712   // from 1-3 to the stack to continue the DFS. The given instruction is not
2713   // a reduction operation if we meet any other instructions other than those
2714   // listed above.
2715 
2716   SmallVector<const User *, 16> UsersToVisit{Inst};
2717   SmallPtrSet<const User *, 16> Visited;
2718   bool ReduxExtracted = false;
2719 
2720   while (!UsersToVisit.empty()) {
2721     auto User = UsersToVisit.back();
2722     UsersToVisit.pop_back();
2723     if (!Visited.insert(User).second)
2724       continue;
2725 
2726     for (const auto &U : User->users()) {
2727       auto Inst = dyn_cast<Instruction>(U);
2728       if (!Inst)
2729         return false;
2730 
2731       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2732         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2733           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2734             return false;
2735         UsersToVisit.push_back(U);
2736       } else if (const ShuffleVectorInst *ShufInst =
2737                      dyn_cast<ShuffleVectorInst>(U)) {
2738         // Detect the following pattern: A ShuffleVector instruction together
2739         // with a reduction that do partial reduction on the first and second
2740         // ElemNumToReduce / 2 elements, and store the result in
2741         // ElemNumToReduce / 2 elements in another vector.
2742 
2743         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2744         if (ResultElements < ElemNum)
2745           return false;
2746 
2747         if (ElemNumToReduce == 1)
2748           return false;
2749         if (!isa<UndefValue>(U->getOperand(1)))
2750           return false;
2751         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2752           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2753             return false;
2754         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2755           if (ShufInst->getMaskValue(i) != -1)
2756             return false;
2757 
2758         // There is only one user of this ShuffleVector instruction, which
2759         // must be a reduction operation.
2760         if (!U->hasOneUse())
2761           return false;
2762 
2763         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2764         if (!U2 || U2->getOpcode() != OpCode)
2765           return false;
2766 
2767         // Check operands of the reduction operation.
2768         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2769             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2770           UsersToVisit.push_back(U2);
2771           ElemNumToReduce /= 2;
2772         } else
2773           return false;
2774       } else if (isa<ExtractElementInst>(U)) {
2775         // At this moment we should have reduced all elements in the vector.
2776         if (ElemNumToReduce != 1)
2777           return false;
2778 
2779         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2780         if (!Val || !Val->isZero())
2781           return false;
2782 
2783         ReduxExtracted = true;
2784       } else
2785         return false;
2786     }
2787   }
2788   return ReduxExtracted;
2789 }
2790 
2791 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2792   SDNodeFlags Flags;
2793   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2794     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2795     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2796   }
2797   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2798     Flags.setExact(ExactOp->isExact());
2799   }
2800   if (isVectorReductionOp(&I)) {
2801     Flags.setVectorReduction(true);
2802     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2803   }
2804 
2805   SDValue Op1 = getValue(I.getOperand(0));
2806   SDValue Op2 = getValue(I.getOperand(1));
2807   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2808                                      Op1, Op2, Flags);
2809   setValue(&I, BinNodeValue);
2810 }
2811 
2812 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2813   SDValue Op1 = getValue(I.getOperand(0));
2814   SDValue Op2 = getValue(I.getOperand(1));
2815 
2816   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2817       Op2.getValueType(), DAG.getDataLayout());
2818 
2819   // Coerce the shift amount to the right type if we can.
2820   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2821     unsigned ShiftSize = ShiftTy.getSizeInBits();
2822     unsigned Op2Size = Op2.getValueSizeInBits();
2823     SDLoc DL = getCurSDLoc();
2824 
2825     // If the operand is smaller than the shift count type, promote it.
2826     if (ShiftSize > Op2Size)
2827       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2828 
2829     // If the operand is larger than the shift count type but the shift
2830     // count type has enough bits to represent any shift value, truncate
2831     // it now. This is a common case and it exposes the truncate to
2832     // optimization early.
2833     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2834       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2835     // Otherwise we'll need to temporarily settle for some other convenient
2836     // type.  Type legalization will make adjustments once the shiftee is split.
2837     else
2838       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2839   }
2840 
2841   bool nuw = false;
2842   bool nsw = false;
2843   bool exact = false;
2844 
2845   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2846 
2847     if (const OverflowingBinaryOperator *OFBinOp =
2848             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2849       nuw = OFBinOp->hasNoUnsignedWrap();
2850       nsw = OFBinOp->hasNoSignedWrap();
2851     }
2852     if (const PossiblyExactOperator *ExactOp =
2853             dyn_cast<const PossiblyExactOperator>(&I))
2854       exact = ExactOp->isExact();
2855   }
2856   SDNodeFlags Flags;
2857   Flags.setExact(exact);
2858   Flags.setNoSignedWrap(nsw);
2859   Flags.setNoUnsignedWrap(nuw);
2860   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2861                             Flags);
2862   setValue(&I, Res);
2863 }
2864 
2865 void SelectionDAGBuilder::visitSDiv(const User &I) {
2866   SDValue Op1 = getValue(I.getOperand(0));
2867   SDValue Op2 = getValue(I.getOperand(1));
2868 
2869   SDNodeFlags Flags;
2870   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2871                  cast<PossiblyExactOperator>(&I)->isExact());
2872   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2873                            Op2, Flags));
2874 }
2875 
2876 void SelectionDAGBuilder::visitICmp(const User &I) {
2877   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2878   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2879     predicate = IC->getPredicate();
2880   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2881     predicate = ICmpInst::Predicate(IC->getPredicate());
2882   SDValue Op1 = getValue(I.getOperand(0));
2883   SDValue Op2 = getValue(I.getOperand(1));
2884   ISD::CondCode Opcode = getICmpCondCode(predicate);
2885 
2886   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2887                                                         I.getType());
2888   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2889 }
2890 
2891 void SelectionDAGBuilder::visitFCmp(const User &I) {
2892   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2893   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2894     predicate = FC->getPredicate();
2895   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2896     predicate = FCmpInst::Predicate(FC->getPredicate());
2897   SDValue Op1 = getValue(I.getOperand(0));
2898   SDValue Op2 = getValue(I.getOperand(1));
2899 
2900   ISD::CondCode Condition = getFCmpCondCode(predicate);
2901   auto *FPMO = dyn_cast<FPMathOperator>(&I);
2902   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2903     Condition = getFCmpCodeWithoutNaN(Condition);
2904 
2905   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2906                                                         I.getType());
2907   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2908 }
2909 
2910 // Check if the condition of the select has one use or two users that are both
2911 // selects with the same condition.
2912 static bool hasOnlySelectUsers(const Value *Cond) {
2913   return llvm::all_of(Cond->users(), [](const Value *V) {
2914     return isa<SelectInst>(V);
2915   });
2916 }
2917 
2918 void SelectionDAGBuilder::visitSelect(const User &I) {
2919   SmallVector<EVT, 4> ValueVTs;
2920   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2921                   ValueVTs);
2922   unsigned NumValues = ValueVTs.size();
2923   if (NumValues == 0) return;
2924 
2925   SmallVector<SDValue, 4> Values(NumValues);
2926   SDValue Cond     = getValue(I.getOperand(0));
2927   SDValue LHSVal   = getValue(I.getOperand(1));
2928   SDValue RHSVal   = getValue(I.getOperand(2));
2929   auto BaseOps = {Cond};
2930   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2931     ISD::VSELECT : ISD::SELECT;
2932 
2933   // Min/max matching is only viable if all output VTs are the same.
2934   if (is_splat(ValueVTs)) {
2935     EVT VT = ValueVTs[0];
2936     LLVMContext &Ctx = *DAG.getContext();
2937     auto &TLI = DAG.getTargetLoweringInfo();
2938 
2939     // We care about the legality of the operation after it has been type
2940     // legalized.
2941     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2942            VT != TLI.getTypeToTransformTo(Ctx, VT))
2943       VT = TLI.getTypeToTransformTo(Ctx, VT);
2944 
2945     // If the vselect is legal, assume we want to leave this as a vector setcc +
2946     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2947     // min/max is legal on the scalar type.
2948     bool UseScalarMinMax = VT.isVector() &&
2949       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2950 
2951     Value *LHS, *RHS;
2952     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2953     ISD::NodeType Opc = ISD::DELETED_NODE;
2954     switch (SPR.Flavor) {
2955     case SPF_UMAX:    Opc = ISD::UMAX; break;
2956     case SPF_UMIN:    Opc = ISD::UMIN; break;
2957     case SPF_SMAX:    Opc = ISD::SMAX; break;
2958     case SPF_SMIN:    Opc = ISD::SMIN; break;
2959     case SPF_FMINNUM:
2960       switch (SPR.NaNBehavior) {
2961       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2962       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2963       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2964       case SPNB_RETURNS_ANY: {
2965         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2966           Opc = ISD::FMINNUM;
2967         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2968           Opc = ISD::FMINNAN;
2969         else if (UseScalarMinMax)
2970           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2971             ISD::FMINNUM : ISD::FMINNAN;
2972         break;
2973       }
2974       }
2975       break;
2976     case SPF_FMAXNUM:
2977       switch (SPR.NaNBehavior) {
2978       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2979       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2980       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2981       case SPNB_RETURNS_ANY:
2982 
2983         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2984           Opc = ISD::FMAXNUM;
2985         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2986           Opc = ISD::FMAXNAN;
2987         else if (UseScalarMinMax)
2988           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2989             ISD::FMAXNUM : ISD::FMAXNAN;
2990         break;
2991       }
2992       break;
2993     default: break;
2994     }
2995 
2996     if (Opc != ISD::DELETED_NODE &&
2997         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2998          (UseScalarMinMax &&
2999           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3000         // If the underlying comparison instruction is used by any other
3001         // instruction, the consumed instructions won't be destroyed, so it is
3002         // not profitable to convert to a min/max.
3003         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3004       OpCode = Opc;
3005       LHSVal = getValue(LHS);
3006       RHSVal = getValue(RHS);
3007       BaseOps = {};
3008     }
3009   }
3010 
3011   for (unsigned i = 0; i != NumValues; ++i) {
3012     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3013     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3014     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3015     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3016                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3017                             Ops);
3018   }
3019 
3020   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3021                            DAG.getVTList(ValueVTs), Values));
3022 }
3023 
3024 void SelectionDAGBuilder::visitTrunc(const User &I) {
3025   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3026   SDValue N = getValue(I.getOperand(0));
3027   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3028                                                         I.getType());
3029   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3030 }
3031 
3032 void SelectionDAGBuilder::visitZExt(const User &I) {
3033   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3034   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3035   SDValue N = getValue(I.getOperand(0));
3036   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3037                                                         I.getType());
3038   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3039 }
3040 
3041 void SelectionDAGBuilder::visitSExt(const User &I) {
3042   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3043   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3044   SDValue N = getValue(I.getOperand(0));
3045   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3046                                                         I.getType());
3047   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3048 }
3049 
3050 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3051   // FPTrunc is never a no-op cast, no need to check
3052   SDValue N = getValue(I.getOperand(0));
3053   SDLoc dl = getCurSDLoc();
3054   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3055   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3056   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3057                            DAG.getTargetConstant(
3058                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3059 }
3060 
3061 void SelectionDAGBuilder::visitFPExt(const User &I) {
3062   // FPExt is never a no-op cast, no need to check
3063   SDValue N = getValue(I.getOperand(0));
3064   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3065                                                         I.getType());
3066   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3067 }
3068 
3069 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3070   // FPToUI is never a no-op cast, no need to check
3071   SDValue N = getValue(I.getOperand(0));
3072   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3073                                                         I.getType());
3074   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3075 }
3076 
3077 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3078   // FPToSI is never a no-op cast, no need to check
3079   SDValue N = getValue(I.getOperand(0));
3080   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3081                                                         I.getType());
3082   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3083 }
3084 
3085 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3086   // UIToFP is never a no-op cast, no need to check
3087   SDValue N = getValue(I.getOperand(0));
3088   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3089                                                         I.getType());
3090   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3091 }
3092 
3093 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3094   // SIToFP is never a no-op cast, no need to check
3095   SDValue N = getValue(I.getOperand(0));
3096   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3097                                                         I.getType());
3098   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3099 }
3100 
3101 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3102   // What to do depends on the size of the integer and the size of the pointer.
3103   // We can either truncate, zero extend, or no-op, accordingly.
3104   SDValue N = getValue(I.getOperand(0));
3105   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3106                                                         I.getType());
3107   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3108 }
3109 
3110 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3111   // What to do depends on the size of the integer and the size of the pointer.
3112   // We can either truncate, zero extend, or no-op, accordingly.
3113   SDValue N = getValue(I.getOperand(0));
3114   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3115                                                         I.getType());
3116   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3117 }
3118 
3119 void SelectionDAGBuilder::visitBitCast(const User &I) {
3120   SDValue N = getValue(I.getOperand(0));
3121   SDLoc dl = getCurSDLoc();
3122   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3123                                                         I.getType());
3124 
3125   // BitCast assures us that source and destination are the same size so this is
3126   // either a BITCAST or a no-op.
3127   if (DestVT != N.getValueType())
3128     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3129                              DestVT, N)); // convert types.
3130   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3131   // might fold any kind of constant expression to an integer constant and that
3132   // is not what we are looking for. Only recognize a bitcast of a genuine
3133   // constant integer as an opaque constant.
3134   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3135     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3136                                  /*isOpaque*/true));
3137   else
3138     setValue(&I, N);            // noop cast.
3139 }
3140 
3141 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3142   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3143   const Value *SV = I.getOperand(0);
3144   SDValue N = getValue(SV);
3145   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3146 
3147   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3148   unsigned DestAS = I.getType()->getPointerAddressSpace();
3149 
3150   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3151     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3152 
3153   setValue(&I, N);
3154 }
3155 
3156 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3157   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3158   SDValue InVec = getValue(I.getOperand(0));
3159   SDValue InVal = getValue(I.getOperand(1));
3160   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3161                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3162   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3163                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3164                            InVec, InVal, InIdx));
3165 }
3166 
3167 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3169   SDValue InVec = getValue(I.getOperand(0));
3170   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3171                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3172   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3173                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3174                            InVec, InIdx));
3175 }
3176 
3177 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3178   SDValue Src1 = getValue(I.getOperand(0));
3179   SDValue Src2 = getValue(I.getOperand(1));
3180   SDLoc DL = getCurSDLoc();
3181 
3182   SmallVector<int, 8> Mask;
3183   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3184   unsigned MaskNumElts = Mask.size();
3185 
3186   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3187   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3188   EVT SrcVT = Src1.getValueType();
3189   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3190 
3191   if (SrcNumElts == MaskNumElts) {
3192     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3193     return;
3194   }
3195 
3196   // Normalize the shuffle vector since mask and vector length don't match.
3197   if (SrcNumElts < MaskNumElts) {
3198     // Mask is longer than the source vectors. We can use concatenate vector to
3199     // make the mask and vectors lengths match.
3200 
3201     if (MaskNumElts % SrcNumElts == 0) {
3202       // Mask length is a multiple of the source vector length.
3203       // Check if the shuffle is some kind of concatenation of the input
3204       // vectors.
3205       unsigned NumConcat = MaskNumElts / SrcNumElts;
3206       bool IsConcat = true;
3207       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3208       for (unsigned i = 0; i != MaskNumElts; ++i) {
3209         int Idx = Mask[i];
3210         if (Idx < 0)
3211           continue;
3212         // Ensure the indices in each SrcVT sized piece are sequential and that
3213         // the same source is used for the whole piece.
3214         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3215             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3216              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3217           IsConcat = false;
3218           break;
3219         }
3220         // Remember which source this index came from.
3221         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3222       }
3223 
3224       // The shuffle is concatenating multiple vectors together. Just emit
3225       // a CONCAT_VECTORS operation.
3226       if (IsConcat) {
3227         SmallVector<SDValue, 8> ConcatOps;
3228         for (auto Src : ConcatSrcs) {
3229           if (Src < 0)
3230             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3231           else if (Src == 0)
3232             ConcatOps.push_back(Src1);
3233           else
3234             ConcatOps.push_back(Src2);
3235         }
3236         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3237         return;
3238       }
3239     }
3240 
3241     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3242     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3243     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3244                                     PaddedMaskNumElts);
3245 
3246     // Pad both vectors with undefs to make them the same length as the mask.
3247     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3248 
3249     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3250     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3251     MOps1[0] = Src1;
3252     MOps2[0] = Src2;
3253 
3254     Src1 = Src1.isUndef()
3255                ? DAG.getUNDEF(PaddedVT)
3256                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3257     Src2 = Src2.isUndef()
3258                ? DAG.getUNDEF(PaddedVT)
3259                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3260 
3261     // Readjust mask for new input vector length.
3262     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3263     for (unsigned i = 0; i != MaskNumElts; ++i) {
3264       int Idx = Mask[i];
3265       if (Idx >= (int)SrcNumElts)
3266         Idx -= SrcNumElts - PaddedMaskNumElts;
3267       MappedOps[i] = Idx;
3268     }
3269 
3270     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3271 
3272     // If the concatenated vector was padded, extract a subvector with the
3273     // correct number of elements.
3274     if (MaskNumElts != PaddedMaskNumElts)
3275       Result = DAG.getNode(
3276           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3277           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3278 
3279     setValue(&I, Result);
3280     return;
3281   }
3282 
3283   if (SrcNumElts > MaskNumElts) {
3284     // Analyze the access pattern of the vector to see if we can extract
3285     // two subvectors and do the shuffle.
3286     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3287     bool CanExtract = true;
3288     for (int Idx : Mask) {
3289       unsigned Input = 0;
3290       if (Idx < 0)
3291         continue;
3292 
3293       if (Idx >= (int)SrcNumElts) {
3294         Input = 1;
3295         Idx -= SrcNumElts;
3296       }
3297 
3298       // If all the indices come from the same MaskNumElts sized portion of
3299       // the sources we can use extract. Also make sure the extract wouldn't
3300       // extract past the end of the source.
3301       int NewStartIdx = alignDown(Idx, MaskNumElts);
3302       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3303           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3304         CanExtract = false;
3305       // Make sure we always update StartIdx as we use it to track if all
3306       // elements are undef.
3307       StartIdx[Input] = NewStartIdx;
3308     }
3309 
3310     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3311       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3312       return;
3313     }
3314     if (CanExtract) {
3315       // Extract appropriate subvector and generate a vector shuffle
3316       for (unsigned Input = 0; Input < 2; ++Input) {
3317         SDValue &Src = Input == 0 ? Src1 : Src2;
3318         if (StartIdx[Input] < 0)
3319           Src = DAG.getUNDEF(VT);
3320         else {
3321           Src = DAG.getNode(
3322               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3323               DAG.getConstant(StartIdx[Input], DL,
3324                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3325         }
3326       }
3327 
3328       // Calculate new mask.
3329       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3330       for (int &Idx : MappedOps) {
3331         if (Idx >= (int)SrcNumElts)
3332           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3333         else if (Idx >= 0)
3334           Idx -= StartIdx[0];
3335       }
3336 
3337       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3338       return;
3339     }
3340   }
3341 
3342   // We can't use either concat vectors or extract subvectors so fall back to
3343   // replacing the shuffle with extract and build vector.
3344   // to insert and build vector.
3345   EVT EltVT = VT.getVectorElementType();
3346   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3347   SmallVector<SDValue,8> Ops;
3348   for (int Idx : Mask) {
3349     SDValue Res;
3350 
3351     if (Idx < 0) {
3352       Res = DAG.getUNDEF(EltVT);
3353     } else {
3354       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3355       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3356 
3357       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3358                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3359     }
3360 
3361     Ops.push_back(Res);
3362   }
3363 
3364   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3365 }
3366 
3367 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3368   ArrayRef<unsigned> Indices;
3369   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3370     Indices = IV->getIndices();
3371   else
3372     Indices = cast<ConstantExpr>(&I)->getIndices();
3373 
3374   const Value *Op0 = I.getOperand(0);
3375   const Value *Op1 = I.getOperand(1);
3376   Type *AggTy = I.getType();
3377   Type *ValTy = Op1->getType();
3378   bool IntoUndef = isa<UndefValue>(Op0);
3379   bool FromUndef = isa<UndefValue>(Op1);
3380 
3381   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3382 
3383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3384   SmallVector<EVT, 4> AggValueVTs;
3385   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3386   SmallVector<EVT, 4> ValValueVTs;
3387   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3388 
3389   unsigned NumAggValues = AggValueVTs.size();
3390   unsigned NumValValues = ValValueVTs.size();
3391   SmallVector<SDValue, 4> Values(NumAggValues);
3392 
3393   // Ignore an insertvalue that produces an empty object
3394   if (!NumAggValues) {
3395     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3396     return;
3397   }
3398 
3399   SDValue Agg = getValue(Op0);
3400   unsigned i = 0;
3401   // Copy the beginning value(s) from the original aggregate.
3402   for (; i != LinearIndex; ++i)
3403     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3404                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3405   // Copy values from the inserted value(s).
3406   if (NumValValues) {
3407     SDValue Val = getValue(Op1);
3408     for (; i != LinearIndex + NumValValues; ++i)
3409       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3410                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3411   }
3412   // Copy remaining value(s) from the original aggregate.
3413   for (; i != NumAggValues; ++i)
3414     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3415                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3416 
3417   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3418                            DAG.getVTList(AggValueVTs), Values));
3419 }
3420 
3421 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3422   ArrayRef<unsigned> Indices;
3423   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3424     Indices = EV->getIndices();
3425   else
3426     Indices = cast<ConstantExpr>(&I)->getIndices();
3427 
3428   const Value *Op0 = I.getOperand(0);
3429   Type *AggTy = Op0->getType();
3430   Type *ValTy = I.getType();
3431   bool OutOfUndef = isa<UndefValue>(Op0);
3432 
3433   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3434 
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   SmallVector<EVT, 4> ValValueVTs;
3437   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3438 
3439   unsigned NumValValues = ValValueVTs.size();
3440 
3441   // Ignore a extractvalue that produces an empty object
3442   if (!NumValValues) {
3443     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3444     return;
3445   }
3446 
3447   SmallVector<SDValue, 4> Values(NumValValues);
3448 
3449   SDValue Agg = getValue(Op0);
3450   // Copy out the selected value(s).
3451   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3452     Values[i - LinearIndex] =
3453       OutOfUndef ?
3454         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3455         SDValue(Agg.getNode(), Agg.getResNo() + i);
3456 
3457   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3458                            DAG.getVTList(ValValueVTs), Values));
3459 }
3460 
3461 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3462   Value *Op0 = I.getOperand(0);
3463   // Note that the pointer operand may be a vector of pointers. Take the scalar
3464   // element which holds a pointer.
3465   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3466   SDValue N = getValue(Op0);
3467   SDLoc dl = getCurSDLoc();
3468 
3469   // Normalize Vector GEP - all scalar operands should be converted to the
3470   // splat vector.
3471   unsigned VectorWidth = I.getType()->isVectorTy() ?
3472     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3473 
3474   if (VectorWidth && !N.getValueType().isVector()) {
3475     LLVMContext &Context = *DAG.getContext();
3476     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3477     N = DAG.getSplatBuildVector(VT, dl, N);
3478   }
3479 
3480   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3481        GTI != E; ++GTI) {
3482     const Value *Idx = GTI.getOperand();
3483     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3484       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3485       if (Field) {
3486         // N = N + Offset
3487         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3488 
3489         // In an inbounds GEP with an offset that is nonnegative even when
3490         // interpreted as signed, assume there is no unsigned overflow.
3491         SDNodeFlags Flags;
3492         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3493           Flags.setNoUnsignedWrap(true);
3494 
3495         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3496                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3497       }
3498     } else {
3499       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3500       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3501       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3502 
3503       // If this is a scalar constant or a splat vector of constants,
3504       // handle it quickly.
3505       const auto *CI = dyn_cast<ConstantInt>(Idx);
3506       if (!CI && isa<ConstantDataVector>(Idx) &&
3507           cast<ConstantDataVector>(Idx)->getSplatValue())
3508         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3509 
3510       if (CI) {
3511         if (CI->isZero())
3512           continue;
3513         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3514         LLVMContext &Context = *DAG.getContext();
3515         SDValue OffsVal = VectorWidth ?
3516           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3517           DAG.getConstant(Offs, dl, IdxTy);
3518 
3519         // In an inbouds GEP with an offset that is nonnegative even when
3520         // interpreted as signed, assume there is no unsigned overflow.
3521         SDNodeFlags Flags;
3522         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3523           Flags.setNoUnsignedWrap(true);
3524 
3525         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3526         continue;
3527       }
3528 
3529       // N = N + Idx * ElementSize;
3530       SDValue IdxN = getValue(Idx);
3531 
3532       if (!IdxN.getValueType().isVector() && VectorWidth) {
3533         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3534         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3535       }
3536 
3537       // If the index is smaller or larger than intptr_t, truncate or extend
3538       // it.
3539       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3540 
3541       // If this is a multiply by a power of two, turn it into a shl
3542       // immediately.  This is a very common case.
3543       if (ElementSize != 1) {
3544         if (ElementSize.isPowerOf2()) {
3545           unsigned Amt = ElementSize.logBase2();
3546           IdxN = DAG.getNode(ISD::SHL, dl,
3547                              N.getValueType(), IdxN,
3548                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3549         } else {
3550           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3551           IdxN = DAG.getNode(ISD::MUL, dl,
3552                              N.getValueType(), IdxN, Scale);
3553         }
3554       }
3555 
3556       N = DAG.getNode(ISD::ADD, dl,
3557                       N.getValueType(), N, IdxN);
3558     }
3559   }
3560 
3561   setValue(&I, N);
3562 }
3563 
3564 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3565   // If this is a fixed sized alloca in the entry block of the function,
3566   // allocate it statically on the stack.
3567   if (FuncInfo.StaticAllocaMap.count(&I))
3568     return;   // getValue will auto-populate this.
3569 
3570   SDLoc dl = getCurSDLoc();
3571   Type *Ty = I.getAllocatedType();
3572   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3573   auto &DL = DAG.getDataLayout();
3574   uint64_t TySize = DL.getTypeAllocSize(Ty);
3575   unsigned Align =
3576       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3577 
3578   SDValue AllocSize = getValue(I.getArraySize());
3579 
3580   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3581   if (AllocSize.getValueType() != IntPtr)
3582     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3583 
3584   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3585                           AllocSize,
3586                           DAG.getConstant(TySize, dl, IntPtr));
3587 
3588   // Handle alignment.  If the requested alignment is less than or equal to
3589   // the stack alignment, ignore it.  If the size is greater than or equal to
3590   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3591   unsigned StackAlign =
3592       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3593   if (Align <= StackAlign)
3594     Align = 0;
3595 
3596   // Round the size of the allocation up to the stack alignment size
3597   // by add SA-1 to the size. This doesn't overflow because we're computing
3598   // an address inside an alloca.
3599   SDNodeFlags Flags;
3600   Flags.setNoUnsignedWrap(true);
3601   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3602                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3603 
3604   // Mask out the low bits for alignment purposes.
3605   AllocSize =
3606       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3607                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3608 
3609   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3610   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3611   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3612   setValue(&I, DSA);
3613   DAG.setRoot(DSA.getValue(1));
3614 
3615   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3616 }
3617 
3618 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3619   if (I.isAtomic())
3620     return visitAtomicLoad(I);
3621 
3622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3623   const Value *SV = I.getOperand(0);
3624   if (TLI.supportSwiftError()) {
3625     // Swifterror values can come from either a function parameter with
3626     // swifterror attribute or an alloca with swifterror attribute.
3627     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3628       if (Arg->hasSwiftErrorAttr())
3629         return visitLoadFromSwiftError(I);
3630     }
3631 
3632     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3633       if (Alloca->isSwiftError())
3634         return visitLoadFromSwiftError(I);
3635     }
3636   }
3637 
3638   SDValue Ptr = getValue(SV);
3639 
3640   Type *Ty = I.getType();
3641 
3642   bool isVolatile = I.isVolatile();
3643   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3644   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3645   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3646   unsigned Alignment = I.getAlignment();
3647 
3648   AAMDNodes AAInfo;
3649   I.getAAMetadata(AAInfo);
3650   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3651 
3652   SmallVector<EVT, 4> ValueVTs;
3653   SmallVector<uint64_t, 4> Offsets;
3654   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3655   unsigned NumValues = ValueVTs.size();
3656   if (NumValues == 0)
3657     return;
3658 
3659   SDValue Root;
3660   bool ConstantMemory = false;
3661   if (isVolatile || NumValues > MaxParallelChains)
3662     // Serialize volatile loads with other side effects.
3663     Root = getRoot();
3664   else if (AA && AA->pointsToConstantMemory(MemoryLocation(
3665                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3666     // Do not serialize (non-volatile) loads of constant memory with anything.
3667     Root = DAG.getEntryNode();
3668     ConstantMemory = true;
3669   } else {
3670     // Do not serialize non-volatile loads against each other.
3671     Root = DAG.getRoot();
3672   }
3673 
3674   SDLoc dl = getCurSDLoc();
3675 
3676   if (isVolatile)
3677     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3678 
3679   // An aggregate load cannot wrap around the address space, so offsets to its
3680   // parts don't wrap either.
3681   SDNodeFlags Flags;
3682   Flags.setNoUnsignedWrap(true);
3683 
3684   SmallVector<SDValue, 4> Values(NumValues);
3685   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3686   EVT PtrVT = Ptr.getValueType();
3687   unsigned ChainI = 0;
3688   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3689     // Serializing loads here may result in excessive register pressure, and
3690     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3691     // could recover a bit by hoisting nodes upward in the chain by recognizing
3692     // they are side-effect free or do not alias. The optimizer should really
3693     // avoid this case by converting large object/array copies to llvm.memcpy
3694     // (MaxParallelChains should always remain as failsafe).
3695     if (ChainI == MaxParallelChains) {
3696       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3697       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3698                                   makeArrayRef(Chains.data(), ChainI));
3699       Root = Chain;
3700       ChainI = 0;
3701     }
3702     SDValue A = DAG.getNode(ISD::ADD, dl,
3703                             PtrVT, Ptr,
3704                             DAG.getConstant(Offsets[i], dl, PtrVT),
3705                             Flags);
3706     auto MMOFlags = MachineMemOperand::MONone;
3707     if (isVolatile)
3708       MMOFlags |= MachineMemOperand::MOVolatile;
3709     if (isNonTemporal)
3710       MMOFlags |= MachineMemOperand::MONonTemporal;
3711     if (isInvariant)
3712       MMOFlags |= MachineMemOperand::MOInvariant;
3713     if (isDereferenceable)
3714       MMOFlags |= MachineMemOperand::MODereferenceable;
3715     MMOFlags |= TLI.getMMOFlags(I);
3716 
3717     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3718                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3719                             MMOFlags, AAInfo, Ranges);
3720 
3721     Values[i] = L;
3722     Chains[ChainI] = L.getValue(1);
3723   }
3724 
3725   if (!ConstantMemory) {
3726     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3727                                 makeArrayRef(Chains.data(), ChainI));
3728     if (isVolatile)
3729       DAG.setRoot(Chain);
3730     else
3731       PendingLoads.push_back(Chain);
3732   }
3733 
3734   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3735                            DAG.getVTList(ValueVTs), Values));
3736 }
3737 
3738 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3739   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3740          "call visitStoreToSwiftError when backend supports swifterror");
3741 
3742   SmallVector<EVT, 4> ValueVTs;
3743   SmallVector<uint64_t, 4> Offsets;
3744   const Value *SrcV = I.getOperand(0);
3745   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3746                   SrcV->getType(), ValueVTs, &Offsets);
3747   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3748          "expect a single EVT for swifterror");
3749 
3750   SDValue Src = getValue(SrcV);
3751   // Create a virtual register, then update the virtual register.
3752   unsigned VReg; bool CreatedVReg;
3753   std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3754   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3755   // Chain can be getRoot or getControlRoot.
3756   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3757                                       SDValue(Src.getNode(), Src.getResNo()));
3758   DAG.setRoot(CopyNode);
3759   if (CreatedVReg)
3760     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3761 }
3762 
3763 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3764   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3765          "call visitLoadFromSwiftError when backend supports swifterror");
3766 
3767   assert(!I.isVolatile() &&
3768          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3769          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3770          "Support volatile, non temporal, invariant for load_from_swift_error");
3771 
3772   const Value *SV = I.getOperand(0);
3773   Type *Ty = I.getType();
3774   AAMDNodes AAInfo;
3775   I.getAAMetadata(AAInfo);
3776   assert((!AA || !AA->pointsToConstantMemory(MemoryLocation(
3777              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) &&
3778          "load_from_swift_error should not be constant memory");
3779 
3780   SmallVector<EVT, 4> ValueVTs;
3781   SmallVector<uint64_t, 4> Offsets;
3782   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3783                   ValueVTs, &Offsets);
3784   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3785          "expect a single EVT for swifterror");
3786 
3787   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3788   SDValue L = DAG.getCopyFromReg(
3789       getRoot(), getCurSDLoc(),
3790       FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3791       ValueVTs[0]);
3792 
3793   setValue(&I, L);
3794 }
3795 
3796 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3797   if (I.isAtomic())
3798     return visitAtomicStore(I);
3799 
3800   const Value *SrcV = I.getOperand(0);
3801   const Value *PtrV = I.getOperand(1);
3802 
3803   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3804   if (TLI.supportSwiftError()) {
3805     // Swifterror values can come from either a function parameter with
3806     // swifterror attribute or an alloca with swifterror attribute.
3807     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3808       if (Arg->hasSwiftErrorAttr())
3809         return visitStoreToSwiftError(I);
3810     }
3811 
3812     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3813       if (Alloca->isSwiftError())
3814         return visitStoreToSwiftError(I);
3815     }
3816   }
3817 
3818   SmallVector<EVT, 4> ValueVTs;
3819   SmallVector<uint64_t, 4> Offsets;
3820   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3821                   SrcV->getType(), ValueVTs, &Offsets);
3822   unsigned NumValues = ValueVTs.size();
3823   if (NumValues == 0)
3824     return;
3825 
3826   // Get the lowered operands. Note that we do this after
3827   // checking if NumResults is zero, because with zero results
3828   // the operands won't have values in the map.
3829   SDValue Src = getValue(SrcV);
3830   SDValue Ptr = getValue(PtrV);
3831 
3832   SDValue Root = getRoot();
3833   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3834   SDLoc dl = getCurSDLoc();
3835   EVT PtrVT = Ptr.getValueType();
3836   unsigned Alignment = I.getAlignment();
3837   AAMDNodes AAInfo;
3838   I.getAAMetadata(AAInfo);
3839 
3840   auto MMOFlags = MachineMemOperand::MONone;
3841   if (I.isVolatile())
3842     MMOFlags |= MachineMemOperand::MOVolatile;
3843   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3844     MMOFlags |= MachineMemOperand::MONonTemporal;
3845   MMOFlags |= TLI.getMMOFlags(I);
3846 
3847   // An aggregate load cannot wrap around the address space, so offsets to its
3848   // parts don't wrap either.
3849   SDNodeFlags Flags;
3850   Flags.setNoUnsignedWrap(true);
3851 
3852   unsigned ChainI = 0;
3853   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3854     // See visitLoad comments.
3855     if (ChainI == MaxParallelChains) {
3856       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3857                                   makeArrayRef(Chains.data(), ChainI));
3858       Root = Chain;
3859       ChainI = 0;
3860     }
3861     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3862                               DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3863     SDValue St = DAG.getStore(
3864         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3865         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3866     Chains[ChainI] = St;
3867   }
3868 
3869   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3870                                   makeArrayRef(Chains.data(), ChainI));
3871   DAG.setRoot(StoreNode);
3872 }
3873 
3874 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3875                                            bool IsCompressing) {
3876   SDLoc sdl = getCurSDLoc();
3877 
3878   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3879                            unsigned& Alignment) {
3880     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3881     Src0 = I.getArgOperand(0);
3882     Ptr = I.getArgOperand(1);
3883     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3884     Mask = I.getArgOperand(3);
3885   };
3886   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3887                            unsigned& Alignment) {
3888     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3889     Src0 = I.getArgOperand(0);
3890     Ptr = I.getArgOperand(1);
3891     Mask = I.getArgOperand(2);
3892     Alignment = 0;
3893   };
3894 
3895   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3896   unsigned Alignment;
3897   if (IsCompressing)
3898     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3899   else
3900     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3901 
3902   SDValue Ptr = getValue(PtrOperand);
3903   SDValue Src0 = getValue(Src0Operand);
3904   SDValue Mask = getValue(MaskOperand);
3905 
3906   EVT VT = Src0.getValueType();
3907   if (!Alignment)
3908     Alignment = DAG.getEVTAlignment(VT);
3909 
3910   AAMDNodes AAInfo;
3911   I.getAAMetadata(AAInfo);
3912 
3913   MachineMemOperand *MMO =
3914     DAG.getMachineFunction().
3915     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3916                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3917                           Alignment, AAInfo);
3918   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3919                                          MMO, false /* Truncating */,
3920                                          IsCompressing);
3921   DAG.setRoot(StoreNode);
3922   setValue(&I, StoreNode);
3923 }
3924 
3925 // Get a uniform base for the Gather/Scatter intrinsic.
3926 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3927 // We try to represent it as a base pointer + vector of indices.
3928 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3929 // The first operand of the GEP may be a single pointer or a vector of pointers
3930 // Example:
3931 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3932 //  or
3933 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3934 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3935 //
3936 // When the first GEP operand is a single pointer - it is the uniform base we
3937 // are looking for. If first operand of the GEP is a splat vector - we
3938 // extract the splat value and use it as a uniform base.
3939 // In all other cases the function returns 'false'.
3940 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3941                            SDValue &Scale, SelectionDAGBuilder* SDB) {
3942   SelectionDAG& DAG = SDB->DAG;
3943   LLVMContext &Context = *DAG.getContext();
3944 
3945   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3946   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3947   if (!GEP)
3948     return false;
3949 
3950   const Value *GEPPtr = GEP->getPointerOperand();
3951   if (!GEPPtr->getType()->isVectorTy())
3952     Ptr = GEPPtr;
3953   else if (!(Ptr = getSplatValue(GEPPtr)))
3954     return false;
3955 
3956   unsigned FinalIndex = GEP->getNumOperands() - 1;
3957   Value *IndexVal = GEP->getOperand(FinalIndex);
3958 
3959   // Ensure all the other indices are 0.
3960   for (unsigned i = 1; i < FinalIndex; ++i) {
3961     auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
3962     if (!C || !C->isZero())
3963       return false;
3964   }
3965 
3966   // The operands of the GEP may be defined in another basic block.
3967   // In this case we'll not find nodes for the operands.
3968   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3969     return false;
3970 
3971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3972   const DataLayout &DL = DAG.getDataLayout();
3973   Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
3974                                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
3975   Base = SDB->getValue(Ptr);
3976   Index = SDB->getValue(IndexVal);
3977 
3978   if (!Index.getValueType().isVector()) {
3979     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3980     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3981     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3982   }
3983   return true;
3984 }
3985 
3986 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3987   SDLoc sdl = getCurSDLoc();
3988 
3989   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3990   const Value *Ptr = I.getArgOperand(1);
3991   SDValue Src0 = getValue(I.getArgOperand(0));
3992   SDValue Mask = getValue(I.getArgOperand(3));
3993   EVT VT = Src0.getValueType();
3994   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3995   if (!Alignment)
3996     Alignment = DAG.getEVTAlignment(VT);
3997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3998 
3999   AAMDNodes AAInfo;
4000   I.getAAMetadata(AAInfo);
4001 
4002   SDValue Base;
4003   SDValue Index;
4004   SDValue Scale;
4005   const Value *BasePtr = Ptr;
4006   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4007 
4008   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4009   MachineMemOperand *MMO = DAG.getMachineFunction().
4010     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4011                          MachineMemOperand::MOStore,  VT.getStoreSize(),
4012                          Alignment, AAInfo);
4013   if (!UniformBase) {
4014     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4015     Index = getValue(Ptr);
4016     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4017   }
4018   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4019   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4020                                          Ops, MMO);
4021   DAG.setRoot(Scatter);
4022   setValue(&I, Scatter);
4023 }
4024 
4025 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4026   SDLoc sdl = getCurSDLoc();
4027 
4028   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4029                            unsigned& Alignment) {
4030     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4031     Ptr = I.getArgOperand(0);
4032     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4033     Mask = I.getArgOperand(2);
4034     Src0 = I.getArgOperand(3);
4035   };
4036   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4037                            unsigned& Alignment) {
4038     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4039     Ptr = I.getArgOperand(0);
4040     Alignment = 0;
4041     Mask = I.getArgOperand(1);
4042     Src0 = I.getArgOperand(2);
4043   };
4044 
4045   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4046   unsigned Alignment;
4047   if (IsExpanding)
4048     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4049   else
4050     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4051 
4052   SDValue Ptr = getValue(PtrOperand);
4053   SDValue Src0 = getValue(Src0Operand);
4054   SDValue Mask = getValue(MaskOperand);
4055 
4056   EVT VT = Src0.getValueType();
4057   if (!Alignment)
4058     Alignment = DAG.getEVTAlignment(VT);
4059 
4060   AAMDNodes AAInfo;
4061   I.getAAMetadata(AAInfo);
4062   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4063 
4064   // Do not serialize masked loads of constant memory with anything.
4065   bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation(
4066       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
4067   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4068 
4069   MachineMemOperand *MMO =
4070     DAG.getMachineFunction().
4071     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4072                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
4073                           Alignment, AAInfo, Ranges);
4074 
4075   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4076                                    ISD::NON_EXTLOAD, IsExpanding);
4077   if (AddToChain)
4078     PendingLoads.push_back(Load.getValue(1));
4079   setValue(&I, Load);
4080 }
4081 
4082 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4083   SDLoc sdl = getCurSDLoc();
4084 
4085   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4086   const Value *Ptr = I.getArgOperand(0);
4087   SDValue Src0 = getValue(I.getArgOperand(3));
4088   SDValue Mask = getValue(I.getArgOperand(2));
4089 
4090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4091   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4092   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4093   if (!Alignment)
4094     Alignment = DAG.getEVTAlignment(VT);
4095 
4096   AAMDNodes AAInfo;
4097   I.getAAMetadata(AAInfo);
4098   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4099 
4100   SDValue Root = DAG.getRoot();
4101   SDValue Base;
4102   SDValue Index;
4103   SDValue Scale;
4104   const Value *BasePtr = Ptr;
4105   bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4106   bool ConstantMemory = false;
4107   if (UniformBase &&
4108       AA && AA->pointsToConstantMemory(MemoryLocation(
4109           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
4110           AAInfo))) {
4111     // Do not serialize (non-volatile) loads of constant memory with anything.
4112     Root = DAG.getEntryNode();
4113     ConstantMemory = true;
4114   }
4115 
4116   MachineMemOperand *MMO =
4117     DAG.getMachineFunction().
4118     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4119                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
4120                          Alignment, AAInfo, Ranges);
4121 
4122   if (!UniformBase) {
4123     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4124     Index = getValue(Ptr);
4125     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4126   }
4127   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4128   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4129                                        Ops, MMO);
4130 
4131   SDValue OutChain = Gather.getValue(1);
4132   if (!ConstantMemory)
4133     PendingLoads.push_back(OutChain);
4134   setValue(&I, Gather);
4135 }
4136 
4137 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4138   SDLoc dl = getCurSDLoc();
4139   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4140   AtomicOrdering FailureOrder = I.getFailureOrdering();
4141   SyncScope::ID SSID = I.getSyncScopeID();
4142 
4143   SDValue InChain = getRoot();
4144 
4145   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4146   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4147   SDValue L = DAG.getAtomicCmpSwap(
4148       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4149       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4150       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4151       /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4152 
4153   SDValue OutChain = L.getValue(2);
4154 
4155   setValue(&I, L);
4156   DAG.setRoot(OutChain);
4157 }
4158 
4159 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4160   SDLoc dl = getCurSDLoc();
4161   ISD::NodeType NT;
4162   switch (I.getOperation()) {
4163   default: llvm_unreachable("Unknown atomicrmw operation");
4164   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4165   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4166   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4167   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4168   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4169   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4170   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4171   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4172   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4173   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4174   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4175   }
4176   AtomicOrdering Order = I.getOrdering();
4177   SyncScope::ID SSID = I.getSyncScopeID();
4178 
4179   SDValue InChain = getRoot();
4180 
4181   SDValue L =
4182     DAG.getAtomic(NT, dl,
4183                   getValue(I.getValOperand()).getSimpleValueType(),
4184                   InChain,
4185                   getValue(I.getPointerOperand()),
4186                   getValue(I.getValOperand()),
4187                   I.getPointerOperand(),
4188                   /* Alignment=*/ 0, Order, SSID);
4189 
4190   SDValue OutChain = L.getValue(1);
4191 
4192   setValue(&I, L);
4193   DAG.setRoot(OutChain);
4194 }
4195 
4196 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4197   SDLoc dl = getCurSDLoc();
4198   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4199   SDValue Ops[3];
4200   Ops[0] = getRoot();
4201   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4202                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4203   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4204                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4205   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4206 }
4207 
4208 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4209   SDLoc dl = getCurSDLoc();
4210   AtomicOrdering Order = I.getOrdering();
4211   SyncScope::ID SSID = I.getSyncScopeID();
4212 
4213   SDValue InChain = getRoot();
4214 
4215   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4216   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4217 
4218   if (!TLI.supportsUnalignedAtomics() &&
4219       I.getAlignment() < VT.getStoreSize())
4220     report_fatal_error("Cannot generate unaligned atomic load");
4221 
4222   MachineMemOperand *MMO =
4223       DAG.getMachineFunction().
4224       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4225                            MachineMemOperand::MOVolatile |
4226                            MachineMemOperand::MOLoad,
4227                            VT.getStoreSize(),
4228                            I.getAlignment() ? I.getAlignment() :
4229                                               DAG.getEVTAlignment(VT),
4230                            AAMDNodes(), nullptr, SSID, Order);
4231 
4232   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4233   SDValue L =
4234       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4235                     getValue(I.getPointerOperand()), MMO);
4236 
4237   SDValue OutChain = L.getValue(1);
4238 
4239   setValue(&I, L);
4240   DAG.setRoot(OutChain);
4241 }
4242 
4243 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4244   SDLoc dl = getCurSDLoc();
4245 
4246   AtomicOrdering Order = I.getOrdering();
4247   SyncScope::ID SSID = I.getSyncScopeID();
4248 
4249   SDValue InChain = getRoot();
4250 
4251   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4252   EVT VT =
4253       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4254 
4255   if (I.getAlignment() < VT.getStoreSize())
4256     report_fatal_error("Cannot generate unaligned atomic store");
4257 
4258   SDValue OutChain =
4259     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4260                   InChain,
4261                   getValue(I.getPointerOperand()),
4262                   getValue(I.getValueOperand()),
4263                   I.getPointerOperand(), I.getAlignment(),
4264                   Order, SSID);
4265 
4266   DAG.setRoot(OutChain);
4267 }
4268 
4269 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4270 /// node.
4271 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4272                                                unsigned Intrinsic) {
4273   // Ignore the callsite's attributes. A specific call site may be marked with
4274   // readnone, but the lowering code will expect the chain based on the
4275   // definition.
4276   const Function *F = I.getCalledFunction();
4277   bool HasChain = !F->doesNotAccessMemory();
4278   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4279 
4280   // Build the operand list.
4281   SmallVector<SDValue, 8> Ops;
4282   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4283     if (OnlyLoad) {
4284       // We don't need to serialize loads against other loads.
4285       Ops.push_back(DAG.getRoot());
4286     } else {
4287       Ops.push_back(getRoot());
4288     }
4289   }
4290 
4291   // Info is set by getTgtMemInstrinsic
4292   TargetLowering::IntrinsicInfo Info;
4293   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4294   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4295                                                DAG.getMachineFunction(),
4296                                                Intrinsic);
4297 
4298   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4299   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4300       Info.opc == ISD::INTRINSIC_W_CHAIN)
4301     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4302                                         TLI.getPointerTy(DAG.getDataLayout())));
4303 
4304   // Add all operands of the call to the operand list.
4305   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4306     SDValue Op = getValue(I.getArgOperand(i));
4307     Ops.push_back(Op);
4308   }
4309 
4310   SmallVector<EVT, 4> ValueVTs;
4311   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4312 
4313   if (HasChain)
4314     ValueVTs.push_back(MVT::Other);
4315 
4316   SDVTList VTs = DAG.getVTList(ValueVTs);
4317 
4318   // Create the node.
4319   SDValue Result;
4320   if (IsTgtIntrinsic) {
4321     // This is target intrinsic that touches memory
4322     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4323       Ops, Info.memVT,
4324       MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4325       Info.flags, Info.size);
4326   } else if (!HasChain) {
4327     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4328   } else if (!I.getType()->isVoidTy()) {
4329     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4330   } else {
4331     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4332   }
4333 
4334   if (HasChain) {
4335     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4336     if (OnlyLoad)
4337       PendingLoads.push_back(Chain);
4338     else
4339       DAG.setRoot(Chain);
4340   }
4341 
4342   if (!I.getType()->isVoidTy()) {
4343     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4344       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4345       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4346     } else
4347       Result = lowerRangeToAssertZExt(DAG, I, Result);
4348 
4349     setValue(&I, Result);
4350   }
4351 }
4352 
4353 /// GetSignificand - Get the significand and build it into a floating-point
4354 /// number with exponent of 1:
4355 ///
4356 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4357 ///
4358 /// where Op is the hexadecimal representation of floating point value.
4359 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4360   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4361                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4362   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4363                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4364   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4365 }
4366 
4367 /// GetExponent - Get the exponent:
4368 ///
4369 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4370 ///
4371 /// where Op is the hexadecimal representation of floating point value.
4372 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4373                            const TargetLowering &TLI, const SDLoc &dl) {
4374   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4375                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4376   SDValue t1 = DAG.getNode(
4377       ISD::SRL, dl, MVT::i32, t0,
4378       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4379   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4380                            DAG.getConstant(127, dl, MVT::i32));
4381   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4382 }
4383 
4384 /// getF32Constant - Get 32-bit floating point constant.
4385 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4386                               const SDLoc &dl) {
4387   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4388                            MVT::f32);
4389 }
4390 
4391 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4392                                        SelectionDAG &DAG) {
4393   // TODO: What fast-math-flags should be set on the floating-point nodes?
4394 
4395   //   IntegerPartOfX = ((int32_t)(t0);
4396   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4397 
4398   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4399   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4400   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4401 
4402   //   IntegerPartOfX <<= 23;
4403   IntegerPartOfX = DAG.getNode(
4404       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4405       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4406                                   DAG.getDataLayout())));
4407 
4408   SDValue TwoToFractionalPartOfX;
4409   if (LimitFloatPrecision <= 6) {
4410     // For floating-point precision of 6:
4411     //
4412     //   TwoToFractionalPartOfX =
4413     //     0.997535578f +
4414     //       (0.735607626f + 0.252464424f * x) * x;
4415     //
4416     // error 0.0144103317, which is 6 bits
4417     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4418                              getF32Constant(DAG, 0x3e814304, dl));
4419     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4420                              getF32Constant(DAG, 0x3f3c50c8, dl));
4421     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4422     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4423                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4424   } else if (LimitFloatPrecision <= 12) {
4425     // For floating-point precision of 12:
4426     //
4427     //   TwoToFractionalPartOfX =
4428     //     0.999892986f +
4429     //       (0.696457318f +
4430     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4431     //
4432     // error 0.000107046256, which is 13 to 14 bits
4433     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4434                              getF32Constant(DAG, 0x3da235e3, dl));
4435     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4436                              getF32Constant(DAG, 0x3e65b8f3, dl));
4437     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4438     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4439                              getF32Constant(DAG, 0x3f324b07, dl));
4440     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4441     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4442                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4443   } else { // LimitFloatPrecision <= 18
4444     // For floating-point precision of 18:
4445     //
4446     //   TwoToFractionalPartOfX =
4447     //     0.999999982f +
4448     //       (0.693148872f +
4449     //         (0.240227044f +
4450     //           (0.554906021e-1f +
4451     //             (0.961591928e-2f +
4452     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4453     // error 2.47208000*10^(-7), which is better than 18 bits
4454     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4455                              getF32Constant(DAG, 0x3924b03e, dl));
4456     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4457                              getF32Constant(DAG, 0x3ab24b87, dl));
4458     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4459     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4460                              getF32Constant(DAG, 0x3c1d8c17, dl));
4461     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4462     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4463                              getF32Constant(DAG, 0x3d634a1d, dl));
4464     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4465     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4466                              getF32Constant(DAG, 0x3e75fe14, dl));
4467     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4468     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4469                               getF32Constant(DAG, 0x3f317234, dl));
4470     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4471     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4472                                          getF32Constant(DAG, 0x3f800000, dl));
4473   }
4474 
4475   // Add the exponent into the result in integer domain.
4476   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4477   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4478                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4479 }
4480 
4481 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4482 /// limited-precision mode.
4483 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4484                          const TargetLowering &TLI) {
4485   if (Op.getValueType() == MVT::f32 &&
4486       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4487 
4488     // Put the exponent in the right bit position for later addition to the
4489     // final result:
4490     //
4491     //   #define LOG2OFe 1.4426950f
4492     //   t0 = Op * LOG2OFe
4493 
4494     // TODO: What fast-math-flags should be set here?
4495     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4496                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4497     return getLimitedPrecisionExp2(t0, dl, DAG);
4498   }
4499 
4500   // No special expansion.
4501   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4502 }
4503 
4504 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4505 /// limited-precision mode.
4506 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4507                          const TargetLowering &TLI) {
4508   // TODO: What fast-math-flags should be set on the floating-point nodes?
4509 
4510   if (Op.getValueType() == MVT::f32 &&
4511       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4512     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4513 
4514     // Scale the exponent by log(2) [0.69314718f].
4515     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4516     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4517                                         getF32Constant(DAG, 0x3f317218, dl));
4518 
4519     // Get the significand and build it into a floating-point number with
4520     // exponent of 1.
4521     SDValue X = GetSignificand(DAG, Op1, dl);
4522 
4523     SDValue LogOfMantissa;
4524     if (LimitFloatPrecision <= 6) {
4525       // For floating-point precision of 6:
4526       //
4527       //   LogofMantissa =
4528       //     -1.1609546f +
4529       //       (1.4034025f - 0.23903021f * x) * x;
4530       //
4531       // error 0.0034276066, which is better than 8 bits
4532       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4533                                getF32Constant(DAG, 0xbe74c456, dl));
4534       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4535                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4536       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4537       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4538                                   getF32Constant(DAG, 0x3f949a29, dl));
4539     } else if (LimitFloatPrecision <= 12) {
4540       // For floating-point precision of 12:
4541       //
4542       //   LogOfMantissa =
4543       //     -1.7417939f +
4544       //       (2.8212026f +
4545       //         (-1.4699568f +
4546       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4547       //
4548       // error 0.000061011436, which is 14 bits
4549       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4550                                getF32Constant(DAG, 0xbd67b6d6, dl));
4551       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4552                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4553       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4554       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4555                                getF32Constant(DAG, 0x3fbc278b, dl));
4556       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4557       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4558                                getF32Constant(DAG, 0x40348e95, dl));
4559       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4560       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4561                                   getF32Constant(DAG, 0x3fdef31a, dl));
4562     } else { // LimitFloatPrecision <= 18
4563       // For floating-point precision of 18:
4564       //
4565       //   LogOfMantissa =
4566       //     -2.1072184f +
4567       //       (4.2372794f +
4568       //         (-3.7029485f +
4569       //           (2.2781945f +
4570       //             (-0.87823314f +
4571       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4572       //
4573       // error 0.0000023660568, which is better than 18 bits
4574       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4575                                getF32Constant(DAG, 0xbc91e5ac, dl));
4576       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4577                                getF32Constant(DAG, 0x3e4350aa, dl));
4578       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4579       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4580                                getF32Constant(DAG, 0x3f60d3e3, dl));
4581       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4582       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4583                                getF32Constant(DAG, 0x4011cdf0, dl));
4584       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4585       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4586                                getF32Constant(DAG, 0x406cfd1c, dl));
4587       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4588       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4589                                getF32Constant(DAG, 0x408797cb, dl));
4590       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4591       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4592                                   getF32Constant(DAG, 0x4006dcab, dl));
4593     }
4594 
4595     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4596   }
4597 
4598   // No special expansion.
4599   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4600 }
4601 
4602 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4603 /// limited-precision mode.
4604 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4605                           const TargetLowering &TLI) {
4606   // TODO: What fast-math-flags should be set on the floating-point nodes?
4607 
4608   if (Op.getValueType() == MVT::f32 &&
4609       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4610     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4611 
4612     // Get the exponent.
4613     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4614 
4615     // Get the significand and build it into a floating-point number with
4616     // exponent of 1.
4617     SDValue X = GetSignificand(DAG, Op1, dl);
4618 
4619     // Different possible minimax approximations of significand in
4620     // floating-point for various degrees of accuracy over [1,2].
4621     SDValue Log2ofMantissa;
4622     if (LimitFloatPrecision <= 6) {
4623       // For floating-point precision of 6:
4624       //
4625       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4626       //
4627       // error 0.0049451742, which is more than 7 bits
4628       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4629                                getF32Constant(DAG, 0xbeb08fe0, dl));
4630       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4631                                getF32Constant(DAG, 0x40019463, dl));
4632       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4633       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4634                                    getF32Constant(DAG, 0x3fd6633d, dl));
4635     } else if (LimitFloatPrecision <= 12) {
4636       // For floating-point precision of 12:
4637       //
4638       //   Log2ofMantissa =
4639       //     -2.51285454f +
4640       //       (4.07009056f +
4641       //         (-2.12067489f +
4642       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4643       //
4644       // error 0.0000876136000, which is better than 13 bits
4645       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4646                                getF32Constant(DAG, 0xbda7262e, dl));
4647       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4648                                getF32Constant(DAG, 0x3f25280b, dl));
4649       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4650       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4651                                getF32Constant(DAG, 0x4007b923, dl));
4652       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4653       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4654                                getF32Constant(DAG, 0x40823e2f, dl));
4655       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4656       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4657                                    getF32Constant(DAG, 0x4020d29c, dl));
4658     } else { // LimitFloatPrecision <= 18
4659       // For floating-point precision of 18:
4660       //
4661       //   Log2ofMantissa =
4662       //     -3.0400495f +
4663       //       (6.1129976f +
4664       //         (-5.3420409f +
4665       //           (3.2865683f +
4666       //             (-1.2669343f +
4667       //               (0.27515199f -
4668       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4669       //
4670       // error 0.0000018516, which is better than 18 bits
4671       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4672                                getF32Constant(DAG, 0xbcd2769e, dl));
4673       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4674                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4675       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4676       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4677                                getF32Constant(DAG, 0x3fa22ae7, dl));
4678       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4679       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4680                                getF32Constant(DAG, 0x40525723, dl));
4681       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4682       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4683                                getF32Constant(DAG, 0x40aaf200, dl));
4684       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4685       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4686                                getF32Constant(DAG, 0x40c39dad, dl));
4687       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4688       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4689                                    getF32Constant(DAG, 0x4042902c, dl));
4690     }
4691 
4692     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4693   }
4694 
4695   // No special expansion.
4696   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4697 }
4698 
4699 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4700 /// limited-precision mode.
4701 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4702                            const TargetLowering &TLI) {
4703   // TODO: What fast-math-flags should be set on the floating-point nodes?
4704 
4705   if (Op.getValueType() == MVT::f32 &&
4706       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4707     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4708 
4709     // Scale the exponent by log10(2) [0.30102999f].
4710     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4711     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4712                                         getF32Constant(DAG, 0x3e9a209a, dl));
4713 
4714     // Get the significand and build it into a floating-point number with
4715     // exponent of 1.
4716     SDValue X = GetSignificand(DAG, Op1, dl);
4717 
4718     SDValue Log10ofMantissa;
4719     if (LimitFloatPrecision <= 6) {
4720       // For floating-point precision of 6:
4721       //
4722       //   Log10ofMantissa =
4723       //     -0.50419619f +
4724       //       (0.60948995f - 0.10380950f * x) * x;
4725       //
4726       // error 0.0014886165, which is 6 bits
4727       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4728                                getF32Constant(DAG, 0xbdd49a13, dl));
4729       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4730                                getF32Constant(DAG, 0x3f1c0789, dl));
4731       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4732       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4733                                     getF32Constant(DAG, 0x3f011300, dl));
4734     } else if (LimitFloatPrecision <= 12) {
4735       // For floating-point precision of 12:
4736       //
4737       //   Log10ofMantissa =
4738       //     -0.64831180f +
4739       //       (0.91751397f +
4740       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4741       //
4742       // error 0.00019228036, which is better than 12 bits
4743       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4744                                getF32Constant(DAG, 0x3d431f31, dl));
4745       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4746                                getF32Constant(DAG, 0x3ea21fb2, dl));
4747       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4748       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4749                                getF32Constant(DAG, 0x3f6ae232, dl));
4750       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4751       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4752                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4753     } else { // LimitFloatPrecision <= 18
4754       // For floating-point precision of 18:
4755       //
4756       //   Log10ofMantissa =
4757       //     -0.84299375f +
4758       //       (1.5327582f +
4759       //         (-1.0688956f +
4760       //           (0.49102474f +
4761       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4762       //
4763       // error 0.0000037995730, which is better than 18 bits
4764       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4765                                getF32Constant(DAG, 0x3c5d51ce, dl));
4766       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4767                                getF32Constant(DAG, 0x3e00685a, dl));
4768       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4769       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4770                                getF32Constant(DAG, 0x3efb6798, dl));
4771       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4772       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4773                                getF32Constant(DAG, 0x3f88d192, dl));
4774       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4775       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4776                                getF32Constant(DAG, 0x3fc4316c, dl));
4777       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4778       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4779                                     getF32Constant(DAG, 0x3f57ce70, dl));
4780     }
4781 
4782     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4783   }
4784 
4785   // No special expansion.
4786   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4787 }
4788 
4789 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4790 /// limited-precision mode.
4791 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4792                           const TargetLowering &TLI) {
4793   if (Op.getValueType() == MVT::f32 &&
4794       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4795     return getLimitedPrecisionExp2(Op, dl, DAG);
4796 
4797   // No special expansion.
4798   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4799 }
4800 
4801 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4802 /// limited-precision mode with x == 10.0f.
4803 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4804                          SelectionDAG &DAG, const TargetLowering &TLI) {
4805   bool IsExp10 = false;
4806   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4807       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4808     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4809       APFloat Ten(10.0f);
4810       IsExp10 = LHSC->isExactlyValue(Ten);
4811     }
4812   }
4813 
4814   // TODO: What fast-math-flags should be set on the FMUL node?
4815   if (IsExp10) {
4816     // Put the exponent in the right bit position for later addition to the
4817     // final result:
4818     //
4819     //   #define LOG2OF10 3.3219281f
4820     //   t0 = Op * LOG2OF10;
4821     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4822                              getF32Constant(DAG, 0x40549a78, dl));
4823     return getLimitedPrecisionExp2(t0, dl, DAG);
4824   }
4825 
4826   // No special expansion.
4827   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4828 }
4829 
4830 /// ExpandPowI - Expand a llvm.powi intrinsic.
4831 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4832                           SelectionDAG &DAG) {
4833   // If RHS is a constant, we can expand this out to a multiplication tree,
4834   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4835   // optimizing for size, we only want to do this if the expansion would produce
4836   // a small number of multiplies, otherwise we do the full expansion.
4837   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4838     // Get the exponent as a positive value.
4839     unsigned Val = RHSC->getSExtValue();
4840     if ((int)Val < 0) Val = -Val;
4841 
4842     // powi(x, 0) -> 1.0
4843     if (Val == 0)
4844       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4845 
4846     const Function &F = DAG.getMachineFunction().getFunction();
4847     if (!F.optForSize() ||
4848         // If optimizing for size, don't insert too many multiplies.
4849         // This inserts up to 5 multiplies.
4850         countPopulation(Val) + Log2_32(Val) < 7) {
4851       // We use the simple binary decomposition method to generate the multiply
4852       // sequence.  There are more optimal ways to do this (for example,
4853       // powi(x,15) generates one more multiply than it should), but this has
4854       // the benefit of being both really simple and much better than a libcall.
4855       SDValue Res;  // Logically starts equal to 1.0
4856       SDValue CurSquare = LHS;
4857       // TODO: Intrinsics should have fast-math-flags that propagate to these
4858       // nodes.
4859       while (Val) {
4860         if (Val & 1) {
4861           if (Res.getNode())
4862             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4863           else
4864             Res = CurSquare;  // 1.0*CurSquare.
4865         }
4866 
4867         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4868                                 CurSquare, CurSquare);
4869         Val >>= 1;
4870       }
4871 
4872       // If the original was negative, invert the result, producing 1/(x*x*x).
4873       if (RHSC->getSExtValue() < 0)
4874         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4875                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4876       return Res;
4877     }
4878   }
4879 
4880   // Otherwise, expand to a libcall.
4881   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4882 }
4883 
4884 // getUnderlyingArgReg - Find underlying register used for a truncated or
4885 // bitcasted argument.
4886 static unsigned getUnderlyingArgReg(const SDValue &N) {
4887   switch (N.getOpcode()) {
4888   case ISD::CopyFromReg:
4889     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4890   case ISD::BITCAST:
4891   case ISD::AssertZext:
4892   case ISD::AssertSext:
4893   case ISD::TRUNCATE:
4894     return getUnderlyingArgReg(N.getOperand(0));
4895   default:
4896     return 0;
4897   }
4898 }
4899 
4900 /// If the DbgValueInst is a dbg_value of a function argument, create the
4901 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
4902 /// instruction selection, they will be inserted to the entry BB.
4903 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4904     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4905     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4906   const Argument *Arg = dyn_cast<Argument>(V);
4907   if (!Arg)
4908     return false;
4909 
4910   MachineFunction &MF = DAG.getMachineFunction();
4911   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4912 
4913   bool IsIndirect = false;
4914   Optional<MachineOperand> Op;
4915   // Some arguments' frame index is recorded during argument lowering.
4916   int FI = FuncInfo.getArgumentFrameIndex(Arg);
4917   if (FI != std::numeric_limits<int>::max())
4918     Op = MachineOperand::CreateFI(FI);
4919 
4920   if (!Op && N.getNode()) {
4921     unsigned Reg = getUnderlyingArgReg(N);
4922     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4923       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4924       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4925       if (PR)
4926         Reg = PR;
4927     }
4928     if (Reg) {
4929       Op = MachineOperand::CreateReg(Reg, false);
4930       IsIndirect = IsDbgDeclare;
4931     }
4932   }
4933 
4934   if (!Op && N.getNode())
4935     // Check if frame index is available.
4936     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4937       if (FrameIndexSDNode *FINode =
4938           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4939         Op = MachineOperand::CreateFI(FINode->getIndex());
4940 
4941   if (!Op) {
4942     // Check if ValueMap has reg number.
4943     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4944     if (VMI != FuncInfo.ValueMap.end()) {
4945       const auto &TLI = DAG.getTargetLoweringInfo();
4946       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4947                        V->getType(), getABIRegCopyCC(V));
4948       if (RFV.occupiesMultipleRegs()) {
4949         unsigned Offset = 0;
4950         for (auto RegAndSize : RFV.getRegsAndSizes()) {
4951           Op = MachineOperand::CreateReg(RegAndSize.first, false);
4952           auto FragmentExpr = DIExpression::createFragmentExpression(
4953               Expr, Offset, RegAndSize.second);
4954           if (!FragmentExpr)
4955             continue;
4956           FuncInfo.ArgDbgValues.push_back(
4957               BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
4958                       Op->getReg(), Variable, *FragmentExpr));
4959           Offset += RegAndSize.second;
4960         }
4961         return true;
4962       }
4963       Op = MachineOperand::CreateReg(VMI->second, false);
4964       IsIndirect = IsDbgDeclare;
4965     }
4966   }
4967 
4968   if (!Op)
4969     return false;
4970 
4971   assert(Variable->isValidLocationForIntrinsic(DL) &&
4972          "Expected inlined-at fields to agree");
4973   IsIndirect = (Op->isReg()) ? IsIndirect : true;
4974   FuncInfo.ArgDbgValues.push_back(
4975       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4976               *Op, Variable, Expr));
4977 
4978   return true;
4979 }
4980 
4981 /// Return the appropriate SDDbgValue based on N.
4982 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4983                                              DILocalVariable *Variable,
4984                                              DIExpression *Expr,
4985                                              const DebugLoc &dl,
4986                                              unsigned DbgSDNodeOrder) {
4987   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
4988     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4989     // stack slot locations.
4990     //
4991     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
4992     // debug values here after optimization:
4993     //
4994     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
4995     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
4996     //
4997     // Both describe the direct values of their associated variables.
4998     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
4999                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5000   }
5001   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5002                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5003 }
5004 
5005 // VisualStudio defines setjmp as _setjmp
5006 #if defined(_MSC_VER) && defined(setjmp) && \
5007                          !defined(setjmp_undefined_for_msvc)
5008 #  pragma push_macro("setjmp")
5009 #  undef setjmp
5010 #  define setjmp_undefined_for_msvc
5011 #endif
5012 
5013 /// Lower the call to the specified intrinsic function. If we want to emit this
5014 /// as a call to a named external function, return the name. Otherwise, lower it
5015 /// and return null.
5016 const char *
5017 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5018   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5019   SDLoc sdl = getCurSDLoc();
5020   DebugLoc dl = getCurDebugLoc();
5021   SDValue Res;
5022 
5023   switch (Intrinsic) {
5024   default:
5025     // By default, turn this into a target intrinsic node.
5026     visitTargetIntrinsic(I, Intrinsic);
5027     return nullptr;
5028   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
5029   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
5030   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
5031   case Intrinsic::returnaddress:
5032     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5033                              TLI.getPointerTy(DAG.getDataLayout()),
5034                              getValue(I.getArgOperand(0))));
5035     return nullptr;
5036   case Intrinsic::addressofreturnaddress:
5037     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5038                              TLI.getPointerTy(DAG.getDataLayout())));
5039     return nullptr;
5040   case Intrinsic::frameaddress:
5041     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5042                              TLI.getPointerTy(DAG.getDataLayout()),
5043                              getValue(I.getArgOperand(0))));
5044     return nullptr;
5045   case Intrinsic::read_register: {
5046     Value *Reg = I.getArgOperand(0);
5047     SDValue Chain = getRoot();
5048     SDValue RegName =
5049         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5050     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5051     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5052       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5053     setValue(&I, Res);
5054     DAG.setRoot(Res.getValue(1));
5055     return nullptr;
5056   }
5057   case Intrinsic::write_register: {
5058     Value *Reg = I.getArgOperand(0);
5059     Value *RegValue = I.getArgOperand(1);
5060     SDValue Chain = getRoot();
5061     SDValue RegName =
5062         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5063     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5064                             RegName, getValue(RegValue)));
5065     return nullptr;
5066   }
5067   case Intrinsic::setjmp:
5068     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5069   case Intrinsic::longjmp:
5070     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5071   case Intrinsic::memcpy: {
5072     const auto &MCI = cast<MemCpyInst>(I);
5073     SDValue Op1 = getValue(I.getArgOperand(0));
5074     SDValue Op2 = getValue(I.getArgOperand(1));
5075     SDValue Op3 = getValue(I.getArgOperand(2));
5076     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5077     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5078     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5079     unsigned Align = MinAlign(DstAlign, SrcAlign);
5080     bool isVol = MCI.isVolatile();
5081     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5082     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5083     // node.
5084     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5085                                false, isTC,
5086                                MachinePointerInfo(I.getArgOperand(0)),
5087                                MachinePointerInfo(I.getArgOperand(1)));
5088     updateDAGForMaybeTailCall(MC);
5089     return nullptr;
5090   }
5091   case Intrinsic::memset: {
5092     const auto &MSI = cast<MemSetInst>(I);
5093     SDValue Op1 = getValue(I.getArgOperand(0));
5094     SDValue Op2 = getValue(I.getArgOperand(1));
5095     SDValue Op3 = getValue(I.getArgOperand(2));
5096     // @llvm.memset defines 0 and 1 to both mean no alignment.
5097     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5098     bool isVol = MSI.isVolatile();
5099     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5100     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5101                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5102     updateDAGForMaybeTailCall(MS);
5103     return nullptr;
5104   }
5105   case Intrinsic::memmove: {
5106     const auto &MMI = cast<MemMoveInst>(I);
5107     SDValue Op1 = getValue(I.getArgOperand(0));
5108     SDValue Op2 = getValue(I.getArgOperand(1));
5109     SDValue Op3 = getValue(I.getArgOperand(2));
5110     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5111     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5112     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5113     unsigned Align = MinAlign(DstAlign, SrcAlign);
5114     bool isVol = MMI.isVolatile();
5115     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5116     // FIXME: Support passing different dest/src alignments to the memmove DAG
5117     // node.
5118     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5119                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5120                                 MachinePointerInfo(I.getArgOperand(1)));
5121     updateDAGForMaybeTailCall(MM);
5122     return nullptr;
5123   }
5124   case Intrinsic::memcpy_element_unordered_atomic: {
5125     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5126     SDValue Dst = getValue(MI.getRawDest());
5127     SDValue Src = getValue(MI.getRawSource());
5128     SDValue Length = getValue(MI.getLength());
5129 
5130     unsigned DstAlign = MI.getDestAlignment();
5131     unsigned SrcAlign = MI.getSourceAlignment();
5132     Type *LengthTy = MI.getLength()->getType();
5133     unsigned ElemSz = MI.getElementSizeInBytes();
5134     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5135     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5136                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5137                                      MachinePointerInfo(MI.getRawDest()),
5138                                      MachinePointerInfo(MI.getRawSource()));
5139     updateDAGForMaybeTailCall(MC);
5140     return nullptr;
5141   }
5142   case Intrinsic::memmove_element_unordered_atomic: {
5143     auto &MI = cast<AtomicMemMoveInst>(I);
5144     SDValue Dst = getValue(MI.getRawDest());
5145     SDValue Src = getValue(MI.getRawSource());
5146     SDValue Length = getValue(MI.getLength());
5147 
5148     unsigned DstAlign = MI.getDestAlignment();
5149     unsigned SrcAlign = MI.getSourceAlignment();
5150     Type *LengthTy = MI.getLength()->getType();
5151     unsigned ElemSz = MI.getElementSizeInBytes();
5152     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5153     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5154                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5155                                       MachinePointerInfo(MI.getRawDest()),
5156                                       MachinePointerInfo(MI.getRawSource()));
5157     updateDAGForMaybeTailCall(MC);
5158     return nullptr;
5159   }
5160   case Intrinsic::memset_element_unordered_atomic: {
5161     auto &MI = cast<AtomicMemSetInst>(I);
5162     SDValue Dst = getValue(MI.getRawDest());
5163     SDValue Val = getValue(MI.getValue());
5164     SDValue Length = getValue(MI.getLength());
5165 
5166     unsigned DstAlign = MI.getDestAlignment();
5167     Type *LengthTy = MI.getLength()->getType();
5168     unsigned ElemSz = MI.getElementSizeInBytes();
5169     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5170     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5171                                      LengthTy, ElemSz, isTC,
5172                                      MachinePointerInfo(MI.getRawDest()));
5173     updateDAGForMaybeTailCall(MC);
5174     return nullptr;
5175   }
5176   case Intrinsic::dbg_addr:
5177   case Intrinsic::dbg_declare: {
5178     const auto &DI = cast<DbgVariableIntrinsic>(I);
5179     DILocalVariable *Variable = DI.getVariable();
5180     DIExpression *Expression = DI.getExpression();
5181     dropDanglingDebugInfo(Variable, Expression);
5182     assert(Variable && "Missing variable");
5183 
5184     // Check if address has undef value.
5185     const Value *Address = DI.getVariableLocation();
5186     if (!Address || isa<UndefValue>(Address) ||
5187         (Address->use_empty() && !isa<Argument>(Address))) {
5188       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5189       return nullptr;
5190     }
5191 
5192     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5193 
5194     // Check if this variable can be described by a frame index, typically
5195     // either as a static alloca or a byval parameter.
5196     int FI = std::numeric_limits<int>::max();
5197     if (const auto *AI =
5198             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5199       if (AI->isStaticAlloca()) {
5200         auto I = FuncInfo.StaticAllocaMap.find(AI);
5201         if (I != FuncInfo.StaticAllocaMap.end())
5202           FI = I->second;
5203       }
5204     } else if (const auto *Arg = dyn_cast<Argument>(
5205                    Address->stripInBoundsConstantOffsets())) {
5206       FI = FuncInfo.getArgumentFrameIndex(Arg);
5207     }
5208 
5209     // llvm.dbg.addr is control dependent and always generates indirect
5210     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5211     // the MachineFunction variable table.
5212     if (FI != std::numeric_limits<int>::max()) {
5213       if (Intrinsic == Intrinsic::dbg_addr) {
5214         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5215             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5216         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5217       }
5218       return nullptr;
5219     }
5220 
5221     SDValue &N = NodeMap[Address];
5222     if (!N.getNode() && isa<Argument>(Address))
5223       // Check unused arguments map.
5224       N = UnusedArgNodeMap[Address];
5225     SDDbgValue *SDV;
5226     if (N.getNode()) {
5227       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5228         Address = BCI->getOperand(0);
5229       // Parameters are handled specially.
5230       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5231       if (isParameter && FINode) {
5232         // Byval parameter. We have a frame index at this point.
5233         SDV =
5234             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5235                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5236       } else if (isa<Argument>(Address)) {
5237         // Address is an argument, so try to emit its dbg value using
5238         // virtual register info from the FuncInfo.ValueMap.
5239         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5240         return nullptr;
5241       } else {
5242         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5243                               true, dl, SDNodeOrder);
5244       }
5245       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5246     } else {
5247       // If Address is an argument then try to emit its dbg value using
5248       // virtual register info from the FuncInfo.ValueMap.
5249       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5250                                     N)) {
5251         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5252       }
5253     }
5254     return nullptr;
5255   }
5256   case Intrinsic::dbg_label: {
5257     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5258     DILabel *Label = DI.getLabel();
5259     assert(Label && "Missing label");
5260 
5261     SDDbgLabel *SDV;
5262     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5263     DAG.AddDbgLabel(SDV);
5264     return nullptr;
5265   }
5266   case Intrinsic::dbg_value: {
5267     const DbgValueInst &DI = cast<DbgValueInst>(I);
5268     assert(DI.getVariable() && "Missing variable");
5269 
5270     DILocalVariable *Variable = DI.getVariable();
5271     DIExpression *Expression = DI.getExpression();
5272     dropDanglingDebugInfo(Variable, Expression);
5273     const Value *V = DI.getValue();
5274     if (!V)
5275       return nullptr;
5276 
5277     SDDbgValue *SDV;
5278     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5279       SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5280       DAG.AddDbgValue(SDV, nullptr, false);
5281       return nullptr;
5282     }
5283 
5284     // Do not use getValue() in here; we don't want to generate code at
5285     // this point if it hasn't been done yet.
5286     SDValue N = NodeMap[V];
5287     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5288       N = UnusedArgNodeMap[V];
5289     if (N.getNode()) {
5290       if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5291         return nullptr;
5292       SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5293       DAG.AddDbgValue(SDV, N.getNode(), false);
5294       return nullptr;
5295     }
5296 
5297     // PHI nodes have already been selected, so we should know which VReg that
5298     // is assigns to already.
5299     if (isa<PHINode>(V)) {
5300       auto VMI = FuncInfo.ValueMap.find(V);
5301       if (VMI != FuncInfo.ValueMap.end()) {
5302         unsigned Reg = VMI->second;
5303         // The PHI node may be split up into several MI PHI nodes (in
5304         // FunctionLoweringInfo::set).
5305         RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5306                          V->getType(), None);
5307         if (RFV.occupiesMultipleRegs()) {
5308           unsigned Offset = 0;
5309           unsigned BitsToDescribe = 0;
5310           if (auto VarSize = Variable->getSizeInBits())
5311             BitsToDescribe = *VarSize;
5312           if (auto Fragment = Expression->getFragmentInfo())
5313             BitsToDescribe = Fragment->SizeInBits;
5314           for (auto RegAndSize : RFV.getRegsAndSizes()) {
5315             unsigned RegisterSize = RegAndSize.second;
5316             // Bail out if all bits are described already.
5317             if (Offset >= BitsToDescribe)
5318               break;
5319             unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5320                 ? BitsToDescribe - Offset
5321                 : RegisterSize;
5322             auto FragmentExpr = DIExpression::createFragmentExpression(
5323                 Expression, Offset, FragmentSize);
5324             if (!FragmentExpr)
5325                 continue;
5326             SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5327                                       false, dl, SDNodeOrder);
5328             DAG.AddDbgValue(SDV, nullptr, false);
5329             Offset += RegisterSize;
5330           }
5331         } else {
5332           SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5333                                     SDNodeOrder);
5334           DAG.AddDbgValue(SDV, nullptr, false);
5335         }
5336         return nullptr;
5337       }
5338     }
5339 
5340     // TODO: When we get here we will either drop the dbg.value completely, or
5341     // we try to move it forward by letting it dangle for awhile. So we should
5342     // probably add an extra DbgValue to the DAG here, with a reference to
5343     // "noreg", to indicate that we have lost the debug location for the
5344     // variable.
5345 
5346     if (!V->use_empty() ) {
5347       // Do not call getValue(V) yet, as we don't want to generate code.
5348       // Remember it for later.
5349       DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5350       return nullptr;
5351     }
5352 
5353     LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5354     LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5355     return nullptr;
5356   }
5357 
5358   case Intrinsic::eh_typeid_for: {
5359     // Find the type id for the given typeinfo.
5360     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5361     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5362     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5363     setValue(&I, Res);
5364     return nullptr;
5365   }
5366 
5367   case Intrinsic::eh_return_i32:
5368   case Intrinsic::eh_return_i64:
5369     DAG.getMachineFunction().setCallsEHReturn(true);
5370     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5371                             MVT::Other,
5372                             getControlRoot(),
5373                             getValue(I.getArgOperand(0)),
5374                             getValue(I.getArgOperand(1))));
5375     return nullptr;
5376   case Intrinsic::eh_unwind_init:
5377     DAG.getMachineFunction().setCallsUnwindInit(true);
5378     return nullptr;
5379   case Intrinsic::eh_dwarf_cfa:
5380     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5381                              TLI.getPointerTy(DAG.getDataLayout()),
5382                              getValue(I.getArgOperand(0))));
5383     return nullptr;
5384   case Intrinsic::eh_sjlj_callsite: {
5385     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5386     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5387     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5388     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5389 
5390     MMI.setCurrentCallSite(CI->getZExtValue());
5391     return nullptr;
5392   }
5393   case Intrinsic::eh_sjlj_functioncontext: {
5394     // Get and store the index of the function context.
5395     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5396     AllocaInst *FnCtx =
5397       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5398     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5399     MFI.setFunctionContextIndex(FI);
5400     return nullptr;
5401   }
5402   case Intrinsic::eh_sjlj_setjmp: {
5403     SDValue Ops[2];
5404     Ops[0] = getRoot();
5405     Ops[1] = getValue(I.getArgOperand(0));
5406     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5407                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5408     setValue(&I, Op.getValue(0));
5409     DAG.setRoot(Op.getValue(1));
5410     return nullptr;
5411   }
5412   case Intrinsic::eh_sjlj_longjmp:
5413     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5414                             getRoot(), getValue(I.getArgOperand(0))));
5415     return nullptr;
5416   case Intrinsic::eh_sjlj_setup_dispatch:
5417     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5418                             getRoot()));
5419     return nullptr;
5420   case Intrinsic::masked_gather:
5421     visitMaskedGather(I);
5422     return nullptr;
5423   case Intrinsic::masked_load:
5424     visitMaskedLoad(I);
5425     return nullptr;
5426   case Intrinsic::masked_scatter:
5427     visitMaskedScatter(I);
5428     return nullptr;
5429   case Intrinsic::masked_store:
5430     visitMaskedStore(I);
5431     return nullptr;
5432   case Intrinsic::masked_expandload:
5433     visitMaskedLoad(I, true /* IsExpanding */);
5434     return nullptr;
5435   case Intrinsic::masked_compressstore:
5436     visitMaskedStore(I, true /* IsCompressing */);
5437     return nullptr;
5438   case Intrinsic::x86_mmx_pslli_w:
5439   case Intrinsic::x86_mmx_pslli_d:
5440   case Intrinsic::x86_mmx_pslli_q:
5441   case Intrinsic::x86_mmx_psrli_w:
5442   case Intrinsic::x86_mmx_psrli_d:
5443   case Intrinsic::x86_mmx_psrli_q:
5444   case Intrinsic::x86_mmx_psrai_w:
5445   case Intrinsic::x86_mmx_psrai_d: {
5446     SDValue ShAmt = getValue(I.getArgOperand(1));
5447     if (isa<ConstantSDNode>(ShAmt)) {
5448       visitTargetIntrinsic(I, Intrinsic);
5449       return nullptr;
5450     }
5451     unsigned NewIntrinsic = 0;
5452     EVT ShAmtVT = MVT::v2i32;
5453     switch (Intrinsic) {
5454     case Intrinsic::x86_mmx_pslli_w:
5455       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5456       break;
5457     case Intrinsic::x86_mmx_pslli_d:
5458       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5459       break;
5460     case Intrinsic::x86_mmx_pslli_q:
5461       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5462       break;
5463     case Intrinsic::x86_mmx_psrli_w:
5464       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5465       break;
5466     case Intrinsic::x86_mmx_psrli_d:
5467       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5468       break;
5469     case Intrinsic::x86_mmx_psrli_q:
5470       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5471       break;
5472     case Intrinsic::x86_mmx_psrai_w:
5473       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5474       break;
5475     case Intrinsic::x86_mmx_psrai_d:
5476       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5477       break;
5478     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5479     }
5480 
5481     // The vector shift intrinsics with scalars uses 32b shift amounts but
5482     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5483     // to be zero.
5484     // We must do this early because v2i32 is not a legal type.
5485     SDValue ShOps[2];
5486     ShOps[0] = ShAmt;
5487     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5488     ShAmt =  DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5489     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5490     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5491     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5492                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5493                        getValue(I.getArgOperand(0)), ShAmt);
5494     setValue(&I, Res);
5495     return nullptr;
5496   }
5497   case Intrinsic::powi:
5498     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5499                             getValue(I.getArgOperand(1)), DAG));
5500     return nullptr;
5501   case Intrinsic::log:
5502     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5503     return nullptr;
5504   case Intrinsic::log2:
5505     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5506     return nullptr;
5507   case Intrinsic::log10:
5508     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5509     return nullptr;
5510   case Intrinsic::exp:
5511     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5512     return nullptr;
5513   case Intrinsic::exp2:
5514     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5515     return nullptr;
5516   case Intrinsic::pow:
5517     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5518                            getValue(I.getArgOperand(1)), DAG, TLI));
5519     return nullptr;
5520   case Intrinsic::sqrt:
5521   case Intrinsic::fabs:
5522   case Intrinsic::sin:
5523   case Intrinsic::cos:
5524   case Intrinsic::floor:
5525   case Intrinsic::ceil:
5526   case Intrinsic::trunc:
5527   case Intrinsic::rint:
5528   case Intrinsic::nearbyint:
5529   case Intrinsic::round:
5530   case Intrinsic::canonicalize: {
5531     unsigned Opcode;
5532     switch (Intrinsic) {
5533     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5534     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5535     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5536     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5537     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5538     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5539     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5540     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5541     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5542     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5543     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5544     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5545     }
5546 
5547     setValue(&I, DAG.getNode(Opcode, sdl,
5548                              getValue(I.getArgOperand(0)).getValueType(),
5549                              getValue(I.getArgOperand(0))));
5550     return nullptr;
5551   }
5552   case Intrinsic::minnum: {
5553     auto VT = getValue(I.getArgOperand(0)).getValueType();
5554     unsigned Opc =
5555         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5556             ? ISD::FMINNAN
5557             : ISD::FMINNUM;
5558     setValue(&I, DAG.getNode(Opc, sdl, VT,
5559                              getValue(I.getArgOperand(0)),
5560                              getValue(I.getArgOperand(1))));
5561     return nullptr;
5562   }
5563   case Intrinsic::maxnum: {
5564     auto VT = getValue(I.getArgOperand(0)).getValueType();
5565     unsigned Opc =
5566         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5567             ? ISD::FMAXNAN
5568             : ISD::FMAXNUM;
5569     setValue(&I, DAG.getNode(Opc, sdl, VT,
5570                              getValue(I.getArgOperand(0)),
5571                              getValue(I.getArgOperand(1))));
5572     return nullptr;
5573   }
5574   case Intrinsic::copysign:
5575     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5576                              getValue(I.getArgOperand(0)).getValueType(),
5577                              getValue(I.getArgOperand(0)),
5578                              getValue(I.getArgOperand(1))));
5579     return nullptr;
5580   case Intrinsic::fma:
5581     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5582                              getValue(I.getArgOperand(0)).getValueType(),
5583                              getValue(I.getArgOperand(0)),
5584                              getValue(I.getArgOperand(1)),
5585                              getValue(I.getArgOperand(2))));
5586     return nullptr;
5587   case Intrinsic::experimental_constrained_fadd:
5588   case Intrinsic::experimental_constrained_fsub:
5589   case Intrinsic::experimental_constrained_fmul:
5590   case Intrinsic::experimental_constrained_fdiv:
5591   case Intrinsic::experimental_constrained_frem:
5592   case Intrinsic::experimental_constrained_fma:
5593   case Intrinsic::experimental_constrained_sqrt:
5594   case Intrinsic::experimental_constrained_pow:
5595   case Intrinsic::experimental_constrained_powi:
5596   case Intrinsic::experimental_constrained_sin:
5597   case Intrinsic::experimental_constrained_cos:
5598   case Intrinsic::experimental_constrained_exp:
5599   case Intrinsic::experimental_constrained_exp2:
5600   case Intrinsic::experimental_constrained_log:
5601   case Intrinsic::experimental_constrained_log10:
5602   case Intrinsic::experimental_constrained_log2:
5603   case Intrinsic::experimental_constrained_rint:
5604   case Intrinsic::experimental_constrained_nearbyint:
5605     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5606     return nullptr;
5607   case Intrinsic::fmuladd: {
5608     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5609     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5610         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5611       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5612                                getValue(I.getArgOperand(0)).getValueType(),
5613                                getValue(I.getArgOperand(0)),
5614                                getValue(I.getArgOperand(1)),
5615                                getValue(I.getArgOperand(2))));
5616     } else {
5617       // TODO: Intrinsic calls should have fast-math-flags.
5618       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5619                                 getValue(I.getArgOperand(0)).getValueType(),
5620                                 getValue(I.getArgOperand(0)),
5621                                 getValue(I.getArgOperand(1)));
5622       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5623                                 getValue(I.getArgOperand(0)).getValueType(),
5624                                 Mul,
5625                                 getValue(I.getArgOperand(2)));
5626       setValue(&I, Add);
5627     }
5628     return nullptr;
5629   }
5630   case Intrinsic::convert_to_fp16:
5631     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5632                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5633                                          getValue(I.getArgOperand(0)),
5634                                          DAG.getTargetConstant(0, sdl,
5635                                                                MVT::i32))));
5636     return nullptr;
5637   case Intrinsic::convert_from_fp16:
5638     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5639                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5640                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5641                                          getValue(I.getArgOperand(0)))));
5642     return nullptr;
5643   case Intrinsic::pcmarker: {
5644     SDValue Tmp = getValue(I.getArgOperand(0));
5645     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5646     return nullptr;
5647   }
5648   case Intrinsic::readcyclecounter: {
5649     SDValue Op = getRoot();
5650     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5651                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5652     setValue(&I, Res);
5653     DAG.setRoot(Res.getValue(1));
5654     return nullptr;
5655   }
5656   case Intrinsic::bitreverse:
5657     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5658                              getValue(I.getArgOperand(0)).getValueType(),
5659                              getValue(I.getArgOperand(0))));
5660     return nullptr;
5661   case Intrinsic::bswap:
5662     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5663                              getValue(I.getArgOperand(0)).getValueType(),
5664                              getValue(I.getArgOperand(0))));
5665     return nullptr;
5666   case Intrinsic::cttz: {
5667     SDValue Arg = getValue(I.getArgOperand(0));
5668     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5669     EVT Ty = Arg.getValueType();
5670     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5671                              sdl, Ty, Arg));
5672     return nullptr;
5673   }
5674   case Intrinsic::ctlz: {
5675     SDValue Arg = getValue(I.getArgOperand(0));
5676     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5677     EVT Ty = Arg.getValueType();
5678     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5679                              sdl, Ty, Arg));
5680     return nullptr;
5681   }
5682   case Intrinsic::ctpop: {
5683     SDValue Arg = getValue(I.getArgOperand(0));
5684     EVT Ty = Arg.getValueType();
5685     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5686     return nullptr;
5687   }
5688   case Intrinsic::fshl:
5689   case Intrinsic::fshr: {
5690     bool IsFSHL = Intrinsic == Intrinsic::fshl;
5691     SDValue X = getValue(I.getArgOperand(0));
5692     SDValue Y = getValue(I.getArgOperand(1));
5693     SDValue Z = getValue(I.getArgOperand(2));
5694     EVT VT = X.getValueType();
5695     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5696     SDValue Zero = DAG.getConstant(0, sdl, VT);
5697     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5698 
5699     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5700     // avoid the select that is necessary in the general case to filter out
5701     // the 0-shift possibility that leads to UB.
5702     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5703       // TODO: This should also be done if the operation is custom, but we have
5704       // to make sure targets are handling the modulo shift amount as expected.
5705       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5706       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5707         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5708         return nullptr;
5709       }
5710 
5711       // Some targets only rotate one way. Try the opposite direction.
5712       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5713       if (TLI.isOperationLegal(RotateOpcode, VT)) {
5714         // Negate the shift amount because it is safe to ignore the high bits.
5715         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5716         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5717         return nullptr;
5718       }
5719 
5720       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5721       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5722       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5723       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5724       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5725       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5726       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5727       return nullptr;
5728     }
5729 
5730     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5731     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5732     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5733     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5734     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5735     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5736 
5737     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5738     // and that is undefined. We must compare and select to avoid UB.
5739     EVT CCVT = MVT::i1;
5740     if (VT.isVector())
5741       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5742 
5743     // For fshl, 0-shift returns the 1st arg (X).
5744     // For fshr, 0-shift returns the 2nd arg (Y).
5745     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5746     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5747     return nullptr;
5748   }
5749   case Intrinsic::stacksave: {
5750     SDValue Op = getRoot();
5751     Res = DAG.getNode(
5752         ISD::STACKSAVE, sdl,
5753         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5754     setValue(&I, Res);
5755     DAG.setRoot(Res.getValue(1));
5756     return nullptr;
5757   }
5758   case Intrinsic::stackrestore:
5759     Res = getValue(I.getArgOperand(0));
5760     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5761     return nullptr;
5762   case Intrinsic::get_dynamic_area_offset: {
5763     SDValue Op = getRoot();
5764     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5765     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5766     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5767     // target.
5768     if (PtrTy != ResTy)
5769       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5770                          " intrinsic!");
5771     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5772                       Op);
5773     DAG.setRoot(Op);
5774     setValue(&I, Res);
5775     return nullptr;
5776   }
5777   case Intrinsic::stackguard: {
5778     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5779     MachineFunction &MF = DAG.getMachineFunction();
5780     const Module &M = *MF.getFunction().getParent();
5781     SDValue Chain = getRoot();
5782     if (TLI.useLoadStackGuardNode()) {
5783       Res = getLoadStackGuard(DAG, sdl, Chain);
5784     } else {
5785       const Value *Global = TLI.getSDagStackGuard(M);
5786       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5787       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5788                         MachinePointerInfo(Global, 0), Align,
5789                         MachineMemOperand::MOVolatile);
5790     }
5791     if (TLI.useStackGuardXorFP())
5792       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5793     DAG.setRoot(Chain);
5794     setValue(&I, Res);
5795     return nullptr;
5796   }
5797   case Intrinsic::stackprotector: {
5798     // Emit code into the DAG to store the stack guard onto the stack.
5799     MachineFunction &MF = DAG.getMachineFunction();
5800     MachineFrameInfo &MFI = MF.getFrameInfo();
5801     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5802     SDValue Src, Chain = getRoot();
5803 
5804     if (TLI.useLoadStackGuardNode())
5805       Src = getLoadStackGuard(DAG, sdl, Chain);
5806     else
5807       Src = getValue(I.getArgOperand(0));   // The guard's value.
5808 
5809     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5810 
5811     int FI = FuncInfo.StaticAllocaMap[Slot];
5812     MFI.setStackProtectorIndex(FI);
5813 
5814     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5815 
5816     // Store the stack protector onto the stack.
5817     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5818                                                  DAG.getMachineFunction(), FI),
5819                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5820     setValue(&I, Res);
5821     DAG.setRoot(Res);
5822     return nullptr;
5823   }
5824   case Intrinsic::objectsize: {
5825     // If we don't know by now, we're never going to know.
5826     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5827 
5828     assert(CI && "Non-constant type in __builtin_object_size?");
5829 
5830     SDValue Arg = getValue(I.getCalledValue());
5831     EVT Ty = Arg.getValueType();
5832 
5833     if (CI->isZero())
5834       Res = DAG.getConstant(-1ULL, sdl, Ty);
5835     else
5836       Res = DAG.getConstant(0, sdl, Ty);
5837 
5838     setValue(&I, Res);
5839     return nullptr;
5840   }
5841   case Intrinsic::annotation:
5842   case Intrinsic::ptr_annotation:
5843   case Intrinsic::launder_invariant_group:
5844   case Intrinsic::strip_invariant_group:
5845     // Drop the intrinsic, but forward the value
5846     setValue(&I, getValue(I.getOperand(0)));
5847     return nullptr;
5848   case Intrinsic::assume:
5849   case Intrinsic::var_annotation:
5850   case Intrinsic::sideeffect:
5851     // Discard annotate attributes, assumptions, and artificial side-effects.
5852     return nullptr;
5853 
5854   case Intrinsic::codeview_annotation: {
5855     // Emit a label associated with this metadata.
5856     MachineFunction &MF = DAG.getMachineFunction();
5857     MCSymbol *Label =
5858         MF.getMMI().getContext().createTempSymbol("annotation", true);
5859     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
5860     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
5861     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
5862     DAG.setRoot(Res);
5863     return nullptr;
5864   }
5865 
5866   case Intrinsic::init_trampoline: {
5867     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5868 
5869     SDValue Ops[6];
5870     Ops[0] = getRoot();
5871     Ops[1] = getValue(I.getArgOperand(0));
5872     Ops[2] = getValue(I.getArgOperand(1));
5873     Ops[3] = getValue(I.getArgOperand(2));
5874     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5875     Ops[5] = DAG.getSrcValue(F);
5876 
5877     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5878 
5879     DAG.setRoot(Res);
5880     return nullptr;
5881   }
5882   case Intrinsic::adjust_trampoline:
5883     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5884                              TLI.getPointerTy(DAG.getDataLayout()),
5885                              getValue(I.getArgOperand(0))));
5886     return nullptr;
5887   case Intrinsic::gcroot: {
5888     assert(DAG.getMachineFunction().getFunction().hasGC() &&
5889            "only valid in functions with gc specified, enforced by Verifier");
5890     assert(GFI && "implied by previous");
5891     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5892     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5893 
5894     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5895     GFI->addStackRoot(FI->getIndex(), TypeMap);
5896     return nullptr;
5897   }
5898   case Intrinsic::gcread:
5899   case Intrinsic::gcwrite:
5900     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5901   case Intrinsic::flt_rounds:
5902     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5903     return nullptr;
5904 
5905   case Intrinsic::expect:
5906     // Just replace __builtin_expect(exp, c) with EXP.
5907     setValue(&I, getValue(I.getArgOperand(0)));
5908     return nullptr;
5909 
5910   case Intrinsic::debugtrap:
5911   case Intrinsic::trap: {
5912     StringRef TrapFuncName =
5913         I.getAttributes()
5914             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
5915             .getValueAsString();
5916     if (TrapFuncName.empty()) {
5917       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5918         ISD::TRAP : ISD::DEBUGTRAP;
5919       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5920       return nullptr;
5921     }
5922     TargetLowering::ArgListTy Args;
5923 
5924     TargetLowering::CallLoweringInfo CLI(DAG);
5925     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
5926         CallingConv::C, I.getType(),
5927         DAG.getExternalSymbol(TrapFuncName.data(),
5928                               TLI.getPointerTy(DAG.getDataLayout())),
5929         std::move(Args));
5930 
5931     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5932     DAG.setRoot(Result.second);
5933     return nullptr;
5934   }
5935 
5936   case Intrinsic::uadd_with_overflow:
5937   case Intrinsic::sadd_with_overflow:
5938   case Intrinsic::usub_with_overflow:
5939   case Intrinsic::ssub_with_overflow:
5940   case Intrinsic::umul_with_overflow:
5941   case Intrinsic::smul_with_overflow: {
5942     ISD::NodeType Op;
5943     switch (Intrinsic) {
5944     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5945     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5946     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5947     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5948     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5949     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5950     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5951     }
5952     SDValue Op1 = getValue(I.getArgOperand(0));
5953     SDValue Op2 = getValue(I.getArgOperand(1));
5954 
5955     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5956     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5957     return nullptr;
5958   }
5959   case Intrinsic::prefetch: {
5960     SDValue Ops[5];
5961     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5962     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
5963     Ops[0] = DAG.getRoot();
5964     Ops[1] = getValue(I.getArgOperand(0));
5965     Ops[2] = getValue(I.getArgOperand(1));
5966     Ops[3] = getValue(I.getArgOperand(2));
5967     Ops[4] = getValue(I.getArgOperand(3));
5968     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5969                                              DAG.getVTList(MVT::Other), Ops,
5970                                              EVT::getIntegerVT(*Context, 8),
5971                                              MachinePointerInfo(I.getArgOperand(0)),
5972                                              0, /* align */
5973                                              Flags);
5974 
5975     // Chain the prefetch in parallell with any pending loads, to stay out of
5976     // the way of later optimizations.
5977     PendingLoads.push_back(Result);
5978     Result = getRoot();
5979     DAG.setRoot(Result);
5980     return nullptr;
5981   }
5982   case Intrinsic::lifetime_start:
5983   case Intrinsic::lifetime_end: {
5984     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5985     // Stack coloring is not enabled in O0, discard region information.
5986     if (TM.getOptLevel() == CodeGenOpt::None)
5987       return nullptr;
5988 
5989     SmallVector<Value *, 4> Allocas;
5990     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5991 
5992     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5993            E = Allocas.end(); Object != E; ++Object) {
5994       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5995 
5996       // Could not find an Alloca.
5997       if (!LifetimeObject)
5998         continue;
5999 
6000       // First check that the Alloca is static, otherwise it won't have a
6001       // valid frame index.
6002       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6003       if (SI == FuncInfo.StaticAllocaMap.end())
6004         return nullptr;
6005 
6006       int FI = SI->second;
6007 
6008       SDValue Ops[2];
6009       Ops[0] = getRoot();
6010       Ops[1] =
6011           DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true);
6012       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
6013 
6014       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
6015       DAG.setRoot(Res);
6016     }
6017     return nullptr;
6018   }
6019   case Intrinsic::invariant_start:
6020     // Discard region information.
6021     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6022     return nullptr;
6023   case Intrinsic::invariant_end:
6024     // Discard region information.
6025     return nullptr;
6026   case Intrinsic::clear_cache:
6027     return TLI.getClearCacheBuiltinName();
6028   case Intrinsic::donothing:
6029     // ignore
6030     return nullptr;
6031   case Intrinsic::experimental_stackmap:
6032     visitStackmap(I);
6033     return nullptr;
6034   case Intrinsic::experimental_patchpoint_void:
6035   case Intrinsic::experimental_patchpoint_i64:
6036     visitPatchpoint(&I);
6037     return nullptr;
6038   case Intrinsic::experimental_gc_statepoint:
6039     LowerStatepoint(ImmutableStatepoint(&I));
6040     return nullptr;
6041   case Intrinsic::experimental_gc_result:
6042     visitGCResult(cast<GCResultInst>(I));
6043     return nullptr;
6044   case Intrinsic::experimental_gc_relocate:
6045     visitGCRelocate(cast<GCRelocateInst>(I));
6046     return nullptr;
6047   case Intrinsic::instrprof_increment:
6048     llvm_unreachable("instrprof failed to lower an increment");
6049   case Intrinsic::instrprof_value_profile:
6050     llvm_unreachable("instrprof failed to lower a value profiling call");
6051   case Intrinsic::localescape: {
6052     MachineFunction &MF = DAG.getMachineFunction();
6053     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6054 
6055     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6056     // is the same on all targets.
6057     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6058       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6059       if (isa<ConstantPointerNull>(Arg))
6060         continue; // Skip null pointers. They represent a hole in index space.
6061       AllocaInst *Slot = cast<AllocaInst>(Arg);
6062       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6063              "can only escape static allocas");
6064       int FI = FuncInfo.StaticAllocaMap[Slot];
6065       MCSymbol *FrameAllocSym =
6066           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6067               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6068       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6069               TII->get(TargetOpcode::LOCAL_ESCAPE))
6070           .addSym(FrameAllocSym)
6071           .addFrameIndex(FI);
6072     }
6073 
6074     return nullptr;
6075   }
6076 
6077   case Intrinsic::localrecover: {
6078     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6079     MachineFunction &MF = DAG.getMachineFunction();
6080     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6081 
6082     // Get the symbol that defines the frame offset.
6083     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6084     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6085     unsigned IdxVal =
6086         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6087     MCSymbol *FrameAllocSym =
6088         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6089             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6090 
6091     // Create a MCSymbol for the label to avoid any target lowering
6092     // that would make this PC relative.
6093     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6094     SDValue OffsetVal =
6095         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6096 
6097     // Add the offset to the FP.
6098     Value *FP = I.getArgOperand(1);
6099     SDValue FPVal = getValue(FP);
6100     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6101     setValue(&I, Add);
6102 
6103     return nullptr;
6104   }
6105 
6106   case Intrinsic::eh_exceptionpointer:
6107   case Intrinsic::eh_exceptioncode: {
6108     // Get the exception pointer vreg, copy from it, and resize it to fit.
6109     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6110     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6111     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6112     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6113     SDValue N =
6114         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6115     if (Intrinsic == Intrinsic::eh_exceptioncode)
6116       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6117     setValue(&I, N);
6118     return nullptr;
6119   }
6120   case Intrinsic::xray_customevent: {
6121     // Here we want to make sure that the intrinsic behaves as if it has a
6122     // specific calling convention, and only for x86_64.
6123     // FIXME: Support other platforms later.
6124     const auto &Triple = DAG.getTarget().getTargetTriple();
6125     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6126       return nullptr;
6127 
6128     SDLoc DL = getCurSDLoc();
6129     SmallVector<SDValue, 8> Ops;
6130 
6131     // We want to say that we always want the arguments in registers.
6132     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6133     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6134     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6135     SDValue Chain = getRoot();
6136     Ops.push_back(LogEntryVal);
6137     Ops.push_back(StrSizeVal);
6138     Ops.push_back(Chain);
6139 
6140     // We need to enforce the calling convention for the callsite, so that
6141     // argument ordering is enforced correctly, and that register allocation can
6142     // see that some registers may be assumed clobbered and have to preserve
6143     // them across calls to the intrinsic.
6144     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6145                                            DL, NodeTys, Ops);
6146     SDValue patchableNode = SDValue(MN, 0);
6147     DAG.setRoot(patchableNode);
6148     setValue(&I, patchableNode);
6149     return nullptr;
6150   }
6151   case Intrinsic::xray_typedevent: {
6152     // Here we want to make sure that the intrinsic behaves as if it has a
6153     // specific calling convention, and only for x86_64.
6154     // FIXME: Support other platforms later.
6155     const auto &Triple = DAG.getTarget().getTargetTriple();
6156     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6157       return nullptr;
6158 
6159     SDLoc DL = getCurSDLoc();
6160     SmallVector<SDValue, 8> Ops;
6161 
6162     // We want to say that we always want the arguments in registers.
6163     // It's unclear to me how manipulating the selection DAG here forces callers
6164     // to provide arguments in registers instead of on the stack.
6165     SDValue LogTypeId = getValue(I.getArgOperand(0));
6166     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6167     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6168     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6169     SDValue Chain = getRoot();
6170     Ops.push_back(LogTypeId);
6171     Ops.push_back(LogEntryVal);
6172     Ops.push_back(StrSizeVal);
6173     Ops.push_back(Chain);
6174 
6175     // We need to enforce the calling convention for the callsite, so that
6176     // argument ordering is enforced correctly, and that register allocation can
6177     // see that some registers may be assumed clobbered and have to preserve
6178     // them across calls to the intrinsic.
6179     MachineSDNode *MN = DAG.getMachineNode(
6180         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6181     SDValue patchableNode = SDValue(MN, 0);
6182     DAG.setRoot(patchableNode);
6183     setValue(&I, patchableNode);
6184     return nullptr;
6185   }
6186   case Intrinsic::experimental_deoptimize:
6187     LowerDeoptimizeCall(&I);
6188     return nullptr;
6189 
6190   case Intrinsic::experimental_vector_reduce_fadd:
6191   case Intrinsic::experimental_vector_reduce_fmul:
6192   case Intrinsic::experimental_vector_reduce_add:
6193   case Intrinsic::experimental_vector_reduce_mul:
6194   case Intrinsic::experimental_vector_reduce_and:
6195   case Intrinsic::experimental_vector_reduce_or:
6196   case Intrinsic::experimental_vector_reduce_xor:
6197   case Intrinsic::experimental_vector_reduce_smax:
6198   case Intrinsic::experimental_vector_reduce_smin:
6199   case Intrinsic::experimental_vector_reduce_umax:
6200   case Intrinsic::experimental_vector_reduce_umin:
6201   case Intrinsic::experimental_vector_reduce_fmax:
6202   case Intrinsic::experimental_vector_reduce_fmin:
6203     visitVectorReduce(I, Intrinsic);
6204     return nullptr;
6205 
6206   case Intrinsic::icall_branch_funnel: {
6207     SmallVector<SDValue, 16> Ops;
6208     Ops.push_back(DAG.getRoot());
6209     Ops.push_back(getValue(I.getArgOperand(0)));
6210 
6211     int64_t Offset;
6212     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6213         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6214     if (!Base)
6215       report_fatal_error(
6216           "llvm.icall.branch.funnel operand must be a GlobalValue");
6217     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6218 
6219     struct BranchFunnelTarget {
6220       int64_t Offset;
6221       SDValue Target;
6222     };
6223     SmallVector<BranchFunnelTarget, 8> Targets;
6224 
6225     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6226       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6227           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6228       if (ElemBase != Base)
6229         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6230                            "to the same GlobalValue");
6231 
6232       SDValue Val = getValue(I.getArgOperand(Op + 1));
6233       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6234       if (!GA)
6235         report_fatal_error(
6236             "llvm.icall.branch.funnel operand must be a GlobalValue");
6237       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6238                                      GA->getGlobal(), getCurSDLoc(),
6239                                      Val.getValueType(), GA->getOffset())});
6240     }
6241     llvm::sort(Targets.begin(), Targets.end(),
6242                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6243                  return T1.Offset < T2.Offset;
6244                });
6245 
6246     for (auto &T : Targets) {
6247       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6248       Ops.push_back(T.Target);
6249     }
6250 
6251     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6252                                  getCurSDLoc(), MVT::Other, Ops),
6253               0);
6254     DAG.setRoot(N);
6255     setValue(&I, N);
6256     HasTailCall = true;
6257     return nullptr;
6258   }
6259 
6260   case Intrinsic::wasm_landingpad_index: {
6261     // TODO store landing pad index in a map, which will be used when generating
6262     // LSDA information
6263     return nullptr;
6264   }
6265   }
6266 }
6267 
6268 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6269     const ConstrainedFPIntrinsic &FPI) {
6270   SDLoc sdl = getCurSDLoc();
6271   unsigned Opcode;
6272   switch (FPI.getIntrinsicID()) {
6273   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6274   case Intrinsic::experimental_constrained_fadd:
6275     Opcode = ISD::STRICT_FADD;
6276     break;
6277   case Intrinsic::experimental_constrained_fsub:
6278     Opcode = ISD::STRICT_FSUB;
6279     break;
6280   case Intrinsic::experimental_constrained_fmul:
6281     Opcode = ISD::STRICT_FMUL;
6282     break;
6283   case Intrinsic::experimental_constrained_fdiv:
6284     Opcode = ISD::STRICT_FDIV;
6285     break;
6286   case Intrinsic::experimental_constrained_frem:
6287     Opcode = ISD::STRICT_FREM;
6288     break;
6289   case Intrinsic::experimental_constrained_fma:
6290     Opcode = ISD::STRICT_FMA;
6291     break;
6292   case Intrinsic::experimental_constrained_sqrt:
6293     Opcode = ISD::STRICT_FSQRT;
6294     break;
6295   case Intrinsic::experimental_constrained_pow:
6296     Opcode = ISD::STRICT_FPOW;
6297     break;
6298   case Intrinsic::experimental_constrained_powi:
6299     Opcode = ISD::STRICT_FPOWI;
6300     break;
6301   case Intrinsic::experimental_constrained_sin:
6302     Opcode = ISD::STRICT_FSIN;
6303     break;
6304   case Intrinsic::experimental_constrained_cos:
6305     Opcode = ISD::STRICT_FCOS;
6306     break;
6307   case Intrinsic::experimental_constrained_exp:
6308     Opcode = ISD::STRICT_FEXP;
6309     break;
6310   case Intrinsic::experimental_constrained_exp2:
6311     Opcode = ISD::STRICT_FEXP2;
6312     break;
6313   case Intrinsic::experimental_constrained_log:
6314     Opcode = ISD::STRICT_FLOG;
6315     break;
6316   case Intrinsic::experimental_constrained_log10:
6317     Opcode = ISD::STRICT_FLOG10;
6318     break;
6319   case Intrinsic::experimental_constrained_log2:
6320     Opcode = ISD::STRICT_FLOG2;
6321     break;
6322   case Intrinsic::experimental_constrained_rint:
6323     Opcode = ISD::STRICT_FRINT;
6324     break;
6325   case Intrinsic::experimental_constrained_nearbyint:
6326     Opcode = ISD::STRICT_FNEARBYINT;
6327     break;
6328   }
6329   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6330   SDValue Chain = getRoot();
6331   SmallVector<EVT, 4> ValueVTs;
6332   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6333   ValueVTs.push_back(MVT::Other); // Out chain
6334 
6335   SDVTList VTs = DAG.getVTList(ValueVTs);
6336   SDValue Result;
6337   if (FPI.isUnaryOp())
6338     Result = DAG.getNode(Opcode, sdl, VTs,
6339                          { Chain, getValue(FPI.getArgOperand(0)) });
6340   else if (FPI.isTernaryOp())
6341     Result = DAG.getNode(Opcode, sdl, VTs,
6342                          { Chain, getValue(FPI.getArgOperand(0)),
6343                                   getValue(FPI.getArgOperand(1)),
6344                                   getValue(FPI.getArgOperand(2)) });
6345   else
6346     Result = DAG.getNode(Opcode, sdl, VTs,
6347                          { Chain, getValue(FPI.getArgOperand(0)),
6348                            getValue(FPI.getArgOperand(1))  });
6349 
6350   assert(Result.getNode()->getNumValues() == 2);
6351   SDValue OutChain = Result.getValue(1);
6352   DAG.setRoot(OutChain);
6353   SDValue FPResult = Result.getValue(0);
6354   setValue(&FPI, FPResult);
6355 }
6356 
6357 std::pair<SDValue, SDValue>
6358 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6359                                     const BasicBlock *EHPadBB) {
6360   MachineFunction &MF = DAG.getMachineFunction();
6361   MachineModuleInfo &MMI = MF.getMMI();
6362   MCSymbol *BeginLabel = nullptr;
6363 
6364   if (EHPadBB) {
6365     // Insert a label before the invoke call to mark the try range.  This can be
6366     // used to detect deletion of the invoke via the MachineModuleInfo.
6367     BeginLabel = MMI.getContext().createTempSymbol();
6368 
6369     // For SjLj, keep track of which landing pads go with which invokes
6370     // so as to maintain the ordering of pads in the LSDA.
6371     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6372     if (CallSiteIndex) {
6373       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6374       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6375 
6376       // Now that the call site is handled, stop tracking it.
6377       MMI.setCurrentCallSite(0);
6378     }
6379 
6380     // Both PendingLoads and PendingExports must be flushed here;
6381     // this call might not return.
6382     (void)getRoot();
6383     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6384 
6385     CLI.setChain(getRoot());
6386   }
6387   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6388   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6389 
6390   assert((CLI.IsTailCall || Result.second.getNode()) &&
6391          "Non-null chain expected with non-tail call!");
6392   assert((Result.second.getNode() || !Result.first.getNode()) &&
6393          "Null value expected with tail call!");
6394 
6395   if (!Result.second.getNode()) {
6396     // As a special case, a null chain means that a tail call has been emitted
6397     // and the DAG root is already updated.
6398     HasTailCall = true;
6399 
6400     // Since there's no actual continuation from this block, nothing can be
6401     // relying on us setting vregs for them.
6402     PendingExports.clear();
6403   } else {
6404     DAG.setRoot(Result.second);
6405   }
6406 
6407   if (EHPadBB) {
6408     // Insert a label at the end of the invoke call to mark the try range.  This
6409     // can be used to detect deletion of the invoke via the MachineModuleInfo.
6410     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6411     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6412 
6413     // Inform MachineModuleInfo of range.
6414     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6415     // There is a platform (e.g. wasm) that uses funclet style IR but does not
6416     // actually use outlined funclets and their LSDA info style.
6417     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6418       assert(CLI.CS);
6419       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6420       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6421                                 BeginLabel, EndLabel);
6422     } else {
6423       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6424     }
6425   }
6426 
6427   return Result;
6428 }
6429 
6430 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6431                                       bool isTailCall,
6432                                       const BasicBlock *EHPadBB) {
6433   auto &DL = DAG.getDataLayout();
6434   FunctionType *FTy = CS.getFunctionType();
6435   Type *RetTy = CS.getType();
6436 
6437   TargetLowering::ArgListTy Args;
6438   Args.reserve(CS.arg_size());
6439 
6440   const Value *SwiftErrorVal = nullptr;
6441   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6442 
6443   // We can't tail call inside a function with a swifterror argument. Lowering
6444   // does not support this yet. It would have to move into the swifterror
6445   // register before the call.
6446   auto *Caller = CS.getInstruction()->getParent()->getParent();
6447   if (TLI.supportSwiftError() &&
6448       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6449     isTailCall = false;
6450 
6451   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6452        i != e; ++i) {
6453     TargetLowering::ArgListEntry Entry;
6454     const Value *V = *i;
6455 
6456     // Skip empty types
6457     if (V->getType()->isEmptyTy())
6458       continue;
6459 
6460     SDValue ArgNode = getValue(V);
6461     Entry.Node = ArgNode; Entry.Ty = V->getType();
6462 
6463     Entry.setAttributes(&CS, i - CS.arg_begin());
6464 
6465     // Use swifterror virtual register as input to the call.
6466     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6467       SwiftErrorVal = V;
6468       // We find the virtual register for the actual swifterror argument.
6469       // Instead of using the Value, we use the virtual register instead.
6470       Entry.Node = DAG.getRegister(FuncInfo
6471                                        .getOrCreateSwiftErrorVRegUseAt(
6472                                            CS.getInstruction(), FuncInfo.MBB, V)
6473                                        .first,
6474                                    EVT(TLI.getPointerTy(DL)));
6475     }
6476 
6477     Args.push_back(Entry);
6478 
6479     // If we have an explicit sret argument that is an Instruction, (i.e., it
6480     // might point to function-local memory), we can't meaningfully tail-call.
6481     if (Entry.IsSRet && isa<Instruction>(V))
6482       isTailCall = false;
6483   }
6484 
6485   // Check if target-independent constraints permit a tail call here.
6486   // Target-dependent constraints are checked within TLI->LowerCallTo.
6487   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6488     isTailCall = false;
6489 
6490   // Disable tail calls if there is an swifterror argument. Targets have not
6491   // been updated to support tail calls.
6492   if (TLI.supportSwiftError() && SwiftErrorVal)
6493     isTailCall = false;
6494 
6495   TargetLowering::CallLoweringInfo CLI(DAG);
6496   CLI.setDebugLoc(getCurSDLoc())
6497       .setChain(getRoot())
6498       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6499       .setTailCall(isTailCall)
6500       .setConvergent(CS.isConvergent());
6501   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6502 
6503   if (Result.first.getNode()) {
6504     const Instruction *Inst = CS.getInstruction();
6505     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6506     setValue(Inst, Result.first);
6507   }
6508 
6509   // The last element of CLI.InVals has the SDValue for swifterror return.
6510   // Here we copy it to a virtual register and update SwiftErrorMap for
6511   // book-keeping.
6512   if (SwiftErrorVal && TLI.supportSwiftError()) {
6513     // Get the last element of InVals.
6514     SDValue Src = CLI.InVals.back();
6515     unsigned VReg; bool CreatedVReg;
6516     std::tie(VReg, CreatedVReg) =
6517         FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6518     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6519     // We update the virtual register for the actual swifterror argument.
6520     if (CreatedVReg)
6521       FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6522     DAG.setRoot(CopyNode);
6523   }
6524 }
6525 
6526 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6527                              SelectionDAGBuilder &Builder) {
6528   // Check to see if this load can be trivially constant folded, e.g. if the
6529   // input is from a string literal.
6530   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6531     // Cast pointer to the type we really want to load.
6532     Type *LoadTy =
6533         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6534     if (LoadVT.isVector())
6535       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6536 
6537     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6538                                          PointerType::getUnqual(LoadTy));
6539 
6540     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6541             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6542       return Builder.getValue(LoadCst);
6543   }
6544 
6545   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
6546   // still constant memory, the input chain can be the entry node.
6547   SDValue Root;
6548   bool ConstantMemory = false;
6549 
6550   // Do not serialize (non-volatile) loads of constant memory with anything.
6551   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6552     Root = Builder.DAG.getEntryNode();
6553     ConstantMemory = true;
6554   } else {
6555     // Do not serialize non-volatile loads against each other.
6556     Root = Builder.DAG.getRoot();
6557   }
6558 
6559   SDValue Ptr = Builder.getValue(PtrVal);
6560   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6561                                         Ptr, MachinePointerInfo(PtrVal),
6562                                         /* Alignment = */ 1);
6563 
6564   if (!ConstantMemory)
6565     Builder.PendingLoads.push_back(LoadVal.getValue(1));
6566   return LoadVal;
6567 }
6568 
6569 /// Record the value for an instruction that produces an integer result,
6570 /// converting the type where necessary.
6571 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6572                                                   SDValue Value,
6573                                                   bool IsSigned) {
6574   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6575                                                     I.getType(), true);
6576   if (IsSigned)
6577     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6578   else
6579     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6580   setValue(&I, Value);
6581 }
6582 
6583 /// See if we can lower a memcmp call into an optimized form. If so, return
6584 /// true and lower it. Otherwise return false, and it will be lowered like a
6585 /// normal call.
6586 /// The caller already checked that \p I calls the appropriate LibFunc with a
6587 /// correct prototype.
6588 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6589   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6590   const Value *Size = I.getArgOperand(2);
6591   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6592   if (CSize && CSize->getZExtValue() == 0) {
6593     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6594                                                           I.getType(), true);
6595     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6596     return true;
6597   }
6598 
6599   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6600   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
6601       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
6602       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
6603   if (Res.first.getNode()) {
6604     processIntegerCallValue(I, Res.first, true);
6605     PendingLoads.push_back(Res.second);
6606     return true;
6607   }
6608 
6609   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6610   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6611   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
6612     return false;
6613 
6614   // If the target has a fast compare for the given size, it will return a
6615   // preferred load type for that size. Require that the load VT is legal and
6616   // that the target supports unaligned loads of that type. Otherwise, return
6617   // INVALID.
6618   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
6619     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6620     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
6621     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
6622       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6623       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6624       // TODO: Check alignment of src and dest ptrs.
6625       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6626       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6627       if (!TLI.isTypeLegal(LVT) ||
6628           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
6629           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
6630         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
6631     }
6632 
6633     return LVT;
6634   };
6635 
6636   // This turns into unaligned loads. We only do this if the target natively
6637   // supports the MVT we'll be loading or if it is small enough (<= 4) that
6638   // we'll only produce a small number of byte loads.
6639   MVT LoadVT;
6640   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
6641   switch (NumBitsToCompare) {
6642   default:
6643     return false;
6644   case 16:
6645     LoadVT = MVT::i16;
6646     break;
6647   case 32:
6648     LoadVT = MVT::i32;
6649     break;
6650   case 64:
6651   case 128:
6652   case 256:
6653     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
6654     break;
6655   }
6656 
6657   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
6658     return false;
6659 
6660   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
6661   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
6662 
6663   // Bitcast to a wide integer type if the loads are vectors.
6664   if (LoadVT.isVector()) {
6665     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
6666     LoadL = DAG.getBitcast(CmpVT, LoadL);
6667     LoadR = DAG.getBitcast(CmpVT, LoadR);
6668   }
6669 
6670   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
6671   processIntegerCallValue(I, Cmp, false);
6672   return true;
6673 }
6674 
6675 /// See if we can lower a memchr call into an optimized form. If so, return
6676 /// true and lower it. Otherwise return false, and it will be lowered like a
6677 /// normal call.
6678 /// The caller already checked that \p I calls the appropriate LibFunc with a
6679 /// correct prototype.
6680 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6681   const Value *Src = I.getArgOperand(0);
6682   const Value *Char = I.getArgOperand(1);
6683   const Value *Length = I.getArgOperand(2);
6684 
6685   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6686   std::pair<SDValue, SDValue> Res =
6687     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6688                                 getValue(Src), getValue(Char), getValue(Length),
6689                                 MachinePointerInfo(Src));
6690   if (Res.first.getNode()) {
6691     setValue(&I, Res.first);
6692     PendingLoads.push_back(Res.second);
6693     return true;
6694   }
6695 
6696   return false;
6697 }
6698 
6699 /// See if we can lower a mempcpy call into an optimized form. If so, return
6700 /// true and lower it. Otherwise return false, and it will be lowered like a
6701 /// normal call.
6702 /// The caller already checked that \p I calls the appropriate LibFunc with a
6703 /// correct prototype.
6704 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6705   SDValue Dst = getValue(I.getArgOperand(0));
6706   SDValue Src = getValue(I.getArgOperand(1));
6707   SDValue Size = getValue(I.getArgOperand(2));
6708 
6709   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6710   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6711   unsigned Align = std::min(DstAlign, SrcAlign);
6712   if (Align == 0) // Alignment of one or both could not be inferred.
6713     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6714 
6715   bool isVol = false;
6716   SDLoc sdl = getCurSDLoc();
6717 
6718   // In the mempcpy context we need to pass in a false value for isTailCall
6719   // because the return pointer needs to be adjusted by the size of
6720   // the copied memory.
6721   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6722                              false, /*isTailCall=*/false,
6723                              MachinePointerInfo(I.getArgOperand(0)),
6724                              MachinePointerInfo(I.getArgOperand(1)));
6725   assert(MC.getNode() != nullptr &&
6726          "** memcpy should not be lowered as TailCall in mempcpy context **");
6727   DAG.setRoot(MC);
6728 
6729   // Check if Size needs to be truncated or extended.
6730   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6731 
6732   // Adjust return pointer to point just past the last dst byte.
6733   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6734                                     Dst, Size);
6735   setValue(&I, DstPlusSize);
6736   return true;
6737 }
6738 
6739 /// See if we can lower a strcpy call into an optimized form.  If so, return
6740 /// true and lower it, otherwise return false and it will be lowered like a
6741 /// normal call.
6742 /// The caller already checked that \p I calls the appropriate LibFunc with a
6743 /// correct prototype.
6744 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6745   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6746 
6747   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6748   std::pair<SDValue, SDValue> Res =
6749     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6750                                 getValue(Arg0), getValue(Arg1),
6751                                 MachinePointerInfo(Arg0),
6752                                 MachinePointerInfo(Arg1), isStpcpy);
6753   if (Res.first.getNode()) {
6754     setValue(&I, Res.first);
6755     DAG.setRoot(Res.second);
6756     return true;
6757   }
6758 
6759   return false;
6760 }
6761 
6762 /// See if we can lower a strcmp call into an optimized form.  If so, return
6763 /// true and lower it, otherwise return false and it will be lowered like a
6764 /// normal call.
6765 /// The caller already checked that \p I calls the appropriate LibFunc with a
6766 /// correct prototype.
6767 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6768   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6769 
6770   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6771   std::pair<SDValue, SDValue> Res =
6772     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6773                                 getValue(Arg0), getValue(Arg1),
6774                                 MachinePointerInfo(Arg0),
6775                                 MachinePointerInfo(Arg1));
6776   if (Res.first.getNode()) {
6777     processIntegerCallValue(I, Res.first, true);
6778     PendingLoads.push_back(Res.second);
6779     return true;
6780   }
6781 
6782   return false;
6783 }
6784 
6785 /// See if we can lower a strlen call into an optimized form.  If so, return
6786 /// true and lower it, otherwise return false and it will be lowered like a
6787 /// normal call.
6788 /// The caller already checked that \p I calls the appropriate LibFunc with a
6789 /// correct prototype.
6790 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6791   const Value *Arg0 = I.getArgOperand(0);
6792 
6793   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6794   std::pair<SDValue, SDValue> Res =
6795     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6796                                 getValue(Arg0), MachinePointerInfo(Arg0));
6797   if (Res.first.getNode()) {
6798     processIntegerCallValue(I, Res.first, false);
6799     PendingLoads.push_back(Res.second);
6800     return true;
6801   }
6802 
6803   return false;
6804 }
6805 
6806 /// See if we can lower a strnlen call into an optimized form.  If so, return
6807 /// true and lower it, otherwise return false and it will be lowered like a
6808 /// normal call.
6809 /// The caller already checked that \p I calls the appropriate LibFunc with a
6810 /// correct prototype.
6811 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6812   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6813 
6814   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6815   std::pair<SDValue, SDValue> Res =
6816     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6817                                  getValue(Arg0), getValue(Arg1),
6818                                  MachinePointerInfo(Arg0));
6819   if (Res.first.getNode()) {
6820     processIntegerCallValue(I, Res.first, false);
6821     PendingLoads.push_back(Res.second);
6822     return true;
6823   }
6824 
6825   return false;
6826 }
6827 
6828 /// See if we can lower a unary floating-point operation into an SDNode with
6829 /// the specified Opcode.  If so, return true and lower it, otherwise return
6830 /// false and it will be lowered like a normal call.
6831 /// The caller already checked that \p I calls the appropriate LibFunc with a
6832 /// correct prototype.
6833 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6834                                               unsigned Opcode) {
6835   // We already checked this call's prototype; verify it doesn't modify errno.
6836   if (!I.onlyReadsMemory())
6837     return false;
6838 
6839   SDValue Tmp = getValue(I.getArgOperand(0));
6840   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6841   return true;
6842 }
6843 
6844 /// See if we can lower a binary floating-point operation into an SDNode with
6845 /// the specified Opcode. If so, return true and lower it. Otherwise return
6846 /// false, and it will be lowered like a normal call.
6847 /// The caller already checked that \p I calls the appropriate LibFunc with a
6848 /// correct prototype.
6849 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6850                                                unsigned Opcode) {
6851   // We already checked this call's prototype; verify it doesn't modify errno.
6852   if (!I.onlyReadsMemory())
6853     return false;
6854 
6855   SDValue Tmp0 = getValue(I.getArgOperand(0));
6856   SDValue Tmp1 = getValue(I.getArgOperand(1));
6857   EVT VT = Tmp0.getValueType();
6858   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6859   return true;
6860 }
6861 
6862 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6863   // Handle inline assembly differently.
6864   if (isa<InlineAsm>(I.getCalledValue())) {
6865     visitInlineAsm(&I);
6866     return;
6867   }
6868 
6869   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6870   computeUsesVAFloatArgument(I, MMI);
6871 
6872   const char *RenameFn = nullptr;
6873   if (Function *F = I.getCalledFunction()) {
6874     if (F->isDeclaration()) {
6875       // Is this an LLVM intrinsic or a target-specific intrinsic?
6876       unsigned IID = F->getIntrinsicID();
6877       if (!IID)
6878         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
6879           IID = II->getIntrinsicID(F);
6880 
6881       if (IID) {
6882         RenameFn = visitIntrinsicCall(I, IID);
6883         if (!RenameFn)
6884           return;
6885       }
6886     }
6887 
6888     // Check for well-known libc/libm calls.  If the function is internal, it
6889     // can't be a library call.  Don't do the check if marked as nobuiltin for
6890     // some reason or the call site requires strict floating point semantics.
6891     LibFunc Func;
6892     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
6893         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
6894         LibInfo->hasOptimizedCodeGen(Func)) {
6895       switch (Func) {
6896       default: break;
6897       case LibFunc_copysign:
6898       case LibFunc_copysignf:
6899       case LibFunc_copysignl:
6900         // We already checked this call's prototype; verify it doesn't modify
6901         // errno.
6902         if (I.onlyReadsMemory()) {
6903           SDValue LHS = getValue(I.getArgOperand(0));
6904           SDValue RHS = getValue(I.getArgOperand(1));
6905           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6906                                    LHS.getValueType(), LHS, RHS));
6907           return;
6908         }
6909         break;
6910       case LibFunc_fabs:
6911       case LibFunc_fabsf:
6912       case LibFunc_fabsl:
6913         if (visitUnaryFloatCall(I, ISD::FABS))
6914           return;
6915         break;
6916       case LibFunc_fmin:
6917       case LibFunc_fminf:
6918       case LibFunc_fminl:
6919         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6920           return;
6921         break;
6922       case LibFunc_fmax:
6923       case LibFunc_fmaxf:
6924       case LibFunc_fmaxl:
6925         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6926           return;
6927         break;
6928       case LibFunc_sin:
6929       case LibFunc_sinf:
6930       case LibFunc_sinl:
6931         if (visitUnaryFloatCall(I, ISD::FSIN))
6932           return;
6933         break;
6934       case LibFunc_cos:
6935       case LibFunc_cosf:
6936       case LibFunc_cosl:
6937         if (visitUnaryFloatCall(I, ISD::FCOS))
6938           return;
6939         break;
6940       case LibFunc_sqrt:
6941       case LibFunc_sqrtf:
6942       case LibFunc_sqrtl:
6943       case LibFunc_sqrt_finite:
6944       case LibFunc_sqrtf_finite:
6945       case LibFunc_sqrtl_finite:
6946         if (visitUnaryFloatCall(I, ISD::FSQRT))
6947           return;
6948         break;
6949       case LibFunc_floor:
6950       case LibFunc_floorf:
6951       case LibFunc_floorl:
6952         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6953           return;
6954         break;
6955       case LibFunc_nearbyint:
6956       case LibFunc_nearbyintf:
6957       case LibFunc_nearbyintl:
6958         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6959           return;
6960         break;
6961       case LibFunc_ceil:
6962       case LibFunc_ceilf:
6963       case LibFunc_ceill:
6964         if (visitUnaryFloatCall(I, ISD::FCEIL))
6965           return;
6966         break;
6967       case LibFunc_rint:
6968       case LibFunc_rintf:
6969       case LibFunc_rintl:
6970         if (visitUnaryFloatCall(I, ISD::FRINT))
6971           return;
6972         break;
6973       case LibFunc_round:
6974       case LibFunc_roundf:
6975       case LibFunc_roundl:
6976         if (visitUnaryFloatCall(I, ISD::FROUND))
6977           return;
6978         break;
6979       case LibFunc_trunc:
6980       case LibFunc_truncf:
6981       case LibFunc_truncl:
6982         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6983           return;
6984         break;
6985       case LibFunc_log2:
6986       case LibFunc_log2f:
6987       case LibFunc_log2l:
6988         if (visitUnaryFloatCall(I, ISD::FLOG2))
6989           return;
6990         break;
6991       case LibFunc_exp2:
6992       case LibFunc_exp2f:
6993       case LibFunc_exp2l:
6994         if (visitUnaryFloatCall(I, ISD::FEXP2))
6995           return;
6996         break;
6997       case LibFunc_memcmp:
6998         if (visitMemCmpCall(I))
6999           return;
7000         break;
7001       case LibFunc_mempcpy:
7002         if (visitMemPCpyCall(I))
7003           return;
7004         break;
7005       case LibFunc_memchr:
7006         if (visitMemChrCall(I))
7007           return;
7008         break;
7009       case LibFunc_strcpy:
7010         if (visitStrCpyCall(I, false))
7011           return;
7012         break;
7013       case LibFunc_stpcpy:
7014         if (visitStrCpyCall(I, true))
7015           return;
7016         break;
7017       case LibFunc_strcmp:
7018         if (visitStrCmpCall(I))
7019           return;
7020         break;
7021       case LibFunc_strlen:
7022         if (visitStrLenCall(I))
7023           return;
7024         break;
7025       case LibFunc_strnlen:
7026         if (visitStrNLenCall(I))
7027           return;
7028         break;
7029       }
7030     }
7031   }
7032 
7033   SDValue Callee;
7034   if (!RenameFn)
7035     Callee = getValue(I.getCalledValue());
7036   else
7037     Callee = DAG.getExternalSymbol(
7038         RenameFn,
7039         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7040 
7041   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7042   // have to do anything here to lower funclet bundles.
7043   assert(!I.hasOperandBundlesOtherThan(
7044              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7045          "Cannot lower calls with arbitrary operand bundles!");
7046 
7047   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7048     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7049   else
7050     // Check if we can potentially perform a tail call. More detailed checking
7051     // is be done within LowerCallTo, after more information about the call is
7052     // known.
7053     LowerCallTo(&I, Callee, I.isTailCall());
7054 }
7055 
7056 namespace {
7057 
7058 /// AsmOperandInfo - This contains information for each constraint that we are
7059 /// lowering.
7060 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7061 public:
7062   /// CallOperand - If this is the result output operand or a clobber
7063   /// this is null, otherwise it is the incoming operand to the CallInst.
7064   /// This gets modified as the asm is processed.
7065   SDValue CallOperand;
7066 
7067   /// AssignedRegs - If this is a register or register class operand, this
7068   /// contains the set of register corresponding to the operand.
7069   RegsForValue AssignedRegs;
7070 
7071   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7072     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7073   }
7074 
7075   /// Whether or not this operand accesses memory
7076   bool hasMemory(const TargetLowering &TLI) const {
7077     // Indirect operand accesses access memory.
7078     if (isIndirect)
7079       return true;
7080 
7081     for (const auto &Code : Codes)
7082       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7083         return true;
7084 
7085     return false;
7086   }
7087 
7088   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7089   /// corresponds to.  If there is no Value* for this operand, it returns
7090   /// MVT::Other.
7091   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7092                            const DataLayout &DL) const {
7093     if (!CallOperandVal) return MVT::Other;
7094 
7095     if (isa<BasicBlock>(CallOperandVal))
7096       return TLI.getPointerTy(DL);
7097 
7098     llvm::Type *OpTy = CallOperandVal->getType();
7099 
7100     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7101     // If this is an indirect operand, the operand is a pointer to the
7102     // accessed type.
7103     if (isIndirect) {
7104       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7105       if (!PtrTy)
7106         report_fatal_error("Indirect operand for inline asm not a pointer!");
7107       OpTy = PtrTy->getElementType();
7108     }
7109 
7110     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7111     if (StructType *STy = dyn_cast<StructType>(OpTy))
7112       if (STy->getNumElements() == 1)
7113         OpTy = STy->getElementType(0);
7114 
7115     // If OpTy is not a single value, it may be a struct/union that we
7116     // can tile with integers.
7117     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7118       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7119       switch (BitSize) {
7120       default: break;
7121       case 1:
7122       case 8:
7123       case 16:
7124       case 32:
7125       case 64:
7126       case 128:
7127         OpTy = IntegerType::get(Context, BitSize);
7128         break;
7129       }
7130     }
7131 
7132     return TLI.getValueType(DL, OpTy, true);
7133   }
7134 };
7135 
7136 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7137 
7138 } // end anonymous namespace
7139 
7140 /// Make sure that the output operand \p OpInfo and its corresponding input
7141 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7142 /// out).
7143 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7144                                SDISelAsmOperandInfo &MatchingOpInfo,
7145                                SelectionDAG &DAG) {
7146   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7147     return;
7148 
7149   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7150   const auto &TLI = DAG.getTargetLoweringInfo();
7151 
7152   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7153       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7154                                        OpInfo.ConstraintVT);
7155   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7156       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7157                                        MatchingOpInfo.ConstraintVT);
7158   if ((OpInfo.ConstraintVT.isInteger() !=
7159        MatchingOpInfo.ConstraintVT.isInteger()) ||
7160       (MatchRC.second != InputRC.second)) {
7161     // FIXME: error out in a more elegant fashion
7162     report_fatal_error("Unsupported asm: input constraint"
7163                        " with a matching output constraint of"
7164                        " incompatible type!");
7165   }
7166   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7167 }
7168 
7169 /// Get a direct memory input to behave well as an indirect operand.
7170 /// This may introduce stores, hence the need for a \p Chain.
7171 /// \return The (possibly updated) chain.
7172 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7173                                         SDISelAsmOperandInfo &OpInfo,
7174                                         SelectionDAG &DAG) {
7175   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7176 
7177   // If we don't have an indirect input, put it in the constpool if we can,
7178   // otherwise spill it to a stack slot.
7179   // TODO: This isn't quite right. We need to handle these according to
7180   // the addressing mode that the constraint wants. Also, this may take
7181   // an additional register for the computation and we don't want that
7182   // either.
7183 
7184   // If the operand is a float, integer, or vector constant, spill to a
7185   // constant pool entry to get its address.
7186   const Value *OpVal = OpInfo.CallOperandVal;
7187   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7188       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7189     OpInfo.CallOperand = DAG.getConstantPool(
7190         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7191     return Chain;
7192   }
7193 
7194   // Otherwise, create a stack slot and emit a store to it before the asm.
7195   Type *Ty = OpVal->getType();
7196   auto &DL = DAG.getDataLayout();
7197   uint64_t TySize = DL.getTypeAllocSize(Ty);
7198   unsigned Align = DL.getPrefTypeAlignment(Ty);
7199   MachineFunction &MF = DAG.getMachineFunction();
7200   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7201   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7202   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7203                        MachinePointerInfo::getFixedStack(MF, SSFI));
7204   OpInfo.CallOperand = StackSlot;
7205 
7206   return Chain;
7207 }
7208 
7209 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7210 /// specified operand.  We prefer to assign virtual registers, to allow the
7211 /// register allocator to handle the assignment process.  However, if the asm
7212 /// uses features that we can't model on machineinstrs, we have SDISel do the
7213 /// allocation.  This produces generally horrible, but correct, code.
7214 ///
7215 ///   OpInfo describes the operand
7216 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7217 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
7218                                  const SDLoc &DL, SDISelAsmOperandInfo &OpInfo,
7219                                  SDISelAsmOperandInfo &RefOpInfo) {
7220   LLVMContext &Context = *DAG.getContext();
7221 
7222   MachineFunction &MF = DAG.getMachineFunction();
7223   SmallVector<unsigned, 4> Regs;
7224   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7225 
7226   // If this is a constraint for a single physreg, or a constraint for a
7227   // register class, find it.
7228   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
7229       TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode,
7230                                        RefOpInfo.ConstraintVT);
7231 
7232   unsigned NumRegs = 1;
7233   if (OpInfo.ConstraintVT != MVT::Other) {
7234     // If this is an FP operand in an integer register (or visa versa), or more
7235     // generally if the operand value disagrees with the register class we plan
7236     // to stick it in, fix the operand type.
7237     //
7238     // If this is an input value, the bitcast to the new type is done now.
7239     // Bitcast for output value is done at the end of visitInlineAsm().
7240     if ((OpInfo.Type == InlineAsm::isOutput ||
7241          OpInfo.Type == InlineAsm::isInput) &&
7242         PhysReg.second &&
7243         !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) {
7244       // Try to convert to the first EVT that the reg class contains.  If the
7245       // types are identical size, use a bitcast to convert (e.g. two differing
7246       // vector types).  Note: output bitcast is done at the end of
7247       // visitInlineAsm().
7248       MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second);
7249       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7250         // Exclude indirect inputs while they are unsupported because the code
7251         // to perform the load is missing and thus OpInfo.CallOperand still
7252         // refers to the input address rather than the pointed-to value.
7253         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7254           OpInfo.CallOperand =
7255               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7256         OpInfo.ConstraintVT = RegVT;
7257         // If the operand is an FP value and we want it in integer registers,
7258         // use the corresponding integer type. This turns an f64 value into
7259         // i64, which can be passed with two i32 values on a 32-bit machine.
7260       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7261         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7262         if (OpInfo.Type == InlineAsm::isInput)
7263           OpInfo.CallOperand =
7264               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7265         OpInfo.ConstraintVT = RegVT;
7266       }
7267     }
7268 
7269     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7270   }
7271 
7272   // No need to allocate a matching input constraint since the constraint it's
7273   // matching to has already been allocated.
7274   if (OpInfo.isMatchingInputConstraint())
7275     return;
7276 
7277   MVT RegVT;
7278   EVT ValueVT = OpInfo.ConstraintVT;
7279 
7280   // If this is a constraint for a specific physical register, like {r17},
7281   // assign it now.
7282   if (unsigned AssignedReg = PhysReg.first) {
7283     const TargetRegisterClass *RC = PhysReg.second;
7284     if (OpInfo.ConstraintVT == MVT::Other)
7285       ValueVT = *TRI.legalclasstypes_begin(*RC);
7286 
7287     // Get the actual register value type.  This is important, because the user
7288     // may have asked for (e.g.) the AX register in i32 type.  We need to
7289     // remember that AX is actually i16 to get the right extension.
7290     RegVT = *TRI.legalclasstypes_begin(*RC);
7291 
7292     // This is an explicit reference to a physical register.
7293     Regs.push_back(AssignedReg);
7294 
7295     // If this is an expanded reference, add the rest of the regs to Regs.
7296     if (NumRegs != 1) {
7297       TargetRegisterClass::iterator I = RC->begin();
7298       for (; *I != AssignedReg; ++I)
7299         assert(I != RC->end() && "Didn't find reg!");
7300 
7301       // Already added the first reg.
7302       --NumRegs; ++I;
7303       for (; NumRegs; --NumRegs, ++I) {
7304         assert(I != RC->end() && "Ran out of registers to allocate!");
7305         Regs.push_back(*I);
7306       }
7307     }
7308 
7309     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7310     return;
7311   }
7312 
7313   // Otherwise, if this was a reference to an LLVM register class, create vregs
7314   // for this reference.
7315   if (const TargetRegisterClass *RC = PhysReg.second) {
7316     RegVT = *TRI.legalclasstypes_begin(*RC);
7317     if (OpInfo.ConstraintVT == MVT::Other)
7318       ValueVT = RegVT;
7319 
7320     // Create the appropriate number of virtual registers.
7321     MachineRegisterInfo &RegInfo = MF.getRegInfo();
7322     for (; NumRegs; --NumRegs)
7323       Regs.push_back(RegInfo.createVirtualRegister(RC));
7324 
7325     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7326     return;
7327   }
7328 
7329   // Otherwise, we couldn't allocate enough registers for this.
7330 }
7331 
7332 static unsigned
7333 findMatchingInlineAsmOperand(unsigned OperandNo,
7334                              const std::vector<SDValue> &AsmNodeOperands) {
7335   // Scan until we find the definition we already emitted of this operand.
7336   unsigned CurOp = InlineAsm::Op_FirstOperand;
7337   for (; OperandNo; --OperandNo) {
7338     // Advance to the next operand.
7339     unsigned OpFlag =
7340         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7341     assert((InlineAsm::isRegDefKind(OpFlag) ||
7342             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7343             InlineAsm::isMemKind(OpFlag)) &&
7344            "Skipped past definitions?");
7345     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7346   }
7347   return CurOp;
7348 }
7349 
7350 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
7351 /// \return true if it has succeeded, false otherwise
7352 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
7353                               MVT RegVT, SelectionDAG &DAG) {
7354   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7355   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
7356   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
7357     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
7358       Regs.push_back(RegInfo.createVirtualRegister(RC));
7359     else
7360       return false;
7361   }
7362   return true;
7363 }
7364 
7365 namespace {
7366 
7367 class ExtraFlags {
7368   unsigned Flags = 0;
7369 
7370 public:
7371   explicit ExtraFlags(ImmutableCallSite CS) {
7372     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7373     if (IA->hasSideEffects())
7374       Flags |= InlineAsm::Extra_HasSideEffects;
7375     if (IA->isAlignStack())
7376       Flags |= InlineAsm::Extra_IsAlignStack;
7377     if (CS.isConvergent())
7378       Flags |= InlineAsm::Extra_IsConvergent;
7379     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7380   }
7381 
7382   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7383     // Ideally, we would only check against memory constraints.  However, the
7384     // meaning of an Other constraint can be target-specific and we can't easily
7385     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7386     // for Other constraints as well.
7387     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7388         OpInfo.ConstraintType == TargetLowering::C_Other) {
7389       if (OpInfo.Type == InlineAsm::isInput)
7390         Flags |= InlineAsm::Extra_MayLoad;
7391       else if (OpInfo.Type == InlineAsm::isOutput)
7392         Flags |= InlineAsm::Extra_MayStore;
7393       else if (OpInfo.Type == InlineAsm::isClobber)
7394         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7395     }
7396   }
7397 
7398   unsigned get() const { return Flags; }
7399 };
7400 
7401 } // end anonymous namespace
7402 
7403 /// visitInlineAsm - Handle a call to an InlineAsm object.
7404 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7405   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7406 
7407   /// ConstraintOperands - Information about all of the constraints.
7408   SDISelAsmOperandInfoVector ConstraintOperands;
7409 
7410   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7411   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7412       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7413 
7414   bool hasMemory = false;
7415 
7416   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7417   ExtraFlags ExtraInfo(CS);
7418 
7419   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
7420   unsigned ResNo = 0;   // ResNo - The result number of the next output.
7421   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
7422     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
7423     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7424 
7425     MVT OpVT = MVT::Other;
7426 
7427     // Compute the value type for each operand.
7428     if (OpInfo.Type == InlineAsm::isInput ||
7429         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7430       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7431 
7432       // Process the call argument. BasicBlocks are labels, currently appearing
7433       // only in asm's.
7434       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7435         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7436       } else {
7437         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7438       }
7439 
7440       OpVT =
7441           OpInfo
7442               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7443               .getSimpleVT();
7444     }
7445 
7446     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7447       // The return value of the call is this value.  As such, there is no
7448       // corresponding argument.
7449       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7450       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7451         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
7452                                       STy->getElementType(ResNo));
7453       } else {
7454         assert(ResNo == 0 && "Asm only has one result!");
7455         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7456       }
7457       ++ResNo;
7458     }
7459 
7460     OpInfo.ConstraintVT = OpVT;
7461 
7462     if (!hasMemory)
7463       hasMemory = OpInfo.hasMemory(TLI);
7464 
7465     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7466     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
7467     auto TargetConstraint = TargetConstraints[i];
7468 
7469     // Compute the constraint code and ConstraintType to use.
7470     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
7471 
7472     ExtraInfo.update(TargetConstraint);
7473   }
7474 
7475   SDValue Chain, Flag;
7476 
7477   // We won't need to flush pending loads if this asm doesn't touch
7478   // memory and is nonvolatile.
7479   if (hasMemory || IA->hasSideEffects())
7480     Chain = getRoot();
7481   else
7482     Chain = DAG.getRoot();
7483 
7484   // Second pass over the constraints: compute which constraint option to use
7485   // and assign registers to constraints that want a specific physreg.
7486   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7487     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7488 
7489     // If this is an output operand with a matching input operand, look up the
7490     // matching input. If their types mismatch, e.g. one is an integer, the
7491     // other is floating point, or their sizes are different, flag it as an
7492     // error.
7493     if (OpInfo.hasMatchingInput()) {
7494       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7495       patchMatchingInput(OpInfo, Input, DAG);
7496     }
7497 
7498     // Compute the constraint code and ConstraintType to use.
7499     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7500 
7501     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7502         OpInfo.Type == InlineAsm::isClobber)
7503       continue;
7504 
7505     // If this is a memory input, and if the operand is not indirect, do what we
7506     // need to provide an address for the memory input.
7507     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7508         !OpInfo.isIndirect) {
7509       assert((OpInfo.isMultipleAlternative ||
7510               (OpInfo.Type == InlineAsm::isInput)) &&
7511              "Can only indirectify direct input operands!");
7512 
7513       // Memory operands really want the address of the value.
7514       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7515 
7516       // There is no longer a Value* corresponding to this operand.
7517       OpInfo.CallOperandVal = nullptr;
7518 
7519       // It is now an indirect operand.
7520       OpInfo.isIndirect = true;
7521     }
7522 
7523     // If this constraint is for a specific register, allocate it before
7524     // anything else.
7525     SDISelAsmOperandInfo &RefOpInfo =
7526         OpInfo.isMatchingInputConstraint()
7527             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7528             : ConstraintOperands[i];
7529     if (RefOpInfo.ConstraintType == TargetLowering::C_Register)
7530       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7531   }
7532 
7533   // Third pass - Loop over all of the operands, assigning virtual or physregs
7534   // to register class operands.
7535   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7536     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7537     SDISelAsmOperandInfo &RefOpInfo =
7538         OpInfo.isMatchingInputConstraint()
7539             ? ConstraintOperands[OpInfo.getMatchedOperand()]
7540             : ConstraintOperands[i];
7541 
7542     // C_Register operands have already been allocated, Other/Memory don't need
7543     // to be.
7544     if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass)
7545       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo);
7546   }
7547 
7548   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7549   std::vector<SDValue> AsmNodeOperands;
7550   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7551   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7552       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7553 
7554   // If we have a !srcloc metadata node associated with it, we want to attach
7555   // this to the ultimately generated inline asm machineinstr.  To do this, we
7556   // pass in the third operand as this (potentially null) inline asm MDNode.
7557   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7558   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7559 
7560   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7561   // bits as operand 3.
7562   AsmNodeOperands.push_back(DAG.getTargetConstant(
7563       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7564 
7565   // Loop over all of the inputs, copying the operand values into the
7566   // appropriate registers and processing the output regs.
7567   RegsForValue RetValRegs;
7568 
7569   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7570   std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit;
7571 
7572   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7573     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7574 
7575     switch (OpInfo.Type) {
7576     case InlineAsm::isOutput:
7577       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7578           OpInfo.ConstraintType != TargetLowering::C_Register) {
7579         // Memory output, or 'other' output (e.g. 'X' constraint).
7580         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7581 
7582         unsigned ConstraintID =
7583             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7584         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7585                "Failed to convert memory constraint code to constraint id.");
7586 
7587         // Add information to the INLINEASM node to know about this output.
7588         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7589         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7590         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7591                                                         MVT::i32));
7592         AsmNodeOperands.push_back(OpInfo.CallOperand);
7593         break;
7594       }
7595 
7596       // Otherwise, this is a register or register class output.
7597 
7598       // Copy the output from the appropriate register.  Find a register that
7599       // we can use.
7600       if (OpInfo.AssignedRegs.Regs.empty()) {
7601         emitInlineAsmError(
7602             CS, "couldn't allocate output register for constraint '" +
7603                     Twine(OpInfo.ConstraintCode) + "'");
7604         return;
7605       }
7606 
7607       // If this is an indirect operand, store through the pointer after the
7608       // asm.
7609       if (OpInfo.isIndirect) {
7610         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7611                                                       OpInfo.CallOperandVal));
7612       } else {
7613         // This is the result value of the call.
7614         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7615         // Concatenate this output onto the outputs list.
7616         RetValRegs.append(OpInfo.AssignedRegs);
7617       }
7618 
7619       // Add information to the INLINEASM node to know that this register is
7620       // set.
7621       OpInfo.AssignedRegs
7622           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7623                                     ? InlineAsm::Kind_RegDefEarlyClobber
7624                                     : InlineAsm::Kind_RegDef,
7625                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7626       break;
7627 
7628     case InlineAsm::isInput: {
7629       SDValue InOperandVal = OpInfo.CallOperand;
7630 
7631       if (OpInfo.isMatchingInputConstraint()) {
7632         // If this is required to match an output register we have already set,
7633         // just use its register.
7634         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7635                                                   AsmNodeOperands);
7636         unsigned OpFlag =
7637           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7638         if (InlineAsm::isRegDefKind(OpFlag) ||
7639             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7640           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7641           if (OpInfo.isIndirect) {
7642             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7643             emitInlineAsmError(CS, "inline asm not supported yet:"
7644                                    " don't know how to handle tied "
7645                                    "indirect register inputs");
7646             return;
7647           }
7648 
7649           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7650           SmallVector<unsigned, 4> Regs;
7651 
7652           if (!createVirtualRegs(Regs,
7653                                  InlineAsm::getNumOperandRegisters(OpFlag),
7654                                  RegVT, DAG)) {
7655             emitInlineAsmError(CS, "inline asm error: This value type register "
7656                                    "class is not natively supported!");
7657             return;
7658           }
7659 
7660           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7661 
7662           SDLoc dl = getCurSDLoc();
7663           // Use the produced MatchedRegs object to
7664           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
7665                                     CS.getInstruction());
7666           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7667                                            true, OpInfo.getMatchedOperand(), dl,
7668                                            DAG, AsmNodeOperands);
7669           break;
7670         }
7671 
7672         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7673         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7674                "Unexpected number of operands");
7675         // Add information to the INLINEASM node to know about this input.
7676         // See InlineAsm.h isUseOperandTiedToDef.
7677         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7678         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7679                                                     OpInfo.getMatchedOperand());
7680         AsmNodeOperands.push_back(DAG.getTargetConstant(
7681             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7682         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7683         break;
7684       }
7685 
7686       // Treat indirect 'X' constraint as memory.
7687       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7688           OpInfo.isIndirect)
7689         OpInfo.ConstraintType = TargetLowering::C_Memory;
7690 
7691       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7692         std::vector<SDValue> Ops;
7693         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7694                                           Ops, DAG);
7695         if (Ops.empty()) {
7696           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7697                                      Twine(OpInfo.ConstraintCode) + "'");
7698           return;
7699         }
7700 
7701         // Add information to the INLINEASM node to know about this input.
7702         unsigned ResOpType =
7703           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7704         AsmNodeOperands.push_back(DAG.getTargetConstant(
7705             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7706         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7707         break;
7708       }
7709 
7710       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7711         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7712         assert(InOperandVal.getValueType() ==
7713                    TLI.getPointerTy(DAG.getDataLayout()) &&
7714                "Memory operands expect pointer values");
7715 
7716         unsigned ConstraintID =
7717             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7718         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7719                "Failed to convert memory constraint code to constraint id.");
7720 
7721         // Add information to the INLINEASM node to know about this input.
7722         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7723         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7724         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7725                                                         getCurSDLoc(),
7726                                                         MVT::i32));
7727         AsmNodeOperands.push_back(InOperandVal);
7728         break;
7729       }
7730 
7731       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7732               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7733              "Unknown constraint type!");
7734 
7735       // TODO: Support this.
7736       if (OpInfo.isIndirect) {
7737         emitInlineAsmError(
7738             CS, "Don't know how to handle indirect register inputs yet "
7739                 "for constraint '" +
7740                     Twine(OpInfo.ConstraintCode) + "'");
7741         return;
7742       }
7743 
7744       // Copy the input into the appropriate registers.
7745       if (OpInfo.AssignedRegs.Regs.empty()) {
7746         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7747                                    Twine(OpInfo.ConstraintCode) + "'");
7748         return;
7749       }
7750 
7751       SDLoc dl = getCurSDLoc();
7752 
7753       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7754                                         Chain, &Flag, CS.getInstruction());
7755 
7756       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7757                                                dl, DAG, AsmNodeOperands);
7758       break;
7759     }
7760     case InlineAsm::isClobber:
7761       // Add the clobbered value to the operand list, so that the register
7762       // allocator is aware that the physreg got clobbered.
7763       if (!OpInfo.AssignedRegs.Regs.empty())
7764         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7765                                                  false, 0, getCurSDLoc(), DAG,
7766                                                  AsmNodeOperands);
7767       break;
7768     }
7769   }
7770 
7771   // Finish up input operands.  Set the input chain and add the flag last.
7772   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7773   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7774 
7775   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7776                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7777   Flag = Chain.getValue(1);
7778 
7779   // If this asm returns a register value, copy the result from that register
7780   // and set it as the value of the call.
7781   if (!RetValRegs.Regs.empty()) {
7782     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7783                                              Chain, &Flag, CS.getInstruction());
7784 
7785     llvm::Type *CSResultType = CS.getType();
7786     unsigned numRet;
7787     ArrayRef<Type *> ResultTypes;
7788     SmallVector<SDValue, 1> ResultValues(1);
7789     if (CSResultType->isSingleValueType()) {
7790       numRet = 1;
7791       ResultValues[0] = Val;
7792       ResultTypes = makeArrayRef(CSResultType);
7793     } else {
7794       numRet = CSResultType->getNumContainedTypes();
7795       assert(Val->getNumOperands() == numRet &&
7796              "Mismatch in number of output operands in asm result");
7797       ResultTypes = CSResultType->subtypes();
7798       ArrayRef<SDUse> ValueUses = Val->ops();
7799       ResultValues.resize(numRet);
7800       std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(),
7801                      [](const SDUse &u) -> SDValue { return u.get(); });
7802     }
7803     SmallVector<EVT, 1> ResultVTs(numRet);
7804     for (unsigned i = 0; i < numRet; i++) {
7805       EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]);
7806       SDValue Val = ResultValues[i];
7807       assert(ResultTypes[i]->isSized() && "Unexpected unsized type");
7808       // If the type of the inline asm call site return value is different but
7809       // has same size as the type of the asm output bitcast it.  One example
7810       // of this is for vectors with different width / number of elements.
7811       // This can happen for register classes that can contain multiple
7812       // different value types.  The preg or vreg allocated may not have the
7813       // same VT as was expected.
7814       //
7815       // This can also happen for a return value that disagrees with the
7816       // register class it is put in, eg. a double in a general-purpose
7817       // register on a 32-bit machine.
7818       if (ResultVT != Val.getValueType() &&
7819           ResultVT.getSizeInBits() == Val.getValueSizeInBits())
7820         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val);
7821       else if (ResultVT != Val.getValueType() && ResultVT.isInteger() &&
7822                Val.getValueType().isInteger()) {
7823         // If a result value was tied to an input value, the computed result
7824         // may have a wider width than the expected result.  Extract the
7825         // relevant portion.
7826         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val);
7827       }
7828 
7829       assert(ResultVT == Val.getValueType() && "Asm result value mismatch!");
7830       ResultVTs[i] = ResultVT;
7831       ResultValues[i] = Val;
7832     }
7833 
7834     Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
7835                       DAG.getVTList(ResultVTs), ResultValues);
7836     setValue(CS.getInstruction(), Val);
7837     // Don't need to use this as a chain in this case.
7838     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7839       return;
7840   }
7841 
7842   std::vector<std::pair<SDValue, const Value *>> StoresToEmit;
7843 
7844   // Process indirect outputs, first output all of the flagged copies out of
7845   // physregs.
7846   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7847     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7848     const Value *Ptr = IndirectStoresToEmit[i].second;
7849     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7850                                              Chain, &Flag, IA);
7851     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7852   }
7853 
7854   // Emit the non-flagged stores from the physregs.
7855   SmallVector<SDValue, 8> OutChains;
7856   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7857     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7858                                getValue(StoresToEmit[i].second),
7859                                MachinePointerInfo(StoresToEmit[i].second));
7860     OutChains.push_back(Val);
7861   }
7862 
7863   if (!OutChains.empty())
7864     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7865 
7866   DAG.setRoot(Chain);
7867 }
7868 
7869 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7870                                              const Twine &Message) {
7871   LLVMContext &Ctx = *DAG.getContext();
7872   Ctx.emitError(CS.getInstruction(), Message);
7873 
7874   // Make sure we leave the DAG in a valid state
7875   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7876   SmallVector<EVT, 1> ValueVTs;
7877   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7878 
7879   if (ValueVTs.empty())
7880     return;
7881 
7882   SmallVector<SDValue, 1> Ops;
7883   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
7884     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
7885 
7886   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
7887 }
7888 
7889 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7890   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7891                           MVT::Other, getRoot(),
7892                           getValue(I.getArgOperand(0)),
7893                           DAG.getSrcValue(I.getArgOperand(0))));
7894 }
7895 
7896 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7898   const DataLayout &DL = DAG.getDataLayout();
7899   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7900                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7901                            DAG.getSrcValue(I.getOperand(0)),
7902                            DL.getABITypeAlignment(I.getType()));
7903   setValue(&I, V);
7904   DAG.setRoot(V.getValue(1));
7905 }
7906 
7907 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7908   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7909                           MVT::Other, getRoot(),
7910                           getValue(I.getArgOperand(0)),
7911                           DAG.getSrcValue(I.getArgOperand(0))));
7912 }
7913 
7914 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7915   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7916                           MVT::Other, getRoot(),
7917                           getValue(I.getArgOperand(0)),
7918                           getValue(I.getArgOperand(1)),
7919                           DAG.getSrcValue(I.getArgOperand(0)),
7920                           DAG.getSrcValue(I.getArgOperand(1))));
7921 }
7922 
7923 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7924                                                     const Instruction &I,
7925                                                     SDValue Op) {
7926   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7927   if (!Range)
7928     return Op;
7929 
7930   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7931   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7932     return Op;
7933 
7934   APInt Lo = CR.getUnsignedMin();
7935   if (!Lo.isMinValue())
7936     return Op;
7937 
7938   APInt Hi = CR.getUnsignedMax();
7939   unsigned Bits = Hi.getActiveBits();
7940 
7941   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7942 
7943   SDLoc SL = getCurSDLoc();
7944 
7945   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7946                              DAG.getValueType(SmallVT));
7947   unsigned NumVals = Op.getNode()->getNumValues();
7948   if (NumVals == 1)
7949     return ZExt;
7950 
7951   SmallVector<SDValue, 4> Ops;
7952 
7953   Ops.push_back(ZExt);
7954   for (unsigned I = 1; I != NumVals; ++I)
7955     Ops.push_back(Op.getValue(I));
7956 
7957   return DAG.getMergeValues(Ops, SL);
7958 }
7959 
7960 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
7961 /// the call being lowered.
7962 ///
7963 /// This is a helper for lowering intrinsics that follow a target calling
7964 /// convention or require stack pointer adjustment. Only a subset of the
7965 /// intrinsic's operands need to participate in the calling convention.
7966 void SelectionDAGBuilder::populateCallLoweringInfo(
7967     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7968     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7969     bool IsPatchPoint) {
7970   TargetLowering::ArgListTy Args;
7971   Args.reserve(NumArgs);
7972 
7973   // Populate the argument list.
7974   // Attributes for args start at offset 1, after the return attribute.
7975   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
7976        ArgI != ArgE; ++ArgI) {
7977     const Value *V = CS->getOperand(ArgI);
7978 
7979     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7980 
7981     TargetLowering::ArgListEntry Entry;
7982     Entry.Node = getValue(V);
7983     Entry.Ty = V->getType();
7984     Entry.setAttributes(&CS, ArgI);
7985     Args.push_back(Entry);
7986   }
7987 
7988   CLI.setDebugLoc(getCurSDLoc())
7989       .setChain(getRoot())
7990       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7991       .setDiscardResult(CS->use_empty())
7992       .setIsPatchPoint(IsPatchPoint);
7993 }
7994 
7995 /// Add a stack map intrinsic call's live variable operands to a stackmap
7996 /// or patchpoint target node's operand list.
7997 ///
7998 /// Constants are converted to TargetConstants purely as an optimization to
7999 /// avoid constant materialization and register allocation.
8000 ///
8001 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8002 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8003 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8004 /// address materialization and register allocation, but may also be required
8005 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8006 /// alloca in the entry block, then the runtime may assume that the alloca's
8007 /// StackMap location can be read immediately after compilation and that the
8008 /// location is valid at any point during execution (this is similar to the
8009 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8010 /// only available in a register, then the runtime would need to trap when
8011 /// execution reaches the StackMap in order to read the alloca's location.
8012 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8013                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8014                                 SelectionDAGBuilder &Builder) {
8015   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8016     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8017     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8018       Ops.push_back(
8019         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8020       Ops.push_back(
8021         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8022     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8023       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8024       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8025           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8026     } else
8027       Ops.push_back(OpVal);
8028   }
8029 }
8030 
8031 /// Lower llvm.experimental.stackmap directly to its target opcode.
8032 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8033   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8034   //                                  [live variables...])
8035 
8036   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8037 
8038   SDValue Chain, InFlag, Callee, NullPtr;
8039   SmallVector<SDValue, 32> Ops;
8040 
8041   SDLoc DL = getCurSDLoc();
8042   Callee = getValue(CI.getCalledValue());
8043   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8044 
8045   // The stackmap intrinsic only records the live variables (the arguemnts
8046   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8047   // intrinsic, this won't be lowered to a function call. This means we don't
8048   // have to worry about calling conventions and target specific lowering code.
8049   // Instead we perform the call lowering right here.
8050   //
8051   // chain, flag = CALLSEQ_START(chain, 0, 0)
8052   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8053   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8054   //
8055   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8056   InFlag = Chain.getValue(1);
8057 
8058   // Add the <id> and <numBytes> constants.
8059   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8060   Ops.push_back(DAG.getTargetConstant(
8061                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8062   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8063   Ops.push_back(DAG.getTargetConstant(
8064                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8065                   MVT::i32));
8066 
8067   // Push live variables for the stack map.
8068   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8069 
8070   // We are not pushing any register mask info here on the operands list,
8071   // because the stackmap doesn't clobber anything.
8072 
8073   // Push the chain and the glue flag.
8074   Ops.push_back(Chain);
8075   Ops.push_back(InFlag);
8076 
8077   // Create the STACKMAP node.
8078   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8079   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8080   Chain = SDValue(SM, 0);
8081   InFlag = Chain.getValue(1);
8082 
8083   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8084 
8085   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8086 
8087   // Set the root to the target-lowered call chain.
8088   DAG.setRoot(Chain);
8089 
8090   // Inform the Frame Information that we have a stackmap in this function.
8091   FuncInfo.MF->getFrameInfo().setHasStackMap();
8092 }
8093 
8094 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8095 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8096                                           const BasicBlock *EHPadBB) {
8097   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8098   //                                                 i32 <numBytes>,
8099   //                                                 i8* <target>,
8100   //                                                 i32 <numArgs>,
8101   //                                                 [Args...],
8102   //                                                 [live variables...])
8103 
8104   CallingConv::ID CC = CS.getCallingConv();
8105   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8106   bool HasDef = !CS->getType()->isVoidTy();
8107   SDLoc dl = getCurSDLoc();
8108   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8109 
8110   // Handle immediate and symbolic callees.
8111   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8112     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8113                                    /*isTarget=*/true);
8114   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8115     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8116                                          SDLoc(SymbolicCallee),
8117                                          SymbolicCallee->getValueType(0));
8118 
8119   // Get the real number of arguments participating in the call <numArgs>
8120   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8121   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8122 
8123   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8124   // Intrinsics include all meta-operands up to but not including CC.
8125   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8126   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8127          "Not enough arguments provided to the patchpoint intrinsic");
8128 
8129   // For AnyRegCC the arguments are lowered later on manually.
8130   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8131   Type *ReturnTy =
8132     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8133 
8134   TargetLowering::CallLoweringInfo CLI(DAG);
8135   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
8136                            true);
8137   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8138 
8139   SDNode *CallEnd = Result.second.getNode();
8140   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8141     CallEnd = CallEnd->getOperand(0).getNode();
8142 
8143   /// Get a call instruction from the call sequence chain.
8144   /// Tail calls are not allowed.
8145   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8146          "Expected a callseq node.");
8147   SDNode *Call = CallEnd->getOperand(0).getNode();
8148   bool HasGlue = Call->getGluedNode();
8149 
8150   // Replace the target specific call node with the patchable intrinsic.
8151   SmallVector<SDValue, 8> Ops;
8152 
8153   // Add the <id> and <numBytes> constants.
8154   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8155   Ops.push_back(DAG.getTargetConstant(
8156                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8157   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8158   Ops.push_back(DAG.getTargetConstant(
8159                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8160                   MVT::i32));
8161 
8162   // Add the callee.
8163   Ops.push_back(Callee);
8164 
8165   // Adjust <numArgs> to account for any arguments that have been passed on the
8166   // stack instead.
8167   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8168   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8169   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8170   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8171 
8172   // Add the calling convention
8173   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8174 
8175   // Add the arguments we omitted previously. The register allocator should
8176   // place these in any free register.
8177   if (IsAnyRegCC)
8178     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8179       Ops.push_back(getValue(CS.getArgument(i)));
8180 
8181   // Push the arguments from the call instruction up to the register mask.
8182   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8183   Ops.append(Call->op_begin() + 2, e);
8184 
8185   // Push live variables for the stack map.
8186   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8187 
8188   // Push the register mask info.
8189   if (HasGlue)
8190     Ops.push_back(*(Call->op_end()-2));
8191   else
8192     Ops.push_back(*(Call->op_end()-1));
8193 
8194   // Push the chain (this is originally the first operand of the call, but
8195   // becomes now the last or second to last operand).
8196   Ops.push_back(*(Call->op_begin()));
8197 
8198   // Push the glue flag (last operand).
8199   if (HasGlue)
8200     Ops.push_back(*(Call->op_end()-1));
8201 
8202   SDVTList NodeTys;
8203   if (IsAnyRegCC && HasDef) {
8204     // Create the return types based on the intrinsic definition
8205     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8206     SmallVector<EVT, 3> ValueVTs;
8207     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8208     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8209 
8210     // There is always a chain and a glue type at the end
8211     ValueVTs.push_back(MVT::Other);
8212     ValueVTs.push_back(MVT::Glue);
8213     NodeTys = DAG.getVTList(ValueVTs);
8214   } else
8215     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8216 
8217   // Replace the target specific call node with a PATCHPOINT node.
8218   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8219                                          dl, NodeTys, Ops);
8220 
8221   // Update the NodeMap.
8222   if (HasDef) {
8223     if (IsAnyRegCC)
8224       setValue(CS.getInstruction(), SDValue(MN, 0));
8225     else
8226       setValue(CS.getInstruction(), Result.first);
8227   }
8228 
8229   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8230   // call sequence. Furthermore the location of the chain and glue can change
8231   // when the AnyReg calling convention is used and the intrinsic returns a
8232   // value.
8233   if (IsAnyRegCC && HasDef) {
8234     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8235     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8236     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8237   } else
8238     DAG.ReplaceAllUsesWith(Call, MN);
8239   DAG.DeleteNode(Call);
8240 
8241   // Inform the Frame Information that we have a patchpoint in this function.
8242   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8243 }
8244 
8245 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8246                                             unsigned Intrinsic) {
8247   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8248   SDValue Op1 = getValue(I.getArgOperand(0));
8249   SDValue Op2;
8250   if (I.getNumArgOperands() > 1)
8251     Op2 = getValue(I.getArgOperand(1));
8252   SDLoc dl = getCurSDLoc();
8253   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8254   SDValue Res;
8255   FastMathFlags FMF;
8256   if (isa<FPMathOperator>(I))
8257     FMF = I.getFastMathFlags();
8258 
8259   switch (Intrinsic) {
8260   case Intrinsic::experimental_vector_reduce_fadd:
8261     if (FMF.isFast())
8262       Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8263     else
8264       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8265     break;
8266   case Intrinsic::experimental_vector_reduce_fmul:
8267     if (FMF.isFast())
8268       Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8269     else
8270       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8271     break;
8272   case Intrinsic::experimental_vector_reduce_add:
8273     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8274     break;
8275   case Intrinsic::experimental_vector_reduce_mul:
8276     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8277     break;
8278   case Intrinsic::experimental_vector_reduce_and:
8279     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8280     break;
8281   case Intrinsic::experimental_vector_reduce_or:
8282     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8283     break;
8284   case Intrinsic::experimental_vector_reduce_xor:
8285     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8286     break;
8287   case Intrinsic::experimental_vector_reduce_smax:
8288     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8289     break;
8290   case Intrinsic::experimental_vector_reduce_smin:
8291     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8292     break;
8293   case Intrinsic::experimental_vector_reduce_umax:
8294     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8295     break;
8296   case Intrinsic::experimental_vector_reduce_umin:
8297     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8298     break;
8299   case Intrinsic::experimental_vector_reduce_fmax:
8300     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8301     break;
8302   case Intrinsic::experimental_vector_reduce_fmin:
8303     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8304     break;
8305   default:
8306     llvm_unreachable("Unhandled vector reduce intrinsic");
8307   }
8308   setValue(&I, Res);
8309 }
8310 
8311 /// Returns an AttributeList representing the attributes applied to the return
8312 /// value of the given call.
8313 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8314   SmallVector<Attribute::AttrKind, 2> Attrs;
8315   if (CLI.RetSExt)
8316     Attrs.push_back(Attribute::SExt);
8317   if (CLI.RetZExt)
8318     Attrs.push_back(Attribute::ZExt);
8319   if (CLI.IsInReg)
8320     Attrs.push_back(Attribute::InReg);
8321 
8322   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8323                             Attrs);
8324 }
8325 
8326 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8327 /// implementation, which just calls LowerCall.
8328 /// FIXME: When all targets are
8329 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8330 std::pair<SDValue, SDValue>
8331 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8332   // Handle the incoming return values from the call.
8333   CLI.Ins.clear();
8334   Type *OrigRetTy = CLI.RetTy;
8335   SmallVector<EVT, 4> RetTys;
8336   SmallVector<uint64_t, 4> Offsets;
8337   auto &DL = CLI.DAG.getDataLayout();
8338   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8339 
8340   if (CLI.IsPostTypeLegalization) {
8341     // If we are lowering a libcall after legalization, split the return type.
8342     SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8343     SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8344     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8345       EVT RetVT = OldRetTys[i];
8346       uint64_t Offset = OldOffsets[i];
8347       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8348       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8349       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8350       RetTys.append(NumRegs, RegisterVT);
8351       for (unsigned j = 0; j != NumRegs; ++j)
8352         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8353     }
8354   }
8355 
8356   SmallVector<ISD::OutputArg, 4> Outs;
8357   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8358 
8359   bool CanLowerReturn =
8360       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8361                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8362 
8363   SDValue DemoteStackSlot;
8364   int DemoteStackIdx = -100;
8365   if (!CanLowerReturn) {
8366     // FIXME: equivalent assert?
8367     // assert(!CS.hasInAllocaArgument() &&
8368     //        "sret demotion is incompatible with inalloca");
8369     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8370     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8371     MachineFunction &MF = CLI.DAG.getMachineFunction();
8372     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8373     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8374                                               DL.getAllocaAddrSpace());
8375 
8376     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8377     ArgListEntry Entry;
8378     Entry.Node = DemoteStackSlot;
8379     Entry.Ty = StackSlotPtrType;
8380     Entry.IsSExt = false;
8381     Entry.IsZExt = false;
8382     Entry.IsInReg = false;
8383     Entry.IsSRet = true;
8384     Entry.IsNest = false;
8385     Entry.IsByVal = false;
8386     Entry.IsReturned = false;
8387     Entry.IsSwiftSelf = false;
8388     Entry.IsSwiftError = false;
8389     Entry.Alignment = Align;
8390     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8391     CLI.NumFixedArgs += 1;
8392     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8393 
8394     // sret demotion isn't compatible with tail-calls, since the sret argument
8395     // points into the callers stack frame.
8396     CLI.IsTailCall = false;
8397   } else {
8398     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8399       EVT VT = RetTys[I];
8400       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8401                                                      CLI.CallConv, VT);
8402       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8403                                                        CLI.CallConv, VT);
8404       for (unsigned i = 0; i != NumRegs; ++i) {
8405         ISD::InputArg MyFlags;
8406         MyFlags.VT = RegisterVT;
8407         MyFlags.ArgVT = VT;
8408         MyFlags.Used = CLI.IsReturnValueUsed;
8409         if (CLI.RetSExt)
8410           MyFlags.Flags.setSExt();
8411         if (CLI.RetZExt)
8412           MyFlags.Flags.setZExt();
8413         if (CLI.IsInReg)
8414           MyFlags.Flags.setInReg();
8415         CLI.Ins.push_back(MyFlags);
8416       }
8417     }
8418   }
8419 
8420   // We push in swifterror return as the last element of CLI.Ins.
8421   ArgListTy &Args = CLI.getArgs();
8422   if (supportSwiftError()) {
8423     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8424       if (Args[i].IsSwiftError) {
8425         ISD::InputArg MyFlags;
8426         MyFlags.VT = getPointerTy(DL);
8427         MyFlags.ArgVT = EVT(getPointerTy(DL));
8428         MyFlags.Flags.setSwiftError();
8429         CLI.Ins.push_back(MyFlags);
8430       }
8431     }
8432   }
8433 
8434   // Handle all of the outgoing arguments.
8435   CLI.Outs.clear();
8436   CLI.OutVals.clear();
8437   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8438     SmallVector<EVT, 4> ValueVTs;
8439     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8440     // FIXME: Split arguments if CLI.IsPostTypeLegalization
8441     Type *FinalType = Args[i].Ty;
8442     if (Args[i].IsByVal)
8443       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8444     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8445         FinalType, CLI.CallConv, CLI.IsVarArg);
8446     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8447          ++Value) {
8448       EVT VT = ValueVTs[Value];
8449       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8450       SDValue Op = SDValue(Args[i].Node.getNode(),
8451                            Args[i].Node.getResNo() + Value);
8452       ISD::ArgFlagsTy Flags;
8453 
8454       // Certain targets (such as MIPS), may have a different ABI alignment
8455       // for a type depending on the context. Give the target a chance to
8456       // specify the alignment it wants.
8457       unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8458 
8459       if (Args[i].IsZExt)
8460         Flags.setZExt();
8461       if (Args[i].IsSExt)
8462         Flags.setSExt();
8463       if (Args[i].IsInReg) {
8464         // If we are using vectorcall calling convention, a structure that is
8465         // passed InReg - is surely an HVA
8466         if (CLI.CallConv == CallingConv::X86_VectorCall &&
8467             isa<StructType>(FinalType)) {
8468           // The first value of a structure is marked
8469           if (0 == Value)
8470             Flags.setHvaStart();
8471           Flags.setHva();
8472         }
8473         // Set InReg Flag
8474         Flags.setInReg();
8475       }
8476       if (Args[i].IsSRet)
8477         Flags.setSRet();
8478       if (Args[i].IsSwiftSelf)
8479         Flags.setSwiftSelf();
8480       if (Args[i].IsSwiftError)
8481         Flags.setSwiftError();
8482       if (Args[i].IsByVal)
8483         Flags.setByVal();
8484       if (Args[i].IsInAlloca) {
8485         Flags.setInAlloca();
8486         // Set the byval flag for CCAssignFn callbacks that don't know about
8487         // inalloca.  This way we can know how many bytes we should've allocated
8488         // and how many bytes a callee cleanup function will pop.  If we port
8489         // inalloca to more targets, we'll have to add custom inalloca handling
8490         // in the various CC lowering callbacks.
8491         Flags.setByVal();
8492       }
8493       if (Args[i].IsByVal || Args[i].IsInAlloca) {
8494         PointerType *Ty = cast<PointerType>(Args[i].Ty);
8495         Type *ElementTy = Ty->getElementType();
8496         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8497         // For ByVal, alignment should come from FE.  BE will guess if this
8498         // info is not there but there are cases it cannot get right.
8499         unsigned FrameAlign;
8500         if (Args[i].Alignment)
8501           FrameAlign = Args[i].Alignment;
8502         else
8503           FrameAlign = getByValTypeAlignment(ElementTy, DL);
8504         Flags.setByValAlign(FrameAlign);
8505       }
8506       if (Args[i].IsNest)
8507         Flags.setNest();
8508       if (NeedsRegBlock)
8509         Flags.setInConsecutiveRegs();
8510       Flags.setOrigAlign(OriginalAlignment);
8511 
8512       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8513                                                  CLI.CallConv, VT);
8514       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8515                                                         CLI.CallConv, VT);
8516       SmallVector<SDValue, 4> Parts(NumParts);
8517       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8518 
8519       if (Args[i].IsSExt)
8520         ExtendKind = ISD::SIGN_EXTEND;
8521       else if (Args[i].IsZExt)
8522         ExtendKind = ISD::ZERO_EXTEND;
8523 
8524       // Conservatively only handle 'returned' on non-vectors that can be lowered,
8525       // for now.
8526       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8527           CanLowerReturn) {
8528         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8529                "unexpected use of 'returned'");
8530         // Before passing 'returned' to the target lowering code, ensure that
8531         // either the register MVT and the actual EVT are the same size or that
8532         // the return value and argument are extended in the same way; in these
8533         // cases it's safe to pass the argument register value unchanged as the
8534         // return register value (although it's at the target's option whether
8535         // to do so)
8536         // TODO: allow code generation to take advantage of partially preserved
8537         // registers rather than clobbering the entire register when the
8538         // parameter extension method is not compatible with the return
8539         // extension method
8540         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8541             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8542              CLI.RetZExt == Args[i].IsZExt))
8543           Flags.setReturned();
8544       }
8545 
8546       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8547                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8548 
8549       for (unsigned j = 0; j != NumParts; ++j) {
8550         // if it isn't first piece, alignment must be 1
8551         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8552                                i < CLI.NumFixedArgs,
8553                                i, j*Parts[j].getValueType().getStoreSize());
8554         if (NumParts > 1 && j == 0)
8555           MyFlags.Flags.setSplit();
8556         else if (j != 0) {
8557           MyFlags.Flags.setOrigAlign(1);
8558           if (j == NumParts - 1)
8559             MyFlags.Flags.setSplitEnd();
8560         }
8561 
8562         CLI.Outs.push_back(MyFlags);
8563         CLI.OutVals.push_back(Parts[j]);
8564       }
8565 
8566       if (NeedsRegBlock && Value == NumValues - 1)
8567         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8568     }
8569   }
8570 
8571   SmallVector<SDValue, 4> InVals;
8572   CLI.Chain = LowerCall(CLI, InVals);
8573 
8574   // Update CLI.InVals to use outside of this function.
8575   CLI.InVals = InVals;
8576 
8577   // Verify that the target's LowerCall behaved as expected.
8578   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8579          "LowerCall didn't return a valid chain!");
8580   assert((!CLI.IsTailCall || InVals.empty()) &&
8581          "LowerCall emitted a return value for a tail call!");
8582   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8583          "LowerCall didn't emit the correct number of values!");
8584 
8585   // For a tail call, the return value is merely live-out and there aren't
8586   // any nodes in the DAG representing it. Return a special value to
8587   // indicate that a tail call has been emitted and no more Instructions
8588   // should be processed in the current block.
8589   if (CLI.IsTailCall) {
8590     CLI.DAG.setRoot(CLI.Chain);
8591     return std::make_pair(SDValue(), SDValue());
8592   }
8593 
8594 #ifndef NDEBUG
8595   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8596     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8597     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8598            "LowerCall emitted a value with the wrong type!");
8599   }
8600 #endif
8601 
8602   SmallVector<SDValue, 4> ReturnValues;
8603   if (!CanLowerReturn) {
8604     // The instruction result is the result of loading from the
8605     // hidden sret parameter.
8606     SmallVector<EVT, 1> PVTs;
8607     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8608 
8609     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8610     assert(PVTs.size() == 1 && "Pointers should fit in one register");
8611     EVT PtrVT = PVTs[0];
8612 
8613     unsigned NumValues = RetTys.size();
8614     ReturnValues.resize(NumValues);
8615     SmallVector<SDValue, 4> Chains(NumValues);
8616 
8617     // An aggregate return value cannot wrap around the address space, so
8618     // offsets to its parts don't wrap either.
8619     SDNodeFlags Flags;
8620     Flags.setNoUnsignedWrap(true);
8621 
8622     for (unsigned i = 0; i < NumValues; ++i) {
8623       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8624                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
8625                                                         PtrVT), Flags);
8626       SDValue L = CLI.DAG.getLoad(
8627           RetTys[i], CLI.DL, CLI.Chain, Add,
8628           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8629                                             DemoteStackIdx, Offsets[i]),
8630           /* Alignment = */ 1);
8631       ReturnValues[i] = L;
8632       Chains[i] = L.getValue(1);
8633     }
8634 
8635     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8636   } else {
8637     // Collect the legal value parts into potentially illegal values
8638     // that correspond to the original function's return values.
8639     Optional<ISD::NodeType> AssertOp;
8640     if (CLI.RetSExt)
8641       AssertOp = ISD::AssertSext;
8642     else if (CLI.RetZExt)
8643       AssertOp = ISD::AssertZext;
8644     unsigned CurReg = 0;
8645     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8646       EVT VT = RetTys[I];
8647       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8648                                                      CLI.CallConv, VT);
8649       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8650                                                        CLI.CallConv, VT);
8651 
8652       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
8653                                               NumRegs, RegisterVT, VT, nullptr,
8654                                               CLI.CallConv, AssertOp));
8655       CurReg += NumRegs;
8656     }
8657 
8658     // For a function returning void, there is no return value. We can't create
8659     // such a node, so we just return a null return value in that case. In
8660     // that case, nothing will actually look at the value.
8661     if (ReturnValues.empty())
8662       return std::make_pair(SDValue(), CLI.Chain);
8663   }
8664 
8665   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
8666                                 CLI.DAG.getVTList(RetTys), ReturnValues);
8667   return std::make_pair(Res, CLI.Chain);
8668 }
8669 
8670 void TargetLowering::LowerOperationWrapper(SDNode *N,
8671                                            SmallVectorImpl<SDValue> &Results,
8672                                            SelectionDAG &DAG) const {
8673   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
8674     Results.push_back(Res);
8675 }
8676 
8677 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8678   llvm_unreachable("LowerOperation not implemented for this target!");
8679 }
8680 
8681 void
8682 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8683   SDValue Op = getNonRegisterValue(V);
8684   assert((Op.getOpcode() != ISD::CopyFromReg ||
8685           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8686          "Copy from a reg to the same reg!");
8687   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8688 
8689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8690   // If this is an InlineAsm we have to match the registers required, not the
8691   // notional registers required by the type.
8692 
8693   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
8694                    getABIRegCopyCC(V));
8695   SDValue Chain = DAG.getEntryNode();
8696 
8697   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8698                               FuncInfo.PreferredExtendType.end())
8699                                  ? ISD::ANY_EXTEND
8700                                  : FuncInfo.PreferredExtendType[V];
8701   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8702   PendingExports.push_back(Chain);
8703 }
8704 
8705 #include "llvm/CodeGen/SelectionDAGISel.h"
8706 
8707 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8708 /// entry block, return true.  This includes arguments used by switches, since
8709 /// the switch may expand into multiple basic blocks.
8710 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8711   // With FastISel active, we may be splitting blocks, so force creation
8712   // of virtual registers for all non-dead arguments.
8713   if (FastISel)
8714     return A->use_empty();
8715 
8716   const BasicBlock &Entry = A->getParent()->front();
8717   for (const User *U : A->users())
8718     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8719       return false;  // Use not in entry block.
8720 
8721   return true;
8722 }
8723 
8724 using ArgCopyElisionMapTy =
8725     DenseMap<const Argument *,
8726              std::pair<const AllocaInst *, const StoreInst *>>;
8727 
8728 /// Scan the entry block of the function in FuncInfo for arguments that look
8729 /// like copies into a local alloca. Record any copied arguments in
8730 /// ArgCopyElisionCandidates.
8731 static void
8732 findArgumentCopyElisionCandidates(const DataLayout &DL,
8733                                   FunctionLoweringInfo *FuncInfo,
8734                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
8735   // Record the state of every static alloca used in the entry block. Argument
8736   // allocas are all used in the entry block, so we need approximately as many
8737   // entries as we have arguments.
8738   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
8739   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
8740   unsigned NumArgs = FuncInfo->Fn->arg_size();
8741   StaticAllocas.reserve(NumArgs * 2);
8742 
8743   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
8744     if (!V)
8745       return nullptr;
8746     V = V->stripPointerCasts();
8747     const auto *AI = dyn_cast<AllocaInst>(V);
8748     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
8749       return nullptr;
8750     auto Iter = StaticAllocas.insert({AI, Unknown});
8751     return &Iter.first->second;
8752   };
8753 
8754   // Look for stores of arguments to static allocas. Look through bitcasts and
8755   // GEPs to handle type coercions, as long as the alloca is fully initialized
8756   // by the store. Any non-store use of an alloca escapes it and any subsequent
8757   // unanalyzed store might write it.
8758   // FIXME: Handle structs initialized with multiple stores.
8759   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
8760     // Look for stores, and handle non-store uses conservatively.
8761     const auto *SI = dyn_cast<StoreInst>(&I);
8762     if (!SI) {
8763       // We will look through cast uses, so ignore them completely.
8764       if (I.isCast())
8765         continue;
8766       // Ignore debug info intrinsics, they don't escape or store to allocas.
8767       if (isa<DbgInfoIntrinsic>(I))
8768         continue;
8769       // This is an unknown instruction. Assume it escapes or writes to all
8770       // static alloca operands.
8771       for (const Use &U : I.operands()) {
8772         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
8773           *Info = StaticAllocaInfo::Clobbered;
8774       }
8775       continue;
8776     }
8777 
8778     // If the stored value is a static alloca, mark it as escaped.
8779     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
8780       *Info = StaticAllocaInfo::Clobbered;
8781 
8782     // Check if the destination is a static alloca.
8783     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
8784     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
8785     if (!Info)
8786       continue;
8787     const AllocaInst *AI = cast<AllocaInst>(Dst);
8788 
8789     // Skip allocas that have been initialized or clobbered.
8790     if (*Info != StaticAllocaInfo::Unknown)
8791       continue;
8792 
8793     // Check if the stored value is an argument, and that this store fully
8794     // initializes the alloca. Don't elide copies from the same argument twice.
8795     const Value *Val = SI->getValueOperand()->stripPointerCasts();
8796     const auto *Arg = dyn_cast<Argument>(Val);
8797     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
8798         Arg->getType()->isEmptyTy() ||
8799         DL.getTypeStoreSize(Arg->getType()) !=
8800             DL.getTypeAllocSize(AI->getAllocatedType()) ||
8801         ArgCopyElisionCandidates.count(Arg)) {
8802       *Info = StaticAllocaInfo::Clobbered;
8803       continue;
8804     }
8805 
8806     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
8807                       << '\n');
8808 
8809     // Mark this alloca and store for argument copy elision.
8810     *Info = StaticAllocaInfo::Elidable;
8811     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
8812 
8813     // Stop scanning if we've seen all arguments. This will happen early in -O0
8814     // builds, which is useful, because -O0 builds have large entry blocks and
8815     // many allocas.
8816     if (ArgCopyElisionCandidates.size() == NumArgs)
8817       break;
8818   }
8819 }
8820 
8821 /// Try to elide argument copies from memory into a local alloca. Succeeds if
8822 /// ArgVal is a load from a suitable fixed stack object.
8823 static void tryToElideArgumentCopy(
8824     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
8825     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
8826     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
8827     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
8828     SDValue ArgVal, bool &ArgHasUses) {
8829   // Check if this is a load from a fixed stack object.
8830   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
8831   if (!LNode)
8832     return;
8833   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
8834   if (!FINode)
8835     return;
8836 
8837   // Check that the fixed stack object is the right size and alignment.
8838   // Look at the alignment that the user wrote on the alloca instead of looking
8839   // at the stack object.
8840   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
8841   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
8842   const AllocaInst *AI = ArgCopyIter->second.first;
8843   int FixedIndex = FINode->getIndex();
8844   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
8845   int OldIndex = AllocaIndex;
8846   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
8847   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
8848     LLVM_DEBUG(
8849         dbgs() << "  argument copy elision failed due to bad fixed stack "
8850                   "object size\n");
8851     return;
8852   }
8853   unsigned RequiredAlignment = AI->getAlignment();
8854   if (!RequiredAlignment) {
8855     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
8856         AI->getAllocatedType());
8857   }
8858   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
8859     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
8860                          "greater than stack argument alignment ("
8861                       << RequiredAlignment << " vs "
8862                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
8863     return;
8864   }
8865 
8866   // Perform the elision. Delete the old stack object and replace its only use
8867   // in the variable info map. Mark the stack object as mutable.
8868   LLVM_DEBUG({
8869     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
8870            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
8871            << '\n';
8872   });
8873   MFI.RemoveStackObject(OldIndex);
8874   MFI.setIsImmutableObjectIndex(FixedIndex, false);
8875   AllocaIndex = FixedIndex;
8876   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
8877   Chains.push_back(ArgVal.getValue(1));
8878 
8879   // Avoid emitting code for the store implementing the copy.
8880   const StoreInst *SI = ArgCopyIter->second.second;
8881   ElidedArgCopyInstrs.insert(SI);
8882 
8883   // Check for uses of the argument again so that we can avoid exporting ArgVal
8884   // if it is't used by anything other than the store.
8885   for (const Value *U : Arg.users()) {
8886     if (U != SI) {
8887       ArgHasUses = true;
8888       break;
8889     }
8890   }
8891 }
8892 
8893 void SelectionDAGISel::LowerArguments(const Function &F) {
8894   SelectionDAG &DAG = SDB->DAG;
8895   SDLoc dl = SDB->getCurSDLoc();
8896   const DataLayout &DL = DAG.getDataLayout();
8897   SmallVector<ISD::InputArg, 16> Ins;
8898 
8899   if (!FuncInfo->CanLowerReturn) {
8900     // Put in an sret pointer parameter before all the other parameters.
8901     SmallVector<EVT, 1> ValueVTs;
8902     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8903                     F.getReturnType()->getPointerTo(
8904                         DAG.getDataLayout().getAllocaAddrSpace()),
8905                     ValueVTs);
8906 
8907     // NOTE: Assuming that a pointer will never break down to more than one VT
8908     // or one register.
8909     ISD::ArgFlagsTy Flags;
8910     Flags.setSRet();
8911     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8912     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8913                          ISD::InputArg::NoArgIndex, 0);
8914     Ins.push_back(RetArg);
8915   }
8916 
8917   // Look for stores of arguments to static allocas. Mark such arguments with a
8918   // flag to ask the target to give us the memory location of that argument if
8919   // available.
8920   ArgCopyElisionMapTy ArgCopyElisionCandidates;
8921   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
8922 
8923   // Set up the incoming argument description vector.
8924   for (const Argument &Arg : F.args()) {
8925     unsigned ArgNo = Arg.getArgNo();
8926     SmallVector<EVT, 4> ValueVTs;
8927     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
8928     bool isArgValueUsed = !Arg.use_empty();
8929     unsigned PartBase = 0;
8930     Type *FinalType = Arg.getType();
8931     if (Arg.hasAttribute(Attribute::ByVal))
8932       FinalType = cast<PointerType>(FinalType)->getElementType();
8933     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8934         FinalType, F.getCallingConv(), F.isVarArg());
8935     for (unsigned Value = 0, NumValues = ValueVTs.size();
8936          Value != NumValues; ++Value) {
8937       EVT VT = ValueVTs[Value];
8938       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8939       ISD::ArgFlagsTy Flags;
8940 
8941       // Certain targets (such as MIPS), may have a different ABI alignment
8942       // for a type depending on the context. Give the target a chance to
8943       // specify the alignment it wants.
8944       unsigned OriginalAlignment =
8945           TLI->getABIAlignmentForCallingConv(ArgTy, DL);
8946 
8947       if (Arg.hasAttribute(Attribute::ZExt))
8948         Flags.setZExt();
8949       if (Arg.hasAttribute(Attribute::SExt))
8950         Flags.setSExt();
8951       if (Arg.hasAttribute(Attribute::InReg)) {
8952         // If we are using vectorcall calling convention, a structure that is
8953         // passed InReg - is surely an HVA
8954         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8955             isa<StructType>(Arg.getType())) {
8956           // The first value of a structure is marked
8957           if (0 == Value)
8958             Flags.setHvaStart();
8959           Flags.setHva();
8960         }
8961         // Set InReg Flag
8962         Flags.setInReg();
8963       }
8964       if (Arg.hasAttribute(Attribute::StructRet))
8965         Flags.setSRet();
8966       if (Arg.hasAttribute(Attribute::SwiftSelf))
8967         Flags.setSwiftSelf();
8968       if (Arg.hasAttribute(Attribute::SwiftError))
8969         Flags.setSwiftError();
8970       if (Arg.hasAttribute(Attribute::ByVal))
8971         Flags.setByVal();
8972       if (Arg.hasAttribute(Attribute::InAlloca)) {
8973         Flags.setInAlloca();
8974         // Set the byval flag for CCAssignFn callbacks that don't know about
8975         // inalloca.  This way we can know how many bytes we should've allocated
8976         // and how many bytes a callee cleanup function will pop.  If we port
8977         // inalloca to more targets, we'll have to add custom inalloca handling
8978         // in the various CC lowering callbacks.
8979         Flags.setByVal();
8980       }
8981       if (F.getCallingConv() == CallingConv::X86_INTR) {
8982         // IA Interrupt passes frame (1st parameter) by value in the stack.
8983         if (ArgNo == 0)
8984           Flags.setByVal();
8985       }
8986       if (Flags.isByVal() || Flags.isInAlloca()) {
8987         PointerType *Ty = cast<PointerType>(Arg.getType());
8988         Type *ElementTy = Ty->getElementType();
8989         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8990         // For ByVal, alignment should be passed from FE.  BE will guess if
8991         // this info is not there but there are cases it cannot get right.
8992         unsigned FrameAlign;
8993         if (Arg.getParamAlignment())
8994           FrameAlign = Arg.getParamAlignment();
8995         else
8996           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8997         Flags.setByValAlign(FrameAlign);
8998       }
8999       if (Arg.hasAttribute(Attribute::Nest))
9000         Flags.setNest();
9001       if (NeedsRegBlock)
9002         Flags.setInConsecutiveRegs();
9003       Flags.setOrigAlign(OriginalAlignment);
9004       if (ArgCopyElisionCandidates.count(&Arg))
9005         Flags.setCopyElisionCandidate();
9006 
9007       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9008           *CurDAG->getContext(), F.getCallingConv(), VT);
9009       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9010           *CurDAG->getContext(), F.getCallingConv(), VT);
9011       for (unsigned i = 0; i != NumRegs; ++i) {
9012         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9013                               ArgNo, PartBase+i*RegisterVT.getStoreSize());
9014         if (NumRegs > 1 && i == 0)
9015           MyFlags.Flags.setSplit();
9016         // if it isn't first piece, alignment must be 1
9017         else if (i > 0) {
9018           MyFlags.Flags.setOrigAlign(1);
9019           if (i == NumRegs - 1)
9020             MyFlags.Flags.setSplitEnd();
9021         }
9022         Ins.push_back(MyFlags);
9023       }
9024       if (NeedsRegBlock && Value == NumValues - 1)
9025         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9026       PartBase += VT.getStoreSize();
9027     }
9028   }
9029 
9030   // Call the target to set up the argument values.
9031   SmallVector<SDValue, 8> InVals;
9032   SDValue NewRoot = TLI->LowerFormalArguments(
9033       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9034 
9035   // Verify that the target's LowerFormalArguments behaved as expected.
9036   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9037          "LowerFormalArguments didn't return a valid chain!");
9038   assert(InVals.size() == Ins.size() &&
9039          "LowerFormalArguments didn't emit the correct number of values!");
9040   LLVM_DEBUG({
9041     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9042       assert(InVals[i].getNode() &&
9043              "LowerFormalArguments emitted a null value!");
9044       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9045              "LowerFormalArguments emitted a value with the wrong type!");
9046     }
9047   });
9048 
9049   // Update the DAG with the new chain value resulting from argument lowering.
9050   DAG.setRoot(NewRoot);
9051 
9052   // Set up the argument values.
9053   unsigned i = 0;
9054   if (!FuncInfo->CanLowerReturn) {
9055     // Create a virtual register for the sret pointer, and put in a copy
9056     // from the sret argument into it.
9057     SmallVector<EVT, 1> ValueVTs;
9058     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9059                     F.getReturnType()->getPointerTo(
9060                         DAG.getDataLayout().getAllocaAddrSpace()),
9061                     ValueVTs);
9062     MVT VT = ValueVTs[0].getSimpleVT();
9063     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9064     Optional<ISD::NodeType> AssertOp = None;
9065     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9066                                         nullptr, F.getCallingConv(), AssertOp);
9067 
9068     MachineFunction& MF = SDB->DAG.getMachineFunction();
9069     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9070     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9071     FuncInfo->DemoteRegister = SRetReg;
9072     NewRoot =
9073         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9074     DAG.setRoot(NewRoot);
9075 
9076     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9077     ++i;
9078   }
9079 
9080   SmallVector<SDValue, 4> Chains;
9081   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9082   for (const Argument &Arg : F.args()) {
9083     SmallVector<SDValue, 4> ArgValues;
9084     SmallVector<EVT, 4> ValueVTs;
9085     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9086     unsigned NumValues = ValueVTs.size();
9087     if (NumValues == 0)
9088       continue;
9089 
9090     bool ArgHasUses = !Arg.use_empty();
9091 
9092     // Elide the copying store if the target loaded this argument from a
9093     // suitable fixed stack object.
9094     if (Ins[i].Flags.isCopyElisionCandidate()) {
9095       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9096                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9097                              InVals[i], ArgHasUses);
9098     }
9099 
9100     // If this argument is unused then remember its value. It is used to generate
9101     // debugging information.
9102     bool isSwiftErrorArg =
9103         TLI->supportSwiftError() &&
9104         Arg.hasAttribute(Attribute::SwiftError);
9105     if (!ArgHasUses && !isSwiftErrorArg) {
9106       SDB->setUnusedArgValue(&Arg, InVals[i]);
9107 
9108       // Also remember any frame index for use in FastISel.
9109       if (FrameIndexSDNode *FI =
9110           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9111         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9112     }
9113 
9114     for (unsigned Val = 0; Val != NumValues; ++Val) {
9115       EVT VT = ValueVTs[Val];
9116       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9117                                                       F.getCallingConv(), VT);
9118       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9119           *CurDAG->getContext(), F.getCallingConv(), VT);
9120 
9121       // Even an apparant 'unused' swifterror argument needs to be returned. So
9122       // we do generate a copy for it that can be used on return from the
9123       // function.
9124       if (ArgHasUses || isSwiftErrorArg) {
9125         Optional<ISD::NodeType> AssertOp;
9126         if (Arg.hasAttribute(Attribute::SExt))
9127           AssertOp = ISD::AssertSext;
9128         else if (Arg.hasAttribute(Attribute::ZExt))
9129           AssertOp = ISD::AssertZext;
9130 
9131         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9132                                              PartVT, VT, nullptr,
9133                                              F.getCallingConv(), AssertOp));
9134       }
9135 
9136       i += NumParts;
9137     }
9138 
9139     // We don't need to do anything else for unused arguments.
9140     if (ArgValues.empty())
9141       continue;
9142 
9143     // Note down frame index.
9144     if (FrameIndexSDNode *FI =
9145         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9146       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9147 
9148     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9149                                      SDB->getCurSDLoc());
9150 
9151     SDB->setValue(&Arg, Res);
9152     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9153       // We want to associate the argument with the frame index, among
9154       // involved operands, that correspond to the lowest address. The
9155       // getCopyFromParts function, called earlier, is swapping the order of
9156       // the operands to BUILD_PAIR depending on endianness. The result of
9157       // that swapping is that the least significant bits of the argument will
9158       // be in the first operand of the BUILD_PAIR node, and the most
9159       // significant bits will be in the second operand.
9160       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9161       if (LoadSDNode *LNode =
9162           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9163         if (FrameIndexSDNode *FI =
9164             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9165           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9166     }
9167 
9168     // Update the SwiftErrorVRegDefMap.
9169     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9170       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9171       if (TargetRegisterInfo::isVirtualRegister(Reg))
9172         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9173                                            FuncInfo->SwiftErrorArg, Reg);
9174     }
9175 
9176     // If this argument is live outside of the entry block, insert a copy from
9177     // wherever we got it to the vreg that other BB's will reference it as.
9178     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9179       // If we can, though, try to skip creating an unnecessary vreg.
9180       // FIXME: This isn't very clean... it would be nice to make this more
9181       // general.  It's also subtly incompatible with the hacks FastISel
9182       // uses with vregs.
9183       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9184       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9185         FuncInfo->ValueMap[&Arg] = Reg;
9186         continue;
9187       }
9188     }
9189     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9190       FuncInfo->InitializeRegForValue(&Arg);
9191       SDB->CopyToExportRegsIfNeeded(&Arg);
9192     }
9193   }
9194 
9195   if (!Chains.empty()) {
9196     Chains.push_back(NewRoot);
9197     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9198   }
9199 
9200   DAG.setRoot(NewRoot);
9201 
9202   assert(i == InVals.size() && "Argument register count mismatch!");
9203 
9204   // If any argument copy elisions occurred and we have debug info, update the
9205   // stale frame indices used in the dbg.declare variable info table.
9206   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9207   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9208     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9209       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9210       if (I != ArgCopyElisionFrameIndexMap.end())
9211         VI.Slot = I->second;
9212     }
9213   }
9214 
9215   // Finally, if the target has anything special to do, allow it to do so.
9216   EmitFunctionEntryCode();
9217 }
9218 
9219 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9220 /// ensure constants are generated when needed.  Remember the virtual registers
9221 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9222 /// directly add them, because expansion might result in multiple MBB's for one
9223 /// BB.  As such, the start of the BB might correspond to a different MBB than
9224 /// the end.
9225 void
9226 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9227   const TerminatorInst *TI = LLVMBB->getTerminator();
9228 
9229   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9230 
9231   // Check PHI nodes in successors that expect a value to be available from this
9232   // block.
9233   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9234     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9235     if (!isa<PHINode>(SuccBB->begin())) continue;
9236     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9237 
9238     // If this terminator has multiple identical successors (common for
9239     // switches), only handle each succ once.
9240     if (!SuccsHandled.insert(SuccMBB).second)
9241       continue;
9242 
9243     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9244 
9245     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9246     // nodes and Machine PHI nodes, but the incoming operands have not been
9247     // emitted yet.
9248     for (const PHINode &PN : SuccBB->phis()) {
9249       // Ignore dead phi's.
9250       if (PN.use_empty())
9251         continue;
9252 
9253       // Skip empty types
9254       if (PN.getType()->isEmptyTy())
9255         continue;
9256 
9257       unsigned Reg;
9258       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9259 
9260       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9261         unsigned &RegOut = ConstantsOut[C];
9262         if (RegOut == 0) {
9263           RegOut = FuncInfo.CreateRegs(C->getType());
9264           CopyValueToVirtualRegister(C, RegOut);
9265         }
9266         Reg = RegOut;
9267       } else {
9268         DenseMap<const Value *, unsigned>::iterator I =
9269           FuncInfo.ValueMap.find(PHIOp);
9270         if (I != FuncInfo.ValueMap.end())
9271           Reg = I->second;
9272         else {
9273           assert(isa<AllocaInst>(PHIOp) &&
9274                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9275                  "Didn't codegen value into a register!??");
9276           Reg = FuncInfo.CreateRegs(PHIOp->getType());
9277           CopyValueToVirtualRegister(PHIOp, Reg);
9278         }
9279       }
9280 
9281       // Remember that this register needs to added to the machine PHI node as
9282       // the input for this MBB.
9283       SmallVector<EVT, 4> ValueVTs;
9284       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9285       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9286       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9287         EVT VT = ValueVTs[vti];
9288         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9289         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9290           FuncInfo.PHINodesToUpdate.push_back(
9291               std::make_pair(&*MBBI++, Reg + i));
9292         Reg += NumRegisters;
9293       }
9294     }
9295   }
9296 
9297   ConstantsOut.clear();
9298 }
9299 
9300 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9301 /// is 0.
9302 MachineBasicBlock *
9303 SelectionDAGBuilder::StackProtectorDescriptor::
9304 AddSuccessorMBB(const BasicBlock *BB,
9305                 MachineBasicBlock *ParentMBB,
9306                 bool IsLikely,
9307                 MachineBasicBlock *SuccMBB) {
9308   // If SuccBB has not been created yet, create it.
9309   if (!SuccMBB) {
9310     MachineFunction *MF = ParentMBB->getParent();
9311     MachineFunction::iterator BBI(ParentMBB);
9312     SuccMBB = MF->CreateMachineBasicBlock(BB);
9313     MF->insert(++BBI, SuccMBB);
9314   }
9315   // Add it as a successor of ParentMBB.
9316   ParentMBB->addSuccessor(
9317       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9318   return SuccMBB;
9319 }
9320 
9321 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9322   MachineFunction::iterator I(MBB);
9323   if (++I == FuncInfo.MF->end())
9324     return nullptr;
9325   return &*I;
9326 }
9327 
9328 /// During lowering new call nodes can be created (such as memset, etc.).
9329 /// Those will become new roots of the current DAG, but complications arise
9330 /// when they are tail calls. In such cases, the call lowering will update
9331 /// the root, but the builder still needs to know that a tail call has been
9332 /// lowered in order to avoid generating an additional return.
9333 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9334   // If the node is null, we do have a tail call.
9335   if (MaybeTC.getNode() != nullptr)
9336     DAG.setRoot(MaybeTC);
9337   else
9338     HasTailCall = true;
9339 }
9340 
9341 uint64_t
9342 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9343                                        unsigned First, unsigned Last) const {
9344   assert(Last >= First);
9345   const APInt &LowCase = Clusters[First].Low->getValue();
9346   const APInt &HighCase = Clusters[Last].High->getValue();
9347   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9348 
9349   // FIXME: A range of consecutive cases has 100% density, but only requires one
9350   // comparison to lower. We should discriminate against such consecutive ranges
9351   // in jump tables.
9352 
9353   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9354 }
9355 
9356 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9357     const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9358     unsigned Last) const {
9359   assert(Last >= First);
9360   assert(TotalCases[Last] >= TotalCases[First]);
9361   uint64_t NumCases =
9362       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9363   return NumCases;
9364 }
9365 
9366 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9367                                          unsigned First, unsigned Last,
9368                                          const SwitchInst *SI,
9369                                          MachineBasicBlock *DefaultMBB,
9370                                          CaseCluster &JTCluster) {
9371   assert(First <= Last);
9372 
9373   auto Prob = BranchProbability::getZero();
9374   unsigned NumCmps = 0;
9375   std::vector<MachineBasicBlock*> Table;
9376   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9377 
9378   // Initialize probabilities in JTProbs.
9379   for (unsigned I = First; I <= Last; ++I)
9380     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9381 
9382   for (unsigned I = First; I <= Last; ++I) {
9383     assert(Clusters[I].Kind == CC_Range);
9384     Prob += Clusters[I].Prob;
9385     const APInt &Low = Clusters[I].Low->getValue();
9386     const APInt &High = Clusters[I].High->getValue();
9387     NumCmps += (Low == High) ? 1 : 2;
9388     if (I != First) {
9389       // Fill the gap between this and the previous cluster.
9390       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9391       assert(PreviousHigh.slt(Low));
9392       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9393       for (uint64_t J = 0; J < Gap; J++)
9394         Table.push_back(DefaultMBB);
9395     }
9396     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9397     for (uint64_t J = 0; J < ClusterSize; ++J)
9398       Table.push_back(Clusters[I].MBB);
9399     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9400   }
9401 
9402   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9403   unsigned NumDests = JTProbs.size();
9404   if (TLI.isSuitableForBitTests(
9405           NumDests, NumCmps, Clusters[First].Low->getValue(),
9406           Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9407     // Clusters[First..Last] should be lowered as bit tests instead.
9408     return false;
9409   }
9410 
9411   // Create the MBB that will load from and jump through the table.
9412   // Note: We create it here, but it's not inserted into the function yet.
9413   MachineFunction *CurMF = FuncInfo.MF;
9414   MachineBasicBlock *JumpTableMBB =
9415       CurMF->CreateMachineBasicBlock(SI->getParent());
9416 
9417   // Add successors. Note: use table order for determinism.
9418   SmallPtrSet<MachineBasicBlock *, 8> Done;
9419   for (MachineBasicBlock *Succ : Table) {
9420     if (Done.count(Succ))
9421       continue;
9422     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9423     Done.insert(Succ);
9424   }
9425   JumpTableMBB->normalizeSuccProbs();
9426 
9427   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9428                      ->createJumpTableIndex(Table);
9429 
9430   // Set up the jump table info.
9431   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9432   JumpTableHeader JTH(Clusters[First].Low->getValue(),
9433                       Clusters[Last].High->getValue(), SI->getCondition(),
9434                       nullptr, false);
9435   JTCases.emplace_back(std::move(JTH), std::move(JT));
9436 
9437   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9438                                      JTCases.size() - 1, Prob);
9439   return true;
9440 }
9441 
9442 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9443                                          const SwitchInst *SI,
9444                                          MachineBasicBlock *DefaultMBB) {
9445 #ifndef NDEBUG
9446   // Clusters must be non-empty, sorted, and only contain Range clusters.
9447   assert(!Clusters.empty());
9448   for (CaseCluster &C : Clusters)
9449     assert(C.Kind == CC_Range);
9450   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9451     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9452 #endif
9453 
9454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9455   if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9456     return;
9457 
9458   const int64_t N = Clusters.size();
9459   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9460   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9461 
9462   if (N < 2 || N < MinJumpTableEntries)
9463     return;
9464 
9465   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9466   SmallVector<unsigned, 8> TotalCases(N);
9467   for (unsigned i = 0; i < N; ++i) {
9468     const APInt &Hi = Clusters[i].High->getValue();
9469     const APInt &Lo = Clusters[i].Low->getValue();
9470     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9471     if (i != 0)
9472       TotalCases[i] += TotalCases[i - 1];
9473   }
9474 
9475   // Cheap case: the whole range may be suitable for jump table.
9476   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9477   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9478   assert(NumCases < UINT64_MAX / 100);
9479   assert(Range >= NumCases);
9480   if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9481     CaseCluster JTCluster;
9482     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9483       Clusters[0] = JTCluster;
9484       Clusters.resize(1);
9485       return;
9486     }
9487   }
9488 
9489   // The algorithm below is not suitable for -O0.
9490   if (TM.getOptLevel() == CodeGenOpt::None)
9491     return;
9492 
9493   // Split Clusters into minimum number of dense partitions. The algorithm uses
9494   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9495   // for the Case Statement'" (1994), but builds the MinPartitions array in
9496   // reverse order to make it easier to reconstruct the partitions in ascending
9497   // order. In the choice between two optimal partitionings, it picks the one
9498   // which yields more jump tables.
9499 
9500   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9501   SmallVector<unsigned, 8> MinPartitions(N);
9502   // LastElement[i] is the last element of the partition starting at i.
9503   SmallVector<unsigned, 8> LastElement(N);
9504   // PartitionsScore[i] is used to break ties when choosing between two
9505   // partitionings resulting in the same number of partitions.
9506   SmallVector<unsigned, 8> PartitionsScore(N);
9507   // For PartitionsScore, a small number of comparisons is considered as good as
9508   // a jump table and a single comparison is considered better than a jump
9509   // table.
9510   enum PartitionScores : unsigned {
9511     NoTable = 0,
9512     Table = 1,
9513     FewCases = 1,
9514     SingleCase = 2
9515   };
9516 
9517   // Base case: There is only one way to partition Clusters[N-1].
9518   MinPartitions[N - 1] = 1;
9519   LastElement[N - 1] = N - 1;
9520   PartitionsScore[N - 1] = PartitionScores::SingleCase;
9521 
9522   // Note: loop indexes are signed to avoid underflow.
9523   for (int64_t i = N - 2; i >= 0; i--) {
9524     // Find optimal partitioning of Clusters[i..N-1].
9525     // Baseline: Put Clusters[i] into a partition on its own.
9526     MinPartitions[i] = MinPartitions[i + 1] + 1;
9527     LastElement[i] = i;
9528     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9529 
9530     // Search for a solution that results in fewer partitions.
9531     for (int64_t j = N - 1; j > i; j--) {
9532       // Try building a partition from Clusters[i..j].
9533       uint64_t Range = getJumpTableRange(Clusters, i, j);
9534       uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9535       assert(NumCases < UINT64_MAX / 100);
9536       assert(Range >= NumCases);
9537       if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9538         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9539         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9540         int64_t NumEntries = j - i + 1;
9541 
9542         if (NumEntries == 1)
9543           Score += PartitionScores::SingleCase;
9544         else if (NumEntries <= SmallNumberOfEntries)
9545           Score += PartitionScores::FewCases;
9546         else if (NumEntries >= MinJumpTableEntries)
9547           Score += PartitionScores::Table;
9548 
9549         // If this leads to fewer partitions, or to the same number of
9550         // partitions with better score, it is a better partitioning.
9551         if (NumPartitions < MinPartitions[i] ||
9552             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9553           MinPartitions[i] = NumPartitions;
9554           LastElement[i] = j;
9555           PartitionsScore[i] = Score;
9556         }
9557       }
9558     }
9559   }
9560 
9561   // Iterate over the partitions, replacing some with jump tables in-place.
9562   unsigned DstIndex = 0;
9563   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9564     Last = LastElement[First];
9565     assert(Last >= First);
9566     assert(DstIndex <= First);
9567     unsigned NumClusters = Last - First + 1;
9568 
9569     CaseCluster JTCluster;
9570     if (NumClusters >= MinJumpTableEntries &&
9571         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9572       Clusters[DstIndex++] = JTCluster;
9573     } else {
9574       for (unsigned I = First; I <= Last; ++I)
9575         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9576     }
9577   }
9578   Clusters.resize(DstIndex);
9579 }
9580 
9581 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9582                                         unsigned First, unsigned Last,
9583                                         const SwitchInst *SI,
9584                                         CaseCluster &BTCluster) {
9585   assert(First <= Last);
9586   if (First == Last)
9587     return false;
9588 
9589   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9590   unsigned NumCmps = 0;
9591   for (int64_t I = First; I <= Last; ++I) {
9592     assert(Clusters[I].Kind == CC_Range);
9593     Dests.set(Clusters[I].MBB->getNumber());
9594     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9595   }
9596   unsigned NumDests = Dests.count();
9597 
9598   APInt Low = Clusters[First].Low->getValue();
9599   APInt High = Clusters[Last].High->getValue();
9600   assert(Low.slt(High));
9601 
9602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9603   const DataLayout &DL = DAG.getDataLayout();
9604   if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9605     return false;
9606 
9607   APInt LowBound;
9608   APInt CmpRange;
9609 
9610   const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9611   assert(TLI.rangeFitsInWord(Low, High, DL) &&
9612          "Case range must fit in bit mask!");
9613 
9614   // Check if the clusters cover a contiguous range such that no value in the
9615   // range will jump to the default statement.
9616   bool ContiguousRange = true;
9617   for (int64_t I = First + 1; I <= Last; ++I) {
9618     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9619       ContiguousRange = false;
9620       break;
9621     }
9622   }
9623 
9624   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9625     // Optimize the case where all the case values fit in a word without having
9626     // to subtract minValue. In this case, we can optimize away the subtraction.
9627     LowBound = APInt::getNullValue(Low.getBitWidth());
9628     CmpRange = High;
9629     ContiguousRange = false;
9630   } else {
9631     LowBound = Low;
9632     CmpRange = High - Low;
9633   }
9634 
9635   CaseBitsVector CBV;
9636   auto TotalProb = BranchProbability::getZero();
9637   for (unsigned i = First; i <= Last; ++i) {
9638     // Find the CaseBits for this destination.
9639     unsigned j;
9640     for (j = 0; j < CBV.size(); ++j)
9641       if (CBV[j].BB == Clusters[i].MBB)
9642         break;
9643     if (j == CBV.size())
9644       CBV.push_back(
9645           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
9646     CaseBits *CB = &CBV[j];
9647 
9648     // Update Mask, Bits and ExtraProb.
9649     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
9650     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
9651     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
9652     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
9653     CB->Bits += Hi - Lo + 1;
9654     CB->ExtraProb += Clusters[i].Prob;
9655     TotalProb += Clusters[i].Prob;
9656   }
9657 
9658   BitTestInfo BTI;
9659   llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
9660     // Sort by probability first, number of bits second, bit mask third.
9661     if (a.ExtraProb != b.ExtraProb)
9662       return a.ExtraProb > b.ExtraProb;
9663     if (a.Bits != b.Bits)
9664       return a.Bits > b.Bits;
9665     return a.Mask < b.Mask;
9666   });
9667 
9668   for (auto &CB : CBV) {
9669     MachineBasicBlock *BitTestBB =
9670         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
9671     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
9672   }
9673   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
9674                             SI->getCondition(), -1U, MVT::Other, false,
9675                             ContiguousRange, nullptr, nullptr, std::move(BTI),
9676                             TotalProb);
9677 
9678   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
9679                                     BitTestCases.size() - 1, TotalProb);
9680   return true;
9681 }
9682 
9683 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
9684                                               const SwitchInst *SI) {
9685 // Partition Clusters into as few subsets as possible, where each subset has a
9686 // range that fits in a machine word and has <= 3 unique destinations.
9687 
9688 #ifndef NDEBUG
9689   // Clusters must be sorted and contain Range or JumpTable clusters.
9690   assert(!Clusters.empty());
9691   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
9692   for (const CaseCluster &C : Clusters)
9693     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
9694   for (unsigned i = 1; i < Clusters.size(); ++i)
9695     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
9696 #endif
9697 
9698   // The algorithm below is not suitable for -O0.
9699   if (TM.getOptLevel() == CodeGenOpt::None)
9700     return;
9701 
9702   // If target does not have legal shift left, do not emit bit tests at all.
9703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9704   const DataLayout &DL = DAG.getDataLayout();
9705 
9706   EVT PTy = TLI.getPointerTy(DL);
9707   if (!TLI.isOperationLegal(ISD::SHL, PTy))
9708     return;
9709 
9710   int BitWidth = PTy.getSizeInBits();
9711   const int64_t N = Clusters.size();
9712 
9713   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9714   SmallVector<unsigned, 8> MinPartitions(N);
9715   // LastElement[i] is the last element of the partition starting at i.
9716   SmallVector<unsigned, 8> LastElement(N);
9717 
9718   // FIXME: This might not be the best algorithm for finding bit test clusters.
9719 
9720   // Base case: There is only one way to partition Clusters[N-1].
9721   MinPartitions[N - 1] = 1;
9722   LastElement[N - 1] = N - 1;
9723 
9724   // Note: loop indexes are signed to avoid underflow.
9725   for (int64_t i = N - 2; i >= 0; --i) {
9726     // Find optimal partitioning of Clusters[i..N-1].
9727     // Baseline: Put Clusters[i] into a partition on its own.
9728     MinPartitions[i] = MinPartitions[i + 1] + 1;
9729     LastElement[i] = i;
9730 
9731     // Search for a solution that results in fewer partitions.
9732     // Note: the search is limited by BitWidth, reducing time complexity.
9733     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
9734       // Try building a partition from Clusters[i..j].
9735 
9736       // Check the range.
9737       if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
9738                                Clusters[j].High->getValue(), DL))
9739         continue;
9740 
9741       // Check nbr of destinations and cluster types.
9742       // FIXME: This works, but doesn't seem very efficient.
9743       bool RangesOnly = true;
9744       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9745       for (int64_t k = i; k <= j; k++) {
9746         if (Clusters[k].Kind != CC_Range) {
9747           RangesOnly = false;
9748           break;
9749         }
9750         Dests.set(Clusters[k].MBB->getNumber());
9751       }
9752       if (!RangesOnly || Dests.count() > 3)
9753         break;
9754 
9755       // Check if it's a better partition.
9756       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9757       if (NumPartitions < MinPartitions[i]) {
9758         // Found a better partition.
9759         MinPartitions[i] = NumPartitions;
9760         LastElement[i] = j;
9761       }
9762     }
9763   }
9764 
9765   // Iterate over the partitions, replacing with bit-test clusters in-place.
9766   unsigned DstIndex = 0;
9767   for (unsigned First = 0, Last; First < N; First = Last + 1) {
9768     Last = LastElement[First];
9769     assert(First <= Last);
9770     assert(DstIndex <= First);
9771 
9772     CaseCluster BitTestCluster;
9773     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
9774       Clusters[DstIndex++] = BitTestCluster;
9775     } else {
9776       size_t NumClusters = Last - First + 1;
9777       std::memmove(&Clusters[DstIndex], &Clusters[First],
9778                    sizeof(Clusters[0]) * NumClusters);
9779       DstIndex += NumClusters;
9780     }
9781   }
9782   Clusters.resize(DstIndex);
9783 }
9784 
9785 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
9786                                         MachineBasicBlock *SwitchMBB,
9787                                         MachineBasicBlock *DefaultMBB) {
9788   MachineFunction *CurMF = FuncInfo.MF;
9789   MachineBasicBlock *NextMBB = nullptr;
9790   MachineFunction::iterator BBI(W.MBB);
9791   if (++BBI != FuncInfo.MF->end())
9792     NextMBB = &*BBI;
9793 
9794   unsigned Size = W.LastCluster - W.FirstCluster + 1;
9795 
9796   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9797 
9798   if (Size == 2 && W.MBB == SwitchMBB) {
9799     // If any two of the cases has the same destination, and if one value
9800     // is the same as the other, but has one bit unset that the other has set,
9801     // use bit manipulation to do two compares at once.  For example:
9802     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9803     // TODO: This could be extended to merge any 2 cases in switches with 3
9804     // cases.
9805     // TODO: Handle cases where W.CaseBB != SwitchBB.
9806     CaseCluster &Small = *W.FirstCluster;
9807     CaseCluster &Big = *W.LastCluster;
9808 
9809     if (Small.Low == Small.High && Big.Low == Big.High &&
9810         Small.MBB == Big.MBB) {
9811       const APInt &SmallValue = Small.Low->getValue();
9812       const APInt &BigValue = Big.Low->getValue();
9813 
9814       // Check that there is only one bit different.
9815       APInt CommonBit = BigValue ^ SmallValue;
9816       if (CommonBit.isPowerOf2()) {
9817         SDValue CondLHS = getValue(Cond);
9818         EVT VT = CondLHS.getValueType();
9819         SDLoc DL = getCurSDLoc();
9820 
9821         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
9822                                  DAG.getConstant(CommonBit, DL, VT));
9823         SDValue Cond = DAG.getSetCC(
9824             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
9825             ISD::SETEQ);
9826 
9827         // Update successor info.
9828         // Both Small and Big will jump to Small.BB, so we sum up the
9829         // probabilities.
9830         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
9831         if (BPI)
9832           addSuccessorWithProb(
9833               SwitchMBB, DefaultMBB,
9834               // The default destination is the first successor in IR.
9835               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
9836         else
9837           addSuccessorWithProb(SwitchMBB, DefaultMBB);
9838 
9839         // Insert the true branch.
9840         SDValue BrCond =
9841             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
9842                         DAG.getBasicBlock(Small.MBB));
9843         // Insert the false branch.
9844         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
9845                              DAG.getBasicBlock(DefaultMBB));
9846 
9847         DAG.setRoot(BrCond);
9848         return;
9849       }
9850     }
9851   }
9852 
9853   if (TM.getOptLevel() != CodeGenOpt::None) {
9854     // Here, we order cases by probability so the most likely case will be
9855     // checked first. However, two clusters can have the same probability in
9856     // which case their relative ordering is non-deterministic. So we use Low
9857     // as a tie-breaker as clusters are guaranteed to never overlap.
9858     llvm::sort(W.FirstCluster, W.LastCluster + 1,
9859                [](const CaseCluster &a, const CaseCluster &b) {
9860       return a.Prob != b.Prob ?
9861              a.Prob > b.Prob :
9862              a.Low->getValue().slt(b.Low->getValue());
9863     });
9864 
9865     // Rearrange the case blocks so that the last one falls through if possible
9866     // without changing the order of probabilities.
9867     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
9868       --I;
9869       if (I->Prob > W.LastCluster->Prob)
9870         break;
9871       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9872         std::swap(*I, *W.LastCluster);
9873         break;
9874       }
9875     }
9876   }
9877 
9878   // Compute total probability.
9879   BranchProbability DefaultProb = W.DefaultProb;
9880   BranchProbability UnhandledProbs = DefaultProb;
9881   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9882     UnhandledProbs += I->Prob;
9883 
9884   MachineBasicBlock *CurMBB = W.MBB;
9885   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9886     MachineBasicBlock *Fallthrough;
9887     if (I == W.LastCluster) {
9888       // For the last cluster, fall through to the default destination.
9889       Fallthrough = DefaultMBB;
9890     } else {
9891       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9892       CurMF->insert(BBI, Fallthrough);
9893       // Put Cond in a virtual register to make it available from the new blocks.
9894       ExportFromCurrentBlock(Cond);
9895     }
9896     UnhandledProbs -= I->Prob;
9897 
9898     switch (I->Kind) {
9899       case CC_JumpTable: {
9900         // FIXME: Optimize away range check based on pivot comparisons.
9901         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9902         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9903 
9904         // The jump block hasn't been inserted yet; insert it here.
9905         MachineBasicBlock *JumpMBB = JT->MBB;
9906         CurMF->insert(BBI, JumpMBB);
9907 
9908         auto JumpProb = I->Prob;
9909         auto FallthroughProb = UnhandledProbs;
9910 
9911         // If the default statement is a target of the jump table, we evenly
9912         // distribute the default probability to successors of CurMBB. Also
9913         // update the probability on the edge from JumpMBB to Fallthrough.
9914         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9915                                               SE = JumpMBB->succ_end();
9916              SI != SE; ++SI) {
9917           if (*SI == DefaultMBB) {
9918             JumpProb += DefaultProb / 2;
9919             FallthroughProb -= DefaultProb / 2;
9920             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9921             JumpMBB->normalizeSuccProbs();
9922             break;
9923           }
9924         }
9925 
9926         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9927         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9928         CurMBB->normalizeSuccProbs();
9929 
9930         // The jump table header will be inserted in our current block, do the
9931         // range check, and fall through to our fallthrough block.
9932         JTH->HeaderBB = CurMBB;
9933         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9934 
9935         // If we're in the right place, emit the jump table header right now.
9936         if (CurMBB == SwitchMBB) {
9937           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9938           JTH->Emitted = true;
9939         }
9940         break;
9941       }
9942       case CC_BitTests: {
9943         // FIXME: Optimize away range check based on pivot comparisons.
9944         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9945 
9946         // The bit test blocks haven't been inserted yet; insert them here.
9947         for (BitTestCase &BTC : BTB->Cases)
9948           CurMF->insert(BBI, BTC.ThisBB);
9949 
9950         // Fill in fields of the BitTestBlock.
9951         BTB->Parent = CurMBB;
9952         BTB->Default = Fallthrough;
9953 
9954         BTB->DefaultProb = UnhandledProbs;
9955         // If the cases in bit test don't form a contiguous range, we evenly
9956         // distribute the probability on the edge to Fallthrough to two
9957         // successors of CurMBB.
9958         if (!BTB->ContiguousRange) {
9959           BTB->Prob += DefaultProb / 2;
9960           BTB->DefaultProb -= DefaultProb / 2;
9961         }
9962 
9963         // If we're in the right place, emit the bit test header right now.
9964         if (CurMBB == SwitchMBB) {
9965           visitBitTestHeader(*BTB, SwitchMBB);
9966           BTB->Emitted = true;
9967         }
9968         break;
9969       }
9970       case CC_Range: {
9971         const Value *RHS, *LHS, *MHS;
9972         ISD::CondCode CC;
9973         if (I->Low == I->High) {
9974           // Check Cond == I->Low.
9975           CC = ISD::SETEQ;
9976           LHS = Cond;
9977           RHS=I->Low;
9978           MHS = nullptr;
9979         } else {
9980           // Check I->Low <= Cond <= I->High.
9981           CC = ISD::SETLE;
9982           LHS = I->Low;
9983           MHS = Cond;
9984           RHS = I->High;
9985         }
9986 
9987         // The false probability is the sum of all unhandled cases.
9988         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
9989                      getCurSDLoc(), I->Prob, UnhandledProbs);
9990 
9991         if (CurMBB == SwitchMBB)
9992           visitSwitchCase(CB, SwitchMBB);
9993         else
9994           SwitchCases.push_back(CB);
9995 
9996         break;
9997       }
9998     }
9999     CurMBB = Fallthrough;
10000   }
10001 }
10002 
10003 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10004                                               CaseClusterIt First,
10005                                               CaseClusterIt Last) {
10006   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10007     if (X.Prob != CC.Prob)
10008       return X.Prob > CC.Prob;
10009 
10010     // Ties are broken by comparing the case value.
10011     return X.Low->getValue().slt(CC.Low->getValue());
10012   });
10013 }
10014 
10015 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10016                                         const SwitchWorkListItem &W,
10017                                         Value *Cond,
10018                                         MachineBasicBlock *SwitchMBB) {
10019   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10020          "Clusters not sorted?");
10021 
10022   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10023 
10024   // Balance the tree based on branch probabilities to create a near-optimal (in
10025   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10026   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10027   CaseClusterIt LastLeft = W.FirstCluster;
10028   CaseClusterIt FirstRight = W.LastCluster;
10029   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10030   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10031 
10032   // Move LastLeft and FirstRight towards each other from opposite directions to
10033   // find a partitioning of the clusters which balances the probability on both
10034   // sides. If LeftProb and RightProb are equal, alternate which side is
10035   // taken to ensure 0-probability nodes are distributed evenly.
10036   unsigned I = 0;
10037   while (LastLeft + 1 < FirstRight) {
10038     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10039       LeftProb += (++LastLeft)->Prob;
10040     else
10041       RightProb += (--FirstRight)->Prob;
10042     I++;
10043   }
10044 
10045   while (true) {
10046     // Our binary search tree differs from a typical BST in that ours can have up
10047     // to three values in each leaf. The pivot selection above doesn't take that
10048     // into account, which means the tree might require more nodes and be less
10049     // efficient. We compensate for this here.
10050 
10051     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10052     unsigned NumRight = W.LastCluster - FirstRight + 1;
10053 
10054     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10055       // If one side has less than 3 clusters, and the other has more than 3,
10056       // consider taking a cluster from the other side.
10057 
10058       if (NumLeft < NumRight) {
10059         // Consider moving the first cluster on the right to the left side.
10060         CaseCluster &CC = *FirstRight;
10061         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10062         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10063         if (LeftSideRank <= RightSideRank) {
10064           // Moving the cluster to the left does not demote it.
10065           ++LastLeft;
10066           ++FirstRight;
10067           continue;
10068         }
10069       } else {
10070         assert(NumRight < NumLeft);
10071         // Consider moving the last element on the left to the right side.
10072         CaseCluster &CC = *LastLeft;
10073         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10074         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10075         if (RightSideRank <= LeftSideRank) {
10076           // Moving the cluster to the right does not demot it.
10077           --LastLeft;
10078           --FirstRight;
10079           continue;
10080         }
10081       }
10082     }
10083     break;
10084   }
10085 
10086   assert(LastLeft + 1 == FirstRight);
10087   assert(LastLeft >= W.FirstCluster);
10088   assert(FirstRight <= W.LastCluster);
10089 
10090   // Use the first element on the right as pivot since we will make less-than
10091   // comparisons against it.
10092   CaseClusterIt PivotCluster = FirstRight;
10093   assert(PivotCluster > W.FirstCluster);
10094   assert(PivotCluster <= W.LastCluster);
10095 
10096   CaseClusterIt FirstLeft = W.FirstCluster;
10097   CaseClusterIt LastRight = W.LastCluster;
10098 
10099   const ConstantInt *Pivot = PivotCluster->Low;
10100 
10101   // New blocks will be inserted immediately after the current one.
10102   MachineFunction::iterator BBI(W.MBB);
10103   ++BBI;
10104 
10105   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10106   // we can branch to its destination directly if it's squeezed exactly in
10107   // between the known lower bound and Pivot - 1.
10108   MachineBasicBlock *LeftMBB;
10109   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10110       FirstLeft->Low == W.GE &&
10111       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10112     LeftMBB = FirstLeft->MBB;
10113   } else {
10114     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10115     FuncInfo.MF->insert(BBI, LeftMBB);
10116     WorkList.push_back(
10117         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10118     // Put Cond in a virtual register to make it available from the new blocks.
10119     ExportFromCurrentBlock(Cond);
10120   }
10121 
10122   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10123   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10124   // directly if RHS.High equals the current upper bound.
10125   MachineBasicBlock *RightMBB;
10126   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10127       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10128     RightMBB = FirstRight->MBB;
10129   } else {
10130     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10131     FuncInfo.MF->insert(BBI, RightMBB);
10132     WorkList.push_back(
10133         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10134     // Put Cond in a virtual register to make it available from the new blocks.
10135     ExportFromCurrentBlock(Cond);
10136   }
10137 
10138   // Create the CaseBlock record that will be used to lower the branch.
10139   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10140                getCurSDLoc(), LeftProb, RightProb);
10141 
10142   if (W.MBB == SwitchMBB)
10143     visitSwitchCase(CB, SwitchMBB);
10144   else
10145     SwitchCases.push_back(CB);
10146 }
10147 
10148 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10149 // from the swith statement.
10150 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10151                                             BranchProbability PeeledCaseProb) {
10152   if (PeeledCaseProb == BranchProbability::getOne())
10153     return BranchProbability::getZero();
10154   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10155 
10156   uint32_t Numerator = CaseProb.getNumerator();
10157   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10158   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10159 }
10160 
10161 // Try to peel the top probability case if it exceeds the threshold.
10162 // Return current MachineBasicBlock for the switch statement if the peeling
10163 // does not occur.
10164 // If the peeling is performed, return the newly created MachineBasicBlock
10165 // for the peeled switch statement. Also update Clusters to remove the peeled
10166 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10167 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10168     const SwitchInst &SI, CaseClusterVector &Clusters,
10169     BranchProbability &PeeledCaseProb) {
10170   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10171   // Don't perform if there is only one cluster or optimizing for size.
10172   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10173       TM.getOptLevel() == CodeGenOpt::None ||
10174       SwitchMBB->getParent()->getFunction().optForMinSize())
10175     return SwitchMBB;
10176 
10177   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10178   unsigned PeeledCaseIndex = 0;
10179   bool SwitchPeeled = false;
10180   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10181     CaseCluster &CC = Clusters[Index];
10182     if (CC.Prob < TopCaseProb)
10183       continue;
10184     TopCaseProb = CC.Prob;
10185     PeeledCaseIndex = Index;
10186     SwitchPeeled = true;
10187   }
10188   if (!SwitchPeeled)
10189     return SwitchMBB;
10190 
10191   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10192                     << TopCaseProb << "\n");
10193 
10194   // Record the MBB for the peeled switch statement.
10195   MachineFunction::iterator BBI(SwitchMBB);
10196   ++BBI;
10197   MachineBasicBlock *PeeledSwitchMBB =
10198       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10199   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10200 
10201   ExportFromCurrentBlock(SI.getCondition());
10202   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10203   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10204                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10205   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10206 
10207   Clusters.erase(PeeledCaseIt);
10208   for (CaseCluster &CC : Clusters) {
10209     LLVM_DEBUG(
10210         dbgs() << "Scale the probablity for one cluster, before scaling: "
10211                << CC.Prob << "\n");
10212     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10213     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10214   }
10215   PeeledCaseProb = TopCaseProb;
10216   return PeeledSwitchMBB;
10217 }
10218 
10219 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10220   // Extract cases from the switch.
10221   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10222   CaseClusterVector Clusters;
10223   Clusters.reserve(SI.getNumCases());
10224   for (auto I : SI.cases()) {
10225     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10226     const ConstantInt *CaseVal = I.getCaseValue();
10227     BranchProbability Prob =
10228         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10229             : BranchProbability(1, SI.getNumCases() + 1);
10230     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10231   }
10232 
10233   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10234 
10235   // Cluster adjacent cases with the same destination. We do this at all
10236   // optimization levels because it's cheap to do and will make codegen faster
10237   // if there are many clusters.
10238   sortAndRangeify(Clusters);
10239 
10240   if (TM.getOptLevel() != CodeGenOpt::None) {
10241     // Replace an unreachable default with the most popular destination.
10242     // FIXME: Exploit unreachable default more aggressively.
10243     bool UnreachableDefault =
10244         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10245     if (UnreachableDefault && !Clusters.empty()) {
10246       DenseMap<const BasicBlock *, unsigned> Popularity;
10247       unsigned MaxPop = 0;
10248       const BasicBlock *MaxBB = nullptr;
10249       for (auto I : SI.cases()) {
10250         const BasicBlock *BB = I.getCaseSuccessor();
10251         if (++Popularity[BB] > MaxPop) {
10252           MaxPop = Popularity[BB];
10253           MaxBB = BB;
10254         }
10255       }
10256       // Set new default.
10257       assert(MaxPop > 0 && MaxBB);
10258       DefaultMBB = FuncInfo.MBBMap[MaxBB];
10259 
10260       // Remove cases that were pointing to the destination that is now the
10261       // default.
10262       CaseClusterVector New;
10263       New.reserve(Clusters.size());
10264       for (CaseCluster &CC : Clusters) {
10265         if (CC.MBB != DefaultMBB)
10266           New.push_back(CC);
10267       }
10268       Clusters = std::move(New);
10269     }
10270   }
10271 
10272   // The branch probablity of the peeled case.
10273   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10274   MachineBasicBlock *PeeledSwitchMBB =
10275       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10276 
10277   // If there is only the default destination, jump there directly.
10278   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10279   if (Clusters.empty()) {
10280     assert(PeeledSwitchMBB == SwitchMBB);
10281     SwitchMBB->addSuccessor(DefaultMBB);
10282     if (DefaultMBB != NextBlock(SwitchMBB)) {
10283       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10284                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10285     }
10286     return;
10287   }
10288 
10289   findJumpTables(Clusters, &SI, DefaultMBB);
10290   findBitTestClusters(Clusters, &SI);
10291 
10292   LLVM_DEBUG({
10293     dbgs() << "Case clusters: ";
10294     for (const CaseCluster &C : Clusters) {
10295       if (C.Kind == CC_JumpTable)
10296         dbgs() << "JT:";
10297       if (C.Kind == CC_BitTests)
10298         dbgs() << "BT:";
10299 
10300       C.Low->getValue().print(dbgs(), true);
10301       if (C.Low != C.High) {
10302         dbgs() << '-';
10303         C.High->getValue().print(dbgs(), true);
10304       }
10305       dbgs() << ' ';
10306     }
10307     dbgs() << '\n';
10308   });
10309 
10310   assert(!Clusters.empty());
10311   SwitchWorkList WorkList;
10312   CaseClusterIt First = Clusters.begin();
10313   CaseClusterIt Last = Clusters.end() - 1;
10314   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10315   // Scale the branchprobability for DefaultMBB if the peel occurs and
10316   // DefaultMBB is not replaced.
10317   if (PeeledCaseProb != BranchProbability::getZero() &&
10318       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10319     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10320   WorkList.push_back(
10321       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10322 
10323   while (!WorkList.empty()) {
10324     SwitchWorkListItem W = WorkList.back();
10325     WorkList.pop_back();
10326     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10327 
10328     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10329         !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10330       // For optimized builds, lower large range as a balanced binary tree.
10331       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10332       continue;
10333     }
10334 
10335     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10336   }
10337 }
10338