xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e24f5348798605a799c63ff09169d177d262cd37)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/Analysis.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/DiagnosticInfo.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/InlineAsm.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instructions.h"
73 #include "llvm/IR/IntrinsicInst.h"
74 #include "llvm/IR/Intrinsics.h"
75 #include "llvm/IR/IntrinsicsAArch64.h"
76 #include "llvm/IR/IntrinsicsWebAssembly.h"
77 #include "llvm/IR/LLVMContext.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PatternMatch.h"
82 #include "llvm/IR/Statepoint.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/User.h"
85 #include "llvm/IR/Value.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/Support/AtomicOrdering.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Compiler.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/MathExtras.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Target/TargetIntrinsicInfo.h"
95 #include "llvm/Target/TargetMachine.h"
96 #include "llvm/Target/TargetOptions.h"
97 #include "llvm/Transforms/Utils/Local.h"
98 #include <cstddef>
99 #include <iterator>
100 #include <limits>
101 #include <tuple>
102 
103 using namespace llvm;
104 using namespace PatternMatch;
105 using namespace SwitchCG;
106 
107 #define DEBUG_TYPE "isel"
108 
109 /// LimitFloatPrecision - Generate low-precision inline sequences for
110 /// some float libcalls (6, 8 or 12 bits).
111 static unsigned LimitFloatPrecision;
112 
113 static cl::opt<bool>
114     InsertAssertAlign("insert-assert-align", cl::init(true),
115                       cl::desc("Insert the experimental `assertalign` node."),
116                       cl::ReallyHidden);
117 
118 static cl::opt<unsigned, true>
119     LimitFPPrecision("limit-float-precision",
120                      cl::desc("Generate low-precision inline sequences "
121                               "for some float libcalls"),
122                      cl::location(LimitFloatPrecision), cl::Hidden,
123                      cl::init(0));
124 
125 static cl::opt<unsigned> SwitchPeelThreshold(
126     "switch-peel-threshold", cl::Hidden, cl::init(66),
127     cl::desc("Set the case probability threshold for peeling the case from a "
128              "switch statement. A value greater than 100 will void this "
129              "optimization"));
130 
131 // Limit the width of DAG chains. This is important in general to prevent
132 // DAG-based analysis from blowing up. For example, alias analysis and
133 // load clustering may not complete in reasonable time. It is difficult to
134 // recognize and avoid this situation within each individual analysis, and
135 // future analyses are likely to have the same behavior. Limiting DAG width is
136 // the safe approach and will be especially important with global DAGs.
137 //
138 // MaxParallelChains default is arbitrarily high to avoid affecting
139 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
140 // sequence over this should have been converted to llvm.memcpy by the
141 // frontend. It is easy to induce this behavior with .ll code such as:
142 // %buffer = alloca [4096 x i8]
143 // %data = load [4096 x i8]* %argPtr
144 // store [4096 x i8] %data, [4096 x i8]* %buffer
145 static const unsigned MaxParallelChains = 64;
146 
147 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
148                                       const SDValue *Parts, unsigned NumParts,
149                                       MVT PartVT, EVT ValueVT, const Value *V,
150                                       Optional<CallingConv::ID> CC);
151 
152 /// getCopyFromParts - Create a value that contains the specified legal parts
153 /// combined into the value they represent.  If the parts combine to a type
154 /// larger than ValueVT then AssertOp can be used to specify whether the extra
155 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
156 /// (ISD::AssertSext).
157 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
158                                 const SDValue *Parts, unsigned NumParts,
159                                 MVT PartVT, EVT ValueVT, const Value *V,
160                                 Optional<CallingConv::ID> CC = None,
161                                 Optional<ISD::NodeType> AssertOp = None) {
162   // Let the target assemble the parts if it wants to
163   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
164   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
165                                                    PartVT, ValueVT, CC))
166     return Val;
167 
168   if (ValueVT.isVector())
169     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
170                                   CC);
171 
172   assert(NumParts > 0 && "No parts to assemble!");
173   SDValue Val = Parts[0];
174 
175   if (NumParts > 1) {
176     // Assemble the value from multiple parts.
177     if (ValueVT.isInteger()) {
178       unsigned PartBits = PartVT.getSizeInBits();
179       unsigned ValueBits = ValueVT.getSizeInBits();
180 
181       // Assemble the power of 2 part.
182       unsigned RoundParts =
183           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
184       unsigned RoundBits = PartBits * RoundParts;
185       EVT RoundVT = RoundBits == ValueBits ?
186         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
187       SDValue Lo, Hi;
188 
189       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
190 
191       if (RoundParts > 2) {
192         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
193                               PartVT, HalfVT, V);
194         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
195                               RoundParts / 2, PartVT, HalfVT, V);
196       } else {
197         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
198         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
199       }
200 
201       if (DAG.getDataLayout().isBigEndian())
202         std::swap(Lo, Hi);
203 
204       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
205 
206       if (RoundParts < NumParts) {
207         // Assemble the trailing non-power-of-2 part.
208         unsigned OddParts = NumParts - RoundParts;
209         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
210         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
211                               OddVT, V, CC);
212 
213         // Combine the round and odd parts.
214         Lo = Val;
215         if (DAG.getDataLayout().isBigEndian())
216           std::swap(Lo, Hi);
217         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
218         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
219         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
220                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
221                                          TLI.getShiftAmountTy(
222                                              TotalVT, DAG.getDataLayout())));
223         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
224         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
225       }
226     } else if (PartVT.isFloatingPoint()) {
227       // FP split into multiple FP parts (for ppcf128)
228       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
229              "Unexpected split");
230       SDValue Lo, Hi;
231       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
232       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
233       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
234         std::swap(Lo, Hi);
235       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
236     } else {
237       // FP split into integer parts (soft fp)
238       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
239              !PartVT.isVector() && "Unexpected split");
240       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
241       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
242     }
243   }
244 
245   // There is now one part, held in Val.  Correct it to match ValueVT.
246   // PartEVT is the type of the register class that holds the value.
247   // ValueVT is the type of the inline asm operation.
248   EVT PartEVT = Val.getValueType();
249 
250   if (PartEVT == ValueVT)
251     return Val;
252 
253   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
254       ValueVT.bitsLT(PartEVT)) {
255     // For an FP value in an integer part, we need to truncate to the right
256     // width first.
257     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
258     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
259   }
260 
261   // Handle types that have the same size.
262   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
263     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
264 
265   // Handle types with different sizes.
266   if (PartEVT.isInteger() && ValueVT.isInteger()) {
267     if (ValueVT.bitsLT(PartEVT)) {
268       // For a truncate, see if we have any information to
269       // indicate whether the truncated bits will always be
270       // zero or sign-extension.
271       if (AssertOp.hasValue())
272         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
273                           DAG.getValueType(ValueVT));
274       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
275     }
276     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
277   }
278 
279   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
280     // FP_ROUND's are always exact here.
281     if (ValueVT.bitsLT(Val.getValueType()))
282       return DAG.getNode(
283           ISD::FP_ROUND, DL, ValueVT, Val,
284           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
285 
286     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
287   }
288 
289   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
290   // then truncating.
291   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
292       ValueVT.bitsLT(PartEVT)) {
293     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
294     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
295   }
296 
297   report_fatal_error("Unknown mismatch in getCopyFromParts!");
298 }
299 
300 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
301                                               const Twine &ErrMsg) {
302   const Instruction *I = dyn_cast_or_null<Instruction>(V);
303   if (!V)
304     return Ctx.emitError(ErrMsg);
305 
306   const char *AsmError = ", possible invalid constraint for vector type";
307   if (const CallInst *CI = dyn_cast<CallInst>(I))
308     if (CI->isInlineAsm())
309       return Ctx.emitError(I, ErrMsg + AsmError);
310 
311   return Ctx.emitError(I, ErrMsg);
312 }
313 
314 /// getCopyFromPartsVector - Create a value that contains the specified legal
315 /// parts combined into the value they represent.  If the parts combine to a
316 /// type larger than ValueVT then AssertOp can be used to specify whether the
317 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
318 /// ValueVT (ISD::AssertSext).
319 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
320                                       const SDValue *Parts, unsigned NumParts,
321                                       MVT PartVT, EVT ValueVT, const Value *V,
322                                       Optional<CallingConv::ID> CallConv) {
323   assert(ValueVT.isVector() && "Not a vector value");
324   assert(NumParts > 0 && "No parts to assemble!");
325   const bool IsABIRegCopy = CallConv.hasValue();
326 
327   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
328   SDValue Val = Parts[0];
329 
330   // Handle a multi-element vector.
331   if (NumParts > 1) {
332     EVT IntermediateVT;
333     MVT RegisterVT;
334     unsigned NumIntermediates;
335     unsigned NumRegs;
336 
337     if (IsABIRegCopy) {
338       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
339           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
340           NumIntermediates, RegisterVT);
341     } else {
342       NumRegs =
343           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
344                                      NumIntermediates, RegisterVT);
345     }
346 
347     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
348     NumParts = NumRegs; // Silence a compiler warning.
349     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
350     assert(RegisterVT.getSizeInBits() ==
351            Parts[0].getSimpleValueType().getSizeInBits() &&
352            "Part type sizes don't match!");
353 
354     // Assemble the parts into intermediate operands.
355     SmallVector<SDValue, 8> Ops(NumIntermediates);
356     if (NumIntermediates == NumParts) {
357       // If the register was not expanded, truncate or copy the value,
358       // as appropriate.
359       for (unsigned i = 0; i != NumParts; ++i)
360         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
361                                   PartVT, IntermediateVT, V, CallConv);
362     } else if (NumParts > 0) {
363       // If the intermediate type was expanded, build the intermediate
364       // operands from the parts.
365       assert(NumParts % NumIntermediates == 0 &&
366              "Must expand into a divisible number of parts!");
367       unsigned Factor = NumParts / NumIntermediates;
368       for (unsigned i = 0; i != NumIntermediates; ++i)
369         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
370                                   PartVT, IntermediateVT, V, CallConv);
371     }
372 
373     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
374     // intermediate operands.
375     EVT BuiltVectorTy =
376         IntermediateVT.isVector()
377             ? EVT::getVectorVT(
378                   *DAG.getContext(), IntermediateVT.getScalarType(),
379                   IntermediateVT.getVectorElementCount() * NumParts)
380             : EVT::getVectorVT(*DAG.getContext(),
381                                IntermediateVT.getScalarType(),
382                                NumIntermediates);
383     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
384                                                 : ISD::BUILD_VECTOR,
385                       DL, BuiltVectorTy, Ops);
386   }
387 
388   // There is now one part, held in Val.  Correct it to match ValueVT.
389   EVT PartEVT = Val.getValueType();
390 
391   if (PartEVT == ValueVT)
392     return Val;
393 
394   if (PartEVT.isVector()) {
395     // Vector/Vector bitcast.
396     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
397       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
398 
399     // If the element type of the source/dest vectors are the same, but the
400     // parts vector has more elements than the value vector, then we have a
401     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
402     // elements we want.
403     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
404       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
405               ValueVT.getVectorElementCount().getKnownMinValue()) &&
406              (PartEVT.getVectorElementCount().isScalable() ==
407               ValueVT.getVectorElementCount().isScalable()) &&
408              "Cannot narrow, it would be a lossy transformation");
409       PartEVT =
410           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
411                            ValueVT.getVectorElementCount());
412       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
413                         DAG.getVectorIdxConstant(0, DL));
414       if (PartEVT == ValueVT)
415         return Val;
416     }
417 
418     // Promoted vector extract
419     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
420   }
421 
422   // Trivial bitcast if the types are the same size and the destination
423   // vector type is legal.
424   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
425       TLI.isTypeLegal(ValueVT))
426     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
427 
428   if (ValueVT.getVectorNumElements() != 1) {
429      // Certain ABIs require that vectors are passed as integers. For vectors
430      // are the same size, this is an obvious bitcast.
431      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
432        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
433      } else if (ValueVT.bitsLT(PartEVT)) {
434        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
435        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
436        // Drop the extra bits.
437        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
438        return DAG.getBitcast(ValueVT, Val);
439      }
440 
441      diagnosePossiblyInvalidConstraint(
442          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
443      return DAG.getUNDEF(ValueVT);
444   }
445 
446   // Handle cases such as i8 -> <1 x i1>
447   EVT ValueSVT = ValueVT.getVectorElementType();
448   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
449     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
450       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
451     else
452       Val = ValueVT.isFloatingPoint()
453                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
454                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
455   }
456 
457   return DAG.getBuildVector(ValueVT, DL, Val);
458 }
459 
460 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
461                                  SDValue Val, SDValue *Parts, unsigned NumParts,
462                                  MVT PartVT, const Value *V,
463                                  Optional<CallingConv::ID> CallConv);
464 
465 /// getCopyToParts - Create a series of nodes that contain the specified value
466 /// split into legal parts.  If the parts contain more bits than Val, then, for
467 /// integers, ExtendKind can be used to specify how to generate the extra bits.
468 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
469                            SDValue *Parts, unsigned NumParts, MVT PartVT,
470                            const Value *V,
471                            Optional<CallingConv::ID> CallConv = None,
472                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
473   // Let the target split the parts if it wants to
474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
476                                       CallConv))
477     return;
478   EVT ValueVT = Val.getValueType();
479 
480   // Handle the vector case separately.
481   if (ValueVT.isVector())
482     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
483                                 CallConv);
484 
485   unsigned PartBits = PartVT.getSizeInBits();
486   unsigned OrigNumParts = NumParts;
487   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
488          "Copying to an illegal type!");
489 
490   if (NumParts == 0)
491     return;
492 
493   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
494   EVT PartEVT = PartVT;
495   if (PartEVT == ValueVT) {
496     assert(NumParts == 1 && "No-op copy with multiple parts!");
497     Parts[0] = Val;
498     return;
499   }
500 
501   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
502     // If the parts cover more bits than the value has, promote the value.
503     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
504       assert(NumParts == 1 && "Do not know what to promote to!");
505       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
506     } else {
507       if (ValueVT.isFloatingPoint()) {
508         // FP values need to be bitcast, then extended if they are being put
509         // into a larger container.
510         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
511         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
512       }
513       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
514              ValueVT.isInteger() &&
515              "Unknown mismatch!");
516       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
517       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
518       if (PartVT == MVT::x86mmx)
519         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
520     }
521   } else if (PartBits == ValueVT.getSizeInBits()) {
522     // Different types of the same size.
523     assert(NumParts == 1 && PartEVT != ValueVT);
524     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
525   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
526     // If the parts cover less bits than value has, truncate the value.
527     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528            ValueVT.isInteger() &&
529            "Unknown mismatch!");
530     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
532     if (PartVT == MVT::x86mmx)
533       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534   }
535 
536   // The value may have changed - recompute ValueVT.
537   ValueVT = Val.getValueType();
538   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
539          "Failed to tile the value with PartVT!");
540 
541   if (NumParts == 1) {
542     if (PartEVT != ValueVT) {
543       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
544                                         "scalar-to-vector conversion failed");
545       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
546     }
547 
548     Parts[0] = Val;
549     return;
550   }
551 
552   // Expand the value into multiple parts.
553   if (NumParts & (NumParts - 1)) {
554     // The number of parts is not a power of 2.  Split off and copy the tail.
555     assert(PartVT.isInteger() && ValueVT.isInteger() &&
556            "Do not know what to expand to!");
557     unsigned RoundParts = 1 << Log2_32(NumParts);
558     unsigned RoundBits = RoundParts * PartBits;
559     unsigned OddParts = NumParts - RoundParts;
560     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
561       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
562 
563     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
564                    CallConv);
565 
566     if (DAG.getDataLayout().isBigEndian())
567       // The odd parts were reversed by getCopyToParts - unreverse them.
568       std::reverse(Parts + RoundParts, Parts + NumParts);
569 
570     NumParts = RoundParts;
571     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
572     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
573   }
574 
575   // The number of parts is a power of 2.  Repeatedly bisect the value using
576   // EXTRACT_ELEMENT.
577   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
578                          EVT::getIntegerVT(*DAG.getContext(),
579                                            ValueVT.getSizeInBits()),
580                          Val);
581 
582   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
583     for (unsigned i = 0; i < NumParts; i += StepSize) {
584       unsigned ThisBits = StepSize * PartBits / 2;
585       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
586       SDValue &Part0 = Parts[i];
587       SDValue &Part1 = Parts[i+StepSize/2];
588 
589       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
590                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
591       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
592                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
593 
594       if (ThisBits == PartBits && ThisVT != PartVT) {
595         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
596         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
597       }
598     }
599   }
600 
601   if (DAG.getDataLayout().isBigEndian())
602     std::reverse(Parts, Parts + OrigNumParts);
603 }
604 
605 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
606                                      const SDLoc &DL, EVT PartVT) {
607   if (!PartVT.isVector())
608     return SDValue();
609 
610   EVT ValueVT = Val.getValueType();
611   ElementCount PartNumElts = PartVT.getVectorElementCount();
612   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
613 
614   // We only support widening vectors with equivalent element types and
615   // fixed/scalable properties. If a target needs to widen a fixed-length type
616   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
617   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
618       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
619       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
620     return SDValue();
621 
622   // Widening a scalable vector to another scalable vector is done by inserting
623   // the vector into a larger undef one.
624   if (PartNumElts.isScalable())
625     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
626                        Val, DAG.getVectorIdxConstant(0, DL));
627 
628   EVT ElementVT = PartVT.getVectorElementType();
629   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
630   // undef elements.
631   SmallVector<SDValue, 16> Ops;
632   DAG.ExtractVectorElements(Val, Ops);
633   SDValue EltUndef = DAG.getUNDEF(ElementVT);
634   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
635 
636   // FIXME: Use CONCAT for 2x -> 4x.
637   return DAG.getBuildVector(PartVT, DL, Ops);
638 }
639 
640 /// getCopyToPartsVector - Create a series of nodes that contain the specified
641 /// value split into legal parts.
642 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
643                                  SDValue Val, SDValue *Parts, unsigned NumParts,
644                                  MVT PartVT, const Value *V,
645                                  Optional<CallingConv::ID> CallConv) {
646   EVT ValueVT = Val.getValueType();
647   assert(ValueVT.isVector() && "Not a vector");
648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
649   const bool IsABIRegCopy = CallConv.hasValue();
650 
651   if (NumParts == 1) {
652     EVT PartEVT = PartVT;
653     if (PartEVT == ValueVT) {
654       // Nothing to do.
655     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
656       // Bitconvert vector->vector case.
657       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
658     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
659       Val = Widened;
660     } else if (PartVT.isVector() &&
661                PartEVT.getVectorElementType().bitsGE(
662                    ValueVT.getVectorElementType()) &&
663                PartEVT.getVectorElementCount() ==
664                    ValueVT.getVectorElementCount()) {
665 
666       // Promoted vector extract
667       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
668     } else if (PartEVT.isVector() &&
669                PartEVT.getVectorElementType() !=
670                    ValueVT.getVectorElementType() &&
671                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
672                    TargetLowering::TypeWidenVector) {
673       // Combination of widening and promotion.
674       EVT WidenVT =
675           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
676                            PartVT.getVectorElementCount());
677       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
678       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
679     } else {
680       if (ValueVT.getVectorElementCount().isScalar()) {
681         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
682                           DAG.getVectorIdxConstant(0, DL));
683       } else {
684         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
685         assert(PartVT.getFixedSizeInBits() > ValueSize &&
686                "lossy conversion of vector to scalar type");
687         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
688         Val = DAG.getBitcast(IntermediateType, Val);
689         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
690       }
691     }
692 
693     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
694     Parts[0] = Val;
695     return;
696   }
697 
698   // Handle a multi-element vector.
699   EVT IntermediateVT;
700   MVT RegisterVT;
701   unsigned NumIntermediates;
702   unsigned NumRegs;
703   if (IsABIRegCopy) {
704     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
705         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
706         NumIntermediates, RegisterVT);
707   } else {
708     NumRegs =
709         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
710                                    NumIntermediates, RegisterVT);
711   }
712 
713   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
714   NumParts = NumRegs; // Silence a compiler warning.
715   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
716 
717   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
718          "Mixing scalable and fixed vectors when copying in parts");
719 
720   Optional<ElementCount> DestEltCnt;
721 
722   if (IntermediateVT.isVector())
723     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
724   else
725     DestEltCnt = ElementCount::getFixed(NumIntermediates);
726 
727   EVT BuiltVectorTy = EVT::getVectorVT(
728       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
729 
730   if (ValueVT == BuiltVectorTy) {
731     // Nothing to do.
732   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
733     // Bitconvert vector->vector case.
734     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
735   } else {
736     if (BuiltVectorTy.getVectorElementType().bitsGT(
737             ValueVT.getVectorElementType())) {
738       // Integer promotion.
739       ValueVT = EVT::getVectorVT(*DAG.getContext(),
740                                  BuiltVectorTy.getVectorElementType(),
741                                  ValueVT.getVectorElementCount());
742       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
743     }
744 
745     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
746       Val = Widened;
747     }
748   }
749 
750   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
751 
752   // Split the vector into intermediate operands.
753   SmallVector<SDValue, 8> Ops(NumIntermediates);
754   for (unsigned i = 0; i != NumIntermediates; ++i) {
755     if (IntermediateVT.isVector()) {
756       // This does something sensible for scalable vectors - see the
757       // definition of EXTRACT_SUBVECTOR for further details.
758       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
759       Ops[i] =
760           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
761                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
762     } else {
763       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
764                            DAG.getVectorIdxConstant(i, DL));
765     }
766   }
767 
768   // Split the intermediate operands into legal parts.
769   if (NumParts == NumIntermediates) {
770     // If the register was not expanded, promote or copy the value,
771     // as appropriate.
772     for (unsigned i = 0; i != NumParts; ++i)
773       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
774   } else if (NumParts > 0) {
775     // If the intermediate type was expanded, split each the value into
776     // legal parts.
777     assert(NumIntermediates != 0 && "division by zero");
778     assert(NumParts % NumIntermediates == 0 &&
779            "Must expand into a divisible number of parts!");
780     unsigned Factor = NumParts / NumIntermediates;
781     for (unsigned i = 0; i != NumIntermediates; ++i)
782       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
783                      CallConv);
784   }
785 }
786 
787 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
788                            EVT valuevt, Optional<CallingConv::ID> CC)
789     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
790       RegCount(1, regs.size()), CallConv(CC) {}
791 
792 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
793                            const DataLayout &DL, unsigned Reg, Type *Ty,
794                            Optional<CallingConv::ID> CC) {
795   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
796 
797   CallConv = CC;
798 
799   for (EVT ValueVT : ValueVTs) {
800     unsigned NumRegs =
801         isABIMangled()
802             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getNumRegisters(Context, ValueVT);
804     MVT RegisterVT =
805         isABIMangled()
806             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
807             : TLI.getRegisterType(Context, ValueVT);
808     for (unsigned i = 0; i != NumRegs; ++i)
809       Regs.push_back(Reg + i);
810     RegVTs.push_back(RegisterVT);
811     RegCount.push_back(NumRegs);
812     Reg += NumRegs;
813   }
814 }
815 
816 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
817                                       FunctionLoweringInfo &FuncInfo,
818                                       const SDLoc &dl, SDValue &Chain,
819                                       SDValue *Flag, const Value *V) const {
820   // A Value with type {} or [0 x %t] needs no registers.
821   if (ValueVTs.empty())
822     return SDValue();
823 
824   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
825 
826   // Assemble the legal parts into the final values.
827   SmallVector<SDValue, 4> Values(ValueVTs.size());
828   SmallVector<SDValue, 8> Parts;
829   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
830     // Copy the legal parts from the registers.
831     EVT ValueVT = ValueVTs[Value];
832     unsigned NumRegs = RegCount[Value];
833     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
834                                           *DAG.getContext(),
835                                           CallConv.getValue(), RegVTs[Value])
836                                     : RegVTs[Value];
837 
838     Parts.resize(NumRegs);
839     for (unsigned i = 0; i != NumRegs; ++i) {
840       SDValue P;
841       if (!Flag) {
842         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
843       } else {
844         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
845         *Flag = P.getValue(2);
846       }
847 
848       Chain = P.getValue(1);
849       Parts[i] = P;
850 
851       // If the source register was virtual and if we know something about it,
852       // add an assert node.
853       if (!Register::isVirtualRegister(Regs[Part + i]) ||
854           !RegisterVT.isInteger())
855         continue;
856 
857       const FunctionLoweringInfo::LiveOutInfo *LOI =
858         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
859       if (!LOI)
860         continue;
861 
862       unsigned RegSize = RegisterVT.getScalarSizeInBits();
863       unsigned NumSignBits = LOI->NumSignBits;
864       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
865 
866       if (NumZeroBits == RegSize) {
867         // The current value is a zero.
868         // Explicitly express that as it would be easier for
869         // optimizations to kick in.
870         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
871         continue;
872       }
873 
874       // FIXME: We capture more information than the dag can represent.  For
875       // now, just use the tightest assertzext/assertsext possible.
876       bool isSExt;
877       EVT FromVT(MVT::Other);
878       if (NumZeroBits) {
879         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
880         isSExt = false;
881       } else if (NumSignBits > 1) {
882         FromVT =
883             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
884         isSExt = true;
885       } else {
886         continue;
887       }
888       // Add an assertion node.
889       assert(FromVT != MVT::Other);
890       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
891                              RegisterVT, P, DAG.getValueType(FromVT));
892     }
893 
894     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
895                                      RegisterVT, ValueVT, V, CallConv);
896     Part += NumRegs;
897     Parts.clear();
898   }
899 
900   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
901 }
902 
903 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
904                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
905                                  const Value *V,
906                                  ISD::NodeType PreferredExtendType) const {
907   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
908   ISD::NodeType ExtendKind = PreferredExtendType;
909 
910   // Get the list of the values's legal parts.
911   unsigned NumRegs = Regs.size();
912   SmallVector<SDValue, 8> Parts(NumRegs);
913   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
914     unsigned NumParts = RegCount[Value];
915 
916     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
917                                           *DAG.getContext(),
918                                           CallConv.getValue(), RegVTs[Value])
919                                     : RegVTs[Value];
920 
921     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
922       ExtendKind = ISD::ZERO_EXTEND;
923 
924     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
925                    NumParts, RegisterVT, V, CallConv, ExtendKind);
926     Part += NumParts;
927   }
928 
929   // Copy the parts into the registers.
930   SmallVector<SDValue, 8> Chains(NumRegs);
931   for (unsigned i = 0; i != NumRegs; ++i) {
932     SDValue Part;
933     if (!Flag) {
934       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
935     } else {
936       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
937       *Flag = Part.getValue(1);
938     }
939 
940     Chains[i] = Part.getValue(0);
941   }
942 
943   if (NumRegs == 1 || Flag)
944     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
945     // flagged to it. That is the CopyToReg nodes and the user are considered
946     // a single scheduling unit. If we create a TokenFactor and return it as
947     // chain, then the TokenFactor is both a predecessor (operand) of the
948     // user as well as a successor (the TF operands are flagged to the user).
949     // c1, f1 = CopyToReg
950     // c2, f2 = CopyToReg
951     // c3     = TokenFactor c1, c2
952     // ...
953     //        = op c3, ..., f2
954     Chain = Chains[NumRegs-1];
955   else
956     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
957 }
958 
959 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
960                                         unsigned MatchingIdx, const SDLoc &dl,
961                                         SelectionDAG &DAG,
962                                         std::vector<SDValue> &Ops) const {
963   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
964 
965   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
966   if (HasMatching)
967     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
968   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
969     // Put the register class of the virtual registers in the flag word.  That
970     // way, later passes can recompute register class constraints for inline
971     // assembly as well as normal instructions.
972     // Don't do this for tied operands that can use the regclass information
973     // from the def.
974     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
975     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
976     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
977   }
978 
979   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
980   Ops.push_back(Res);
981 
982   if (Code == InlineAsm::Kind_Clobber) {
983     // Clobbers should always have a 1:1 mapping with registers, and may
984     // reference registers that have illegal (e.g. vector) types. Hence, we
985     // shouldn't try to apply any sort of splitting logic to them.
986     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
987            "No 1:1 mapping from clobbers to regs?");
988     Register SP = TLI.getStackPointerRegisterToSaveRestore();
989     (void)SP;
990     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
991       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
992       assert(
993           (Regs[I] != SP ||
994            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
995           "If we clobbered the stack pointer, MFI should know about it.");
996     }
997     return;
998   }
999 
1000   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1001     MVT RegisterVT = RegVTs[Value];
1002     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1003                                            RegisterVT);
1004     for (unsigned i = 0; i != NumRegs; ++i) {
1005       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1006       unsigned TheReg = Regs[Reg++];
1007       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1008     }
1009   }
1010 }
1011 
1012 SmallVector<std::pair<unsigned, TypeSize>, 4>
1013 RegsForValue::getRegsAndSizes() const {
1014   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1015   unsigned I = 0;
1016   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1017     unsigned RegCount = std::get<0>(CountAndVT);
1018     MVT RegisterVT = std::get<1>(CountAndVT);
1019     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1020     for (unsigned E = I + RegCount; I != E; ++I)
1021       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1022   }
1023   return OutVec;
1024 }
1025 
1026 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1027                                const TargetLibraryInfo *li) {
1028   AA = aa;
1029   GFI = gfi;
1030   LibInfo = li;
1031   Context = DAG.getContext();
1032   LPadToCallSiteMap.clear();
1033   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1034 }
1035 
1036 void SelectionDAGBuilder::clear() {
1037   NodeMap.clear();
1038   UnusedArgNodeMap.clear();
1039   PendingLoads.clear();
1040   PendingExports.clear();
1041   PendingConstrainedFP.clear();
1042   PendingConstrainedFPStrict.clear();
1043   CurInst = nullptr;
1044   HasTailCall = false;
1045   SDNodeOrder = LowestSDNodeOrder;
1046   StatepointLowering.clear();
1047 }
1048 
1049 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1050   DanglingDebugInfoMap.clear();
1051 }
1052 
1053 // Update DAG root to include dependencies on Pending chains.
1054 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1055   SDValue Root = DAG.getRoot();
1056 
1057   if (Pending.empty())
1058     return Root;
1059 
1060   // Add current root to PendingChains, unless we already indirectly
1061   // depend on it.
1062   if (Root.getOpcode() != ISD::EntryToken) {
1063     unsigned i = 0, e = Pending.size();
1064     for (; i != e; ++i) {
1065       assert(Pending[i].getNode()->getNumOperands() > 1);
1066       if (Pending[i].getNode()->getOperand(0) == Root)
1067         break;  // Don't add the root if we already indirectly depend on it.
1068     }
1069 
1070     if (i == e)
1071       Pending.push_back(Root);
1072   }
1073 
1074   if (Pending.size() == 1)
1075     Root = Pending[0];
1076   else
1077     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1078 
1079   DAG.setRoot(Root);
1080   Pending.clear();
1081   return Root;
1082 }
1083 
1084 SDValue SelectionDAGBuilder::getMemoryRoot() {
1085   return updateRoot(PendingLoads);
1086 }
1087 
1088 SDValue SelectionDAGBuilder::getRoot() {
1089   // Chain up all pending constrained intrinsics together with all
1090   // pending loads, by simply appending them to PendingLoads and
1091   // then calling getMemoryRoot().
1092   PendingLoads.reserve(PendingLoads.size() +
1093                        PendingConstrainedFP.size() +
1094                        PendingConstrainedFPStrict.size());
1095   PendingLoads.append(PendingConstrainedFP.begin(),
1096                       PendingConstrainedFP.end());
1097   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1098                       PendingConstrainedFPStrict.end());
1099   PendingConstrainedFP.clear();
1100   PendingConstrainedFPStrict.clear();
1101   return getMemoryRoot();
1102 }
1103 
1104 SDValue SelectionDAGBuilder::getControlRoot() {
1105   // We need to emit pending fpexcept.strict constrained intrinsics,
1106   // so append them to the PendingExports list.
1107   PendingExports.append(PendingConstrainedFPStrict.begin(),
1108                         PendingConstrainedFPStrict.end());
1109   PendingConstrainedFPStrict.clear();
1110   return updateRoot(PendingExports);
1111 }
1112 
1113 void SelectionDAGBuilder::visit(const Instruction &I) {
1114   // Set up outgoing PHI node register values before emitting the terminator.
1115   if (I.isTerminator()) {
1116     HandlePHINodesInSuccessorBlocks(I.getParent());
1117   }
1118 
1119   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1120   if (!isa<DbgInfoIntrinsic>(I))
1121     ++SDNodeOrder;
1122 
1123   CurInst = &I;
1124 
1125   visit(I.getOpcode(), I);
1126 
1127   if (!I.isTerminator() && !HasTailCall &&
1128       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1129     CopyToExportRegsIfNeeded(&I);
1130 
1131   CurInst = nullptr;
1132 }
1133 
1134 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1135   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1136 }
1137 
1138 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1139   // Note: this doesn't use InstVisitor, because it has to work with
1140   // ConstantExpr's in addition to instructions.
1141   switch (Opcode) {
1142   default: llvm_unreachable("Unknown instruction type encountered!");
1143     // Build the switch statement using the Instruction.def file.
1144 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1145     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1146 #include "llvm/IR/Instruction.def"
1147   }
1148 }
1149 
1150 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1151                                                DebugLoc DL, unsigned Order) {
1152   // We treat variadic dbg_values differently at this stage.
1153   if (DI->hasArgList()) {
1154     // For variadic dbg_values we will now insert an undef.
1155     // FIXME: We can potentially recover these!
1156     SmallVector<SDDbgOperand, 2> Locs;
1157     for (const Value *V : DI->getValues()) {
1158       auto Undef = UndefValue::get(V->getType());
1159       Locs.push_back(SDDbgOperand::fromConst(Undef));
1160     }
1161     SDDbgValue *SDV = DAG.getDbgValueList(
1162         DI->getVariable(), DI->getExpression(), Locs, {},
1163         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1164     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1165   } else {
1166     // TODO: Dangling debug info will eventually either be resolved or produce
1167     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1168     // between the original dbg.value location and its resolved DBG_VALUE,
1169     // which we should ideally fill with an extra Undef DBG_VALUE.
1170     assert(DI->getNumVariableLocationOps() == 1 &&
1171            "DbgValueInst without an ArgList should have a single location "
1172            "operand.");
1173     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1174   }
1175 }
1176 
1177 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1178                                                 const DIExpression *Expr) {
1179   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1180     const DbgValueInst *DI = DDI.getDI();
1181     DIVariable *DanglingVariable = DI->getVariable();
1182     DIExpression *DanglingExpr = DI->getExpression();
1183     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1184       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1185       return true;
1186     }
1187     return false;
1188   };
1189 
1190   for (auto &DDIMI : DanglingDebugInfoMap) {
1191     DanglingDebugInfoVector &DDIV = DDIMI.second;
1192 
1193     // If debug info is to be dropped, run it through final checks to see
1194     // whether it can be salvaged.
1195     for (auto &DDI : DDIV)
1196       if (isMatchingDbgValue(DDI))
1197         salvageUnresolvedDbgValue(DDI);
1198 
1199     erase_if(DDIV, isMatchingDbgValue);
1200   }
1201 }
1202 
1203 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1204 // generate the debug data structures now that we've seen its definition.
1205 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1206                                                    SDValue Val) {
1207   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1208   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1209     return;
1210 
1211   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1212   for (auto &DDI : DDIV) {
1213     const DbgValueInst *DI = DDI.getDI();
1214     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1215     assert(DI && "Ill-formed DanglingDebugInfo");
1216     DebugLoc dl = DDI.getdl();
1217     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1218     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1219     DILocalVariable *Variable = DI->getVariable();
1220     DIExpression *Expr = DI->getExpression();
1221     assert(Variable->isValidLocationForIntrinsic(dl) &&
1222            "Expected inlined-at fields to agree");
1223     SDDbgValue *SDV;
1224     if (Val.getNode()) {
1225       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1226       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1227       // we couldn't resolve it directly when examining the DbgValue intrinsic
1228       // in the first place we should not be more successful here). Unless we
1229       // have some test case that prove this to be correct we should avoid
1230       // calling EmitFuncArgumentDbgValue here.
1231       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl,
1232                                     FuncArgumentDbgValueKind::Value, Val)) {
1233         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1234                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1235         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1236         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1237         // inserted after the definition of Val when emitting the instructions
1238         // after ISel. An alternative could be to teach
1239         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1240         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1241                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1242                    << ValSDNodeOrder << "\n");
1243         SDV = getDbgValue(Val, Variable, Expr, dl,
1244                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1245         DAG.AddDbgValue(SDV, false);
1246       } else
1247         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1248                           << "in EmitFuncArgumentDbgValue\n");
1249     } else {
1250       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1251       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1252       auto SDV =
1253           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1254       DAG.AddDbgValue(SDV, false);
1255     }
1256   }
1257   DDIV.clear();
1258 }
1259 
1260 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1261   // TODO: For the variadic implementation, instead of only checking the fail
1262   // state of `handleDebugValue`, we need know specifically which values were
1263   // invalid, so that we attempt to salvage only those values when processing
1264   // a DIArgList.
1265   assert(!DDI.getDI()->hasArgList() &&
1266          "Not implemented for variadic dbg_values");
1267   Value *V = DDI.getDI()->getValue(0);
1268   DILocalVariable *Var = DDI.getDI()->getVariable();
1269   DIExpression *Expr = DDI.getDI()->getExpression();
1270   DebugLoc DL = DDI.getdl();
1271   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1272   unsigned SDOrder = DDI.getSDNodeOrder();
1273   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1274   // that DW_OP_stack_value is desired.
1275   assert(isa<DbgValueInst>(DDI.getDI()));
1276   bool StackValue = true;
1277 
1278   // Can this Value can be encoded without any further work?
1279   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1280     return;
1281 
1282   // Attempt to salvage back through as many instructions as possible. Bail if
1283   // a non-instruction is seen, such as a constant expression or global
1284   // variable. FIXME: Further work could recover those too.
1285   while (isa<Instruction>(V)) {
1286     Instruction &VAsInst = *cast<Instruction>(V);
1287     // Temporary "0", awaiting real implementation.
1288     SmallVector<uint64_t, 16> Ops;
1289     SmallVector<Value *, 4> AdditionalValues;
1290     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1291                              AdditionalValues);
1292     // If we cannot salvage any further, and haven't yet found a suitable debug
1293     // expression, bail out.
1294     if (!V)
1295       break;
1296 
1297     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1298     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1299     // here for variadic dbg_values, remove that condition.
1300     if (!AdditionalValues.empty())
1301       break;
1302 
1303     // New value and expr now represent this debuginfo.
1304     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1305 
1306     // Some kind of simplification occurred: check whether the operand of the
1307     // salvaged debug expression can be encoded in this DAG.
1308     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1309                          /*IsVariadic=*/false)) {
1310       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1311                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1312       return;
1313     }
1314   }
1315 
1316   // This was the final opportunity to salvage this debug information, and it
1317   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1318   // any earlier variable location.
1319   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1320   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1321   DAG.AddDbgValue(SDV, false);
1322 
1323   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1324                     << "\n");
1325   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1326                     << "\n");
1327 }
1328 
1329 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1330                                            DILocalVariable *Var,
1331                                            DIExpression *Expr, DebugLoc dl,
1332                                            DebugLoc InstDL, unsigned Order,
1333                                            bool IsVariadic) {
1334   if (Values.empty())
1335     return true;
1336   SmallVector<SDDbgOperand> LocationOps;
1337   SmallVector<SDNode *> Dependencies;
1338   for (const Value *V : Values) {
1339     // Constant value.
1340     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1341         isa<ConstantPointerNull>(V)) {
1342       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1343       continue;
1344     }
1345 
1346     // If the Value is a frame index, we can create a FrameIndex debug value
1347     // without relying on the DAG at all.
1348     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1349       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1350       if (SI != FuncInfo.StaticAllocaMap.end()) {
1351         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1352         continue;
1353       }
1354     }
1355 
1356     // Do not use getValue() in here; we don't want to generate code at
1357     // this point if it hasn't been done yet.
1358     SDValue N = NodeMap[V];
1359     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1360       N = UnusedArgNodeMap[V];
1361     if (N.getNode()) {
1362       // Only emit func arg dbg value for non-variadic dbg.values for now.
1363       if (!IsVariadic &&
1364           EmitFuncArgumentDbgValue(V, Var, Expr, dl,
1365                                    FuncArgumentDbgValueKind::Value, N))
1366         return true;
1367       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1368         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1369         // describe stack slot locations.
1370         //
1371         // Consider "int x = 0; int *px = &x;". There are two kinds of
1372         // interesting debug values here after optimization:
1373         //
1374         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1375         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1376         //
1377         // Both describe the direct values of their associated variables.
1378         Dependencies.push_back(N.getNode());
1379         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1380         continue;
1381       }
1382       LocationOps.emplace_back(
1383           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1384       continue;
1385     }
1386 
1387     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1388     // Special rules apply for the first dbg.values of parameter variables in a
1389     // function. Identify them by the fact they reference Argument Values, that
1390     // they're parameters, and they are parameters of the current function. We
1391     // need to let them dangle until they get an SDNode.
1392     bool IsParamOfFunc =
1393         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1394     if (IsParamOfFunc)
1395       return false;
1396 
1397     // The value is not used in this block yet (or it would have an SDNode).
1398     // We still want the value to appear for the user if possible -- if it has
1399     // an associated VReg, we can refer to that instead.
1400     auto VMI = FuncInfo.ValueMap.find(V);
1401     if (VMI != FuncInfo.ValueMap.end()) {
1402       unsigned Reg = VMI->second;
1403       // If this is a PHI node, it may be split up into several MI PHI nodes
1404       // (in FunctionLoweringInfo::set).
1405       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1406                        V->getType(), None);
1407       if (RFV.occupiesMultipleRegs()) {
1408         // FIXME: We could potentially support variadic dbg_values here.
1409         if (IsVariadic)
1410           return false;
1411         unsigned Offset = 0;
1412         unsigned BitsToDescribe = 0;
1413         if (auto VarSize = Var->getSizeInBits())
1414           BitsToDescribe = *VarSize;
1415         if (auto Fragment = Expr->getFragmentInfo())
1416           BitsToDescribe = Fragment->SizeInBits;
1417         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1418           // Bail out if all bits are described already.
1419           if (Offset >= BitsToDescribe)
1420             break;
1421           // TODO: handle scalable vectors.
1422           unsigned RegisterSize = RegAndSize.second;
1423           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1424                                       ? BitsToDescribe - Offset
1425                                       : RegisterSize;
1426           auto FragmentExpr = DIExpression::createFragmentExpression(
1427               Expr, Offset, FragmentSize);
1428           if (!FragmentExpr)
1429             continue;
1430           SDDbgValue *SDV = DAG.getVRegDbgValue(
1431               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1432           DAG.AddDbgValue(SDV, false);
1433           Offset += RegisterSize;
1434         }
1435         return true;
1436       }
1437       // We can use simple vreg locations for variadic dbg_values as well.
1438       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1439       continue;
1440     }
1441     // We failed to create a SDDbgOperand for V.
1442     return false;
1443   }
1444 
1445   // We have created a SDDbgOperand for each Value in Values.
1446   // Should use Order instead of SDNodeOrder?
1447   assert(!LocationOps.empty());
1448   SDDbgValue *SDV =
1449       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1450                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1451   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1452   return true;
1453 }
1454 
1455 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1456   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1457   for (auto &Pair : DanglingDebugInfoMap)
1458     for (auto &DDI : Pair.second)
1459       salvageUnresolvedDbgValue(DDI);
1460   clearDanglingDebugInfo();
1461 }
1462 
1463 /// getCopyFromRegs - If there was virtual register allocated for the value V
1464 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1465 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1466   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1467   SDValue Result;
1468 
1469   if (It != FuncInfo.ValueMap.end()) {
1470     Register InReg = It->second;
1471 
1472     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1473                      DAG.getDataLayout(), InReg, Ty,
1474                      None); // This is not an ABI copy.
1475     SDValue Chain = DAG.getEntryNode();
1476     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1477                                  V);
1478     resolveDanglingDebugInfo(V, Result);
1479   }
1480 
1481   return Result;
1482 }
1483 
1484 /// getValue - Return an SDValue for the given Value.
1485 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1486   // If we already have an SDValue for this value, use it. It's important
1487   // to do this first, so that we don't create a CopyFromReg if we already
1488   // have a regular SDValue.
1489   SDValue &N = NodeMap[V];
1490   if (N.getNode()) return N;
1491 
1492   // If there's a virtual register allocated and initialized for this
1493   // value, use it.
1494   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1495     return copyFromReg;
1496 
1497   // Otherwise create a new SDValue and remember it.
1498   SDValue Val = getValueImpl(V);
1499   NodeMap[V] = Val;
1500   resolveDanglingDebugInfo(V, Val);
1501   return Val;
1502 }
1503 
1504 /// getNonRegisterValue - Return an SDValue for the given Value, but
1505 /// don't look in FuncInfo.ValueMap for a virtual register.
1506 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1507   // If we already have an SDValue for this value, use it.
1508   SDValue &N = NodeMap[V];
1509   if (N.getNode()) {
1510     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1511       // Remove the debug location from the node as the node is about to be used
1512       // in a location which may differ from the original debug location.  This
1513       // is relevant to Constant and ConstantFP nodes because they can appear
1514       // as constant expressions inside PHI nodes.
1515       N->setDebugLoc(DebugLoc());
1516     }
1517     return N;
1518   }
1519 
1520   // Otherwise create a new SDValue and remember it.
1521   SDValue Val = getValueImpl(V);
1522   NodeMap[V] = Val;
1523   resolveDanglingDebugInfo(V, Val);
1524   return Val;
1525 }
1526 
1527 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1528 /// Create an SDValue for the given value.
1529 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1531 
1532   if (const Constant *C = dyn_cast<Constant>(V)) {
1533     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1534 
1535     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1536       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1537 
1538     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1539       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1540 
1541     if (isa<ConstantPointerNull>(C)) {
1542       unsigned AS = V->getType()->getPointerAddressSpace();
1543       return DAG.getConstant(0, getCurSDLoc(),
1544                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1545     }
1546 
1547     if (match(C, m_VScale(DAG.getDataLayout())))
1548       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1549 
1550     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1551       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1552 
1553     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1554       return DAG.getUNDEF(VT);
1555 
1556     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1557       visit(CE->getOpcode(), *CE);
1558       SDValue N1 = NodeMap[V];
1559       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1560       return N1;
1561     }
1562 
1563     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1564       SmallVector<SDValue, 4> Constants;
1565       for (const Use &U : C->operands()) {
1566         SDNode *Val = getValue(U).getNode();
1567         // If the operand is an empty aggregate, there are no values.
1568         if (!Val) continue;
1569         // Add each leaf value from the operand to the Constants list
1570         // to form a flattened list of all the values.
1571         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1572           Constants.push_back(SDValue(Val, i));
1573       }
1574 
1575       return DAG.getMergeValues(Constants, getCurSDLoc());
1576     }
1577 
1578     if (const ConstantDataSequential *CDS =
1579           dyn_cast<ConstantDataSequential>(C)) {
1580       SmallVector<SDValue, 4> Ops;
1581       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1582         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1583         // Add each leaf value from the operand to the Constants list
1584         // to form a flattened list of all the values.
1585         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1586           Ops.push_back(SDValue(Val, i));
1587       }
1588 
1589       if (isa<ArrayType>(CDS->getType()))
1590         return DAG.getMergeValues(Ops, getCurSDLoc());
1591       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1592     }
1593 
1594     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1595       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1596              "Unknown struct or array constant!");
1597 
1598       SmallVector<EVT, 4> ValueVTs;
1599       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1600       unsigned NumElts = ValueVTs.size();
1601       if (NumElts == 0)
1602         return SDValue(); // empty struct
1603       SmallVector<SDValue, 4> Constants(NumElts);
1604       for (unsigned i = 0; i != NumElts; ++i) {
1605         EVT EltVT = ValueVTs[i];
1606         if (isa<UndefValue>(C))
1607           Constants[i] = DAG.getUNDEF(EltVT);
1608         else if (EltVT.isFloatingPoint())
1609           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1610         else
1611           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1612       }
1613 
1614       return DAG.getMergeValues(Constants, getCurSDLoc());
1615     }
1616 
1617     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1618       return DAG.getBlockAddress(BA, VT);
1619 
1620     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1621       return getValue(Equiv->getGlobalValue());
1622 
1623     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1624       return getValue(NC->getGlobalValue());
1625 
1626     VectorType *VecTy = cast<VectorType>(V->getType());
1627 
1628     // Now that we know the number and type of the elements, get that number of
1629     // elements into the Ops array based on what kind of constant it is.
1630     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1631       SmallVector<SDValue, 16> Ops;
1632       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1633       for (unsigned i = 0; i != NumElements; ++i)
1634         Ops.push_back(getValue(CV->getOperand(i)));
1635 
1636       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1637     }
1638 
1639     if (isa<ConstantAggregateZero>(C)) {
1640       EVT EltVT =
1641           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1642 
1643       SDValue Op;
1644       if (EltVT.isFloatingPoint())
1645         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1646       else
1647         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1648 
1649       if (isa<ScalableVectorType>(VecTy))
1650         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1651 
1652       SmallVector<SDValue, 16> Ops;
1653       Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1654       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1655     }
1656 
1657     llvm_unreachable("Unknown vector constant");
1658   }
1659 
1660   // If this is a static alloca, generate it as the frameindex instead of
1661   // computation.
1662   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1663     DenseMap<const AllocaInst*, int>::iterator SI =
1664       FuncInfo.StaticAllocaMap.find(AI);
1665     if (SI != FuncInfo.StaticAllocaMap.end())
1666       return DAG.getFrameIndex(SI->second,
1667                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1668   }
1669 
1670   // If this is an instruction which fast-isel has deferred, select it now.
1671   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1672     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1673 
1674     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1675                      Inst->getType(), None);
1676     SDValue Chain = DAG.getEntryNode();
1677     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1678   }
1679 
1680   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1681     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1682 
1683   if (const auto *BB = dyn_cast<BasicBlock>(V))
1684     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1685 
1686   llvm_unreachable("Can't get register for value!");
1687 }
1688 
1689 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1690   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1691   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1692   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1693   bool IsSEH = isAsynchronousEHPersonality(Pers);
1694   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1695   if (!IsSEH)
1696     CatchPadMBB->setIsEHScopeEntry();
1697   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1698   if (IsMSVCCXX || IsCoreCLR)
1699     CatchPadMBB->setIsEHFuncletEntry();
1700 }
1701 
1702 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1703   // Update machine-CFG edge.
1704   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1705   FuncInfo.MBB->addSuccessor(TargetMBB);
1706   TargetMBB->setIsEHCatchretTarget(true);
1707   DAG.getMachineFunction().setHasEHCatchret(true);
1708 
1709   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1710   bool IsSEH = isAsynchronousEHPersonality(Pers);
1711   if (IsSEH) {
1712     // If this is not a fall-through branch or optimizations are switched off,
1713     // emit the branch.
1714     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1715         TM.getOptLevel() == CodeGenOpt::None)
1716       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1717                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1718     return;
1719   }
1720 
1721   // Figure out the funclet membership for the catchret's successor.
1722   // This will be used by the FuncletLayout pass to determine how to order the
1723   // BB's.
1724   // A 'catchret' returns to the outer scope's color.
1725   Value *ParentPad = I.getCatchSwitchParentPad();
1726   const BasicBlock *SuccessorColor;
1727   if (isa<ConstantTokenNone>(ParentPad))
1728     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1729   else
1730     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1731   assert(SuccessorColor && "No parent funclet for catchret!");
1732   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1733   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1734 
1735   // Create the terminator node.
1736   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1737                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1738                             DAG.getBasicBlock(SuccessorColorMBB));
1739   DAG.setRoot(Ret);
1740 }
1741 
1742 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1743   // Don't emit any special code for the cleanuppad instruction. It just marks
1744   // the start of an EH scope/funclet.
1745   FuncInfo.MBB->setIsEHScopeEntry();
1746   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1747   if (Pers != EHPersonality::Wasm_CXX) {
1748     FuncInfo.MBB->setIsEHFuncletEntry();
1749     FuncInfo.MBB->setIsCleanupFuncletEntry();
1750   }
1751 }
1752 
1753 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1754 // not match, it is OK to add only the first unwind destination catchpad to the
1755 // successors, because there will be at least one invoke instruction within the
1756 // catch scope that points to the next unwind destination, if one exists, so
1757 // CFGSort cannot mess up with BB sorting order.
1758 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1759 // call within them, and catchpads only consisting of 'catch (...)' have a
1760 // '__cxa_end_catch' call within them, both of which generate invokes in case
1761 // the next unwind destination exists, i.e., the next unwind destination is not
1762 // the caller.)
1763 //
1764 // Having at most one EH pad successor is also simpler and helps later
1765 // transformations.
1766 //
1767 // For example,
1768 // current:
1769 //   invoke void @foo to ... unwind label %catch.dispatch
1770 // catch.dispatch:
1771 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1772 // catch.start:
1773 //   ...
1774 //   ... in this BB or some other child BB dominated by this BB there will be an
1775 //   invoke that points to 'next' BB as an unwind destination
1776 //
1777 // next: ; We don't need to add this to 'current' BB's successor
1778 //   ...
1779 static void findWasmUnwindDestinations(
1780     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1781     BranchProbability Prob,
1782     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1783         &UnwindDests) {
1784   while (EHPadBB) {
1785     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1786     if (isa<CleanupPadInst>(Pad)) {
1787       // Stop on cleanup pads.
1788       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1789       UnwindDests.back().first->setIsEHScopeEntry();
1790       break;
1791     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1792       // Add the catchpad handlers to the possible destinations. We don't
1793       // continue to the unwind destination of the catchswitch for wasm.
1794       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1795         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1796         UnwindDests.back().first->setIsEHScopeEntry();
1797       }
1798       break;
1799     } else {
1800       continue;
1801     }
1802   }
1803 }
1804 
1805 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1806 /// many places it could ultimately go. In the IR, we have a single unwind
1807 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1808 /// This function skips over imaginary basic blocks that hold catchswitch
1809 /// instructions, and finds all the "real" machine
1810 /// basic block destinations. As those destinations may not be successors of
1811 /// EHPadBB, here we also calculate the edge probability to those destinations.
1812 /// The passed-in Prob is the edge probability to EHPadBB.
1813 static void findUnwindDestinations(
1814     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1815     BranchProbability Prob,
1816     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1817         &UnwindDests) {
1818   EHPersonality Personality =
1819     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1821   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1822   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1823   bool IsSEH = isAsynchronousEHPersonality(Personality);
1824 
1825   if (IsWasmCXX) {
1826     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1827     assert(UnwindDests.size() <= 1 &&
1828            "There should be at most one unwind destination for wasm");
1829     return;
1830   }
1831 
1832   while (EHPadBB) {
1833     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1834     BasicBlock *NewEHPadBB = nullptr;
1835     if (isa<LandingPadInst>(Pad)) {
1836       // Stop on landingpads. They are not funclets.
1837       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1838       break;
1839     } else if (isa<CleanupPadInst>(Pad)) {
1840       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1841       // personalities.
1842       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1843       UnwindDests.back().first->setIsEHScopeEntry();
1844       UnwindDests.back().first->setIsEHFuncletEntry();
1845       break;
1846     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1847       // Add the catchpad handlers to the possible destinations.
1848       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1849         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1850         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1851         if (IsMSVCCXX || IsCoreCLR)
1852           UnwindDests.back().first->setIsEHFuncletEntry();
1853         if (!IsSEH)
1854           UnwindDests.back().first->setIsEHScopeEntry();
1855       }
1856       NewEHPadBB = CatchSwitch->getUnwindDest();
1857     } else {
1858       continue;
1859     }
1860 
1861     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1862     if (BPI && NewEHPadBB)
1863       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1864     EHPadBB = NewEHPadBB;
1865   }
1866 }
1867 
1868 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1869   // Update successor info.
1870   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1871   auto UnwindDest = I.getUnwindDest();
1872   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1873   BranchProbability UnwindDestProb =
1874       (BPI && UnwindDest)
1875           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1876           : BranchProbability::getZero();
1877   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1878   for (auto &UnwindDest : UnwindDests) {
1879     UnwindDest.first->setIsEHPad();
1880     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1881   }
1882   FuncInfo.MBB->normalizeSuccProbs();
1883 
1884   // Create the terminator node.
1885   SDValue Ret =
1886       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1887   DAG.setRoot(Ret);
1888 }
1889 
1890 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1891   report_fatal_error("visitCatchSwitch not yet implemented!");
1892 }
1893 
1894 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1896   auto &DL = DAG.getDataLayout();
1897   SDValue Chain = getControlRoot();
1898   SmallVector<ISD::OutputArg, 8> Outs;
1899   SmallVector<SDValue, 8> OutVals;
1900 
1901   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1902   // lower
1903   //
1904   //   %val = call <ty> @llvm.experimental.deoptimize()
1905   //   ret <ty> %val
1906   //
1907   // differently.
1908   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1909     LowerDeoptimizingReturn();
1910     return;
1911   }
1912 
1913   if (!FuncInfo.CanLowerReturn) {
1914     unsigned DemoteReg = FuncInfo.DemoteRegister;
1915     const Function *F = I.getParent()->getParent();
1916 
1917     // Emit a store of the return value through the virtual register.
1918     // Leave Outs empty so that LowerReturn won't try to load return
1919     // registers the usual way.
1920     SmallVector<EVT, 1> PtrValueVTs;
1921     ComputeValueVTs(TLI, DL,
1922                     F->getReturnType()->getPointerTo(
1923                         DAG.getDataLayout().getAllocaAddrSpace()),
1924                     PtrValueVTs);
1925 
1926     SDValue RetPtr =
1927         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1928     SDValue RetOp = getValue(I.getOperand(0));
1929 
1930     SmallVector<EVT, 4> ValueVTs, MemVTs;
1931     SmallVector<uint64_t, 4> Offsets;
1932     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1933                     &Offsets);
1934     unsigned NumValues = ValueVTs.size();
1935 
1936     SmallVector<SDValue, 4> Chains(NumValues);
1937     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1938     for (unsigned i = 0; i != NumValues; ++i) {
1939       // An aggregate return value cannot wrap around the address space, so
1940       // offsets to its parts don't wrap either.
1941       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1942                                            TypeSize::Fixed(Offsets[i]));
1943 
1944       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1945       if (MemVTs[i] != ValueVTs[i])
1946         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1947       Chains[i] = DAG.getStore(
1948           Chain, getCurSDLoc(), Val,
1949           // FIXME: better loc info would be nice.
1950           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1951           commonAlignment(BaseAlign, Offsets[i]));
1952     }
1953 
1954     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1955                         MVT::Other, Chains);
1956   } else if (I.getNumOperands() != 0) {
1957     SmallVector<EVT, 4> ValueVTs;
1958     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1959     unsigned NumValues = ValueVTs.size();
1960     if (NumValues) {
1961       SDValue RetOp = getValue(I.getOperand(0));
1962 
1963       const Function *F = I.getParent()->getParent();
1964 
1965       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1966           I.getOperand(0)->getType(), F->getCallingConv(),
1967           /*IsVarArg*/ false, DL);
1968 
1969       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1970       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1971         ExtendKind = ISD::SIGN_EXTEND;
1972       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1973         ExtendKind = ISD::ZERO_EXTEND;
1974 
1975       LLVMContext &Context = F->getContext();
1976       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1977 
1978       for (unsigned j = 0; j != NumValues; ++j) {
1979         EVT VT = ValueVTs[j];
1980 
1981         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1982           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1983 
1984         CallingConv::ID CC = F->getCallingConv();
1985 
1986         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1987         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1988         SmallVector<SDValue, 4> Parts(NumParts);
1989         getCopyToParts(DAG, getCurSDLoc(),
1990                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1991                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1992 
1993         // 'inreg' on function refers to return value
1994         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1995         if (RetInReg)
1996           Flags.setInReg();
1997 
1998         if (I.getOperand(0)->getType()->isPointerTy()) {
1999           Flags.setPointer();
2000           Flags.setPointerAddrSpace(
2001               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2002         }
2003 
2004         if (NeedsRegBlock) {
2005           Flags.setInConsecutiveRegs();
2006           if (j == NumValues - 1)
2007             Flags.setInConsecutiveRegsLast();
2008         }
2009 
2010         // Propagate extension type if any
2011         if (ExtendKind == ISD::SIGN_EXTEND)
2012           Flags.setSExt();
2013         else if (ExtendKind == ISD::ZERO_EXTEND)
2014           Flags.setZExt();
2015 
2016         for (unsigned i = 0; i < NumParts; ++i) {
2017           Outs.push_back(ISD::OutputArg(Flags,
2018                                         Parts[i].getValueType().getSimpleVT(),
2019                                         VT, /*isfixed=*/true, 0, 0));
2020           OutVals.push_back(Parts[i]);
2021         }
2022       }
2023     }
2024   }
2025 
2026   // Push in swifterror virtual register as the last element of Outs. This makes
2027   // sure swifterror virtual register will be returned in the swifterror
2028   // physical register.
2029   const Function *F = I.getParent()->getParent();
2030   if (TLI.supportSwiftError() &&
2031       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2032     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2033     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2034     Flags.setSwiftError();
2035     Outs.push_back(ISD::OutputArg(
2036         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2037         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2038     // Create SDNode for the swifterror virtual register.
2039     OutVals.push_back(
2040         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2041                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2042                         EVT(TLI.getPointerTy(DL))));
2043   }
2044 
2045   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2046   CallingConv::ID CallConv =
2047     DAG.getMachineFunction().getFunction().getCallingConv();
2048   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2049       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2050 
2051   // Verify that the target's LowerReturn behaved as expected.
2052   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2053          "LowerReturn didn't return a valid chain!");
2054 
2055   // Update the DAG with the new chain value resulting from return lowering.
2056   DAG.setRoot(Chain);
2057 }
2058 
2059 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2060 /// created for it, emit nodes to copy the value into the virtual
2061 /// registers.
2062 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2063   // Skip empty types
2064   if (V->getType()->isEmptyTy())
2065     return;
2066 
2067   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2068   if (VMI != FuncInfo.ValueMap.end()) {
2069     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2070     CopyValueToVirtualRegister(V, VMI->second);
2071   }
2072 }
2073 
2074 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2075 /// the current basic block, add it to ValueMap now so that we'll get a
2076 /// CopyTo/FromReg.
2077 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2078   // No need to export constants.
2079   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2080 
2081   // Already exported?
2082   if (FuncInfo.isExportedInst(V)) return;
2083 
2084   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2085   CopyValueToVirtualRegister(V, Reg);
2086 }
2087 
2088 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2089                                                      const BasicBlock *FromBB) {
2090   // The operands of the setcc have to be in this block.  We don't know
2091   // how to export them from some other block.
2092   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2093     // Can export from current BB.
2094     if (VI->getParent() == FromBB)
2095       return true;
2096 
2097     // Is already exported, noop.
2098     return FuncInfo.isExportedInst(V);
2099   }
2100 
2101   // If this is an argument, we can export it if the BB is the entry block or
2102   // if it is already exported.
2103   if (isa<Argument>(V)) {
2104     if (FromBB->isEntryBlock())
2105       return true;
2106 
2107     // Otherwise, can only export this if it is already exported.
2108     return FuncInfo.isExportedInst(V);
2109   }
2110 
2111   // Otherwise, constants can always be exported.
2112   return true;
2113 }
2114 
2115 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2116 BranchProbability
2117 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2118                                         const MachineBasicBlock *Dst) const {
2119   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2120   const BasicBlock *SrcBB = Src->getBasicBlock();
2121   const BasicBlock *DstBB = Dst->getBasicBlock();
2122   if (!BPI) {
2123     // If BPI is not available, set the default probability as 1 / N, where N is
2124     // the number of successors.
2125     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2126     return BranchProbability(1, SuccSize);
2127   }
2128   return BPI->getEdgeProbability(SrcBB, DstBB);
2129 }
2130 
2131 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2132                                                MachineBasicBlock *Dst,
2133                                                BranchProbability Prob) {
2134   if (!FuncInfo.BPI)
2135     Src->addSuccessorWithoutProb(Dst);
2136   else {
2137     if (Prob.isUnknown())
2138       Prob = getEdgeProbability(Src, Dst);
2139     Src->addSuccessor(Dst, Prob);
2140   }
2141 }
2142 
2143 static bool InBlock(const Value *V, const BasicBlock *BB) {
2144   if (const Instruction *I = dyn_cast<Instruction>(V))
2145     return I->getParent() == BB;
2146   return true;
2147 }
2148 
2149 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2150 /// This function emits a branch and is used at the leaves of an OR or an
2151 /// AND operator tree.
2152 void
2153 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2154                                                   MachineBasicBlock *TBB,
2155                                                   MachineBasicBlock *FBB,
2156                                                   MachineBasicBlock *CurBB,
2157                                                   MachineBasicBlock *SwitchBB,
2158                                                   BranchProbability TProb,
2159                                                   BranchProbability FProb,
2160                                                   bool InvertCond) {
2161   const BasicBlock *BB = CurBB->getBasicBlock();
2162 
2163   // If the leaf of the tree is a comparison, merge the condition into
2164   // the caseblock.
2165   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2166     // The operands of the cmp have to be in this block.  We don't know
2167     // how to export them from some other block.  If this is the first block
2168     // of the sequence, no exporting is needed.
2169     if (CurBB == SwitchBB ||
2170         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2171          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2172       ISD::CondCode Condition;
2173       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2174         ICmpInst::Predicate Pred =
2175             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2176         Condition = getICmpCondCode(Pred);
2177       } else {
2178         const FCmpInst *FC = cast<FCmpInst>(Cond);
2179         FCmpInst::Predicate Pred =
2180             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2181         Condition = getFCmpCondCode(Pred);
2182         if (TM.Options.NoNaNsFPMath)
2183           Condition = getFCmpCodeWithoutNaN(Condition);
2184       }
2185 
2186       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2187                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2188       SL->SwitchCases.push_back(CB);
2189       return;
2190     }
2191   }
2192 
2193   // Create a CaseBlock record representing this branch.
2194   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2195   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2196                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2197   SL->SwitchCases.push_back(CB);
2198 }
2199 
2200 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2201                                                MachineBasicBlock *TBB,
2202                                                MachineBasicBlock *FBB,
2203                                                MachineBasicBlock *CurBB,
2204                                                MachineBasicBlock *SwitchBB,
2205                                                Instruction::BinaryOps Opc,
2206                                                BranchProbability TProb,
2207                                                BranchProbability FProb,
2208                                                bool InvertCond) {
2209   // Skip over not part of the tree and remember to invert op and operands at
2210   // next level.
2211   Value *NotCond;
2212   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2213       InBlock(NotCond, CurBB->getBasicBlock())) {
2214     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2215                          !InvertCond);
2216     return;
2217   }
2218 
2219   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2220   const Value *BOpOp0, *BOpOp1;
2221   // Compute the effective opcode for Cond, taking into account whether it needs
2222   // to be inverted, e.g.
2223   //   and (not (or A, B)), C
2224   // gets lowered as
2225   //   and (and (not A, not B), C)
2226   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2227   if (BOp) {
2228     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2229                ? Instruction::And
2230                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2231                       ? Instruction::Or
2232                       : (Instruction::BinaryOps)0);
2233     if (InvertCond) {
2234       if (BOpc == Instruction::And)
2235         BOpc = Instruction::Or;
2236       else if (BOpc == Instruction::Or)
2237         BOpc = Instruction::And;
2238     }
2239   }
2240 
2241   // If this node is not part of the or/and tree, emit it as a branch.
2242   // Note that all nodes in the tree should have same opcode.
2243   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2244   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2245       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2246       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2247     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2248                                  TProb, FProb, InvertCond);
2249     return;
2250   }
2251 
2252   //  Create TmpBB after CurBB.
2253   MachineFunction::iterator BBI(CurBB);
2254   MachineFunction &MF = DAG.getMachineFunction();
2255   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2256   CurBB->getParent()->insert(++BBI, TmpBB);
2257 
2258   if (Opc == Instruction::Or) {
2259     // Codegen X | Y as:
2260     // BB1:
2261     //   jmp_if_X TBB
2262     //   jmp TmpBB
2263     // TmpBB:
2264     //   jmp_if_Y TBB
2265     //   jmp FBB
2266     //
2267 
2268     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2269     // The requirement is that
2270     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2271     //     = TrueProb for original BB.
2272     // Assuming the original probabilities are A and B, one choice is to set
2273     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2274     // A/(1+B) and 2B/(1+B). This choice assumes that
2275     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2276     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2277     // TmpBB, but the math is more complicated.
2278 
2279     auto NewTrueProb = TProb / 2;
2280     auto NewFalseProb = TProb / 2 + FProb;
2281     // Emit the LHS condition.
2282     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2283                          NewFalseProb, InvertCond);
2284 
2285     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2286     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2287     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2288     // Emit the RHS condition into TmpBB.
2289     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2290                          Probs[1], InvertCond);
2291   } else {
2292     assert(Opc == Instruction::And && "Unknown merge op!");
2293     // Codegen X & Y as:
2294     // BB1:
2295     //   jmp_if_X TmpBB
2296     //   jmp FBB
2297     // TmpBB:
2298     //   jmp_if_Y TBB
2299     //   jmp FBB
2300     //
2301     //  This requires creation of TmpBB after CurBB.
2302 
2303     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2304     // The requirement is that
2305     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2306     //     = FalseProb for original BB.
2307     // Assuming the original probabilities are A and B, one choice is to set
2308     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2309     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2310     // TrueProb for BB1 * FalseProb for TmpBB.
2311 
2312     auto NewTrueProb = TProb + FProb / 2;
2313     auto NewFalseProb = FProb / 2;
2314     // Emit the LHS condition.
2315     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2316                          NewFalseProb, InvertCond);
2317 
2318     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2319     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2320     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2321     // Emit the RHS condition into TmpBB.
2322     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2323                          Probs[1], InvertCond);
2324   }
2325 }
2326 
2327 /// If the set of cases should be emitted as a series of branches, return true.
2328 /// If we should emit this as a bunch of and/or'd together conditions, return
2329 /// false.
2330 bool
2331 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2332   if (Cases.size() != 2) return true;
2333 
2334   // If this is two comparisons of the same values or'd or and'd together, they
2335   // will get folded into a single comparison, so don't emit two blocks.
2336   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2337        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2338       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2339        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2340     return false;
2341   }
2342 
2343   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2344   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2345   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2346       Cases[0].CC == Cases[1].CC &&
2347       isa<Constant>(Cases[0].CmpRHS) &&
2348       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2349     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2350       return false;
2351     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2352       return false;
2353   }
2354 
2355   return true;
2356 }
2357 
2358 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2359   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2360 
2361   // Update machine-CFG edges.
2362   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2363 
2364   if (I.isUnconditional()) {
2365     // Update machine-CFG edges.
2366     BrMBB->addSuccessor(Succ0MBB);
2367 
2368     // If this is not a fall-through branch or optimizations are switched off,
2369     // emit the branch.
2370     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2371       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2372                               MVT::Other, getControlRoot(),
2373                               DAG.getBasicBlock(Succ0MBB)));
2374 
2375     return;
2376   }
2377 
2378   // If this condition is one of the special cases we handle, do special stuff
2379   // now.
2380   const Value *CondVal = I.getCondition();
2381   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2382 
2383   // If this is a series of conditions that are or'd or and'd together, emit
2384   // this as a sequence of branches instead of setcc's with and/or operations.
2385   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2386   // unpredictable branches, and vector extracts because those jumps are likely
2387   // expensive for any target), this should improve performance.
2388   // For example, instead of something like:
2389   //     cmp A, B
2390   //     C = seteq
2391   //     cmp D, E
2392   //     F = setle
2393   //     or C, F
2394   //     jnz foo
2395   // Emit:
2396   //     cmp A, B
2397   //     je foo
2398   //     cmp D, E
2399   //     jle foo
2400   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2401   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2402       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2403     Value *Vec;
2404     const Value *BOp0, *BOp1;
2405     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2406     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2407       Opcode = Instruction::And;
2408     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2409       Opcode = Instruction::Or;
2410 
2411     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2412                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2413       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2414                            getEdgeProbability(BrMBB, Succ0MBB),
2415                            getEdgeProbability(BrMBB, Succ1MBB),
2416                            /*InvertCond=*/false);
2417       // If the compares in later blocks need to use values not currently
2418       // exported from this block, export them now.  This block should always
2419       // be the first entry.
2420       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2421 
2422       // Allow some cases to be rejected.
2423       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2424         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2425           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2426           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2427         }
2428 
2429         // Emit the branch for this block.
2430         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2431         SL->SwitchCases.erase(SL->SwitchCases.begin());
2432         return;
2433       }
2434 
2435       // Okay, we decided not to do this, remove any inserted MBB's and clear
2436       // SwitchCases.
2437       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2438         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2439 
2440       SL->SwitchCases.clear();
2441     }
2442   }
2443 
2444   // Create a CaseBlock record representing this branch.
2445   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2446                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2447 
2448   // Use visitSwitchCase to actually insert the fast branch sequence for this
2449   // cond branch.
2450   visitSwitchCase(CB, BrMBB);
2451 }
2452 
2453 /// visitSwitchCase - Emits the necessary code to represent a single node in
2454 /// the binary search tree resulting from lowering a switch instruction.
2455 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2456                                           MachineBasicBlock *SwitchBB) {
2457   SDValue Cond;
2458   SDValue CondLHS = getValue(CB.CmpLHS);
2459   SDLoc dl = CB.DL;
2460 
2461   if (CB.CC == ISD::SETTRUE) {
2462     // Branch or fall through to TrueBB.
2463     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2464     SwitchBB->normalizeSuccProbs();
2465     if (CB.TrueBB != NextBlock(SwitchBB)) {
2466       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2467                               DAG.getBasicBlock(CB.TrueBB)));
2468     }
2469     return;
2470   }
2471 
2472   auto &TLI = DAG.getTargetLoweringInfo();
2473   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2474 
2475   // Build the setcc now.
2476   if (!CB.CmpMHS) {
2477     // Fold "(X == true)" to X and "(X == false)" to !X to
2478     // handle common cases produced by branch lowering.
2479     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2480         CB.CC == ISD::SETEQ)
2481       Cond = CondLHS;
2482     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2483              CB.CC == ISD::SETEQ) {
2484       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2485       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2486     } else {
2487       SDValue CondRHS = getValue(CB.CmpRHS);
2488 
2489       // If a pointer's DAG type is larger than its memory type then the DAG
2490       // values are zero-extended. This breaks signed comparisons so truncate
2491       // back to the underlying type before doing the compare.
2492       if (CondLHS.getValueType() != MemVT) {
2493         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2494         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2495       }
2496       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2497     }
2498   } else {
2499     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2500 
2501     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2502     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2503 
2504     SDValue CmpOp = getValue(CB.CmpMHS);
2505     EVT VT = CmpOp.getValueType();
2506 
2507     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2508       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2509                           ISD::SETLE);
2510     } else {
2511       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2512                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2513       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2514                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2515     }
2516   }
2517 
2518   // Update successor info
2519   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2520   // TrueBB and FalseBB are always different unless the incoming IR is
2521   // degenerate. This only happens when running llc on weird IR.
2522   if (CB.TrueBB != CB.FalseBB)
2523     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2524   SwitchBB->normalizeSuccProbs();
2525 
2526   // If the lhs block is the next block, invert the condition so that we can
2527   // fall through to the lhs instead of the rhs block.
2528   if (CB.TrueBB == NextBlock(SwitchBB)) {
2529     std::swap(CB.TrueBB, CB.FalseBB);
2530     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2531     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2532   }
2533 
2534   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2535                                MVT::Other, getControlRoot(), Cond,
2536                                DAG.getBasicBlock(CB.TrueBB));
2537 
2538   // Insert the false branch. Do this even if it's a fall through branch,
2539   // this makes it easier to do DAG optimizations which require inverting
2540   // the branch condition.
2541   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2542                        DAG.getBasicBlock(CB.FalseBB));
2543 
2544   DAG.setRoot(BrCond);
2545 }
2546 
2547 /// visitJumpTable - Emit JumpTable node in the current MBB
2548 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2549   // Emit the code for the jump table
2550   assert(JT.Reg != -1U && "Should lower JT Header first!");
2551   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2552   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2553                                      JT.Reg, PTy);
2554   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2555   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2556                                     MVT::Other, Index.getValue(1),
2557                                     Table, Index);
2558   DAG.setRoot(BrJumpTable);
2559 }
2560 
2561 /// visitJumpTableHeader - This function emits necessary code to produce index
2562 /// in the JumpTable from switch case.
2563 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2564                                                JumpTableHeader &JTH,
2565                                                MachineBasicBlock *SwitchBB) {
2566   SDLoc dl = getCurSDLoc();
2567 
2568   // Subtract the lowest switch case value from the value being switched on.
2569   SDValue SwitchOp = getValue(JTH.SValue);
2570   EVT VT = SwitchOp.getValueType();
2571   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2572                             DAG.getConstant(JTH.First, dl, VT));
2573 
2574   // The SDNode we just created, which holds the value being switched on minus
2575   // the smallest case value, needs to be copied to a virtual register so it
2576   // can be used as an index into the jump table in a subsequent basic block.
2577   // This value may be smaller or larger than the target's pointer type, and
2578   // therefore require extension or truncating.
2579   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2580   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2581 
2582   unsigned JumpTableReg =
2583       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2584   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2585                                     JumpTableReg, SwitchOp);
2586   JT.Reg = JumpTableReg;
2587 
2588   if (!JTH.FallthroughUnreachable) {
2589     // Emit the range check for the jump table, and branch to the default block
2590     // for the switch statement if the value being switched on exceeds the
2591     // largest case in the switch.
2592     SDValue CMP = DAG.getSetCC(
2593         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2594                                    Sub.getValueType()),
2595         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2596 
2597     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2598                                  MVT::Other, CopyTo, CMP,
2599                                  DAG.getBasicBlock(JT.Default));
2600 
2601     // Avoid emitting unnecessary branches to the next block.
2602     if (JT.MBB != NextBlock(SwitchBB))
2603       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2604                            DAG.getBasicBlock(JT.MBB));
2605 
2606     DAG.setRoot(BrCond);
2607   } else {
2608     // Avoid emitting unnecessary branches to the next block.
2609     if (JT.MBB != NextBlock(SwitchBB))
2610       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2611                               DAG.getBasicBlock(JT.MBB)));
2612     else
2613       DAG.setRoot(CopyTo);
2614   }
2615 }
2616 
2617 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2618 /// variable if there exists one.
2619 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2620                                  SDValue &Chain) {
2621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2622   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2623   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2624   MachineFunction &MF = DAG.getMachineFunction();
2625   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2626   MachineSDNode *Node =
2627       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2628   if (Global) {
2629     MachinePointerInfo MPInfo(Global);
2630     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2631                  MachineMemOperand::MODereferenceable;
2632     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2633         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2634     DAG.setNodeMemRefs(Node, {MemRef});
2635   }
2636   if (PtrTy != PtrMemTy)
2637     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2638   return SDValue(Node, 0);
2639 }
2640 
2641 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2642 /// tail spliced into a stack protector check success bb.
2643 ///
2644 /// For a high level explanation of how this fits into the stack protector
2645 /// generation see the comment on the declaration of class
2646 /// StackProtectorDescriptor.
2647 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2648                                                   MachineBasicBlock *ParentBB) {
2649 
2650   // First create the loads to the guard/stack slot for the comparison.
2651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2652   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2653   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2654 
2655   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2656   int FI = MFI.getStackProtectorIndex();
2657 
2658   SDValue Guard;
2659   SDLoc dl = getCurSDLoc();
2660   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2661   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2662   Align Align =
2663       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2664 
2665   // Generate code to load the content of the guard slot.
2666   SDValue GuardVal = DAG.getLoad(
2667       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2668       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2669       MachineMemOperand::MOVolatile);
2670 
2671   if (TLI.useStackGuardXorFP())
2672     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2673 
2674   // Retrieve guard check function, nullptr if instrumentation is inlined.
2675   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2676     // The target provides a guard check function to validate the guard value.
2677     // Generate a call to that function with the content of the guard slot as
2678     // argument.
2679     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2680     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2681 
2682     TargetLowering::ArgListTy Args;
2683     TargetLowering::ArgListEntry Entry;
2684     Entry.Node = GuardVal;
2685     Entry.Ty = FnTy->getParamType(0);
2686     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2687       Entry.IsInReg = true;
2688     Args.push_back(Entry);
2689 
2690     TargetLowering::CallLoweringInfo CLI(DAG);
2691     CLI.setDebugLoc(getCurSDLoc())
2692         .setChain(DAG.getEntryNode())
2693         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2694                    getValue(GuardCheckFn), std::move(Args));
2695 
2696     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2697     DAG.setRoot(Result.second);
2698     return;
2699   }
2700 
2701   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2702   // Otherwise, emit a volatile load to retrieve the stack guard value.
2703   SDValue Chain = DAG.getEntryNode();
2704   if (TLI.useLoadStackGuardNode()) {
2705     Guard = getLoadStackGuard(DAG, dl, Chain);
2706   } else {
2707     const Value *IRGuard = TLI.getSDagStackGuard(M);
2708     SDValue GuardPtr = getValue(IRGuard);
2709 
2710     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2711                         MachinePointerInfo(IRGuard, 0), Align,
2712                         MachineMemOperand::MOVolatile);
2713   }
2714 
2715   // Perform the comparison via a getsetcc.
2716   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2717                                                         *DAG.getContext(),
2718                                                         Guard.getValueType()),
2719                              Guard, GuardVal, ISD::SETNE);
2720 
2721   // If the guard/stackslot do not equal, branch to failure MBB.
2722   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2723                                MVT::Other, GuardVal.getOperand(0),
2724                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2725   // Otherwise branch to success MBB.
2726   SDValue Br = DAG.getNode(ISD::BR, dl,
2727                            MVT::Other, BrCond,
2728                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2729 
2730   DAG.setRoot(Br);
2731 }
2732 
2733 /// Codegen the failure basic block for a stack protector check.
2734 ///
2735 /// A failure stack protector machine basic block consists simply of a call to
2736 /// __stack_chk_fail().
2737 ///
2738 /// For a high level explanation of how this fits into the stack protector
2739 /// generation see the comment on the declaration of class
2740 /// StackProtectorDescriptor.
2741 void
2742 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2744   TargetLowering::MakeLibCallOptions CallOptions;
2745   CallOptions.setDiscardResult(true);
2746   SDValue Chain =
2747       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2748                       None, CallOptions, getCurSDLoc()).second;
2749   // On PS4, the "return address" must still be within the calling function,
2750   // even if it's at the very end, so emit an explicit TRAP here.
2751   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2752   if (TM.getTargetTriple().isPS4())
2753     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2754   // WebAssembly needs an unreachable instruction after a non-returning call,
2755   // because the function return type can be different from __stack_chk_fail's
2756   // return type (void).
2757   if (TM.getTargetTriple().isWasm())
2758     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2759 
2760   DAG.setRoot(Chain);
2761 }
2762 
2763 /// visitBitTestHeader - This function emits necessary code to produce value
2764 /// suitable for "bit tests"
2765 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2766                                              MachineBasicBlock *SwitchBB) {
2767   SDLoc dl = getCurSDLoc();
2768 
2769   // Subtract the minimum value.
2770   SDValue SwitchOp = getValue(B.SValue);
2771   EVT VT = SwitchOp.getValueType();
2772   SDValue RangeSub =
2773       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2774 
2775   // Determine the type of the test operands.
2776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2777   bool UsePtrType = false;
2778   if (!TLI.isTypeLegal(VT)) {
2779     UsePtrType = true;
2780   } else {
2781     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2782       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2783         // Switch table case range are encoded into series of masks.
2784         // Just use pointer type, it's guaranteed to fit.
2785         UsePtrType = true;
2786         break;
2787       }
2788   }
2789   SDValue Sub = RangeSub;
2790   if (UsePtrType) {
2791     VT = TLI.getPointerTy(DAG.getDataLayout());
2792     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2793   }
2794 
2795   B.RegVT = VT.getSimpleVT();
2796   B.Reg = FuncInfo.CreateReg(B.RegVT);
2797   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2798 
2799   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2800 
2801   if (!B.FallthroughUnreachable)
2802     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2803   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2804   SwitchBB->normalizeSuccProbs();
2805 
2806   SDValue Root = CopyTo;
2807   if (!B.FallthroughUnreachable) {
2808     // Conditional branch to the default block.
2809     SDValue RangeCmp = DAG.getSetCC(dl,
2810         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2811                                RangeSub.getValueType()),
2812         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2813         ISD::SETUGT);
2814 
2815     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2816                        DAG.getBasicBlock(B.Default));
2817   }
2818 
2819   // Avoid emitting unnecessary branches to the next block.
2820   if (MBB != NextBlock(SwitchBB))
2821     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2822 
2823   DAG.setRoot(Root);
2824 }
2825 
2826 /// visitBitTestCase - this function produces one "bit test"
2827 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2828                                            MachineBasicBlock* NextMBB,
2829                                            BranchProbability BranchProbToNext,
2830                                            unsigned Reg,
2831                                            BitTestCase &B,
2832                                            MachineBasicBlock *SwitchBB) {
2833   SDLoc dl = getCurSDLoc();
2834   MVT VT = BB.RegVT;
2835   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2836   SDValue Cmp;
2837   unsigned PopCount = countPopulation(B.Mask);
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   if (PopCount == 1) {
2840     // Testing for a single bit; just compare the shift count with what it
2841     // would need to be to shift a 1 bit in that position.
2842     Cmp = DAG.getSetCC(
2843         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2844         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2845         ISD::SETEQ);
2846   } else if (PopCount == BB.Range) {
2847     // There is only one zero bit in the range, test for it directly.
2848     Cmp = DAG.getSetCC(
2849         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2850         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2851         ISD::SETNE);
2852   } else {
2853     // Make desired shift
2854     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2855                                     DAG.getConstant(1, dl, VT), ShiftOp);
2856 
2857     // Emit bit tests and jumps
2858     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2859                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2860     Cmp = DAG.getSetCC(
2861         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2862         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2863   }
2864 
2865   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2866   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2867   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2868   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2869   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2870   // one as they are relative probabilities (and thus work more like weights),
2871   // and hence we need to normalize them to let the sum of them become one.
2872   SwitchBB->normalizeSuccProbs();
2873 
2874   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2875                               MVT::Other, getControlRoot(),
2876                               Cmp, DAG.getBasicBlock(B.TargetBB));
2877 
2878   // Avoid emitting unnecessary branches to the next block.
2879   if (NextMBB != NextBlock(SwitchBB))
2880     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2881                         DAG.getBasicBlock(NextMBB));
2882 
2883   DAG.setRoot(BrAnd);
2884 }
2885 
2886 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2887   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2888 
2889   // Retrieve successors. Look through artificial IR level blocks like
2890   // catchswitch for successors.
2891   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2892   const BasicBlock *EHPadBB = I.getSuccessor(1);
2893 
2894   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2895   // have to do anything here to lower funclet bundles.
2896   assert(!I.hasOperandBundlesOtherThan(
2897              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2898               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2899               LLVMContext::OB_cfguardtarget,
2900               LLVMContext::OB_clang_arc_attachedcall}) &&
2901          "Cannot lower invokes with arbitrary operand bundles yet!");
2902 
2903   const Value *Callee(I.getCalledOperand());
2904   const Function *Fn = dyn_cast<Function>(Callee);
2905   if (isa<InlineAsm>(Callee))
2906     visitInlineAsm(I, EHPadBB);
2907   else if (Fn && Fn->isIntrinsic()) {
2908     switch (Fn->getIntrinsicID()) {
2909     default:
2910       llvm_unreachable("Cannot invoke this intrinsic");
2911     case Intrinsic::donothing:
2912       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2913     case Intrinsic::seh_try_begin:
2914     case Intrinsic::seh_scope_begin:
2915     case Intrinsic::seh_try_end:
2916     case Intrinsic::seh_scope_end:
2917       break;
2918     case Intrinsic::experimental_patchpoint_void:
2919     case Intrinsic::experimental_patchpoint_i64:
2920       visitPatchpoint(I, EHPadBB);
2921       break;
2922     case Intrinsic::experimental_gc_statepoint:
2923       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2924       break;
2925     case Intrinsic::wasm_rethrow: {
2926       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2927       // special because it can be invoked, so we manually lower it to a DAG
2928       // node here.
2929       SmallVector<SDValue, 8> Ops;
2930       Ops.push_back(getRoot()); // inchain
2931       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2932       Ops.push_back(
2933           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2934                                 TLI.getPointerTy(DAG.getDataLayout())));
2935       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2936       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2937       break;
2938     }
2939     }
2940   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2941     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2942     // Eventually we will support lowering the @llvm.experimental.deoptimize
2943     // intrinsic, and right now there are no plans to support other intrinsics
2944     // with deopt state.
2945     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2946   } else {
2947     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2948   }
2949 
2950   // If the value of the invoke is used outside of its defining block, make it
2951   // available as a virtual register.
2952   // We already took care of the exported value for the statepoint instruction
2953   // during call to the LowerStatepoint.
2954   if (!isa<GCStatepointInst>(I)) {
2955     CopyToExportRegsIfNeeded(&I);
2956   }
2957 
2958   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2959   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2960   BranchProbability EHPadBBProb =
2961       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2962           : BranchProbability::getZero();
2963   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2964 
2965   // Update successor info.
2966   addSuccessorWithProb(InvokeMBB, Return);
2967   for (auto &UnwindDest : UnwindDests) {
2968     UnwindDest.first->setIsEHPad();
2969     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2970   }
2971   InvokeMBB->normalizeSuccProbs();
2972 
2973   // Drop into normal successor.
2974   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2975                           DAG.getBasicBlock(Return)));
2976 }
2977 
2978 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2979   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2980 
2981   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2982   // have to do anything here to lower funclet bundles.
2983   assert(!I.hasOperandBundlesOtherThan(
2984              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2985          "Cannot lower callbrs with arbitrary operand bundles yet!");
2986 
2987   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2988   visitInlineAsm(I);
2989   CopyToExportRegsIfNeeded(&I);
2990 
2991   // Retrieve successors.
2992   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2993 
2994   // Update successor info.
2995   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2996   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2997     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2998     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2999     Target->setIsInlineAsmBrIndirectTarget();
3000   }
3001   CallBrMBB->normalizeSuccProbs();
3002 
3003   // Drop into default successor.
3004   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3005                           MVT::Other, getControlRoot(),
3006                           DAG.getBasicBlock(Return)));
3007 }
3008 
3009 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3010   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3011 }
3012 
3013 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3014   assert(FuncInfo.MBB->isEHPad() &&
3015          "Call to landingpad not in landing pad!");
3016 
3017   // If there aren't registers to copy the values into (e.g., during SjLj
3018   // exceptions), then don't bother to create these DAG nodes.
3019   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3020   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3021   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3022       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3023     return;
3024 
3025   // If landingpad's return type is token type, we don't create DAG nodes
3026   // for its exception pointer and selector value. The extraction of exception
3027   // pointer or selector value from token type landingpads is not currently
3028   // supported.
3029   if (LP.getType()->isTokenTy())
3030     return;
3031 
3032   SmallVector<EVT, 2> ValueVTs;
3033   SDLoc dl = getCurSDLoc();
3034   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3035   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3036 
3037   // Get the two live-in registers as SDValues. The physregs have already been
3038   // copied into virtual registers.
3039   SDValue Ops[2];
3040   if (FuncInfo.ExceptionPointerVirtReg) {
3041     Ops[0] = DAG.getZExtOrTrunc(
3042         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3043                            FuncInfo.ExceptionPointerVirtReg,
3044                            TLI.getPointerTy(DAG.getDataLayout())),
3045         dl, ValueVTs[0]);
3046   } else {
3047     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3048   }
3049   Ops[1] = DAG.getZExtOrTrunc(
3050       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3051                          FuncInfo.ExceptionSelectorVirtReg,
3052                          TLI.getPointerTy(DAG.getDataLayout())),
3053       dl, ValueVTs[1]);
3054 
3055   // Merge into one.
3056   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3057                             DAG.getVTList(ValueVTs), Ops);
3058   setValue(&LP, Res);
3059 }
3060 
3061 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3062                                            MachineBasicBlock *Last) {
3063   // Update JTCases.
3064   for (JumpTableBlock &JTB : SL->JTCases)
3065     if (JTB.first.HeaderBB == First)
3066       JTB.first.HeaderBB = Last;
3067 
3068   // Update BitTestCases.
3069   for (BitTestBlock &BTB : SL->BitTestCases)
3070     if (BTB.Parent == First)
3071       BTB.Parent = Last;
3072 }
3073 
3074 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3075   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3076 
3077   // Update machine-CFG edges with unique successors.
3078   SmallSet<BasicBlock*, 32> Done;
3079   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3080     BasicBlock *BB = I.getSuccessor(i);
3081     bool Inserted = Done.insert(BB).second;
3082     if (!Inserted)
3083         continue;
3084 
3085     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3086     addSuccessorWithProb(IndirectBrMBB, Succ);
3087   }
3088   IndirectBrMBB->normalizeSuccProbs();
3089 
3090   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3091                           MVT::Other, getControlRoot(),
3092                           getValue(I.getAddress())));
3093 }
3094 
3095 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3096   if (!DAG.getTarget().Options.TrapUnreachable)
3097     return;
3098 
3099   // We may be able to ignore unreachable behind a noreturn call.
3100   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3101     const BasicBlock &BB = *I.getParent();
3102     if (&I != &BB.front()) {
3103       BasicBlock::const_iterator PredI =
3104         std::prev(BasicBlock::const_iterator(&I));
3105       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3106         if (Call->doesNotReturn())
3107           return;
3108       }
3109     }
3110   }
3111 
3112   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3113 }
3114 
3115 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3116   SDNodeFlags Flags;
3117   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3118     Flags.copyFMF(*FPOp);
3119 
3120   SDValue Op = getValue(I.getOperand(0));
3121   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3122                                     Op, Flags);
3123   setValue(&I, UnNodeValue);
3124 }
3125 
3126 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3127   SDNodeFlags Flags;
3128   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3129     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3130     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3131   }
3132   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3133     Flags.setExact(ExactOp->isExact());
3134   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3135     Flags.copyFMF(*FPOp);
3136 
3137   SDValue Op1 = getValue(I.getOperand(0));
3138   SDValue Op2 = getValue(I.getOperand(1));
3139   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3140                                      Op1, Op2, Flags);
3141   setValue(&I, BinNodeValue);
3142 }
3143 
3144 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3145   SDValue Op1 = getValue(I.getOperand(0));
3146   SDValue Op2 = getValue(I.getOperand(1));
3147 
3148   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3149       Op1.getValueType(), DAG.getDataLayout());
3150 
3151   // Coerce the shift amount to the right type if we can. This exposes the
3152   // truncate or zext to optimization early.
3153   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3154     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3155            "Unexpected shift type");
3156     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3157   }
3158 
3159   bool nuw = false;
3160   bool nsw = false;
3161   bool exact = false;
3162 
3163   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3164 
3165     if (const OverflowingBinaryOperator *OFBinOp =
3166             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3167       nuw = OFBinOp->hasNoUnsignedWrap();
3168       nsw = OFBinOp->hasNoSignedWrap();
3169     }
3170     if (const PossiblyExactOperator *ExactOp =
3171             dyn_cast<const PossiblyExactOperator>(&I))
3172       exact = ExactOp->isExact();
3173   }
3174   SDNodeFlags Flags;
3175   Flags.setExact(exact);
3176   Flags.setNoSignedWrap(nsw);
3177   Flags.setNoUnsignedWrap(nuw);
3178   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3179                             Flags);
3180   setValue(&I, Res);
3181 }
3182 
3183 void SelectionDAGBuilder::visitSDiv(const User &I) {
3184   SDValue Op1 = getValue(I.getOperand(0));
3185   SDValue Op2 = getValue(I.getOperand(1));
3186 
3187   SDNodeFlags Flags;
3188   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3189                  cast<PossiblyExactOperator>(&I)->isExact());
3190   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3191                            Op2, Flags));
3192 }
3193 
3194 void SelectionDAGBuilder::visitICmp(const User &I) {
3195   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3196   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3197     predicate = IC->getPredicate();
3198   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3199     predicate = ICmpInst::Predicate(IC->getPredicate());
3200   SDValue Op1 = getValue(I.getOperand(0));
3201   SDValue Op2 = getValue(I.getOperand(1));
3202   ISD::CondCode Opcode = getICmpCondCode(predicate);
3203 
3204   auto &TLI = DAG.getTargetLoweringInfo();
3205   EVT MemVT =
3206       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3207 
3208   // If a pointer's DAG type is larger than its memory type then the DAG values
3209   // are zero-extended. This breaks signed comparisons so truncate back to the
3210   // underlying type before doing the compare.
3211   if (Op1.getValueType() != MemVT) {
3212     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3213     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3214   }
3215 
3216   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3217                                                         I.getType());
3218   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3219 }
3220 
3221 void SelectionDAGBuilder::visitFCmp(const User &I) {
3222   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3223   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3224     predicate = FC->getPredicate();
3225   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3226     predicate = FCmpInst::Predicate(FC->getPredicate());
3227   SDValue Op1 = getValue(I.getOperand(0));
3228   SDValue Op2 = getValue(I.getOperand(1));
3229 
3230   ISD::CondCode Condition = getFCmpCondCode(predicate);
3231   auto *FPMO = cast<FPMathOperator>(&I);
3232   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3233     Condition = getFCmpCodeWithoutNaN(Condition);
3234 
3235   SDNodeFlags Flags;
3236   Flags.copyFMF(*FPMO);
3237   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3238 
3239   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3240                                                         I.getType());
3241   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3242 }
3243 
3244 // Check if the condition of the select has one use or two users that are both
3245 // selects with the same condition.
3246 static bool hasOnlySelectUsers(const Value *Cond) {
3247   return llvm::all_of(Cond->users(), [](const Value *V) {
3248     return isa<SelectInst>(V);
3249   });
3250 }
3251 
3252 void SelectionDAGBuilder::visitSelect(const User &I) {
3253   SmallVector<EVT, 4> ValueVTs;
3254   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3255                   ValueVTs);
3256   unsigned NumValues = ValueVTs.size();
3257   if (NumValues == 0) return;
3258 
3259   SmallVector<SDValue, 4> Values(NumValues);
3260   SDValue Cond     = getValue(I.getOperand(0));
3261   SDValue LHSVal   = getValue(I.getOperand(1));
3262   SDValue RHSVal   = getValue(I.getOperand(2));
3263   SmallVector<SDValue, 1> BaseOps(1, Cond);
3264   ISD::NodeType OpCode =
3265       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3266 
3267   bool IsUnaryAbs = false;
3268   bool Negate = false;
3269 
3270   SDNodeFlags Flags;
3271   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3272     Flags.copyFMF(*FPOp);
3273 
3274   // Min/max matching is only viable if all output VTs are the same.
3275   if (is_splat(ValueVTs)) {
3276     EVT VT = ValueVTs[0];
3277     LLVMContext &Ctx = *DAG.getContext();
3278     auto &TLI = DAG.getTargetLoweringInfo();
3279 
3280     // We care about the legality of the operation after it has been type
3281     // legalized.
3282     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3283       VT = TLI.getTypeToTransformTo(Ctx, VT);
3284 
3285     // If the vselect is legal, assume we want to leave this as a vector setcc +
3286     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3287     // min/max is legal on the scalar type.
3288     bool UseScalarMinMax = VT.isVector() &&
3289       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3290 
3291     Value *LHS, *RHS;
3292     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3293     ISD::NodeType Opc = ISD::DELETED_NODE;
3294     switch (SPR.Flavor) {
3295     case SPF_UMAX:    Opc = ISD::UMAX; break;
3296     case SPF_UMIN:    Opc = ISD::UMIN; break;
3297     case SPF_SMAX:    Opc = ISD::SMAX; break;
3298     case SPF_SMIN:    Opc = ISD::SMIN; break;
3299     case SPF_FMINNUM:
3300       switch (SPR.NaNBehavior) {
3301       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3302       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3303       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3304       case SPNB_RETURNS_ANY: {
3305         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3306           Opc = ISD::FMINNUM;
3307         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3308           Opc = ISD::FMINIMUM;
3309         else if (UseScalarMinMax)
3310           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3311             ISD::FMINNUM : ISD::FMINIMUM;
3312         break;
3313       }
3314       }
3315       break;
3316     case SPF_FMAXNUM:
3317       switch (SPR.NaNBehavior) {
3318       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3320       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3321       case SPNB_RETURNS_ANY:
3322 
3323         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3324           Opc = ISD::FMAXNUM;
3325         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3326           Opc = ISD::FMAXIMUM;
3327         else if (UseScalarMinMax)
3328           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3329             ISD::FMAXNUM : ISD::FMAXIMUM;
3330         break;
3331       }
3332       break;
3333     case SPF_NABS:
3334       Negate = true;
3335       LLVM_FALLTHROUGH;
3336     case SPF_ABS:
3337       IsUnaryAbs = true;
3338       Opc = ISD::ABS;
3339       break;
3340     default: break;
3341     }
3342 
3343     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3344         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3345          (UseScalarMinMax &&
3346           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3347         // If the underlying comparison instruction is used by any other
3348         // instruction, the consumed instructions won't be destroyed, so it is
3349         // not profitable to convert to a min/max.
3350         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3351       OpCode = Opc;
3352       LHSVal = getValue(LHS);
3353       RHSVal = getValue(RHS);
3354       BaseOps.clear();
3355     }
3356 
3357     if (IsUnaryAbs) {
3358       OpCode = Opc;
3359       LHSVal = getValue(LHS);
3360       BaseOps.clear();
3361     }
3362   }
3363 
3364   if (IsUnaryAbs) {
3365     for (unsigned i = 0; i != NumValues; ++i) {
3366       SDLoc dl = getCurSDLoc();
3367       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3368       Values[i] =
3369           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3370       if (Negate)
3371         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3372                                 Values[i]);
3373     }
3374   } else {
3375     for (unsigned i = 0; i != NumValues; ++i) {
3376       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3377       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3378       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3379       Values[i] = DAG.getNode(
3380           OpCode, getCurSDLoc(),
3381           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3382     }
3383   }
3384 
3385   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3386                            DAG.getVTList(ValueVTs), Values));
3387 }
3388 
3389 void SelectionDAGBuilder::visitTrunc(const User &I) {
3390   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3391   SDValue N = getValue(I.getOperand(0));
3392   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3393                                                         I.getType());
3394   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3395 }
3396 
3397 void SelectionDAGBuilder::visitZExt(const User &I) {
3398   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3399   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3400   SDValue N = getValue(I.getOperand(0));
3401   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3402                                                         I.getType());
3403   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3404 }
3405 
3406 void SelectionDAGBuilder::visitSExt(const User &I) {
3407   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3408   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3409   SDValue N = getValue(I.getOperand(0));
3410   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3411                                                         I.getType());
3412   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3413 }
3414 
3415 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3416   // FPTrunc is never a no-op cast, no need to check
3417   SDValue N = getValue(I.getOperand(0));
3418   SDLoc dl = getCurSDLoc();
3419   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3420   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3421   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3422                            DAG.getTargetConstant(
3423                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3424 }
3425 
3426 void SelectionDAGBuilder::visitFPExt(const User &I) {
3427   // FPExt is never a no-op cast, no need to check
3428   SDValue N = getValue(I.getOperand(0));
3429   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3430                                                         I.getType());
3431   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3432 }
3433 
3434 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3435   // FPToUI is never a no-op cast, no need to check
3436   SDValue N = getValue(I.getOperand(0));
3437   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3438                                                         I.getType());
3439   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3443   // FPToSI is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3451   // UIToFP is never a no-op cast, no need to check
3452   SDValue N = getValue(I.getOperand(0));
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3456 }
3457 
3458 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3459   // SIToFP is never a no-op cast, no need to check
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3467   // What to do depends on the size of the integer and the size of the pointer.
3468   // We can either truncate, zero extend, or no-op, accordingly.
3469   SDValue N = getValue(I.getOperand(0));
3470   auto &TLI = DAG.getTargetLoweringInfo();
3471   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3472                                                         I.getType());
3473   EVT PtrMemVT =
3474       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3475   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3476   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3477   setValue(&I, N);
3478 }
3479 
3480 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3481   // What to do depends on the size of the integer and the size of the pointer.
3482   // We can either truncate, zero extend, or no-op, accordingly.
3483   SDValue N = getValue(I.getOperand(0));
3484   auto &TLI = DAG.getTargetLoweringInfo();
3485   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3486   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3487   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3488   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3489   setValue(&I, N);
3490 }
3491 
3492 void SelectionDAGBuilder::visitBitCast(const User &I) {
3493   SDValue N = getValue(I.getOperand(0));
3494   SDLoc dl = getCurSDLoc();
3495   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3496                                                         I.getType());
3497 
3498   // BitCast assures us that source and destination are the same size so this is
3499   // either a BITCAST or a no-op.
3500   if (DestVT != N.getValueType())
3501     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3502                              DestVT, N)); // convert types.
3503   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3504   // might fold any kind of constant expression to an integer constant and that
3505   // is not what we are looking for. Only recognize a bitcast of a genuine
3506   // constant integer as an opaque constant.
3507   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3508     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3509                                  /*isOpaque*/true));
3510   else
3511     setValue(&I, N);            // noop cast.
3512 }
3513 
3514 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3515   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3516   const Value *SV = I.getOperand(0);
3517   SDValue N = getValue(SV);
3518   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3519 
3520   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3521   unsigned DestAS = I.getType()->getPointerAddressSpace();
3522 
3523   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3524     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3525 
3526   setValue(&I, N);
3527 }
3528 
3529 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3530   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3531   SDValue InVec = getValue(I.getOperand(0));
3532   SDValue InVal = getValue(I.getOperand(1));
3533   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3534                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3535   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3536                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3537                            InVec, InVal, InIdx));
3538 }
3539 
3540 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   SDValue InVec = getValue(I.getOperand(0));
3543   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3544                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3545   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3546                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3547                            InVec, InIdx));
3548 }
3549 
3550 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3551   SDValue Src1 = getValue(I.getOperand(0));
3552   SDValue Src2 = getValue(I.getOperand(1));
3553   ArrayRef<int> Mask;
3554   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3555     Mask = SVI->getShuffleMask();
3556   else
3557     Mask = cast<ConstantExpr>(I).getShuffleMask();
3558   SDLoc DL = getCurSDLoc();
3559   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3560   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3561   EVT SrcVT = Src1.getValueType();
3562 
3563   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3564       VT.isScalableVector()) {
3565     // Canonical splat form of first element of first input vector.
3566     SDValue FirstElt =
3567         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3568                     DAG.getVectorIdxConstant(0, DL));
3569     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3570     return;
3571   }
3572 
3573   // For now, we only handle splats for scalable vectors.
3574   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3575   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3576   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3577 
3578   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3579   unsigned MaskNumElts = Mask.size();
3580 
3581   if (SrcNumElts == MaskNumElts) {
3582     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3583     return;
3584   }
3585 
3586   // Normalize the shuffle vector since mask and vector length don't match.
3587   if (SrcNumElts < MaskNumElts) {
3588     // Mask is longer than the source vectors. We can use concatenate vector to
3589     // make the mask and vectors lengths match.
3590 
3591     if (MaskNumElts % SrcNumElts == 0) {
3592       // Mask length is a multiple of the source vector length.
3593       // Check if the shuffle is some kind of concatenation of the input
3594       // vectors.
3595       unsigned NumConcat = MaskNumElts / SrcNumElts;
3596       bool IsConcat = true;
3597       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3598       for (unsigned i = 0; i != MaskNumElts; ++i) {
3599         int Idx = Mask[i];
3600         if (Idx < 0)
3601           continue;
3602         // Ensure the indices in each SrcVT sized piece are sequential and that
3603         // the same source is used for the whole piece.
3604         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3605             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3606              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3607           IsConcat = false;
3608           break;
3609         }
3610         // Remember which source this index came from.
3611         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3612       }
3613 
3614       // The shuffle is concatenating multiple vectors together. Just emit
3615       // a CONCAT_VECTORS operation.
3616       if (IsConcat) {
3617         SmallVector<SDValue, 8> ConcatOps;
3618         for (auto Src : ConcatSrcs) {
3619           if (Src < 0)
3620             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3621           else if (Src == 0)
3622             ConcatOps.push_back(Src1);
3623           else
3624             ConcatOps.push_back(Src2);
3625         }
3626         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3627         return;
3628       }
3629     }
3630 
3631     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3632     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3633     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3634                                     PaddedMaskNumElts);
3635 
3636     // Pad both vectors with undefs to make them the same length as the mask.
3637     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3638 
3639     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3640     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3641     MOps1[0] = Src1;
3642     MOps2[0] = Src2;
3643 
3644     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3645     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3646 
3647     // Readjust mask for new input vector length.
3648     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3649     for (unsigned i = 0; i != MaskNumElts; ++i) {
3650       int Idx = Mask[i];
3651       if (Idx >= (int)SrcNumElts)
3652         Idx -= SrcNumElts - PaddedMaskNumElts;
3653       MappedOps[i] = Idx;
3654     }
3655 
3656     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3657 
3658     // If the concatenated vector was padded, extract a subvector with the
3659     // correct number of elements.
3660     if (MaskNumElts != PaddedMaskNumElts)
3661       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3662                            DAG.getVectorIdxConstant(0, DL));
3663 
3664     setValue(&I, Result);
3665     return;
3666   }
3667 
3668   if (SrcNumElts > MaskNumElts) {
3669     // Analyze the access pattern of the vector to see if we can extract
3670     // two subvectors and do the shuffle.
3671     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3672     bool CanExtract = true;
3673     for (int Idx : Mask) {
3674       unsigned Input = 0;
3675       if (Idx < 0)
3676         continue;
3677 
3678       if (Idx >= (int)SrcNumElts) {
3679         Input = 1;
3680         Idx -= SrcNumElts;
3681       }
3682 
3683       // If all the indices come from the same MaskNumElts sized portion of
3684       // the sources we can use extract. Also make sure the extract wouldn't
3685       // extract past the end of the source.
3686       int NewStartIdx = alignDown(Idx, MaskNumElts);
3687       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3688           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3689         CanExtract = false;
3690       // Make sure we always update StartIdx as we use it to track if all
3691       // elements are undef.
3692       StartIdx[Input] = NewStartIdx;
3693     }
3694 
3695     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3696       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3697       return;
3698     }
3699     if (CanExtract) {
3700       // Extract appropriate subvector and generate a vector shuffle
3701       for (unsigned Input = 0; Input < 2; ++Input) {
3702         SDValue &Src = Input == 0 ? Src1 : Src2;
3703         if (StartIdx[Input] < 0)
3704           Src = DAG.getUNDEF(VT);
3705         else {
3706           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3707                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3708         }
3709       }
3710 
3711       // Calculate new mask.
3712       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3713       for (int &Idx : MappedOps) {
3714         if (Idx >= (int)SrcNumElts)
3715           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3716         else if (Idx >= 0)
3717           Idx -= StartIdx[0];
3718       }
3719 
3720       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3721       return;
3722     }
3723   }
3724 
3725   // We can't use either concat vectors or extract subvectors so fall back to
3726   // replacing the shuffle with extract and build vector.
3727   // to insert and build vector.
3728   EVT EltVT = VT.getVectorElementType();
3729   SmallVector<SDValue,8> Ops;
3730   for (int Idx : Mask) {
3731     SDValue Res;
3732 
3733     if (Idx < 0) {
3734       Res = DAG.getUNDEF(EltVT);
3735     } else {
3736       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3737       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3738 
3739       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3740                         DAG.getVectorIdxConstant(Idx, DL));
3741     }
3742 
3743     Ops.push_back(Res);
3744   }
3745 
3746   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3747 }
3748 
3749 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3750   ArrayRef<unsigned> Indices;
3751   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3752     Indices = IV->getIndices();
3753   else
3754     Indices = cast<ConstantExpr>(&I)->getIndices();
3755 
3756   const Value *Op0 = I.getOperand(0);
3757   const Value *Op1 = I.getOperand(1);
3758   Type *AggTy = I.getType();
3759   Type *ValTy = Op1->getType();
3760   bool IntoUndef = isa<UndefValue>(Op0);
3761   bool FromUndef = isa<UndefValue>(Op1);
3762 
3763   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3764 
3765   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3766   SmallVector<EVT, 4> AggValueVTs;
3767   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3768   SmallVector<EVT, 4> ValValueVTs;
3769   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3770 
3771   unsigned NumAggValues = AggValueVTs.size();
3772   unsigned NumValValues = ValValueVTs.size();
3773   SmallVector<SDValue, 4> Values(NumAggValues);
3774 
3775   // Ignore an insertvalue that produces an empty object
3776   if (!NumAggValues) {
3777     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3778     return;
3779   }
3780 
3781   SDValue Agg = getValue(Op0);
3782   unsigned i = 0;
3783   // Copy the beginning value(s) from the original aggregate.
3784   for (; i != LinearIndex; ++i)
3785     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3786                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3787   // Copy values from the inserted value(s).
3788   if (NumValValues) {
3789     SDValue Val = getValue(Op1);
3790     for (; i != LinearIndex + NumValValues; ++i)
3791       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3792                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3793   }
3794   // Copy remaining value(s) from the original aggregate.
3795   for (; i != NumAggValues; ++i)
3796     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3797                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3798 
3799   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3800                            DAG.getVTList(AggValueVTs), Values));
3801 }
3802 
3803 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3804   ArrayRef<unsigned> Indices;
3805   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3806     Indices = EV->getIndices();
3807   else
3808     Indices = cast<ConstantExpr>(&I)->getIndices();
3809 
3810   const Value *Op0 = I.getOperand(0);
3811   Type *AggTy = Op0->getType();
3812   Type *ValTy = I.getType();
3813   bool OutOfUndef = isa<UndefValue>(Op0);
3814 
3815   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3816 
3817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3818   SmallVector<EVT, 4> ValValueVTs;
3819   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3820 
3821   unsigned NumValValues = ValValueVTs.size();
3822 
3823   // Ignore a extractvalue that produces an empty object
3824   if (!NumValValues) {
3825     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3826     return;
3827   }
3828 
3829   SmallVector<SDValue, 4> Values(NumValValues);
3830 
3831   SDValue Agg = getValue(Op0);
3832   // Copy out the selected value(s).
3833   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3834     Values[i - LinearIndex] =
3835       OutOfUndef ?
3836         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3837         SDValue(Agg.getNode(), Agg.getResNo() + i);
3838 
3839   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3840                            DAG.getVTList(ValValueVTs), Values));
3841 }
3842 
3843 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3844   Value *Op0 = I.getOperand(0);
3845   // Note that the pointer operand may be a vector of pointers. Take the scalar
3846   // element which holds a pointer.
3847   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3848   SDValue N = getValue(Op0);
3849   SDLoc dl = getCurSDLoc();
3850   auto &TLI = DAG.getTargetLoweringInfo();
3851 
3852   // Normalize Vector GEP - all scalar operands should be converted to the
3853   // splat vector.
3854   bool IsVectorGEP = I.getType()->isVectorTy();
3855   ElementCount VectorElementCount =
3856       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3857                   : ElementCount::getFixed(0);
3858 
3859   if (IsVectorGEP && !N.getValueType().isVector()) {
3860     LLVMContext &Context = *DAG.getContext();
3861     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3862     if (VectorElementCount.isScalable())
3863       N = DAG.getSplatVector(VT, dl, N);
3864     else
3865       N = DAG.getSplatBuildVector(VT, dl, N);
3866   }
3867 
3868   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3869        GTI != E; ++GTI) {
3870     const Value *Idx = GTI.getOperand();
3871     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3872       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3873       if (Field) {
3874         // N = N + Offset
3875         uint64_t Offset =
3876             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3877 
3878         // In an inbounds GEP with an offset that is nonnegative even when
3879         // interpreted as signed, assume there is no unsigned overflow.
3880         SDNodeFlags Flags;
3881         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3882           Flags.setNoUnsignedWrap(true);
3883 
3884         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3885                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3886       }
3887     } else {
3888       // IdxSize is the width of the arithmetic according to IR semantics.
3889       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3890       // (and fix up the result later).
3891       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3892       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3893       TypeSize ElementSize =
3894           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3895       // We intentionally mask away the high bits here; ElementSize may not
3896       // fit in IdxTy.
3897       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3898       bool ElementScalable = ElementSize.isScalable();
3899 
3900       // If this is a scalar constant or a splat vector of constants,
3901       // handle it quickly.
3902       const auto *C = dyn_cast<Constant>(Idx);
3903       if (C && isa<VectorType>(C->getType()))
3904         C = C->getSplatValue();
3905 
3906       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3907       if (CI && CI->isZero())
3908         continue;
3909       if (CI && !ElementScalable) {
3910         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3911         LLVMContext &Context = *DAG.getContext();
3912         SDValue OffsVal;
3913         if (IsVectorGEP)
3914           OffsVal = DAG.getConstant(
3915               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3916         else
3917           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3918 
3919         // In an inbounds GEP with an offset that is nonnegative even when
3920         // interpreted as signed, assume there is no unsigned overflow.
3921         SDNodeFlags Flags;
3922         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3923           Flags.setNoUnsignedWrap(true);
3924 
3925         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3926 
3927         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3928         continue;
3929       }
3930 
3931       // N = N + Idx * ElementMul;
3932       SDValue IdxN = getValue(Idx);
3933 
3934       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3935         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3936                                   VectorElementCount);
3937         if (VectorElementCount.isScalable())
3938           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3939         else
3940           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3941       }
3942 
3943       // If the index is smaller or larger than intptr_t, truncate or extend
3944       // it.
3945       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3946 
3947       if (ElementScalable) {
3948         EVT VScaleTy = N.getValueType().getScalarType();
3949         SDValue VScale = DAG.getNode(
3950             ISD::VSCALE, dl, VScaleTy,
3951             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3952         if (IsVectorGEP)
3953           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3954         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3955       } else {
3956         // If this is a multiply by a power of two, turn it into a shl
3957         // immediately.  This is a very common case.
3958         if (ElementMul != 1) {
3959           if (ElementMul.isPowerOf2()) {
3960             unsigned Amt = ElementMul.logBase2();
3961             IdxN = DAG.getNode(ISD::SHL, dl,
3962                                N.getValueType(), IdxN,
3963                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3964           } else {
3965             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3966                                             IdxN.getValueType());
3967             IdxN = DAG.getNode(ISD::MUL, dl,
3968                                N.getValueType(), IdxN, Scale);
3969           }
3970         }
3971       }
3972 
3973       N = DAG.getNode(ISD::ADD, dl,
3974                       N.getValueType(), N, IdxN);
3975     }
3976   }
3977 
3978   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3979   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3980   if (IsVectorGEP) {
3981     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3982     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3983   }
3984 
3985   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3986     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3987 
3988   setValue(&I, N);
3989 }
3990 
3991 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3992   // If this is a fixed sized alloca in the entry block of the function,
3993   // allocate it statically on the stack.
3994   if (FuncInfo.StaticAllocaMap.count(&I))
3995     return;   // getValue will auto-populate this.
3996 
3997   SDLoc dl = getCurSDLoc();
3998   Type *Ty = I.getAllocatedType();
3999   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4000   auto &DL = DAG.getDataLayout();
4001   TypeSize TySize = DL.getTypeAllocSize(Ty);
4002   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4003 
4004   SDValue AllocSize = getValue(I.getArraySize());
4005 
4006   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4007   if (AllocSize.getValueType() != IntPtr)
4008     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4009 
4010   if (TySize.isScalable())
4011     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4012                             DAG.getVScale(dl, IntPtr,
4013                                           APInt(IntPtr.getScalarSizeInBits(),
4014                                                 TySize.getKnownMinValue())));
4015   else
4016     AllocSize =
4017         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4018                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4019 
4020   // Handle alignment.  If the requested alignment is less than or equal to
4021   // the stack alignment, ignore it.  If the size is greater than or equal to
4022   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4023   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4024   if (*Alignment <= StackAlign)
4025     Alignment = None;
4026 
4027   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4028   // Round the size of the allocation up to the stack alignment size
4029   // by add SA-1 to the size. This doesn't overflow because we're computing
4030   // an address inside an alloca.
4031   SDNodeFlags Flags;
4032   Flags.setNoUnsignedWrap(true);
4033   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4034                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4035 
4036   // Mask out the low bits for alignment purposes.
4037   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4038                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4039 
4040   SDValue Ops[] = {
4041       getRoot(), AllocSize,
4042       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4043   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4044   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4045   setValue(&I, DSA);
4046   DAG.setRoot(DSA.getValue(1));
4047 
4048   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4049 }
4050 
4051 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4052   if (I.isAtomic())
4053     return visitAtomicLoad(I);
4054 
4055   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4056   const Value *SV = I.getOperand(0);
4057   if (TLI.supportSwiftError()) {
4058     // Swifterror values can come from either a function parameter with
4059     // swifterror attribute or an alloca with swifterror attribute.
4060     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4061       if (Arg->hasSwiftErrorAttr())
4062         return visitLoadFromSwiftError(I);
4063     }
4064 
4065     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4066       if (Alloca->isSwiftError())
4067         return visitLoadFromSwiftError(I);
4068     }
4069   }
4070 
4071   SDValue Ptr = getValue(SV);
4072 
4073   Type *Ty = I.getType();
4074   Align Alignment = I.getAlign();
4075 
4076   AAMDNodes AAInfo = I.getAAMetadata();
4077   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4078 
4079   SmallVector<EVT, 4> ValueVTs, MemVTs;
4080   SmallVector<uint64_t, 4> Offsets;
4081   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4082   unsigned NumValues = ValueVTs.size();
4083   if (NumValues == 0)
4084     return;
4085 
4086   bool isVolatile = I.isVolatile();
4087 
4088   SDValue Root;
4089   bool ConstantMemory = false;
4090   if (isVolatile)
4091     // Serialize volatile loads with other side effects.
4092     Root = getRoot();
4093   else if (NumValues > MaxParallelChains)
4094     Root = getMemoryRoot();
4095   else if (AA &&
4096            AA->pointsToConstantMemory(MemoryLocation(
4097                SV,
4098                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4099                AAInfo))) {
4100     // Do not serialize (non-volatile) loads of constant memory with anything.
4101     Root = DAG.getEntryNode();
4102     ConstantMemory = true;
4103   } else {
4104     // Do not serialize non-volatile loads against each other.
4105     Root = DAG.getRoot();
4106   }
4107 
4108   SDLoc dl = getCurSDLoc();
4109 
4110   if (isVolatile)
4111     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4112 
4113   // An aggregate load cannot wrap around the address space, so offsets to its
4114   // parts don't wrap either.
4115   SDNodeFlags Flags;
4116   Flags.setNoUnsignedWrap(true);
4117 
4118   SmallVector<SDValue, 4> Values(NumValues);
4119   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4120   EVT PtrVT = Ptr.getValueType();
4121 
4122   MachineMemOperand::Flags MMOFlags
4123     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4124 
4125   unsigned ChainI = 0;
4126   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4127     // Serializing loads here may result in excessive register pressure, and
4128     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4129     // could recover a bit by hoisting nodes upward in the chain by recognizing
4130     // they are side-effect free or do not alias. The optimizer should really
4131     // avoid this case by converting large object/array copies to llvm.memcpy
4132     // (MaxParallelChains should always remain as failsafe).
4133     if (ChainI == MaxParallelChains) {
4134       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4135       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4136                                   makeArrayRef(Chains.data(), ChainI));
4137       Root = Chain;
4138       ChainI = 0;
4139     }
4140     SDValue A = DAG.getNode(ISD::ADD, dl,
4141                             PtrVT, Ptr,
4142                             DAG.getConstant(Offsets[i], dl, PtrVT),
4143                             Flags);
4144 
4145     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4146                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4147                             MMOFlags, AAInfo, Ranges);
4148     Chains[ChainI] = L.getValue(1);
4149 
4150     if (MemVTs[i] != ValueVTs[i])
4151       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4152 
4153     Values[i] = L;
4154   }
4155 
4156   if (!ConstantMemory) {
4157     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4158                                 makeArrayRef(Chains.data(), ChainI));
4159     if (isVolatile)
4160       DAG.setRoot(Chain);
4161     else
4162       PendingLoads.push_back(Chain);
4163   }
4164 
4165   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4166                            DAG.getVTList(ValueVTs), Values));
4167 }
4168 
4169 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4170   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4171          "call visitStoreToSwiftError when backend supports swifterror");
4172 
4173   SmallVector<EVT, 4> ValueVTs;
4174   SmallVector<uint64_t, 4> Offsets;
4175   const Value *SrcV = I.getOperand(0);
4176   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4177                   SrcV->getType(), ValueVTs, &Offsets);
4178   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4179          "expect a single EVT for swifterror");
4180 
4181   SDValue Src = getValue(SrcV);
4182   // Create a virtual register, then update the virtual register.
4183   Register VReg =
4184       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4185   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4186   // Chain can be getRoot or getControlRoot.
4187   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4188                                       SDValue(Src.getNode(), Src.getResNo()));
4189   DAG.setRoot(CopyNode);
4190 }
4191 
4192 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4193   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4194          "call visitLoadFromSwiftError when backend supports swifterror");
4195 
4196   assert(!I.isVolatile() &&
4197          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4198          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4199          "Support volatile, non temporal, invariant for load_from_swift_error");
4200 
4201   const Value *SV = I.getOperand(0);
4202   Type *Ty = I.getType();
4203   assert(
4204       (!AA ||
4205        !AA->pointsToConstantMemory(MemoryLocation(
4206            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4207            I.getAAMetadata()))) &&
4208       "load_from_swift_error should not be constant memory");
4209 
4210   SmallVector<EVT, 4> ValueVTs;
4211   SmallVector<uint64_t, 4> Offsets;
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4213                   ValueVTs, &Offsets);
4214   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4215          "expect a single EVT for swifterror");
4216 
4217   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4218   SDValue L = DAG.getCopyFromReg(
4219       getRoot(), getCurSDLoc(),
4220       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4221 
4222   setValue(&I, L);
4223 }
4224 
4225 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4226   if (I.isAtomic())
4227     return visitAtomicStore(I);
4228 
4229   const Value *SrcV = I.getOperand(0);
4230   const Value *PtrV = I.getOperand(1);
4231 
4232   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4233   if (TLI.supportSwiftError()) {
4234     // Swifterror values can come from either a function parameter with
4235     // swifterror attribute or an alloca with swifterror attribute.
4236     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4237       if (Arg->hasSwiftErrorAttr())
4238         return visitStoreToSwiftError(I);
4239     }
4240 
4241     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4242       if (Alloca->isSwiftError())
4243         return visitStoreToSwiftError(I);
4244     }
4245   }
4246 
4247   SmallVector<EVT, 4> ValueVTs, MemVTs;
4248   SmallVector<uint64_t, 4> Offsets;
4249   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4250                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4251   unsigned NumValues = ValueVTs.size();
4252   if (NumValues == 0)
4253     return;
4254 
4255   // Get the lowered operands. Note that we do this after
4256   // checking if NumResults is zero, because with zero results
4257   // the operands won't have values in the map.
4258   SDValue Src = getValue(SrcV);
4259   SDValue Ptr = getValue(PtrV);
4260 
4261   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4262   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4263   SDLoc dl = getCurSDLoc();
4264   Align Alignment = I.getAlign();
4265   AAMDNodes AAInfo = I.getAAMetadata();
4266 
4267   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4268 
4269   // An aggregate load cannot wrap around the address space, so offsets to its
4270   // parts don't wrap either.
4271   SDNodeFlags Flags;
4272   Flags.setNoUnsignedWrap(true);
4273 
4274   unsigned ChainI = 0;
4275   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4276     // See visitLoad comments.
4277     if (ChainI == MaxParallelChains) {
4278       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4279                                   makeArrayRef(Chains.data(), ChainI));
4280       Root = Chain;
4281       ChainI = 0;
4282     }
4283     SDValue Add =
4284         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4285     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4286     if (MemVTs[i] != ValueVTs[i])
4287       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4288     SDValue St =
4289         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4290                      Alignment, MMOFlags, AAInfo);
4291     Chains[ChainI] = St;
4292   }
4293 
4294   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4295                                   makeArrayRef(Chains.data(), ChainI));
4296   DAG.setRoot(StoreNode);
4297 }
4298 
4299 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4300                                            bool IsCompressing) {
4301   SDLoc sdl = getCurSDLoc();
4302 
4303   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4304                                MaybeAlign &Alignment) {
4305     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4306     Src0 = I.getArgOperand(0);
4307     Ptr = I.getArgOperand(1);
4308     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4309     Mask = I.getArgOperand(3);
4310   };
4311   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4312                                     MaybeAlign &Alignment) {
4313     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4314     Src0 = I.getArgOperand(0);
4315     Ptr = I.getArgOperand(1);
4316     Mask = I.getArgOperand(2);
4317     Alignment = None;
4318   };
4319 
4320   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4321   MaybeAlign Alignment;
4322   if (IsCompressing)
4323     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4324   else
4325     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4326 
4327   SDValue Ptr = getValue(PtrOperand);
4328   SDValue Src0 = getValue(Src0Operand);
4329   SDValue Mask = getValue(MaskOperand);
4330   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4331 
4332   EVT VT = Src0.getValueType();
4333   if (!Alignment)
4334     Alignment = DAG.getEVTAlign(VT);
4335 
4336   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4337       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4338       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4339   SDValue StoreNode =
4340       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4341                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4342   DAG.setRoot(StoreNode);
4343   setValue(&I, StoreNode);
4344 }
4345 
4346 // Get a uniform base for the Gather/Scatter intrinsic.
4347 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4348 // We try to represent it as a base pointer + vector of indices.
4349 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4350 // The first operand of the GEP may be a single pointer or a vector of pointers
4351 // Example:
4352 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4353 //  or
4354 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4355 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4356 //
4357 // When the first GEP operand is a single pointer - it is the uniform base we
4358 // are looking for. If first operand of the GEP is a splat vector - we
4359 // extract the splat value and use it as a uniform base.
4360 // In all other cases the function returns 'false'.
4361 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4362                            ISD::MemIndexType &IndexType, SDValue &Scale,
4363                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4364   SelectionDAG& DAG = SDB->DAG;
4365   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4366   const DataLayout &DL = DAG.getDataLayout();
4367 
4368   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4369 
4370   // Handle splat constant pointer.
4371   if (auto *C = dyn_cast<Constant>(Ptr)) {
4372     C = C->getSplatValue();
4373     if (!C)
4374       return false;
4375 
4376     Base = SDB->getValue(C);
4377 
4378     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4379     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4380     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4381     IndexType = ISD::SIGNED_SCALED;
4382     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4383     return true;
4384   }
4385 
4386   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4387   if (!GEP || GEP->getParent() != CurBB)
4388     return false;
4389 
4390   if (GEP->getNumOperands() != 2)
4391     return false;
4392 
4393   const Value *BasePtr = GEP->getPointerOperand();
4394   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4395 
4396   // Make sure the base is scalar and the index is a vector.
4397   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4398     return false;
4399 
4400   Base = SDB->getValue(BasePtr);
4401   Index = SDB->getValue(IndexVal);
4402   IndexType = ISD::SIGNED_SCALED;
4403   Scale = DAG.getTargetConstant(
4404               DL.getTypeAllocSize(GEP->getResultElementType()),
4405               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4406   return true;
4407 }
4408 
4409 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4410   SDLoc sdl = getCurSDLoc();
4411 
4412   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4413   const Value *Ptr = I.getArgOperand(1);
4414   SDValue Src0 = getValue(I.getArgOperand(0));
4415   SDValue Mask = getValue(I.getArgOperand(3));
4416   EVT VT = Src0.getValueType();
4417   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4418                         ->getMaybeAlignValue()
4419                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4421 
4422   SDValue Base;
4423   SDValue Index;
4424   ISD::MemIndexType IndexType;
4425   SDValue Scale;
4426   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4427                                     I.getParent());
4428 
4429   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4430   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4431       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4432       // TODO: Make MachineMemOperands aware of scalable
4433       // vectors.
4434       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4435   if (!UniformBase) {
4436     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4437     Index = getValue(Ptr);
4438     IndexType = ISD::SIGNED_UNSCALED;
4439     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4440   }
4441 
4442   EVT IdxVT = Index.getValueType();
4443   EVT EltTy = IdxVT.getVectorElementType();
4444   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4445     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4446     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4447   }
4448 
4449   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4450   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4451                                          Ops, MMO, IndexType, false);
4452   DAG.setRoot(Scatter);
4453   setValue(&I, Scatter);
4454 }
4455 
4456 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4457   SDLoc sdl = getCurSDLoc();
4458 
4459   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4460                               MaybeAlign &Alignment) {
4461     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4462     Ptr = I.getArgOperand(0);
4463     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4464     Mask = I.getArgOperand(2);
4465     Src0 = I.getArgOperand(3);
4466   };
4467   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4468                                  MaybeAlign &Alignment) {
4469     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4470     Ptr = I.getArgOperand(0);
4471     Alignment = None;
4472     Mask = I.getArgOperand(1);
4473     Src0 = I.getArgOperand(2);
4474   };
4475 
4476   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4477   MaybeAlign Alignment;
4478   if (IsExpanding)
4479     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4480   else
4481     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4482 
4483   SDValue Ptr = getValue(PtrOperand);
4484   SDValue Src0 = getValue(Src0Operand);
4485   SDValue Mask = getValue(MaskOperand);
4486   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4487 
4488   EVT VT = Src0.getValueType();
4489   if (!Alignment)
4490     Alignment = DAG.getEVTAlign(VT);
4491 
4492   AAMDNodes AAInfo = I.getAAMetadata();
4493   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4494 
4495   // Do not serialize masked loads of constant memory with anything.
4496   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4497   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4498 
4499   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4500 
4501   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4502       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4503       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4504 
4505   SDValue Load =
4506       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4507                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4508   if (AddToChain)
4509     PendingLoads.push_back(Load.getValue(1));
4510   setValue(&I, Load);
4511 }
4512 
4513 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4514   SDLoc sdl = getCurSDLoc();
4515 
4516   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4517   const Value *Ptr = I.getArgOperand(0);
4518   SDValue Src0 = getValue(I.getArgOperand(3));
4519   SDValue Mask = getValue(I.getArgOperand(2));
4520 
4521   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4522   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4523   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4524                         ->getMaybeAlignValue()
4525                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4526 
4527   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4528 
4529   SDValue Root = DAG.getRoot();
4530   SDValue Base;
4531   SDValue Index;
4532   ISD::MemIndexType IndexType;
4533   SDValue Scale;
4534   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4535                                     I.getParent());
4536   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4537   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4538       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4539       // TODO: Make MachineMemOperands aware of scalable
4540       // vectors.
4541       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4542 
4543   if (!UniformBase) {
4544     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4545     Index = getValue(Ptr);
4546     IndexType = ISD::SIGNED_UNSCALED;
4547     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4548   }
4549 
4550   EVT IdxVT = Index.getValueType();
4551   EVT EltTy = IdxVT.getVectorElementType();
4552   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4553     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4554     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4555   }
4556 
4557   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4558   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4559                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4560 
4561   PendingLoads.push_back(Gather.getValue(1));
4562   setValue(&I, Gather);
4563 }
4564 
4565 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4566   SDLoc dl = getCurSDLoc();
4567   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4568   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4569   SyncScope::ID SSID = I.getSyncScopeID();
4570 
4571   SDValue InChain = getRoot();
4572 
4573   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4574   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4575 
4576   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4577   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4578 
4579   MachineFunction &MF = DAG.getMachineFunction();
4580   MachineMemOperand *MMO = MF.getMachineMemOperand(
4581       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4582       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4583       FailureOrdering);
4584 
4585   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4586                                    dl, MemVT, VTs, InChain,
4587                                    getValue(I.getPointerOperand()),
4588                                    getValue(I.getCompareOperand()),
4589                                    getValue(I.getNewValOperand()), MMO);
4590 
4591   SDValue OutChain = L.getValue(2);
4592 
4593   setValue(&I, L);
4594   DAG.setRoot(OutChain);
4595 }
4596 
4597 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4598   SDLoc dl = getCurSDLoc();
4599   ISD::NodeType NT;
4600   switch (I.getOperation()) {
4601   default: llvm_unreachable("Unknown atomicrmw operation");
4602   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4603   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4604   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4605   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4606   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4607   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4608   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4609   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4610   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4611   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4612   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4613   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4614   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4615   }
4616   AtomicOrdering Ordering = I.getOrdering();
4617   SyncScope::ID SSID = I.getSyncScopeID();
4618 
4619   SDValue InChain = getRoot();
4620 
4621   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4623   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4624 
4625   MachineFunction &MF = DAG.getMachineFunction();
4626   MachineMemOperand *MMO = MF.getMachineMemOperand(
4627       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4628       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4629 
4630   SDValue L =
4631     DAG.getAtomic(NT, dl, MemVT, InChain,
4632                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4633                   MMO);
4634 
4635   SDValue OutChain = L.getValue(1);
4636 
4637   setValue(&I, L);
4638   DAG.setRoot(OutChain);
4639 }
4640 
4641 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4642   SDLoc dl = getCurSDLoc();
4643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4644   SDValue Ops[3];
4645   Ops[0] = getRoot();
4646   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4647                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4648   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4649                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4650   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4651 }
4652 
4653 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4654   SDLoc dl = getCurSDLoc();
4655   AtomicOrdering Order = I.getOrdering();
4656   SyncScope::ID SSID = I.getSyncScopeID();
4657 
4658   SDValue InChain = getRoot();
4659 
4660   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4661   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4662   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4663 
4664   if (!TLI.supportsUnalignedAtomics() &&
4665       I.getAlignment() < MemVT.getSizeInBits() / 8)
4666     report_fatal_error("Cannot generate unaligned atomic load");
4667 
4668   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4669 
4670   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4671       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4672       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4673 
4674   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4675 
4676   SDValue Ptr = getValue(I.getPointerOperand());
4677 
4678   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4679     // TODO: Once this is better exercised by tests, it should be merged with
4680     // the normal path for loads to prevent future divergence.
4681     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4682     if (MemVT != VT)
4683       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4684 
4685     setValue(&I, L);
4686     SDValue OutChain = L.getValue(1);
4687     if (!I.isUnordered())
4688       DAG.setRoot(OutChain);
4689     else
4690       PendingLoads.push_back(OutChain);
4691     return;
4692   }
4693 
4694   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4695                             Ptr, MMO);
4696 
4697   SDValue OutChain = L.getValue(1);
4698   if (MemVT != VT)
4699     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4700 
4701   setValue(&I, L);
4702   DAG.setRoot(OutChain);
4703 }
4704 
4705 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4706   SDLoc dl = getCurSDLoc();
4707 
4708   AtomicOrdering Ordering = I.getOrdering();
4709   SyncScope::ID SSID = I.getSyncScopeID();
4710 
4711   SDValue InChain = getRoot();
4712 
4713   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4714   EVT MemVT =
4715       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4716 
4717   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4718     report_fatal_error("Cannot generate unaligned atomic store");
4719 
4720   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4721 
4722   MachineFunction &MF = DAG.getMachineFunction();
4723   MachineMemOperand *MMO = MF.getMachineMemOperand(
4724       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4725       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4726 
4727   SDValue Val = getValue(I.getValueOperand());
4728   if (Val.getValueType() != MemVT)
4729     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4730   SDValue Ptr = getValue(I.getPointerOperand());
4731 
4732   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4733     // TODO: Once this is better exercised by tests, it should be merged with
4734     // the normal path for stores to prevent future divergence.
4735     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4736     DAG.setRoot(S);
4737     return;
4738   }
4739   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4740                                    Ptr, Val, MMO);
4741 
4742 
4743   DAG.setRoot(OutChain);
4744 }
4745 
4746 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4747 /// node.
4748 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4749                                                unsigned Intrinsic) {
4750   // Ignore the callsite's attributes. A specific call site may be marked with
4751   // readnone, but the lowering code will expect the chain based on the
4752   // definition.
4753   const Function *F = I.getCalledFunction();
4754   bool HasChain = !F->doesNotAccessMemory();
4755   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4756 
4757   // Build the operand list.
4758   SmallVector<SDValue, 8> Ops;
4759   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4760     if (OnlyLoad) {
4761       // We don't need to serialize loads against other loads.
4762       Ops.push_back(DAG.getRoot());
4763     } else {
4764       Ops.push_back(getRoot());
4765     }
4766   }
4767 
4768   // Info is set by getTgtMemInstrinsic
4769   TargetLowering::IntrinsicInfo Info;
4770   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4771   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4772                                                DAG.getMachineFunction(),
4773                                                Intrinsic);
4774 
4775   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4776   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4777       Info.opc == ISD::INTRINSIC_W_CHAIN)
4778     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4779                                         TLI.getPointerTy(DAG.getDataLayout())));
4780 
4781   // Add all operands of the call to the operand list.
4782   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4783     const Value *Arg = I.getArgOperand(i);
4784     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4785       Ops.push_back(getValue(Arg));
4786       continue;
4787     }
4788 
4789     // Use TargetConstant instead of a regular constant for immarg.
4790     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4791     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4792       assert(CI->getBitWidth() <= 64 &&
4793              "large intrinsic immediates not handled");
4794       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4795     } else {
4796       Ops.push_back(
4797           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4798     }
4799   }
4800 
4801   SmallVector<EVT, 4> ValueVTs;
4802   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4803 
4804   if (HasChain)
4805     ValueVTs.push_back(MVT::Other);
4806 
4807   SDVTList VTs = DAG.getVTList(ValueVTs);
4808 
4809   // Propagate fast-math-flags from IR to node(s).
4810   SDNodeFlags Flags;
4811   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4812     Flags.copyFMF(*FPMO);
4813   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4814 
4815   // Create the node.
4816   SDValue Result;
4817   if (IsTgtIntrinsic) {
4818     // This is target intrinsic that touches memory
4819     Result =
4820         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4821                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4822                                 Info.align, Info.flags, Info.size,
4823                                 I.getAAMetadata());
4824   } else if (!HasChain) {
4825     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4826   } else if (!I.getType()->isVoidTy()) {
4827     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4828   } else {
4829     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4830   }
4831 
4832   if (HasChain) {
4833     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4834     if (OnlyLoad)
4835       PendingLoads.push_back(Chain);
4836     else
4837       DAG.setRoot(Chain);
4838   }
4839 
4840   if (!I.getType()->isVoidTy()) {
4841     if (!isa<VectorType>(I.getType()))
4842       Result = lowerRangeToAssertZExt(DAG, I, Result);
4843 
4844     MaybeAlign Alignment = I.getRetAlign();
4845     if (!Alignment)
4846       Alignment = F->getAttributes().getRetAlignment();
4847     // Insert `assertalign` node if there's an alignment.
4848     if (InsertAssertAlign && Alignment) {
4849       Result =
4850           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4851     }
4852 
4853     setValue(&I, Result);
4854   }
4855 }
4856 
4857 /// GetSignificand - Get the significand and build it into a floating-point
4858 /// number with exponent of 1:
4859 ///
4860 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4861 ///
4862 /// where Op is the hexadecimal representation of floating point value.
4863 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4864   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4865                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4866   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4867                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4868   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4869 }
4870 
4871 /// GetExponent - Get the exponent:
4872 ///
4873 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4874 ///
4875 /// where Op is the hexadecimal representation of floating point value.
4876 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4877                            const TargetLowering &TLI, const SDLoc &dl) {
4878   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4879                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4880   SDValue t1 = DAG.getNode(
4881       ISD::SRL, dl, MVT::i32, t0,
4882       DAG.getConstant(23, dl,
4883                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4884   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4885                            DAG.getConstant(127, dl, MVT::i32));
4886   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4887 }
4888 
4889 /// getF32Constant - Get 32-bit floating point constant.
4890 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4891                               const SDLoc &dl) {
4892   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4893                            MVT::f32);
4894 }
4895 
4896 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4897                                        SelectionDAG &DAG) {
4898   // TODO: What fast-math-flags should be set on the floating-point nodes?
4899 
4900   //   IntegerPartOfX = ((int32_t)(t0);
4901   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4902 
4903   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4904   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4905   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4906 
4907   //   IntegerPartOfX <<= 23;
4908   IntegerPartOfX =
4909       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4910                   DAG.getConstant(23, dl,
4911                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4912                                       MVT::i32, DAG.getDataLayout())));
4913 
4914   SDValue TwoToFractionalPartOfX;
4915   if (LimitFloatPrecision <= 6) {
4916     // For floating-point precision of 6:
4917     //
4918     //   TwoToFractionalPartOfX =
4919     //     0.997535578f +
4920     //       (0.735607626f + 0.252464424f * x) * x;
4921     //
4922     // error 0.0144103317, which is 6 bits
4923     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4924                              getF32Constant(DAG, 0x3e814304, dl));
4925     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4926                              getF32Constant(DAG, 0x3f3c50c8, dl));
4927     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4928     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4929                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4930   } else if (LimitFloatPrecision <= 12) {
4931     // For floating-point precision of 12:
4932     //
4933     //   TwoToFractionalPartOfX =
4934     //     0.999892986f +
4935     //       (0.696457318f +
4936     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4937     //
4938     // error 0.000107046256, which is 13 to 14 bits
4939     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4940                              getF32Constant(DAG, 0x3da235e3, dl));
4941     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4942                              getF32Constant(DAG, 0x3e65b8f3, dl));
4943     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4944     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4945                              getF32Constant(DAG, 0x3f324b07, dl));
4946     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4947     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4948                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4949   } else { // LimitFloatPrecision <= 18
4950     // For floating-point precision of 18:
4951     //
4952     //   TwoToFractionalPartOfX =
4953     //     0.999999982f +
4954     //       (0.693148872f +
4955     //         (0.240227044f +
4956     //           (0.554906021e-1f +
4957     //             (0.961591928e-2f +
4958     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4959     // error 2.47208000*10^(-7), which is better than 18 bits
4960     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4961                              getF32Constant(DAG, 0x3924b03e, dl));
4962     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4963                              getF32Constant(DAG, 0x3ab24b87, dl));
4964     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4965     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4966                              getF32Constant(DAG, 0x3c1d8c17, dl));
4967     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4968     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4969                              getF32Constant(DAG, 0x3d634a1d, dl));
4970     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4971     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4972                              getF32Constant(DAG, 0x3e75fe14, dl));
4973     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4974     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4975                               getF32Constant(DAG, 0x3f317234, dl));
4976     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4977     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4978                                          getF32Constant(DAG, 0x3f800000, dl));
4979   }
4980 
4981   // Add the exponent into the result in integer domain.
4982   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4983   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4984                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4985 }
4986 
4987 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4988 /// limited-precision mode.
4989 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4990                          const TargetLowering &TLI, SDNodeFlags Flags) {
4991   if (Op.getValueType() == MVT::f32 &&
4992       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4993 
4994     // Put the exponent in the right bit position for later addition to the
4995     // final result:
4996     //
4997     // t0 = Op * log2(e)
4998 
4999     // TODO: What fast-math-flags should be set here?
5000     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5001                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5002     return getLimitedPrecisionExp2(t0, dl, DAG);
5003   }
5004 
5005   // No special expansion.
5006   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5007 }
5008 
5009 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5010 /// limited-precision mode.
5011 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5012                          const TargetLowering &TLI, SDNodeFlags Flags) {
5013   // TODO: What fast-math-flags should be set on the floating-point nodes?
5014 
5015   if (Op.getValueType() == MVT::f32 &&
5016       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5017     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5018 
5019     // Scale the exponent by log(2).
5020     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5021     SDValue LogOfExponent =
5022         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5023                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5024 
5025     // Get the significand and build it into a floating-point number with
5026     // exponent of 1.
5027     SDValue X = GetSignificand(DAG, Op1, dl);
5028 
5029     SDValue LogOfMantissa;
5030     if (LimitFloatPrecision <= 6) {
5031       // For floating-point precision of 6:
5032       //
5033       //   LogofMantissa =
5034       //     -1.1609546f +
5035       //       (1.4034025f - 0.23903021f * x) * x;
5036       //
5037       // error 0.0034276066, which is better than 8 bits
5038       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5039                                getF32Constant(DAG, 0xbe74c456, dl));
5040       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5041                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5042       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5043       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5044                                   getF32Constant(DAG, 0x3f949a29, dl));
5045     } else if (LimitFloatPrecision <= 12) {
5046       // For floating-point precision of 12:
5047       //
5048       //   LogOfMantissa =
5049       //     -1.7417939f +
5050       //       (2.8212026f +
5051       //         (-1.4699568f +
5052       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5053       //
5054       // error 0.000061011436, which is 14 bits
5055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5056                                getF32Constant(DAG, 0xbd67b6d6, dl));
5057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5058                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5060       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5061                                getF32Constant(DAG, 0x3fbc278b, dl));
5062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5064                                getF32Constant(DAG, 0x40348e95, dl));
5065       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5066       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5067                                   getF32Constant(DAG, 0x3fdef31a, dl));
5068     } else { // LimitFloatPrecision <= 18
5069       // For floating-point precision of 18:
5070       //
5071       //   LogOfMantissa =
5072       //     -2.1072184f +
5073       //       (4.2372794f +
5074       //         (-3.7029485f +
5075       //           (2.2781945f +
5076       //             (-0.87823314f +
5077       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5078       //
5079       // error 0.0000023660568, which is better than 18 bits
5080       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5081                                getF32Constant(DAG, 0xbc91e5ac, dl));
5082       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5083                                getF32Constant(DAG, 0x3e4350aa, dl));
5084       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5085       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5086                                getF32Constant(DAG, 0x3f60d3e3, dl));
5087       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5088       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5089                                getF32Constant(DAG, 0x4011cdf0, dl));
5090       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5091       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5092                                getF32Constant(DAG, 0x406cfd1c, dl));
5093       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5094       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5095                                getF32Constant(DAG, 0x408797cb, dl));
5096       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5097       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5098                                   getF32Constant(DAG, 0x4006dcab, dl));
5099     }
5100 
5101     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5102   }
5103 
5104   // No special expansion.
5105   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5106 }
5107 
5108 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5109 /// limited-precision mode.
5110 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5111                           const TargetLowering &TLI, SDNodeFlags Flags) {
5112   // TODO: What fast-math-flags should be set on the floating-point nodes?
5113 
5114   if (Op.getValueType() == MVT::f32 &&
5115       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5116     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5117 
5118     // Get the exponent.
5119     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5120 
5121     // Get the significand and build it into a floating-point number with
5122     // exponent of 1.
5123     SDValue X = GetSignificand(DAG, Op1, dl);
5124 
5125     // Different possible minimax approximations of significand in
5126     // floating-point for various degrees of accuracy over [1,2].
5127     SDValue Log2ofMantissa;
5128     if (LimitFloatPrecision <= 6) {
5129       // For floating-point precision of 6:
5130       //
5131       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5132       //
5133       // error 0.0049451742, which is more than 7 bits
5134       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5135                                getF32Constant(DAG, 0xbeb08fe0, dl));
5136       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5137                                getF32Constant(DAG, 0x40019463, dl));
5138       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5139       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5140                                    getF32Constant(DAG, 0x3fd6633d, dl));
5141     } else if (LimitFloatPrecision <= 12) {
5142       // For floating-point precision of 12:
5143       //
5144       //   Log2ofMantissa =
5145       //     -2.51285454f +
5146       //       (4.07009056f +
5147       //         (-2.12067489f +
5148       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5149       //
5150       // error 0.0000876136000, which is better than 13 bits
5151       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5152                                getF32Constant(DAG, 0xbda7262e, dl));
5153       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5154                                getF32Constant(DAG, 0x3f25280b, dl));
5155       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5156       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5157                                getF32Constant(DAG, 0x4007b923, dl));
5158       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5159       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5160                                getF32Constant(DAG, 0x40823e2f, dl));
5161       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5162       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5163                                    getF32Constant(DAG, 0x4020d29c, dl));
5164     } else { // LimitFloatPrecision <= 18
5165       // For floating-point precision of 18:
5166       //
5167       //   Log2ofMantissa =
5168       //     -3.0400495f +
5169       //       (6.1129976f +
5170       //         (-5.3420409f +
5171       //           (3.2865683f +
5172       //             (-1.2669343f +
5173       //               (0.27515199f -
5174       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5175       //
5176       // error 0.0000018516, which is better than 18 bits
5177       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5178                                getF32Constant(DAG, 0xbcd2769e, dl));
5179       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5180                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5181       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5182       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5183                                getF32Constant(DAG, 0x3fa22ae7, dl));
5184       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5185       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5186                                getF32Constant(DAG, 0x40525723, dl));
5187       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5188       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5189                                getF32Constant(DAG, 0x40aaf200, dl));
5190       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5191       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5192                                getF32Constant(DAG, 0x40c39dad, dl));
5193       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5194       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5195                                    getF32Constant(DAG, 0x4042902c, dl));
5196     }
5197 
5198     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5199   }
5200 
5201   // No special expansion.
5202   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5203 }
5204 
5205 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5206 /// limited-precision mode.
5207 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5208                            const TargetLowering &TLI, SDNodeFlags Flags) {
5209   // TODO: What fast-math-flags should be set on the floating-point nodes?
5210 
5211   if (Op.getValueType() == MVT::f32 &&
5212       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5213     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5214 
5215     // Scale the exponent by log10(2) [0.30102999f].
5216     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5217     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5218                                         getF32Constant(DAG, 0x3e9a209a, dl));
5219 
5220     // Get the significand and build it into a floating-point number with
5221     // exponent of 1.
5222     SDValue X = GetSignificand(DAG, Op1, dl);
5223 
5224     SDValue Log10ofMantissa;
5225     if (LimitFloatPrecision <= 6) {
5226       // For floating-point precision of 6:
5227       //
5228       //   Log10ofMantissa =
5229       //     -0.50419619f +
5230       //       (0.60948995f - 0.10380950f * x) * x;
5231       //
5232       // error 0.0014886165, which is 6 bits
5233       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5234                                getF32Constant(DAG, 0xbdd49a13, dl));
5235       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5236                                getF32Constant(DAG, 0x3f1c0789, dl));
5237       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5238       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5239                                     getF32Constant(DAG, 0x3f011300, dl));
5240     } else if (LimitFloatPrecision <= 12) {
5241       // For floating-point precision of 12:
5242       //
5243       //   Log10ofMantissa =
5244       //     -0.64831180f +
5245       //       (0.91751397f +
5246       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5247       //
5248       // error 0.00019228036, which is better than 12 bits
5249       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5250                                getF32Constant(DAG, 0x3d431f31, dl));
5251       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5252                                getF32Constant(DAG, 0x3ea21fb2, dl));
5253       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5254       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5255                                getF32Constant(DAG, 0x3f6ae232, dl));
5256       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5257       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5258                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5259     } else { // LimitFloatPrecision <= 18
5260       // For floating-point precision of 18:
5261       //
5262       //   Log10ofMantissa =
5263       //     -0.84299375f +
5264       //       (1.5327582f +
5265       //         (-1.0688956f +
5266       //           (0.49102474f +
5267       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5268       //
5269       // error 0.0000037995730, which is better than 18 bits
5270       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5271                                getF32Constant(DAG, 0x3c5d51ce, dl));
5272       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5273                                getF32Constant(DAG, 0x3e00685a, dl));
5274       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5275       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5276                                getF32Constant(DAG, 0x3efb6798, dl));
5277       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5278       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5279                                getF32Constant(DAG, 0x3f88d192, dl));
5280       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5281       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5282                                getF32Constant(DAG, 0x3fc4316c, dl));
5283       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5284       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5285                                     getF32Constant(DAG, 0x3f57ce70, dl));
5286     }
5287 
5288     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5289   }
5290 
5291   // No special expansion.
5292   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5293 }
5294 
5295 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5296 /// limited-precision mode.
5297 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5298                           const TargetLowering &TLI, SDNodeFlags Flags) {
5299   if (Op.getValueType() == MVT::f32 &&
5300       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5301     return getLimitedPrecisionExp2(Op, dl, DAG);
5302 
5303   // No special expansion.
5304   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5305 }
5306 
5307 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5308 /// limited-precision mode with x == 10.0f.
5309 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5310                          SelectionDAG &DAG, const TargetLowering &TLI,
5311                          SDNodeFlags Flags) {
5312   bool IsExp10 = false;
5313   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5314       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5315     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5316       APFloat Ten(10.0f);
5317       IsExp10 = LHSC->isExactlyValue(Ten);
5318     }
5319   }
5320 
5321   // TODO: What fast-math-flags should be set on the FMUL node?
5322   if (IsExp10) {
5323     // Put the exponent in the right bit position for later addition to the
5324     // final result:
5325     //
5326     //   #define LOG2OF10 3.3219281f
5327     //   t0 = Op * LOG2OF10;
5328     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5329                              getF32Constant(DAG, 0x40549a78, dl));
5330     return getLimitedPrecisionExp2(t0, dl, DAG);
5331   }
5332 
5333   // No special expansion.
5334   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5335 }
5336 
5337 /// ExpandPowI - Expand a llvm.powi intrinsic.
5338 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5339                           SelectionDAG &DAG) {
5340   // If RHS is a constant, we can expand this out to a multiplication tree,
5341   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5342   // optimizing for size, we only want to do this if the expansion would produce
5343   // a small number of multiplies, otherwise we do the full expansion.
5344   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5345     // Get the exponent as a positive value.
5346     unsigned Val = RHSC->getSExtValue();
5347     if ((int)Val < 0) Val = -Val;
5348 
5349     // powi(x, 0) -> 1.0
5350     if (Val == 0)
5351       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5352 
5353     bool OptForSize = DAG.shouldOptForSize();
5354     if (!OptForSize ||
5355         // If optimizing for size, don't insert too many multiplies.
5356         // This inserts up to 5 multiplies.
5357         countPopulation(Val) + Log2_32(Val) < 7) {
5358       // We use the simple binary decomposition method to generate the multiply
5359       // sequence.  There are more optimal ways to do this (for example,
5360       // powi(x,15) generates one more multiply than it should), but this has
5361       // the benefit of being both really simple and much better than a libcall.
5362       SDValue Res;  // Logically starts equal to 1.0
5363       SDValue CurSquare = LHS;
5364       // TODO: Intrinsics should have fast-math-flags that propagate to these
5365       // nodes.
5366       while (Val) {
5367         if (Val & 1) {
5368           if (Res.getNode())
5369             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5370           else
5371             Res = CurSquare;  // 1.0*CurSquare.
5372         }
5373 
5374         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5375                                 CurSquare, CurSquare);
5376         Val >>= 1;
5377       }
5378 
5379       // If the original was negative, invert the result, producing 1/(x*x*x).
5380       if (RHSC->getSExtValue() < 0)
5381         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5382                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5383       return Res;
5384     }
5385   }
5386 
5387   // Otherwise, expand to a libcall.
5388   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5389 }
5390 
5391 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5392                             SDValue LHS, SDValue RHS, SDValue Scale,
5393                             SelectionDAG &DAG, const TargetLowering &TLI) {
5394   EVT VT = LHS.getValueType();
5395   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5396   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5397   LLVMContext &Ctx = *DAG.getContext();
5398 
5399   // If the type is legal but the operation isn't, this node might survive all
5400   // the way to operation legalization. If we end up there and we do not have
5401   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5402   // node.
5403 
5404   // Coax the legalizer into expanding the node during type legalization instead
5405   // by bumping the size by one bit. This will force it to Promote, enabling the
5406   // early expansion and avoiding the need to expand later.
5407 
5408   // We don't have to do this if Scale is 0; that can always be expanded, unless
5409   // it's a saturating signed operation. Those can experience true integer
5410   // division overflow, a case which we must avoid.
5411 
5412   // FIXME: We wouldn't have to do this (or any of the early
5413   // expansion/promotion) if it was possible to expand a libcall of an
5414   // illegal type during operation legalization. But it's not, so things
5415   // get a bit hacky.
5416   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5417   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5418       (TLI.isTypeLegal(VT) ||
5419        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5420     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5421         Opcode, VT, ScaleInt);
5422     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5423       EVT PromVT;
5424       if (VT.isScalarInteger())
5425         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5426       else if (VT.isVector()) {
5427         PromVT = VT.getVectorElementType();
5428         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5429         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5430       } else
5431         llvm_unreachable("Wrong VT for DIVFIX?");
5432       if (Signed) {
5433         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5434         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5435       } else {
5436         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5437         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5438       }
5439       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5440       // For saturating operations, we need to shift up the LHS to get the
5441       // proper saturation width, and then shift down again afterwards.
5442       if (Saturating)
5443         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5444                           DAG.getConstant(1, DL, ShiftTy));
5445       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5446       if (Saturating)
5447         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5448                           DAG.getConstant(1, DL, ShiftTy));
5449       return DAG.getZExtOrTrunc(Res, DL, VT);
5450     }
5451   }
5452 
5453   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5454 }
5455 
5456 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5457 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5458 static void
5459 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5460                      const SDValue &N) {
5461   switch (N.getOpcode()) {
5462   case ISD::CopyFromReg: {
5463     SDValue Op = N.getOperand(1);
5464     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5465                       Op.getValueType().getSizeInBits());
5466     return;
5467   }
5468   case ISD::BITCAST:
5469   case ISD::AssertZext:
5470   case ISD::AssertSext:
5471   case ISD::TRUNCATE:
5472     getUnderlyingArgRegs(Regs, N.getOperand(0));
5473     return;
5474   case ISD::BUILD_PAIR:
5475   case ISD::BUILD_VECTOR:
5476   case ISD::CONCAT_VECTORS:
5477     for (SDValue Op : N->op_values())
5478       getUnderlyingArgRegs(Regs, Op);
5479     return;
5480   default:
5481     return;
5482   }
5483 }
5484 
5485 /// If the DbgValueInst is a dbg_value of a function argument, create the
5486 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5487 /// instruction selection, they will be inserted to the entry BB.
5488 /// We don't currently support this for variadic dbg_values, as they shouldn't
5489 /// appear for function arguments or in the prologue.
5490 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5491     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5492     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5493   const Argument *Arg = dyn_cast<Argument>(V);
5494   if (!Arg)
5495     return false;
5496 
5497   MachineFunction &MF = DAG.getMachineFunction();
5498   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5499 
5500   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5501   // we've been asked to pursue.
5502   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5503                               bool Indirect) {
5504     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5505       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5506       // pointing at the VReg, which will be patched up later.
5507       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5508       auto MIB = BuildMI(MF, DL, Inst);
5509       MIB.addReg(Reg);
5510       MIB.addImm(0);
5511       MIB.addMetadata(Variable);
5512       auto *NewDIExpr = FragExpr;
5513       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5514       // the DIExpression.
5515       if (Indirect)
5516         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5517       MIB.addMetadata(NewDIExpr);
5518       return MIB;
5519     } else {
5520       // Create a completely standard DBG_VALUE.
5521       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5522       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5523     }
5524   };
5525 
5526   if (Kind == FuncArgumentDbgValueKind::Value) {
5527     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5528     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5529     // the entry block.
5530     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5531     if (!IsInEntryBlock)
5532       return false;
5533 
5534     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5535     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5536     // variable that also is a param.
5537     //
5538     // Although, if we are at the top of the entry block already, we can still
5539     // emit using ArgDbgValue. This might catch some situations when the
5540     // dbg.value refers to an argument that isn't used in the entry block, so
5541     // any CopyToReg node would be optimized out and the only way to express
5542     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5543     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5544     // we should only emit as ArgDbgValue if the Variable is an argument to the
5545     // current function, and the dbg.value intrinsic is found in the entry
5546     // block.
5547     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5548         !DL->getInlinedAt();
5549     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5550     if (!IsInPrologue && !VariableIsFunctionInputArg)
5551       return false;
5552 
5553     // Here we assume that a function argument on IR level only can be used to
5554     // describe one input parameter on source level. If we for example have
5555     // source code like this
5556     //
5557     //    struct A { long x, y; };
5558     //    void foo(struct A a, long b) {
5559     //      ...
5560     //      b = a.x;
5561     //      ...
5562     //    }
5563     //
5564     // and IR like this
5565     //
5566     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5567     //  entry:
5568     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5569     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5570     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5571     //    ...
5572     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5573     //    ...
5574     //
5575     // then the last dbg.value is describing a parameter "b" using a value that
5576     // is an argument. But since we already has used %a1 to describe a parameter
5577     // we should not handle that last dbg.value here (that would result in an
5578     // incorrect hoisting of the DBG_VALUE to the function entry).
5579     // Notice that we allow one dbg.value per IR level argument, to accommodate
5580     // for the situation with fragments above.
5581     if (VariableIsFunctionInputArg) {
5582       unsigned ArgNo = Arg->getArgNo();
5583       if (ArgNo >= FuncInfo.DescribedArgs.size())
5584         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5585       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5586         return false;
5587       FuncInfo.DescribedArgs.set(ArgNo);
5588     }
5589   }
5590 
5591   bool IsIndirect = false;
5592   Optional<MachineOperand> Op;
5593   // Some arguments' frame index is recorded during argument lowering.
5594   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5595   if (FI != std::numeric_limits<int>::max())
5596     Op = MachineOperand::CreateFI(FI);
5597 
5598   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5599   if (!Op && N.getNode()) {
5600     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5601     Register Reg;
5602     if (ArgRegsAndSizes.size() == 1)
5603       Reg = ArgRegsAndSizes.front().first;
5604 
5605     if (Reg && Reg.isVirtual()) {
5606       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5607       Register PR = RegInfo.getLiveInPhysReg(Reg);
5608       if (PR)
5609         Reg = PR;
5610     }
5611     if (Reg) {
5612       Op = MachineOperand::CreateReg(Reg, false);
5613       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5614     }
5615   }
5616 
5617   if (!Op && N.getNode()) {
5618     // Check if frame index is available.
5619     SDValue LCandidate = peekThroughBitcasts(N);
5620     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5621       if (FrameIndexSDNode *FINode =
5622           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5623         Op = MachineOperand::CreateFI(FINode->getIndex());
5624   }
5625 
5626   if (!Op) {
5627     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5628     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5629                                          SplitRegs) {
5630       unsigned Offset = 0;
5631       for (const auto &RegAndSize : SplitRegs) {
5632         // If the expression is already a fragment, the current register
5633         // offset+size might extend beyond the fragment. In this case, only
5634         // the register bits that are inside the fragment are relevant.
5635         int RegFragmentSizeInBits = RegAndSize.second;
5636         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5637           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5638           // The register is entirely outside the expression fragment,
5639           // so is irrelevant for debug info.
5640           if (Offset >= ExprFragmentSizeInBits)
5641             break;
5642           // The register is partially outside the expression fragment, only
5643           // the low bits within the fragment are relevant for debug info.
5644           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5645             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5646           }
5647         }
5648 
5649         auto FragmentExpr = DIExpression::createFragmentExpression(
5650             Expr, Offset, RegFragmentSizeInBits);
5651         Offset += RegAndSize.second;
5652         // If a valid fragment expression cannot be created, the variable's
5653         // correct value cannot be determined and so it is set as Undef.
5654         if (!FragmentExpr) {
5655           SDDbgValue *SDV = DAG.getConstantDbgValue(
5656               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5657           DAG.AddDbgValue(SDV, false);
5658           continue;
5659         }
5660         MachineInstr *NewMI =
5661             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5662                              Kind != FuncArgumentDbgValueKind::Value);
5663         FuncInfo.ArgDbgValues.push_back(NewMI);
5664       }
5665     };
5666 
5667     // Check if ValueMap has reg number.
5668     DenseMap<const Value *, Register>::const_iterator
5669       VMI = FuncInfo.ValueMap.find(V);
5670     if (VMI != FuncInfo.ValueMap.end()) {
5671       const auto &TLI = DAG.getTargetLoweringInfo();
5672       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5673                        V->getType(), None);
5674       if (RFV.occupiesMultipleRegs()) {
5675         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5676         return true;
5677       }
5678 
5679       Op = MachineOperand::CreateReg(VMI->second, false);
5680       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5681     } else if (ArgRegsAndSizes.size() > 1) {
5682       // This was split due to the calling convention, and no virtual register
5683       // mapping exists for the value.
5684       splitMultiRegDbgValue(ArgRegsAndSizes);
5685       return true;
5686     }
5687   }
5688 
5689   if (!Op)
5690     return false;
5691 
5692   assert(Variable->isValidLocationForIntrinsic(DL) &&
5693          "Expected inlined-at fields to agree");
5694   MachineInstr *NewMI = nullptr;
5695 
5696   if (Op->isReg())
5697     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5698   else
5699     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5700                     Variable, Expr);
5701 
5702   // Otherwise, use ArgDbgValues.
5703   FuncInfo.ArgDbgValues.push_back(NewMI);
5704   return true;
5705 }
5706 
5707 /// Return the appropriate SDDbgValue based on N.
5708 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5709                                              DILocalVariable *Variable,
5710                                              DIExpression *Expr,
5711                                              const DebugLoc &dl,
5712                                              unsigned DbgSDNodeOrder) {
5713   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5714     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5715     // stack slot locations.
5716     //
5717     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5718     // debug values here after optimization:
5719     //
5720     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5721     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5722     //
5723     // Both describe the direct values of their associated variables.
5724     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5725                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5726   }
5727   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5728                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5729 }
5730 
5731 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5732   switch (Intrinsic) {
5733   case Intrinsic::smul_fix:
5734     return ISD::SMULFIX;
5735   case Intrinsic::umul_fix:
5736     return ISD::UMULFIX;
5737   case Intrinsic::smul_fix_sat:
5738     return ISD::SMULFIXSAT;
5739   case Intrinsic::umul_fix_sat:
5740     return ISD::UMULFIXSAT;
5741   case Intrinsic::sdiv_fix:
5742     return ISD::SDIVFIX;
5743   case Intrinsic::udiv_fix:
5744     return ISD::UDIVFIX;
5745   case Intrinsic::sdiv_fix_sat:
5746     return ISD::SDIVFIXSAT;
5747   case Intrinsic::udiv_fix_sat:
5748     return ISD::UDIVFIXSAT;
5749   default:
5750     llvm_unreachable("Unhandled fixed point intrinsic");
5751   }
5752 }
5753 
5754 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5755                                            const char *FunctionName) {
5756   assert(FunctionName && "FunctionName must not be nullptr");
5757   SDValue Callee = DAG.getExternalSymbol(
5758       FunctionName,
5759       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5760   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5761 }
5762 
5763 /// Given a @llvm.call.preallocated.setup, return the corresponding
5764 /// preallocated call.
5765 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5766   assert(cast<CallBase>(PreallocatedSetup)
5767                  ->getCalledFunction()
5768                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5769          "expected call_preallocated_setup Value");
5770   for (auto *U : PreallocatedSetup->users()) {
5771     auto *UseCall = cast<CallBase>(U);
5772     const Function *Fn = UseCall->getCalledFunction();
5773     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5774       return UseCall;
5775     }
5776   }
5777   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5778 }
5779 
5780 /// Lower the call to the specified intrinsic function.
5781 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5782                                              unsigned Intrinsic) {
5783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5784   SDLoc sdl = getCurSDLoc();
5785   DebugLoc dl = getCurDebugLoc();
5786   SDValue Res;
5787 
5788   SDNodeFlags Flags;
5789   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5790     Flags.copyFMF(*FPOp);
5791 
5792   switch (Intrinsic) {
5793   default:
5794     // By default, turn this into a target intrinsic node.
5795     visitTargetIntrinsic(I, Intrinsic);
5796     return;
5797   case Intrinsic::vscale: {
5798     match(&I, m_VScale(DAG.getDataLayout()));
5799     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5800     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5801     return;
5802   }
5803   case Intrinsic::vastart:  visitVAStart(I); return;
5804   case Intrinsic::vaend:    visitVAEnd(I); return;
5805   case Intrinsic::vacopy:   visitVACopy(I); return;
5806   case Intrinsic::returnaddress:
5807     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5808                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5809                              getValue(I.getArgOperand(0))));
5810     return;
5811   case Intrinsic::addressofreturnaddress:
5812     setValue(&I,
5813              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5814                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5815     return;
5816   case Intrinsic::sponentry:
5817     setValue(&I,
5818              DAG.getNode(ISD::SPONENTRY, sdl,
5819                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5820     return;
5821   case Intrinsic::frameaddress:
5822     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5823                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5824                              getValue(I.getArgOperand(0))));
5825     return;
5826   case Intrinsic::read_volatile_register:
5827   case Intrinsic::read_register: {
5828     Value *Reg = I.getArgOperand(0);
5829     SDValue Chain = getRoot();
5830     SDValue RegName =
5831         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5832     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5833     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5834       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5835     setValue(&I, Res);
5836     DAG.setRoot(Res.getValue(1));
5837     return;
5838   }
5839   case Intrinsic::write_register: {
5840     Value *Reg = I.getArgOperand(0);
5841     Value *RegValue = I.getArgOperand(1);
5842     SDValue Chain = getRoot();
5843     SDValue RegName =
5844         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5845     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5846                             RegName, getValue(RegValue)));
5847     return;
5848   }
5849   case Intrinsic::memcpy: {
5850     const auto &MCI = cast<MemCpyInst>(I);
5851     SDValue Op1 = getValue(I.getArgOperand(0));
5852     SDValue Op2 = getValue(I.getArgOperand(1));
5853     SDValue Op3 = getValue(I.getArgOperand(2));
5854     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5855     Align DstAlign = MCI.getDestAlign().valueOrOne();
5856     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5857     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5858     bool isVol = MCI.isVolatile();
5859     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5860     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5861     // node.
5862     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5863     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5864                                /* AlwaysInline */ false, isTC,
5865                                MachinePointerInfo(I.getArgOperand(0)),
5866                                MachinePointerInfo(I.getArgOperand(1)),
5867                                I.getAAMetadata());
5868     updateDAGForMaybeTailCall(MC);
5869     return;
5870   }
5871   case Intrinsic::memcpy_inline: {
5872     const auto &MCI = cast<MemCpyInlineInst>(I);
5873     SDValue Dst = getValue(I.getArgOperand(0));
5874     SDValue Src = getValue(I.getArgOperand(1));
5875     SDValue Size = getValue(I.getArgOperand(2));
5876     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5877     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5878     Align DstAlign = MCI.getDestAlign().valueOrOne();
5879     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5880     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5881     bool isVol = MCI.isVolatile();
5882     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5883     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5884     // node.
5885     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5886                                /* AlwaysInline */ true, isTC,
5887                                MachinePointerInfo(I.getArgOperand(0)),
5888                                MachinePointerInfo(I.getArgOperand(1)),
5889                                I.getAAMetadata());
5890     updateDAGForMaybeTailCall(MC);
5891     return;
5892   }
5893   case Intrinsic::memset: {
5894     const auto &MSI = cast<MemSetInst>(I);
5895     SDValue Op1 = getValue(I.getArgOperand(0));
5896     SDValue Op2 = getValue(I.getArgOperand(1));
5897     SDValue Op3 = getValue(I.getArgOperand(2));
5898     // @llvm.memset defines 0 and 1 to both mean no alignment.
5899     Align Alignment = MSI.getDestAlign().valueOrOne();
5900     bool isVol = MSI.isVolatile();
5901     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5902     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5903     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5904                                MachinePointerInfo(I.getArgOperand(0)),
5905                                I.getAAMetadata());
5906     updateDAGForMaybeTailCall(MS);
5907     return;
5908   }
5909   case Intrinsic::memmove: {
5910     const auto &MMI = cast<MemMoveInst>(I);
5911     SDValue Op1 = getValue(I.getArgOperand(0));
5912     SDValue Op2 = getValue(I.getArgOperand(1));
5913     SDValue Op3 = getValue(I.getArgOperand(2));
5914     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5915     Align DstAlign = MMI.getDestAlign().valueOrOne();
5916     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5917     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5918     bool isVol = MMI.isVolatile();
5919     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5920     // FIXME: Support passing different dest/src alignments to the memmove DAG
5921     // node.
5922     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5923     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5924                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5925                                 MachinePointerInfo(I.getArgOperand(1)),
5926                                 I.getAAMetadata());
5927     updateDAGForMaybeTailCall(MM);
5928     return;
5929   }
5930   case Intrinsic::memcpy_element_unordered_atomic: {
5931     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5932     SDValue Dst = getValue(MI.getRawDest());
5933     SDValue Src = getValue(MI.getRawSource());
5934     SDValue Length = getValue(MI.getLength());
5935 
5936     unsigned DstAlign = MI.getDestAlignment();
5937     unsigned SrcAlign = MI.getSourceAlignment();
5938     Type *LengthTy = MI.getLength()->getType();
5939     unsigned ElemSz = MI.getElementSizeInBytes();
5940     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5941     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5942                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5943                                      MachinePointerInfo(MI.getRawDest()),
5944                                      MachinePointerInfo(MI.getRawSource()));
5945     updateDAGForMaybeTailCall(MC);
5946     return;
5947   }
5948   case Intrinsic::memmove_element_unordered_atomic: {
5949     auto &MI = cast<AtomicMemMoveInst>(I);
5950     SDValue Dst = getValue(MI.getRawDest());
5951     SDValue Src = getValue(MI.getRawSource());
5952     SDValue Length = getValue(MI.getLength());
5953 
5954     unsigned DstAlign = MI.getDestAlignment();
5955     unsigned SrcAlign = MI.getSourceAlignment();
5956     Type *LengthTy = MI.getLength()->getType();
5957     unsigned ElemSz = MI.getElementSizeInBytes();
5958     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5959     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5960                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5961                                       MachinePointerInfo(MI.getRawDest()),
5962                                       MachinePointerInfo(MI.getRawSource()));
5963     updateDAGForMaybeTailCall(MC);
5964     return;
5965   }
5966   case Intrinsic::memset_element_unordered_atomic: {
5967     auto &MI = cast<AtomicMemSetInst>(I);
5968     SDValue Dst = getValue(MI.getRawDest());
5969     SDValue Val = getValue(MI.getValue());
5970     SDValue Length = getValue(MI.getLength());
5971 
5972     unsigned DstAlign = MI.getDestAlignment();
5973     Type *LengthTy = MI.getLength()->getType();
5974     unsigned ElemSz = MI.getElementSizeInBytes();
5975     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5976     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5977                                      LengthTy, ElemSz, isTC,
5978                                      MachinePointerInfo(MI.getRawDest()));
5979     updateDAGForMaybeTailCall(MC);
5980     return;
5981   }
5982   case Intrinsic::call_preallocated_setup: {
5983     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5984     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5985     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5986                               getRoot(), SrcValue);
5987     setValue(&I, Res);
5988     DAG.setRoot(Res);
5989     return;
5990   }
5991   case Intrinsic::call_preallocated_arg: {
5992     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5993     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5994     SDValue Ops[3];
5995     Ops[0] = getRoot();
5996     Ops[1] = SrcValue;
5997     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5998                                    MVT::i32); // arg index
5999     SDValue Res = DAG.getNode(
6000         ISD::PREALLOCATED_ARG, sdl,
6001         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6002     setValue(&I, Res);
6003     DAG.setRoot(Res.getValue(1));
6004     return;
6005   }
6006   case Intrinsic::dbg_addr:
6007   case Intrinsic::dbg_declare: {
6008     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6009     // they are non-variadic.
6010     const auto &DI = cast<DbgVariableIntrinsic>(I);
6011     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6012     DILocalVariable *Variable = DI.getVariable();
6013     DIExpression *Expression = DI.getExpression();
6014     dropDanglingDebugInfo(Variable, Expression);
6015     assert(Variable && "Missing variable");
6016     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6017                       << "\n");
6018     // Check if address has undef value.
6019     const Value *Address = DI.getVariableLocationOp(0);
6020     if (!Address || isa<UndefValue>(Address) ||
6021         (Address->use_empty() && !isa<Argument>(Address))) {
6022       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6023                         << " (bad/undef/unused-arg address)\n");
6024       return;
6025     }
6026 
6027     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6028 
6029     // Check if this variable can be described by a frame index, typically
6030     // either as a static alloca or a byval parameter.
6031     int FI = std::numeric_limits<int>::max();
6032     if (const auto *AI =
6033             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6034       if (AI->isStaticAlloca()) {
6035         auto I = FuncInfo.StaticAllocaMap.find(AI);
6036         if (I != FuncInfo.StaticAllocaMap.end())
6037           FI = I->second;
6038       }
6039     } else if (const auto *Arg = dyn_cast<Argument>(
6040                    Address->stripInBoundsConstantOffsets())) {
6041       FI = FuncInfo.getArgumentFrameIndex(Arg);
6042     }
6043 
6044     // llvm.dbg.addr is control dependent and always generates indirect
6045     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6046     // the MachineFunction variable table.
6047     if (FI != std::numeric_limits<int>::max()) {
6048       if (Intrinsic == Intrinsic::dbg_addr) {
6049         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6050             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6051             dl, SDNodeOrder);
6052         DAG.AddDbgValue(SDV, isParameter);
6053       } else {
6054         LLVM_DEBUG(dbgs() << "Skipping " << DI
6055                           << " (variable info stashed in MF side table)\n");
6056       }
6057       return;
6058     }
6059 
6060     SDValue &N = NodeMap[Address];
6061     if (!N.getNode() && isa<Argument>(Address))
6062       // Check unused arguments map.
6063       N = UnusedArgNodeMap[Address];
6064     SDDbgValue *SDV;
6065     if (N.getNode()) {
6066       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6067         Address = BCI->getOperand(0);
6068       // Parameters are handled specially.
6069       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6070       if (isParameter && FINode) {
6071         // Byval parameter. We have a frame index at this point.
6072         SDV =
6073             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6074                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6075       } else if (isa<Argument>(Address)) {
6076         // Address is an argument, so try to emit its dbg value using
6077         // virtual register info from the FuncInfo.ValueMap.
6078         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6079                                  FuncArgumentDbgValueKind::Declare, N);
6080         return;
6081       } else {
6082         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6083                               true, dl, SDNodeOrder);
6084       }
6085       DAG.AddDbgValue(SDV, isParameter);
6086     } else {
6087       // If Address is an argument then try to emit its dbg value using
6088       // virtual register info from the FuncInfo.ValueMap.
6089       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6090                                     FuncArgumentDbgValueKind::Declare, N)) {
6091         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6092                           << " (could not emit func-arg dbg_value)\n");
6093       }
6094     }
6095     return;
6096   }
6097   case Intrinsic::dbg_label: {
6098     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6099     DILabel *Label = DI.getLabel();
6100     assert(Label && "Missing label");
6101 
6102     SDDbgLabel *SDV;
6103     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6104     DAG.AddDbgLabel(SDV);
6105     return;
6106   }
6107   case Intrinsic::dbg_value: {
6108     const DbgValueInst &DI = cast<DbgValueInst>(I);
6109     assert(DI.getVariable() && "Missing variable");
6110 
6111     DILocalVariable *Variable = DI.getVariable();
6112     DIExpression *Expression = DI.getExpression();
6113     dropDanglingDebugInfo(Variable, Expression);
6114     SmallVector<Value *, 4> Values(DI.getValues());
6115     if (Values.empty())
6116       return;
6117 
6118     if (llvm::is_contained(Values, nullptr))
6119       return;
6120 
6121     bool IsVariadic = DI.hasArgList();
6122     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6123                           SDNodeOrder, IsVariadic))
6124       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6125     return;
6126   }
6127 
6128   case Intrinsic::eh_typeid_for: {
6129     // Find the type id for the given typeinfo.
6130     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6131     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6132     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6133     setValue(&I, Res);
6134     return;
6135   }
6136 
6137   case Intrinsic::eh_return_i32:
6138   case Intrinsic::eh_return_i64:
6139     DAG.getMachineFunction().setCallsEHReturn(true);
6140     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6141                             MVT::Other,
6142                             getControlRoot(),
6143                             getValue(I.getArgOperand(0)),
6144                             getValue(I.getArgOperand(1))));
6145     return;
6146   case Intrinsic::eh_unwind_init:
6147     DAG.getMachineFunction().setCallsUnwindInit(true);
6148     return;
6149   case Intrinsic::eh_dwarf_cfa:
6150     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6151                              TLI.getPointerTy(DAG.getDataLayout()),
6152                              getValue(I.getArgOperand(0))));
6153     return;
6154   case Intrinsic::eh_sjlj_callsite: {
6155     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6156     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6157     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6158     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6159 
6160     MMI.setCurrentCallSite(CI->getZExtValue());
6161     return;
6162   }
6163   case Intrinsic::eh_sjlj_functioncontext: {
6164     // Get and store the index of the function context.
6165     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6166     AllocaInst *FnCtx =
6167       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6168     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6169     MFI.setFunctionContextIndex(FI);
6170     return;
6171   }
6172   case Intrinsic::eh_sjlj_setjmp: {
6173     SDValue Ops[2];
6174     Ops[0] = getRoot();
6175     Ops[1] = getValue(I.getArgOperand(0));
6176     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6177                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6178     setValue(&I, Op.getValue(0));
6179     DAG.setRoot(Op.getValue(1));
6180     return;
6181   }
6182   case Intrinsic::eh_sjlj_longjmp:
6183     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6184                             getRoot(), getValue(I.getArgOperand(0))));
6185     return;
6186   case Intrinsic::eh_sjlj_setup_dispatch:
6187     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6188                             getRoot()));
6189     return;
6190   case Intrinsic::masked_gather:
6191     visitMaskedGather(I);
6192     return;
6193   case Intrinsic::masked_load:
6194     visitMaskedLoad(I);
6195     return;
6196   case Intrinsic::masked_scatter:
6197     visitMaskedScatter(I);
6198     return;
6199   case Intrinsic::masked_store:
6200     visitMaskedStore(I);
6201     return;
6202   case Intrinsic::masked_expandload:
6203     visitMaskedLoad(I, true /* IsExpanding */);
6204     return;
6205   case Intrinsic::masked_compressstore:
6206     visitMaskedStore(I, true /* IsCompressing */);
6207     return;
6208   case Intrinsic::powi:
6209     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6210                             getValue(I.getArgOperand(1)), DAG));
6211     return;
6212   case Intrinsic::log:
6213     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6214     return;
6215   case Intrinsic::log2:
6216     setValue(&I,
6217              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6218     return;
6219   case Intrinsic::log10:
6220     setValue(&I,
6221              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6222     return;
6223   case Intrinsic::exp:
6224     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6225     return;
6226   case Intrinsic::exp2:
6227     setValue(&I,
6228              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6229     return;
6230   case Intrinsic::pow:
6231     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6232                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6233     return;
6234   case Intrinsic::sqrt:
6235   case Intrinsic::fabs:
6236   case Intrinsic::sin:
6237   case Intrinsic::cos:
6238   case Intrinsic::floor:
6239   case Intrinsic::ceil:
6240   case Intrinsic::trunc:
6241   case Intrinsic::rint:
6242   case Intrinsic::nearbyint:
6243   case Intrinsic::round:
6244   case Intrinsic::roundeven:
6245   case Intrinsic::canonicalize: {
6246     unsigned Opcode;
6247     switch (Intrinsic) {
6248     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6249     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6250     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6251     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6252     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6253     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6254     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6255     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6256     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6257     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6258     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6259     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6260     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6261     }
6262 
6263     setValue(&I, DAG.getNode(Opcode, sdl,
6264                              getValue(I.getArgOperand(0)).getValueType(),
6265                              getValue(I.getArgOperand(0)), Flags));
6266     return;
6267   }
6268   case Intrinsic::lround:
6269   case Intrinsic::llround:
6270   case Intrinsic::lrint:
6271   case Intrinsic::llrint: {
6272     unsigned Opcode;
6273     switch (Intrinsic) {
6274     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6275     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6276     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6277     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6278     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6279     }
6280 
6281     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6282     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6283                              getValue(I.getArgOperand(0))));
6284     return;
6285   }
6286   case Intrinsic::minnum:
6287     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6288                              getValue(I.getArgOperand(0)).getValueType(),
6289                              getValue(I.getArgOperand(0)),
6290                              getValue(I.getArgOperand(1)), Flags));
6291     return;
6292   case Intrinsic::maxnum:
6293     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6294                              getValue(I.getArgOperand(0)).getValueType(),
6295                              getValue(I.getArgOperand(0)),
6296                              getValue(I.getArgOperand(1)), Flags));
6297     return;
6298   case Intrinsic::minimum:
6299     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6300                              getValue(I.getArgOperand(0)).getValueType(),
6301                              getValue(I.getArgOperand(0)),
6302                              getValue(I.getArgOperand(1)), Flags));
6303     return;
6304   case Intrinsic::maximum:
6305     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6306                              getValue(I.getArgOperand(0)).getValueType(),
6307                              getValue(I.getArgOperand(0)),
6308                              getValue(I.getArgOperand(1)), Flags));
6309     return;
6310   case Intrinsic::copysign:
6311     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6312                              getValue(I.getArgOperand(0)).getValueType(),
6313                              getValue(I.getArgOperand(0)),
6314                              getValue(I.getArgOperand(1)), Flags));
6315     return;
6316   case Intrinsic::arithmetic_fence: {
6317     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6318                              getValue(I.getArgOperand(0)).getValueType(),
6319                              getValue(I.getArgOperand(0)), Flags));
6320     return;
6321   }
6322   case Intrinsic::fma:
6323     setValue(&I, DAG.getNode(
6324                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6325                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6326                      getValue(I.getArgOperand(2)), Flags));
6327     return;
6328 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6329   case Intrinsic::INTRINSIC:
6330 #include "llvm/IR/ConstrainedOps.def"
6331     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6332     return;
6333 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6334 #include "llvm/IR/VPIntrinsics.def"
6335     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6336     return;
6337   case Intrinsic::fptrunc_round: {
6338     // Get the last argument, the metadata and convert it to an integer in the
6339     // call
6340     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6341     Optional<RoundingMode> RoundMode =
6342         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6343 
6344     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6345 
6346     // Propagate fast-math-flags from IR to node(s).
6347     SDNodeFlags Flags;
6348     Flags.copyFMF(*cast<FPMathOperator>(&I));
6349     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6350 
6351     SDValue Result;
6352     Result = DAG.getNode(
6353         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6354         DAG.getTargetConstant((int)RoundMode.getValue(), sdl,
6355                               TLI.getPointerTy(DAG.getDataLayout())));
6356     setValue(&I, Result);
6357 
6358     return;
6359   }
6360   case Intrinsic::fmuladd: {
6361     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6362     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6363         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6364       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6365                                getValue(I.getArgOperand(0)).getValueType(),
6366                                getValue(I.getArgOperand(0)),
6367                                getValue(I.getArgOperand(1)),
6368                                getValue(I.getArgOperand(2)), Flags));
6369     } else {
6370       // TODO: Intrinsic calls should have fast-math-flags.
6371       SDValue Mul = DAG.getNode(
6372           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6373           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6374       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6375                                 getValue(I.getArgOperand(0)).getValueType(),
6376                                 Mul, getValue(I.getArgOperand(2)), Flags);
6377       setValue(&I, Add);
6378     }
6379     return;
6380   }
6381   case Intrinsic::convert_to_fp16:
6382     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6383                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6384                                          getValue(I.getArgOperand(0)),
6385                                          DAG.getTargetConstant(0, sdl,
6386                                                                MVT::i32))));
6387     return;
6388   case Intrinsic::convert_from_fp16:
6389     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6390                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6391                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6392                                          getValue(I.getArgOperand(0)))));
6393     return;
6394   case Intrinsic::fptosi_sat: {
6395     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6396     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6397                              getValue(I.getArgOperand(0)),
6398                              DAG.getValueType(VT.getScalarType())));
6399     return;
6400   }
6401   case Intrinsic::fptoui_sat: {
6402     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6403     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6404                              getValue(I.getArgOperand(0)),
6405                              DAG.getValueType(VT.getScalarType())));
6406     return;
6407   }
6408   case Intrinsic::set_rounding:
6409     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6410                       {getRoot(), getValue(I.getArgOperand(0))});
6411     setValue(&I, Res);
6412     DAG.setRoot(Res.getValue(0));
6413     return;
6414   case Intrinsic::pcmarker: {
6415     SDValue Tmp = getValue(I.getArgOperand(0));
6416     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6417     return;
6418   }
6419   case Intrinsic::readcyclecounter: {
6420     SDValue Op = getRoot();
6421     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6422                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6423     setValue(&I, Res);
6424     DAG.setRoot(Res.getValue(1));
6425     return;
6426   }
6427   case Intrinsic::bitreverse:
6428     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6429                              getValue(I.getArgOperand(0)).getValueType(),
6430                              getValue(I.getArgOperand(0))));
6431     return;
6432   case Intrinsic::bswap:
6433     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6434                              getValue(I.getArgOperand(0)).getValueType(),
6435                              getValue(I.getArgOperand(0))));
6436     return;
6437   case Intrinsic::cttz: {
6438     SDValue Arg = getValue(I.getArgOperand(0));
6439     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6440     EVT Ty = Arg.getValueType();
6441     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6442                              sdl, Ty, Arg));
6443     return;
6444   }
6445   case Intrinsic::ctlz: {
6446     SDValue Arg = getValue(I.getArgOperand(0));
6447     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6448     EVT Ty = Arg.getValueType();
6449     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6450                              sdl, Ty, Arg));
6451     return;
6452   }
6453   case Intrinsic::ctpop: {
6454     SDValue Arg = getValue(I.getArgOperand(0));
6455     EVT Ty = Arg.getValueType();
6456     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6457     return;
6458   }
6459   case Intrinsic::fshl:
6460   case Intrinsic::fshr: {
6461     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6462     SDValue X = getValue(I.getArgOperand(0));
6463     SDValue Y = getValue(I.getArgOperand(1));
6464     SDValue Z = getValue(I.getArgOperand(2));
6465     EVT VT = X.getValueType();
6466 
6467     if (X == Y) {
6468       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6469       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6470     } else {
6471       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6472       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6473     }
6474     return;
6475   }
6476   case Intrinsic::sadd_sat: {
6477     SDValue Op1 = getValue(I.getArgOperand(0));
6478     SDValue Op2 = getValue(I.getArgOperand(1));
6479     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6480     return;
6481   }
6482   case Intrinsic::uadd_sat: {
6483     SDValue Op1 = getValue(I.getArgOperand(0));
6484     SDValue Op2 = getValue(I.getArgOperand(1));
6485     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6486     return;
6487   }
6488   case Intrinsic::ssub_sat: {
6489     SDValue Op1 = getValue(I.getArgOperand(0));
6490     SDValue Op2 = getValue(I.getArgOperand(1));
6491     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6492     return;
6493   }
6494   case Intrinsic::usub_sat: {
6495     SDValue Op1 = getValue(I.getArgOperand(0));
6496     SDValue Op2 = getValue(I.getArgOperand(1));
6497     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6498     return;
6499   }
6500   case Intrinsic::sshl_sat: {
6501     SDValue Op1 = getValue(I.getArgOperand(0));
6502     SDValue Op2 = getValue(I.getArgOperand(1));
6503     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6504     return;
6505   }
6506   case Intrinsic::ushl_sat: {
6507     SDValue Op1 = getValue(I.getArgOperand(0));
6508     SDValue Op2 = getValue(I.getArgOperand(1));
6509     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6510     return;
6511   }
6512   case Intrinsic::smul_fix:
6513   case Intrinsic::umul_fix:
6514   case Intrinsic::smul_fix_sat:
6515   case Intrinsic::umul_fix_sat: {
6516     SDValue Op1 = getValue(I.getArgOperand(0));
6517     SDValue Op2 = getValue(I.getArgOperand(1));
6518     SDValue Op3 = getValue(I.getArgOperand(2));
6519     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6520                              Op1.getValueType(), Op1, Op2, Op3));
6521     return;
6522   }
6523   case Intrinsic::sdiv_fix:
6524   case Intrinsic::udiv_fix:
6525   case Intrinsic::sdiv_fix_sat:
6526   case Intrinsic::udiv_fix_sat: {
6527     SDValue Op1 = getValue(I.getArgOperand(0));
6528     SDValue Op2 = getValue(I.getArgOperand(1));
6529     SDValue Op3 = getValue(I.getArgOperand(2));
6530     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6531                               Op1, Op2, Op3, DAG, TLI));
6532     return;
6533   }
6534   case Intrinsic::smax: {
6535     SDValue Op1 = getValue(I.getArgOperand(0));
6536     SDValue Op2 = getValue(I.getArgOperand(1));
6537     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6538     return;
6539   }
6540   case Intrinsic::smin: {
6541     SDValue Op1 = getValue(I.getArgOperand(0));
6542     SDValue Op2 = getValue(I.getArgOperand(1));
6543     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6544     return;
6545   }
6546   case Intrinsic::umax: {
6547     SDValue Op1 = getValue(I.getArgOperand(0));
6548     SDValue Op2 = getValue(I.getArgOperand(1));
6549     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6550     return;
6551   }
6552   case Intrinsic::umin: {
6553     SDValue Op1 = getValue(I.getArgOperand(0));
6554     SDValue Op2 = getValue(I.getArgOperand(1));
6555     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6556     return;
6557   }
6558   case Intrinsic::abs: {
6559     // TODO: Preserve "int min is poison" arg in SDAG?
6560     SDValue Op1 = getValue(I.getArgOperand(0));
6561     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6562     return;
6563   }
6564   case Intrinsic::stacksave: {
6565     SDValue Op = getRoot();
6566     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6567     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6568     setValue(&I, Res);
6569     DAG.setRoot(Res.getValue(1));
6570     return;
6571   }
6572   case Intrinsic::stackrestore:
6573     Res = getValue(I.getArgOperand(0));
6574     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6575     return;
6576   case Intrinsic::get_dynamic_area_offset: {
6577     SDValue Op = getRoot();
6578     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6579     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6580     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6581     // target.
6582     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6583       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6584                          " intrinsic!");
6585     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6586                       Op);
6587     DAG.setRoot(Op);
6588     setValue(&I, Res);
6589     return;
6590   }
6591   case Intrinsic::stackguard: {
6592     MachineFunction &MF = DAG.getMachineFunction();
6593     const Module &M = *MF.getFunction().getParent();
6594     SDValue Chain = getRoot();
6595     if (TLI.useLoadStackGuardNode()) {
6596       Res = getLoadStackGuard(DAG, sdl, Chain);
6597     } else {
6598       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6599       const Value *Global = TLI.getSDagStackGuard(M);
6600       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6601       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6602                         MachinePointerInfo(Global, 0), Align,
6603                         MachineMemOperand::MOVolatile);
6604     }
6605     if (TLI.useStackGuardXorFP())
6606       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6607     DAG.setRoot(Chain);
6608     setValue(&I, Res);
6609     return;
6610   }
6611   case Intrinsic::stackprotector: {
6612     // Emit code into the DAG to store the stack guard onto the stack.
6613     MachineFunction &MF = DAG.getMachineFunction();
6614     MachineFrameInfo &MFI = MF.getFrameInfo();
6615     SDValue Src, Chain = getRoot();
6616 
6617     if (TLI.useLoadStackGuardNode())
6618       Src = getLoadStackGuard(DAG, sdl, Chain);
6619     else
6620       Src = getValue(I.getArgOperand(0));   // The guard's value.
6621 
6622     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6623 
6624     int FI = FuncInfo.StaticAllocaMap[Slot];
6625     MFI.setStackProtectorIndex(FI);
6626     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6627 
6628     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6629 
6630     // Store the stack protector onto the stack.
6631     Res = DAG.getStore(
6632         Chain, sdl, Src, FIN,
6633         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6634         MaybeAlign(), MachineMemOperand::MOVolatile);
6635     setValue(&I, Res);
6636     DAG.setRoot(Res);
6637     return;
6638   }
6639   case Intrinsic::objectsize:
6640     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6641 
6642   case Intrinsic::is_constant:
6643     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6644 
6645   case Intrinsic::annotation:
6646   case Intrinsic::ptr_annotation:
6647   case Intrinsic::launder_invariant_group:
6648   case Intrinsic::strip_invariant_group:
6649     // Drop the intrinsic, but forward the value
6650     setValue(&I, getValue(I.getOperand(0)));
6651     return;
6652 
6653   case Intrinsic::assume:
6654   case Intrinsic::experimental_noalias_scope_decl:
6655   case Intrinsic::var_annotation:
6656   case Intrinsic::sideeffect:
6657     // Discard annotate attributes, noalias scope declarations, assumptions, and
6658     // artificial side-effects.
6659     return;
6660 
6661   case Intrinsic::codeview_annotation: {
6662     // Emit a label associated with this metadata.
6663     MachineFunction &MF = DAG.getMachineFunction();
6664     MCSymbol *Label =
6665         MF.getMMI().getContext().createTempSymbol("annotation", true);
6666     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6667     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6668     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6669     DAG.setRoot(Res);
6670     return;
6671   }
6672 
6673   case Intrinsic::init_trampoline: {
6674     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6675 
6676     SDValue Ops[6];
6677     Ops[0] = getRoot();
6678     Ops[1] = getValue(I.getArgOperand(0));
6679     Ops[2] = getValue(I.getArgOperand(1));
6680     Ops[3] = getValue(I.getArgOperand(2));
6681     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6682     Ops[5] = DAG.getSrcValue(F);
6683 
6684     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6685 
6686     DAG.setRoot(Res);
6687     return;
6688   }
6689   case Intrinsic::adjust_trampoline:
6690     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6691                              TLI.getPointerTy(DAG.getDataLayout()),
6692                              getValue(I.getArgOperand(0))));
6693     return;
6694   case Intrinsic::gcroot: {
6695     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6696            "only valid in functions with gc specified, enforced by Verifier");
6697     assert(GFI && "implied by previous");
6698     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6699     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6700 
6701     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6702     GFI->addStackRoot(FI->getIndex(), TypeMap);
6703     return;
6704   }
6705   case Intrinsic::gcread:
6706   case Intrinsic::gcwrite:
6707     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6708   case Intrinsic::flt_rounds:
6709     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6710     setValue(&I, Res);
6711     DAG.setRoot(Res.getValue(1));
6712     return;
6713 
6714   case Intrinsic::expect:
6715     // Just replace __builtin_expect(exp, c) with EXP.
6716     setValue(&I, getValue(I.getArgOperand(0)));
6717     return;
6718 
6719   case Intrinsic::ubsantrap:
6720   case Intrinsic::debugtrap:
6721   case Intrinsic::trap: {
6722     StringRef TrapFuncName =
6723         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6724     if (TrapFuncName.empty()) {
6725       switch (Intrinsic) {
6726       case Intrinsic::trap:
6727         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6728         break;
6729       case Intrinsic::debugtrap:
6730         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6731         break;
6732       case Intrinsic::ubsantrap:
6733         DAG.setRoot(DAG.getNode(
6734             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6735             DAG.getTargetConstant(
6736                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6737                 MVT::i32)));
6738         break;
6739       default: llvm_unreachable("unknown trap intrinsic");
6740       }
6741       return;
6742     }
6743     TargetLowering::ArgListTy Args;
6744     if (Intrinsic == Intrinsic::ubsantrap) {
6745       Args.push_back(TargetLoweringBase::ArgListEntry());
6746       Args[0].Val = I.getArgOperand(0);
6747       Args[0].Node = getValue(Args[0].Val);
6748       Args[0].Ty = Args[0].Val->getType();
6749     }
6750 
6751     TargetLowering::CallLoweringInfo CLI(DAG);
6752     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6753         CallingConv::C, I.getType(),
6754         DAG.getExternalSymbol(TrapFuncName.data(),
6755                               TLI.getPointerTy(DAG.getDataLayout())),
6756         std::move(Args));
6757 
6758     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6759     DAG.setRoot(Result.second);
6760     return;
6761   }
6762 
6763   case Intrinsic::uadd_with_overflow:
6764   case Intrinsic::sadd_with_overflow:
6765   case Intrinsic::usub_with_overflow:
6766   case Intrinsic::ssub_with_overflow:
6767   case Intrinsic::umul_with_overflow:
6768   case Intrinsic::smul_with_overflow: {
6769     ISD::NodeType Op;
6770     switch (Intrinsic) {
6771     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6772     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6773     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6774     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6775     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6776     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6777     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6778     }
6779     SDValue Op1 = getValue(I.getArgOperand(0));
6780     SDValue Op2 = getValue(I.getArgOperand(1));
6781 
6782     EVT ResultVT = Op1.getValueType();
6783     EVT OverflowVT = MVT::i1;
6784     if (ResultVT.isVector())
6785       OverflowVT = EVT::getVectorVT(
6786           *Context, OverflowVT, ResultVT.getVectorElementCount());
6787 
6788     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6789     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6790     return;
6791   }
6792   case Intrinsic::prefetch: {
6793     SDValue Ops[5];
6794     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6795     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6796     Ops[0] = DAG.getRoot();
6797     Ops[1] = getValue(I.getArgOperand(0));
6798     Ops[2] = getValue(I.getArgOperand(1));
6799     Ops[3] = getValue(I.getArgOperand(2));
6800     Ops[4] = getValue(I.getArgOperand(3));
6801     SDValue Result = DAG.getMemIntrinsicNode(
6802         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6803         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6804         /* align */ None, Flags);
6805 
6806     // Chain the prefetch in parallell with any pending loads, to stay out of
6807     // the way of later optimizations.
6808     PendingLoads.push_back(Result);
6809     Result = getRoot();
6810     DAG.setRoot(Result);
6811     return;
6812   }
6813   case Intrinsic::lifetime_start:
6814   case Intrinsic::lifetime_end: {
6815     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6816     // Stack coloring is not enabled in O0, discard region information.
6817     if (TM.getOptLevel() == CodeGenOpt::None)
6818       return;
6819 
6820     const int64_t ObjectSize =
6821         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6822     Value *const ObjectPtr = I.getArgOperand(1);
6823     SmallVector<const Value *, 4> Allocas;
6824     getUnderlyingObjects(ObjectPtr, Allocas);
6825 
6826     for (const Value *Alloca : Allocas) {
6827       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6828 
6829       // Could not find an Alloca.
6830       if (!LifetimeObject)
6831         continue;
6832 
6833       // First check that the Alloca is static, otherwise it won't have a
6834       // valid frame index.
6835       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6836       if (SI == FuncInfo.StaticAllocaMap.end())
6837         return;
6838 
6839       const int FrameIndex = SI->second;
6840       int64_t Offset;
6841       if (GetPointerBaseWithConstantOffset(
6842               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6843         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6844       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6845                                 Offset);
6846       DAG.setRoot(Res);
6847     }
6848     return;
6849   }
6850   case Intrinsic::pseudoprobe: {
6851     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6852     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6853     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6854     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6855     DAG.setRoot(Res);
6856     return;
6857   }
6858   case Intrinsic::invariant_start:
6859     // Discard region information.
6860     setValue(&I,
6861              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6862     return;
6863   case Intrinsic::invariant_end:
6864     // Discard region information.
6865     return;
6866   case Intrinsic::clear_cache:
6867     /// FunctionName may be null.
6868     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6869       lowerCallToExternalSymbol(I, FunctionName);
6870     return;
6871   case Intrinsic::donothing:
6872   case Intrinsic::seh_try_begin:
6873   case Intrinsic::seh_scope_begin:
6874   case Intrinsic::seh_try_end:
6875   case Intrinsic::seh_scope_end:
6876     // ignore
6877     return;
6878   case Intrinsic::experimental_stackmap:
6879     visitStackmap(I);
6880     return;
6881   case Intrinsic::experimental_patchpoint_void:
6882   case Intrinsic::experimental_patchpoint_i64:
6883     visitPatchpoint(I);
6884     return;
6885   case Intrinsic::experimental_gc_statepoint:
6886     LowerStatepoint(cast<GCStatepointInst>(I));
6887     return;
6888   case Intrinsic::experimental_gc_result:
6889     visitGCResult(cast<GCResultInst>(I));
6890     return;
6891   case Intrinsic::experimental_gc_relocate:
6892     visitGCRelocate(cast<GCRelocateInst>(I));
6893     return;
6894   case Intrinsic::instrprof_cover:
6895     llvm_unreachable("instrprof failed to lower a cover");
6896   case Intrinsic::instrprof_increment:
6897     llvm_unreachable("instrprof failed to lower an increment");
6898   case Intrinsic::instrprof_value_profile:
6899     llvm_unreachable("instrprof failed to lower a value profiling call");
6900   case Intrinsic::localescape: {
6901     MachineFunction &MF = DAG.getMachineFunction();
6902     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6903 
6904     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6905     // is the same on all targets.
6906     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6907       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6908       if (isa<ConstantPointerNull>(Arg))
6909         continue; // Skip null pointers. They represent a hole in index space.
6910       AllocaInst *Slot = cast<AllocaInst>(Arg);
6911       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6912              "can only escape static allocas");
6913       int FI = FuncInfo.StaticAllocaMap[Slot];
6914       MCSymbol *FrameAllocSym =
6915           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6916               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6917       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6918               TII->get(TargetOpcode::LOCAL_ESCAPE))
6919           .addSym(FrameAllocSym)
6920           .addFrameIndex(FI);
6921     }
6922 
6923     return;
6924   }
6925 
6926   case Intrinsic::localrecover: {
6927     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6928     MachineFunction &MF = DAG.getMachineFunction();
6929 
6930     // Get the symbol that defines the frame offset.
6931     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6932     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6933     unsigned IdxVal =
6934         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6935     MCSymbol *FrameAllocSym =
6936         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6937             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6938 
6939     Value *FP = I.getArgOperand(1);
6940     SDValue FPVal = getValue(FP);
6941     EVT PtrVT = FPVal.getValueType();
6942 
6943     // Create a MCSymbol for the label to avoid any target lowering
6944     // that would make this PC relative.
6945     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6946     SDValue OffsetVal =
6947         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6948 
6949     // Add the offset to the FP.
6950     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6951     setValue(&I, Add);
6952 
6953     return;
6954   }
6955 
6956   case Intrinsic::eh_exceptionpointer:
6957   case Intrinsic::eh_exceptioncode: {
6958     // Get the exception pointer vreg, copy from it, and resize it to fit.
6959     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6960     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6961     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6962     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6963     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
6964     if (Intrinsic == Intrinsic::eh_exceptioncode)
6965       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
6966     setValue(&I, N);
6967     return;
6968   }
6969   case Intrinsic::xray_customevent: {
6970     // Here we want to make sure that the intrinsic behaves as if it has a
6971     // specific calling convention, and only for x86_64.
6972     // FIXME: Support other platforms later.
6973     const auto &Triple = DAG.getTarget().getTargetTriple();
6974     if (Triple.getArch() != Triple::x86_64)
6975       return;
6976 
6977     SmallVector<SDValue, 8> Ops;
6978 
6979     // We want to say that we always want the arguments in registers.
6980     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6981     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6982     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6983     SDValue Chain = getRoot();
6984     Ops.push_back(LogEntryVal);
6985     Ops.push_back(StrSizeVal);
6986     Ops.push_back(Chain);
6987 
6988     // We need to enforce the calling convention for the callsite, so that
6989     // argument ordering is enforced correctly, and that register allocation can
6990     // see that some registers may be assumed clobbered and have to preserve
6991     // them across calls to the intrinsic.
6992     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6993                                            sdl, NodeTys, Ops);
6994     SDValue patchableNode = SDValue(MN, 0);
6995     DAG.setRoot(patchableNode);
6996     setValue(&I, patchableNode);
6997     return;
6998   }
6999   case Intrinsic::xray_typedevent: {
7000     // Here we want to make sure that the intrinsic behaves as if it has a
7001     // specific calling convention, and only for x86_64.
7002     // FIXME: Support other platforms later.
7003     const auto &Triple = DAG.getTarget().getTargetTriple();
7004     if (Triple.getArch() != Triple::x86_64)
7005       return;
7006 
7007     SmallVector<SDValue, 8> Ops;
7008 
7009     // We want to say that we always want the arguments in registers.
7010     // It's unclear to me how manipulating the selection DAG here forces callers
7011     // to provide arguments in registers instead of on the stack.
7012     SDValue LogTypeId = getValue(I.getArgOperand(0));
7013     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7014     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7015     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7016     SDValue Chain = getRoot();
7017     Ops.push_back(LogTypeId);
7018     Ops.push_back(LogEntryVal);
7019     Ops.push_back(StrSizeVal);
7020     Ops.push_back(Chain);
7021 
7022     // We need to enforce the calling convention for the callsite, so that
7023     // argument ordering is enforced correctly, and that register allocation can
7024     // see that some registers may be assumed clobbered and have to preserve
7025     // them across calls to the intrinsic.
7026     MachineSDNode *MN = DAG.getMachineNode(
7027         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7028     SDValue patchableNode = SDValue(MN, 0);
7029     DAG.setRoot(patchableNode);
7030     setValue(&I, patchableNode);
7031     return;
7032   }
7033   case Intrinsic::experimental_deoptimize:
7034     LowerDeoptimizeCall(&I);
7035     return;
7036   case Intrinsic::experimental_stepvector:
7037     visitStepVector(I);
7038     return;
7039   case Intrinsic::vector_reduce_fadd:
7040   case Intrinsic::vector_reduce_fmul:
7041   case Intrinsic::vector_reduce_add:
7042   case Intrinsic::vector_reduce_mul:
7043   case Intrinsic::vector_reduce_and:
7044   case Intrinsic::vector_reduce_or:
7045   case Intrinsic::vector_reduce_xor:
7046   case Intrinsic::vector_reduce_smax:
7047   case Intrinsic::vector_reduce_smin:
7048   case Intrinsic::vector_reduce_umax:
7049   case Intrinsic::vector_reduce_umin:
7050   case Intrinsic::vector_reduce_fmax:
7051   case Intrinsic::vector_reduce_fmin:
7052     visitVectorReduce(I, Intrinsic);
7053     return;
7054 
7055   case Intrinsic::icall_branch_funnel: {
7056     SmallVector<SDValue, 16> Ops;
7057     Ops.push_back(getValue(I.getArgOperand(0)));
7058 
7059     int64_t Offset;
7060     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7061         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7062     if (!Base)
7063       report_fatal_error(
7064           "llvm.icall.branch.funnel operand must be a GlobalValue");
7065     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7066 
7067     struct BranchFunnelTarget {
7068       int64_t Offset;
7069       SDValue Target;
7070     };
7071     SmallVector<BranchFunnelTarget, 8> Targets;
7072 
7073     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7074       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7075           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7076       if (ElemBase != Base)
7077         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7078                            "to the same GlobalValue");
7079 
7080       SDValue Val = getValue(I.getArgOperand(Op + 1));
7081       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7082       if (!GA)
7083         report_fatal_error(
7084             "llvm.icall.branch.funnel operand must be a GlobalValue");
7085       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7086                                      GA->getGlobal(), sdl, Val.getValueType(),
7087                                      GA->getOffset())});
7088     }
7089     llvm::sort(Targets,
7090                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7091                  return T1.Offset < T2.Offset;
7092                });
7093 
7094     for (auto &T : Targets) {
7095       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7096       Ops.push_back(T.Target);
7097     }
7098 
7099     Ops.push_back(DAG.getRoot()); // Chain
7100     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7101                                  MVT::Other, Ops),
7102               0);
7103     DAG.setRoot(N);
7104     setValue(&I, N);
7105     HasTailCall = true;
7106     return;
7107   }
7108 
7109   case Intrinsic::wasm_landingpad_index:
7110     // Information this intrinsic contained has been transferred to
7111     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7112     // delete it now.
7113     return;
7114 
7115   case Intrinsic::aarch64_settag:
7116   case Intrinsic::aarch64_settag_zero: {
7117     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7118     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7119     SDValue Val = TSI.EmitTargetCodeForSetTag(
7120         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7121         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7122         ZeroMemory);
7123     DAG.setRoot(Val);
7124     setValue(&I, Val);
7125     return;
7126   }
7127   case Intrinsic::ptrmask: {
7128     SDValue Ptr = getValue(I.getOperand(0));
7129     SDValue Const = getValue(I.getOperand(1));
7130 
7131     EVT PtrVT = Ptr.getValueType();
7132     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7133                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7134     return;
7135   }
7136   case Intrinsic::get_active_lane_mask: {
7137     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7138     SDValue Index = getValue(I.getOperand(0));
7139     EVT ElementVT = Index.getValueType();
7140 
7141     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7142       visitTargetIntrinsic(I, Intrinsic);
7143       return;
7144     }
7145 
7146     SDValue TripCount = getValue(I.getOperand(1));
7147     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7148 
7149     SDValue VectorIndex, VectorTripCount;
7150     if (VecTy.isScalableVector()) {
7151       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7152       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7153     } else {
7154       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7155       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7156     }
7157     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7158     SDValue VectorInduction = DAG.getNode(
7159         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7160     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7161                                  VectorTripCount, ISD::CondCode::SETULT);
7162     setValue(&I, SetCC);
7163     return;
7164   }
7165   case Intrinsic::experimental_vector_insert: {
7166     SDValue Vec = getValue(I.getOperand(0));
7167     SDValue SubVec = getValue(I.getOperand(1));
7168     SDValue Index = getValue(I.getOperand(2));
7169 
7170     // The intrinsic's index type is i64, but the SDNode requires an index type
7171     // suitable for the target. Convert the index as required.
7172     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7173     if (Index.getValueType() != VectorIdxTy)
7174       Index = DAG.getVectorIdxConstant(
7175           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7176 
7177     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7178     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7179                              Index));
7180     return;
7181   }
7182   case Intrinsic::experimental_vector_extract: {
7183     SDValue Vec = getValue(I.getOperand(0));
7184     SDValue Index = getValue(I.getOperand(1));
7185     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7186 
7187     // The intrinsic's index type is i64, but the SDNode requires an index type
7188     // suitable for the target. Convert the index as required.
7189     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7190     if (Index.getValueType() != VectorIdxTy)
7191       Index = DAG.getVectorIdxConstant(
7192           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7193 
7194     setValue(&I,
7195              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7196     return;
7197   }
7198   case Intrinsic::experimental_vector_reverse:
7199     visitVectorReverse(I);
7200     return;
7201   case Intrinsic::experimental_vector_splice:
7202     visitVectorSplice(I);
7203     return;
7204   }
7205 }
7206 
7207 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7208     const ConstrainedFPIntrinsic &FPI) {
7209   SDLoc sdl = getCurSDLoc();
7210 
7211   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7212   SmallVector<EVT, 4> ValueVTs;
7213   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7214   ValueVTs.push_back(MVT::Other); // Out chain
7215 
7216   // We do not need to serialize constrained FP intrinsics against
7217   // each other or against (nonvolatile) loads, so they can be
7218   // chained like loads.
7219   SDValue Chain = DAG.getRoot();
7220   SmallVector<SDValue, 4> Opers;
7221   Opers.push_back(Chain);
7222   if (FPI.isUnaryOp()) {
7223     Opers.push_back(getValue(FPI.getArgOperand(0)));
7224   } else if (FPI.isTernaryOp()) {
7225     Opers.push_back(getValue(FPI.getArgOperand(0)));
7226     Opers.push_back(getValue(FPI.getArgOperand(1)));
7227     Opers.push_back(getValue(FPI.getArgOperand(2)));
7228   } else {
7229     Opers.push_back(getValue(FPI.getArgOperand(0)));
7230     Opers.push_back(getValue(FPI.getArgOperand(1)));
7231   }
7232 
7233   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7234     assert(Result.getNode()->getNumValues() == 2);
7235 
7236     // Push node to the appropriate list so that future instructions can be
7237     // chained up correctly.
7238     SDValue OutChain = Result.getValue(1);
7239     switch (EB) {
7240     case fp::ExceptionBehavior::ebIgnore:
7241       // The only reason why ebIgnore nodes still need to be chained is that
7242       // they might depend on the current rounding mode, and therefore must
7243       // not be moved across instruction that may change that mode.
7244       LLVM_FALLTHROUGH;
7245     case fp::ExceptionBehavior::ebMayTrap:
7246       // These must not be moved across calls or instructions that may change
7247       // floating-point exception masks.
7248       PendingConstrainedFP.push_back(OutChain);
7249       break;
7250     case fp::ExceptionBehavior::ebStrict:
7251       // These must not be moved across calls or instructions that may change
7252       // floating-point exception masks or read floating-point exception flags.
7253       // In addition, they cannot be optimized out even if unused.
7254       PendingConstrainedFPStrict.push_back(OutChain);
7255       break;
7256     }
7257   };
7258 
7259   SDVTList VTs = DAG.getVTList(ValueVTs);
7260   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7261 
7262   SDNodeFlags Flags;
7263   if (EB == fp::ExceptionBehavior::ebIgnore)
7264     Flags.setNoFPExcept(true);
7265 
7266   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7267     Flags.copyFMF(*FPOp);
7268 
7269   unsigned Opcode;
7270   switch (FPI.getIntrinsicID()) {
7271   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7272 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7273   case Intrinsic::INTRINSIC:                                                   \
7274     Opcode = ISD::STRICT_##DAGN;                                               \
7275     break;
7276 #include "llvm/IR/ConstrainedOps.def"
7277   case Intrinsic::experimental_constrained_fmuladd: {
7278     Opcode = ISD::STRICT_FMA;
7279     // Break fmuladd into fmul and fadd.
7280     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7281         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7282                                         ValueVTs[0])) {
7283       Opers.pop_back();
7284       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7285       pushOutChain(Mul, EB);
7286       Opcode = ISD::STRICT_FADD;
7287       Opers.clear();
7288       Opers.push_back(Mul.getValue(1));
7289       Opers.push_back(Mul.getValue(0));
7290       Opers.push_back(getValue(FPI.getArgOperand(2)));
7291     }
7292     break;
7293   }
7294   }
7295 
7296   // A few strict DAG nodes carry additional operands that are not
7297   // set up by the default code above.
7298   switch (Opcode) {
7299   default: break;
7300   case ISD::STRICT_FP_ROUND:
7301     Opers.push_back(
7302         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7303     break;
7304   case ISD::STRICT_FSETCC:
7305   case ISD::STRICT_FSETCCS: {
7306     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7307     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7308     if (TM.Options.NoNaNsFPMath)
7309       Condition = getFCmpCodeWithoutNaN(Condition);
7310     Opers.push_back(DAG.getCondCode(Condition));
7311     break;
7312   }
7313   }
7314 
7315   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7316   pushOutChain(Result, EB);
7317 
7318   SDValue FPResult = Result.getValue(0);
7319   setValue(&FPI, FPResult);
7320 }
7321 
7322 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7323   Optional<unsigned> ResOPC;
7324   switch (VPIntrin.getIntrinsicID()) {
7325 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7326 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD;
7327 #define END_REGISTER_VP_INTRINSIC(VPID) break;
7328 #include "llvm/IR/VPIntrinsics.def"
7329   }
7330 
7331   if (!ResOPC.hasValue())
7332     llvm_unreachable(
7333         "Inconsistency: no SDNode available for this VPIntrinsic!");
7334 
7335   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7336       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7337     if (VPIntrin.getFastMathFlags().allowReassoc())
7338       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7339                                                 : ISD::VP_REDUCE_FMUL;
7340   }
7341 
7342   return ResOPC.getValue();
7343 }
7344 
7345 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7346                                             SmallVector<SDValue, 7> &OpValues,
7347                                             bool IsGather) {
7348   SDLoc DL = getCurSDLoc();
7349   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7350   Value *PtrOperand = VPIntrin.getArgOperand(0);
7351   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7352   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7353   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7354   SDValue LD;
7355   bool AddToChain = true;
7356   if (!IsGather) {
7357     // Do not serialize variable-length loads of constant memory with
7358     // anything.
7359     if (!Alignment)
7360       Alignment = DAG.getEVTAlign(VT);
7361     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7362     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7363     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7364     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7365         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7366         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7367     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7368                        MMO, false /*IsExpanding */);
7369   } else {
7370     if (!Alignment)
7371       Alignment = DAG.getEVTAlign(VT.getScalarType());
7372     unsigned AS =
7373         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7374     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7375         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7376         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7377     SDValue Base, Index, Scale;
7378     ISD::MemIndexType IndexType;
7379     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7380                                       this, VPIntrin.getParent());
7381     if (!UniformBase) {
7382       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7383       Index = getValue(PtrOperand);
7384       IndexType = ISD::SIGNED_UNSCALED;
7385       Scale =
7386           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7387     }
7388     EVT IdxVT = Index.getValueType();
7389     EVT EltTy = IdxVT.getVectorElementType();
7390     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7391       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7392       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7393     }
7394     LD = DAG.getGatherVP(
7395         DAG.getVTList(VT, MVT::Other), VT, DL,
7396         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7397         IndexType);
7398   }
7399   if (AddToChain)
7400     PendingLoads.push_back(LD.getValue(1));
7401   setValue(&VPIntrin, LD);
7402 }
7403 
7404 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7405                                               SmallVector<SDValue, 7> &OpValues,
7406                                               bool IsScatter) {
7407   SDLoc DL = getCurSDLoc();
7408   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7409   Value *PtrOperand = VPIntrin.getArgOperand(1);
7410   EVT VT = OpValues[0].getValueType();
7411   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7412   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7413   SDValue ST;
7414   if (!IsScatter) {
7415     if (!Alignment)
7416       Alignment = DAG.getEVTAlign(VT);
7417     SDValue Ptr = OpValues[1];
7418     SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7419     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7420         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7421         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7422     ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7423                         OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7424                         /* IsTruncating */ false, /*IsCompressing*/ false);
7425   } else {
7426     if (!Alignment)
7427       Alignment = DAG.getEVTAlign(VT.getScalarType());
7428     unsigned AS =
7429         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7430     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7431         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7432         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7433     SDValue Base, Index, Scale;
7434     ISD::MemIndexType IndexType;
7435     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7436                                       this, VPIntrin.getParent());
7437     if (!UniformBase) {
7438       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7439       Index = getValue(PtrOperand);
7440       IndexType = ISD::SIGNED_UNSCALED;
7441       Scale =
7442           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7443     }
7444     EVT IdxVT = Index.getValueType();
7445     EVT EltTy = IdxVT.getVectorElementType();
7446     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7447       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7448       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7449     }
7450     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7451                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7452                            OpValues[2], OpValues[3]},
7453                           MMO, IndexType);
7454   }
7455   DAG.setRoot(ST);
7456   setValue(&VPIntrin, ST);
7457 }
7458 
7459 void SelectionDAGBuilder::visitVPStridedLoad(
7460     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7461   SDLoc DL = getCurSDLoc();
7462   Value *PtrOperand = VPIntrin.getArgOperand(0);
7463   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7464   if (!Alignment)
7465     Alignment = DAG.getEVTAlign(VT.getScalarType());
7466   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7467   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7468   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7469   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7470   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7471   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7472       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7473       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7474 
7475   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7476                                     OpValues[2], OpValues[3], MMO,
7477                                     false /*IsExpanding*/);
7478 
7479   if (AddToChain)
7480     PendingLoads.push_back(LD.getValue(1));
7481   setValue(&VPIntrin, LD);
7482 }
7483 
7484 void SelectionDAGBuilder::visitVPStridedStore(
7485     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7486   SDLoc DL = getCurSDLoc();
7487   Value *PtrOperand = VPIntrin.getArgOperand(1);
7488   EVT VT = OpValues[0].getValueType();
7489   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7490   if (!Alignment)
7491     Alignment = DAG.getEVTAlign(VT.getScalarType());
7492   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7493   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7494       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7495       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7496 
7497   SDValue ST = DAG.getStridedStoreVP(
7498       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7499       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7500       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7501       /*IsCompressing*/ false);
7502 
7503   DAG.setRoot(ST);
7504   setValue(&VPIntrin, ST);
7505 }
7506 
7507 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7508     const VPIntrinsic &VPIntrin) {
7509   SDLoc DL = getCurSDLoc();
7510   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7511 
7512   SmallVector<EVT, 4> ValueVTs;
7513   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7514   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7515   SDVTList VTs = DAG.getVTList(ValueVTs);
7516 
7517   auto EVLParamPos =
7518       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7519 
7520   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7521   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7522          "Unexpected target EVL type");
7523 
7524   // Request operands.
7525   SmallVector<SDValue, 7> OpValues;
7526   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7527     auto Op = getValue(VPIntrin.getArgOperand(I));
7528     if (I == EVLParamPos)
7529       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7530     OpValues.push_back(Op);
7531   }
7532 
7533   switch (Opcode) {
7534   default: {
7535     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7536     setValue(&VPIntrin, Result);
7537     break;
7538   }
7539   case ISD::VP_LOAD:
7540   case ISD::VP_GATHER:
7541     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7542                       Opcode == ISD::VP_GATHER);
7543     break;
7544   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7545     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7546     break;
7547   case ISD::VP_STORE:
7548   case ISD::VP_SCATTER:
7549     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7550     break;
7551   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7552     visitVPStridedStore(VPIntrin, OpValues);
7553     break;
7554   }
7555 }
7556 
7557 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7558                                           const BasicBlock *EHPadBB,
7559                                           MCSymbol *&BeginLabel) {
7560   MachineFunction &MF = DAG.getMachineFunction();
7561   MachineModuleInfo &MMI = MF.getMMI();
7562 
7563   // Insert a label before the invoke call to mark the try range.  This can be
7564   // used to detect deletion of the invoke via the MachineModuleInfo.
7565   BeginLabel = MMI.getContext().createTempSymbol();
7566 
7567   // For SjLj, keep track of which landing pads go with which invokes
7568   // so as to maintain the ordering of pads in the LSDA.
7569   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7570   if (CallSiteIndex) {
7571     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7572     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7573 
7574     // Now that the call site is handled, stop tracking it.
7575     MMI.setCurrentCallSite(0);
7576   }
7577 
7578   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7579 }
7580 
7581 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7582                                         const BasicBlock *EHPadBB,
7583                                         MCSymbol *BeginLabel) {
7584   assert(BeginLabel && "BeginLabel should've been set");
7585 
7586   MachineFunction &MF = DAG.getMachineFunction();
7587   MachineModuleInfo &MMI = MF.getMMI();
7588 
7589   // Insert a label at the end of the invoke call to mark the try range.  This
7590   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7591   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7592   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7593 
7594   // Inform MachineModuleInfo of range.
7595   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7596   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7597   // actually use outlined funclets and their LSDA info style.
7598   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7599     assert(II && "II should've been set");
7600     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7601     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7602   } else if (!isScopedEHPersonality(Pers)) {
7603     assert(EHPadBB);
7604     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7605   }
7606 
7607   return Chain;
7608 }
7609 
7610 std::pair<SDValue, SDValue>
7611 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7612                                     const BasicBlock *EHPadBB) {
7613   MCSymbol *BeginLabel = nullptr;
7614 
7615   if (EHPadBB) {
7616     // Both PendingLoads and PendingExports must be flushed here;
7617     // this call might not return.
7618     (void)getRoot();
7619     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7620     CLI.setChain(getRoot());
7621   }
7622 
7623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7624   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7625 
7626   assert((CLI.IsTailCall || Result.second.getNode()) &&
7627          "Non-null chain expected with non-tail call!");
7628   assert((Result.second.getNode() || !Result.first.getNode()) &&
7629          "Null value expected with tail call!");
7630 
7631   if (!Result.second.getNode()) {
7632     // As a special case, a null chain means that a tail call has been emitted
7633     // and the DAG root is already updated.
7634     HasTailCall = true;
7635 
7636     // Since there's no actual continuation from this block, nothing can be
7637     // relying on us setting vregs for them.
7638     PendingExports.clear();
7639   } else {
7640     DAG.setRoot(Result.second);
7641   }
7642 
7643   if (EHPadBB) {
7644     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7645                            BeginLabel));
7646   }
7647 
7648   return Result;
7649 }
7650 
7651 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7652                                       bool isTailCall,
7653                                       bool isMustTailCall,
7654                                       const BasicBlock *EHPadBB) {
7655   auto &DL = DAG.getDataLayout();
7656   FunctionType *FTy = CB.getFunctionType();
7657   Type *RetTy = CB.getType();
7658 
7659   TargetLowering::ArgListTy Args;
7660   Args.reserve(CB.arg_size());
7661 
7662   const Value *SwiftErrorVal = nullptr;
7663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7664 
7665   if (isTailCall) {
7666     // Avoid emitting tail calls in functions with the disable-tail-calls
7667     // attribute.
7668     auto *Caller = CB.getParent()->getParent();
7669     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7670         "true" && !isMustTailCall)
7671       isTailCall = false;
7672 
7673     // We can't tail call inside a function with a swifterror argument. Lowering
7674     // does not support this yet. It would have to move into the swifterror
7675     // register before the call.
7676     if (TLI.supportSwiftError() &&
7677         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7678       isTailCall = false;
7679   }
7680 
7681   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7682     TargetLowering::ArgListEntry Entry;
7683     const Value *V = *I;
7684 
7685     // Skip empty types
7686     if (V->getType()->isEmptyTy())
7687       continue;
7688 
7689     SDValue ArgNode = getValue(V);
7690     Entry.Node = ArgNode; Entry.Ty = V->getType();
7691 
7692     Entry.setAttributes(&CB, I - CB.arg_begin());
7693 
7694     // Use swifterror virtual register as input to the call.
7695     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7696       SwiftErrorVal = V;
7697       // We find the virtual register for the actual swifterror argument.
7698       // Instead of using the Value, we use the virtual register instead.
7699       Entry.Node =
7700           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7701                           EVT(TLI.getPointerTy(DL)));
7702     }
7703 
7704     Args.push_back(Entry);
7705 
7706     // If we have an explicit sret argument that is an Instruction, (i.e., it
7707     // might point to function-local memory), we can't meaningfully tail-call.
7708     if (Entry.IsSRet && isa<Instruction>(V))
7709       isTailCall = false;
7710   }
7711 
7712   // If call site has a cfguardtarget operand bundle, create and add an
7713   // additional ArgListEntry.
7714   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7715     TargetLowering::ArgListEntry Entry;
7716     Value *V = Bundle->Inputs[0];
7717     SDValue ArgNode = getValue(V);
7718     Entry.Node = ArgNode;
7719     Entry.Ty = V->getType();
7720     Entry.IsCFGuardTarget = true;
7721     Args.push_back(Entry);
7722   }
7723 
7724   // Check if target-independent constraints permit a tail call here.
7725   // Target-dependent constraints are checked within TLI->LowerCallTo.
7726   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7727     isTailCall = false;
7728 
7729   // Disable tail calls if there is an swifterror argument. Targets have not
7730   // been updated to support tail calls.
7731   if (TLI.supportSwiftError() && SwiftErrorVal)
7732     isTailCall = false;
7733 
7734   TargetLowering::CallLoweringInfo CLI(DAG);
7735   CLI.setDebugLoc(getCurSDLoc())
7736       .setChain(getRoot())
7737       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7738       .setTailCall(isTailCall)
7739       .setConvergent(CB.isConvergent())
7740       .setIsPreallocated(
7741           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7742   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7743 
7744   if (Result.first.getNode()) {
7745     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7746     setValue(&CB, Result.first);
7747   }
7748 
7749   // The last element of CLI.InVals has the SDValue for swifterror return.
7750   // Here we copy it to a virtual register and update SwiftErrorMap for
7751   // book-keeping.
7752   if (SwiftErrorVal && TLI.supportSwiftError()) {
7753     // Get the last element of InVals.
7754     SDValue Src = CLI.InVals.back();
7755     Register VReg =
7756         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7757     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7758     DAG.setRoot(CopyNode);
7759   }
7760 }
7761 
7762 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7763                              SelectionDAGBuilder &Builder) {
7764   // Check to see if this load can be trivially constant folded, e.g. if the
7765   // input is from a string literal.
7766   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7767     // Cast pointer to the type we really want to load.
7768     Type *LoadTy =
7769         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7770     if (LoadVT.isVector())
7771       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7772 
7773     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7774                                          PointerType::getUnqual(LoadTy));
7775 
7776     if (const Constant *LoadCst =
7777             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7778                                          LoadTy, Builder.DAG.getDataLayout()))
7779       return Builder.getValue(LoadCst);
7780   }
7781 
7782   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7783   // still constant memory, the input chain can be the entry node.
7784   SDValue Root;
7785   bool ConstantMemory = false;
7786 
7787   // Do not serialize (non-volatile) loads of constant memory with anything.
7788   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7789     Root = Builder.DAG.getEntryNode();
7790     ConstantMemory = true;
7791   } else {
7792     // Do not serialize non-volatile loads against each other.
7793     Root = Builder.DAG.getRoot();
7794   }
7795 
7796   SDValue Ptr = Builder.getValue(PtrVal);
7797   SDValue LoadVal =
7798       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7799                           MachinePointerInfo(PtrVal), Align(1));
7800 
7801   if (!ConstantMemory)
7802     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7803   return LoadVal;
7804 }
7805 
7806 /// Record the value for an instruction that produces an integer result,
7807 /// converting the type where necessary.
7808 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7809                                                   SDValue Value,
7810                                                   bool IsSigned) {
7811   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7812                                                     I.getType(), true);
7813   if (IsSigned)
7814     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7815   else
7816     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7817   setValue(&I, Value);
7818 }
7819 
7820 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7821 /// true and lower it. Otherwise return false, and it will be lowered like a
7822 /// normal call.
7823 /// The caller already checked that \p I calls the appropriate LibFunc with a
7824 /// correct prototype.
7825 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7826   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7827   const Value *Size = I.getArgOperand(2);
7828   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7829   if (CSize && CSize->getZExtValue() == 0) {
7830     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7831                                                           I.getType(), true);
7832     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7833     return true;
7834   }
7835 
7836   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7837   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7838       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7839       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7840   if (Res.first.getNode()) {
7841     processIntegerCallValue(I, Res.first, true);
7842     PendingLoads.push_back(Res.second);
7843     return true;
7844   }
7845 
7846   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7847   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7848   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7849     return false;
7850 
7851   // If the target has a fast compare for the given size, it will return a
7852   // preferred load type for that size. Require that the load VT is legal and
7853   // that the target supports unaligned loads of that type. Otherwise, return
7854   // INVALID.
7855   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7856     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7857     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7858     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7859       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7860       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7861       // TODO: Check alignment of src and dest ptrs.
7862       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7863       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7864       if (!TLI.isTypeLegal(LVT) ||
7865           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7866           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7867         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7868     }
7869 
7870     return LVT;
7871   };
7872 
7873   // This turns into unaligned loads. We only do this if the target natively
7874   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7875   // we'll only produce a small number of byte loads.
7876   MVT LoadVT;
7877   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7878   switch (NumBitsToCompare) {
7879   default:
7880     return false;
7881   case 16:
7882     LoadVT = MVT::i16;
7883     break;
7884   case 32:
7885     LoadVT = MVT::i32;
7886     break;
7887   case 64:
7888   case 128:
7889   case 256:
7890     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7891     break;
7892   }
7893 
7894   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7895     return false;
7896 
7897   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7898   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7899 
7900   // Bitcast to a wide integer type if the loads are vectors.
7901   if (LoadVT.isVector()) {
7902     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7903     LoadL = DAG.getBitcast(CmpVT, LoadL);
7904     LoadR = DAG.getBitcast(CmpVT, LoadR);
7905   }
7906 
7907   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7908   processIntegerCallValue(I, Cmp, false);
7909   return true;
7910 }
7911 
7912 /// See if we can lower a memchr call into an optimized form. If so, return
7913 /// true and lower it. Otherwise return false, and it will be lowered like a
7914 /// normal call.
7915 /// The caller already checked that \p I calls the appropriate LibFunc with a
7916 /// correct prototype.
7917 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7918   const Value *Src = I.getArgOperand(0);
7919   const Value *Char = I.getArgOperand(1);
7920   const Value *Length = I.getArgOperand(2);
7921 
7922   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7923   std::pair<SDValue, SDValue> Res =
7924     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7925                                 getValue(Src), getValue(Char), getValue(Length),
7926                                 MachinePointerInfo(Src));
7927   if (Res.first.getNode()) {
7928     setValue(&I, Res.first);
7929     PendingLoads.push_back(Res.second);
7930     return true;
7931   }
7932 
7933   return false;
7934 }
7935 
7936 /// See if we can lower a mempcpy call into an optimized form. If so, return
7937 /// true and lower it. Otherwise return false, and it will be lowered like a
7938 /// normal call.
7939 /// The caller already checked that \p I calls the appropriate LibFunc with a
7940 /// correct prototype.
7941 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7942   SDValue Dst = getValue(I.getArgOperand(0));
7943   SDValue Src = getValue(I.getArgOperand(1));
7944   SDValue Size = getValue(I.getArgOperand(2));
7945 
7946   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7947   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7948   // DAG::getMemcpy needs Alignment to be defined.
7949   Align Alignment = std::min(DstAlign, SrcAlign);
7950 
7951   bool isVol = false;
7952   SDLoc sdl = getCurSDLoc();
7953 
7954   // In the mempcpy context we need to pass in a false value for isTailCall
7955   // because the return pointer needs to be adjusted by the size of
7956   // the copied memory.
7957   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7958   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7959                              /*isTailCall=*/false,
7960                              MachinePointerInfo(I.getArgOperand(0)),
7961                              MachinePointerInfo(I.getArgOperand(1)),
7962                              I.getAAMetadata());
7963   assert(MC.getNode() != nullptr &&
7964          "** memcpy should not be lowered as TailCall in mempcpy context **");
7965   DAG.setRoot(MC);
7966 
7967   // Check if Size needs to be truncated or extended.
7968   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7969 
7970   // Adjust return pointer to point just past the last dst byte.
7971   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7972                                     Dst, Size);
7973   setValue(&I, DstPlusSize);
7974   return true;
7975 }
7976 
7977 /// See if we can lower a strcpy call into an optimized form.  If so, return
7978 /// true and lower it, otherwise return false and it will be lowered like a
7979 /// normal call.
7980 /// The caller already checked that \p I calls the appropriate LibFunc with a
7981 /// correct prototype.
7982 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7983   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7984 
7985   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7986   std::pair<SDValue, SDValue> Res =
7987     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7988                                 getValue(Arg0), getValue(Arg1),
7989                                 MachinePointerInfo(Arg0),
7990                                 MachinePointerInfo(Arg1), isStpcpy);
7991   if (Res.first.getNode()) {
7992     setValue(&I, Res.first);
7993     DAG.setRoot(Res.second);
7994     return true;
7995   }
7996 
7997   return false;
7998 }
7999 
8000 /// See if we can lower a strcmp call into an optimized form.  If so, return
8001 /// true and lower it, otherwise return false and it will be lowered like a
8002 /// normal call.
8003 /// The caller already checked that \p I calls the appropriate LibFunc with a
8004 /// correct prototype.
8005 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8006   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8007 
8008   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8009   std::pair<SDValue, SDValue> Res =
8010     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8011                                 getValue(Arg0), getValue(Arg1),
8012                                 MachinePointerInfo(Arg0),
8013                                 MachinePointerInfo(Arg1));
8014   if (Res.first.getNode()) {
8015     processIntegerCallValue(I, Res.first, true);
8016     PendingLoads.push_back(Res.second);
8017     return true;
8018   }
8019 
8020   return false;
8021 }
8022 
8023 /// See if we can lower a strlen call into an optimized form.  If so, return
8024 /// true and lower it, otherwise return false and it will be lowered like a
8025 /// normal call.
8026 /// The caller already checked that \p I calls the appropriate LibFunc with a
8027 /// correct prototype.
8028 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8029   const Value *Arg0 = I.getArgOperand(0);
8030 
8031   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8032   std::pair<SDValue, SDValue> Res =
8033     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8034                                 getValue(Arg0), MachinePointerInfo(Arg0));
8035   if (Res.first.getNode()) {
8036     processIntegerCallValue(I, Res.first, false);
8037     PendingLoads.push_back(Res.second);
8038     return true;
8039   }
8040 
8041   return false;
8042 }
8043 
8044 /// See if we can lower a strnlen call into an optimized form.  If so, return
8045 /// true and lower it, otherwise return false and it will be lowered like a
8046 /// normal call.
8047 /// The caller already checked that \p I calls the appropriate LibFunc with a
8048 /// correct prototype.
8049 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8050   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8051 
8052   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8053   std::pair<SDValue, SDValue> Res =
8054     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8055                                  getValue(Arg0), getValue(Arg1),
8056                                  MachinePointerInfo(Arg0));
8057   if (Res.first.getNode()) {
8058     processIntegerCallValue(I, Res.first, false);
8059     PendingLoads.push_back(Res.second);
8060     return true;
8061   }
8062 
8063   return false;
8064 }
8065 
8066 /// See if we can lower a unary floating-point operation into an SDNode with
8067 /// the specified Opcode.  If so, return true and lower it, otherwise return
8068 /// false and it will be lowered like a normal call.
8069 /// The caller already checked that \p I calls the appropriate LibFunc with a
8070 /// correct prototype.
8071 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8072                                               unsigned Opcode) {
8073   // We already checked this call's prototype; verify it doesn't modify errno.
8074   if (!I.onlyReadsMemory())
8075     return false;
8076 
8077   SDNodeFlags Flags;
8078   Flags.copyFMF(cast<FPMathOperator>(I));
8079 
8080   SDValue Tmp = getValue(I.getArgOperand(0));
8081   setValue(&I,
8082            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8083   return true;
8084 }
8085 
8086 /// See if we can lower a binary floating-point operation into an SDNode with
8087 /// the specified Opcode. If so, return true and lower it. Otherwise return
8088 /// false, and it will be lowered like a normal call.
8089 /// The caller already checked that \p I calls the appropriate LibFunc with a
8090 /// correct prototype.
8091 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8092                                                unsigned Opcode) {
8093   // We already checked this call's prototype; verify it doesn't modify errno.
8094   if (!I.onlyReadsMemory())
8095     return false;
8096 
8097   SDNodeFlags Flags;
8098   Flags.copyFMF(cast<FPMathOperator>(I));
8099 
8100   SDValue Tmp0 = getValue(I.getArgOperand(0));
8101   SDValue Tmp1 = getValue(I.getArgOperand(1));
8102   EVT VT = Tmp0.getValueType();
8103   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8104   return true;
8105 }
8106 
8107 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8108   // Handle inline assembly differently.
8109   if (I.isInlineAsm()) {
8110     visitInlineAsm(I);
8111     return;
8112   }
8113 
8114   if (Function *F = I.getCalledFunction()) {
8115     diagnoseDontCall(I);
8116 
8117     if (F->isDeclaration()) {
8118       // Is this an LLVM intrinsic or a target-specific intrinsic?
8119       unsigned IID = F->getIntrinsicID();
8120       if (!IID)
8121         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8122           IID = II->getIntrinsicID(F);
8123 
8124       if (IID) {
8125         visitIntrinsicCall(I, IID);
8126         return;
8127       }
8128     }
8129 
8130     // Check for well-known libc/libm calls.  If the function is internal, it
8131     // can't be a library call.  Don't do the check if marked as nobuiltin for
8132     // some reason or the call site requires strict floating point semantics.
8133     LibFunc Func;
8134     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8135         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8136         LibInfo->hasOptimizedCodeGen(Func)) {
8137       switch (Func) {
8138       default: break;
8139       case LibFunc_bcmp:
8140         if (visitMemCmpBCmpCall(I))
8141           return;
8142         break;
8143       case LibFunc_copysign:
8144       case LibFunc_copysignf:
8145       case LibFunc_copysignl:
8146         // We already checked this call's prototype; verify it doesn't modify
8147         // errno.
8148         if (I.onlyReadsMemory()) {
8149           SDValue LHS = getValue(I.getArgOperand(0));
8150           SDValue RHS = getValue(I.getArgOperand(1));
8151           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8152                                    LHS.getValueType(), LHS, RHS));
8153           return;
8154         }
8155         break;
8156       case LibFunc_fabs:
8157       case LibFunc_fabsf:
8158       case LibFunc_fabsl:
8159         if (visitUnaryFloatCall(I, ISD::FABS))
8160           return;
8161         break;
8162       case LibFunc_fmin:
8163       case LibFunc_fminf:
8164       case LibFunc_fminl:
8165         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8166           return;
8167         break;
8168       case LibFunc_fmax:
8169       case LibFunc_fmaxf:
8170       case LibFunc_fmaxl:
8171         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8172           return;
8173         break;
8174       case LibFunc_sin:
8175       case LibFunc_sinf:
8176       case LibFunc_sinl:
8177         if (visitUnaryFloatCall(I, ISD::FSIN))
8178           return;
8179         break;
8180       case LibFunc_cos:
8181       case LibFunc_cosf:
8182       case LibFunc_cosl:
8183         if (visitUnaryFloatCall(I, ISD::FCOS))
8184           return;
8185         break;
8186       case LibFunc_sqrt:
8187       case LibFunc_sqrtf:
8188       case LibFunc_sqrtl:
8189       case LibFunc_sqrt_finite:
8190       case LibFunc_sqrtf_finite:
8191       case LibFunc_sqrtl_finite:
8192         if (visitUnaryFloatCall(I, ISD::FSQRT))
8193           return;
8194         break;
8195       case LibFunc_floor:
8196       case LibFunc_floorf:
8197       case LibFunc_floorl:
8198         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8199           return;
8200         break;
8201       case LibFunc_nearbyint:
8202       case LibFunc_nearbyintf:
8203       case LibFunc_nearbyintl:
8204         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8205           return;
8206         break;
8207       case LibFunc_ceil:
8208       case LibFunc_ceilf:
8209       case LibFunc_ceill:
8210         if (visitUnaryFloatCall(I, ISD::FCEIL))
8211           return;
8212         break;
8213       case LibFunc_rint:
8214       case LibFunc_rintf:
8215       case LibFunc_rintl:
8216         if (visitUnaryFloatCall(I, ISD::FRINT))
8217           return;
8218         break;
8219       case LibFunc_round:
8220       case LibFunc_roundf:
8221       case LibFunc_roundl:
8222         if (visitUnaryFloatCall(I, ISD::FROUND))
8223           return;
8224         break;
8225       case LibFunc_trunc:
8226       case LibFunc_truncf:
8227       case LibFunc_truncl:
8228         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8229           return;
8230         break;
8231       case LibFunc_log2:
8232       case LibFunc_log2f:
8233       case LibFunc_log2l:
8234         if (visitUnaryFloatCall(I, ISD::FLOG2))
8235           return;
8236         break;
8237       case LibFunc_exp2:
8238       case LibFunc_exp2f:
8239       case LibFunc_exp2l:
8240         if (visitUnaryFloatCall(I, ISD::FEXP2))
8241           return;
8242         break;
8243       case LibFunc_memcmp:
8244         if (visitMemCmpBCmpCall(I))
8245           return;
8246         break;
8247       case LibFunc_mempcpy:
8248         if (visitMemPCpyCall(I))
8249           return;
8250         break;
8251       case LibFunc_memchr:
8252         if (visitMemChrCall(I))
8253           return;
8254         break;
8255       case LibFunc_strcpy:
8256         if (visitStrCpyCall(I, false))
8257           return;
8258         break;
8259       case LibFunc_stpcpy:
8260         if (visitStrCpyCall(I, true))
8261           return;
8262         break;
8263       case LibFunc_strcmp:
8264         if (visitStrCmpCall(I))
8265           return;
8266         break;
8267       case LibFunc_strlen:
8268         if (visitStrLenCall(I))
8269           return;
8270         break;
8271       case LibFunc_strnlen:
8272         if (visitStrNLenCall(I))
8273           return;
8274         break;
8275       }
8276     }
8277   }
8278 
8279   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8280   // have to do anything here to lower funclet bundles.
8281   // CFGuardTarget bundles are lowered in LowerCallTo.
8282   assert(!I.hasOperandBundlesOtherThan(
8283              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8284               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8285               LLVMContext::OB_clang_arc_attachedcall}) &&
8286          "Cannot lower calls with arbitrary operand bundles!");
8287 
8288   SDValue Callee = getValue(I.getCalledOperand());
8289 
8290   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8291     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8292   else
8293     // Check if we can potentially perform a tail call. More detailed checking
8294     // is be done within LowerCallTo, after more information about the call is
8295     // known.
8296     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8297 }
8298 
8299 namespace {
8300 
8301 /// AsmOperandInfo - This contains information for each constraint that we are
8302 /// lowering.
8303 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8304 public:
8305   /// CallOperand - If this is the result output operand or a clobber
8306   /// this is null, otherwise it is the incoming operand to the CallInst.
8307   /// This gets modified as the asm is processed.
8308   SDValue CallOperand;
8309 
8310   /// AssignedRegs - If this is a register or register class operand, this
8311   /// contains the set of register corresponding to the operand.
8312   RegsForValue AssignedRegs;
8313 
8314   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8315     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8316   }
8317 
8318   /// Whether or not this operand accesses memory
8319   bool hasMemory(const TargetLowering &TLI) const {
8320     // Indirect operand accesses access memory.
8321     if (isIndirect)
8322       return true;
8323 
8324     for (const auto &Code : Codes)
8325       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8326         return true;
8327 
8328     return false;
8329   }
8330 
8331   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8332   /// corresponds to.  If there is no Value* for this operand, it returns
8333   /// MVT::Other.
8334   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8335                            const DataLayout &DL,
8336                            llvm::Type *ParamElemType) const {
8337     if (!CallOperandVal) return MVT::Other;
8338 
8339     if (isa<BasicBlock>(CallOperandVal))
8340       return TLI.getProgramPointerTy(DL);
8341 
8342     llvm::Type *OpTy = CallOperandVal->getType();
8343 
8344     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8345     // If this is an indirect operand, the operand is a pointer to the
8346     // accessed type.
8347     if (isIndirect) {
8348       OpTy = ParamElemType;
8349       assert(OpTy && "Indirect operand must have elementtype attribute");
8350     }
8351 
8352     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8353     if (StructType *STy = dyn_cast<StructType>(OpTy))
8354       if (STy->getNumElements() == 1)
8355         OpTy = STy->getElementType(0);
8356 
8357     // If OpTy is not a single value, it may be a struct/union that we
8358     // can tile with integers.
8359     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8360       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8361       switch (BitSize) {
8362       default: break;
8363       case 1:
8364       case 8:
8365       case 16:
8366       case 32:
8367       case 64:
8368       case 128:
8369         OpTy = IntegerType::get(Context, BitSize);
8370         break;
8371       }
8372     }
8373 
8374     return TLI.getAsmOperandValueType(DL, OpTy, true);
8375   }
8376 };
8377 
8378 
8379 } // end anonymous namespace
8380 
8381 /// Make sure that the output operand \p OpInfo and its corresponding input
8382 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8383 /// out).
8384 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8385                                SDISelAsmOperandInfo &MatchingOpInfo,
8386                                SelectionDAG &DAG) {
8387   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8388     return;
8389 
8390   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8391   const auto &TLI = DAG.getTargetLoweringInfo();
8392 
8393   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8394       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8395                                        OpInfo.ConstraintVT);
8396   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8397       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8398                                        MatchingOpInfo.ConstraintVT);
8399   if ((OpInfo.ConstraintVT.isInteger() !=
8400        MatchingOpInfo.ConstraintVT.isInteger()) ||
8401       (MatchRC.second != InputRC.second)) {
8402     // FIXME: error out in a more elegant fashion
8403     report_fatal_error("Unsupported asm: input constraint"
8404                        " with a matching output constraint of"
8405                        " incompatible type!");
8406   }
8407   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8408 }
8409 
8410 /// Get a direct memory input to behave well as an indirect operand.
8411 /// This may introduce stores, hence the need for a \p Chain.
8412 /// \return The (possibly updated) chain.
8413 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8414                                         SDISelAsmOperandInfo &OpInfo,
8415                                         SelectionDAG &DAG) {
8416   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8417 
8418   // If we don't have an indirect input, put it in the constpool if we can,
8419   // otherwise spill it to a stack slot.
8420   // TODO: This isn't quite right. We need to handle these according to
8421   // the addressing mode that the constraint wants. Also, this may take
8422   // an additional register for the computation and we don't want that
8423   // either.
8424 
8425   // If the operand is a float, integer, or vector constant, spill to a
8426   // constant pool entry to get its address.
8427   const Value *OpVal = OpInfo.CallOperandVal;
8428   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8429       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8430     OpInfo.CallOperand = DAG.getConstantPool(
8431         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8432     return Chain;
8433   }
8434 
8435   // Otherwise, create a stack slot and emit a store to it before the asm.
8436   Type *Ty = OpVal->getType();
8437   auto &DL = DAG.getDataLayout();
8438   uint64_t TySize = DL.getTypeAllocSize(Ty);
8439   MachineFunction &MF = DAG.getMachineFunction();
8440   int SSFI = MF.getFrameInfo().CreateStackObject(
8441       TySize, DL.getPrefTypeAlign(Ty), false);
8442   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8443   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8444                             MachinePointerInfo::getFixedStack(MF, SSFI),
8445                             TLI.getMemValueType(DL, Ty));
8446   OpInfo.CallOperand = StackSlot;
8447 
8448   return Chain;
8449 }
8450 
8451 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8452 /// specified operand.  We prefer to assign virtual registers, to allow the
8453 /// register allocator to handle the assignment process.  However, if the asm
8454 /// uses features that we can't model on machineinstrs, we have SDISel do the
8455 /// allocation.  This produces generally horrible, but correct, code.
8456 ///
8457 ///   OpInfo describes the operand
8458 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8459 static llvm::Optional<unsigned>
8460 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8461                      SDISelAsmOperandInfo &OpInfo,
8462                      SDISelAsmOperandInfo &RefOpInfo) {
8463   LLVMContext &Context = *DAG.getContext();
8464   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8465 
8466   MachineFunction &MF = DAG.getMachineFunction();
8467   SmallVector<unsigned, 4> Regs;
8468   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8469 
8470   // No work to do for memory operations.
8471   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8472     return None;
8473 
8474   // If this is a constraint for a single physreg, or a constraint for a
8475   // register class, find it.
8476   unsigned AssignedReg;
8477   const TargetRegisterClass *RC;
8478   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8479       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8480   // RC is unset only on failure. Return immediately.
8481   if (!RC)
8482     return None;
8483 
8484   // Get the actual register value type.  This is important, because the user
8485   // may have asked for (e.g.) the AX register in i32 type.  We need to
8486   // remember that AX is actually i16 to get the right extension.
8487   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8488 
8489   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8490     // If this is an FP operand in an integer register (or visa versa), or more
8491     // generally if the operand value disagrees with the register class we plan
8492     // to stick it in, fix the operand type.
8493     //
8494     // If this is an input value, the bitcast to the new type is done now.
8495     // Bitcast for output value is done at the end of visitInlineAsm().
8496     if ((OpInfo.Type == InlineAsm::isOutput ||
8497          OpInfo.Type == InlineAsm::isInput) &&
8498         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8499       // Try to convert to the first EVT that the reg class contains.  If the
8500       // types are identical size, use a bitcast to convert (e.g. two differing
8501       // vector types).  Note: output bitcast is done at the end of
8502       // visitInlineAsm().
8503       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8504         // Exclude indirect inputs while they are unsupported because the code
8505         // to perform the load is missing and thus OpInfo.CallOperand still
8506         // refers to the input address rather than the pointed-to value.
8507         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8508           OpInfo.CallOperand =
8509               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8510         OpInfo.ConstraintVT = RegVT;
8511         // If the operand is an FP value and we want it in integer registers,
8512         // use the corresponding integer type. This turns an f64 value into
8513         // i64, which can be passed with two i32 values on a 32-bit machine.
8514       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8515         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8516         if (OpInfo.Type == InlineAsm::isInput)
8517           OpInfo.CallOperand =
8518               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8519         OpInfo.ConstraintVT = VT;
8520       }
8521     }
8522   }
8523 
8524   // No need to allocate a matching input constraint since the constraint it's
8525   // matching to has already been allocated.
8526   if (OpInfo.isMatchingInputConstraint())
8527     return None;
8528 
8529   EVT ValueVT = OpInfo.ConstraintVT;
8530   if (OpInfo.ConstraintVT == MVT::Other)
8531     ValueVT = RegVT;
8532 
8533   // Initialize NumRegs.
8534   unsigned NumRegs = 1;
8535   if (OpInfo.ConstraintVT != MVT::Other)
8536     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8537 
8538   // If this is a constraint for a specific physical register, like {r17},
8539   // assign it now.
8540 
8541   // If this associated to a specific register, initialize iterator to correct
8542   // place. If virtual, make sure we have enough registers
8543 
8544   // Initialize iterator if necessary
8545   TargetRegisterClass::iterator I = RC->begin();
8546   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8547 
8548   // Do not check for single registers.
8549   if (AssignedReg) {
8550     I = std::find(I, RC->end(), AssignedReg);
8551     if (I == RC->end()) {
8552       // RC does not contain the selected register, which indicates a
8553       // mismatch between the register and the required type/bitwidth.
8554       return {AssignedReg};
8555     }
8556   }
8557 
8558   for (; NumRegs; --NumRegs, ++I) {
8559     assert(I != RC->end() && "Ran out of registers to allocate!");
8560     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8561     Regs.push_back(R);
8562   }
8563 
8564   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8565   return None;
8566 }
8567 
8568 static unsigned
8569 findMatchingInlineAsmOperand(unsigned OperandNo,
8570                              const std::vector<SDValue> &AsmNodeOperands) {
8571   // Scan until we find the definition we already emitted of this operand.
8572   unsigned CurOp = InlineAsm::Op_FirstOperand;
8573   for (; OperandNo; --OperandNo) {
8574     // Advance to the next operand.
8575     unsigned OpFlag =
8576         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8577     assert((InlineAsm::isRegDefKind(OpFlag) ||
8578             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8579             InlineAsm::isMemKind(OpFlag)) &&
8580            "Skipped past definitions?");
8581     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8582   }
8583   return CurOp;
8584 }
8585 
8586 namespace {
8587 
8588 class ExtraFlags {
8589   unsigned Flags = 0;
8590 
8591 public:
8592   explicit ExtraFlags(const CallBase &Call) {
8593     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8594     if (IA->hasSideEffects())
8595       Flags |= InlineAsm::Extra_HasSideEffects;
8596     if (IA->isAlignStack())
8597       Flags |= InlineAsm::Extra_IsAlignStack;
8598     if (Call.isConvergent())
8599       Flags |= InlineAsm::Extra_IsConvergent;
8600     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8601   }
8602 
8603   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8604     // Ideally, we would only check against memory constraints.  However, the
8605     // meaning of an Other constraint can be target-specific and we can't easily
8606     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8607     // for Other constraints as well.
8608     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8609         OpInfo.ConstraintType == TargetLowering::C_Other) {
8610       if (OpInfo.Type == InlineAsm::isInput)
8611         Flags |= InlineAsm::Extra_MayLoad;
8612       else if (OpInfo.Type == InlineAsm::isOutput)
8613         Flags |= InlineAsm::Extra_MayStore;
8614       else if (OpInfo.Type == InlineAsm::isClobber)
8615         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8616     }
8617   }
8618 
8619   unsigned get() const { return Flags; }
8620 };
8621 
8622 } // end anonymous namespace
8623 
8624 /// visitInlineAsm - Handle a call to an InlineAsm object.
8625 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8626                                          const BasicBlock *EHPadBB) {
8627   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8628 
8629   /// ConstraintOperands - Information about all of the constraints.
8630   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8631 
8632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8633   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8634       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8635 
8636   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8637   // AsmDialect, MayLoad, MayStore).
8638   bool HasSideEffect = IA->hasSideEffects();
8639   ExtraFlags ExtraInfo(Call);
8640 
8641   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8642   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8643   for (auto &T : TargetConstraints) {
8644     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8645     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8646 
8647     // Compute the value type for each operand.
8648     if (OpInfo.hasArg()) {
8649       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8650       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8651       Type *ParamElemTy = Call.getParamElementType(ArgNo);
8652       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8653                                            DAG.getDataLayout(), ParamElemTy);
8654       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8655       ArgNo++;
8656     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8657       // The return value of the call is this value.  As such, there is no
8658       // corresponding argument.
8659       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8660       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8661         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8662             DAG.getDataLayout(), STy->getElementType(ResNo));
8663       } else {
8664         assert(ResNo == 0 && "Asm only has one result!");
8665         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8666             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8667       }
8668       ++ResNo;
8669     } else {
8670       OpInfo.ConstraintVT = MVT::Other;
8671     }
8672 
8673     if (!HasSideEffect)
8674       HasSideEffect = OpInfo.hasMemory(TLI);
8675 
8676     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8677     // FIXME: Could we compute this on OpInfo rather than T?
8678 
8679     // Compute the constraint code and ConstraintType to use.
8680     TLI.ComputeConstraintToUse(T, SDValue());
8681 
8682     if (T.ConstraintType == TargetLowering::C_Immediate &&
8683         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8684       // We've delayed emitting a diagnostic like the "n" constraint because
8685       // inlining could cause an integer showing up.
8686       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8687                                           "' expects an integer constant "
8688                                           "expression");
8689 
8690     ExtraInfo.update(T);
8691   }
8692 
8693   // We won't need to flush pending loads if this asm doesn't touch
8694   // memory and is nonvolatile.
8695   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8696 
8697   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8698   if (EmitEHLabels) {
8699     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8700   }
8701   bool IsCallBr = isa<CallBrInst>(Call);
8702 
8703   if (IsCallBr || EmitEHLabels) {
8704     // If this is a callbr or invoke we need to flush pending exports since
8705     // inlineasm_br and invoke are terminators.
8706     // We need to do this before nodes are glued to the inlineasm_br node.
8707     Chain = getControlRoot();
8708   }
8709 
8710   MCSymbol *BeginLabel = nullptr;
8711   if (EmitEHLabels) {
8712     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8713   }
8714 
8715   // Second pass over the constraints: compute which constraint option to use.
8716   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8717     // If this is an output operand with a matching input operand, look up the
8718     // matching input. If their types mismatch, e.g. one is an integer, the
8719     // other is floating point, or their sizes are different, flag it as an
8720     // error.
8721     if (OpInfo.hasMatchingInput()) {
8722       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8723       patchMatchingInput(OpInfo, Input, DAG);
8724     }
8725 
8726     // Compute the constraint code and ConstraintType to use.
8727     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8728 
8729     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8730         OpInfo.Type == InlineAsm::isClobber)
8731       continue;
8732 
8733     // If this is a memory input, and if the operand is not indirect, do what we
8734     // need to provide an address for the memory input.
8735     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8736         !OpInfo.isIndirect) {
8737       assert((OpInfo.isMultipleAlternative ||
8738               (OpInfo.Type == InlineAsm::isInput)) &&
8739              "Can only indirectify direct input operands!");
8740 
8741       // Memory operands really want the address of the value.
8742       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8743 
8744       // There is no longer a Value* corresponding to this operand.
8745       OpInfo.CallOperandVal = nullptr;
8746 
8747       // It is now an indirect operand.
8748       OpInfo.isIndirect = true;
8749     }
8750 
8751   }
8752 
8753   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8754   std::vector<SDValue> AsmNodeOperands;
8755   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8756   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8757       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8758 
8759   // If we have a !srcloc metadata node associated with it, we want to attach
8760   // this to the ultimately generated inline asm machineinstr.  To do this, we
8761   // pass in the third operand as this (potentially null) inline asm MDNode.
8762   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8763   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8764 
8765   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8766   // bits as operand 3.
8767   AsmNodeOperands.push_back(DAG.getTargetConstant(
8768       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8769 
8770   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8771   // this, assign virtual and physical registers for inputs and otput.
8772   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8773     // Assign Registers.
8774     SDISelAsmOperandInfo &RefOpInfo =
8775         OpInfo.isMatchingInputConstraint()
8776             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8777             : OpInfo;
8778     const auto RegError =
8779         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8780     if (RegError.hasValue()) {
8781       const MachineFunction &MF = DAG.getMachineFunction();
8782       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8783       const char *RegName = TRI.getName(RegError.getValue());
8784       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8785                                    "' allocated for constraint '" +
8786                                    Twine(OpInfo.ConstraintCode) +
8787                                    "' does not match required type");
8788       return;
8789     }
8790 
8791     auto DetectWriteToReservedRegister = [&]() {
8792       const MachineFunction &MF = DAG.getMachineFunction();
8793       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8794       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8795         if (Register::isPhysicalRegister(Reg) &&
8796             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8797           const char *RegName = TRI.getName(Reg);
8798           emitInlineAsmError(Call, "write to reserved register '" +
8799                                        Twine(RegName) + "'");
8800           return true;
8801         }
8802       }
8803       return false;
8804     };
8805 
8806     switch (OpInfo.Type) {
8807     case InlineAsm::isOutput:
8808       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8809         unsigned ConstraintID =
8810             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8811         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8812                "Failed to convert memory constraint code to constraint id.");
8813 
8814         // Add information to the INLINEASM node to know about this output.
8815         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8816         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8817         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8818                                                         MVT::i32));
8819         AsmNodeOperands.push_back(OpInfo.CallOperand);
8820       } else {
8821         // Otherwise, this outputs to a register (directly for C_Register /
8822         // C_RegisterClass, and a target-defined fashion for
8823         // C_Immediate/C_Other). Find a register that we can use.
8824         if (OpInfo.AssignedRegs.Regs.empty()) {
8825           emitInlineAsmError(
8826               Call, "couldn't allocate output register for constraint '" +
8827                         Twine(OpInfo.ConstraintCode) + "'");
8828           return;
8829         }
8830 
8831         if (DetectWriteToReservedRegister())
8832           return;
8833 
8834         // Add information to the INLINEASM node to know that this register is
8835         // set.
8836         OpInfo.AssignedRegs.AddInlineAsmOperands(
8837             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8838                                   : InlineAsm::Kind_RegDef,
8839             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8840       }
8841       break;
8842 
8843     case InlineAsm::isInput: {
8844       SDValue InOperandVal = OpInfo.CallOperand;
8845 
8846       if (OpInfo.isMatchingInputConstraint()) {
8847         // If this is required to match an output register we have already set,
8848         // just use its register.
8849         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8850                                                   AsmNodeOperands);
8851         unsigned OpFlag =
8852           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8853         if (InlineAsm::isRegDefKind(OpFlag) ||
8854             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8855           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8856           if (OpInfo.isIndirect) {
8857             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8858             emitInlineAsmError(Call, "inline asm not supported yet: "
8859                                      "don't know how to handle tied "
8860                                      "indirect register inputs");
8861             return;
8862           }
8863 
8864           SmallVector<unsigned, 4> Regs;
8865           MachineFunction &MF = DAG.getMachineFunction();
8866           MachineRegisterInfo &MRI = MF.getRegInfo();
8867           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8868           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8869           Register TiedReg = R->getReg();
8870           MVT RegVT = R->getSimpleValueType(0);
8871           const TargetRegisterClass *RC =
8872               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8873               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8874                                       : TRI.getMinimalPhysRegClass(TiedReg);
8875           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8876           for (unsigned i = 0; i != NumRegs; ++i)
8877             Regs.push_back(MRI.createVirtualRegister(RC));
8878 
8879           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8880 
8881           SDLoc dl = getCurSDLoc();
8882           // Use the produced MatchedRegs object to
8883           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8884           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8885                                            true, OpInfo.getMatchedOperand(), dl,
8886                                            DAG, AsmNodeOperands);
8887           break;
8888         }
8889 
8890         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8891         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8892                "Unexpected number of operands");
8893         // Add information to the INLINEASM node to know about this input.
8894         // See InlineAsm.h isUseOperandTiedToDef.
8895         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8896         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8897                                                     OpInfo.getMatchedOperand());
8898         AsmNodeOperands.push_back(DAG.getTargetConstant(
8899             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8900         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8901         break;
8902       }
8903 
8904       // Treat indirect 'X' constraint as memory.
8905       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8906           OpInfo.isIndirect)
8907         OpInfo.ConstraintType = TargetLowering::C_Memory;
8908 
8909       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8910           OpInfo.ConstraintType == TargetLowering::C_Other) {
8911         std::vector<SDValue> Ops;
8912         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8913                                           Ops, DAG);
8914         if (Ops.empty()) {
8915           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8916             if (isa<ConstantSDNode>(InOperandVal)) {
8917               emitInlineAsmError(Call, "value out of range for constraint '" +
8918                                            Twine(OpInfo.ConstraintCode) + "'");
8919               return;
8920             }
8921 
8922           emitInlineAsmError(Call,
8923                              "invalid operand for inline asm constraint '" +
8924                                  Twine(OpInfo.ConstraintCode) + "'");
8925           return;
8926         }
8927 
8928         // Add information to the INLINEASM node to know about this input.
8929         unsigned ResOpType =
8930           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8931         AsmNodeOperands.push_back(DAG.getTargetConstant(
8932             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8933         llvm::append_range(AsmNodeOperands, Ops);
8934         break;
8935       }
8936 
8937       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8938         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8939         assert(InOperandVal.getValueType() ==
8940                    TLI.getPointerTy(DAG.getDataLayout()) &&
8941                "Memory operands expect pointer values");
8942 
8943         unsigned ConstraintID =
8944             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8945         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8946                "Failed to convert memory constraint code to constraint id.");
8947 
8948         // Add information to the INLINEASM node to know about this input.
8949         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8950         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8951         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8952                                                         getCurSDLoc(),
8953                                                         MVT::i32));
8954         AsmNodeOperands.push_back(InOperandVal);
8955         break;
8956       }
8957 
8958       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8959               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8960              "Unknown constraint type!");
8961 
8962       // TODO: Support this.
8963       if (OpInfo.isIndirect) {
8964         emitInlineAsmError(
8965             Call, "Don't know how to handle indirect register inputs yet "
8966                   "for constraint '" +
8967                       Twine(OpInfo.ConstraintCode) + "'");
8968         return;
8969       }
8970 
8971       // Copy the input into the appropriate registers.
8972       if (OpInfo.AssignedRegs.Regs.empty()) {
8973         emitInlineAsmError(Call,
8974                            "couldn't allocate input reg for constraint '" +
8975                                Twine(OpInfo.ConstraintCode) + "'");
8976         return;
8977       }
8978 
8979       if (DetectWriteToReservedRegister())
8980         return;
8981 
8982       SDLoc dl = getCurSDLoc();
8983 
8984       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8985                                         &Call);
8986 
8987       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8988                                                dl, DAG, AsmNodeOperands);
8989       break;
8990     }
8991     case InlineAsm::isClobber:
8992       // Add the clobbered value to the operand list, so that the register
8993       // allocator is aware that the physreg got clobbered.
8994       if (!OpInfo.AssignedRegs.Regs.empty())
8995         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8996                                                  false, 0, getCurSDLoc(), DAG,
8997                                                  AsmNodeOperands);
8998       break;
8999     }
9000   }
9001 
9002   // Finish up input operands.  Set the input chain and add the flag last.
9003   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9004   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9005 
9006   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9007   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9008                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9009   Flag = Chain.getValue(1);
9010 
9011   // Do additional work to generate outputs.
9012 
9013   SmallVector<EVT, 1> ResultVTs;
9014   SmallVector<SDValue, 1> ResultValues;
9015   SmallVector<SDValue, 8> OutChains;
9016 
9017   llvm::Type *CallResultType = Call.getType();
9018   ArrayRef<Type *> ResultTypes;
9019   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9020     ResultTypes = StructResult->elements();
9021   else if (!CallResultType->isVoidTy())
9022     ResultTypes = makeArrayRef(CallResultType);
9023 
9024   auto CurResultType = ResultTypes.begin();
9025   auto handleRegAssign = [&](SDValue V) {
9026     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9027     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9028     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9029     ++CurResultType;
9030     // If the type of the inline asm call site return value is different but has
9031     // same size as the type of the asm output bitcast it.  One example of this
9032     // is for vectors with different width / number of elements.  This can
9033     // happen for register classes that can contain multiple different value
9034     // types.  The preg or vreg allocated may not have the same VT as was
9035     // expected.
9036     //
9037     // This can also happen for a return value that disagrees with the register
9038     // class it is put in, eg. a double in a general-purpose register on a
9039     // 32-bit machine.
9040     if (ResultVT != V.getValueType() &&
9041         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9042       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9043     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9044              V.getValueType().isInteger()) {
9045       // If a result value was tied to an input value, the computed result
9046       // may have a wider width than the expected result.  Extract the
9047       // relevant portion.
9048       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9049     }
9050     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9051     ResultVTs.push_back(ResultVT);
9052     ResultValues.push_back(V);
9053   };
9054 
9055   // Deal with output operands.
9056   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9057     if (OpInfo.Type == InlineAsm::isOutput) {
9058       SDValue Val;
9059       // Skip trivial output operands.
9060       if (OpInfo.AssignedRegs.Regs.empty())
9061         continue;
9062 
9063       switch (OpInfo.ConstraintType) {
9064       case TargetLowering::C_Register:
9065       case TargetLowering::C_RegisterClass:
9066         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9067                                                   Chain, &Flag, &Call);
9068         break;
9069       case TargetLowering::C_Immediate:
9070       case TargetLowering::C_Other:
9071         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9072                                               OpInfo, DAG);
9073         break;
9074       case TargetLowering::C_Memory:
9075         break; // Already handled.
9076       case TargetLowering::C_Unknown:
9077         assert(false && "Unexpected unknown constraint");
9078       }
9079 
9080       // Indirect output manifest as stores. Record output chains.
9081       if (OpInfo.isIndirect) {
9082         const Value *Ptr = OpInfo.CallOperandVal;
9083         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9084         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9085                                      MachinePointerInfo(Ptr));
9086         OutChains.push_back(Store);
9087       } else {
9088         // generate CopyFromRegs to associated registers.
9089         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9090         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9091           for (const SDValue &V : Val->op_values())
9092             handleRegAssign(V);
9093         } else
9094           handleRegAssign(Val);
9095       }
9096     }
9097   }
9098 
9099   // Set results.
9100   if (!ResultValues.empty()) {
9101     assert(CurResultType == ResultTypes.end() &&
9102            "Mismatch in number of ResultTypes");
9103     assert(ResultValues.size() == ResultTypes.size() &&
9104            "Mismatch in number of output operands in asm result");
9105 
9106     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9107                             DAG.getVTList(ResultVTs), ResultValues);
9108     setValue(&Call, V);
9109   }
9110 
9111   // Collect store chains.
9112   if (!OutChains.empty())
9113     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9114 
9115   if (EmitEHLabels) {
9116     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9117   }
9118 
9119   // Only Update Root if inline assembly has a memory effect.
9120   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9121       EmitEHLabels)
9122     DAG.setRoot(Chain);
9123 }
9124 
9125 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9126                                              const Twine &Message) {
9127   LLVMContext &Ctx = *DAG.getContext();
9128   Ctx.emitError(&Call, Message);
9129 
9130   // Make sure we leave the DAG in a valid state
9131   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9132   SmallVector<EVT, 1> ValueVTs;
9133   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9134 
9135   if (ValueVTs.empty())
9136     return;
9137 
9138   SmallVector<SDValue, 1> Ops;
9139   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9140     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9141 
9142   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9143 }
9144 
9145 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9146   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9147                           MVT::Other, getRoot(),
9148                           getValue(I.getArgOperand(0)),
9149                           DAG.getSrcValue(I.getArgOperand(0))));
9150 }
9151 
9152 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9153   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9154   const DataLayout &DL = DAG.getDataLayout();
9155   SDValue V = DAG.getVAArg(
9156       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9157       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9158       DL.getABITypeAlign(I.getType()).value());
9159   DAG.setRoot(V.getValue(1));
9160 
9161   if (I.getType()->isPointerTy())
9162     V = DAG.getPtrExtOrTrunc(
9163         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9164   setValue(&I, V);
9165 }
9166 
9167 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9168   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9169                           MVT::Other, getRoot(),
9170                           getValue(I.getArgOperand(0)),
9171                           DAG.getSrcValue(I.getArgOperand(0))));
9172 }
9173 
9174 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9175   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9176                           MVT::Other, getRoot(),
9177                           getValue(I.getArgOperand(0)),
9178                           getValue(I.getArgOperand(1)),
9179                           DAG.getSrcValue(I.getArgOperand(0)),
9180                           DAG.getSrcValue(I.getArgOperand(1))));
9181 }
9182 
9183 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9184                                                     const Instruction &I,
9185                                                     SDValue Op) {
9186   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9187   if (!Range)
9188     return Op;
9189 
9190   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9191   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9192     return Op;
9193 
9194   APInt Lo = CR.getUnsignedMin();
9195   if (!Lo.isMinValue())
9196     return Op;
9197 
9198   APInt Hi = CR.getUnsignedMax();
9199   unsigned Bits = std::max(Hi.getActiveBits(),
9200                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9201 
9202   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9203 
9204   SDLoc SL = getCurSDLoc();
9205 
9206   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9207                              DAG.getValueType(SmallVT));
9208   unsigned NumVals = Op.getNode()->getNumValues();
9209   if (NumVals == 1)
9210     return ZExt;
9211 
9212   SmallVector<SDValue, 4> Ops;
9213 
9214   Ops.push_back(ZExt);
9215   for (unsigned I = 1; I != NumVals; ++I)
9216     Ops.push_back(Op.getValue(I));
9217 
9218   return DAG.getMergeValues(Ops, SL);
9219 }
9220 
9221 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9222 /// the call being lowered.
9223 ///
9224 /// This is a helper for lowering intrinsics that follow a target calling
9225 /// convention or require stack pointer adjustment. Only a subset of the
9226 /// intrinsic's operands need to participate in the calling convention.
9227 void SelectionDAGBuilder::populateCallLoweringInfo(
9228     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9229     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9230     bool IsPatchPoint) {
9231   TargetLowering::ArgListTy Args;
9232   Args.reserve(NumArgs);
9233 
9234   // Populate the argument list.
9235   // Attributes for args start at offset 1, after the return attribute.
9236   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9237        ArgI != ArgE; ++ArgI) {
9238     const Value *V = Call->getOperand(ArgI);
9239 
9240     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9241 
9242     TargetLowering::ArgListEntry Entry;
9243     Entry.Node = getValue(V);
9244     Entry.Ty = V->getType();
9245     Entry.setAttributes(Call, ArgI);
9246     Args.push_back(Entry);
9247   }
9248 
9249   CLI.setDebugLoc(getCurSDLoc())
9250       .setChain(getRoot())
9251       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9252       .setDiscardResult(Call->use_empty())
9253       .setIsPatchPoint(IsPatchPoint)
9254       .setIsPreallocated(
9255           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9256 }
9257 
9258 /// Add a stack map intrinsic call's live variable operands to a stackmap
9259 /// or patchpoint target node's operand list.
9260 ///
9261 /// Constants are converted to TargetConstants purely as an optimization to
9262 /// avoid constant materialization and register allocation.
9263 ///
9264 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9265 /// generate addess computation nodes, and so FinalizeISel can convert the
9266 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9267 /// address materialization and register allocation, but may also be required
9268 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9269 /// alloca in the entry block, then the runtime may assume that the alloca's
9270 /// StackMap location can be read immediately after compilation and that the
9271 /// location is valid at any point during execution (this is similar to the
9272 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9273 /// only available in a register, then the runtime would need to trap when
9274 /// execution reaches the StackMap in order to read the alloca's location.
9275 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9276                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9277                                 SelectionDAGBuilder &Builder) {
9278   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9279     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9280     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9281       Ops.push_back(
9282         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9283       Ops.push_back(
9284         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9285     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9286       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9287       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9288           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9289     } else
9290       Ops.push_back(OpVal);
9291   }
9292 }
9293 
9294 /// Lower llvm.experimental.stackmap directly to its target opcode.
9295 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9296   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9297   //                                  [live variables...])
9298 
9299   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9300 
9301   SDValue Chain, InFlag, Callee, NullPtr;
9302   SmallVector<SDValue, 32> Ops;
9303 
9304   SDLoc DL = getCurSDLoc();
9305   Callee = getValue(CI.getCalledOperand());
9306   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9307 
9308   // The stackmap intrinsic only records the live variables (the arguments
9309   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9310   // intrinsic, this won't be lowered to a function call. This means we don't
9311   // have to worry about calling conventions and target specific lowering code.
9312   // Instead we perform the call lowering right here.
9313   //
9314   // chain, flag = CALLSEQ_START(chain, 0, 0)
9315   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9316   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9317   //
9318   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9319   InFlag = Chain.getValue(1);
9320 
9321   // Add the <id> and <numBytes> constants.
9322   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9323   Ops.push_back(DAG.getTargetConstant(
9324                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9325   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9326   Ops.push_back(DAG.getTargetConstant(
9327                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9328                   MVT::i32));
9329 
9330   // Push live variables for the stack map.
9331   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9332 
9333   // We are not pushing any register mask info here on the operands list,
9334   // because the stackmap doesn't clobber anything.
9335 
9336   // Push the chain and the glue flag.
9337   Ops.push_back(Chain);
9338   Ops.push_back(InFlag);
9339 
9340   // Create the STACKMAP node.
9341   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9342   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9343   Chain = SDValue(SM, 0);
9344   InFlag = Chain.getValue(1);
9345 
9346   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9347 
9348   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9349 
9350   // Set the root to the target-lowered call chain.
9351   DAG.setRoot(Chain);
9352 
9353   // Inform the Frame Information that we have a stackmap in this function.
9354   FuncInfo.MF->getFrameInfo().setHasStackMap();
9355 }
9356 
9357 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9358 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9359                                           const BasicBlock *EHPadBB) {
9360   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9361   //                                                 i32 <numBytes>,
9362   //                                                 i8* <target>,
9363   //                                                 i32 <numArgs>,
9364   //                                                 [Args...],
9365   //                                                 [live variables...])
9366 
9367   CallingConv::ID CC = CB.getCallingConv();
9368   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9369   bool HasDef = !CB.getType()->isVoidTy();
9370   SDLoc dl = getCurSDLoc();
9371   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9372 
9373   // Handle immediate and symbolic callees.
9374   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9375     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9376                                    /*isTarget=*/true);
9377   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9378     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9379                                          SDLoc(SymbolicCallee),
9380                                          SymbolicCallee->getValueType(0));
9381 
9382   // Get the real number of arguments participating in the call <numArgs>
9383   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9384   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9385 
9386   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9387   // Intrinsics include all meta-operands up to but not including CC.
9388   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9389   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9390          "Not enough arguments provided to the patchpoint intrinsic");
9391 
9392   // For AnyRegCC the arguments are lowered later on manually.
9393   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9394   Type *ReturnTy =
9395       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9396 
9397   TargetLowering::CallLoweringInfo CLI(DAG);
9398   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9399                            ReturnTy, true);
9400   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9401 
9402   SDNode *CallEnd = Result.second.getNode();
9403   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9404     CallEnd = CallEnd->getOperand(0).getNode();
9405 
9406   /// Get a call instruction from the call sequence chain.
9407   /// Tail calls are not allowed.
9408   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9409          "Expected a callseq node.");
9410   SDNode *Call = CallEnd->getOperand(0).getNode();
9411   bool HasGlue = Call->getGluedNode();
9412 
9413   // Replace the target specific call node with the patchable intrinsic.
9414   SmallVector<SDValue, 8> Ops;
9415 
9416   // Add the <id> and <numBytes> constants.
9417   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9418   Ops.push_back(DAG.getTargetConstant(
9419                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9420   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9421   Ops.push_back(DAG.getTargetConstant(
9422                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9423                   MVT::i32));
9424 
9425   // Add the callee.
9426   Ops.push_back(Callee);
9427 
9428   // Adjust <numArgs> to account for any arguments that have been passed on the
9429   // stack instead.
9430   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9431   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9432   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9433   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9434 
9435   // Add the calling convention
9436   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9437 
9438   // Add the arguments we omitted previously. The register allocator should
9439   // place these in any free register.
9440   if (IsAnyRegCC)
9441     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9442       Ops.push_back(getValue(CB.getArgOperand(i)));
9443 
9444   // Push the arguments from the call instruction up to the register mask.
9445   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9446   Ops.append(Call->op_begin() + 2, e);
9447 
9448   // Push live variables for the stack map.
9449   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9450 
9451   // Push the register mask info.
9452   if (HasGlue)
9453     Ops.push_back(*(Call->op_end()-2));
9454   else
9455     Ops.push_back(*(Call->op_end()-1));
9456 
9457   // Push the chain (this is originally the first operand of the call, but
9458   // becomes now the last or second to last operand).
9459   Ops.push_back(*(Call->op_begin()));
9460 
9461   // Push the glue flag (last operand).
9462   if (HasGlue)
9463     Ops.push_back(*(Call->op_end()-1));
9464 
9465   SDVTList NodeTys;
9466   if (IsAnyRegCC && HasDef) {
9467     // Create the return types based on the intrinsic definition
9468     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9469     SmallVector<EVT, 3> ValueVTs;
9470     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9471     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9472 
9473     // There is always a chain and a glue type at the end
9474     ValueVTs.push_back(MVT::Other);
9475     ValueVTs.push_back(MVT::Glue);
9476     NodeTys = DAG.getVTList(ValueVTs);
9477   } else
9478     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9479 
9480   // Replace the target specific call node with a PATCHPOINT node.
9481   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9482                                          dl, NodeTys, Ops);
9483 
9484   // Update the NodeMap.
9485   if (HasDef) {
9486     if (IsAnyRegCC)
9487       setValue(&CB, SDValue(MN, 0));
9488     else
9489       setValue(&CB, Result.first);
9490   }
9491 
9492   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9493   // call sequence. Furthermore the location of the chain and glue can change
9494   // when the AnyReg calling convention is used and the intrinsic returns a
9495   // value.
9496   if (IsAnyRegCC && HasDef) {
9497     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9498     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9499     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9500   } else
9501     DAG.ReplaceAllUsesWith(Call, MN);
9502   DAG.DeleteNode(Call);
9503 
9504   // Inform the Frame Information that we have a patchpoint in this function.
9505   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9506 }
9507 
9508 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9509                                             unsigned Intrinsic) {
9510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9511   SDValue Op1 = getValue(I.getArgOperand(0));
9512   SDValue Op2;
9513   if (I.arg_size() > 1)
9514     Op2 = getValue(I.getArgOperand(1));
9515   SDLoc dl = getCurSDLoc();
9516   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9517   SDValue Res;
9518   SDNodeFlags SDFlags;
9519   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9520     SDFlags.copyFMF(*FPMO);
9521 
9522   switch (Intrinsic) {
9523   case Intrinsic::vector_reduce_fadd:
9524     if (SDFlags.hasAllowReassociation())
9525       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9526                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9527                         SDFlags);
9528     else
9529       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9530     break;
9531   case Intrinsic::vector_reduce_fmul:
9532     if (SDFlags.hasAllowReassociation())
9533       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9534                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9535                         SDFlags);
9536     else
9537       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9538     break;
9539   case Intrinsic::vector_reduce_add:
9540     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9541     break;
9542   case Intrinsic::vector_reduce_mul:
9543     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9544     break;
9545   case Intrinsic::vector_reduce_and:
9546     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9547     break;
9548   case Intrinsic::vector_reduce_or:
9549     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9550     break;
9551   case Intrinsic::vector_reduce_xor:
9552     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9553     break;
9554   case Intrinsic::vector_reduce_smax:
9555     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9556     break;
9557   case Intrinsic::vector_reduce_smin:
9558     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9559     break;
9560   case Intrinsic::vector_reduce_umax:
9561     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9562     break;
9563   case Intrinsic::vector_reduce_umin:
9564     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9565     break;
9566   case Intrinsic::vector_reduce_fmax:
9567     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9568     break;
9569   case Intrinsic::vector_reduce_fmin:
9570     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9571     break;
9572   default:
9573     llvm_unreachable("Unhandled vector reduce intrinsic");
9574   }
9575   setValue(&I, Res);
9576 }
9577 
9578 /// Returns an AttributeList representing the attributes applied to the return
9579 /// value of the given call.
9580 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9581   SmallVector<Attribute::AttrKind, 2> Attrs;
9582   if (CLI.RetSExt)
9583     Attrs.push_back(Attribute::SExt);
9584   if (CLI.RetZExt)
9585     Attrs.push_back(Attribute::ZExt);
9586   if (CLI.IsInReg)
9587     Attrs.push_back(Attribute::InReg);
9588 
9589   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9590                             Attrs);
9591 }
9592 
9593 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9594 /// implementation, which just calls LowerCall.
9595 /// FIXME: When all targets are
9596 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9597 std::pair<SDValue, SDValue>
9598 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9599   // Handle the incoming return values from the call.
9600   CLI.Ins.clear();
9601   Type *OrigRetTy = CLI.RetTy;
9602   SmallVector<EVT, 4> RetTys;
9603   SmallVector<uint64_t, 4> Offsets;
9604   auto &DL = CLI.DAG.getDataLayout();
9605   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9606 
9607   if (CLI.IsPostTypeLegalization) {
9608     // If we are lowering a libcall after legalization, split the return type.
9609     SmallVector<EVT, 4> OldRetTys;
9610     SmallVector<uint64_t, 4> OldOffsets;
9611     RetTys.swap(OldRetTys);
9612     Offsets.swap(OldOffsets);
9613 
9614     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9615       EVT RetVT = OldRetTys[i];
9616       uint64_t Offset = OldOffsets[i];
9617       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9618       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9619       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9620       RetTys.append(NumRegs, RegisterVT);
9621       for (unsigned j = 0; j != NumRegs; ++j)
9622         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9623     }
9624   }
9625 
9626   SmallVector<ISD::OutputArg, 4> Outs;
9627   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9628 
9629   bool CanLowerReturn =
9630       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9631                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9632 
9633   SDValue DemoteStackSlot;
9634   int DemoteStackIdx = -100;
9635   if (!CanLowerReturn) {
9636     // FIXME: equivalent assert?
9637     // assert(!CS.hasInAllocaArgument() &&
9638     //        "sret demotion is incompatible with inalloca");
9639     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9640     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9641     MachineFunction &MF = CLI.DAG.getMachineFunction();
9642     DemoteStackIdx =
9643         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9644     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9645                                               DL.getAllocaAddrSpace());
9646 
9647     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9648     ArgListEntry Entry;
9649     Entry.Node = DemoteStackSlot;
9650     Entry.Ty = StackSlotPtrType;
9651     Entry.IsSExt = false;
9652     Entry.IsZExt = false;
9653     Entry.IsInReg = false;
9654     Entry.IsSRet = true;
9655     Entry.IsNest = false;
9656     Entry.IsByVal = false;
9657     Entry.IsByRef = false;
9658     Entry.IsReturned = false;
9659     Entry.IsSwiftSelf = false;
9660     Entry.IsSwiftAsync = false;
9661     Entry.IsSwiftError = false;
9662     Entry.IsCFGuardTarget = false;
9663     Entry.Alignment = Alignment;
9664     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9665     CLI.NumFixedArgs += 1;
9666     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9667 
9668     // sret demotion isn't compatible with tail-calls, since the sret argument
9669     // points into the callers stack frame.
9670     CLI.IsTailCall = false;
9671   } else {
9672     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9673         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9674     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9675       ISD::ArgFlagsTy Flags;
9676       if (NeedsRegBlock) {
9677         Flags.setInConsecutiveRegs();
9678         if (I == RetTys.size() - 1)
9679           Flags.setInConsecutiveRegsLast();
9680       }
9681       EVT VT = RetTys[I];
9682       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9683                                                      CLI.CallConv, VT);
9684       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9685                                                        CLI.CallConv, VT);
9686       for (unsigned i = 0; i != NumRegs; ++i) {
9687         ISD::InputArg MyFlags;
9688         MyFlags.Flags = Flags;
9689         MyFlags.VT = RegisterVT;
9690         MyFlags.ArgVT = VT;
9691         MyFlags.Used = CLI.IsReturnValueUsed;
9692         if (CLI.RetTy->isPointerTy()) {
9693           MyFlags.Flags.setPointer();
9694           MyFlags.Flags.setPointerAddrSpace(
9695               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9696         }
9697         if (CLI.RetSExt)
9698           MyFlags.Flags.setSExt();
9699         if (CLI.RetZExt)
9700           MyFlags.Flags.setZExt();
9701         if (CLI.IsInReg)
9702           MyFlags.Flags.setInReg();
9703         CLI.Ins.push_back(MyFlags);
9704       }
9705     }
9706   }
9707 
9708   // We push in swifterror return as the last element of CLI.Ins.
9709   ArgListTy &Args = CLI.getArgs();
9710   if (supportSwiftError()) {
9711     for (const ArgListEntry &Arg : Args) {
9712       if (Arg.IsSwiftError) {
9713         ISD::InputArg MyFlags;
9714         MyFlags.VT = getPointerTy(DL);
9715         MyFlags.ArgVT = EVT(getPointerTy(DL));
9716         MyFlags.Flags.setSwiftError();
9717         CLI.Ins.push_back(MyFlags);
9718       }
9719     }
9720   }
9721 
9722   // Handle all of the outgoing arguments.
9723   CLI.Outs.clear();
9724   CLI.OutVals.clear();
9725   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9726     SmallVector<EVT, 4> ValueVTs;
9727     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9728     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9729     Type *FinalType = Args[i].Ty;
9730     if (Args[i].IsByVal)
9731       FinalType = Args[i].IndirectType;
9732     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9733         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9734     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9735          ++Value) {
9736       EVT VT = ValueVTs[Value];
9737       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9738       SDValue Op = SDValue(Args[i].Node.getNode(),
9739                            Args[i].Node.getResNo() + Value);
9740       ISD::ArgFlagsTy Flags;
9741 
9742       // Certain targets (such as MIPS), may have a different ABI alignment
9743       // for a type depending on the context. Give the target a chance to
9744       // specify the alignment it wants.
9745       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9746       Flags.setOrigAlign(OriginalAlignment);
9747 
9748       if (Args[i].Ty->isPointerTy()) {
9749         Flags.setPointer();
9750         Flags.setPointerAddrSpace(
9751             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9752       }
9753       if (Args[i].IsZExt)
9754         Flags.setZExt();
9755       if (Args[i].IsSExt)
9756         Flags.setSExt();
9757       if (Args[i].IsInReg) {
9758         // If we are using vectorcall calling convention, a structure that is
9759         // passed InReg - is surely an HVA
9760         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9761             isa<StructType>(FinalType)) {
9762           // The first value of a structure is marked
9763           if (0 == Value)
9764             Flags.setHvaStart();
9765           Flags.setHva();
9766         }
9767         // Set InReg Flag
9768         Flags.setInReg();
9769       }
9770       if (Args[i].IsSRet)
9771         Flags.setSRet();
9772       if (Args[i].IsSwiftSelf)
9773         Flags.setSwiftSelf();
9774       if (Args[i].IsSwiftAsync)
9775         Flags.setSwiftAsync();
9776       if (Args[i].IsSwiftError)
9777         Flags.setSwiftError();
9778       if (Args[i].IsCFGuardTarget)
9779         Flags.setCFGuardTarget();
9780       if (Args[i].IsByVal)
9781         Flags.setByVal();
9782       if (Args[i].IsByRef)
9783         Flags.setByRef();
9784       if (Args[i].IsPreallocated) {
9785         Flags.setPreallocated();
9786         // Set the byval flag for CCAssignFn callbacks that don't know about
9787         // preallocated.  This way we can know how many bytes we should've
9788         // allocated and how many bytes a callee cleanup function will pop.  If
9789         // we port preallocated to more targets, we'll have to add custom
9790         // preallocated handling in the various CC lowering callbacks.
9791         Flags.setByVal();
9792       }
9793       if (Args[i].IsInAlloca) {
9794         Flags.setInAlloca();
9795         // Set the byval flag for CCAssignFn callbacks that don't know about
9796         // inalloca.  This way we can know how many bytes we should've allocated
9797         // and how many bytes a callee cleanup function will pop.  If we port
9798         // inalloca to more targets, we'll have to add custom inalloca handling
9799         // in the various CC lowering callbacks.
9800         Flags.setByVal();
9801       }
9802       Align MemAlign;
9803       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9804         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9805         Flags.setByValSize(FrameSize);
9806 
9807         // info is not there but there are cases it cannot get right.
9808         if (auto MA = Args[i].Alignment)
9809           MemAlign = *MA;
9810         else
9811           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9812       } else if (auto MA = Args[i].Alignment) {
9813         MemAlign = *MA;
9814       } else {
9815         MemAlign = OriginalAlignment;
9816       }
9817       Flags.setMemAlign(MemAlign);
9818       if (Args[i].IsNest)
9819         Flags.setNest();
9820       if (NeedsRegBlock)
9821         Flags.setInConsecutiveRegs();
9822 
9823       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9824                                                  CLI.CallConv, VT);
9825       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9826                                                         CLI.CallConv, VT);
9827       SmallVector<SDValue, 4> Parts(NumParts);
9828       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9829 
9830       if (Args[i].IsSExt)
9831         ExtendKind = ISD::SIGN_EXTEND;
9832       else if (Args[i].IsZExt)
9833         ExtendKind = ISD::ZERO_EXTEND;
9834 
9835       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9836       // for now.
9837       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9838           CanLowerReturn) {
9839         assert((CLI.RetTy == Args[i].Ty ||
9840                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9841                  CLI.RetTy->getPointerAddressSpace() ==
9842                      Args[i].Ty->getPointerAddressSpace())) &&
9843                RetTys.size() == NumValues && "unexpected use of 'returned'");
9844         // Before passing 'returned' to the target lowering code, ensure that
9845         // either the register MVT and the actual EVT are the same size or that
9846         // the return value and argument are extended in the same way; in these
9847         // cases it's safe to pass the argument register value unchanged as the
9848         // return register value (although it's at the target's option whether
9849         // to do so)
9850         // TODO: allow code generation to take advantage of partially preserved
9851         // registers rather than clobbering the entire register when the
9852         // parameter extension method is not compatible with the return
9853         // extension method
9854         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9855             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9856              CLI.RetZExt == Args[i].IsZExt))
9857           Flags.setReturned();
9858       }
9859 
9860       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9861                      CLI.CallConv, ExtendKind);
9862 
9863       for (unsigned j = 0; j != NumParts; ++j) {
9864         // if it isn't first piece, alignment must be 1
9865         // For scalable vectors the scalable part is currently handled
9866         // by individual targets, so we just use the known minimum size here.
9867         ISD::OutputArg MyFlags(
9868             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9869             i < CLI.NumFixedArgs, i,
9870             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9871         if (NumParts > 1 && j == 0)
9872           MyFlags.Flags.setSplit();
9873         else if (j != 0) {
9874           MyFlags.Flags.setOrigAlign(Align(1));
9875           if (j == NumParts - 1)
9876             MyFlags.Flags.setSplitEnd();
9877         }
9878 
9879         CLI.Outs.push_back(MyFlags);
9880         CLI.OutVals.push_back(Parts[j]);
9881       }
9882 
9883       if (NeedsRegBlock && Value == NumValues - 1)
9884         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9885     }
9886   }
9887 
9888   SmallVector<SDValue, 4> InVals;
9889   CLI.Chain = LowerCall(CLI, InVals);
9890 
9891   // Update CLI.InVals to use outside of this function.
9892   CLI.InVals = InVals;
9893 
9894   // Verify that the target's LowerCall behaved as expected.
9895   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9896          "LowerCall didn't return a valid chain!");
9897   assert((!CLI.IsTailCall || InVals.empty()) &&
9898          "LowerCall emitted a return value for a tail call!");
9899   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9900          "LowerCall didn't emit the correct number of values!");
9901 
9902   // For a tail call, the return value is merely live-out and there aren't
9903   // any nodes in the DAG representing it. Return a special value to
9904   // indicate that a tail call has been emitted and no more Instructions
9905   // should be processed in the current block.
9906   if (CLI.IsTailCall) {
9907     CLI.DAG.setRoot(CLI.Chain);
9908     return std::make_pair(SDValue(), SDValue());
9909   }
9910 
9911 #ifndef NDEBUG
9912   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9913     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9914     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9915            "LowerCall emitted a value with the wrong type!");
9916   }
9917 #endif
9918 
9919   SmallVector<SDValue, 4> ReturnValues;
9920   if (!CanLowerReturn) {
9921     // The instruction result is the result of loading from the
9922     // hidden sret parameter.
9923     SmallVector<EVT, 1> PVTs;
9924     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9925 
9926     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9927     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9928     EVT PtrVT = PVTs[0];
9929 
9930     unsigned NumValues = RetTys.size();
9931     ReturnValues.resize(NumValues);
9932     SmallVector<SDValue, 4> Chains(NumValues);
9933 
9934     // An aggregate return value cannot wrap around the address space, so
9935     // offsets to its parts don't wrap either.
9936     SDNodeFlags Flags;
9937     Flags.setNoUnsignedWrap(true);
9938 
9939     MachineFunction &MF = CLI.DAG.getMachineFunction();
9940     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9941     for (unsigned i = 0; i < NumValues; ++i) {
9942       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9943                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9944                                                         PtrVT), Flags);
9945       SDValue L = CLI.DAG.getLoad(
9946           RetTys[i], CLI.DL, CLI.Chain, Add,
9947           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9948                                             DemoteStackIdx, Offsets[i]),
9949           HiddenSRetAlign);
9950       ReturnValues[i] = L;
9951       Chains[i] = L.getValue(1);
9952     }
9953 
9954     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9955   } else {
9956     // Collect the legal value parts into potentially illegal values
9957     // that correspond to the original function's return values.
9958     Optional<ISD::NodeType> AssertOp;
9959     if (CLI.RetSExt)
9960       AssertOp = ISD::AssertSext;
9961     else if (CLI.RetZExt)
9962       AssertOp = ISD::AssertZext;
9963     unsigned CurReg = 0;
9964     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9965       EVT VT = RetTys[I];
9966       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9967                                                      CLI.CallConv, VT);
9968       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9969                                                        CLI.CallConv, VT);
9970 
9971       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9972                                               NumRegs, RegisterVT, VT, nullptr,
9973                                               CLI.CallConv, AssertOp));
9974       CurReg += NumRegs;
9975     }
9976 
9977     // For a function returning void, there is no return value. We can't create
9978     // such a node, so we just return a null return value in that case. In
9979     // that case, nothing will actually look at the value.
9980     if (ReturnValues.empty())
9981       return std::make_pair(SDValue(), CLI.Chain);
9982   }
9983 
9984   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9985                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9986   return std::make_pair(Res, CLI.Chain);
9987 }
9988 
9989 /// Places new result values for the node in Results (their number
9990 /// and types must exactly match those of the original return values of
9991 /// the node), or leaves Results empty, which indicates that the node is not
9992 /// to be custom lowered after all.
9993 void TargetLowering::LowerOperationWrapper(SDNode *N,
9994                                            SmallVectorImpl<SDValue> &Results,
9995                                            SelectionDAG &DAG) const {
9996   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9997 
9998   if (!Res.getNode())
9999     return;
10000 
10001   // If the original node has one result, take the return value from
10002   // LowerOperation as is. It might not be result number 0.
10003   if (N->getNumValues() == 1) {
10004     Results.push_back(Res);
10005     return;
10006   }
10007 
10008   // If the original node has multiple results, then the return node should
10009   // have the same number of results.
10010   assert((N->getNumValues() == Res->getNumValues()) &&
10011       "Lowering returned the wrong number of results!");
10012 
10013   // Places new result values base on N result number.
10014   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10015     Results.push_back(Res.getValue(I));
10016 }
10017 
10018 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10019   llvm_unreachable("LowerOperation not implemented for this target!");
10020 }
10021 
10022 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10023                                                      unsigned Reg,
10024                                                      ISD::NodeType ExtendType) {
10025   SDValue Op = getNonRegisterValue(V);
10026   assert((Op.getOpcode() != ISD::CopyFromReg ||
10027           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10028          "Copy from a reg to the same reg!");
10029   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10030 
10031   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10032   // If this is an InlineAsm we have to match the registers required, not the
10033   // notional registers required by the type.
10034 
10035   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10036                    None); // This is not an ABI copy.
10037   SDValue Chain = DAG.getEntryNode();
10038 
10039   if (ExtendType == ISD::ANY_EXTEND) {
10040     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10041     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10042       ExtendType = PreferredExtendIt->second;
10043   }
10044   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10045   PendingExports.push_back(Chain);
10046 }
10047 
10048 #include "llvm/CodeGen/SelectionDAGISel.h"
10049 
10050 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10051 /// entry block, return true.  This includes arguments used by switches, since
10052 /// the switch may expand into multiple basic blocks.
10053 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10054   // With FastISel active, we may be splitting blocks, so force creation
10055   // of virtual registers for all non-dead arguments.
10056   if (FastISel)
10057     return A->use_empty();
10058 
10059   const BasicBlock &Entry = A->getParent()->front();
10060   for (const User *U : A->users())
10061     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10062       return false;  // Use not in entry block.
10063 
10064   return true;
10065 }
10066 
10067 using ArgCopyElisionMapTy =
10068     DenseMap<const Argument *,
10069              std::pair<const AllocaInst *, const StoreInst *>>;
10070 
10071 /// Scan the entry block of the function in FuncInfo for arguments that look
10072 /// like copies into a local alloca. Record any copied arguments in
10073 /// ArgCopyElisionCandidates.
10074 static void
10075 findArgumentCopyElisionCandidates(const DataLayout &DL,
10076                                   FunctionLoweringInfo *FuncInfo,
10077                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10078   // Record the state of every static alloca used in the entry block. Argument
10079   // allocas are all used in the entry block, so we need approximately as many
10080   // entries as we have arguments.
10081   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10082   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10083   unsigned NumArgs = FuncInfo->Fn->arg_size();
10084   StaticAllocas.reserve(NumArgs * 2);
10085 
10086   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10087     if (!V)
10088       return nullptr;
10089     V = V->stripPointerCasts();
10090     const auto *AI = dyn_cast<AllocaInst>(V);
10091     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10092       return nullptr;
10093     auto Iter = StaticAllocas.insert({AI, Unknown});
10094     return &Iter.first->second;
10095   };
10096 
10097   // Look for stores of arguments to static allocas. Look through bitcasts and
10098   // GEPs to handle type coercions, as long as the alloca is fully initialized
10099   // by the store. Any non-store use of an alloca escapes it and any subsequent
10100   // unanalyzed store might write it.
10101   // FIXME: Handle structs initialized with multiple stores.
10102   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10103     // Look for stores, and handle non-store uses conservatively.
10104     const auto *SI = dyn_cast<StoreInst>(&I);
10105     if (!SI) {
10106       // We will look through cast uses, so ignore them completely.
10107       if (I.isCast())
10108         continue;
10109       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10110       // to allocas.
10111       if (I.isDebugOrPseudoInst())
10112         continue;
10113       // This is an unknown instruction. Assume it escapes or writes to all
10114       // static alloca operands.
10115       for (const Use &U : I.operands()) {
10116         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10117           *Info = StaticAllocaInfo::Clobbered;
10118       }
10119       continue;
10120     }
10121 
10122     // If the stored value is a static alloca, mark it as escaped.
10123     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10124       *Info = StaticAllocaInfo::Clobbered;
10125 
10126     // Check if the destination is a static alloca.
10127     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10128     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10129     if (!Info)
10130       continue;
10131     const AllocaInst *AI = cast<AllocaInst>(Dst);
10132 
10133     // Skip allocas that have been initialized or clobbered.
10134     if (*Info != StaticAllocaInfo::Unknown)
10135       continue;
10136 
10137     // Check if the stored value is an argument, and that this store fully
10138     // initializes the alloca.
10139     // If the argument type has padding bits we can't directly forward a pointer
10140     // as the upper bits may contain garbage.
10141     // Don't elide copies from the same argument twice.
10142     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10143     const auto *Arg = dyn_cast<Argument>(Val);
10144     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10145         Arg->getType()->isEmptyTy() ||
10146         DL.getTypeStoreSize(Arg->getType()) !=
10147             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10148         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10149         ArgCopyElisionCandidates.count(Arg)) {
10150       *Info = StaticAllocaInfo::Clobbered;
10151       continue;
10152     }
10153 
10154     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10155                       << '\n');
10156 
10157     // Mark this alloca and store for argument copy elision.
10158     *Info = StaticAllocaInfo::Elidable;
10159     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10160 
10161     // Stop scanning if we've seen all arguments. This will happen early in -O0
10162     // builds, which is useful, because -O0 builds have large entry blocks and
10163     // many allocas.
10164     if (ArgCopyElisionCandidates.size() == NumArgs)
10165       break;
10166   }
10167 }
10168 
10169 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10170 /// ArgVal is a load from a suitable fixed stack object.
10171 static void tryToElideArgumentCopy(
10172     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10173     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10174     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10175     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10176     SDValue ArgVal, bool &ArgHasUses) {
10177   // Check if this is a load from a fixed stack object.
10178   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10179   if (!LNode)
10180     return;
10181   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10182   if (!FINode)
10183     return;
10184 
10185   // Check that the fixed stack object is the right size and alignment.
10186   // Look at the alignment that the user wrote on the alloca instead of looking
10187   // at the stack object.
10188   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10189   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10190   const AllocaInst *AI = ArgCopyIter->second.first;
10191   int FixedIndex = FINode->getIndex();
10192   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10193   int OldIndex = AllocaIndex;
10194   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10195   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10196     LLVM_DEBUG(
10197         dbgs() << "  argument copy elision failed due to bad fixed stack "
10198                   "object size\n");
10199     return;
10200   }
10201   Align RequiredAlignment = AI->getAlign();
10202   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10203     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10204                          "greater than stack argument alignment ("
10205                       << DebugStr(RequiredAlignment) << " vs "
10206                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10207     return;
10208   }
10209 
10210   // Perform the elision. Delete the old stack object and replace its only use
10211   // in the variable info map. Mark the stack object as mutable.
10212   LLVM_DEBUG({
10213     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10214            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10215            << '\n';
10216   });
10217   MFI.RemoveStackObject(OldIndex);
10218   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10219   AllocaIndex = FixedIndex;
10220   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10221   Chains.push_back(ArgVal.getValue(1));
10222 
10223   // Avoid emitting code for the store implementing the copy.
10224   const StoreInst *SI = ArgCopyIter->second.second;
10225   ElidedArgCopyInstrs.insert(SI);
10226 
10227   // Check for uses of the argument again so that we can avoid exporting ArgVal
10228   // if it is't used by anything other than the store.
10229   for (const Value *U : Arg.users()) {
10230     if (U != SI) {
10231       ArgHasUses = true;
10232       break;
10233     }
10234   }
10235 }
10236 
10237 void SelectionDAGISel::LowerArguments(const Function &F) {
10238   SelectionDAG &DAG = SDB->DAG;
10239   SDLoc dl = SDB->getCurSDLoc();
10240   const DataLayout &DL = DAG.getDataLayout();
10241   SmallVector<ISD::InputArg, 16> Ins;
10242 
10243   // In Naked functions we aren't going to save any registers.
10244   if (F.hasFnAttribute(Attribute::Naked))
10245     return;
10246 
10247   if (!FuncInfo->CanLowerReturn) {
10248     // Put in an sret pointer parameter before all the other parameters.
10249     SmallVector<EVT, 1> ValueVTs;
10250     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10251                     F.getReturnType()->getPointerTo(
10252                         DAG.getDataLayout().getAllocaAddrSpace()),
10253                     ValueVTs);
10254 
10255     // NOTE: Assuming that a pointer will never break down to more than one VT
10256     // or one register.
10257     ISD::ArgFlagsTy Flags;
10258     Flags.setSRet();
10259     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10260     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10261                          ISD::InputArg::NoArgIndex, 0);
10262     Ins.push_back(RetArg);
10263   }
10264 
10265   // Look for stores of arguments to static allocas. Mark such arguments with a
10266   // flag to ask the target to give us the memory location of that argument if
10267   // available.
10268   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10269   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10270                                     ArgCopyElisionCandidates);
10271 
10272   // Set up the incoming argument description vector.
10273   for (const Argument &Arg : F.args()) {
10274     unsigned ArgNo = Arg.getArgNo();
10275     SmallVector<EVT, 4> ValueVTs;
10276     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10277     bool isArgValueUsed = !Arg.use_empty();
10278     unsigned PartBase = 0;
10279     Type *FinalType = Arg.getType();
10280     if (Arg.hasAttribute(Attribute::ByVal))
10281       FinalType = Arg.getParamByValType();
10282     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10283         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10284     for (unsigned Value = 0, NumValues = ValueVTs.size();
10285          Value != NumValues; ++Value) {
10286       EVT VT = ValueVTs[Value];
10287       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10288       ISD::ArgFlagsTy Flags;
10289 
10290 
10291       if (Arg.getType()->isPointerTy()) {
10292         Flags.setPointer();
10293         Flags.setPointerAddrSpace(
10294             cast<PointerType>(Arg.getType())->getAddressSpace());
10295       }
10296       if (Arg.hasAttribute(Attribute::ZExt))
10297         Flags.setZExt();
10298       if (Arg.hasAttribute(Attribute::SExt))
10299         Flags.setSExt();
10300       if (Arg.hasAttribute(Attribute::InReg)) {
10301         // If we are using vectorcall calling convention, a structure that is
10302         // passed InReg - is surely an HVA
10303         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10304             isa<StructType>(Arg.getType())) {
10305           // The first value of a structure is marked
10306           if (0 == Value)
10307             Flags.setHvaStart();
10308           Flags.setHva();
10309         }
10310         // Set InReg Flag
10311         Flags.setInReg();
10312       }
10313       if (Arg.hasAttribute(Attribute::StructRet))
10314         Flags.setSRet();
10315       if (Arg.hasAttribute(Attribute::SwiftSelf))
10316         Flags.setSwiftSelf();
10317       if (Arg.hasAttribute(Attribute::SwiftAsync))
10318         Flags.setSwiftAsync();
10319       if (Arg.hasAttribute(Attribute::SwiftError))
10320         Flags.setSwiftError();
10321       if (Arg.hasAttribute(Attribute::ByVal))
10322         Flags.setByVal();
10323       if (Arg.hasAttribute(Attribute::ByRef))
10324         Flags.setByRef();
10325       if (Arg.hasAttribute(Attribute::InAlloca)) {
10326         Flags.setInAlloca();
10327         // Set the byval flag for CCAssignFn callbacks that don't know about
10328         // inalloca.  This way we can know how many bytes we should've allocated
10329         // and how many bytes a callee cleanup function will pop.  If we port
10330         // inalloca to more targets, we'll have to add custom inalloca handling
10331         // in the various CC lowering callbacks.
10332         Flags.setByVal();
10333       }
10334       if (Arg.hasAttribute(Attribute::Preallocated)) {
10335         Flags.setPreallocated();
10336         // Set the byval flag for CCAssignFn callbacks that don't know about
10337         // preallocated.  This way we can know how many bytes we should've
10338         // allocated and how many bytes a callee cleanup function will pop.  If
10339         // we port preallocated to more targets, we'll have to add custom
10340         // preallocated handling in the various CC lowering callbacks.
10341         Flags.setByVal();
10342       }
10343 
10344       // Certain targets (such as MIPS), may have a different ABI alignment
10345       // for a type depending on the context. Give the target a chance to
10346       // specify the alignment it wants.
10347       const Align OriginalAlignment(
10348           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10349       Flags.setOrigAlign(OriginalAlignment);
10350 
10351       Align MemAlign;
10352       Type *ArgMemTy = nullptr;
10353       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10354           Flags.isByRef()) {
10355         if (!ArgMemTy)
10356           ArgMemTy = Arg.getPointeeInMemoryValueType();
10357 
10358         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10359 
10360         // For in-memory arguments, size and alignment should be passed from FE.
10361         // BE will guess if this info is not there but there are cases it cannot
10362         // get right.
10363         if (auto ParamAlign = Arg.getParamStackAlign())
10364           MemAlign = *ParamAlign;
10365         else if ((ParamAlign = Arg.getParamAlign()))
10366           MemAlign = *ParamAlign;
10367         else
10368           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10369         if (Flags.isByRef())
10370           Flags.setByRefSize(MemSize);
10371         else
10372           Flags.setByValSize(MemSize);
10373       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10374         MemAlign = *ParamAlign;
10375       } else {
10376         MemAlign = OriginalAlignment;
10377       }
10378       Flags.setMemAlign(MemAlign);
10379 
10380       if (Arg.hasAttribute(Attribute::Nest))
10381         Flags.setNest();
10382       if (NeedsRegBlock)
10383         Flags.setInConsecutiveRegs();
10384       if (ArgCopyElisionCandidates.count(&Arg))
10385         Flags.setCopyElisionCandidate();
10386       if (Arg.hasAttribute(Attribute::Returned))
10387         Flags.setReturned();
10388 
10389       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10390           *CurDAG->getContext(), F.getCallingConv(), VT);
10391       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10392           *CurDAG->getContext(), F.getCallingConv(), VT);
10393       for (unsigned i = 0; i != NumRegs; ++i) {
10394         // For scalable vectors, use the minimum size; individual targets
10395         // are responsible for handling scalable vector arguments and
10396         // return values.
10397         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10398                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10399         if (NumRegs > 1 && i == 0)
10400           MyFlags.Flags.setSplit();
10401         // if it isn't first piece, alignment must be 1
10402         else if (i > 0) {
10403           MyFlags.Flags.setOrigAlign(Align(1));
10404           if (i == NumRegs - 1)
10405             MyFlags.Flags.setSplitEnd();
10406         }
10407         Ins.push_back(MyFlags);
10408       }
10409       if (NeedsRegBlock && Value == NumValues - 1)
10410         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10411       PartBase += VT.getStoreSize().getKnownMinSize();
10412     }
10413   }
10414 
10415   // Call the target to set up the argument values.
10416   SmallVector<SDValue, 8> InVals;
10417   SDValue NewRoot = TLI->LowerFormalArguments(
10418       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10419 
10420   // Verify that the target's LowerFormalArguments behaved as expected.
10421   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10422          "LowerFormalArguments didn't return a valid chain!");
10423   assert(InVals.size() == Ins.size() &&
10424          "LowerFormalArguments didn't emit the correct number of values!");
10425   LLVM_DEBUG({
10426     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10427       assert(InVals[i].getNode() &&
10428              "LowerFormalArguments emitted a null value!");
10429       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10430              "LowerFormalArguments emitted a value with the wrong type!");
10431     }
10432   });
10433 
10434   // Update the DAG with the new chain value resulting from argument lowering.
10435   DAG.setRoot(NewRoot);
10436 
10437   // Set up the argument values.
10438   unsigned i = 0;
10439   if (!FuncInfo->CanLowerReturn) {
10440     // Create a virtual register for the sret pointer, and put in a copy
10441     // from the sret argument into it.
10442     SmallVector<EVT, 1> ValueVTs;
10443     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10444                     F.getReturnType()->getPointerTo(
10445                         DAG.getDataLayout().getAllocaAddrSpace()),
10446                     ValueVTs);
10447     MVT VT = ValueVTs[0].getSimpleVT();
10448     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10449     Optional<ISD::NodeType> AssertOp = None;
10450     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10451                                         nullptr, F.getCallingConv(), AssertOp);
10452 
10453     MachineFunction& MF = SDB->DAG.getMachineFunction();
10454     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10455     Register SRetReg =
10456         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10457     FuncInfo->DemoteRegister = SRetReg;
10458     NewRoot =
10459         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10460     DAG.setRoot(NewRoot);
10461 
10462     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10463     ++i;
10464   }
10465 
10466   SmallVector<SDValue, 4> Chains;
10467   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10468   for (const Argument &Arg : F.args()) {
10469     SmallVector<SDValue, 4> ArgValues;
10470     SmallVector<EVT, 4> ValueVTs;
10471     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10472     unsigned NumValues = ValueVTs.size();
10473     if (NumValues == 0)
10474       continue;
10475 
10476     bool ArgHasUses = !Arg.use_empty();
10477 
10478     // Elide the copying store if the target loaded this argument from a
10479     // suitable fixed stack object.
10480     if (Ins[i].Flags.isCopyElisionCandidate()) {
10481       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10482                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10483                              InVals[i], ArgHasUses);
10484     }
10485 
10486     // If this argument is unused then remember its value. It is used to generate
10487     // debugging information.
10488     bool isSwiftErrorArg =
10489         TLI->supportSwiftError() &&
10490         Arg.hasAttribute(Attribute::SwiftError);
10491     if (!ArgHasUses && !isSwiftErrorArg) {
10492       SDB->setUnusedArgValue(&Arg, InVals[i]);
10493 
10494       // Also remember any frame index for use in FastISel.
10495       if (FrameIndexSDNode *FI =
10496           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10497         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10498     }
10499 
10500     for (unsigned Val = 0; Val != NumValues; ++Val) {
10501       EVT VT = ValueVTs[Val];
10502       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10503                                                       F.getCallingConv(), VT);
10504       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10505           *CurDAG->getContext(), F.getCallingConv(), VT);
10506 
10507       // Even an apparent 'unused' swifterror argument needs to be returned. So
10508       // we do generate a copy for it that can be used on return from the
10509       // function.
10510       if (ArgHasUses || isSwiftErrorArg) {
10511         Optional<ISD::NodeType> AssertOp;
10512         if (Arg.hasAttribute(Attribute::SExt))
10513           AssertOp = ISD::AssertSext;
10514         else if (Arg.hasAttribute(Attribute::ZExt))
10515           AssertOp = ISD::AssertZext;
10516 
10517         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10518                                              PartVT, VT, nullptr,
10519                                              F.getCallingConv(), AssertOp));
10520       }
10521 
10522       i += NumParts;
10523     }
10524 
10525     // We don't need to do anything else for unused arguments.
10526     if (ArgValues.empty())
10527       continue;
10528 
10529     // Note down frame index.
10530     if (FrameIndexSDNode *FI =
10531         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10532       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10533 
10534     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10535                                      SDB->getCurSDLoc());
10536 
10537     SDB->setValue(&Arg, Res);
10538     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10539       // We want to associate the argument with the frame index, among
10540       // involved operands, that correspond to the lowest address. The
10541       // getCopyFromParts function, called earlier, is swapping the order of
10542       // the operands to BUILD_PAIR depending on endianness. The result of
10543       // that swapping is that the least significant bits of the argument will
10544       // be in the first operand of the BUILD_PAIR node, and the most
10545       // significant bits will be in the second operand.
10546       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10547       if (LoadSDNode *LNode =
10548           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10549         if (FrameIndexSDNode *FI =
10550             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10551           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10552     }
10553 
10554     // Analyses past this point are naive and don't expect an assertion.
10555     if (Res.getOpcode() == ISD::AssertZext)
10556       Res = Res.getOperand(0);
10557 
10558     // Update the SwiftErrorVRegDefMap.
10559     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10560       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10561       if (Register::isVirtualRegister(Reg))
10562         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10563                                    Reg);
10564     }
10565 
10566     // If this argument is live outside of the entry block, insert a copy from
10567     // wherever we got it to the vreg that other BB's will reference it as.
10568     if (Res.getOpcode() == ISD::CopyFromReg) {
10569       // If we can, though, try to skip creating an unnecessary vreg.
10570       // FIXME: This isn't very clean... it would be nice to make this more
10571       // general.
10572       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10573       if (Register::isVirtualRegister(Reg)) {
10574         FuncInfo->ValueMap[&Arg] = Reg;
10575         continue;
10576       }
10577     }
10578     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10579       FuncInfo->InitializeRegForValue(&Arg);
10580       SDB->CopyToExportRegsIfNeeded(&Arg);
10581     }
10582   }
10583 
10584   if (!Chains.empty()) {
10585     Chains.push_back(NewRoot);
10586     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10587   }
10588 
10589   DAG.setRoot(NewRoot);
10590 
10591   assert(i == InVals.size() && "Argument register count mismatch!");
10592 
10593   // If any argument copy elisions occurred and we have debug info, update the
10594   // stale frame indices used in the dbg.declare variable info table.
10595   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10596   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10597     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10598       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10599       if (I != ArgCopyElisionFrameIndexMap.end())
10600         VI.Slot = I->second;
10601     }
10602   }
10603 
10604   // Finally, if the target has anything special to do, allow it to do so.
10605   emitFunctionEntryCode();
10606 }
10607 
10608 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10609 /// ensure constants are generated when needed.  Remember the virtual registers
10610 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10611 /// directly add them, because expansion might result in multiple MBB's for one
10612 /// BB.  As such, the start of the BB might correspond to a different MBB than
10613 /// the end.
10614 void
10615 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10616   const Instruction *TI = LLVMBB->getTerminator();
10617 
10618   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10619 
10620   // Check PHI nodes in successors that expect a value to be available from this
10621   // block.
10622   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10623     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10624     if (!isa<PHINode>(SuccBB->begin())) continue;
10625     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10626 
10627     // If this terminator has multiple identical successors (common for
10628     // switches), only handle each succ once.
10629     if (!SuccsHandled.insert(SuccMBB).second)
10630       continue;
10631 
10632     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10633 
10634     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10635     // nodes and Machine PHI nodes, but the incoming operands have not been
10636     // emitted yet.
10637     for (const PHINode &PN : SuccBB->phis()) {
10638       // Ignore dead phi's.
10639       if (PN.use_empty())
10640         continue;
10641 
10642       // Skip empty types
10643       if (PN.getType()->isEmptyTy())
10644         continue;
10645 
10646       unsigned Reg;
10647       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10648 
10649       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10650         unsigned &RegOut = ConstantsOut[C];
10651         if (RegOut == 0) {
10652           RegOut = FuncInfo.CreateRegs(C);
10653           // We need to zero extend ConstantInt phi operands to match
10654           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10655           ISD::NodeType ExtendType =
10656               isa<ConstantInt>(PHIOp) ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND;
10657           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10658         }
10659         Reg = RegOut;
10660       } else {
10661         DenseMap<const Value *, Register>::iterator I =
10662           FuncInfo.ValueMap.find(PHIOp);
10663         if (I != FuncInfo.ValueMap.end())
10664           Reg = I->second;
10665         else {
10666           assert(isa<AllocaInst>(PHIOp) &&
10667                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10668                  "Didn't codegen value into a register!??");
10669           Reg = FuncInfo.CreateRegs(PHIOp);
10670           CopyValueToVirtualRegister(PHIOp, Reg);
10671         }
10672       }
10673 
10674       // Remember that this register needs to added to the machine PHI node as
10675       // the input for this MBB.
10676       SmallVector<EVT, 4> ValueVTs;
10677       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10678       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10679       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10680         EVT VT = ValueVTs[vti];
10681         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10682         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10683           FuncInfo.PHINodesToUpdate.push_back(
10684               std::make_pair(&*MBBI++, Reg + i));
10685         Reg += NumRegisters;
10686       }
10687     }
10688   }
10689 
10690   ConstantsOut.clear();
10691 }
10692 
10693 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10694   MachineFunction::iterator I(MBB);
10695   if (++I == FuncInfo.MF->end())
10696     return nullptr;
10697   return &*I;
10698 }
10699 
10700 /// During lowering new call nodes can be created (such as memset, etc.).
10701 /// Those will become new roots of the current DAG, but complications arise
10702 /// when they are tail calls. In such cases, the call lowering will update
10703 /// the root, but the builder still needs to know that a tail call has been
10704 /// lowered in order to avoid generating an additional return.
10705 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10706   // If the node is null, we do have a tail call.
10707   if (MaybeTC.getNode() != nullptr)
10708     DAG.setRoot(MaybeTC);
10709   else
10710     HasTailCall = true;
10711 }
10712 
10713 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10714                                         MachineBasicBlock *SwitchMBB,
10715                                         MachineBasicBlock *DefaultMBB) {
10716   MachineFunction *CurMF = FuncInfo.MF;
10717   MachineBasicBlock *NextMBB = nullptr;
10718   MachineFunction::iterator BBI(W.MBB);
10719   if (++BBI != FuncInfo.MF->end())
10720     NextMBB = &*BBI;
10721 
10722   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10723 
10724   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10725 
10726   if (Size == 2 && W.MBB == SwitchMBB) {
10727     // If any two of the cases has the same destination, and if one value
10728     // is the same as the other, but has one bit unset that the other has set,
10729     // use bit manipulation to do two compares at once.  For example:
10730     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10731     // TODO: This could be extended to merge any 2 cases in switches with 3
10732     // cases.
10733     // TODO: Handle cases where W.CaseBB != SwitchBB.
10734     CaseCluster &Small = *W.FirstCluster;
10735     CaseCluster &Big = *W.LastCluster;
10736 
10737     if (Small.Low == Small.High && Big.Low == Big.High &&
10738         Small.MBB == Big.MBB) {
10739       const APInt &SmallValue = Small.Low->getValue();
10740       const APInt &BigValue = Big.Low->getValue();
10741 
10742       // Check that there is only one bit different.
10743       APInt CommonBit = BigValue ^ SmallValue;
10744       if (CommonBit.isPowerOf2()) {
10745         SDValue CondLHS = getValue(Cond);
10746         EVT VT = CondLHS.getValueType();
10747         SDLoc DL = getCurSDLoc();
10748 
10749         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10750                                  DAG.getConstant(CommonBit, DL, VT));
10751         SDValue Cond = DAG.getSetCC(
10752             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10753             ISD::SETEQ);
10754 
10755         // Update successor info.
10756         // Both Small and Big will jump to Small.BB, so we sum up the
10757         // probabilities.
10758         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10759         if (BPI)
10760           addSuccessorWithProb(
10761               SwitchMBB, DefaultMBB,
10762               // The default destination is the first successor in IR.
10763               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10764         else
10765           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10766 
10767         // Insert the true branch.
10768         SDValue BrCond =
10769             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10770                         DAG.getBasicBlock(Small.MBB));
10771         // Insert the false branch.
10772         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10773                              DAG.getBasicBlock(DefaultMBB));
10774 
10775         DAG.setRoot(BrCond);
10776         return;
10777       }
10778     }
10779   }
10780 
10781   if (TM.getOptLevel() != CodeGenOpt::None) {
10782     // Here, we order cases by probability so the most likely case will be
10783     // checked first. However, two clusters can have the same probability in
10784     // which case their relative ordering is non-deterministic. So we use Low
10785     // as a tie-breaker as clusters are guaranteed to never overlap.
10786     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10787                [](const CaseCluster &a, const CaseCluster &b) {
10788       return a.Prob != b.Prob ?
10789              a.Prob > b.Prob :
10790              a.Low->getValue().slt(b.Low->getValue());
10791     });
10792 
10793     // Rearrange the case blocks so that the last one falls through if possible
10794     // without changing the order of probabilities.
10795     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10796       --I;
10797       if (I->Prob > W.LastCluster->Prob)
10798         break;
10799       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10800         std::swap(*I, *W.LastCluster);
10801         break;
10802       }
10803     }
10804   }
10805 
10806   // Compute total probability.
10807   BranchProbability DefaultProb = W.DefaultProb;
10808   BranchProbability UnhandledProbs = DefaultProb;
10809   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10810     UnhandledProbs += I->Prob;
10811 
10812   MachineBasicBlock *CurMBB = W.MBB;
10813   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10814     bool FallthroughUnreachable = false;
10815     MachineBasicBlock *Fallthrough;
10816     if (I == W.LastCluster) {
10817       // For the last cluster, fall through to the default destination.
10818       Fallthrough = DefaultMBB;
10819       FallthroughUnreachable = isa<UnreachableInst>(
10820           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10821     } else {
10822       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10823       CurMF->insert(BBI, Fallthrough);
10824       // Put Cond in a virtual register to make it available from the new blocks.
10825       ExportFromCurrentBlock(Cond);
10826     }
10827     UnhandledProbs -= I->Prob;
10828 
10829     switch (I->Kind) {
10830       case CC_JumpTable: {
10831         // FIXME: Optimize away range check based on pivot comparisons.
10832         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10833         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10834 
10835         // The jump block hasn't been inserted yet; insert it here.
10836         MachineBasicBlock *JumpMBB = JT->MBB;
10837         CurMF->insert(BBI, JumpMBB);
10838 
10839         auto JumpProb = I->Prob;
10840         auto FallthroughProb = UnhandledProbs;
10841 
10842         // If the default statement is a target of the jump table, we evenly
10843         // distribute the default probability to successors of CurMBB. Also
10844         // update the probability on the edge from JumpMBB to Fallthrough.
10845         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10846                                               SE = JumpMBB->succ_end();
10847              SI != SE; ++SI) {
10848           if (*SI == DefaultMBB) {
10849             JumpProb += DefaultProb / 2;
10850             FallthroughProb -= DefaultProb / 2;
10851             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10852             JumpMBB->normalizeSuccProbs();
10853             break;
10854           }
10855         }
10856 
10857         if (FallthroughUnreachable)
10858           JTH->FallthroughUnreachable = true;
10859 
10860         if (!JTH->FallthroughUnreachable)
10861           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10862         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10863         CurMBB->normalizeSuccProbs();
10864 
10865         // The jump table header will be inserted in our current block, do the
10866         // range check, and fall through to our fallthrough block.
10867         JTH->HeaderBB = CurMBB;
10868         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10869 
10870         // If we're in the right place, emit the jump table header right now.
10871         if (CurMBB == SwitchMBB) {
10872           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10873           JTH->Emitted = true;
10874         }
10875         break;
10876       }
10877       case CC_BitTests: {
10878         // FIXME: Optimize away range check based on pivot comparisons.
10879         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10880 
10881         // The bit test blocks haven't been inserted yet; insert them here.
10882         for (BitTestCase &BTC : BTB->Cases)
10883           CurMF->insert(BBI, BTC.ThisBB);
10884 
10885         // Fill in fields of the BitTestBlock.
10886         BTB->Parent = CurMBB;
10887         BTB->Default = Fallthrough;
10888 
10889         BTB->DefaultProb = UnhandledProbs;
10890         // If the cases in bit test don't form a contiguous range, we evenly
10891         // distribute the probability on the edge to Fallthrough to two
10892         // successors of CurMBB.
10893         if (!BTB->ContiguousRange) {
10894           BTB->Prob += DefaultProb / 2;
10895           BTB->DefaultProb -= DefaultProb / 2;
10896         }
10897 
10898         if (FallthroughUnreachable)
10899           BTB->FallthroughUnreachable = true;
10900 
10901         // If we're in the right place, emit the bit test header right now.
10902         if (CurMBB == SwitchMBB) {
10903           visitBitTestHeader(*BTB, SwitchMBB);
10904           BTB->Emitted = true;
10905         }
10906         break;
10907       }
10908       case CC_Range: {
10909         const Value *RHS, *LHS, *MHS;
10910         ISD::CondCode CC;
10911         if (I->Low == I->High) {
10912           // Check Cond == I->Low.
10913           CC = ISD::SETEQ;
10914           LHS = Cond;
10915           RHS=I->Low;
10916           MHS = nullptr;
10917         } else {
10918           // Check I->Low <= Cond <= I->High.
10919           CC = ISD::SETLE;
10920           LHS = I->Low;
10921           MHS = Cond;
10922           RHS = I->High;
10923         }
10924 
10925         // If Fallthrough is unreachable, fold away the comparison.
10926         if (FallthroughUnreachable)
10927           CC = ISD::SETTRUE;
10928 
10929         // The false probability is the sum of all unhandled cases.
10930         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10931                      getCurSDLoc(), I->Prob, UnhandledProbs);
10932 
10933         if (CurMBB == SwitchMBB)
10934           visitSwitchCase(CB, SwitchMBB);
10935         else
10936           SL->SwitchCases.push_back(CB);
10937 
10938         break;
10939       }
10940     }
10941     CurMBB = Fallthrough;
10942   }
10943 }
10944 
10945 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10946                                               CaseClusterIt First,
10947                                               CaseClusterIt Last) {
10948   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10949     if (X.Prob != CC.Prob)
10950       return X.Prob > CC.Prob;
10951 
10952     // Ties are broken by comparing the case value.
10953     return X.Low->getValue().slt(CC.Low->getValue());
10954   });
10955 }
10956 
10957 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10958                                         const SwitchWorkListItem &W,
10959                                         Value *Cond,
10960                                         MachineBasicBlock *SwitchMBB) {
10961   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10962          "Clusters not sorted?");
10963 
10964   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10965 
10966   // Balance the tree based on branch probabilities to create a near-optimal (in
10967   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10968   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10969   CaseClusterIt LastLeft = W.FirstCluster;
10970   CaseClusterIt FirstRight = W.LastCluster;
10971   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10972   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10973 
10974   // Move LastLeft and FirstRight towards each other from opposite directions to
10975   // find a partitioning of the clusters which balances the probability on both
10976   // sides. If LeftProb and RightProb are equal, alternate which side is
10977   // taken to ensure 0-probability nodes are distributed evenly.
10978   unsigned I = 0;
10979   while (LastLeft + 1 < FirstRight) {
10980     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10981       LeftProb += (++LastLeft)->Prob;
10982     else
10983       RightProb += (--FirstRight)->Prob;
10984     I++;
10985   }
10986 
10987   while (true) {
10988     // Our binary search tree differs from a typical BST in that ours can have up
10989     // to three values in each leaf. The pivot selection above doesn't take that
10990     // into account, which means the tree might require more nodes and be less
10991     // efficient. We compensate for this here.
10992 
10993     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10994     unsigned NumRight = W.LastCluster - FirstRight + 1;
10995 
10996     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10997       // If one side has less than 3 clusters, and the other has more than 3,
10998       // consider taking a cluster from the other side.
10999 
11000       if (NumLeft < NumRight) {
11001         // Consider moving the first cluster on the right to the left side.
11002         CaseCluster &CC = *FirstRight;
11003         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11004         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11005         if (LeftSideRank <= RightSideRank) {
11006           // Moving the cluster to the left does not demote it.
11007           ++LastLeft;
11008           ++FirstRight;
11009           continue;
11010         }
11011       } else {
11012         assert(NumRight < NumLeft);
11013         // Consider moving the last element on the left to the right side.
11014         CaseCluster &CC = *LastLeft;
11015         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11016         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11017         if (RightSideRank <= LeftSideRank) {
11018           // Moving the cluster to the right does not demot it.
11019           --LastLeft;
11020           --FirstRight;
11021           continue;
11022         }
11023       }
11024     }
11025     break;
11026   }
11027 
11028   assert(LastLeft + 1 == FirstRight);
11029   assert(LastLeft >= W.FirstCluster);
11030   assert(FirstRight <= W.LastCluster);
11031 
11032   // Use the first element on the right as pivot since we will make less-than
11033   // comparisons against it.
11034   CaseClusterIt PivotCluster = FirstRight;
11035   assert(PivotCluster > W.FirstCluster);
11036   assert(PivotCluster <= W.LastCluster);
11037 
11038   CaseClusterIt FirstLeft = W.FirstCluster;
11039   CaseClusterIt LastRight = W.LastCluster;
11040 
11041   const ConstantInt *Pivot = PivotCluster->Low;
11042 
11043   // New blocks will be inserted immediately after the current one.
11044   MachineFunction::iterator BBI(W.MBB);
11045   ++BBI;
11046 
11047   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11048   // we can branch to its destination directly if it's squeezed exactly in
11049   // between the known lower bound and Pivot - 1.
11050   MachineBasicBlock *LeftMBB;
11051   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11052       FirstLeft->Low == W.GE &&
11053       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11054     LeftMBB = FirstLeft->MBB;
11055   } else {
11056     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11057     FuncInfo.MF->insert(BBI, LeftMBB);
11058     WorkList.push_back(
11059         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11060     // Put Cond in a virtual register to make it available from the new blocks.
11061     ExportFromCurrentBlock(Cond);
11062   }
11063 
11064   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11065   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11066   // directly if RHS.High equals the current upper bound.
11067   MachineBasicBlock *RightMBB;
11068   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11069       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11070     RightMBB = FirstRight->MBB;
11071   } else {
11072     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11073     FuncInfo.MF->insert(BBI, RightMBB);
11074     WorkList.push_back(
11075         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11076     // Put Cond in a virtual register to make it available from the new blocks.
11077     ExportFromCurrentBlock(Cond);
11078   }
11079 
11080   // Create the CaseBlock record that will be used to lower the branch.
11081   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11082                getCurSDLoc(), LeftProb, RightProb);
11083 
11084   if (W.MBB == SwitchMBB)
11085     visitSwitchCase(CB, SwitchMBB);
11086   else
11087     SL->SwitchCases.push_back(CB);
11088 }
11089 
11090 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11091 // from the swith statement.
11092 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11093                                             BranchProbability PeeledCaseProb) {
11094   if (PeeledCaseProb == BranchProbability::getOne())
11095     return BranchProbability::getZero();
11096   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11097 
11098   uint32_t Numerator = CaseProb.getNumerator();
11099   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11100   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11101 }
11102 
11103 // Try to peel the top probability case if it exceeds the threshold.
11104 // Return current MachineBasicBlock for the switch statement if the peeling
11105 // does not occur.
11106 // If the peeling is performed, return the newly created MachineBasicBlock
11107 // for the peeled switch statement. Also update Clusters to remove the peeled
11108 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11109 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11110     const SwitchInst &SI, CaseClusterVector &Clusters,
11111     BranchProbability &PeeledCaseProb) {
11112   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11113   // Don't perform if there is only one cluster or optimizing for size.
11114   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11115       TM.getOptLevel() == CodeGenOpt::None ||
11116       SwitchMBB->getParent()->getFunction().hasMinSize())
11117     return SwitchMBB;
11118 
11119   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11120   unsigned PeeledCaseIndex = 0;
11121   bool SwitchPeeled = false;
11122   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11123     CaseCluster &CC = Clusters[Index];
11124     if (CC.Prob < TopCaseProb)
11125       continue;
11126     TopCaseProb = CC.Prob;
11127     PeeledCaseIndex = Index;
11128     SwitchPeeled = true;
11129   }
11130   if (!SwitchPeeled)
11131     return SwitchMBB;
11132 
11133   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11134                     << TopCaseProb << "\n");
11135 
11136   // Record the MBB for the peeled switch statement.
11137   MachineFunction::iterator BBI(SwitchMBB);
11138   ++BBI;
11139   MachineBasicBlock *PeeledSwitchMBB =
11140       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11141   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11142 
11143   ExportFromCurrentBlock(SI.getCondition());
11144   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11145   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11146                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11147   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11148 
11149   Clusters.erase(PeeledCaseIt);
11150   for (CaseCluster &CC : Clusters) {
11151     LLVM_DEBUG(
11152         dbgs() << "Scale the probablity for one cluster, before scaling: "
11153                << CC.Prob << "\n");
11154     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11155     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11156   }
11157   PeeledCaseProb = TopCaseProb;
11158   return PeeledSwitchMBB;
11159 }
11160 
11161 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11162   // Extract cases from the switch.
11163   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11164   CaseClusterVector Clusters;
11165   Clusters.reserve(SI.getNumCases());
11166   for (auto I : SI.cases()) {
11167     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11168     const ConstantInt *CaseVal = I.getCaseValue();
11169     BranchProbability Prob =
11170         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11171             : BranchProbability(1, SI.getNumCases() + 1);
11172     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11173   }
11174 
11175   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11176 
11177   // Cluster adjacent cases with the same destination. We do this at all
11178   // optimization levels because it's cheap to do and will make codegen faster
11179   // if there are many clusters.
11180   sortAndRangeify(Clusters);
11181 
11182   // The branch probablity of the peeled case.
11183   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11184   MachineBasicBlock *PeeledSwitchMBB =
11185       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11186 
11187   // If there is only the default destination, jump there directly.
11188   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11189   if (Clusters.empty()) {
11190     assert(PeeledSwitchMBB == SwitchMBB);
11191     SwitchMBB->addSuccessor(DefaultMBB);
11192     if (DefaultMBB != NextBlock(SwitchMBB)) {
11193       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11194                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11195     }
11196     return;
11197   }
11198 
11199   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11200   SL->findBitTestClusters(Clusters, &SI);
11201 
11202   LLVM_DEBUG({
11203     dbgs() << "Case clusters: ";
11204     for (const CaseCluster &C : Clusters) {
11205       if (C.Kind == CC_JumpTable)
11206         dbgs() << "JT:";
11207       if (C.Kind == CC_BitTests)
11208         dbgs() << "BT:";
11209 
11210       C.Low->getValue().print(dbgs(), true);
11211       if (C.Low != C.High) {
11212         dbgs() << '-';
11213         C.High->getValue().print(dbgs(), true);
11214       }
11215       dbgs() << ' ';
11216     }
11217     dbgs() << '\n';
11218   });
11219 
11220   assert(!Clusters.empty());
11221   SwitchWorkList WorkList;
11222   CaseClusterIt First = Clusters.begin();
11223   CaseClusterIt Last = Clusters.end() - 1;
11224   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11225   // Scale the branchprobability for DefaultMBB if the peel occurs and
11226   // DefaultMBB is not replaced.
11227   if (PeeledCaseProb != BranchProbability::getZero() &&
11228       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11229     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11230   WorkList.push_back(
11231       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11232 
11233   while (!WorkList.empty()) {
11234     SwitchWorkListItem W = WorkList.pop_back_val();
11235     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11236 
11237     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11238         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11239       // For optimized builds, lower large range as a balanced binary tree.
11240       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11241       continue;
11242     }
11243 
11244     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11245   }
11246 }
11247 
11248 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11249   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11250   auto DL = getCurSDLoc();
11251   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11252   setValue(&I, DAG.getStepVector(DL, ResultVT));
11253 }
11254 
11255 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11256   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11257   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11258 
11259   SDLoc DL = getCurSDLoc();
11260   SDValue V = getValue(I.getOperand(0));
11261   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11262 
11263   if (VT.isScalableVector()) {
11264     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11265     return;
11266   }
11267 
11268   // Use VECTOR_SHUFFLE for the fixed-length vector
11269   // to maintain existing behavior.
11270   SmallVector<int, 8> Mask;
11271   unsigned NumElts = VT.getVectorMinNumElements();
11272   for (unsigned i = 0; i != NumElts; ++i)
11273     Mask.push_back(NumElts - 1 - i);
11274 
11275   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11276 }
11277 
11278 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11279   SmallVector<EVT, 4> ValueVTs;
11280   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11281                   ValueVTs);
11282   unsigned NumValues = ValueVTs.size();
11283   if (NumValues == 0) return;
11284 
11285   SmallVector<SDValue, 4> Values(NumValues);
11286   SDValue Op = getValue(I.getOperand(0));
11287 
11288   for (unsigned i = 0; i != NumValues; ++i)
11289     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11290                             SDValue(Op.getNode(), Op.getResNo() + i));
11291 
11292   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11293                            DAG.getVTList(ValueVTs), Values));
11294 }
11295 
11296 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11298   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11299 
11300   SDLoc DL = getCurSDLoc();
11301   SDValue V1 = getValue(I.getOperand(0));
11302   SDValue V2 = getValue(I.getOperand(1));
11303   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11304 
11305   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11306   if (VT.isScalableVector()) {
11307     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11308     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11309                              DAG.getConstant(Imm, DL, IdxVT)));
11310     return;
11311   }
11312 
11313   unsigned NumElts = VT.getVectorNumElements();
11314 
11315   uint64_t Idx = (NumElts + Imm) % NumElts;
11316 
11317   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11318   SmallVector<int, 8> Mask;
11319   for (unsigned i = 0; i < NumElts; ++i)
11320     Mask.push_back(Idx + i);
11321   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11322 }
11323