1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 /// Minimum jump table density for normal functions. 90 static cl::opt<unsigned> 91 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 92 cl::desc("Minimum density for building a jump table in " 93 "a normal function")); 94 95 /// Minimum jump table density for -Os or -Oz functions. 96 static cl::opt<unsigned> 97 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden, 98 cl::desc("Minimum density for building a jump table in " 99 "an optsize function")); 100 101 102 // Limit the width of DAG chains. This is important in general to prevent 103 // DAG-based analysis from blowing up. For example, alias analysis and 104 // load clustering may not complete in reasonable time. It is difficult to 105 // recognize and avoid this situation within each individual analysis, and 106 // future analyses are likely to have the same behavior. Limiting DAG width is 107 // the safe approach and will be especially important with global DAGs. 108 // 109 // MaxParallelChains default is arbitrarily high to avoid affecting 110 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 111 // sequence over this should have been converted to llvm.memcpy by the 112 // frontend. It easy to induce this behavior with .ll code such as: 113 // %buffer = alloca [4096 x i8] 114 // %data = load [4096 x i8]* %argPtr 115 // store [4096 x i8] %data, [4096 x i8]* %buffer 116 static const unsigned MaxParallelChains = 64; 117 118 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 119 const SDValue *Parts, unsigned NumParts, 120 MVT PartVT, EVT ValueVT, const Value *V); 121 122 /// getCopyFromParts - Create a value that contains the specified legal parts 123 /// combined into the value they represent. If the parts combine to a type 124 /// larger then ValueVT then AssertOp can be used to specify whether the extra 125 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 126 /// (ISD::AssertSext). 127 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 128 const SDValue *Parts, 129 unsigned NumParts, MVT PartVT, EVT ValueVT, 130 const Value *V, 131 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 132 if (ValueVT.isVector()) 133 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 134 PartVT, ValueVT, V); 135 136 assert(NumParts > 0 && "No parts to assemble!"); 137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 138 SDValue Val = Parts[0]; 139 140 if (NumParts > 1) { 141 // Assemble the value from multiple parts. 142 if (ValueVT.isInteger()) { 143 unsigned PartBits = PartVT.getSizeInBits(); 144 unsigned ValueBits = ValueVT.getSizeInBits(); 145 146 // Assemble the power of 2 part. 147 unsigned RoundParts = NumParts & (NumParts - 1) ? 148 1 << Log2_32(NumParts) : NumParts; 149 unsigned RoundBits = PartBits * RoundParts; 150 EVT RoundVT = RoundBits == ValueBits ? 151 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 152 SDValue Lo, Hi; 153 154 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 155 156 if (RoundParts > 2) { 157 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 158 PartVT, HalfVT, V); 159 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 160 RoundParts / 2, PartVT, HalfVT, V); 161 } else { 162 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 163 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 164 } 165 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 169 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 170 171 if (RoundParts < NumParts) { 172 // Assemble the trailing non-power-of-2 part. 173 unsigned OddParts = NumParts - RoundParts; 174 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 175 Hi = getCopyFromParts(DAG, DL, 176 Parts + RoundParts, OddParts, PartVT, OddVT, V); 177 178 // Combine the round and odd parts. 179 Lo = Val; 180 if (DAG.getDataLayout().isBigEndian()) 181 std::swap(Lo, Hi); 182 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 183 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 184 Hi = 185 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 186 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 187 TLI.getPointerTy(DAG.getDataLayout()))); 188 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 189 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 190 } 191 } else if (PartVT.isFloatingPoint()) { 192 // FP split into multiple FP parts (for ppcf128) 193 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 194 "Unexpected split"); 195 SDValue Lo, Hi; 196 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 197 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 198 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 199 std::swap(Lo, Hi); 200 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 201 } else { 202 // FP split into integer parts (soft fp) 203 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 204 !PartVT.isVector() && "Unexpected split"); 205 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 207 } 208 } 209 210 // There is now one part, held in Val. Correct it to match ValueVT. 211 // PartEVT is the type of the register class that holds the value. 212 // ValueVT is the type of the inline asm operation. 213 EVT PartEVT = Val.getValueType(); 214 215 if (PartEVT == ValueVT) 216 return Val; 217 218 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 219 ValueVT.bitsLT(PartEVT)) { 220 // For an FP value in an integer part, we need to truncate to the right 221 // width first. 222 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 223 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 224 } 225 226 // Handle types that have the same size. 227 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 228 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 229 230 // Handle types with different sizes. 231 if (PartEVT.isInteger() && ValueVT.isInteger()) { 232 if (ValueVT.bitsLT(PartEVT)) { 233 // For a truncate, see if we have any information to 234 // indicate whether the truncated bits will always be 235 // zero or sign-extension. 236 if (AssertOp != ISD::DELETED_NODE) 237 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 238 DAG.getValueType(ValueVT)); 239 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 240 } 241 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 242 } 243 244 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 245 // FP_ROUND's are always exact here. 246 if (ValueVT.bitsLT(Val.getValueType())) 247 return DAG.getNode( 248 ISD::FP_ROUND, DL, ValueVT, Val, 249 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 250 251 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 252 } 253 254 llvm_unreachable("Unknown mismatch!"); 255 } 256 257 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 258 const Twine &ErrMsg) { 259 const Instruction *I = dyn_cast_or_null<Instruction>(V); 260 if (!V) 261 return Ctx.emitError(ErrMsg); 262 263 const char *AsmError = ", possible invalid constraint for vector type"; 264 if (const CallInst *CI = dyn_cast<CallInst>(I)) 265 if (isa<InlineAsm>(CI->getCalledValue())) 266 return Ctx.emitError(I, ErrMsg + AsmError); 267 268 return Ctx.emitError(I, ErrMsg); 269 } 270 271 /// getCopyFromPartsVector - Create a value that contains the specified legal 272 /// parts combined into the value they represent. If the parts combine to a 273 /// type larger then ValueVT then AssertOp can be used to specify whether the 274 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 275 /// ValueVT (ISD::AssertSext). 276 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 277 const SDValue *Parts, unsigned NumParts, 278 MVT PartVT, EVT ValueVT, const Value *V) { 279 assert(ValueVT.isVector() && "Not a vector value"); 280 assert(NumParts > 0 && "No parts to assemble!"); 281 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 282 SDValue Val = Parts[0]; 283 284 // Handle a multi-element vector. 285 if (NumParts > 1) { 286 EVT IntermediateVT; 287 MVT RegisterVT; 288 unsigned NumIntermediates; 289 unsigned NumRegs = 290 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 291 NumIntermediates, RegisterVT); 292 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 293 NumParts = NumRegs; // Silence a compiler warning. 294 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 295 assert(RegisterVT.getSizeInBits() == 296 Parts[0].getSimpleValueType().getSizeInBits() && 297 "Part type sizes don't match!"); 298 299 // Assemble the parts into intermediate operands. 300 SmallVector<SDValue, 8> Ops(NumIntermediates); 301 if (NumIntermediates == NumParts) { 302 // If the register was not expanded, truncate or copy the value, 303 // as appropriate. 304 for (unsigned i = 0; i != NumParts; ++i) 305 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 306 PartVT, IntermediateVT, V); 307 } else if (NumParts > 0) { 308 // If the intermediate type was expanded, build the intermediate 309 // operands from the parts. 310 assert(NumParts % NumIntermediates == 0 && 311 "Must expand into a divisible number of parts!"); 312 unsigned Factor = NumParts / NumIntermediates; 313 for (unsigned i = 0; i != NumIntermediates; ++i) 314 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 315 PartVT, IntermediateVT, V); 316 } 317 318 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 319 // intermediate operands. 320 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 321 : ISD::BUILD_VECTOR, 322 DL, ValueVT, Ops); 323 } 324 325 // There is now one part, held in Val. Correct it to match ValueVT. 326 EVT PartEVT = Val.getValueType(); 327 328 if (PartEVT == ValueVT) 329 return Val; 330 331 if (PartEVT.isVector()) { 332 // If the element type of the source/dest vectors are the same, but the 333 // parts vector has more elements than the value vector, then we have a 334 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 335 // elements we want. 336 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 337 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 338 "Cannot narrow, it would be a lossy transformation"); 339 return DAG.getNode( 340 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 341 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 342 } 343 344 // Vector/Vector bitcast. 345 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 349 "Cannot handle this kind of promotion"); 350 // Promoted vector extract 351 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 352 353 } 354 355 // Trivial bitcast if the types are the same size and the destination 356 // vector type is legal. 357 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 358 TLI.isTypeLegal(ValueVT)) 359 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 360 361 // Handle cases such as i8 -> <1 x i1> 362 if (ValueVT.getVectorNumElements() != 1) { 363 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 364 "non-trivial scalar-to-vector conversion"); 365 return DAG.getUNDEF(ValueVT); 366 } 367 368 if (ValueVT.getVectorNumElements() == 1 && 369 ValueVT.getVectorElementType() != PartEVT) 370 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 371 372 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 373 } 374 375 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 376 SDValue Val, SDValue *Parts, unsigned NumParts, 377 MVT PartVT, const Value *V); 378 379 /// getCopyToParts - Create a series of nodes that contain the specified value 380 /// split into legal parts. If the parts contain more bits than Val, then, for 381 /// integers, ExtendKind can be used to specify how to generate the extra bits. 382 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 383 SDValue Val, SDValue *Parts, unsigned NumParts, 384 MVT PartVT, const Value *V, 385 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 386 EVT ValueVT = Val.getValueType(); 387 388 // Handle the vector case separately. 389 if (ValueVT.isVector()) 390 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 391 392 unsigned PartBits = PartVT.getSizeInBits(); 393 unsigned OrigNumParts = NumParts; 394 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 395 "Copying to an illegal type!"); 396 397 if (NumParts == 0) 398 return; 399 400 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 401 EVT PartEVT = PartVT; 402 if (PartEVT == ValueVT) { 403 assert(NumParts == 1 && "No-op copy with multiple parts!"); 404 Parts[0] = Val; 405 return; 406 } 407 408 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 409 // If the parts cover more bits than the value has, promote the value. 410 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 411 assert(NumParts == 1 && "Do not know what to promote to!"); 412 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 413 } else { 414 if (ValueVT.isFloatingPoint()) { 415 // FP values need to be bitcast, then extended if they are being put 416 // into a larger container. 417 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 418 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 } 420 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 421 ValueVT.isInteger() && 422 "Unknown mismatch!"); 423 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 424 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 425 if (PartVT == MVT::x86mmx) 426 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 427 } 428 } else if (PartBits == ValueVT.getSizeInBits()) { 429 // Different types of the same size. 430 assert(NumParts == 1 && PartEVT != ValueVT); 431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 432 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 433 // If the parts cover less bits than value has, truncate the value. 434 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 435 ValueVT.isInteger() && 436 "Unknown mismatch!"); 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 if (PartVT == MVT::x86mmx) 440 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 441 } 442 443 // The value may have changed - recompute ValueVT. 444 ValueVT = Val.getValueType(); 445 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 446 "Failed to tile the value with PartVT!"); 447 448 if (NumParts == 1) { 449 if (PartEVT != ValueVT) 450 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 451 "scalar-to-vector conversion failed"); 452 453 Parts[0] = Val; 454 return; 455 } 456 457 // Expand the value into multiple parts. 458 if (NumParts & (NumParts - 1)) { 459 // The number of parts is not a power of 2. Split off and copy the tail. 460 assert(PartVT.isInteger() && ValueVT.isInteger() && 461 "Do not know what to expand to!"); 462 unsigned RoundParts = 1 << Log2_32(NumParts); 463 unsigned RoundBits = RoundParts * PartBits; 464 unsigned OddParts = NumParts - RoundParts; 465 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 466 DAG.getIntPtrConstant(RoundBits, DL)); 467 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 468 469 if (DAG.getDataLayout().isBigEndian()) 470 // The odd parts were reversed by getCopyToParts - unreverse them. 471 std::reverse(Parts + RoundParts, Parts + NumParts); 472 473 NumParts = RoundParts; 474 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 475 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 476 } 477 478 // The number of parts is a power of 2. Repeatedly bisect the value using 479 // EXTRACT_ELEMENT. 480 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 481 EVT::getIntegerVT(*DAG.getContext(), 482 ValueVT.getSizeInBits()), 483 Val); 484 485 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 486 for (unsigned i = 0; i < NumParts; i += StepSize) { 487 unsigned ThisBits = StepSize * PartBits / 2; 488 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 489 SDValue &Part0 = Parts[i]; 490 SDValue &Part1 = Parts[i+StepSize/2]; 491 492 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 493 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 494 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 495 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 496 497 if (ThisBits == PartBits && ThisVT != PartVT) { 498 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 499 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 500 } 501 } 502 } 503 504 if (DAG.getDataLayout().isBigEndian()) 505 std::reverse(Parts, Parts + OrigNumParts); 506 } 507 508 509 /// getCopyToPartsVector - Create a series of nodes that contain the specified 510 /// value split into legal parts. 511 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 512 SDValue Val, SDValue *Parts, unsigned NumParts, 513 MVT PartVT, const Value *V) { 514 EVT ValueVT = Val.getValueType(); 515 assert(ValueVT.isVector() && "Not a vector"); 516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 517 518 if (NumParts == 1) { 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 // Nothing to do. 522 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 523 // Bitconvert vector->vector case. 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } else if (PartVT.isVector() && 526 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 527 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 528 EVT ElementVT = PartVT.getVectorElementType(); 529 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 530 // undef elements. 531 SmallVector<SDValue, 16> Ops; 532 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 533 Ops.push_back(DAG.getNode( 534 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 535 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 536 537 for (unsigned i = ValueVT.getVectorNumElements(), 538 e = PartVT.getVectorNumElements(); i != e; ++i) 539 Ops.push_back(DAG.getUNDEF(ElementVT)); 540 541 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 542 543 // FIXME: Use CONCAT for 2x -> 4x. 544 545 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 546 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 547 } else if (PartVT.isVector() && 548 PartEVT.getVectorElementType().bitsGE( 549 ValueVT.getVectorElementType()) && 550 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 551 552 // Promoted vector extract 553 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 554 } else{ 555 // Vector -> scalar conversion. 556 assert(ValueVT.getVectorNumElements() == 1 && 557 "Only trivial vector-to-scalar conversions should get here!"); 558 Val = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 560 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 562 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 563 } 564 565 Parts[0] = Val; 566 return; 567 } 568 569 // Handle a multi-element vector. 570 EVT IntermediateVT; 571 MVT RegisterVT; 572 unsigned NumIntermediates; 573 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 574 IntermediateVT, 575 NumIntermediates, RegisterVT); 576 unsigned NumElements = ValueVT.getVectorNumElements(); 577 578 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 579 NumParts = NumRegs; // Silence a compiler warning. 580 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 581 582 // Split the vector into intermediate operands. 583 SmallVector<SDValue, 8> Ops(NumIntermediates); 584 for (unsigned i = 0; i != NumIntermediates; ++i) { 585 if (IntermediateVT.isVector()) 586 Ops[i] = 587 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 588 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 589 TLI.getVectorIdxTy(DAG.getDataLayout()))); 590 else 591 Ops[i] = DAG.getNode( 592 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 593 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 594 } 595 596 // Split the intermediate operands into legal parts. 597 if (NumParts == NumIntermediates) { 598 // If the register was not expanded, promote or copy the value, 599 // as appropriate. 600 for (unsigned i = 0; i != NumParts; ++i) 601 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 602 } else if (NumParts > 0) { 603 // If the intermediate type was expanded, split each the value into 604 // legal parts. 605 assert(NumIntermediates != 0 && "division by zero"); 606 assert(NumParts % NumIntermediates == 0 && 607 "Must expand into a divisible number of parts!"); 608 unsigned Factor = NumParts / NumIntermediates; 609 for (unsigned i = 0; i != NumIntermediates; ++i) 610 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 611 } 612 } 613 614 RegsForValue::RegsForValue() {} 615 616 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 617 EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 621 const DataLayout &DL, unsigned Reg, Type *Ty) { 622 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 623 624 for (EVT ValueVT : ValueVTs) { 625 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 626 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 627 for (unsigned i = 0; i != NumRegs; ++i) 628 Regs.push_back(Reg + i); 629 RegVTs.push_back(RegisterVT); 630 Reg += NumRegs; 631 } 632 } 633 634 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 635 /// this value and returns the result as a ValueVT value. This uses 636 /// Chain/Flag as the input and updates them for the output Chain/Flag. 637 /// If the Flag pointer is NULL, no flag is used. 638 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 639 FunctionLoweringInfo &FuncInfo, 640 SDLoc dl, 641 SDValue &Chain, SDValue *Flag, 642 const Value *V) const { 643 // A Value with type {} or [0 x %t] needs no registers. 644 if (ValueVTs.empty()) 645 return SDValue(); 646 647 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 648 649 // Assemble the legal parts into the final values. 650 SmallVector<SDValue, 4> Values(ValueVTs.size()); 651 SmallVector<SDValue, 8> Parts; 652 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 653 // Copy the legal parts from the registers. 654 EVT ValueVT = ValueVTs[Value]; 655 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 656 MVT RegisterVT = RegVTs[Value]; 657 658 Parts.resize(NumRegs); 659 for (unsigned i = 0; i != NumRegs; ++i) { 660 SDValue P; 661 if (!Flag) { 662 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 663 } else { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 665 *Flag = P.getValue(2); 666 } 667 668 Chain = P.getValue(1); 669 Parts[i] = P; 670 671 // If the source register was virtual and if we know something about it, 672 // add an assert node. 673 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 674 !RegisterVT.isInteger() || RegisterVT.isVector()) 675 continue; 676 677 const FunctionLoweringInfo::LiveOutInfo *LOI = 678 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 679 if (!LOI) 680 continue; 681 682 unsigned RegSize = RegisterVT.getSizeInBits(); 683 unsigned NumSignBits = LOI->NumSignBits; 684 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 685 686 if (NumZeroBits == RegSize) { 687 // The current value is a zero. 688 // Explicitly express that as it would be easier for 689 // optimizations to kick in. 690 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 691 continue; 692 } 693 694 // FIXME: We capture more information than the dag can represent. For 695 // now, just use the tightest assertzext/assertsext possible. 696 bool isSExt = true; 697 EVT FromVT(MVT::Other); 698 if (NumSignBits == RegSize) { 699 isSExt = true; // ASSERT SEXT 1 700 FromVT = MVT::i1; 701 } else if (NumZeroBits >= RegSize - 1) { 702 isSExt = false; // ASSERT ZEXT 1 703 FromVT = MVT::i1; 704 } else if (NumSignBits > RegSize - 8) { 705 isSExt = true; // ASSERT SEXT 8 706 FromVT = MVT::i8; 707 } else if (NumZeroBits >= RegSize - 8) { 708 isSExt = false; // ASSERT ZEXT 8 709 FromVT = MVT::i8; 710 } else if (NumSignBits > RegSize - 16) { 711 isSExt = true; // ASSERT SEXT 16 712 FromVT = MVT::i16; 713 } else if (NumZeroBits >= RegSize - 16) { 714 isSExt = false; // ASSERT ZEXT 16 715 FromVT = MVT::i16; 716 } else if (NumSignBits > RegSize - 32) { 717 isSExt = true; // ASSERT SEXT 32 718 FromVT = MVT::i32; 719 } else if (NumZeroBits >= RegSize - 32) { 720 isSExt = false; // ASSERT ZEXT 32 721 FromVT = MVT::i32; 722 } else { 723 continue; 724 } 725 // Add an assertion node. 726 assert(FromVT != MVT::Other); 727 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 728 RegisterVT, P, DAG.getValueType(FromVT)); 729 } 730 731 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 732 NumRegs, RegisterVT, ValueVT, V); 733 Part += NumRegs; 734 Parts.clear(); 735 } 736 737 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 738 } 739 740 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 741 /// specified value into the registers specified by this object. This uses 742 /// Chain/Flag as the input and updates them for the output Chain/Flag. 743 /// If the Flag pointer is NULL, no flag is used. 744 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 745 SDValue &Chain, SDValue *Flag, const Value *V, 746 ISD::NodeType PreferredExtendType) const { 747 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 748 ISD::NodeType ExtendKind = PreferredExtendType; 749 750 // Get the list of the values's legal parts. 751 unsigned NumRegs = Regs.size(); 752 SmallVector<SDValue, 8> Parts(NumRegs); 753 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 754 EVT ValueVT = ValueVTs[Value]; 755 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 756 MVT RegisterVT = RegVTs[Value]; 757 758 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 759 ExtendKind = ISD::ZERO_EXTEND; 760 761 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 762 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 763 Part += NumParts; 764 } 765 766 // Copy the parts into the registers. 767 SmallVector<SDValue, 8> Chains(NumRegs); 768 for (unsigned i = 0; i != NumRegs; ++i) { 769 SDValue Part; 770 if (!Flag) { 771 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 772 } else { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 774 *Flag = Part.getValue(1); 775 } 776 777 Chains[i] = Part.getValue(0); 778 } 779 780 if (NumRegs == 1 || Flag) 781 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 782 // flagged to it. That is the CopyToReg nodes and the user are considered 783 // a single scheduling unit. If we create a TokenFactor and return it as 784 // chain, then the TokenFactor is both a predecessor (operand) of the 785 // user as well as a successor (the TF operands are flagged to the user). 786 // c1, f1 = CopyToReg 787 // c2, f2 = CopyToReg 788 // c3 = TokenFactor c1, c2 789 // ... 790 // = op c3, ..., f2 791 Chain = Chains[NumRegs-1]; 792 else 793 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 794 } 795 796 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 797 /// operand list. This adds the code marker and includes the number of 798 /// values added into it. 799 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 800 unsigned MatchingIdx, SDLoc dl, 801 SelectionDAG &DAG, 802 std::vector<SDValue> &Ops) const { 803 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 804 805 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 806 if (HasMatching) 807 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 808 else if (!Regs.empty() && 809 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 810 // Put the register class of the virtual registers in the flag word. That 811 // way, later passes can recompute register class constraints for inline 812 // assembly as well as normal instructions. 813 // Don't do this for tied operands that can use the regclass information 814 // from the def. 815 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 816 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 817 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 818 } 819 820 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 821 Ops.push_back(Res); 822 823 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 824 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 825 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 826 MVT RegisterVT = RegVTs[Value]; 827 for (unsigned i = 0; i != NumRegs; ++i) { 828 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 829 unsigned TheReg = Regs[Reg++]; 830 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 831 832 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 833 // If we clobbered the stack pointer, MFI should know about it. 834 assert(DAG.getMachineFunction().getFrameInfo()-> 835 hasOpaqueSPAdjustment()); 836 } 837 } 838 } 839 } 840 841 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 842 const TargetLibraryInfo *li) { 843 AA = &aa; 844 GFI = gfi; 845 LibInfo = li; 846 DL = &DAG.getDataLayout(); 847 Context = DAG.getContext(); 848 LPadToCallSiteMap.clear(); 849 } 850 851 /// clear - Clear out the current SelectionDAG and the associated 852 /// state and prepare this SelectionDAGBuilder object to be used 853 /// for a new block. This doesn't clear out information about 854 /// additional blocks that are needed to complete switch lowering 855 /// or PHI node updating; that information is cleared out as it is 856 /// consumed. 857 void SelectionDAGBuilder::clear() { 858 NodeMap.clear(); 859 UnusedArgNodeMap.clear(); 860 PendingLoads.clear(); 861 PendingExports.clear(); 862 CurInst = nullptr; 863 HasTailCall = false; 864 SDNodeOrder = LowestSDNodeOrder; 865 StatepointLowering.clear(); 866 } 867 868 /// clearDanglingDebugInfo - Clear the dangling debug information 869 /// map. This function is separated from the clear so that debug 870 /// information that is dangling in a basic block can be properly 871 /// resolved in a different basic block. This allows the 872 /// SelectionDAG to resolve dangling debug information attached 873 /// to PHI nodes. 874 void SelectionDAGBuilder::clearDanglingDebugInfo() { 875 DanglingDebugInfoMap.clear(); 876 } 877 878 /// getRoot - Return the current virtual root of the Selection DAG, 879 /// flushing any PendingLoad items. This must be done before emitting 880 /// a store or any other node that may need to be ordered after any 881 /// prior load instructions. 882 /// 883 SDValue SelectionDAGBuilder::getRoot() { 884 if (PendingLoads.empty()) 885 return DAG.getRoot(); 886 887 if (PendingLoads.size() == 1) { 888 SDValue Root = PendingLoads[0]; 889 DAG.setRoot(Root); 890 PendingLoads.clear(); 891 return Root; 892 } 893 894 // Otherwise, we have to make a token factor node. 895 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 896 PendingLoads); 897 PendingLoads.clear(); 898 DAG.setRoot(Root); 899 return Root; 900 } 901 902 /// getControlRoot - Similar to getRoot, but instead of flushing all the 903 /// PendingLoad items, flush all the PendingExports items. It is necessary 904 /// to do this before emitting a terminator instruction. 905 /// 906 SDValue SelectionDAGBuilder::getControlRoot() { 907 SDValue Root = DAG.getRoot(); 908 909 if (PendingExports.empty()) 910 return Root; 911 912 // Turn all of the CopyToReg chains into one factored node. 913 if (Root.getOpcode() != ISD::EntryToken) { 914 unsigned i = 0, e = PendingExports.size(); 915 for (; i != e; ++i) { 916 assert(PendingExports[i].getNode()->getNumOperands() > 1); 917 if (PendingExports[i].getNode()->getOperand(0) == Root) 918 break; // Don't add the root if we already indirectly depend on it. 919 } 920 921 if (i == e) 922 PendingExports.push_back(Root); 923 } 924 925 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 926 PendingExports); 927 PendingExports.clear(); 928 DAG.setRoot(Root); 929 return Root; 930 } 931 932 /// Copy swift error to the final virtual register at end of a basic block, as 933 /// specified by SwiftErrorWorklist, if necessary. 934 static void copySwiftErrorsToFinalVRegs(SelectionDAGBuilder &SDB) { 935 const TargetLowering &TLI = SDB.DAG.getTargetLoweringInfo(); 936 if (!TLI.supportSwiftError()) 937 return; 938 939 if (!SDB.FuncInfo.SwiftErrorWorklist.count(SDB.FuncInfo.MBB)) 940 return; 941 942 // Go through entries in SwiftErrorWorklist, and create copy as necessary. 943 FunctionLoweringInfo::SwiftErrorVRegs &WorklistEntry = 944 SDB.FuncInfo.SwiftErrorWorklist[SDB.FuncInfo.MBB]; 945 FunctionLoweringInfo::SwiftErrorVRegs &MapEntry = 946 SDB.FuncInfo.SwiftErrorMap[SDB.FuncInfo.MBB]; 947 for (unsigned I = 0, E = WorklistEntry.size(); I < E; I++) { 948 unsigned WorkReg = WorklistEntry[I]; 949 950 // Find the swifterror virtual register for the value in SwiftErrorMap. 951 unsigned MapReg = MapEntry[I]; 952 assert(TargetRegisterInfo::isVirtualRegister(MapReg) && 953 "Entries in SwiftErrorMap should be virtual registers"); 954 955 if (WorkReg == MapReg) 956 continue; 957 958 // Create copy from SwiftErrorMap to SwiftWorklist. 959 auto &DL = SDB.DAG.getDataLayout(); 960 SDValue CopyNode = SDB.DAG.getCopyToReg( 961 SDB.getRoot(), SDB.getCurSDLoc(), WorkReg, 962 SDB.DAG.getRegister(MapReg, EVT(TLI.getPointerTy(DL)))); 963 MapEntry[I] = WorkReg; 964 SDB.DAG.setRoot(CopyNode); 965 } 966 } 967 968 void SelectionDAGBuilder::visit(const Instruction &I) { 969 // Set up outgoing PHI node register values before emitting the terminator. 970 if (isa<TerminatorInst>(&I)) { 971 copySwiftErrorsToFinalVRegs(*this); 972 HandlePHINodesInSuccessorBlocks(I.getParent()); 973 } 974 975 ++SDNodeOrder; 976 977 CurInst = &I; 978 979 visit(I.getOpcode(), I); 980 981 if (!isa<TerminatorInst>(&I) && !HasTailCall && 982 !isStatepoint(&I)) // statepoints handle their exports internally 983 CopyToExportRegsIfNeeded(&I); 984 985 CurInst = nullptr; 986 } 987 988 void SelectionDAGBuilder::visitPHI(const PHINode &) { 989 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 990 } 991 992 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 993 // Note: this doesn't use InstVisitor, because it has to work with 994 // ConstantExpr's in addition to instructions. 995 switch (Opcode) { 996 default: llvm_unreachable("Unknown instruction type encountered!"); 997 // Build the switch statement using the Instruction.def file. 998 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 999 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1000 #include "llvm/IR/Instruction.def" 1001 } 1002 } 1003 1004 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1005 // generate the debug data structures now that we've seen its definition. 1006 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1007 SDValue Val) { 1008 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1009 if (DDI.getDI()) { 1010 const DbgValueInst *DI = DDI.getDI(); 1011 DebugLoc dl = DDI.getdl(); 1012 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1013 DILocalVariable *Variable = DI->getVariable(); 1014 DIExpression *Expr = DI->getExpression(); 1015 assert(Variable->isValidLocationForIntrinsic(dl) && 1016 "Expected inlined-at fields to agree"); 1017 uint64_t Offset = DI->getOffset(); 1018 SDDbgValue *SDV; 1019 if (Val.getNode()) { 1020 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 1021 Val)) { 1022 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1023 false, Offset, dl, DbgSDNodeOrder); 1024 DAG.AddDbgValue(SDV, Val.getNode(), false); 1025 } 1026 } else 1027 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1028 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1029 } 1030 } 1031 1032 /// getCopyFromRegs - If there was virtual register allocated for the value V 1033 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1034 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1035 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1036 SDValue Result; 1037 1038 if (It != FuncInfo.ValueMap.end()) { 1039 unsigned InReg = It->second; 1040 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1041 DAG.getDataLayout(), InReg, Ty); 1042 SDValue Chain = DAG.getEntryNode(); 1043 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1044 resolveDanglingDebugInfo(V, Result); 1045 } 1046 1047 return Result; 1048 } 1049 1050 /// getValue - Return an SDValue for the given Value. 1051 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1052 // If we already have an SDValue for this value, use it. It's important 1053 // to do this first, so that we don't create a CopyFromReg if we already 1054 // have a regular SDValue. 1055 SDValue &N = NodeMap[V]; 1056 if (N.getNode()) return N; 1057 1058 // If there's a virtual register allocated and initialized for this 1059 // value, use it. 1060 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1061 return copyFromReg; 1062 1063 // Otherwise create a new SDValue and remember it. 1064 SDValue Val = getValueImpl(V); 1065 NodeMap[V] = Val; 1066 resolveDanglingDebugInfo(V, Val); 1067 return Val; 1068 } 1069 1070 // Return true if SDValue exists for the given Value 1071 bool SelectionDAGBuilder::findValue(const Value *V) const { 1072 return (NodeMap.find(V) != NodeMap.end()) || 1073 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1074 } 1075 1076 /// getNonRegisterValue - Return an SDValue for the given Value, but 1077 /// don't look in FuncInfo.ValueMap for a virtual register. 1078 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1079 // If we already have an SDValue for this value, use it. 1080 SDValue &N = NodeMap[V]; 1081 if (N.getNode()) { 1082 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1083 // Remove the debug location from the node as the node is about to be used 1084 // in a location which may differ from the original debug location. This 1085 // is relevant to Constant and ConstantFP nodes because they can appear 1086 // as constant expressions inside PHI nodes. 1087 N->setDebugLoc(DebugLoc()); 1088 } 1089 return N; 1090 } 1091 1092 // Otherwise create a new SDValue and remember it. 1093 SDValue Val = getValueImpl(V); 1094 NodeMap[V] = Val; 1095 resolveDanglingDebugInfo(V, Val); 1096 return Val; 1097 } 1098 1099 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1100 /// Create an SDValue for the given value. 1101 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1102 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1103 1104 if (const Constant *C = dyn_cast<Constant>(V)) { 1105 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1106 1107 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1108 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1109 1110 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1111 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1112 1113 if (isa<ConstantPointerNull>(C)) { 1114 unsigned AS = V->getType()->getPointerAddressSpace(); 1115 return DAG.getConstant(0, getCurSDLoc(), 1116 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1117 } 1118 1119 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1120 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1121 1122 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1123 return DAG.getUNDEF(VT); 1124 1125 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1126 visit(CE->getOpcode(), *CE); 1127 SDValue N1 = NodeMap[V]; 1128 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1129 return N1; 1130 } 1131 1132 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1133 SmallVector<SDValue, 4> Constants; 1134 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1135 OI != OE; ++OI) { 1136 SDNode *Val = getValue(*OI).getNode(); 1137 // If the operand is an empty aggregate, there are no values. 1138 if (!Val) continue; 1139 // Add each leaf value from the operand to the Constants list 1140 // to form a flattened list of all the values. 1141 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1142 Constants.push_back(SDValue(Val, i)); 1143 } 1144 1145 return DAG.getMergeValues(Constants, getCurSDLoc()); 1146 } 1147 1148 if (const ConstantDataSequential *CDS = 1149 dyn_cast<ConstantDataSequential>(C)) { 1150 SmallVector<SDValue, 4> Ops; 1151 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1152 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1153 // Add each leaf value from the operand to the Constants list 1154 // to form a flattened list of all the values. 1155 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1156 Ops.push_back(SDValue(Val, i)); 1157 } 1158 1159 if (isa<ArrayType>(CDS->getType())) 1160 return DAG.getMergeValues(Ops, getCurSDLoc()); 1161 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1162 VT, Ops); 1163 } 1164 1165 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1166 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1167 "Unknown struct or array constant!"); 1168 1169 SmallVector<EVT, 4> ValueVTs; 1170 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1171 unsigned NumElts = ValueVTs.size(); 1172 if (NumElts == 0) 1173 return SDValue(); // empty struct 1174 SmallVector<SDValue, 4> Constants(NumElts); 1175 for (unsigned i = 0; i != NumElts; ++i) { 1176 EVT EltVT = ValueVTs[i]; 1177 if (isa<UndefValue>(C)) 1178 Constants[i] = DAG.getUNDEF(EltVT); 1179 else if (EltVT.isFloatingPoint()) 1180 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1181 else 1182 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1183 } 1184 1185 return DAG.getMergeValues(Constants, getCurSDLoc()); 1186 } 1187 1188 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1189 return DAG.getBlockAddress(BA, VT); 1190 1191 VectorType *VecTy = cast<VectorType>(V->getType()); 1192 unsigned NumElements = VecTy->getNumElements(); 1193 1194 // Now that we know the number and type of the elements, get that number of 1195 // elements into the Ops array based on what kind of constant it is. 1196 SmallVector<SDValue, 16> Ops; 1197 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1198 for (unsigned i = 0; i != NumElements; ++i) 1199 Ops.push_back(getValue(CV->getOperand(i))); 1200 } else { 1201 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1202 EVT EltVT = 1203 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1204 1205 SDValue Op; 1206 if (EltVT.isFloatingPoint()) 1207 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1208 else 1209 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1210 Ops.assign(NumElements, Op); 1211 } 1212 1213 // Create a BUILD_VECTOR node. 1214 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1215 } 1216 1217 // If this is a static alloca, generate it as the frameindex instead of 1218 // computation. 1219 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1220 DenseMap<const AllocaInst*, int>::iterator SI = 1221 FuncInfo.StaticAllocaMap.find(AI); 1222 if (SI != FuncInfo.StaticAllocaMap.end()) 1223 return DAG.getFrameIndex(SI->second, 1224 TLI.getPointerTy(DAG.getDataLayout())); 1225 } 1226 1227 // If this is an instruction which fast-isel has deferred, select it now. 1228 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1229 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1230 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1231 Inst->getType()); 1232 SDValue Chain = DAG.getEntryNode(); 1233 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1234 } 1235 1236 llvm_unreachable("Can't get register for value!"); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1240 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1241 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1242 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1243 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1244 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1245 if (IsMSVCCXX || IsCoreCLR) 1246 CatchPadMBB->setIsEHFuncletEntry(); 1247 1248 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1249 } 1250 1251 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1252 // Update machine-CFG edge. 1253 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1254 FuncInfo.MBB->addSuccessor(TargetMBB); 1255 1256 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1257 bool IsSEH = isAsynchronousEHPersonality(Pers); 1258 if (IsSEH) { 1259 // If this is not a fall-through branch or optimizations are switched off, 1260 // emit the branch. 1261 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1262 TM.getOptLevel() == CodeGenOpt::None) 1263 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1264 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1265 return; 1266 } 1267 1268 // Figure out the funclet membership for the catchret's successor. 1269 // This will be used by the FuncletLayout pass to determine how to order the 1270 // BB's. 1271 // A 'catchret' returns to the outer scope's color. 1272 Value *ParentPad = I.getCatchSwitchParentPad(); 1273 const BasicBlock *SuccessorColor; 1274 if (isa<ConstantTokenNone>(ParentPad)) 1275 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1276 else 1277 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1278 assert(SuccessorColor && "No parent funclet for catchret!"); 1279 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1280 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1281 1282 // Create the terminator node. 1283 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1284 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1285 DAG.getBasicBlock(SuccessorColorMBB)); 1286 DAG.setRoot(Ret); 1287 } 1288 1289 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1290 // Don't emit any special code for the cleanuppad instruction. It just marks 1291 // the start of a funclet. 1292 FuncInfo.MBB->setIsEHFuncletEntry(); 1293 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1294 } 1295 1296 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1297 /// many places it could ultimately go. In the IR, we have a single unwind 1298 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1299 /// This function skips over imaginary basic blocks that hold catchswitch 1300 /// instructions, and finds all the "real" machine 1301 /// basic block destinations. As those destinations may not be successors of 1302 /// EHPadBB, here we also calculate the edge probability to those destinations. 1303 /// The passed-in Prob is the edge probability to EHPadBB. 1304 static void findUnwindDestinations( 1305 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1306 BranchProbability Prob, 1307 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1308 &UnwindDests) { 1309 EHPersonality Personality = 1310 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1311 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1312 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1313 1314 while (EHPadBB) { 1315 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1316 BasicBlock *NewEHPadBB = nullptr; 1317 if (isa<LandingPadInst>(Pad)) { 1318 // Stop on landingpads. They are not funclets. 1319 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1320 break; 1321 } else if (isa<CleanupPadInst>(Pad)) { 1322 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1323 // personalities. 1324 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1325 UnwindDests.back().first->setIsEHFuncletEntry(); 1326 break; 1327 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1328 // Add the catchpad handlers to the possible destinations. 1329 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1330 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1331 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1332 if (IsMSVCCXX || IsCoreCLR) 1333 UnwindDests.back().first->setIsEHFuncletEntry(); 1334 } 1335 NewEHPadBB = CatchSwitch->getUnwindDest(); 1336 } else { 1337 continue; 1338 } 1339 1340 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1341 if (BPI && NewEHPadBB) 1342 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1343 EHPadBB = NewEHPadBB; 1344 } 1345 } 1346 1347 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1348 // Update successor info. 1349 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1350 auto UnwindDest = I.getUnwindDest(); 1351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1352 BranchProbability UnwindDestProb = 1353 (BPI && UnwindDest) 1354 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1355 : BranchProbability::getZero(); 1356 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1357 for (auto &UnwindDest : UnwindDests) { 1358 UnwindDest.first->setIsEHPad(); 1359 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1360 } 1361 FuncInfo.MBB->normalizeSuccProbs(); 1362 1363 // Create the terminator node. 1364 SDValue Ret = 1365 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1366 DAG.setRoot(Ret); 1367 } 1368 1369 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1370 report_fatal_error("visitCatchSwitch not yet implemented!"); 1371 } 1372 1373 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1375 auto &DL = DAG.getDataLayout(); 1376 SDValue Chain = getControlRoot(); 1377 SmallVector<ISD::OutputArg, 8> Outs; 1378 SmallVector<SDValue, 8> OutVals; 1379 1380 if (!FuncInfo.CanLowerReturn) { 1381 unsigned DemoteReg = FuncInfo.DemoteRegister; 1382 const Function *F = I.getParent()->getParent(); 1383 1384 // Emit a store of the return value through the virtual register. 1385 // Leave Outs empty so that LowerReturn won't try to load return 1386 // registers the usual way. 1387 SmallVector<EVT, 1> PtrValueVTs; 1388 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1389 PtrValueVTs); 1390 1391 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1392 DemoteReg, PtrValueVTs[0]); 1393 SDValue RetOp = getValue(I.getOperand(0)); 1394 1395 SmallVector<EVT, 4> ValueVTs; 1396 SmallVector<uint64_t, 4> Offsets; 1397 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1398 unsigned NumValues = ValueVTs.size(); 1399 1400 // An aggregate return value cannot wrap around the address space, so 1401 // offsets to its parts don't wrap either. 1402 SDNodeFlags Flags; 1403 Flags.setNoUnsignedWrap(true); 1404 1405 SmallVector<SDValue, 4> Chains(NumValues); 1406 for (unsigned i = 0; i != NumValues; ++i) { 1407 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1408 RetPtr.getValueType(), RetPtr, 1409 DAG.getIntPtrConstant(Offsets[i], 1410 getCurSDLoc()), 1411 &Flags); 1412 Chains[i] = 1413 DAG.getStore(Chain, getCurSDLoc(), 1414 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1415 // FIXME: better loc info would be nice. 1416 Add, MachinePointerInfo(), false, false, 0); 1417 } 1418 1419 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1420 MVT::Other, Chains); 1421 } else if (I.getNumOperands() != 0) { 1422 SmallVector<EVT, 4> ValueVTs; 1423 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1424 unsigned NumValues = ValueVTs.size(); 1425 if (NumValues) { 1426 SDValue RetOp = getValue(I.getOperand(0)); 1427 1428 const Function *F = I.getParent()->getParent(); 1429 1430 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1431 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1432 Attribute::SExt)) 1433 ExtendKind = ISD::SIGN_EXTEND; 1434 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1435 Attribute::ZExt)) 1436 ExtendKind = ISD::ZERO_EXTEND; 1437 1438 LLVMContext &Context = F->getContext(); 1439 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1440 Attribute::InReg); 1441 1442 for (unsigned j = 0; j != NumValues; ++j) { 1443 EVT VT = ValueVTs[j]; 1444 1445 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1446 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1447 1448 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1449 MVT PartVT = TLI.getRegisterType(Context, VT); 1450 SmallVector<SDValue, 4> Parts(NumParts); 1451 getCopyToParts(DAG, getCurSDLoc(), 1452 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1453 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1454 1455 // 'inreg' on function refers to return value 1456 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1457 if (RetInReg) 1458 Flags.setInReg(); 1459 1460 // Propagate extension type if any 1461 if (ExtendKind == ISD::SIGN_EXTEND) 1462 Flags.setSExt(); 1463 else if (ExtendKind == ISD::ZERO_EXTEND) 1464 Flags.setZExt(); 1465 1466 for (unsigned i = 0; i < NumParts; ++i) { 1467 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1468 VT, /*isfixed=*/true, 0, 0)); 1469 OutVals.push_back(Parts[i]); 1470 } 1471 } 1472 } 1473 } 1474 1475 // Push in swifterror virtual register as the last element of Outs. This makes 1476 // sure swifterror virtual register will be returned in the swifterror 1477 // physical register. 1478 const Function *F = I.getParent()->getParent(); 1479 if (TLI.supportSwiftError() && 1480 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1481 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1482 Flags.setSwiftError(); 1483 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1484 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1485 true /*isfixed*/, 1 /*origidx*/, 1486 0 /*partOffs*/)); 1487 // Create SDNode for the swifterror virtual register. 1488 OutVals.push_back(DAG.getRegister(FuncInfo.SwiftErrorMap[FuncInfo.MBB][0], 1489 EVT(TLI.getPointerTy(DL)))); 1490 } 1491 1492 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1493 CallingConv::ID CallConv = 1494 DAG.getMachineFunction().getFunction()->getCallingConv(); 1495 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1496 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1497 1498 // Verify that the target's LowerReturn behaved as expected. 1499 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1500 "LowerReturn didn't return a valid chain!"); 1501 1502 // Update the DAG with the new chain value resulting from return lowering. 1503 DAG.setRoot(Chain); 1504 } 1505 1506 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1507 /// created for it, emit nodes to copy the value into the virtual 1508 /// registers. 1509 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1510 // Skip empty types 1511 if (V->getType()->isEmptyTy()) 1512 return; 1513 1514 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1515 if (VMI != FuncInfo.ValueMap.end()) { 1516 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1517 CopyValueToVirtualRegister(V, VMI->second); 1518 } 1519 } 1520 1521 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1522 /// the current basic block, add it to ValueMap now so that we'll get a 1523 /// CopyTo/FromReg. 1524 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1525 // No need to export constants. 1526 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1527 1528 // Already exported? 1529 if (FuncInfo.isExportedInst(V)) return; 1530 1531 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1532 CopyValueToVirtualRegister(V, Reg); 1533 } 1534 1535 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1536 const BasicBlock *FromBB) { 1537 // The operands of the setcc have to be in this block. We don't know 1538 // how to export them from some other block. 1539 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1540 // Can export from current BB. 1541 if (VI->getParent() == FromBB) 1542 return true; 1543 1544 // Is already exported, noop. 1545 return FuncInfo.isExportedInst(V); 1546 } 1547 1548 // If this is an argument, we can export it if the BB is the entry block or 1549 // if it is already exported. 1550 if (isa<Argument>(V)) { 1551 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1552 return true; 1553 1554 // Otherwise, can only export this if it is already exported. 1555 return FuncInfo.isExportedInst(V); 1556 } 1557 1558 // Otherwise, constants can always be exported. 1559 return true; 1560 } 1561 1562 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1563 BranchProbability 1564 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1565 const MachineBasicBlock *Dst) const { 1566 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1567 const BasicBlock *SrcBB = Src->getBasicBlock(); 1568 const BasicBlock *DstBB = Dst->getBasicBlock(); 1569 if (!BPI) { 1570 // If BPI is not available, set the default probability as 1 / N, where N is 1571 // the number of successors. 1572 auto SuccSize = std::max<uint32_t>( 1573 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1574 return BranchProbability(1, SuccSize); 1575 } 1576 return BPI->getEdgeProbability(SrcBB, DstBB); 1577 } 1578 1579 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1580 MachineBasicBlock *Dst, 1581 BranchProbability Prob) { 1582 if (!FuncInfo.BPI) 1583 Src->addSuccessorWithoutProb(Dst); 1584 else { 1585 if (Prob.isUnknown()) 1586 Prob = getEdgeProbability(Src, Dst); 1587 Src->addSuccessor(Dst, Prob); 1588 } 1589 } 1590 1591 static bool InBlock(const Value *V, const BasicBlock *BB) { 1592 if (const Instruction *I = dyn_cast<Instruction>(V)) 1593 return I->getParent() == BB; 1594 return true; 1595 } 1596 1597 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1598 /// This function emits a branch and is used at the leaves of an OR or an 1599 /// AND operator tree. 1600 /// 1601 void 1602 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1603 MachineBasicBlock *TBB, 1604 MachineBasicBlock *FBB, 1605 MachineBasicBlock *CurBB, 1606 MachineBasicBlock *SwitchBB, 1607 BranchProbability TProb, 1608 BranchProbability FProb) { 1609 const BasicBlock *BB = CurBB->getBasicBlock(); 1610 1611 // If the leaf of the tree is a comparison, merge the condition into 1612 // the caseblock. 1613 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1614 // The operands of the cmp have to be in this block. We don't know 1615 // how to export them from some other block. If this is the first block 1616 // of the sequence, no exporting is needed. 1617 if (CurBB == SwitchBB || 1618 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1619 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1620 ISD::CondCode Condition; 1621 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1622 Condition = getICmpCondCode(IC->getPredicate()); 1623 } else { 1624 const FCmpInst *FC = cast<FCmpInst>(Cond); 1625 Condition = getFCmpCondCode(FC->getPredicate()); 1626 if (TM.Options.NoNaNsFPMath) 1627 Condition = getFCmpCodeWithoutNaN(Condition); 1628 } 1629 1630 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1631 TBB, FBB, CurBB, TProb, FProb); 1632 SwitchCases.push_back(CB); 1633 return; 1634 } 1635 } 1636 1637 // Create a CaseBlock record representing this branch. 1638 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1639 nullptr, TBB, FBB, CurBB, TProb, FProb); 1640 SwitchCases.push_back(CB); 1641 } 1642 1643 /// FindMergedConditions - If Cond is an expression like 1644 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1645 MachineBasicBlock *TBB, 1646 MachineBasicBlock *FBB, 1647 MachineBasicBlock *CurBB, 1648 MachineBasicBlock *SwitchBB, 1649 Instruction::BinaryOps Opc, 1650 BranchProbability TProb, 1651 BranchProbability FProb) { 1652 // If this node is not part of the or/and tree, emit it as a branch. 1653 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1654 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1655 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1656 BOp->getParent() != CurBB->getBasicBlock() || 1657 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1658 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1659 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1660 TProb, FProb); 1661 return; 1662 } 1663 1664 // Create TmpBB after CurBB. 1665 MachineFunction::iterator BBI(CurBB); 1666 MachineFunction &MF = DAG.getMachineFunction(); 1667 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1668 CurBB->getParent()->insert(++BBI, TmpBB); 1669 1670 if (Opc == Instruction::Or) { 1671 // Codegen X | Y as: 1672 // BB1: 1673 // jmp_if_X TBB 1674 // jmp TmpBB 1675 // TmpBB: 1676 // jmp_if_Y TBB 1677 // jmp FBB 1678 // 1679 1680 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1681 // The requirement is that 1682 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1683 // = TrueProb for original BB. 1684 // Assuming the original probabilities are A and B, one choice is to set 1685 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1686 // A/(1+B) and 2B/(1+B). This choice assumes that 1687 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1688 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1689 // TmpBB, but the math is more complicated. 1690 1691 auto NewTrueProb = TProb / 2; 1692 auto NewFalseProb = TProb / 2 + FProb; 1693 // Emit the LHS condition. 1694 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1695 NewTrueProb, NewFalseProb); 1696 1697 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1698 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1699 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1700 // Emit the RHS condition into TmpBB. 1701 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1702 Probs[0], Probs[1]); 1703 } else { 1704 assert(Opc == Instruction::And && "Unknown merge op!"); 1705 // Codegen X & Y as: 1706 // BB1: 1707 // jmp_if_X TmpBB 1708 // jmp FBB 1709 // TmpBB: 1710 // jmp_if_Y TBB 1711 // jmp FBB 1712 // 1713 // This requires creation of TmpBB after CurBB. 1714 1715 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1716 // The requirement is that 1717 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1718 // = FalseProb for original BB. 1719 // Assuming the original probabilities are A and B, one choice is to set 1720 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1721 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1722 // TrueProb for BB1 * FalseProb for TmpBB. 1723 1724 auto NewTrueProb = TProb + FProb / 2; 1725 auto NewFalseProb = FProb / 2; 1726 // Emit the LHS condition. 1727 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1728 NewTrueProb, NewFalseProb); 1729 1730 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1731 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1732 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1733 // Emit the RHS condition into TmpBB. 1734 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1735 Probs[0], Probs[1]); 1736 } 1737 } 1738 1739 /// If the set of cases should be emitted as a series of branches, return true. 1740 /// If we should emit this as a bunch of and/or'd together conditions, return 1741 /// false. 1742 bool 1743 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1744 if (Cases.size() != 2) return true; 1745 1746 // If this is two comparisons of the same values or'd or and'd together, they 1747 // will get folded into a single comparison, so don't emit two blocks. 1748 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1749 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1750 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1751 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1752 return false; 1753 } 1754 1755 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1756 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1757 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1758 Cases[0].CC == Cases[1].CC && 1759 isa<Constant>(Cases[0].CmpRHS) && 1760 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1761 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1762 return false; 1763 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1764 return false; 1765 } 1766 1767 return true; 1768 } 1769 1770 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1771 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1772 1773 // Update machine-CFG edges. 1774 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1775 1776 if (I.isUnconditional()) { 1777 // Update machine-CFG edges. 1778 BrMBB->addSuccessor(Succ0MBB); 1779 1780 // If this is not a fall-through branch or optimizations are switched off, 1781 // emit the branch. 1782 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1783 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1784 MVT::Other, getControlRoot(), 1785 DAG.getBasicBlock(Succ0MBB))); 1786 1787 return; 1788 } 1789 1790 // If this condition is one of the special cases we handle, do special stuff 1791 // now. 1792 const Value *CondVal = I.getCondition(); 1793 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1794 1795 // If this is a series of conditions that are or'd or and'd together, emit 1796 // this as a sequence of branches instead of setcc's with and/or operations. 1797 // As long as jumps are not expensive, this should improve performance. 1798 // For example, instead of something like: 1799 // cmp A, B 1800 // C = seteq 1801 // cmp D, E 1802 // F = setle 1803 // or C, F 1804 // jnz foo 1805 // Emit: 1806 // cmp A, B 1807 // je foo 1808 // cmp D, E 1809 // jle foo 1810 // 1811 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1812 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1813 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1814 !I.getMetadata(LLVMContext::MD_unpredictable) && 1815 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1816 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1817 Opcode, 1818 getEdgeProbability(BrMBB, Succ0MBB), 1819 getEdgeProbability(BrMBB, Succ1MBB)); 1820 // If the compares in later blocks need to use values not currently 1821 // exported from this block, export them now. This block should always 1822 // be the first entry. 1823 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1824 1825 // Allow some cases to be rejected. 1826 if (ShouldEmitAsBranches(SwitchCases)) { 1827 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1828 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1829 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1830 } 1831 1832 // Emit the branch for this block. 1833 visitSwitchCase(SwitchCases[0], BrMBB); 1834 SwitchCases.erase(SwitchCases.begin()); 1835 return; 1836 } 1837 1838 // Okay, we decided not to do this, remove any inserted MBB's and clear 1839 // SwitchCases. 1840 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1841 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1842 1843 SwitchCases.clear(); 1844 } 1845 } 1846 1847 // Create a CaseBlock record representing this branch. 1848 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1849 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1850 1851 // Use visitSwitchCase to actually insert the fast branch sequence for this 1852 // cond branch. 1853 visitSwitchCase(CB, BrMBB); 1854 } 1855 1856 /// visitSwitchCase - Emits the necessary code to represent a single node in 1857 /// the binary search tree resulting from lowering a switch instruction. 1858 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1859 MachineBasicBlock *SwitchBB) { 1860 SDValue Cond; 1861 SDValue CondLHS = getValue(CB.CmpLHS); 1862 SDLoc dl = getCurSDLoc(); 1863 1864 // Build the setcc now. 1865 if (!CB.CmpMHS) { 1866 // Fold "(X == true)" to X and "(X == false)" to !X to 1867 // handle common cases produced by branch lowering. 1868 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1869 CB.CC == ISD::SETEQ) 1870 Cond = CondLHS; 1871 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1872 CB.CC == ISD::SETEQ) { 1873 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1874 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1875 } else 1876 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1877 } else { 1878 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1879 1880 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1881 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1882 1883 SDValue CmpOp = getValue(CB.CmpMHS); 1884 EVT VT = CmpOp.getValueType(); 1885 1886 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1887 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1888 ISD::SETLE); 1889 } else { 1890 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1891 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1892 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1893 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1894 } 1895 } 1896 1897 // Update successor info 1898 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1899 // TrueBB and FalseBB are always different unless the incoming IR is 1900 // degenerate. This only happens when running llc on weird IR. 1901 if (CB.TrueBB != CB.FalseBB) 1902 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1903 SwitchBB->normalizeSuccProbs(); 1904 1905 // If the lhs block is the next block, invert the condition so that we can 1906 // fall through to the lhs instead of the rhs block. 1907 if (CB.TrueBB == NextBlock(SwitchBB)) { 1908 std::swap(CB.TrueBB, CB.FalseBB); 1909 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1910 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1911 } 1912 1913 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1914 MVT::Other, getControlRoot(), Cond, 1915 DAG.getBasicBlock(CB.TrueBB)); 1916 1917 // Insert the false branch. Do this even if it's a fall through branch, 1918 // this makes it easier to do DAG optimizations which require inverting 1919 // the branch condition. 1920 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1921 DAG.getBasicBlock(CB.FalseBB)); 1922 1923 DAG.setRoot(BrCond); 1924 } 1925 1926 /// visitJumpTable - Emit JumpTable node in the current MBB 1927 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1928 // Emit the code for the jump table 1929 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1930 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1931 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1932 JT.Reg, PTy); 1933 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1934 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1935 MVT::Other, Index.getValue(1), 1936 Table, Index); 1937 DAG.setRoot(BrJumpTable); 1938 } 1939 1940 /// visitJumpTableHeader - This function emits necessary code to produce index 1941 /// in the JumpTable from switch case. 1942 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1943 JumpTableHeader &JTH, 1944 MachineBasicBlock *SwitchBB) { 1945 SDLoc dl = getCurSDLoc(); 1946 1947 // Subtract the lowest switch case value from the value being switched on and 1948 // conditional branch to default mbb if the result is greater than the 1949 // difference between smallest and largest cases. 1950 SDValue SwitchOp = getValue(JTH.SValue); 1951 EVT VT = SwitchOp.getValueType(); 1952 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1953 DAG.getConstant(JTH.First, dl, VT)); 1954 1955 // The SDNode we just created, which holds the value being switched on minus 1956 // the smallest case value, needs to be copied to a virtual register so it 1957 // can be used as an index into the jump table in a subsequent basic block. 1958 // This value may be smaller or larger than the target's pointer type, and 1959 // therefore require extension or truncating. 1960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1961 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1962 1963 unsigned JumpTableReg = 1964 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1965 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1966 JumpTableReg, SwitchOp); 1967 JT.Reg = JumpTableReg; 1968 1969 // Emit the range check for the jump table, and branch to the default block 1970 // for the switch statement if the value being switched on exceeds the largest 1971 // case in the switch. 1972 SDValue CMP = DAG.getSetCC( 1973 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1974 Sub.getValueType()), 1975 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1976 1977 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1978 MVT::Other, CopyTo, CMP, 1979 DAG.getBasicBlock(JT.Default)); 1980 1981 // Avoid emitting unnecessary branches to the next block. 1982 if (JT.MBB != NextBlock(SwitchBB)) 1983 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1984 DAG.getBasicBlock(JT.MBB)); 1985 1986 DAG.setRoot(BrCond); 1987 } 1988 1989 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1990 /// tail spliced into a stack protector check success bb. 1991 /// 1992 /// For a high level explanation of how this fits into the stack protector 1993 /// generation see the comment on the declaration of class 1994 /// StackProtectorDescriptor. 1995 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1996 MachineBasicBlock *ParentBB) { 1997 1998 // First create the loads to the guard/stack slot for the comparison. 1999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2000 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2001 2002 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 2003 int FI = MFI->getStackProtectorIndex(); 2004 2005 const Value *IRGuard = SPD.getGuard(); 2006 SDValue GuardPtr = getValue(IRGuard); 2007 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2008 2009 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 2010 2011 SDValue Guard; 2012 SDLoc dl = getCurSDLoc(); 2013 2014 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 2015 // guard value from the virtual register holding the value. Otherwise, emit a 2016 // volatile load to retrieve the stack guard value. 2017 unsigned GuardReg = SPD.getGuardReg(); 2018 2019 if (GuardReg && TLI.useLoadStackGuardNode()) 2020 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 2021 PtrTy); 2022 else 2023 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 2024 GuardPtr, MachinePointerInfo(IRGuard, 0), 2025 true, false, false, Align); 2026 2027 SDValue StackSlot = DAG.getLoad( 2028 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2029 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 2030 false, false, Align); 2031 2032 // Perform the comparison via a subtract/getsetcc. 2033 EVT VT = Guard.getValueType(); 2034 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2035 2036 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2037 *DAG.getContext(), 2038 Sub.getValueType()), 2039 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2040 2041 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2042 // branch to failure MBB. 2043 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2044 MVT::Other, StackSlot.getOperand(0), 2045 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2046 // Otherwise branch to success MBB. 2047 SDValue Br = DAG.getNode(ISD::BR, dl, 2048 MVT::Other, BrCond, 2049 DAG.getBasicBlock(SPD.getSuccessMBB())); 2050 2051 DAG.setRoot(Br); 2052 } 2053 2054 /// Codegen the failure basic block for a stack protector check. 2055 /// 2056 /// A failure stack protector machine basic block consists simply of a call to 2057 /// __stack_chk_fail(). 2058 /// 2059 /// For a high level explanation of how this fits into the stack protector 2060 /// generation see the comment on the declaration of class 2061 /// StackProtectorDescriptor. 2062 void 2063 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2065 SDValue Chain = 2066 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2067 None, false, getCurSDLoc(), false, false).second; 2068 DAG.setRoot(Chain); 2069 } 2070 2071 /// visitBitTestHeader - This function emits necessary code to produce value 2072 /// suitable for "bit tests" 2073 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2074 MachineBasicBlock *SwitchBB) { 2075 SDLoc dl = getCurSDLoc(); 2076 2077 // Subtract the minimum value 2078 SDValue SwitchOp = getValue(B.SValue); 2079 EVT VT = SwitchOp.getValueType(); 2080 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2081 DAG.getConstant(B.First, dl, VT)); 2082 2083 // Check range 2084 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2085 SDValue RangeCmp = DAG.getSetCC( 2086 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2087 Sub.getValueType()), 2088 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2089 2090 // Determine the type of the test operands. 2091 bool UsePtrType = false; 2092 if (!TLI.isTypeLegal(VT)) 2093 UsePtrType = true; 2094 else { 2095 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2096 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2097 // Switch table case range are encoded into series of masks. 2098 // Just use pointer type, it's guaranteed to fit. 2099 UsePtrType = true; 2100 break; 2101 } 2102 } 2103 if (UsePtrType) { 2104 VT = TLI.getPointerTy(DAG.getDataLayout()); 2105 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2106 } 2107 2108 B.RegVT = VT.getSimpleVT(); 2109 B.Reg = FuncInfo.CreateReg(B.RegVT); 2110 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2111 2112 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2113 2114 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2115 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2116 SwitchBB->normalizeSuccProbs(); 2117 2118 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2119 MVT::Other, CopyTo, RangeCmp, 2120 DAG.getBasicBlock(B.Default)); 2121 2122 // Avoid emitting unnecessary branches to the next block. 2123 if (MBB != NextBlock(SwitchBB)) 2124 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2125 DAG.getBasicBlock(MBB)); 2126 2127 DAG.setRoot(BrRange); 2128 } 2129 2130 /// visitBitTestCase - this function produces one "bit test" 2131 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2132 MachineBasicBlock* NextMBB, 2133 BranchProbability BranchProbToNext, 2134 unsigned Reg, 2135 BitTestCase &B, 2136 MachineBasicBlock *SwitchBB) { 2137 SDLoc dl = getCurSDLoc(); 2138 MVT VT = BB.RegVT; 2139 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2140 SDValue Cmp; 2141 unsigned PopCount = countPopulation(B.Mask); 2142 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2143 if (PopCount == 1) { 2144 // Testing for a single bit; just compare the shift count with what it 2145 // would need to be to shift a 1 bit in that position. 2146 Cmp = DAG.getSetCC( 2147 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2148 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2149 ISD::SETEQ); 2150 } else if (PopCount == BB.Range) { 2151 // There is only one zero bit in the range, test for it directly. 2152 Cmp = DAG.getSetCC( 2153 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2154 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2155 ISD::SETNE); 2156 } else { 2157 // Make desired shift 2158 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2159 DAG.getConstant(1, dl, VT), ShiftOp); 2160 2161 // Emit bit tests and jumps 2162 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2163 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2164 Cmp = DAG.getSetCC( 2165 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2166 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2167 } 2168 2169 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2170 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2171 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2172 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2173 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2174 // one as they are relative probabilities (and thus work more like weights), 2175 // and hence we need to normalize them to let the sum of them become one. 2176 SwitchBB->normalizeSuccProbs(); 2177 2178 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2179 MVT::Other, getControlRoot(), 2180 Cmp, DAG.getBasicBlock(B.TargetBB)); 2181 2182 // Avoid emitting unnecessary branches to the next block. 2183 if (NextMBB != NextBlock(SwitchBB)) 2184 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2185 DAG.getBasicBlock(NextMBB)); 2186 2187 DAG.setRoot(BrAnd); 2188 } 2189 2190 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2191 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2192 2193 // Retrieve successors. Look through artificial IR level blocks like 2194 // catchswitch for successors. 2195 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2196 const BasicBlock *EHPadBB = I.getSuccessor(1); 2197 2198 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2199 // have to do anything here to lower funclet bundles. 2200 assert(!I.hasOperandBundlesOtherThan( 2201 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2202 "Cannot lower invokes with arbitrary operand bundles yet!"); 2203 2204 const Value *Callee(I.getCalledValue()); 2205 const Function *Fn = dyn_cast<Function>(Callee); 2206 if (isa<InlineAsm>(Callee)) 2207 visitInlineAsm(&I); 2208 else if (Fn && Fn->isIntrinsic()) { 2209 switch (Fn->getIntrinsicID()) { 2210 default: 2211 llvm_unreachable("Cannot invoke this intrinsic"); 2212 case Intrinsic::donothing: 2213 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2214 break; 2215 case Intrinsic::experimental_patchpoint_void: 2216 case Intrinsic::experimental_patchpoint_i64: 2217 visitPatchpoint(&I, EHPadBB); 2218 break; 2219 case Intrinsic::experimental_gc_statepoint: 2220 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2221 break; 2222 } 2223 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2224 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2225 // Eventually we will support lowering the @llvm.experimental.deoptimize 2226 // intrinsic, and right now there are no plans to support other intrinsics 2227 // with deopt state. 2228 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2229 } else { 2230 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2231 } 2232 2233 // If the value of the invoke is used outside of its defining block, make it 2234 // available as a virtual register. 2235 // We already took care of the exported value for the statepoint instruction 2236 // during call to the LowerStatepoint. 2237 if (!isStatepoint(I)) { 2238 CopyToExportRegsIfNeeded(&I); 2239 } 2240 2241 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2242 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2243 BranchProbability EHPadBBProb = 2244 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2245 : BranchProbability::getZero(); 2246 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2247 2248 // Update successor info. 2249 addSuccessorWithProb(InvokeMBB, Return); 2250 for (auto &UnwindDest : UnwindDests) { 2251 UnwindDest.first->setIsEHPad(); 2252 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2253 } 2254 InvokeMBB->normalizeSuccProbs(); 2255 2256 // Drop into normal successor. 2257 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2258 MVT::Other, getControlRoot(), 2259 DAG.getBasicBlock(Return))); 2260 } 2261 2262 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2263 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2264 } 2265 2266 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2267 assert(FuncInfo.MBB->isEHPad() && 2268 "Call to landingpad not in landing pad!"); 2269 2270 MachineBasicBlock *MBB = FuncInfo.MBB; 2271 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2272 AddLandingPadInfo(LP, MMI, MBB); 2273 2274 // If there aren't registers to copy the values into (e.g., during SjLj 2275 // exceptions), then don't bother to create these DAG nodes. 2276 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2277 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2278 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2279 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2280 return; 2281 2282 // If landingpad's return type is token type, we don't create DAG nodes 2283 // for its exception pointer and selector value. The extraction of exception 2284 // pointer or selector value from token type landingpads is not currently 2285 // supported. 2286 if (LP.getType()->isTokenTy()) 2287 return; 2288 2289 SmallVector<EVT, 2> ValueVTs; 2290 SDLoc dl = getCurSDLoc(); 2291 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2292 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2293 2294 // Get the two live-in registers as SDValues. The physregs have already been 2295 // copied into virtual registers. 2296 SDValue Ops[2]; 2297 if (FuncInfo.ExceptionPointerVirtReg) { 2298 Ops[0] = DAG.getZExtOrTrunc( 2299 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2300 FuncInfo.ExceptionPointerVirtReg, 2301 TLI.getPointerTy(DAG.getDataLayout())), 2302 dl, ValueVTs[0]); 2303 } else { 2304 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2305 } 2306 Ops[1] = DAG.getZExtOrTrunc( 2307 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2308 FuncInfo.ExceptionSelectorVirtReg, 2309 TLI.getPointerTy(DAG.getDataLayout())), 2310 dl, ValueVTs[1]); 2311 2312 // Merge into one. 2313 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2314 DAG.getVTList(ValueVTs), Ops); 2315 setValue(&LP, Res); 2316 } 2317 2318 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2319 #ifndef NDEBUG 2320 for (const CaseCluster &CC : Clusters) 2321 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2322 #endif 2323 2324 std::sort(Clusters.begin(), Clusters.end(), 2325 [](const CaseCluster &a, const CaseCluster &b) { 2326 return a.Low->getValue().slt(b.Low->getValue()); 2327 }); 2328 2329 // Merge adjacent clusters with the same destination. 2330 const unsigned N = Clusters.size(); 2331 unsigned DstIndex = 0; 2332 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2333 CaseCluster &CC = Clusters[SrcIndex]; 2334 const ConstantInt *CaseVal = CC.Low; 2335 MachineBasicBlock *Succ = CC.MBB; 2336 2337 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2338 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2339 // If this case has the same successor and is a neighbour, merge it into 2340 // the previous cluster. 2341 Clusters[DstIndex - 1].High = CaseVal; 2342 Clusters[DstIndex - 1].Prob += CC.Prob; 2343 } else { 2344 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2345 sizeof(Clusters[SrcIndex])); 2346 } 2347 } 2348 Clusters.resize(DstIndex); 2349 } 2350 2351 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2352 MachineBasicBlock *Last) { 2353 // Update JTCases. 2354 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2355 if (JTCases[i].first.HeaderBB == First) 2356 JTCases[i].first.HeaderBB = Last; 2357 2358 // Update BitTestCases. 2359 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2360 if (BitTestCases[i].Parent == First) 2361 BitTestCases[i].Parent = Last; 2362 } 2363 2364 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2365 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2366 2367 // Update machine-CFG edges with unique successors. 2368 SmallSet<BasicBlock*, 32> Done; 2369 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2370 BasicBlock *BB = I.getSuccessor(i); 2371 bool Inserted = Done.insert(BB).second; 2372 if (!Inserted) 2373 continue; 2374 2375 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2376 addSuccessorWithProb(IndirectBrMBB, Succ); 2377 } 2378 IndirectBrMBB->normalizeSuccProbs(); 2379 2380 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2381 MVT::Other, getControlRoot(), 2382 getValue(I.getAddress()))); 2383 } 2384 2385 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2386 if (DAG.getTarget().Options.TrapUnreachable) 2387 DAG.setRoot( 2388 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2389 } 2390 2391 void SelectionDAGBuilder::visitFSub(const User &I) { 2392 // -0.0 - X --> fneg 2393 Type *Ty = I.getType(); 2394 if (isa<Constant>(I.getOperand(0)) && 2395 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2396 SDValue Op2 = getValue(I.getOperand(1)); 2397 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2398 Op2.getValueType(), Op2)); 2399 return; 2400 } 2401 2402 visitBinary(I, ISD::FSUB); 2403 } 2404 2405 /// Checks if the given instruction performs a vector reduction, in which case 2406 /// we have the freedom to alter the elements in the result as long as the 2407 /// reduction of them stays unchanged. 2408 static bool isVectorReductionOp(const User *I) { 2409 const Instruction *Inst = dyn_cast<Instruction>(I); 2410 if (!Inst || !Inst->getType()->isVectorTy()) 2411 return false; 2412 2413 auto OpCode = Inst->getOpcode(); 2414 switch (OpCode) { 2415 case Instruction::Add: 2416 case Instruction::Mul: 2417 case Instruction::And: 2418 case Instruction::Or: 2419 case Instruction::Xor: 2420 break; 2421 case Instruction::FAdd: 2422 case Instruction::FMul: 2423 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2424 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2425 break; 2426 // Fall through. 2427 default: 2428 return false; 2429 } 2430 2431 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2432 unsigned ElemNumToReduce = ElemNum; 2433 2434 // Do DFS search on the def-use chain from the given instruction. We only 2435 // allow four kinds of operations during the search until we reach the 2436 // instruction that extracts the first element from the vector: 2437 // 2438 // 1. The reduction operation of the same opcode as the given instruction. 2439 // 2440 // 2. PHI node. 2441 // 2442 // 3. ShuffleVector instruction together with a reduction operation that 2443 // does a partial reduction. 2444 // 2445 // 4. ExtractElement that extracts the first element from the vector, and we 2446 // stop searching the def-use chain here. 2447 // 2448 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2449 // from 1-3 to the stack to continue the DFS. The given instruction is not 2450 // a reduction operation if we meet any other instructions other than those 2451 // listed above. 2452 2453 SmallVector<const User *, 16> UsersToVisit{Inst}; 2454 SmallPtrSet<const User *, 16> Visited; 2455 bool ReduxExtracted = false; 2456 2457 while (!UsersToVisit.empty()) { 2458 auto User = UsersToVisit.back(); 2459 UsersToVisit.pop_back(); 2460 if (!Visited.insert(User).second) 2461 continue; 2462 2463 for (const auto &U : User->users()) { 2464 auto Inst = dyn_cast<Instruction>(U); 2465 if (!Inst) 2466 return false; 2467 2468 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2469 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2470 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2471 return false; 2472 UsersToVisit.push_back(U); 2473 } else if (const ShuffleVectorInst *ShufInst = 2474 dyn_cast<ShuffleVectorInst>(U)) { 2475 // Detect the following pattern: A ShuffleVector instruction together 2476 // with a reduction that do partial reduction on the first and second 2477 // ElemNumToReduce / 2 elements, and store the result in 2478 // ElemNumToReduce / 2 elements in another vector. 2479 2480 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2481 if (ResultElements < ElemNum) 2482 return false; 2483 2484 if (ElemNumToReduce == 1) 2485 return false; 2486 if (!isa<UndefValue>(U->getOperand(1))) 2487 return false; 2488 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2489 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2490 return false; 2491 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2492 if (ShufInst->getMaskValue(i) != -1) 2493 return false; 2494 2495 // There is only one user of this ShuffleVector instruction, which 2496 // must be a reduction operation. 2497 if (!U->hasOneUse()) 2498 return false; 2499 2500 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2501 if (!U2 || U2->getOpcode() != OpCode) 2502 return false; 2503 2504 // Check operands of the reduction operation. 2505 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2506 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2507 UsersToVisit.push_back(U2); 2508 ElemNumToReduce /= 2; 2509 } else 2510 return false; 2511 } else if (isa<ExtractElementInst>(U)) { 2512 // At this moment we should have reduced all elements in the vector. 2513 if (ElemNumToReduce != 1) 2514 return false; 2515 2516 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2517 if (!Val || Val->getZExtValue() != 0) 2518 return false; 2519 2520 ReduxExtracted = true; 2521 } else 2522 return false; 2523 } 2524 } 2525 return ReduxExtracted; 2526 } 2527 2528 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2529 SDValue Op1 = getValue(I.getOperand(0)); 2530 SDValue Op2 = getValue(I.getOperand(1)); 2531 2532 bool nuw = false; 2533 bool nsw = false; 2534 bool exact = false; 2535 bool vec_redux = false; 2536 FastMathFlags FMF; 2537 2538 if (const OverflowingBinaryOperator *OFBinOp = 2539 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2540 nuw = OFBinOp->hasNoUnsignedWrap(); 2541 nsw = OFBinOp->hasNoSignedWrap(); 2542 } 2543 if (const PossiblyExactOperator *ExactOp = 2544 dyn_cast<const PossiblyExactOperator>(&I)) 2545 exact = ExactOp->isExact(); 2546 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2547 FMF = FPOp->getFastMathFlags(); 2548 2549 if (isVectorReductionOp(&I)) { 2550 vec_redux = true; 2551 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2552 } 2553 2554 SDNodeFlags Flags; 2555 Flags.setExact(exact); 2556 Flags.setNoSignedWrap(nsw); 2557 Flags.setNoUnsignedWrap(nuw); 2558 Flags.setVectorReduction(vec_redux); 2559 if (EnableFMFInDAG) { 2560 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2561 Flags.setNoInfs(FMF.noInfs()); 2562 Flags.setNoNaNs(FMF.noNaNs()); 2563 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2564 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2565 } 2566 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2567 Op1, Op2, &Flags); 2568 setValue(&I, BinNodeValue); 2569 } 2570 2571 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2572 SDValue Op1 = getValue(I.getOperand(0)); 2573 SDValue Op2 = getValue(I.getOperand(1)); 2574 2575 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2576 Op2.getValueType(), DAG.getDataLayout()); 2577 2578 // Coerce the shift amount to the right type if we can. 2579 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2580 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2581 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2582 SDLoc DL = getCurSDLoc(); 2583 2584 // If the operand is smaller than the shift count type, promote it. 2585 if (ShiftSize > Op2Size) 2586 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2587 2588 // If the operand is larger than the shift count type but the shift 2589 // count type has enough bits to represent any shift value, truncate 2590 // it now. This is a common case and it exposes the truncate to 2591 // optimization early. 2592 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2593 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2594 // Otherwise we'll need to temporarily settle for some other convenient 2595 // type. Type legalization will make adjustments once the shiftee is split. 2596 else 2597 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2598 } 2599 2600 bool nuw = false; 2601 bool nsw = false; 2602 bool exact = false; 2603 2604 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2605 2606 if (const OverflowingBinaryOperator *OFBinOp = 2607 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2608 nuw = OFBinOp->hasNoUnsignedWrap(); 2609 nsw = OFBinOp->hasNoSignedWrap(); 2610 } 2611 if (const PossiblyExactOperator *ExactOp = 2612 dyn_cast<const PossiblyExactOperator>(&I)) 2613 exact = ExactOp->isExact(); 2614 } 2615 SDNodeFlags Flags; 2616 Flags.setExact(exact); 2617 Flags.setNoSignedWrap(nsw); 2618 Flags.setNoUnsignedWrap(nuw); 2619 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2620 &Flags); 2621 setValue(&I, Res); 2622 } 2623 2624 void SelectionDAGBuilder::visitSDiv(const User &I) { 2625 SDValue Op1 = getValue(I.getOperand(0)); 2626 SDValue Op2 = getValue(I.getOperand(1)); 2627 2628 SDNodeFlags Flags; 2629 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2630 cast<PossiblyExactOperator>(&I)->isExact()); 2631 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2632 Op2, &Flags)); 2633 } 2634 2635 void SelectionDAGBuilder::visitICmp(const User &I) { 2636 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2637 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2638 predicate = IC->getPredicate(); 2639 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2640 predicate = ICmpInst::Predicate(IC->getPredicate()); 2641 SDValue Op1 = getValue(I.getOperand(0)); 2642 SDValue Op2 = getValue(I.getOperand(1)); 2643 ISD::CondCode Opcode = getICmpCondCode(predicate); 2644 2645 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2646 I.getType()); 2647 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2648 } 2649 2650 void SelectionDAGBuilder::visitFCmp(const User &I) { 2651 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2652 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2653 predicate = FC->getPredicate(); 2654 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2655 predicate = FCmpInst::Predicate(FC->getPredicate()); 2656 SDValue Op1 = getValue(I.getOperand(0)); 2657 SDValue Op2 = getValue(I.getOperand(1)); 2658 ISD::CondCode Condition = getFCmpCondCode(predicate); 2659 2660 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2661 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2662 // further optimization, but currently FMF is only applicable to binary nodes. 2663 if (TM.Options.NoNaNsFPMath) 2664 Condition = getFCmpCodeWithoutNaN(Condition); 2665 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2666 I.getType()); 2667 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2668 } 2669 2670 void SelectionDAGBuilder::visitSelect(const User &I) { 2671 SmallVector<EVT, 4> ValueVTs; 2672 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2673 ValueVTs); 2674 unsigned NumValues = ValueVTs.size(); 2675 if (NumValues == 0) return; 2676 2677 SmallVector<SDValue, 4> Values(NumValues); 2678 SDValue Cond = getValue(I.getOperand(0)); 2679 SDValue LHSVal = getValue(I.getOperand(1)); 2680 SDValue RHSVal = getValue(I.getOperand(2)); 2681 auto BaseOps = {Cond}; 2682 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2683 ISD::VSELECT : ISD::SELECT; 2684 2685 // Min/max matching is only viable if all output VTs are the same. 2686 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2687 EVT VT = ValueVTs[0]; 2688 LLVMContext &Ctx = *DAG.getContext(); 2689 auto &TLI = DAG.getTargetLoweringInfo(); 2690 2691 // We care about the legality of the operation after it has been type 2692 // legalized. 2693 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2694 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2695 VT = TLI.getTypeToTransformTo(Ctx, VT); 2696 2697 // If the vselect is legal, assume we want to leave this as a vector setcc + 2698 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2699 // min/max is legal on the scalar type. 2700 bool UseScalarMinMax = VT.isVector() && 2701 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2702 2703 Value *LHS, *RHS; 2704 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2705 ISD::NodeType Opc = ISD::DELETED_NODE; 2706 switch (SPR.Flavor) { 2707 case SPF_UMAX: Opc = ISD::UMAX; break; 2708 case SPF_UMIN: Opc = ISD::UMIN; break; 2709 case SPF_SMAX: Opc = ISD::SMAX; break; 2710 case SPF_SMIN: Opc = ISD::SMIN; break; 2711 case SPF_FMINNUM: 2712 switch (SPR.NaNBehavior) { 2713 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2714 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2715 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2716 case SPNB_RETURNS_ANY: { 2717 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2718 Opc = ISD::FMINNUM; 2719 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2720 Opc = ISD::FMINNAN; 2721 else if (UseScalarMinMax) 2722 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2723 ISD::FMINNUM : ISD::FMINNAN; 2724 break; 2725 } 2726 } 2727 break; 2728 case SPF_FMAXNUM: 2729 switch (SPR.NaNBehavior) { 2730 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2731 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2732 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2733 case SPNB_RETURNS_ANY: 2734 2735 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2736 Opc = ISD::FMAXNUM; 2737 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2738 Opc = ISD::FMAXNAN; 2739 else if (UseScalarMinMax) 2740 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2741 ISD::FMAXNUM : ISD::FMAXNAN; 2742 break; 2743 } 2744 break; 2745 default: break; 2746 } 2747 2748 if (Opc != ISD::DELETED_NODE && 2749 (TLI.isOperationLegalOrCustom(Opc, VT) || 2750 (UseScalarMinMax && 2751 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2752 // If the underlying comparison instruction is used by any other 2753 // instruction, the consumed instructions won't be destroyed, so it is 2754 // not profitable to convert to a min/max. 2755 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2756 OpCode = Opc; 2757 LHSVal = getValue(LHS); 2758 RHSVal = getValue(RHS); 2759 BaseOps = {}; 2760 } 2761 } 2762 2763 for (unsigned i = 0; i != NumValues; ++i) { 2764 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2765 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2766 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2767 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2768 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2769 Ops); 2770 } 2771 2772 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2773 DAG.getVTList(ValueVTs), Values)); 2774 } 2775 2776 void SelectionDAGBuilder::visitTrunc(const User &I) { 2777 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2778 SDValue N = getValue(I.getOperand(0)); 2779 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2780 I.getType()); 2781 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2782 } 2783 2784 void SelectionDAGBuilder::visitZExt(const User &I) { 2785 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2786 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2787 SDValue N = getValue(I.getOperand(0)); 2788 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2789 I.getType()); 2790 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2791 } 2792 2793 void SelectionDAGBuilder::visitSExt(const User &I) { 2794 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2795 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2796 SDValue N = getValue(I.getOperand(0)); 2797 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2798 I.getType()); 2799 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2800 } 2801 2802 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2803 // FPTrunc is never a no-op cast, no need to check 2804 SDValue N = getValue(I.getOperand(0)); 2805 SDLoc dl = getCurSDLoc(); 2806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2807 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2808 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2809 DAG.getTargetConstant( 2810 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2811 } 2812 2813 void SelectionDAGBuilder::visitFPExt(const User &I) { 2814 // FPExt is never a no-op cast, no need to check 2815 SDValue N = getValue(I.getOperand(0)); 2816 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2817 I.getType()); 2818 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2819 } 2820 2821 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2822 // FPToUI is never a no-op cast, no need to check 2823 SDValue N = getValue(I.getOperand(0)); 2824 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2825 I.getType()); 2826 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2827 } 2828 2829 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2830 // FPToSI is never a no-op cast, no need to check 2831 SDValue N = getValue(I.getOperand(0)); 2832 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2833 I.getType()); 2834 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2835 } 2836 2837 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2838 // UIToFP is never a no-op cast, no need to check 2839 SDValue N = getValue(I.getOperand(0)); 2840 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2841 I.getType()); 2842 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2843 } 2844 2845 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2846 // SIToFP is never a no-op cast, no need to check 2847 SDValue N = getValue(I.getOperand(0)); 2848 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2849 I.getType()); 2850 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2851 } 2852 2853 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2854 // What to do depends on the size of the integer and the size of the pointer. 2855 // We can either truncate, zero extend, or no-op, accordingly. 2856 SDValue N = getValue(I.getOperand(0)); 2857 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2858 I.getType()); 2859 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2860 } 2861 2862 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2863 // What to do depends on the size of the integer and the size of the pointer. 2864 // We can either truncate, zero extend, or no-op, accordingly. 2865 SDValue N = getValue(I.getOperand(0)); 2866 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2867 I.getType()); 2868 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2869 } 2870 2871 void SelectionDAGBuilder::visitBitCast(const User &I) { 2872 SDValue N = getValue(I.getOperand(0)); 2873 SDLoc dl = getCurSDLoc(); 2874 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2875 I.getType()); 2876 2877 // BitCast assures us that source and destination are the same size so this is 2878 // either a BITCAST or a no-op. 2879 if (DestVT != N.getValueType()) 2880 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2881 DestVT, N)); // convert types. 2882 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2883 // might fold any kind of constant expression to an integer constant and that 2884 // is not what we are looking for. Only regcognize a bitcast of a genuine 2885 // constant integer as an opaque constant. 2886 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2887 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2888 /*isOpaque*/true)); 2889 else 2890 setValue(&I, N); // noop cast. 2891 } 2892 2893 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2895 const Value *SV = I.getOperand(0); 2896 SDValue N = getValue(SV); 2897 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2898 2899 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2900 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2901 2902 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2903 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2904 2905 setValue(&I, N); 2906 } 2907 2908 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2910 SDValue InVec = getValue(I.getOperand(0)); 2911 SDValue InVal = getValue(I.getOperand(1)); 2912 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2913 TLI.getVectorIdxTy(DAG.getDataLayout())); 2914 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2915 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2916 InVec, InVal, InIdx)); 2917 } 2918 2919 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2921 SDValue InVec = getValue(I.getOperand(0)); 2922 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2923 TLI.getVectorIdxTy(DAG.getDataLayout())); 2924 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2925 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2926 InVec, InIdx)); 2927 } 2928 2929 // Utility for visitShuffleVector - Return true if every element in Mask, 2930 // beginning from position Pos and ending in Pos+Size, falls within the 2931 // specified sequential range [L, L+Pos). or is undef. 2932 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2933 unsigned Pos, unsigned Size, int Low) { 2934 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2935 if (Mask[i] >= 0 && Mask[i] != Low) 2936 return false; 2937 return true; 2938 } 2939 2940 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2941 SDValue Src1 = getValue(I.getOperand(0)); 2942 SDValue Src2 = getValue(I.getOperand(1)); 2943 2944 SmallVector<int, 8> Mask; 2945 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2946 unsigned MaskNumElts = Mask.size(); 2947 2948 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2949 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2950 EVT SrcVT = Src1.getValueType(); 2951 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2952 2953 if (SrcNumElts == MaskNumElts) { 2954 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2955 &Mask[0])); 2956 return; 2957 } 2958 2959 // Normalize the shuffle vector since mask and vector length don't match. 2960 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2961 // Mask is longer than the source vectors and is a multiple of the source 2962 // vectors. We can use concatenate vector to make the mask and vectors 2963 // lengths match. 2964 if (SrcNumElts*2 == MaskNumElts) { 2965 // First check for Src1 in low and Src2 in high 2966 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2967 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2968 // The shuffle is concatenating two vectors together. 2969 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2970 VT, Src1, Src2)); 2971 return; 2972 } 2973 // Then check for Src2 in low and Src1 in high 2974 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2975 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2976 // The shuffle is concatenating two vectors together. 2977 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2978 VT, Src2, Src1)); 2979 return; 2980 } 2981 } 2982 2983 // Pad both vectors with undefs to make them the same length as the mask. 2984 unsigned NumConcat = MaskNumElts / SrcNumElts; 2985 bool Src1U = Src1.isUndef(); 2986 bool Src2U = Src2.isUndef(); 2987 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2988 2989 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2990 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2991 MOps1[0] = Src1; 2992 MOps2[0] = Src2; 2993 2994 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2995 getCurSDLoc(), VT, MOps1); 2996 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2997 getCurSDLoc(), VT, MOps2); 2998 2999 // Readjust mask for new input vector length. 3000 SmallVector<int, 8> MappedOps; 3001 for (unsigned i = 0; i != MaskNumElts; ++i) { 3002 int Idx = Mask[i]; 3003 if (Idx >= (int)SrcNumElts) 3004 Idx -= SrcNumElts - MaskNumElts; 3005 MappedOps.push_back(Idx); 3006 } 3007 3008 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3009 &MappedOps[0])); 3010 return; 3011 } 3012 3013 if (SrcNumElts > MaskNumElts) { 3014 // Analyze the access pattern of the vector to see if we can extract 3015 // two subvectors and do the shuffle. The analysis is done by calculating 3016 // the range of elements the mask access on both vectors. 3017 int MinRange[2] = { static_cast<int>(SrcNumElts), 3018 static_cast<int>(SrcNumElts)}; 3019 int MaxRange[2] = {-1, -1}; 3020 3021 for (unsigned i = 0; i != MaskNumElts; ++i) { 3022 int Idx = Mask[i]; 3023 unsigned Input = 0; 3024 if (Idx < 0) 3025 continue; 3026 3027 if (Idx >= (int)SrcNumElts) { 3028 Input = 1; 3029 Idx -= SrcNumElts; 3030 } 3031 if (Idx > MaxRange[Input]) 3032 MaxRange[Input] = Idx; 3033 if (Idx < MinRange[Input]) 3034 MinRange[Input] = Idx; 3035 } 3036 3037 // Check if the access is smaller than the vector size and can we find 3038 // a reasonable extract index. 3039 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3040 // Extract. 3041 int StartIdx[2]; // StartIdx to extract from 3042 for (unsigned Input = 0; Input < 2; ++Input) { 3043 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3044 RangeUse[Input] = 0; // Unused 3045 StartIdx[Input] = 0; 3046 continue; 3047 } 3048 3049 // Find a good start index that is a multiple of the mask length. Then 3050 // see if the rest of the elements are in range. 3051 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3052 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3053 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3054 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3055 } 3056 3057 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3058 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3059 return; 3060 } 3061 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3062 // Extract appropriate subvector and generate a vector shuffle 3063 for (unsigned Input = 0; Input < 2; ++Input) { 3064 SDValue &Src = Input == 0 ? Src1 : Src2; 3065 if (RangeUse[Input] == 0) 3066 Src = DAG.getUNDEF(VT); 3067 else { 3068 SDLoc dl = getCurSDLoc(); 3069 Src = DAG.getNode( 3070 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3071 DAG.getConstant(StartIdx[Input], dl, 3072 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3073 } 3074 } 3075 3076 // Calculate new mask. 3077 SmallVector<int, 8> MappedOps; 3078 for (unsigned i = 0; i != MaskNumElts; ++i) { 3079 int Idx = Mask[i]; 3080 if (Idx >= 0) { 3081 if (Idx < (int)SrcNumElts) 3082 Idx -= StartIdx[0]; 3083 else 3084 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3085 } 3086 MappedOps.push_back(Idx); 3087 } 3088 3089 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3090 &MappedOps[0])); 3091 return; 3092 } 3093 } 3094 3095 // We can't use either concat vectors or extract subvectors so fall back to 3096 // replacing the shuffle with extract and build vector. 3097 // to insert and build vector. 3098 EVT EltVT = VT.getVectorElementType(); 3099 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3100 SDLoc dl = getCurSDLoc(); 3101 SmallVector<SDValue,8> Ops; 3102 for (unsigned i = 0; i != MaskNumElts; ++i) { 3103 int Idx = Mask[i]; 3104 SDValue Res; 3105 3106 if (Idx < 0) { 3107 Res = DAG.getUNDEF(EltVT); 3108 } else { 3109 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3110 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3111 3112 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3113 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3114 } 3115 3116 Ops.push_back(Res); 3117 } 3118 3119 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3120 } 3121 3122 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3123 const Value *Op0 = I.getOperand(0); 3124 const Value *Op1 = I.getOperand(1); 3125 Type *AggTy = I.getType(); 3126 Type *ValTy = Op1->getType(); 3127 bool IntoUndef = isa<UndefValue>(Op0); 3128 bool FromUndef = isa<UndefValue>(Op1); 3129 3130 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3131 3132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3133 SmallVector<EVT, 4> AggValueVTs; 3134 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3135 SmallVector<EVT, 4> ValValueVTs; 3136 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3137 3138 unsigned NumAggValues = AggValueVTs.size(); 3139 unsigned NumValValues = ValValueVTs.size(); 3140 SmallVector<SDValue, 4> Values(NumAggValues); 3141 3142 // Ignore an insertvalue that produces an empty object 3143 if (!NumAggValues) { 3144 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3145 return; 3146 } 3147 3148 SDValue Agg = getValue(Op0); 3149 unsigned i = 0; 3150 // Copy the beginning value(s) from the original aggregate. 3151 for (; i != LinearIndex; ++i) 3152 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3153 SDValue(Agg.getNode(), Agg.getResNo() + i); 3154 // Copy values from the inserted value(s). 3155 if (NumValValues) { 3156 SDValue Val = getValue(Op1); 3157 for (; i != LinearIndex + NumValValues; ++i) 3158 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3159 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3160 } 3161 // Copy remaining value(s) from the original aggregate. 3162 for (; i != NumAggValues; ++i) 3163 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3164 SDValue(Agg.getNode(), Agg.getResNo() + i); 3165 3166 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3167 DAG.getVTList(AggValueVTs), Values)); 3168 } 3169 3170 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3171 const Value *Op0 = I.getOperand(0); 3172 Type *AggTy = Op0->getType(); 3173 Type *ValTy = I.getType(); 3174 bool OutOfUndef = isa<UndefValue>(Op0); 3175 3176 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3177 3178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3179 SmallVector<EVT, 4> ValValueVTs; 3180 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3181 3182 unsigned NumValValues = ValValueVTs.size(); 3183 3184 // Ignore a extractvalue that produces an empty object 3185 if (!NumValValues) { 3186 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3187 return; 3188 } 3189 3190 SmallVector<SDValue, 4> Values(NumValValues); 3191 3192 SDValue Agg = getValue(Op0); 3193 // Copy out the selected value(s). 3194 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3195 Values[i - LinearIndex] = 3196 OutOfUndef ? 3197 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3198 SDValue(Agg.getNode(), Agg.getResNo() + i); 3199 3200 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3201 DAG.getVTList(ValValueVTs), Values)); 3202 } 3203 3204 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3205 Value *Op0 = I.getOperand(0); 3206 // Note that the pointer operand may be a vector of pointers. Take the scalar 3207 // element which holds a pointer. 3208 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3209 SDValue N = getValue(Op0); 3210 SDLoc dl = getCurSDLoc(); 3211 3212 // Normalize Vector GEP - all scalar operands should be converted to the 3213 // splat vector. 3214 unsigned VectorWidth = I.getType()->isVectorTy() ? 3215 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3216 3217 if (VectorWidth && !N.getValueType().isVector()) { 3218 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3219 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3220 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3221 } 3222 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3223 GTI != E; ++GTI) { 3224 const Value *Idx = GTI.getOperand(); 3225 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3226 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3227 if (Field) { 3228 // N = N + Offset 3229 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3230 3231 // In an inbouds GEP with an offset that is nonnegative even when 3232 // interpreted as signed, assume there is no unsigned overflow. 3233 SDNodeFlags Flags; 3234 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3235 Flags.setNoUnsignedWrap(true); 3236 3237 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3238 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3239 } 3240 } else { 3241 MVT PtrTy = 3242 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3243 unsigned PtrSize = PtrTy.getSizeInBits(); 3244 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3245 3246 // If this is a scalar constant or a splat vector of constants, 3247 // handle it quickly. 3248 const auto *CI = dyn_cast<ConstantInt>(Idx); 3249 if (!CI && isa<ConstantDataVector>(Idx) && 3250 cast<ConstantDataVector>(Idx)->getSplatValue()) 3251 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3252 3253 if (CI) { 3254 if (CI->isZero()) 3255 continue; 3256 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3257 SDValue OffsVal = VectorWidth ? 3258 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3259 DAG.getConstant(Offs, dl, PtrTy); 3260 3261 // In an inbouds GEP with an offset that is nonnegative even when 3262 // interpreted as signed, assume there is no unsigned overflow. 3263 SDNodeFlags Flags; 3264 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3265 Flags.setNoUnsignedWrap(true); 3266 3267 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3268 continue; 3269 } 3270 3271 // N = N + Idx * ElementSize; 3272 SDValue IdxN = getValue(Idx); 3273 3274 if (!IdxN.getValueType().isVector() && VectorWidth) { 3275 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3276 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3277 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3278 } 3279 // If the index is smaller or larger than intptr_t, truncate or extend 3280 // it. 3281 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3282 3283 // If this is a multiply by a power of two, turn it into a shl 3284 // immediately. This is a very common case. 3285 if (ElementSize != 1) { 3286 if (ElementSize.isPowerOf2()) { 3287 unsigned Amt = ElementSize.logBase2(); 3288 IdxN = DAG.getNode(ISD::SHL, dl, 3289 N.getValueType(), IdxN, 3290 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3291 } else { 3292 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3293 IdxN = DAG.getNode(ISD::MUL, dl, 3294 N.getValueType(), IdxN, Scale); 3295 } 3296 } 3297 3298 N = DAG.getNode(ISD::ADD, dl, 3299 N.getValueType(), N, IdxN); 3300 } 3301 } 3302 3303 setValue(&I, N); 3304 } 3305 3306 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3307 // If this is a fixed sized alloca in the entry block of the function, 3308 // allocate it statically on the stack. 3309 if (FuncInfo.StaticAllocaMap.count(&I)) 3310 return; // getValue will auto-populate this. 3311 3312 SDLoc dl = getCurSDLoc(); 3313 Type *Ty = I.getAllocatedType(); 3314 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3315 auto &DL = DAG.getDataLayout(); 3316 uint64_t TySize = DL.getTypeAllocSize(Ty); 3317 unsigned Align = 3318 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3319 3320 SDValue AllocSize = getValue(I.getArraySize()); 3321 3322 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3323 if (AllocSize.getValueType() != IntPtr) 3324 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3325 3326 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3327 AllocSize, 3328 DAG.getConstant(TySize, dl, IntPtr)); 3329 3330 // Handle alignment. If the requested alignment is less than or equal to 3331 // the stack alignment, ignore it. If the size is greater than or equal to 3332 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3333 unsigned StackAlign = 3334 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3335 if (Align <= StackAlign) 3336 Align = 0; 3337 3338 // Round the size of the allocation up to the stack alignment size 3339 // by add SA-1 to the size. This doesn't overflow because we're computing 3340 // an address inside an alloca. 3341 SDNodeFlags Flags; 3342 Flags.setNoUnsignedWrap(true); 3343 AllocSize = DAG.getNode(ISD::ADD, dl, 3344 AllocSize.getValueType(), AllocSize, 3345 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3346 3347 // Mask out the low bits for alignment purposes. 3348 AllocSize = DAG.getNode(ISD::AND, dl, 3349 AllocSize.getValueType(), AllocSize, 3350 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3351 dl)); 3352 3353 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3354 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3355 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3356 setValue(&I, DSA); 3357 DAG.setRoot(DSA.getValue(1)); 3358 3359 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3360 } 3361 3362 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3363 if (I.isAtomic()) 3364 return visitAtomicLoad(I); 3365 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 const Value *SV = I.getOperand(0); 3368 if (TLI.supportSwiftError()) { 3369 // Swifterror values can come from either a function parameter with 3370 // swifterror attribute or an alloca with swifterror attribute. 3371 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3372 if (Arg->hasSwiftErrorAttr()) 3373 return visitLoadFromSwiftError(I); 3374 } 3375 3376 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3377 if (Alloca->isSwiftError()) 3378 return visitLoadFromSwiftError(I); 3379 } 3380 } 3381 3382 SDValue Ptr = getValue(SV); 3383 3384 Type *Ty = I.getType(); 3385 3386 bool isVolatile = I.isVolatile(); 3387 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3388 3389 // The IR notion of invariant_load only guarantees that all *non-faulting* 3390 // invariant loads result in the same value. The MI notion of invariant load 3391 // guarantees that the load can be legally moved to any location within its 3392 // containing function. The MI notion of invariant_load is stronger than the 3393 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3394 // with a guarantee that the location being loaded from is dereferenceable 3395 // throughout the function's lifetime. 3396 3397 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3398 isDereferenceablePointer(SV, DAG.getDataLayout()); 3399 unsigned Alignment = I.getAlignment(); 3400 3401 AAMDNodes AAInfo; 3402 I.getAAMetadata(AAInfo); 3403 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3404 3405 SmallVector<EVT, 4> ValueVTs; 3406 SmallVector<uint64_t, 4> Offsets; 3407 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3408 unsigned NumValues = ValueVTs.size(); 3409 if (NumValues == 0) 3410 return; 3411 3412 SDValue Root; 3413 bool ConstantMemory = false; 3414 if (isVolatile || NumValues > MaxParallelChains) 3415 // Serialize volatile loads with other side effects. 3416 Root = getRoot(); 3417 else if (AA->pointsToConstantMemory(MemoryLocation( 3418 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3419 // Do not serialize (non-volatile) loads of constant memory with anything. 3420 Root = DAG.getEntryNode(); 3421 ConstantMemory = true; 3422 } else { 3423 // Do not serialize non-volatile loads against each other. 3424 Root = DAG.getRoot(); 3425 } 3426 3427 SDLoc dl = getCurSDLoc(); 3428 3429 if (isVolatile) 3430 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3431 3432 // An aggregate load cannot wrap around the address space, so offsets to its 3433 // parts don't wrap either. 3434 SDNodeFlags Flags; 3435 Flags.setNoUnsignedWrap(true); 3436 3437 SmallVector<SDValue, 4> Values(NumValues); 3438 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3439 EVT PtrVT = Ptr.getValueType(); 3440 unsigned ChainI = 0; 3441 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3442 // Serializing loads here may result in excessive register pressure, and 3443 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3444 // could recover a bit by hoisting nodes upward in the chain by recognizing 3445 // they are side-effect free or do not alias. The optimizer should really 3446 // avoid this case by converting large object/array copies to llvm.memcpy 3447 // (MaxParallelChains should always remain as failsafe). 3448 if (ChainI == MaxParallelChains) { 3449 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3450 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3451 makeArrayRef(Chains.data(), ChainI)); 3452 Root = Chain; 3453 ChainI = 0; 3454 } 3455 SDValue A = DAG.getNode(ISD::ADD, dl, 3456 PtrVT, Ptr, 3457 DAG.getConstant(Offsets[i], dl, PtrVT), 3458 &Flags); 3459 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3460 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3461 isNonTemporal, isInvariant, Alignment, AAInfo, 3462 Ranges); 3463 3464 Values[i] = L; 3465 Chains[ChainI] = L.getValue(1); 3466 } 3467 3468 if (!ConstantMemory) { 3469 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3470 makeArrayRef(Chains.data(), ChainI)); 3471 if (isVolatile) 3472 DAG.setRoot(Chain); 3473 else 3474 PendingLoads.push_back(Chain); 3475 } 3476 3477 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3478 DAG.getVTList(ValueVTs), Values)); 3479 } 3480 3481 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3483 assert(TLI.supportSwiftError() && 3484 "call visitStoreToSwiftError when backend supports swifterror"); 3485 3486 SmallVector<EVT, 4> ValueVTs; 3487 SmallVector<uint64_t, 4> Offsets; 3488 const Value *SrcV = I.getOperand(0); 3489 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3490 SrcV->getType(), ValueVTs, &Offsets); 3491 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3492 "expect a single EVT for swifterror"); 3493 3494 SDValue Src = getValue(SrcV); 3495 // Create a virtual register, then update the virtual register. 3496 auto &DL = DAG.getDataLayout(); 3497 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 3498 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 3499 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3500 // Chain can be getRoot or getControlRoot. 3501 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3502 SDValue(Src.getNode(), Src.getResNo())); 3503 DAG.setRoot(CopyNode); 3504 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3505 } 3506 3507 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3508 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3509 "call visitLoadFromSwiftError when backend supports swifterror"); 3510 3511 assert(!I.isVolatile() && 3512 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3513 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3514 "Support volatile, non temporal, invariant for load_from_swift_error"); 3515 3516 const Value *SV = I.getOperand(0); 3517 Type *Ty = I.getType(); 3518 AAMDNodes AAInfo; 3519 I.getAAMetadata(AAInfo); 3520 assert(!AA->pointsToConstantMemory(MemoryLocation( 3521 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) && 3522 "load_from_swift_error should not be constant memory"); 3523 3524 SmallVector<EVT, 4> ValueVTs; 3525 SmallVector<uint64_t, 4> Offsets; 3526 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3527 ValueVTs, &Offsets); 3528 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3529 "expect a single EVT for swifterror"); 3530 3531 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3532 SDValue L = DAG.getCopyFromReg(getRoot(), getCurSDLoc(), 3533 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, SV), 3534 ValueVTs[0]); 3535 3536 setValue(&I, L); 3537 } 3538 3539 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3540 if (I.isAtomic()) 3541 return visitAtomicStore(I); 3542 3543 const Value *SrcV = I.getOperand(0); 3544 const Value *PtrV = I.getOperand(1); 3545 3546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3547 if (TLI.supportSwiftError()) { 3548 // Swifterror values can come from either a function parameter with 3549 // swifterror attribute or an alloca with swifterror attribute. 3550 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3551 if (Arg->hasSwiftErrorAttr()) 3552 return visitStoreToSwiftError(I); 3553 } 3554 3555 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3556 if (Alloca->isSwiftError()) 3557 return visitStoreToSwiftError(I); 3558 } 3559 } 3560 3561 SmallVector<EVT, 4> ValueVTs; 3562 SmallVector<uint64_t, 4> Offsets; 3563 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3564 SrcV->getType(), ValueVTs, &Offsets); 3565 unsigned NumValues = ValueVTs.size(); 3566 if (NumValues == 0) 3567 return; 3568 3569 // Get the lowered operands. Note that we do this after 3570 // checking if NumResults is zero, because with zero results 3571 // the operands won't have values in the map. 3572 SDValue Src = getValue(SrcV); 3573 SDValue Ptr = getValue(PtrV); 3574 3575 SDValue Root = getRoot(); 3576 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3577 EVT PtrVT = Ptr.getValueType(); 3578 bool isVolatile = I.isVolatile(); 3579 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3580 unsigned Alignment = I.getAlignment(); 3581 SDLoc dl = getCurSDLoc(); 3582 3583 AAMDNodes AAInfo; 3584 I.getAAMetadata(AAInfo); 3585 3586 // An aggregate load cannot wrap around the address space, so offsets to its 3587 // parts don't wrap either. 3588 SDNodeFlags Flags; 3589 Flags.setNoUnsignedWrap(true); 3590 3591 unsigned ChainI = 0; 3592 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3593 // See visitLoad comments. 3594 if (ChainI == MaxParallelChains) { 3595 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3596 makeArrayRef(Chains.data(), ChainI)); 3597 Root = Chain; 3598 ChainI = 0; 3599 } 3600 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3601 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3602 SDValue St = DAG.getStore(Root, dl, 3603 SDValue(Src.getNode(), Src.getResNo() + i), 3604 Add, MachinePointerInfo(PtrV, Offsets[i]), 3605 isVolatile, isNonTemporal, Alignment, AAInfo); 3606 Chains[ChainI] = St; 3607 } 3608 3609 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3610 makeArrayRef(Chains.data(), ChainI)); 3611 DAG.setRoot(StoreNode); 3612 } 3613 3614 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3615 SDLoc sdl = getCurSDLoc(); 3616 3617 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3618 Value *PtrOperand = I.getArgOperand(1); 3619 SDValue Ptr = getValue(PtrOperand); 3620 SDValue Src0 = getValue(I.getArgOperand(0)); 3621 SDValue Mask = getValue(I.getArgOperand(3)); 3622 EVT VT = Src0.getValueType(); 3623 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3624 if (!Alignment) 3625 Alignment = DAG.getEVTAlignment(VT); 3626 3627 AAMDNodes AAInfo; 3628 I.getAAMetadata(AAInfo); 3629 3630 MachineMemOperand *MMO = 3631 DAG.getMachineFunction(). 3632 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3633 MachineMemOperand::MOStore, VT.getStoreSize(), 3634 Alignment, AAInfo); 3635 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3636 MMO, false); 3637 DAG.setRoot(StoreNode); 3638 setValue(&I, StoreNode); 3639 } 3640 3641 // Get a uniform base for the Gather/Scatter intrinsic. 3642 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3643 // We try to represent it as a base pointer + vector of indices. 3644 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3645 // The first operand of the GEP may be a single pointer or a vector of pointers 3646 // Example: 3647 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3648 // or 3649 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3650 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3651 // 3652 // When the first GEP operand is a single pointer - it is the uniform base we 3653 // are looking for. If first operand of the GEP is a splat vector - we 3654 // extract the spalt value and use it as a uniform base. 3655 // In all other cases the function returns 'false'. 3656 // 3657 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3658 SelectionDAGBuilder* SDB) { 3659 3660 SelectionDAG& DAG = SDB->DAG; 3661 LLVMContext &Context = *DAG.getContext(); 3662 3663 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3664 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3665 if (!GEP || GEP->getNumOperands() > 2) 3666 return false; 3667 3668 const Value *GEPPtr = GEP->getPointerOperand(); 3669 if (!GEPPtr->getType()->isVectorTy()) 3670 Ptr = GEPPtr; 3671 else if (!(Ptr = getSplatValue(GEPPtr))) 3672 return false; 3673 3674 Value *IndexVal = GEP->getOperand(1); 3675 3676 // The operands of the GEP may be defined in another basic block. 3677 // In this case we'll not find nodes for the operands. 3678 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3679 return false; 3680 3681 Base = SDB->getValue(Ptr); 3682 Index = SDB->getValue(IndexVal); 3683 3684 // Suppress sign extension. 3685 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3686 if (SDB->findValue(Sext->getOperand(0))) { 3687 IndexVal = Sext->getOperand(0); 3688 Index = SDB->getValue(IndexVal); 3689 } 3690 } 3691 if (!Index.getValueType().isVector()) { 3692 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3693 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3694 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3695 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3696 } 3697 return true; 3698 } 3699 3700 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3701 SDLoc sdl = getCurSDLoc(); 3702 3703 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3704 const Value *Ptr = I.getArgOperand(1); 3705 SDValue Src0 = getValue(I.getArgOperand(0)); 3706 SDValue Mask = getValue(I.getArgOperand(3)); 3707 EVT VT = Src0.getValueType(); 3708 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3709 if (!Alignment) 3710 Alignment = DAG.getEVTAlignment(VT); 3711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3712 3713 AAMDNodes AAInfo; 3714 I.getAAMetadata(AAInfo); 3715 3716 SDValue Base; 3717 SDValue Index; 3718 const Value *BasePtr = Ptr; 3719 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3720 3721 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3722 MachineMemOperand *MMO = DAG.getMachineFunction(). 3723 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3724 MachineMemOperand::MOStore, VT.getStoreSize(), 3725 Alignment, AAInfo); 3726 if (!UniformBase) { 3727 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3728 Index = getValue(Ptr); 3729 } 3730 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3731 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3732 Ops, MMO); 3733 DAG.setRoot(Scatter); 3734 setValue(&I, Scatter); 3735 } 3736 3737 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3738 SDLoc sdl = getCurSDLoc(); 3739 3740 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3741 Value *PtrOperand = I.getArgOperand(0); 3742 SDValue Ptr = getValue(PtrOperand); 3743 SDValue Src0 = getValue(I.getArgOperand(3)); 3744 SDValue Mask = getValue(I.getArgOperand(2)); 3745 3746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3747 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3748 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3749 if (!Alignment) 3750 Alignment = DAG.getEVTAlignment(VT); 3751 3752 AAMDNodes AAInfo; 3753 I.getAAMetadata(AAInfo); 3754 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3755 3756 SDValue InChain = DAG.getRoot(); 3757 if (AA->pointsToConstantMemory(MemoryLocation( 3758 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3759 AAInfo))) { 3760 // Do not serialize (non-volatile) loads of constant memory with anything. 3761 InChain = DAG.getEntryNode(); 3762 } 3763 3764 MachineMemOperand *MMO = 3765 DAG.getMachineFunction(). 3766 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3767 MachineMemOperand::MOLoad, VT.getStoreSize(), 3768 Alignment, AAInfo, Ranges); 3769 3770 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3771 ISD::NON_EXTLOAD); 3772 SDValue OutChain = Load.getValue(1); 3773 DAG.setRoot(OutChain); 3774 setValue(&I, Load); 3775 } 3776 3777 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3778 SDLoc sdl = getCurSDLoc(); 3779 3780 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3781 const Value *Ptr = I.getArgOperand(0); 3782 SDValue Src0 = getValue(I.getArgOperand(3)); 3783 SDValue Mask = getValue(I.getArgOperand(2)); 3784 3785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3786 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3787 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3788 if (!Alignment) 3789 Alignment = DAG.getEVTAlignment(VT); 3790 3791 AAMDNodes AAInfo; 3792 I.getAAMetadata(AAInfo); 3793 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3794 3795 SDValue Root = DAG.getRoot(); 3796 SDValue Base; 3797 SDValue Index; 3798 const Value *BasePtr = Ptr; 3799 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3800 bool ConstantMemory = false; 3801 if (UniformBase && 3802 AA->pointsToConstantMemory(MemoryLocation( 3803 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3804 AAInfo))) { 3805 // Do not serialize (non-volatile) loads of constant memory with anything. 3806 Root = DAG.getEntryNode(); 3807 ConstantMemory = true; 3808 } 3809 3810 MachineMemOperand *MMO = 3811 DAG.getMachineFunction(). 3812 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3813 MachineMemOperand::MOLoad, VT.getStoreSize(), 3814 Alignment, AAInfo, Ranges); 3815 3816 if (!UniformBase) { 3817 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3818 Index = getValue(Ptr); 3819 } 3820 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3821 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3822 Ops, MMO); 3823 3824 SDValue OutChain = Gather.getValue(1); 3825 if (!ConstantMemory) 3826 PendingLoads.push_back(OutChain); 3827 setValue(&I, Gather); 3828 } 3829 3830 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3831 SDLoc dl = getCurSDLoc(); 3832 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3833 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3834 SynchronizationScope Scope = I.getSynchScope(); 3835 3836 SDValue InChain = getRoot(); 3837 3838 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3839 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3840 SDValue L = DAG.getAtomicCmpSwap( 3841 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3842 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3843 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3844 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3845 3846 SDValue OutChain = L.getValue(2); 3847 3848 setValue(&I, L); 3849 DAG.setRoot(OutChain); 3850 } 3851 3852 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3853 SDLoc dl = getCurSDLoc(); 3854 ISD::NodeType NT; 3855 switch (I.getOperation()) { 3856 default: llvm_unreachable("Unknown atomicrmw operation"); 3857 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3858 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3859 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3860 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3861 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3862 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3863 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3864 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3865 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3866 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3867 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3868 } 3869 AtomicOrdering Order = I.getOrdering(); 3870 SynchronizationScope Scope = I.getSynchScope(); 3871 3872 SDValue InChain = getRoot(); 3873 3874 SDValue L = 3875 DAG.getAtomic(NT, dl, 3876 getValue(I.getValOperand()).getSimpleValueType(), 3877 InChain, 3878 getValue(I.getPointerOperand()), 3879 getValue(I.getValOperand()), 3880 I.getPointerOperand(), 3881 /* Alignment=*/ 0, Order, Scope); 3882 3883 SDValue OutChain = L.getValue(1); 3884 3885 setValue(&I, L); 3886 DAG.setRoot(OutChain); 3887 } 3888 3889 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3890 SDLoc dl = getCurSDLoc(); 3891 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3892 SDValue Ops[3]; 3893 Ops[0] = getRoot(); 3894 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3895 TLI.getPointerTy(DAG.getDataLayout())); 3896 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3897 TLI.getPointerTy(DAG.getDataLayout())); 3898 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3899 } 3900 3901 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3902 SDLoc dl = getCurSDLoc(); 3903 AtomicOrdering Order = I.getOrdering(); 3904 SynchronizationScope Scope = I.getSynchScope(); 3905 3906 SDValue InChain = getRoot(); 3907 3908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3909 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3910 3911 if (I.getAlignment() < VT.getSizeInBits() / 8) 3912 report_fatal_error("Cannot generate unaligned atomic load"); 3913 3914 MachineMemOperand *MMO = 3915 DAG.getMachineFunction(). 3916 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3917 MachineMemOperand::MOVolatile | 3918 MachineMemOperand::MOLoad, 3919 VT.getStoreSize(), 3920 I.getAlignment() ? I.getAlignment() : 3921 DAG.getEVTAlignment(VT)); 3922 3923 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3924 SDValue L = 3925 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3926 getValue(I.getPointerOperand()), MMO, 3927 Order, Scope); 3928 3929 SDValue OutChain = L.getValue(1); 3930 3931 setValue(&I, L); 3932 DAG.setRoot(OutChain); 3933 } 3934 3935 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3936 SDLoc dl = getCurSDLoc(); 3937 3938 AtomicOrdering Order = I.getOrdering(); 3939 SynchronizationScope Scope = I.getSynchScope(); 3940 3941 SDValue InChain = getRoot(); 3942 3943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3944 EVT VT = 3945 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3946 3947 if (I.getAlignment() < VT.getSizeInBits() / 8) 3948 report_fatal_error("Cannot generate unaligned atomic store"); 3949 3950 SDValue OutChain = 3951 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3952 InChain, 3953 getValue(I.getPointerOperand()), 3954 getValue(I.getValueOperand()), 3955 I.getPointerOperand(), I.getAlignment(), 3956 Order, Scope); 3957 3958 DAG.setRoot(OutChain); 3959 } 3960 3961 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3962 /// node. 3963 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3964 unsigned Intrinsic) { 3965 bool HasChain = !I.doesNotAccessMemory(); 3966 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3967 3968 // Build the operand list. 3969 SmallVector<SDValue, 8> Ops; 3970 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3971 if (OnlyLoad) { 3972 // We don't need to serialize loads against other loads. 3973 Ops.push_back(DAG.getRoot()); 3974 } else { 3975 Ops.push_back(getRoot()); 3976 } 3977 } 3978 3979 // Info is set by getTgtMemInstrinsic 3980 TargetLowering::IntrinsicInfo Info; 3981 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3982 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3983 3984 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3985 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3986 Info.opc == ISD::INTRINSIC_W_CHAIN) 3987 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3988 TLI.getPointerTy(DAG.getDataLayout()))); 3989 3990 // Add all operands of the call to the operand list. 3991 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3992 SDValue Op = getValue(I.getArgOperand(i)); 3993 Ops.push_back(Op); 3994 } 3995 3996 SmallVector<EVT, 4> ValueVTs; 3997 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3998 3999 if (HasChain) 4000 ValueVTs.push_back(MVT::Other); 4001 4002 SDVTList VTs = DAG.getVTList(ValueVTs); 4003 4004 // Create the node. 4005 SDValue Result; 4006 if (IsTgtIntrinsic) { 4007 // This is target intrinsic that touches memory 4008 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4009 VTs, Ops, Info.memVT, 4010 MachinePointerInfo(Info.ptrVal, Info.offset), 4011 Info.align, Info.vol, 4012 Info.readMem, Info.writeMem, Info.size); 4013 } else if (!HasChain) { 4014 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4015 } else if (!I.getType()->isVoidTy()) { 4016 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4017 } else { 4018 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4019 } 4020 4021 if (HasChain) { 4022 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4023 if (OnlyLoad) 4024 PendingLoads.push_back(Chain); 4025 else 4026 DAG.setRoot(Chain); 4027 } 4028 4029 if (!I.getType()->isVoidTy()) { 4030 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4031 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4032 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4033 } else 4034 Result = lowerRangeToAssertZExt(DAG, I, Result); 4035 4036 setValue(&I, Result); 4037 } 4038 } 4039 4040 /// GetSignificand - Get the significand and build it into a floating-point 4041 /// number with exponent of 1: 4042 /// 4043 /// Op = (Op & 0x007fffff) | 0x3f800000; 4044 /// 4045 /// where Op is the hexadecimal representation of floating point value. 4046 static SDValue 4047 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 4048 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4049 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4050 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4051 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4052 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4053 } 4054 4055 /// GetExponent - Get the exponent: 4056 /// 4057 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4058 /// 4059 /// where Op is the hexadecimal representation of floating point value. 4060 static SDValue 4061 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 4062 SDLoc dl) { 4063 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4064 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4065 SDValue t1 = DAG.getNode( 4066 ISD::SRL, dl, MVT::i32, t0, 4067 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4068 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4069 DAG.getConstant(127, dl, MVT::i32)); 4070 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4071 } 4072 4073 /// getF32Constant - Get 32-bit floating point constant. 4074 static SDValue 4075 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 4076 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 4077 MVT::f32); 4078 } 4079 4080 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 4081 SelectionDAG &DAG) { 4082 // TODO: What fast-math-flags should be set on the floating-point nodes? 4083 4084 // IntegerPartOfX = ((int32_t)(t0); 4085 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4086 4087 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4088 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4089 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4090 4091 // IntegerPartOfX <<= 23; 4092 IntegerPartOfX = DAG.getNode( 4093 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4094 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4095 DAG.getDataLayout()))); 4096 4097 SDValue TwoToFractionalPartOfX; 4098 if (LimitFloatPrecision <= 6) { 4099 // For floating-point precision of 6: 4100 // 4101 // TwoToFractionalPartOfX = 4102 // 0.997535578f + 4103 // (0.735607626f + 0.252464424f * x) * x; 4104 // 4105 // error 0.0144103317, which is 6 bits 4106 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4107 getF32Constant(DAG, 0x3e814304, dl)); 4108 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4109 getF32Constant(DAG, 0x3f3c50c8, dl)); 4110 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4111 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4112 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4113 } else if (LimitFloatPrecision <= 12) { 4114 // For floating-point precision of 12: 4115 // 4116 // TwoToFractionalPartOfX = 4117 // 0.999892986f + 4118 // (0.696457318f + 4119 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4120 // 4121 // error 0.000107046256, which is 13 to 14 bits 4122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4123 getF32Constant(DAG, 0x3da235e3, dl)); 4124 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4125 getF32Constant(DAG, 0x3e65b8f3, dl)); 4126 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4127 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4128 getF32Constant(DAG, 0x3f324b07, dl)); 4129 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4130 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4131 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4132 } else { // LimitFloatPrecision <= 18 4133 // For floating-point precision of 18: 4134 // 4135 // TwoToFractionalPartOfX = 4136 // 0.999999982f + 4137 // (0.693148872f + 4138 // (0.240227044f + 4139 // (0.554906021e-1f + 4140 // (0.961591928e-2f + 4141 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4142 // error 2.47208000*10^(-7), which is better than 18 bits 4143 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4144 getF32Constant(DAG, 0x3924b03e, dl)); 4145 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4146 getF32Constant(DAG, 0x3ab24b87, dl)); 4147 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4148 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4149 getF32Constant(DAG, 0x3c1d8c17, dl)); 4150 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4151 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4152 getF32Constant(DAG, 0x3d634a1d, dl)); 4153 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4154 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4155 getF32Constant(DAG, 0x3e75fe14, dl)); 4156 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4157 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4158 getF32Constant(DAG, 0x3f317234, dl)); 4159 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4160 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4161 getF32Constant(DAG, 0x3f800000, dl)); 4162 } 4163 4164 // Add the exponent into the result in integer domain. 4165 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4166 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4167 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4168 } 4169 4170 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4171 /// limited-precision mode. 4172 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4173 const TargetLowering &TLI) { 4174 if (Op.getValueType() == MVT::f32 && 4175 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4176 4177 // Put the exponent in the right bit position for later addition to the 4178 // final result: 4179 // 4180 // #define LOG2OFe 1.4426950f 4181 // t0 = Op * LOG2OFe 4182 4183 // TODO: What fast-math-flags should be set here? 4184 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4185 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4186 return getLimitedPrecisionExp2(t0, dl, DAG); 4187 } 4188 4189 // No special expansion. 4190 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4191 } 4192 4193 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4194 /// limited-precision mode. 4195 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4196 const TargetLowering &TLI) { 4197 4198 // TODO: What fast-math-flags should be set on the floating-point nodes? 4199 4200 if (Op.getValueType() == MVT::f32 && 4201 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4202 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4203 4204 // Scale the exponent by log(2) [0.69314718f]. 4205 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4206 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4207 getF32Constant(DAG, 0x3f317218, dl)); 4208 4209 // Get the significand and build it into a floating-point number with 4210 // exponent of 1. 4211 SDValue X = GetSignificand(DAG, Op1, dl); 4212 4213 SDValue LogOfMantissa; 4214 if (LimitFloatPrecision <= 6) { 4215 // For floating-point precision of 6: 4216 // 4217 // LogofMantissa = 4218 // -1.1609546f + 4219 // (1.4034025f - 0.23903021f * x) * x; 4220 // 4221 // error 0.0034276066, which is better than 8 bits 4222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4223 getF32Constant(DAG, 0xbe74c456, dl)); 4224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4225 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4227 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4228 getF32Constant(DAG, 0x3f949a29, dl)); 4229 } else if (LimitFloatPrecision <= 12) { 4230 // For floating-point precision of 12: 4231 // 4232 // LogOfMantissa = 4233 // -1.7417939f + 4234 // (2.8212026f + 4235 // (-1.4699568f + 4236 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4237 // 4238 // error 0.000061011436, which is 14 bits 4239 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4240 getF32Constant(DAG, 0xbd67b6d6, dl)); 4241 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4242 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4243 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4244 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4245 getF32Constant(DAG, 0x3fbc278b, dl)); 4246 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4247 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4248 getF32Constant(DAG, 0x40348e95, dl)); 4249 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4250 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4251 getF32Constant(DAG, 0x3fdef31a, dl)); 4252 } else { // LimitFloatPrecision <= 18 4253 // For floating-point precision of 18: 4254 // 4255 // LogOfMantissa = 4256 // -2.1072184f + 4257 // (4.2372794f + 4258 // (-3.7029485f + 4259 // (2.2781945f + 4260 // (-0.87823314f + 4261 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4262 // 4263 // error 0.0000023660568, which is better than 18 bits 4264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4265 getF32Constant(DAG, 0xbc91e5ac, dl)); 4266 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4267 getF32Constant(DAG, 0x3e4350aa, dl)); 4268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4269 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4270 getF32Constant(DAG, 0x3f60d3e3, dl)); 4271 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4272 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4273 getF32Constant(DAG, 0x4011cdf0, dl)); 4274 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4275 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4276 getF32Constant(DAG, 0x406cfd1c, dl)); 4277 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4278 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4279 getF32Constant(DAG, 0x408797cb, dl)); 4280 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4281 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4282 getF32Constant(DAG, 0x4006dcab, dl)); 4283 } 4284 4285 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4286 } 4287 4288 // No special expansion. 4289 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4290 } 4291 4292 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4293 /// limited-precision mode. 4294 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4295 const TargetLowering &TLI) { 4296 4297 // TODO: What fast-math-flags should be set on the floating-point nodes? 4298 4299 if (Op.getValueType() == MVT::f32 && 4300 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4301 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4302 4303 // Get the exponent. 4304 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4305 4306 // Get the significand and build it into a floating-point number with 4307 // exponent of 1. 4308 SDValue X = GetSignificand(DAG, Op1, dl); 4309 4310 // Different possible minimax approximations of significand in 4311 // floating-point for various degrees of accuracy over [1,2]. 4312 SDValue Log2ofMantissa; 4313 if (LimitFloatPrecision <= 6) { 4314 // For floating-point precision of 6: 4315 // 4316 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4317 // 4318 // error 0.0049451742, which is more than 7 bits 4319 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4320 getF32Constant(DAG, 0xbeb08fe0, dl)); 4321 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4322 getF32Constant(DAG, 0x40019463, dl)); 4323 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4324 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4325 getF32Constant(DAG, 0x3fd6633d, dl)); 4326 } else if (LimitFloatPrecision <= 12) { 4327 // For floating-point precision of 12: 4328 // 4329 // Log2ofMantissa = 4330 // -2.51285454f + 4331 // (4.07009056f + 4332 // (-2.12067489f + 4333 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4334 // 4335 // error 0.0000876136000, which is better than 13 bits 4336 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4337 getF32Constant(DAG, 0xbda7262e, dl)); 4338 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4339 getF32Constant(DAG, 0x3f25280b, dl)); 4340 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4341 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4342 getF32Constant(DAG, 0x4007b923, dl)); 4343 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4344 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4345 getF32Constant(DAG, 0x40823e2f, dl)); 4346 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4347 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4348 getF32Constant(DAG, 0x4020d29c, dl)); 4349 } else { // LimitFloatPrecision <= 18 4350 // For floating-point precision of 18: 4351 // 4352 // Log2ofMantissa = 4353 // -3.0400495f + 4354 // (6.1129976f + 4355 // (-5.3420409f + 4356 // (3.2865683f + 4357 // (-1.2669343f + 4358 // (0.27515199f - 4359 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4360 // 4361 // error 0.0000018516, which is better than 18 bits 4362 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4363 getF32Constant(DAG, 0xbcd2769e, dl)); 4364 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4365 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4366 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4367 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4368 getF32Constant(DAG, 0x3fa22ae7, dl)); 4369 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4370 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4371 getF32Constant(DAG, 0x40525723, dl)); 4372 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4373 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4374 getF32Constant(DAG, 0x40aaf200, dl)); 4375 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4376 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4377 getF32Constant(DAG, 0x40c39dad, dl)); 4378 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4379 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4380 getF32Constant(DAG, 0x4042902c, dl)); 4381 } 4382 4383 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4384 } 4385 4386 // No special expansion. 4387 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4388 } 4389 4390 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4391 /// limited-precision mode. 4392 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4393 const TargetLowering &TLI) { 4394 4395 // TODO: What fast-math-flags should be set on the floating-point nodes? 4396 4397 if (Op.getValueType() == MVT::f32 && 4398 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4399 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4400 4401 // Scale the exponent by log10(2) [0.30102999f]. 4402 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4403 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4404 getF32Constant(DAG, 0x3e9a209a, dl)); 4405 4406 // Get the significand and build it into a floating-point number with 4407 // exponent of 1. 4408 SDValue X = GetSignificand(DAG, Op1, dl); 4409 4410 SDValue Log10ofMantissa; 4411 if (LimitFloatPrecision <= 6) { 4412 // For floating-point precision of 6: 4413 // 4414 // Log10ofMantissa = 4415 // -0.50419619f + 4416 // (0.60948995f - 0.10380950f * x) * x; 4417 // 4418 // error 0.0014886165, which is 6 bits 4419 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0xbdd49a13, dl)); 4421 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4422 getF32Constant(DAG, 0x3f1c0789, dl)); 4423 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4424 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4425 getF32Constant(DAG, 0x3f011300, dl)); 4426 } else if (LimitFloatPrecision <= 12) { 4427 // For floating-point precision of 12: 4428 // 4429 // Log10ofMantissa = 4430 // -0.64831180f + 4431 // (0.91751397f + 4432 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4433 // 4434 // error 0.00019228036, which is better than 12 bits 4435 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4436 getF32Constant(DAG, 0x3d431f31, dl)); 4437 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4438 getF32Constant(DAG, 0x3ea21fb2, dl)); 4439 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4440 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4441 getF32Constant(DAG, 0x3f6ae232, dl)); 4442 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4443 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4444 getF32Constant(DAG, 0x3f25f7c3, dl)); 4445 } else { // LimitFloatPrecision <= 18 4446 // For floating-point precision of 18: 4447 // 4448 // Log10ofMantissa = 4449 // -0.84299375f + 4450 // (1.5327582f + 4451 // (-1.0688956f + 4452 // (0.49102474f + 4453 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4454 // 4455 // error 0.0000037995730, which is better than 18 bits 4456 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4457 getF32Constant(DAG, 0x3c5d51ce, dl)); 4458 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4459 getF32Constant(DAG, 0x3e00685a, dl)); 4460 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4461 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4462 getF32Constant(DAG, 0x3efb6798, dl)); 4463 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4464 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4465 getF32Constant(DAG, 0x3f88d192, dl)); 4466 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4467 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4468 getF32Constant(DAG, 0x3fc4316c, dl)); 4469 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4470 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4471 getF32Constant(DAG, 0x3f57ce70, dl)); 4472 } 4473 4474 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4475 } 4476 4477 // No special expansion. 4478 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4479 } 4480 4481 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4482 /// limited-precision mode. 4483 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4484 const TargetLowering &TLI) { 4485 if (Op.getValueType() == MVT::f32 && 4486 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4487 return getLimitedPrecisionExp2(Op, dl, DAG); 4488 4489 // No special expansion. 4490 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4491 } 4492 4493 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4494 /// limited-precision mode with x == 10.0f. 4495 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4496 SelectionDAG &DAG, const TargetLowering &TLI) { 4497 bool IsExp10 = false; 4498 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4499 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4500 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4501 APFloat Ten(10.0f); 4502 IsExp10 = LHSC->isExactlyValue(Ten); 4503 } 4504 } 4505 4506 // TODO: What fast-math-flags should be set on the FMUL node? 4507 if (IsExp10) { 4508 // Put the exponent in the right bit position for later addition to the 4509 // final result: 4510 // 4511 // #define LOG2OF10 3.3219281f 4512 // t0 = Op * LOG2OF10; 4513 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4514 getF32Constant(DAG, 0x40549a78, dl)); 4515 return getLimitedPrecisionExp2(t0, dl, DAG); 4516 } 4517 4518 // No special expansion. 4519 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4520 } 4521 4522 4523 /// ExpandPowI - Expand a llvm.powi intrinsic. 4524 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4525 SelectionDAG &DAG) { 4526 // If RHS is a constant, we can expand this out to a multiplication tree, 4527 // otherwise we end up lowering to a call to __powidf2 (for example). When 4528 // optimizing for size, we only want to do this if the expansion would produce 4529 // a small number of multiplies, otherwise we do the full expansion. 4530 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4531 // Get the exponent as a positive value. 4532 unsigned Val = RHSC->getSExtValue(); 4533 if ((int)Val < 0) Val = -Val; 4534 4535 // powi(x, 0) -> 1.0 4536 if (Val == 0) 4537 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4538 4539 const Function *F = DAG.getMachineFunction().getFunction(); 4540 if (!F->optForSize() || 4541 // If optimizing for size, don't insert too many multiplies. 4542 // This inserts up to 5 multiplies. 4543 countPopulation(Val) + Log2_32(Val) < 7) { 4544 // We use the simple binary decomposition method to generate the multiply 4545 // sequence. There are more optimal ways to do this (for example, 4546 // powi(x,15) generates one more multiply than it should), but this has 4547 // the benefit of being both really simple and much better than a libcall. 4548 SDValue Res; // Logically starts equal to 1.0 4549 SDValue CurSquare = LHS; 4550 // TODO: Intrinsics should have fast-math-flags that propagate to these 4551 // nodes. 4552 while (Val) { 4553 if (Val & 1) { 4554 if (Res.getNode()) 4555 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4556 else 4557 Res = CurSquare; // 1.0*CurSquare. 4558 } 4559 4560 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4561 CurSquare, CurSquare); 4562 Val >>= 1; 4563 } 4564 4565 // If the original was negative, invert the result, producing 1/(x*x*x). 4566 if (RHSC->getSExtValue() < 0) 4567 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4568 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4569 return Res; 4570 } 4571 } 4572 4573 // Otherwise, expand to a libcall. 4574 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4575 } 4576 4577 // getUnderlyingArgReg - Find underlying register used for a truncated or 4578 // bitcasted argument. 4579 static unsigned getUnderlyingArgReg(const SDValue &N) { 4580 switch (N.getOpcode()) { 4581 case ISD::CopyFromReg: 4582 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4583 case ISD::BITCAST: 4584 case ISD::AssertZext: 4585 case ISD::AssertSext: 4586 case ISD::TRUNCATE: 4587 return getUnderlyingArgReg(N.getOperand(0)); 4588 default: 4589 return 0; 4590 } 4591 } 4592 4593 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4594 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4595 /// At the end of instruction selection, they will be inserted to the entry BB. 4596 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4597 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4598 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4599 const Argument *Arg = dyn_cast<Argument>(V); 4600 if (!Arg) 4601 return false; 4602 4603 MachineFunction &MF = DAG.getMachineFunction(); 4604 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4605 4606 // Ignore inlined function arguments here. 4607 // 4608 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4609 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4610 return false; 4611 4612 Optional<MachineOperand> Op; 4613 // Some arguments' frame index is recorded during argument lowering. 4614 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4615 Op = MachineOperand::CreateFI(FI); 4616 4617 if (!Op && N.getNode()) { 4618 unsigned Reg = getUnderlyingArgReg(N); 4619 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4620 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4621 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4622 if (PR) 4623 Reg = PR; 4624 } 4625 if (Reg) 4626 Op = MachineOperand::CreateReg(Reg, false); 4627 } 4628 4629 if (!Op) { 4630 // Check if ValueMap has reg number. 4631 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4632 if (VMI != FuncInfo.ValueMap.end()) 4633 Op = MachineOperand::CreateReg(VMI->second, false); 4634 } 4635 4636 if (!Op && N.getNode()) 4637 // Check if frame index is available. 4638 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4639 if (FrameIndexSDNode *FINode = 4640 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4641 Op = MachineOperand::CreateFI(FINode->getIndex()); 4642 4643 if (!Op) 4644 return false; 4645 4646 assert(Variable->isValidLocationForIntrinsic(DL) && 4647 "Expected inlined-at fields to agree"); 4648 if (Op->isReg()) 4649 FuncInfo.ArgDbgValues.push_back( 4650 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4651 Op->getReg(), Offset, Variable, Expr)); 4652 else 4653 FuncInfo.ArgDbgValues.push_back( 4654 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4655 .addOperand(*Op) 4656 .addImm(Offset) 4657 .addMetadata(Variable) 4658 .addMetadata(Expr)); 4659 4660 return true; 4661 } 4662 4663 // VisualStudio defines setjmp as _setjmp 4664 #if defined(_MSC_VER) && defined(setjmp) && \ 4665 !defined(setjmp_undefined_for_msvc) 4666 # pragma push_macro("setjmp") 4667 # undef setjmp 4668 # define setjmp_undefined_for_msvc 4669 #endif 4670 4671 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4672 /// we want to emit this as a call to a named external function, return the name 4673 /// otherwise lower it and return null. 4674 const char * 4675 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4676 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4677 SDLoc sdl = getCurSDLoc(); 4678 DebugLoc dl = getCurDebugLoc(); 4679 SDValue Res; 4680 4681 switch (Intrinsic) { 4682 default: 4683 // By default, turn this into a target intrinsic node. 4684 visitTargetIntrinsic(I, Intrinsic); 4685 return nullptr; 4686 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4687 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4688 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4689 case Intrinsic::returnaddress: 4690 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4691 TLI.getPointerTy(DAG.getDataLayout()), 4692 getValue(I.getArgOperand(0)))); 4693 return nullptr; 4694 case Intrinsic::frameaddress: 4695 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4696 TLI.getPointerTy(DAG.getDataLayout()), 4697 getValue(I.getArgOperand(0)))); 4698 return nullptr; 4699 case Intrinsic::read_register: { 4700 Value *Reg = I.getArgOperand(0); 4701 SDValue Chain = getRoot(); 4702 SDValue RegName = 4703 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4704 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4705 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4706 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4707 setValue(&I, Res); 4708 DAG.setRoot(Res.getValue(1)); 4709 return nullptr; 4710 } 4711 case Intrinsic::write_register: { 4712 Value *Reg = I.getArgOperand(0); 4713 Value *RegValue = I.getArgOperand(1); 4714 SDValue Chain = getRoot(); 4715 SDValue RegName = 4716 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4717 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4718 RegName, getValue(RegValue))); 4719 return nullptr; 4720 } 4721 case Intrinsic::setjmp: 4722 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4723 case Intrinsic::longjmp: 4724 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4725 case Intrinsic::memcpy: { 4726 SDValue Op1 = getValue(I.getArgOperand(0)); 4727 SDValue Op2 = getValue(I.getArgOperand(1)); 4728 SDValue Op3 = getValue(I.getArgOperand(2)); 4729 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4730 if (!Align) 4731 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4732 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4733 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4734 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4735 false, isTC, 4736 MachinePointerInfo(I.getArgOperand(0)), 4737 MachinePointerInfo(I.getArgOperand(1))); 4738 updateDAGForMaybeTailCall(MC); 4739 return nullptr; 4740 } 4741 case Intrinsic::memset: { 4742 SDValue Op1 = getValue(I.getArgOperand(0)); 4743 SDValue Op2 = getValue(I.getArgOperand(1)); 4744 SDValue Op3 = getValue(I.getArgOperand(2)); 4745 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4746 if (!Align) 4747 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4748 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4749 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4750 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4751 isTC, MachinePointerInfo(I.getArgOperand(0))); 4752 updateDAGForMaybeTailCall(MS); 4753 return nullptr; 4754 } 4755 case Intrinsic::memmove: { 4756 SDValue Op1 = getValue(I.getArgOperand(0)); 4757 SDValue Op2 = getValue(I.getArgOperand(1)); 4758 SDValue Op3 = getValue(I.getArgOperand(2)); 4759 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4760 if (!Align) 4761 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4762 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4763 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4764 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4765 isTC, MachinePointerInfo(I.getArgOperand(0)), 4766 MachinePointerInfo(I.getArgOperand(1))); 4767 updateDAGForMaybeTailCall(MM); 4768 return nullptr; 4769 } 4770 case Intrinsic::dbg_declare: { 4771 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4772 DILocalVariable *Variable = DI.getVariable(); 4773 DIExpression *Expression = DI.getExpression(); 4774 const Value *Address = DI.getAddress(); 4775 assert(Variable && "Missing variable"); 4776 if (!Address) { 4777 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4778 return nullptr; 4779 } 4780 4781 // Check if address has undef value. 4782 if (isa<UndefValue>(Address) || 4783 (Address->use_empty() && !isa<Argument>(Address))) { 4784 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4785 return nullptr; 4786 } 4787 4788 SDValue &N = NodeMap[Address]; 4789 if (!N.getNode() && isa<Argument>(Address)) 4790 // Check unused arguments map. 4791 N = UnusedArgNodeMap[Address]; 4792 SDDbgValue *SDV; 4793 if (N.getNode()) { 4794 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4795 Address = BCI->getOperand(0); 4796 // Parameters are handled specially. 4797 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4798 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4799 if (isParameter && FINode) { 4800 // Byval parameter. We have a frame index at this point. 4801 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4802 FINode->getIndex(), 0, dl, SDNodeOrder); 4803 } else if (isa<Argument>(Address)) { 4804 // Address is an argument, so try to emit its dbg value using 4805 // virtual register info from the FuncInfo.ValueMap. 4806 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4807 N); 4808 return nullptr; 4809 } else { 4810 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4811 true, 0, dl, SDNodeOrder); 4812 } 4813 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4814 } else { 4815 // If Address is an argument then try to emit its dbg value using 4816 // virtual register info from the FuncInfo.ValueMap. 4817 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4818 N)) { 4819 // If variable is pinned by a alloca in dominating bb then 4820 // use StaticAllocaMap. 4821 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4822 if (AI->getParent() != DI.getParent()) { 4823 DenseMap<const AllocaInst*, int>::iterator SI = 4824 FuncInfo.StaticAllocaMap.find(AI); 4825 if (SI != FuncInfo.StaticAllocaMap.end()) { 4826 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4827 0, dl, SDNodeOrder); 4828 DAG.AddDbgValue(SDV, nullptr, false); 4829 return nullptr; 4830 } 4831 } 4832 } 4833 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4834 } 4835 } 4836 return nullptr; 4837 } 4838 case Intrinsic::dbg_value: { 4839 const DbgValueInst &DI = cast<DbgValueInst>(I); 4840 assert(DI.getVariable() && "Missing variable"); 4841 4842 DILocalVariable *Variable = DI.getVariable(); 4843 DIExpression *Expression = DI.getExpression(); 4844 uint64_t Offset = DI.getOffset(); 4845 const Value *V = DI.getValue(); 4846 if (!V) 4847 return nullptr; 4848 4849 SDDbgValue *SDV; 4850 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4851 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4852 SDNodeOrder); 4853 DAG.AddDbgValue(SDV, nullptr, false); 4854 } else { 4855 // Do not use getValue() in here; we don't want to generate code at 4856 // this point if it hasn't been done yet. 4857 SDValue N = NodeMap[V]; 4858 if (!N.getNode() && isa<Argument>(V)) 4859 // Check unused arguments map. 4860 N = UnusedArgNodeMap[V]; 4861 if (N.getNode()) { 4862 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4863 false, N)) { 4864 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4865 false, Offset, dl, SDNodeOrder); 4866 DAG.AddDbgValue(SDV, N.getNode(), false); 4867 } 4868 } else if (!V->use_empty() ) { 4869 // Do not call getValue(V) yet, as we don't want to generate code. 4870 // Remember it for later. 4871 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4872 DanglingDebugInfoMap[V] = DDI; 4873 } else { 4874 // We may expand this to cover more cases. One case where we have no 4875 // data available is an unreferenced parameter. 4876 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4877 } 4878 } 4879 4880 // Build a debug info table entry. 4881 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4882 V = BCI->getOperand(0); 4883 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4884 // Don't handle byval struct arguments or VLAs, for example. 4885 if (!AI) { 4886 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4887 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4888 return nullptr; 4889 } 4890 DenseMap<const AllocaInst*, int>::iterator SI = 4891 FuncInfo.StaticAllocaMap.find(AI); 4892 if (SI == FuncInfo.StaticAllocaMap.end()) 4893 return nullptr; // VLAs. 4894 return nullptr; 4895 } 4896 4897 case Intrinsic::eh_typeid_for: { 4898 // Find the type id for the given typeinfo. 4899 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4900 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4901 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4902 setValue(&I, Res); 4903 return nullptr; 4904 } 4905 4906 case Intrinsic::eh_return_i32: 4907 case Intrinsic::eh_return_i64: 4908 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4909 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4910 MVT::Other, 4911 getControlRoot(), 4912 getValue(I.getArgOperand(0)), 4913 getValue(I.getArgOperand(1)))); 4914 return nullptr; 4915 case Intrinsic::eh_unwind_init: 4916 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4917 return nullptr; 4918 case Intrinsic::eh_dwarf_cfa: { 4919 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4920 TLI.getPointerTy(DAG.getDataLayout())); 4921 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4922 CfaArg.getValueType(), 4923 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4924 CfaArg.getValueType()), 4925 CfaArg); 4926 SDValue FA = DAG.getNode( 4927 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4928 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4929 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4930 FA, Offset)); 4931 return nullptr; 4932 } 4933 case Intrinsic::eh_sjlj_callsite: { 4934 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4935 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4936 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4937 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4938 4939 MMI.setCurrentCallSite(CI->getZExtValue()); 4940 return nullptr; 4941 } 4942 case Intrinsic::eh_sjlj_functioncontext: { 4943 // Get and store the index of the function context. 4944 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4945 AllocaInst *FnCtx = 4946 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4947 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4948 MFI->setFunctionContextIndex(FI); 4949 return nullptr; 4950 } 4951 case Intrinsic::eh_sjlj_setjmp: { 4952 SDValue Ops[2]; 4953 Ops[0] = getRoot(); 4954 Ops[1] = getValue(I.getArgOperand(0)); 4955 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4956 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4957 setValue(&I, Op.getValue(0)); 4958 DAG.setRoot(Op.getValue(1)); 4959 return nullptr; 4960 } 4961 case Intrinsic::eh_sjlj_longjmp: { 4962 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4963 getRoot(), getValue(I.getArgOperand(0)))); 4964 return nullptr; 4965 } 4966 case Intrinsic::eh_sjlj_setup_dispatch: { 4967 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4968 getRoot())); 4969 return nullptr; 4970 } 4971 4972 case Intrinsic::masked_gather: 4973 visitMaskedGather(I); 4974 return nullptr; 4975 case Intrinsic::masked_load: 4976 visitMaskedLoad(I); 4977 return nullptr; 4978 case Intrinsic::masked_scatter: 4979 visitMaskedScatter(I); 4980 return nullptr; 4981 case Intrinsic::masked_store: 4982 visitMaskedStore(I); 4983 return nullptr; 4984 case Intrinsic::x86_mmx_pslli_w: 4985 case Intrinsic::x86_mmx_pslli_d: 4986 case Intrinsic::x86_mmx_pslli_q: 4987 case Intrinsic::x86_mmx_psrli_w: 4988 case Intrinsic::x86_mmx_psrli_d: 4989 case Intrinsic::x86_mmx_psrli_q: 4990 case Intrinsic::x86_mmx_psrai_w: 4991 case Intrinsic::x86_mmx_psrai_d: { 4992 SDValue ShAmt = getValue(I.getArgOperand(1)); 4993 if (isa<ConstantSDNode>(ShAmt)) { 4994 visitTargetIntrinsic(I, Intrinsic); 4995 return nullptr; 4996 } 4997 unsigned NewIntrinsic = 0; 4998 EVT ShAmtVT = MVT::v2i32; 4999 switch (Intrinsic) { 5000 case Intrinsic::x86_mmx_pslli_w: 5001 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5002 break; 5003 case Intrinsic::x86_mmx_pslli_d: 5004 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5005 break; 5006 case Intrinsic::x86_mmx_pslli_q: 5007 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5008 break; 5009 case Intrinsic::x86_mmx_psrli_w: 5010 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5011 break; 5012 case Intrinsic::x86_mmx_psrli_d: 5013 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5014 break; 5015 case Intrinsic::x86_mmx_psrli_q: 5016 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5017 break; 5018 case Intrinsic::x86_mmx_psrai_w: 5019 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5020 break; 5021 case Intrinsic::x86_mmx_psrai_d: 5022 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5023 break; 5024 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5025 } 5026 5027 // The vector shift intrinsics with scalars uses 32b shift amounts but 5028 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5029 // to be zero. 5030 // We must do this early because v2i32 is not a legal type. 5031 SDValue ShOps[2]; 5032 ShOps[0] = ShAmt; 5033 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5034 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5035 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5036 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5037 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5038 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5039 getValue(I.getArgOperand(0)), ShAmt); 5040 setValue(&I, Res); 5041 return nullptr; 5042 } 5043 case Intrinsic::convertff: 5044 case Intrinsic::convertfsi: 5045 case Intrinsic::convertfui: 5046 case Intrinsic::convertsif: 5047 case Intrinsic::convertuif: 5048 case Intrinsic::convertss: 5049 case Intrinsic::convertsu: 5050 case Intrinsic::convertus: 5051 case Intrinsic::convertuu: { 5052 ISD::CvtCode Code = ISD::CVT_INVALID; 5053 switch (Intrinsic) { 5054 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5055 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5056 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5057 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5058 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5059 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5060 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5061 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5062 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5063 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5064 } 5065 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5066 const Value *Op1 = I.getArgOperand(0); 5067 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5068 DAG.getValueType(DestVT), 5069 DAG.getValueType(getValue(Op1).getValueType()), 5070 getValue(I.getArgOperand(1)), 5071 getValue(I.getArgOperand(2)), 5072 Code); 5073 setValue(&I, Res); 5074 return nullptr; 5075 } 5076 case Intrinsic::powi: 5077 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5078 getValue(I.getArgOperand(1)), DAG)); 5079 return nullptr; 5080 case Intrinsic::log: 5081 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5082 return nullptr; 5083 case Intrinsic::log2: 5084 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5085 return nullptr; 5086 case Intrinsic::log10: 5087 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5088 return nullptr; 5089 case Intrinsic::exp: 5090 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5091 return nullptr; 5092 case Intrinsic::exp2: 5093 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5094 return nullptr; 5095 case Intrinsic::pow: 5096 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5097 getValue(I.getArgOperand(1)), DAG, TLI)); 5098 return nullptr; 5099 case Intrinsic::sqrt: 5100 case Intrinsic::fabs: 5101 case Intrinsic::sin: 5102 case Intrinsic::cos: 5103 case Intrinsic::floor: 5104 case Intrinsic::ceil: 5105 case Intrinsic::trunc: 5106 case Intrinsic::rint: 5107 case Intrinsic::nearbyint: 5108 case Intrinsic::round: { 5109 unsigned Opcode; 5110 switch (Intrinsic) { 5111 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5112 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5113 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5114 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5115 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5116 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5117 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5118 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5119 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5120 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5121 case Intrinsic::round: Opcode = ISD::FROUND; break; 5122 } 5123 5124 setValue(&I, DAG.getNode(Opcode, sdl, 5125 getValue(I.getArgOperand(0)).getValueType(), 5126 getValue(I.getArgOperand(0)))); 5127 return nullptr; 5128 } 5129 case Intrinsic::minnum: 5130 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5131 getValue(I.getArgOperand(0)).getValueType(), 5132 getValue(I.getArgOperand(0)), 5133 getValue(I.getArgOperand(1)))); 5134 return nullptr; 5135 case Intrinsic::maxnum: 5136 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5137 getValue(I.getArgOperand(0)).getValueType(), 5138 getValue(I.getArgOperand(0)), 5139 getValue(I.getArgOperand(1)))); 5140 return nullptr; 5141 case Intrinsic::copysign: 5142 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5143 getValue(I.getArgOperand(0)).getValueType(), 5144 getValue(I.getArgOperand(0)), 5145 getValue(I.getArgOperand(1)))); 5146 return nullptr; 5147 case Intrinsic::fma: 5148 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5149 getValue(I.getArgOperand(0)).getValueType(), 5150 getValue(I.getArgOperand(0)), 5151 getValue(I.getArgOperand(1)), 5152 getValue(I.getArgOperand(2)))); 5153 return nullptr; 5154 case Intrinsic::fmuladd: { 5155 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5156 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5157 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5158 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5159 getValue(I.getArgOperand(0)).getValueType(), 5160 getValue(I.getArgOperand(0)), 5161 getValue(I.getArgOperand(1)), 5162 getValue(I.getArgOperand(2)))); 5163 } else { 5164 // TODO: Intrinsic calls should have fast-math-flags. 5165 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5166 getValue(I.getArgOperand(0)).getValueType(), 5167 getValue(I.getArgOperand(0)), 5168 getValue(I.getArgOperand(1))); 5169 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5170 getValue(I.getArgOperand(0)).getValueType(), 5171 Mul, 5172 getValue(I.getArgOperand(2))); 5173 setValue(&I, Add); 5174 } 5175 return nullptr; 5176 } 5177 case Intrinsic::convert_to_fp16: 5178 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5179 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5180 getValue(I.getArgOperand(0)), 5181 DAG.getTargetConstant(0, sdl, 5182 MVT::i32)))); 5183 return nullptr; 5184 case Intrinsic::convert_from_fp16: 5185 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5186 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5187 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5188 getValue(I.getArgOperand(0))))); 5189 return nullptr; 5190 case Intrinsic::pcmarker: { 5191 SDValue Tmp = getValue(I.getArgOperand(0)); 5192 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5193 return nullptr; 5194 } 5195 case Intrinsic::readcyclecounter: { 5196 SDValue Op = getRoot(); 5197 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5198 DAG.getVTList(MVT::i64, MVT::Other), Op); 5199 setValue(&I, Res); 5200 DAG.setRoot(Res.getValue(1)); 5201 return nullptr; 5202 } 5203 case Intrinsic::bitreverse: 5204 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5205 getValue(I.getArgOperand(0)).getValueType(), 5206 getValue(I.getArgOperand(0)))); 5207 return nullptr; 5208 case Intrinsic::bswap: 5209 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5210 getValue(I.getArgOperand(0)).getValueType(), 5211 getValue(I.getArgOperand(0)))); 5212 return nullptr; 5213 case Intrinsic::cttz: { 5214 SDValue Arg = getValue(I.getArgOperand(0)); 5215 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5216 EVT Ty = Arg.getValueType(); 5217 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5218 sdl, Ty, Arg)); 5219 return nullptr; 5220 } 5221 case Intrinsic::ctlz: { 5222 SDValue Arg = getValue(I.getArgOperand(0)); 5223 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5224 EVT Ty = Arg.getValueType(); 5225 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5226 sdl, Ty, Arg)); 5227 return nullptr; 5228 } 5229 case Intrinsic::ctpop: { 5230 SDValue Arg = getValue(I.getArgOperand(0)); 5231 EVT Ty = Arg.getValueType(); 5232 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5233 return nullptr; 5234 } 5235 case Intrinsic::stacksave: { 5236 SDValue Op = getRoot(); 5237 Res = DAG.getNode( 5238 ISD::STACKSAVE, sdl, 5239 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5240 setValue(&I, Res); 5241 DAG.setRoot(Res.getValue(1)); 5242 return nullptr; 5243 } 5244 case Intrinsic::stackrestore: { 5245 Res = getValue(I.getArgOperand(0)); 5246 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5247 return nullptr; 5248 } 5249 case Intrinsic::get_dynamic_area_offset: { 5250 SDValue Op = getRoot(); 5251 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5252 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5253 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5254 // target. 5255 if (PtrTy != ResTy) 5256 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5257 " intrinsic!"); 5258 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5259 Op); 5260 DAG.setRoot(Op); 5261 setValue(&I, Res); 5262 return nullptr; 5263 } 5264 case Intrinsic::stackprotector: { 5265 // Emit code into the DAG to store the stack guard onto the stack. 5266 MachineFunction &MF = DAG.getMachineFunction(); 5267 MachineFrameInfo *MFI = MF.getFrameInfo(); 5268 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5269 SDValue Src, Chain = getRoot(); 5270 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5271 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5272 5273 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5274 // global variable __stack_chk_guard. 5275 if (!GV) 5276 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5277 if (BC->getOpcode() == Instruction::BitCast) 5278 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5279 5280 if (GV && TLI.useLoadStackGuardNode()) { 5281 // Emit a LOAD_STACK_GUARD node. 5282 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5283 sdl, PtrTy, Chain); 5284 MachinePointerInfo MPInfo(GV); 5285 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5286 unsigned Flags = MachineMemOperand::MOLoad | 5287 MachineMemOperand::MOInvariant; 5288 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5289 PtrTy.getSizeInBits() / 8, 5290 DAG.getEVTAlignment(PtrTy)); 5291 Node->setMemRefs(MemRefs, MemRefs + 1); 5292 5293 // Copy the guard value to a virtual register so that it can be 5294 // retrieved in the epilogue. 5295 Src = SDValue(Node, 0); 5296 const TargetRegisterClass *RC = 5297 TLI.getRegClassFor(Src.getSimpleValueType()); 5298 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5299 5300 SPDescriptor.setGuardReg(Reg); 5301 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5302 } else { 5303 Src = getValue(I.getArgOperand(0)); // The guard's value. 5304 } 5305 5306 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5307 5308 int FI = FuncInfo.StaticAllocaMap[Slot]; 5309 MFI->setStackProtectorIndex(FI); 5310 5311 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5312 5313 // Store the stack protector onto the stack. 5314 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5315 DAG.getMachineFunction(), FI), 5316 true, false, 0); 5317 setValue(&I, Res); 5318 DAG.setRoot(Res); 5319 return nullptr; 5320 } 5321 case Intrinsic::objectsize: { 5322 // If we don't know by now, we're never going to know. 5323 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5324 5325 assert(CI && "Non-constant type in __builtin_object_size?"); 5326 5327 SDValue Arg = getValue(I.getCalledValue()); 5328 EVT Ty = Arg.getValueType(); 5329 5330 if (CI->isZero()) 5331 Res = DAG.getConstant(-1ULL, sdl, Ty); 5332 else 5333 Res = DAG.getConstant(0, sdl, Ty); 5334 5335 setValue(&I, Res); 5336 return nullptr; 5337 } 5338 case Intrinsic::annotation: 5339 case Intrinsic::ptr_annotation: 5340 // Drop the intrinsic, but forward the value 5341 setValue(&I, getValue(I.getOperand(0))); 5342 return nullptr; 5343 case Intrinsic::assume: 5344 case Intrinsic::var_annotation: 5345 // Discard annotate attributes and assumptions 5346 return nullptr; 5347 5348 case Intrinsic::init_trampoline: { 5349 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5350 5351 SDValue Ops[6]; 5352 Ops[0] = getRoot(); 5353 Ops[1] = getValue(I.getArgOperand(0)); 5354 Ops[2] = getValue(I.getArgOperand(1)); 5355 Ops[3] = getValue(I.getArgOperand(2)); 5356 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5357 Ops[5] = DAG.getSrcValue(F); 5358 5359 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5360 5361 DAG.setRoot(Res); 5362 return nullptr; 5363 } 5364 case Intrinsic::adjust_trampoline: { 5365 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5366 TLI.getPointerTy(DAG.getDataLayout()), 5367 getValue(I.getArgOperand(0)))); 5368 return nullptr; 5369 } 5370 case Intrinsic::gcroot: { 5371 MachineFunction &MF = DAG.getMachineFunction(); 5372 const Function *F = MF.getFunction(); 5373 (void)F; 5374 assert(F->hasGC() && 5375 "only valid in functions with gc specified, enforced by Verifier"); 5376 assert(GFI && "implied by previous"); 5377 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5378 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5379 5380 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5381 GFI->addStackRoot(FI->getIndex(), TypeMap); 5382 return nullptr; 5383 } 5384 case Intrinsic::gcread: 5385 case Intrinsic::gcwrite: 5386 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5387 case Intrinsic::flt_rounds: 5388 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5389 return nullptr; 5390 5391 case Intrinsic::expect: { 5392 // Just replace __builtin_expect(exp, c) with EXP. 5393 setValue(&I, getValue(I.getArgOperand(0))); 5394 return nullptr; 5395 } 5396 5397 case Intrinsic::debugtrap: 5398 case Intrinsic::trap: { 5399 StringRef TrapFuncName = 5400 I.getAttributes() 5401 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5402 .getValueAsString(); 5403 if (TrapFuncName.empty()) { 5404 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5405 ISD::TRAP : ISD::DEBUGTRAP; 5406 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5407 return nullptr; 5408 } 5409 TargetLowering::ArgListTy Args; 5410 5411 TargetLowering::CallLoweringInfo CLI(DAG); 5412 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5413 CallingConv::C, I.getType(), 5414 DAG.getExternalSymbol(TrapFuncName.data(), 5415 TLI.getPointerTy(DAG.getDataLayout())), 5416 std::move(Args), 0); 5417 5418 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5419 DAG.setRoot(Result.second); 5420 return nullptr; 5421 } 5422 5423 case Intrinsic::uadd_with_overflow: 5424 case Intrinsic::sadd_with_overflow: 5425 case Intrinsic::usub_with_overflow: 5426 case Intrinsic::ssub_with_overflow: 5427 case Intrinsic::umul_with_overflow: 5428 case Intrinsic::smul_with_overflow: { 5429 ISD::NodeType Op; 5430 switch (Intrinsic) { 5431 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5432 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5433 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5434 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5435 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5436 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5437 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5438 } 5439 SDValue Op1 = getValue(I.getArgOperand(0)); 5440 SDValue Op2 = getValue(I.getArgOperand(1)); 5441 5442 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5443 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5444 return nullptr; 5445 } 5446 case Intrinsic::prefetch: { 5447 SDValue Ops[5]; 5448 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5449 Ops[0] = getRoot(); 5450 Ops[1] = getValue(I.getArgOperand(0)); 5451 Ops[2] = getValue(I.getArgOperand(1)); 5452 Ops[3] = getValue(I.getArgOperand(2)); 5453 Ops[4] = getValue(I.getArgOperand(3)); 5454 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5455 DAG.getVTList(MVT::Other), Ops, 5456 EVT::getIntegerVT(*Context, 8), 5457 MachinePointerInfo(I.getArgOperand(0)), 5458 0, /* align */ 5459 false, /* volatile */ 5460 rw==0, /* read */ 5461 rw==1)); /* write */ 5462 return nullptr; 5463 } 5464 case Intrinsic::lifetime_start: 5465 case Intrinsic::lifetime_end: { 5466 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5467 // Stack coloring is not enabled in O0, discard region information. 5468 if (TM.getOptLevel() == CodeGenOpt::None) 5469 return nullptr; 5470 5471 SmallVector<Value *, 4> Allocas; 5472 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5473 5474 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5475 E = Allocas.end(); Object != E; ++Object) { 5476 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5477 5478 // Could not find an Alloca. 5479 if (!LifetimeObject) 5480 continue; 5481 5482 // First check that the Alloca is static, otherwise it won't have a 5483 // valid frame index. 5484 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5485 if (SI == FuncInfo.StaticAllocaMap.end()) 5486 return nullptr; 5487 5488 int FI = SI->second; 5489 5490 SDValue Ops[2]; 5491 Ops[0] = getRoot(); 5492 Ops[1] = 5493 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5494 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5495 5496 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5497 DAG.setRoot(Res); 5498 } 5499 return nullptr; 5500 } 5501 case Intrinsic::invariant_start: 5502 // Discard region information. 5503 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5504 return nullptr; 5505 case Intrinsic::invariant_end: 5506 // Discard region information. 5507 return nullptr; 5508 case Intrinsic::stackprotectorcheck: { 5509 // Do not actually emit anything for this basic block. Instead we initialize 5510 // the stack protector descriptor and export the guard variable so we can 5511 // access it in FinishBasicBlock. 5512 const BasicBlock *BB = I.getParent(); 5513 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5514 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5515 5516 // Flush our exports since we are going to process a terminator. 5517 (void)getControlRoot(); 5518 return nullptr; 5519 } 5520 case Intrinsic::clear_cache: 5521 return TLI.getClearCacheBuiltinName(); 5522 case Intrinsic::donothing: 5523 // ignore 5524 return nullptr; 5525 case Intrinsic::experimental_stackmap: { 5526 visitStackmap(I); 5527 return nullptr; 5528 } 5529 case Intrinsic::experimental_patchpoint_void: 5530 case Intrinsic::experimental_patchpoint_i64: { 5531 visitPatchpoint(&I); 5532 return nullptr; 5533 } 5534 case Intrinsic::experimental_gc_statepoint: { 5535 LowerStatepoint(ImmutableStatepoint(&I)); 5536 return nullptr; 5537 } 5538 case Intrinsic::experimental_gc_result: { 5539 visitGCResult(I); 5540 return nullptr; 5541 } 5542 case Intrinsic::experimental_gc_relocate: { 5543 visitGCRelocate(cast<GCRelocateInst>(I)); 5544 return nullptr; 5545 } 5546 case Intrinsic::instrprof_increment: 5547 llvm_unreachable("instrprof failed to lower an increment"); 5548 case Intrinsic::instrprof_value_profile: 5549 llvm_unreachable("instrprof failed to lower a value profiling call"); 5550 case Intrinsic::localescape: { 5551 MachineFunction &MF = DAG.getMachineFunction(); 5552 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5553 5554 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5555 // is the same on all targets. 5556 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5557 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5558 if (isa<ConstantPointerNull>(Arg)) 5559 continue; // Skip null pointers. They represent a hole in index space. 5560 AllocaInst *Slot = cast<AllocaInst>(Arg); 5561 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5562 "can only escape static allocas"); 5563 int FI = FuncInfo.StaticAllocaMap[Slot]; 5564 MCSymbol *FrameAllocSym = 5565 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5566 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5567 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5568 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5569 .addSym(FrameAllocSym) 5570 .addFrameIndex(FI); 5571 } 5572 5573 return nullptr; 5574 } 5575 5576 case Intrinsic::localrecover: { 5577 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5578 MachineFunction &MF = DAG.getMachineFunction(); 5579 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5580 5581 // Get the symbol that defines the frame offset. 5582 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5583 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5584 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5585 MCSymbol *FrameAllocSym = 5586 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5587 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5588 5589 // Create a MCSymbol for the label to avoid any target lowering 5590 // that would make this PC relative. 5591 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5592 SDValue OffsetVal = 5593 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5594 5595 // Add the offset to the FP. 5596 Value *FP = I.getArgOperand(1); 5597 SDValue FPVal = getValue(FP); 5598 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5599 setValue(&I, Add); 5600 5601 return nullptr; 5602 } 5603 5604 case Intrinsic::eh_exceptionpointer: 5605 case Intrinsic::eh_exceptioncode: { 5606 // Get the exception pointer vreg, copy from it, and resize it to fit. 5607 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5608 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5609 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5610 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5611 SDValue N = 5612 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5613 if (Intrinsic == Intrinsic::eh_exceptioncode) 5614 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5615 setValue(&I, N); 5616 return nullptr; 5617 } 5618 5619 case Intrinsic::experimental_deoptimize: 5620 LowerDeoptimizeCall(&I); 5621 return nullptr; 5622 } 5623 } 5624 5625 std::pair<SDValue, SDValue> 5626 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5627 const BasicBlock *EHPadBB) { 5628 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5629 MCSymbol *BeginLabel = nullptr; 5630 5631 if (EHPadBB) { 5632 // Insert a label before the invoke call to mark the try range. This can be 5633 // used to detect deletion of the invoke via the MachineModuleInfo. 5634 BeginLabel = MMI.getContext().createTempSymbol(); 5635 5636 // For SjLj, keep track of which landing pads go with which invokes 5637 // so as to maintain the ordering of pads in the LSDA. 5638 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5639 if (CallSiteIndex) { 5640 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5641 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5642 5643 // Now that the call site is handled, stop tracking it. 5644 MMI.setCurrentCallSite(0); 5645 } 5646 5647 // Both PendingLoads and PendingExports must be flushed here; 5648 // this call might not return. 5649 (void)getRoot(); 5650 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5651 5652 CLI.setChain(getRoot()); 5653 } 5654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5655 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5656 5657 assert((CLI.IsTailCall || Result.second.getNode()) && 5658 "Non-null chain expected with non-tail call!"); 5659 assert((Result.second.getNode() || !Result.first.getNode()) && 5660 "Null value expected with tail call!"); 5661 5662 if (!Result.second.getNode()) { 5663 // As a special case, a null chain means that a tail call has been emitted 5664 // and the DAG root is already updated. 5665 HasTailCall = true; 5666 5667 // Since there's no actual continuation from this block, nothing can be 5668 // relying on us setting vregs for them. 5669 PendingExports.clear(); 5670 } else { 5671 DAG.setRoot(Result.second); 5672 } 5673 5674 if (EHPadBB) { 5675 // Insert a label at the end of the invoke call to mark the try range. This 5676 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5677 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5678 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5679 5680 // Inform MachineModuleInfo of range. 5681 if (MMI.hasEHFunclets()) { 5682 assert(CLI.CS); 5683 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5684 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5685 BeginLabel, EndLabel); 5686 } else { 5687 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5688 } 5689 } 5690 5691 return Result; 5692 } 5693 5694 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5695 bool isTailCall, 5696 const BasicBlock *EHPadBB) { 5697 auto &DL = DAG.getDataLayout(); 5698 FunctionType *FTy = CS.getFunctionType(); 5699 Type *RetTy = CS.getType(); 5700 5701 TargetLowering::ArgListTy Args; 5702 TargetLowering::ArgListEntry Entry; 5703 Args.reserve(CS.arg_size()); 5704 5705 const Value *SwiftErrorVal = nullptr; 5706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5707 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5708 i != e; ++i) { 5709 const Value *V = *i; 5710 5711 // Skip empty types 5712 if (V->getType()->isEmptyTy()) 5713 continue; 5714 5715 SDValue ArgNode = getValue(V); 5716 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5717 5718 // Skip the first return-type Attribute to get to params. 5719 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5720 5721 // Use swifterror virtual register as input to the call. 5722 if (Entry.isSwiftError && TLI.supportSwiftError()) { 5723 SwiftErrorVal = V; 5724 // We find the virtual register for the actual swifterror argument. 5725 // Instead of using the Value, we use the virtual register instead. 5726 Entry.Node = DAG.getRegister( 5727 FuncInfo.findSwiftErrorVReg(FuncInfo.MBB, V), 5728 EVT(TLI.getPointerTy(DL))); 5729 } 5730 5731 Args.push_back(Entry); 5732 5733 // If we have an explicit sret argument that is an Instruction, (i.e., it 5734 // might point to function-local memory), we can't meaningfully tail-call. 5735 if (Entry.isSRet && isa<Instruction>(V)) 5736 isTailCall = false; 5737 } 5738 5739 // Check if target-independent constraints permit a tail call here. 5740 // Target-dependent constraints are checked within TLI->LowerCallTo. 5741 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5742 isTailCall = false; 5743 5744 TargetLowering::CallLoweringInfo CLI(DAG); 5745 CLI.setDebugLoc(getCurSDLoc()) 5746 .setChain(getRoot()) 5747 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5748 .setTailCall(isTailCall) 5749 .setConvergent(CS.isConvergent()); 5750 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5751 5752 if (Result.first.getNode()) { 5753 const Instruction *Inst = CS.getInstruction(); 5754 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5755 setValue(Inst, Result.first); 5756 } 5757 5758 // The last element of CLI.InVals has the SDValue for swifterror return. 5759 // Here we copy it to a virtual register and update SwiftErrorMap for 5760 // book-keeping. 5761 if (SwiftErrorVal && TLI.supportSwiftError()) { 5762 // Get the last element of InVals. 5763 SDValue Src = CLI.InVals.back(); 5764 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL)); 5765 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 5766 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 5767 // We update the virtual register for the actual swifterror argument. 5768 FuncInfo.setSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 5769 DAG.setRoot(CopyNode); 5770 } 5771 } 5772 5773 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5774 /// value is equal or not-equal to zero. 5775 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5776 for (const User *U : V->users()) { 5777 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5778 if (IC->isEquality()) 5779 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5780 if (C->isNullValue()) 5781 continue; 5782 // Unknown instruction. 5783 return false; 5784 } 5785 return true; 5786 } 5787 5788 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5789 Type *LoadTy, 5790 SelectionDAGBuilder &Builder) { 5791 5792 // Check to see if this load can be trivially constant folded, e.g. if the 5793 // input is from a string literal. 5794 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5795 // Cast pointer to the type we really want to load. 5796 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5797 PointerType::getUnqual(LoadTy)); 5798 5799 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5800 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5801 return Builder.getValue(LoadCst); 5802 } 5803 5804 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5805 // still constant memory, the input chain can be the entry node. 5806 SDValue Root; 5807 bool ConstantMemory = false; 5808 5809 // Do not serialize (non-volatile) loads of constant memory with anything. 5810 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5811 Root = Builder.DAG.getEntryNode(); 5812 ConstantMemory = true; 5813 } else { 5814 // Do not serialize non-volatile loads against each other. 5815 Root = Builder.DAG.getRoot(); 5816 } 5817 5818 SDValue Ptr = Builder.getValue(PtrVal); 5819 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5820 Ptr, MachinePointerInfo(PtrVal), 5821 false /*volatile*/, 5822 false /*nontemporal*/, 5823 false /*isinvariant*/, 1 /* align=1 */); 5824 5825 if (!ConstantMemory) 5826 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5827 return LoadVal; 5828 } 5829 5830 /// processIntegerCallValue - Record the value for an instruction that 5831 /// produces an integer result, converting the type where necessary. 5832 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5833 SDValue Value, 5834 bool IsSigned) { 5835 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5836 I.getType(), true); 5837 if (IsSigned) 5838 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5839 else 5840 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5841 setValue(&I, Value); 5842 } 5843 5844 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5845 /// If so, return true and lower it, otherwise return false and it will be 5846 /// lowered like a normal call. 5847 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5848 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5849 if (I.getNumArgOperands() != 3) 5850 return false; 5851 5852 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5853 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5854 !I.getArgOperand(2)->getType()->isIntegerTy() || 5855 !I.getType()->isIntegerTy()) 5856 return false; 5857 5858 const Value *Size = I.getArgOperand(2); 5859 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5860 if (CSize && CSize->getZExtValue() == 0) { 5861 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5862 I.getType(), true); 5863 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5864 return true; 5865 } 5866 5867 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5868 std::pair<SDValue, SDValue> Res = 5869 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5870 getValue(LHS), getValue(RHS), getValue(Size), 5871 MachinePointerInfo(LHS), 5872 MachinePointerInfo(RHS)); 5873 if (Res.first.getNode()) { 5874 processIntegerCallValue(I, Res.first, true); 5875 PendingLoads.push_back(Res.second); 5876 return true; 5877 } 5878 5879 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5880 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5881 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5882 bool ActuallyDoIt = true; 5883 MVT LoadVT; 5884 Type *LoadTy; 5885 switch (CSize->getZExtValue()) { 5886 default: 5887 LoadVT = MVT::Other; 5888 LoadTy = nullptr; 5889 ActuallyDoIt = false; 5890 break; 5891 case 2: 5892 LoadVT = MVT::i16; 5893 LoadTy = Type::getInt16Ty(CSize->getContext()); 5894 break; 5895 case 4: 5896 LoadVT = MVT::i32; 5897 LoadTy = Type::getInt32Ty(CSize->getContext()); 5898 break; 5899 case 8: 5900 LoadVT = MVT::i64; 5901 LoadTy = Type::getInt64Ty(CSize->getContext()); 5902 break; 5903 /* 5904 case 16: 5905 LoadVT = MVT::v4i32; 5906 LoadTy = Type::getInt32Ty(CSize->getContext()); 5907 LoadTy = VectorType::get(LoadTy, 4); 5908 break; 5909 */ 5910 } 5911 5912 // This turns into unaligned loads. We only do this if the target natively 5913 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5914 // we'll only produce a small number of byte loads. 5915 5916 // Require that we can find a legal MVT, and only do this if the target 5917 // supports unaligned loads of that type. Expanding into byte loads would 5918 // bloat the code. 5919 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5920 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5921 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5922 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5923 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5924 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5925 // TODO: Check alignment of src and dest ptrs. 5926 if (!TLI.isTypeLegal(LoadVT) || 5927 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5928 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5929 ActuallyDoIt = false; 5930 } 5931 5932 if (ActuallyDoIt) { 5933 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5934 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5935 5936 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5937 ISD::SETNE); 5938 processIntegerCallValue(I, Res, false); 5939 return true; 5940 } 5941 } 5942 5943 5944 return false; 5945 } 5946 5947 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5948 /// form. If so, return true and lower it, otherwise return false and it 5949 /// will be lowered like a normal call. 5950 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5951 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5952 if (I.getNumArgOperands() != 3) 5953 return false; 5954 5955 const Value *Src = I.getArgOperand(0); 5956 const Value *Char = I.getArgOperand(1); 5957 const Value *Length = I.getArgOperand(2); 5958 if (!Src->getType()->isPointerTy() || 5959 !Char->getType()->isIntegerTy() || 5960 !Length->getType()->isIntegerTy() || 5961 !I.getType()->isPointerTy()) 5962 return false; 5963 5964 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5965 std::pair<SDValue, SDValue> Res = 5966 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5967 getValue(Src), getValue(Char), getValue(Length), 5968 MachinePointerInfo(Src)); 5969 if (Res.first.getNode()) { 5970 setValue(&I, Res.first); 5971 PendingLoads.push_back(Res.second); 5972 return true; 5973 } 5974 5975 return false; 5976 } 5977 5978 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5979 /// optimized form. If so, return true and lower it, otherwise return false 5980 /// and it will be lowered like a normal call. 5981 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5982 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5983 if (I.getNumArgOperands() != 2) 5984 return false; 5985 5986 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5987 if (!Arg0->getType()->isPointerTy() || 5988 !Arg1->getType()->isPointerTy() || 5989 !I.getType()->isPointerTy()) 5990 return false; 5991 5992 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5993 std::pair<SDValue, SDValue> Res = 5994 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5995 getValue(Arg0), getValue(Arg1), 5996 MachinePointerInfo(Arg0), 5997 MachinePointerInfo(Arg1), isStpcpy); 5998 if (Res.first.getNode()) { 5999 setValue(&I, Res.first); 6000 DAG.setRoot(Res.second); 6001 return true; 6002 } 6003 6004 return false; 6005 } 6006 6007 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6008 /// If so, return true and lower it, otherwise return false and it will be 6009 /// lowered like a normal call. 6010 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6011 // Verify that the prototype makes sense. int strcmp(void*,void*) 6012 if (I.getNumArgOperands() != 2) 6013 return false; 6014 6015 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6016 if (!Arg0->getType()->isPointerTy() || 6017 !Arg1->getType()->isPointerTy() || 6018 !I.getType()->isIntegerTy()) 6019 return false; 6020 6021 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6022 std::pair<SDValue, SDValue> Res = 6023 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6024 getValue(Arg0), getValue(Arg1), 6025 MachinePointerInfo(Arg0), 6026 MachinePointerInfo(Arg1)); 6027 if (Res.first.getNode()) { 6028 processIntegerCallValue(I, Res.first, true); 6029 PendingLoads.push_back(Res.second); 6030 return true; 6031 } 6032 6033 return false; 6034 } 6035 6036 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6037 /// form. If so, return true and lower it, otherwise return false and it 6038 /// will be lowered like a normal call. 6039 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6040 // Verify that the prototype makes sense. size_t strlen(char *) 6041 if (I.getNumArgOperands() != 1) 6042 return false; 6043 6044 const Value *Arg0 = I.getArgOperand(0); 6045 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6046 return false; 6047 6048 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6049 std::pair<SDValue, SDValue> Res = 6050 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6051 getValue(Arg0), MachinePointerInfo(Arg0)); 6052 if (Res.first.getNode()) { 6053 processIntegerCallValue(I, Res.first, false); 6054 PendingLoads.push_back(Res.second); 6055 return true; 6056 } 6057 6058 return false; 6059 } 6060 6061 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6062 /// form. If so, return true and lower it, otherwise return false and it 6063 /// will be lowered like a normal call. 6064 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6065 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6066 if (I.getNumArgOperands() != 2) 6067 return false; 6068 6069 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6070 if (!Arg0->getType()->isPointerTy() || 6071 !Arg1->getType()->isIntegerTy() || 6072 !I.getType()->isIntegerTy()) 6073 return false; 6074 6075 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6076 std::pair<SDValue, SDValue> Res = 6077 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6078 getValue(Arg0), getValue(Arg1), 6079 MachinePointerInfo(Arg0)); 6080 if (Res.first.getNode()) { 6081 processIntegerCallValue(I, Res.first, false); 6082 PendingLoads.push_back(Res.second); 6083 return true; 6084 } 6085 6086 return false; 6087 } 6088 6089 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6090 /// operation (as expected), translate it to an SDNode with the specified opcode 6091 /// and return true. 6092 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6093 unsigned Opcode) { 6094 // Sanity check that it really is a unary floating-point call. 6095 if (I.getNumArgOperands() != 1 || 6096 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6097 I.getType() != I.getArgOperand(0)->getType() || 6098 !I.onlyReadsMemory()) 6099 return false; 6100 6101 SDValue Tmp = getValue(I.getArgOperand(0)); 6102 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6103 return true; 6104 } 6105 6106 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6107 /// operation (as expected), translate it to an SDNode with the specified opcode 6108 /// and return true. 6109 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6110 unsigned Opcode) { 6111 // Sanity check that it really is a binary floating-point call. 6112 if (I.getNumArgOperands() != 2 || 6113 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6114 I.getType() != I.getArgOperand(0)->getType() || 6115 I.getType() != I.getArgOperand(1)->getType() || 6116 !I.onlyReadsMemory()) 6117 return false; 6118 6119 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6120 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6121 EVT VT = Tmp0.getValueType(); 6122 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6123 return true; 6124 } 6125 6126 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6127 // Handle inline assembly differently. 6128 if (isa<InlineAsm>(I.getCalledValue())) { 6129 visitInlineAsm(&I); 6130 return; 6131 } 6132 6133 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6134 ComputeUsesVAFloatArgument(I, &MMI); 6135 6136 const char *RenameFn = nullptr; 6137 if (Function *F = I.getCalledFunction()) { 6138 if (F->isDeclaration()) { 6139 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6140 if (unsigned IID = II->getIntrinsicID(F)) { 6141 RenameFn = visitIntrinsicCall(I, IID); 6142 if (!RenameFn) 6143 return; 6144 } 6145 } 6146 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6147 RenameFn = visitIntrinsicCall(I, IID); 6148 if (!RenameFn) 6149 return; 6150 } 6151 } 6152 6153 // Check for well-known libc/libm calls. If the function is internal, it 6154 // can't be a library call. 6155 LibFunc::Func Func; 6156 if (!F->hasLocalLinkage() && F->hasName() && 6157 LibInfo->getLibFunc(F->getName(), Func) && 6158 LibInfo->hasOptimizedCodeGen(Func)) { 6159 switch (Func) { 6160 default: break; 6161 case LibFunc::copysign: 6162 case LibFunc::copysignf: 6163 case LibFunc::copysignl: 6164 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6165 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6166 I.getType() == I.getArgOperand(0)->getType() && 6167 I.getType() == I.getArgOperand(1)->getType() && 6168 I.onlyReadsMemory()) { 6169 SDValue LHS = getValue(I.getArgOperand(0)); 6170 SDValue RHS = getValue(I.getArgOperand(1)); 6171 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6172 LHS.getValueType(), LHS, RHS)); 6173 return; 6174 } 6175 break; 6176 case LibFunc::fabs: 6177 case LibFunc::fabsf: 6178 case LibFunc::fabsl: 6179 if (visitUnaryFloatCall(I, ISD::FABS)) 6180 return; 6181 break; 6182 case LibFunc::fmin: 6183 case LibFunc::fminf: 6184 case LibFunc::fminl: 6185 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6186 return; 6187 break; 6188 case LibFunc::fmax: 6189 case LibFunc::fmaxf: 6190 case LibFunc::fmaxl: 6191 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6192 return; 6193 break; 6194 case LibFunc::sin: 6195 case LibFunc::sinf: 6196 case LibFunc::sinl: 6197 if (visitUnaryFloatCall(I, ISD::FSIN)) 6198 return; 6199 break; 6200 case LibFunc::cos: 6201 case LibFunc::cosf: 6202 case LibFunc::cosl: 6203 if (visitUnaryFloatCall(I, ISD::FCOS)) 6204 return; 6205 break; 6206 case LibFunc::sqrt: 6207 case LibFunc::sqrtf: 6208 case LibFunc::sqrtl: 6209 case LibFunc::sqrt_finite: 6210 case LibFunc::sqrtf_finite: 6211 case LibFunc::sqrtl_finite: 6212 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6213 return; 6214 break; 6215 case LibFunc::floor: 6216 case LibFunc::floorf: 6217 case LibFunc::floorl: 6218 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6219 return; 6220 break; 6221 case LibFunc::nearbyint: 6222 case LibFunc::nearbyintf: 6223 case LibFunc::nearbyintl: 6224 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6225 return; 6226 break; 6227 case LibFunc::ceil: 6228 case LibFunc::ceilf: 6229 case LibFunc::ceill: 6230 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6231 return; 6232 break; 6233 case LibFunc::rint: 6234 case LibFunc::rintf: 6235 case LibFunc::rintl: 6236 if (visitUnaryFloatCall(I, ISD::FRINT)) 6237 return; 6238 break; 6239 case LibFunc::round: 6240 case LibFunc::roundf: 6241 case LibFunc::roundl: 6242 if (visitUnaryFloatCall(I, ISD::FROUND)) 6243 return; 6244 break; 6245 case LibFunc::trunc: 6246 case LibFunc::truncf: 6247 case LibFunc::truncl: 6248 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6249 return; 6250 break; 6251 case LibFunc::log2: 6252 case LibFunc::log2f: 6253 case LibFunc::log2l: 6254 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6255 return; 6256 break; 6257 case LibFunc::exp2: 6258 case LibFunc::exp2f: 6259 case LibFunc::exp2l: 6260 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6261 return; 6262 break; 6263 case LibFunc::memcmp: 6264 if (visitMemCmpCall(I)) 6265 return; 6266 break; 6267 case LibFunc::memchr: 6268 if (visitMemChrCall(I)) 6269 return; 6270 break; 6271 case LibFunc::strcpy: 6272 if (visitStrCpyCall(I, false)) 6273 return; 6274 break; 6275 case LibFunc::stpcpy: 6276 if (visitStrCpyCall(I, true)) 6277 return; 6278 break; 6279 case LibFunc::strcmp: 6280 if (visitStrCmpCall(I)) 6281 return; 6282 break; 6283 case LibFunc::strlen: 6284 if (visitStrLenCall(I)) 6285 return; 6286 break; 6287 case LibFunc::strnlen: 6288 if (visitStrNLenCall(I)) 6289 return; 6290 break; 6291 } 6292 } 6293 } 6294 6295 SDValue Callee; 6296 if (!RenameFn) 6297 Callee = getValue(I.getCalledValue()); 6298 else 6299 Callee = DAG.getExternalSymbol( 6300 RenameFn, 6301 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6302 6303 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6304 // have to do anything here to lower funclet bundles. 6305 assert(!I.hasOperandBundlesOtherThan( 6306 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6307 "Cannot lower calls with arbitrary operand bundles!"); 6308 6309 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6310 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6311 else 6312 // Check if we can potentially perform a tail call. More detailed checking 6313 // is be done within LowerCallTo, after more information about the call is 6314 // known. 6315 LowerCallTo(&I, Callee, I.isTailCall()); 6316 } 6317 6318 namespace { 6319 6320 /// AsmOperandInfo - This contains information for each constraint that we are 6321 /// lowering. 6322 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6323 public: 6324 /// CallOperand - If this is the result output operand or a clobber 6325 /// this is null, otherwise it is the incoming operand to the CallInst. 6326 /// This gets modified as the asm is processed. 6327 SDValue CallOperand; 6328 6329 /// AssignedRegs - If this is a register or register class operand, this 6330 /// contains the set of register corresponding to the operand. 6331 RegsForValue AssignedRegs; 6332 6333 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6334 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6335 } 6336 6337 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6338 /// corresponds to. If there is no Value* for this operand, it returns 6339 /// MVT::Other. 6340 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6341 const DataLayout &DL) const { 6342 if (!CallOperandVal) return MVT::Other; 6343 6344 if (isa<BasicBlock>(CallOperandVal)) 6345 return TLI.getPointerTy(DL); 6346 6347 llvm::Type *OpTy = CallOperandVal->getType(); 6348 6349 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6350 // If this is an indirect operand, the operand is a pointer to the 6351 // accessed type. 6352 if (isIndirect) { 6353 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6354 if (!PtrTy) 6355 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6356 OpTy = PtrTy->getElementType(); 6357 } 6358 6359 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6360 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6361 if (STy->getNumElements() == 1) 6362 OpTy = STy->getElementType(0); 6363 6364 // If OpTy is not a single value, it may be a struct/union that we 6365 // can tile with integers. 6366 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6367 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6368 switch (BitSize) { 6369 default: break; 6370 case 1: 6371 case 8: 6372 case 16: 6373 case 32: 6374 case 64: 6375 case 128: 6376 OpTy = IntegerType::get(Context, BitSize); 6377 break; 6378 } 6379 } 6380 6381 return TLI.getValueType(DL, OpTy, true); 6382 } 6383 }; 6384 6385 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6386 6387 } // end anonymous namespace 6388 6389 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6390 /// specified operand. We prefer to assign virtual registers, to allow the 6391 /// register allocator to handle the assignment process. However, if the asm 6392 /// uses features that we can't model on machineinstrs, we have SDISel do the 6393 /// allocation. This produces generally horrible, but correct, code. 6394 /// 6395 /// OpInfo describes the operand. 6396 /// 6397 static void GetRegistersForValue(SelectionDAG &DAG, 6398 const TargetLowering &TLI, 6399 SDLoc DL, 6400 SDISelAsmOperandInfo &OpInfo) { 6401 LLVMContext &Context = *DAG.getContext(); 6402 6403 MachineFunction &MF = DAG.getMachineFunction(); 6404 SmallVector<unsigned, 4> Regs; 6405 6406 // If this is a constraint for a single physreg, or a constraint for a 6407 // register class, find it. 6408 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6409 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6410 OpInfo.ConstraintCode, 6411 OpInfo.ConstraintVT); 6412 6413 unsigned NumRegs = 1; 6414 if (OpInfo.ConstraintVT != MVT::Other) { 6415 // If this is a FP input in an integer register (or visa versa) insert a bit 6416 // cast of the input value. More generally, handle any case where the input 6417 // value disagrees with the register class we plan to stick this in. 6418 if (OpInfo.Type == InlineAsm::isInput && 6419 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6420 // Try to convert to the first EVT that the reg class contains. If the 6421 // types are identical size, use a bitcast to convert (e.g. two differing 6422 // vector types). 6423 MVT RegVT = *PhysReg.second->vt_begin(); 6424 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6425 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6426 RegVT, OpInfo.CallOperand); 6427 OpInfo.ConstraintVT = RegVT; 6428 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6429 // If the input is a FP value and we want it in FP registers, do a 6430 // bitcast to the corresponding integer type. This turns an f64 value 6431 // into i64, which can be passed with two i32 values on a 32-bit 6432 // machine. 6433 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6434 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6435 RegVT, OpInfo.CallOperand); 6436 OpInfo.ConstraintVT = RegVT; 6437 } 6438 } 6439 6440 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6441 } 6442 6443 MVT RegVT; 6444 EVT ValueVT = OpInfo.ConstraintVT; 6445 6446 // If this is a constraint for a specific physical register, like {r17}, 6447 // assign it now. 6448 if (unsigned AssignedReg = PhysReg.first) { 6449 const TargetRegisterClass *RC = PhysReg.second; 6450 if (OpInfo.ConstraintVT == MVT::Other) 6451 ValueVT = *RC->vt_begin(); 6452 6453 // Get the actual register value type. This is important, because the user 6454 // may have asked for (e.g.) the AX register in i32 type. We need to 6455 // remember that AX is actually i16 to get the right extension. 6456 RegVT = *RC->vt_begin(); 6457 6458 // This is a explicit reference to a physical register. 6459 Regs.push_back(AssignedReg); 6460 6461 // If this is an expanded reference, add the rest of the regs to Regs. 6462 if (NumRegs != 1) { 6463 TargetRegisterClass::iterator I = RC->begin(); 6464 for (; *I != AssignedReg; ++I) 6465 assert(I != RC->end() && "Didn't find reg!"); 6466 6467 // Already added the first reg. 6468 --NumRegs; ++I; 6469 for (; NumRegs; --NumRegs, ++I) { 6470 assert(I != RC->end() && "Ran out of registers to allocate!"); 6471 Regs.push_back(*I); 6472 } 6473 } 6474 6475 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6476 return; 6477 } 6478 6479 // Otherwise, if this was a reference to an LLVM register class, create vregs 6480 // for this reference. 6481 if (const TargetRegisterClass *RC = PhysReg.second) { 6482 RegVT = *RC->vt_begin(); 6483 if (OpInfo.ConstraintVT == MVT::Other) 6484 ValueVT = RegVT; 6485 6486 // Create the appropriate number of virtual registers. 6487 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6488 for (; NumRegs; --NumRegs) 6489 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6490 6491 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6492 return; 6493 } 6494 6495 // Otherwise, we couldn't allocate enough registers for this. 6496 } 6497 6498 /// visitInlineAsm - Handle a call to an InlineAsm object. 6499 /// 6500 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6501 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6502 6503 /// ConstraintOperands - Information about all of the constraints. 6504 SDISelAsmOperandInfoVector ConstraintOperands; 6505 6506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6507 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6508 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6509 6510 bool hasMemory = false; 6511 6512 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6513 unsigned ResNo = 0; // ResNo - The result number of the next output. 6514 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6515 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6516 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6517 6518 MVT OpVT = MVT::Other; 6519 6520 // Compute the value type for each operand. 6521 switch (OpInfo.Type) { 6522 case InlineAsm::isOutput: 6523 // Indirect outputs just consume an argument. 6524 if (OpInfo.isIndirect) { 6525 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6526 break; 6527 } 6528 6529 // The return value of the call is this value. As such, there is no 6530 // corresponding argument. 6531 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6532 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6533 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6534 STy->getElementType(ResNo)); 6535 } else { 6536 assert(ResNo == 0 && "Asm only has one result!"); 6537 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6538 } 6539 ++ResNo; 6540 break; 6541 case InlineAsm::isInput: 6542 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6543 break; 6544 case InlineAsm::isClobber: 6545 // Nothing to do. 6546 break; 6547 } 6548 6549 // If this is an input or an indirect output, process the call argument. 6550 // BasicBlocks are labels, currently appearing only in asm's. 6551 if (OpInfo.CallOperandVal) { 6552 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6553 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6554 } else { 6555 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6556 } 6557 6558 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6559 DAG.getDataLayout()).getSimpleVT(); 6560 } 6561 6562 OpInfo.ConstraintVT = OpVT; 6563 6564 // Indirect operand accesses access memory. 6565 if (OpInfo.isIndirect) 6566 hasMemory = true; 6567 else { 6568 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6569 TargetLowering::ConstraintType 6570 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6571 if (CType == TargetLowering::C_Memory) { 6572 hasMemory = true; 6573 break; 6574 } 6575 } 6576 } 6577 } 6578 6579 SDValue Chain, Flag; 6580 6581 // We won't need to flush pending loads if this asm doesn't touch 6582 // memory and is nonvolatile. 6583 if (hasMemory || IA->hasSideEffects()) 6584 Chain = getRoot(); 6585 else 6586 Chain = DAG.getRoot(); 6587 6588 // Second pass over the constraints: compute which constraint option to use 6589 // and assign registers to constraints that want a specific physreg. 6590 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6591 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6592 6593 // If this is an output operand with a matching input operand, look up the 6594 // matching input. If their types mismatch, e.g. one is an integer, the 6595 // other is floating point, or their sizes are different, flag it as an 6596 // error. 6597 if (OpInfo.hasMatchingInput()) { 6598 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6599 6600 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6601 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6602 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6603 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6604 OpInfo.ConstraintVT); 6605 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6606 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6607 Input.ConstraintVT); 6608 if ((OpInfo.ConstraintVT.isInteger() != 6609 Input.ConstraintVT.isInteger()) || 6610 (MatchRC.second != InputRC.second)) { 6611 report_fatal_error("Unsupported asm: input constraint" 6612 " with a matching output constraint of" 6613 " incompatible type!"); 6614 } 6615 Input.ConstraintVT = OpInfo.ConstraintVT; 6616 } 6617 } 6618 6619 // Compute the constraint code and ConstraintType to use. 6620 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6621 6622 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6623 OpInfo.Type == InlineAsm::isClobber) 6624 continue; 6625 6626 // If this is a memory input, and if the operand is not indirect, do what we 6627 // need to to provide an address for the memory input. 6628 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6629 !OpInfo.isIndirect) { 6630 assert((OpInfo.isMultipleAlternative || 6631 (OpInfo.Type == InlineAsm::isInput)) && 6632 "Can only indirectify direct input operands!"); 6633 6634 // Memory operands really want the address of the value. If we don't have 6635 // an indirect input, put it in the constpool if we can, otherwise spill 6636 // it to a stack slot. 6637 // TODO: This isn't quite right. We need to handle these according to 6638 // the addressing mode that the constraint wants. Also, this may take 6639 // an additional register for the computation and we don't want that 6640 // either. 6641 6642 // If the operand is a float, integer, or vector constant, spill to a 6643 // constant pool entry to get its address. 6644 const Value *OpVal = OpInfo.CallOperandVal; 6645 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6646 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6647 OpInfo.CallOperand = DAG.getConstantPool( 6648 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6649 } else { 6650 // Otherwise, create a stack slot and emit a store to it before the 6651 // asm. 6652 Type *Ty = OpVal->getType(); 6653 auto &DL = DAG.getDataLayout(); 6654 uint64_t TySize = DL.getTypeAllocSize(Ty); 6655 unsigned Align = DL.getPrefTypeAlignment(Ty); 6656 MachineFunction &MF = DAG.getMachineFunction(); 6657 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6658 SDValue StackSlot = 6659 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6660 Chain = DAG.getStore( 6661 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6662 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6663 false, false, 0); 6664 OpInfo.CallOperand = StackSlot; 6665 } 6666 6667 // There is no longer a Value* corresponding to this operand. 6668 OpInfo.CallOperandVal = nullptr; 6669 6670 // It is now an indirect operand. 6671 OpInfo.isIndirect = true; 6672 } 6673 6674 // If this constraint is for a specific register, allocate it before 6675 // anything else. 6676 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6677 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6678 } 6679 6680 // Second pass - Loop over all of the operands, assigning virtual or physregs 6681 // to register class operands. 6682 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6683 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6684 6685 // C_Register operands have already been allocated, Other/Memory don't need 6686 // to be. 6687 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6688 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6689 } 6690 6691 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6692 std::vector<SDValue> AsmNodeOperands; 6693 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6694 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6695 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6696 6697 // If we have a !srcloc metadata node associated with it, we want to attach 6698 // this to the ultimately generated inline asm machineinstr. To do this, we 6699 // pass in the third operand as this (potentially null) inline asm MDNode. 6700 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6701 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6702 6703 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6704 // bits as operand 3. 6705 unsigned ExtraInfo = 0; 6706 if (IA->hasSideEffects()) 6707 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6708 if (IA->isAlignStack()) 6709 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6710 // Set the asm dialect. 6711 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6712 6713 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6714 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6715 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6716 6717 // Compute the constraint code and ConstraintType to use. 6718 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6719 6720 // Ideally, we would only check against memory constraints. However, the 6721 // meaning of an other constraint can be target-specific and we can't easily 6722 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6723 // for other constriants as well. 6724 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6725 OpInfo.ConstraintType == TargetLowering::C_Other) { 6726 if (OpInfo.Type == InlineAsm::isInput) 6727 ExtraInfo |= InlineAsm::Extra_MayLoad; 6728 else if (OpInfo.Type == InlineAsm::isOutput) 6729 ExtraInfo |= InlineAsm::Extra_MayStore; 6730 else if (OpInfo.Type == InlineAsm::isClobber) 6731 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6732 } 6733 } 6734 6735 AsmNodeOperands.push_back(DAG.getTargetConstant( 6736 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6737 6738 // Loop over all of the inputs, copying the operand values into the 6739 // appropriate registers and processing the output regs. 6740 RegsForValue RetValRegs; 6741 6742 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6743 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6744 6745 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6746 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6747 6748 switch (OpInfo.Type) { 6749 case InlineAsm::isOutput: { 6750 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6751 OpInfo.ConstraintType != TargetLowering::C_Register) { 6752 // Memory output, or 'other' output (e.g. 'X' constraint). 6753 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6754 6755 unsigned ConstraintID = 6756 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6757 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6758 "Failed to convert memory constraint code to constraint id."); 6759 6760 // Add information to the INLINEASM node to know about this output. 6761 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6762 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6763 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6764 MVT::i32)); 6765 AsmNodeOperands.push_back(OpInfo.CallOperand); 6766 break; 6767 } 6768 6769 // Otherwise, this is a register or register class output. 6770 6771 // Copy the output from the appropriate register. Find a register that 6772 // we can use. 6773 if (OpInfo.AssignedRegs.Regs.empty()) { 6774 LLVMContext &Ctx = *DAG.getContext(); 6775 Ctx.emitError(CS.getInstruction(), 6776 "couldn't allocate output register for constraint '" + 6777 Twine(OpInfo.ConstraintCode) + "'"); 6778 return; 6779 } 6780 6781 // If this is an indirect operand, store through the pointer after the 6782 // asm. 6783 if (OpInfo.isIndirect) { 6784 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6785 OpInfo.CallOperandVal)); 6786 } else { 6787 // This is the result value of the call. 6788 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6789 // Concatenate this output onto the outputs list. 6790 RetValRegs.append(OpInfo.AssignedRegs); 6791 } 6792 6793 // Add information to the INLINEASM node to know that this register is 6794 // set. 6795 OpInfo.AssignedRegs 6796 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6797 ? InlineAsm::Kind_RegDefEarlyClobber 6798 : InlineAsm::Kind_RegDef, 6799 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6800 break; 6801 } 6802 case InlineAsm::isInput: { 6803 SDValue InOperandVal = OpInfo.CallOperand; 6804 6805 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6806 // If this is required to match an output register we have already set, 6807 // just use its register. 6808 unsigned OperandNo = OpInfo.getMatchedOperand(); 6809 6810 // Scan until we find the definition we already emitted of this operand. 6811 // When we find it, create a RegsForValue operand. 6812 unsigned CurOp = InlineAsm::Op_FirstOperand; 6813 for (; OperandNo; --OperandNo) { 6814 // Advance to the next operand. 6815 unsigned OpFlag = 6816 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6817 assert((InlineAsm::isRegDefKind(OpFlag) || 6818 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6819 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6820 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6821 } 6822 6823 unsigned OpFlag = 6824 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6825 if (InlineAsm::isRegDefKind(OpFlag) || 6826 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6827 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6828 if (OpInfo.isIndirect) { 6829 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6830 LLVMContext &Ctx = *DAG.getContext(); 6831 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6832 " don't know how to handle tied " 6833 "indirect register inputs"); 6834 return; 6835 } 6836 6837 RegsForValue MatchedRegs; 6838 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6839 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6840 MatchedRegs.RegVTs.push_back(RegVT); 6841 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6842 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6843 i != e; ++i) { 6844 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6845 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6846 else { 6847 LLVMContext &Ctx = *DAG.getContext(); 6848 Ctx.emitError(CS.getInstruction(), 6849 "inline asm error: This value" 6850 " type register class is not natively supported!"); 6851 return; 6852 } 6853 } 6854 SDLoc dl = getCurSDLoc(); 6855 // Use the produced MatchedRegs object to 6856 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6857 Chain, &Flag, CS.getInstruction()); 6858 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6859 true, OpInfo.getMatchedOperand(), dl, 6860 DAG, AsmNodeOperands); 6861 break; 6862 } 6863 6864 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6865 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6866 "Unexpected number of operands"); 6867 // Add information to the INLINEASM node to know about this input. 6868 // See InlineAsm.h isUseOperandTiedToDef. 6869 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6870 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6871 OpInfo.getMatchedOperand()); 6872 AsmNodeOperands.push_back(DAG.getTargetConstant( 6873 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6874 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6875 break; 6876 } 6877 6878 // Treat indirect 'X' constraint as memory. 6879 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6880 OpInfo.isIndirect) 6881 OpInfo.ConstraintType = TargetLowering::C_Memory; 6882 6883 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6884 std::vector<SDValue> Ops; 6885 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6886 Ops, DAG); 6887 if (Ops.empty()) { 6888 LLVMContext &Ctx = *DAG.getContext(); 6889 Ctx.emitError(CS.getInstruction(), 6890 "invalid operand for inline asm constraint '" + 6891 Twine(OpInfo.ConstraintCode) + "'"); 6892 return; 6893 } 6894 6895 // Add information to the INLINEASM node to know about this input. 6896 unsigned ResOpType = 6897 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6898 AsmNodeOperands.push_back(DAG.getTargetConstant( 6899 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6900 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6901 break; 6902 } 6903 6904 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6905 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6906 assert(InOperandVal.getValueType() == 6907 TLI.getPointerTy(DAG.getDataLayout()) && 6908 "Memory operands expect pointer values"); 6909 6910 unsigned ConstraintID = 6911 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6912 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6913 "Failed to convert memory constraint code to constraint id."); 6914 6915 // Add information to the INLINEASM node to know about this input. 6916 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6917 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6918 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6919 getCurSDLoc(), 6920 MVT::i32)); 6921 AsmNodeOperands.push_back(InOperandVal); 6922 break; 6923 } 6924 6925 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6926 OpInfo.ConstraintType == TargetLowering::C_Register) && 6927 "Unknown constraint type!"); 6928 6929 // TODO: Support this. 6930 if (OpInfo.isIndirect) { 6931 LLVMContext &Ctx = *DAG.getContext(); 6932 Ctx.emitError(CS.getInstruction(), 6933 "Don't know how to handle indirect register inputs yet " 6934 "for constraint '" + 6935 Twine(OpInfo.ConstraintCode) + "'"); 6936 return; 6937 } 6938 6939 // Copy the input into the appropriate registers. 6940 if (OpInfo.AssignedRegs.Regs.empty()) { 6941 LLVMContext &Ctx = *DAG.getContext(); 6942 Ctx.emitError(CS.getInstruction(), 6943 "couldn't allocate input reg for constraint '" + 6944 Twine(OpInfo.ConstraintCode) + "'"); 6945 return; 6946 } 6947 6948 SDLoc dl = getCurSDLoc(); 6949 6950 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6951 Chain, &Flag, CS.getInstruction()); 6952 6953 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6954 dl, DAG, AsmNodeOperands); 6955 break; 6956 } 6957 case InlineAsm::isClobber: { 6958 // Add the clobbered value to the operand list, so that the register 6959 // allocator is aware that the physreg got clobbered. 6960 if (!OpInfo.AssignedRegs.Regs.empty()) 6961 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6962 false, 0, getCurSDLoc(), DAG, 6963 AsmNodeOperands); 6964 break; 6965 } 6966 } 6967 } 6968 6969 // Finish up input operands. Set the input chain and add the flag last. 6970 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6971 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6972 6973 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6974 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6975 Flag = Chain.getValue(1); 6976 6977 // If this asm returns a register value, copy the result from that register 6978 // and set it as the value of the call. 6979 if (!RetValRegs.Regs.empty()) { 6980 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6981 Chain, &Flag, CS.getInstruction()); 6982 6983 // FIXME: Why don't we do this for inline asms with MRVs? 6984 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6985 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6986 6987 // If any of the results of the inline asm is a vector, it may have the 6988 // wrong width/num elts. This can happen for register classes that can 6989 // contain multiple different value types. The preg or vreg allocated may 6990 // not have the same VT as was expected. Convert it to the right type 6991 // with bit_convert. 6992 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6993 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6994 ResultType, Val); 6995 6996 } else if (ResultType != Val.getValueType() && 6997 ResultType.isInteger() && Val.getValueType().isInteger()) { 6998 // If a result value was tied to an input value, the computed result may 6999 // have a wider width than the expected result. Extract the relevant 7000 // portion. 7001 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7002 } 7003 7004 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7005 } 7006 7007 setValue(CS.getInstruction(), Val); 7008 // Don't need to use this as a chain in this case. 7009 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7010 return; 7011 } 7012 7013 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7014 7015 // Process indirect outputs, first output all of the flagged copies out of 7016 // physregs. 7017 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7018 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7019 const Value *Ptr = IndirectStoresToEmit[i].second; 7020 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7021 Chain, &Flag, IA); 7022 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7023 } 7024 7025 // Emit the non-flagged stores from the physregs. 7026 SmallVector<SDValue, 8> OutChains; 7027 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7028 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7029 StoresToEmit[i].first, 7030 getValue(StoresToEmit[i].second), 7031 MachinePointerInfo(StoresToEmit[i].second), 7032 false, false, 0); 7033 OutChains.push_back(Val); 7034 } 7035 7036 if (!OutChains.empty()) 7037 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7038 7039 DAG.setRoot(Chain); 7040 } 7041 7042 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7043 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7044 MVT::Other, getRoot(), 7045 getValue(I.getArgOperand(0)), 7046 DAG.getSrcValue(I.getArgOperand(0)))); 7047 } 7048 7049 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7050 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7051 const DataLayout &DL = DAG.getDataLayout(); 7052 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7053 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7054 DAG.getSrcValue(I.getOperand(0)), 7055 DL.getABITypeAlignment(I.getType())); 7056 setValue(&I, V); 7057 DAG.setRoot(V.getValue(1)); 7058 } 7059 7060 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7061 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7062 MVT::Other, getRoot(), 7063 getValue(I.getArgOperand(0)), 7064 DAG.getSrcValue(I.getArgOperand(0)))); 7065 } 7066 7067 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7068 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7069 MVT::Other, getRoot(), 7070 getValue(I.getArgOperand(0)), 7071 getValue(I.getArgOperand(1)), 7072 DAG.getSrcValue(I.getArgOperand(0)), 7073 DAG.getSrcValue(I.getArgOperand(1)))); 7074 } 7075 7076 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7077 const Instruction &I, 7078 SDValue Op) { 7079 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7080 if (!Range) 7081 return Op; 7082 7083 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 7084 if (!Lo->isNullValue()) 7085 return Op; 7086 7087 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 7088 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 7089 7090 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7091 7092 SDLoc SL = getCurSDLoc(); 7093 7094 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 7095 Op, DAG.getValueType(SmallVT)); 7096 unsigned NumVals = Op.getNode()->getNumValues(); 7097 if (NumVals == 1) 7098 return ZExt; 7099 7100 SmallVector<SDValue, 4> Ops; 7101 7102 Ops.push_back(ZExt); 7103 for (unsigned I = 1; I != NumVals; ++I) 7104 Ops.push_back(Op.getValue(I)); 7105 7106 return DAG.getMergeValues(Ops, SL); 7107 } 7108 7109 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7110 /// the call being lowered. 7111 /// 7112 /// This is a helper for lowering intrinsics that follow a target calling 7113 /// convention or require stack pointer adjustment. Only a subset of the 7114 /// intrinsic's operands need to participate in the calling convention. 7115 void SelectionDAGBuilder::populateCallLoweringInfo( 7116 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7117 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7118 bool IsPatchPoint) { 7119 TargetLowering::ArgListTy Args; 7120 Args.reserve(NumArgs); 7121 7122 // Populate the argument list. 7123 // Attributes for args start at offset 1, after the return attribute. 7124 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7125 ArgI != ArgE; ++ArgI) { 7126 const Value *V = CS->getOperand(ArgI); 7127 7128 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7129 7130 TargetLowering::ArgListEntry Entry; 7131 Entry.Node = getValue(V); 7132 Entry.Ty = V->getType(); 7133 Entry.setAttributes(&CS, AttrI); 7134 Args.push_back(Entry); 7135 } 7136 7137 CLI.setDebugLoc(getCurSDLoc()) 7138 .setChain(getRoot()) 7139 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 7140 NumArgs) 7141 .setDiscardResult(CS->use_empty()) 7142 .setIsPatchPoint(IsPatchPoint); 7143 } 7144 7145 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7146 /// or patchpoint target node's operand list. 7147 /// 7148 /// Constants are converted to TargetConstants purely as an optimization to 7149 /// avoid constant materialization and register allocation. 7150 /// 7151 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7152 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7153 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7154 /// address materialization and register allocation, but may also be required 7155 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7156 /// alloca in the entry block, then the runtime may assume that the alloca's 7157 /// StackMap location can be read immediately after compilation and that the 7158 /// location is valid at any point during execution (this is similar to the 7159 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7160 /// only available in a register, then the runtime would need to trap when 7161 /// execution reaches the StackMap in order to read the alloca's location. 7162 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7163 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 7164 SelectionDAGBuilder &Builder) { 7165 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7166 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7167 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7168 Ops.push_back( 7169 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7170 Ops.push_back( 7171 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7172 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7173 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7174 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7175 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 7176 } else 7177 Ops.push_back(OpVal); 7178 } 7179 } 7180 7181 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7182 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7183 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7184 // [live variables...]) 7185 7186 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7187 7188 SDValue Chain, InFlag, Callee, NullPtr; 7189 SmallVector<SDValue, 32> Ops; 7190 7191 SDLoc DL = getCurSDLoc(); 7192 Callee = getValue(CI.getCalledValue()); 7193 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7194 7195 // The stackmap intrinsic only records the live variables (the arguemnts 7196 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7197 // intrinsic, this won't be lowered to a function call. This means we don't 7198 // have to worry about calling conventions and target specific lowering code. 7199 // Instead we perform the call lowering right here. 7200 // 7201 // chain, flag = CALLSEQ_START(chain, 0) 7202 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7203 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7204 // 7205 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7206 InFlag = Chain.getValue(1); 7207 7208 // Add the <id> and <numBytes> constants. 7209 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7210 Ops.push_back(DAG.getTargetConstant( 7211 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7212 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7213 Ops.push_back(DAG.getTargetConstant( 7214 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7215 MVT::i32)); 7216 7217 // Push live variables for the stack map. 7218 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7219 7220 // We are not pushing any register mask info here on the operands list, 7221 // because the stackmap doesn't clobber anything. 7222 7223 // Push the chain and the glue flag. 7224 Ops.push_back(Chain); 7225 Ops.push_back(InFlag); 7226 7227 // Create the STACKMAP node. 7228 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7229 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7230 Chain = SDValue(SM, 0); 7231 InFlag = Chain.getValue(1); 7232 7233 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7234 7235 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7236 7237 // Set the root to the target-lowered call chain. 7238 DAG.setRoot(Chain); 7239 7240 // Inform the Frame Information that we have a stackmap in this function. 7241 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7242 } 7243 7244 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7245 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7246 const BasicBlock *EHPadBB) { 7247 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7248 // i32 <numBytes>, 7249 // i8* <target>, 7250 // i32 <numArgs>, 7251 // [Args...], 7252 // [live variables...]) 7253 7254 CallingConv::ID CC = CS.getCallingConv(); 7255 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7256 bool HasDef = !CS->getType()->isVoidTy(); 7257 SDLoc dl = getCurSDLoc(); 7258 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7259 7260 // Handle immediate and symbolic callees. 7261 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7262 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7263 /*isTarget=*/true); 7264 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7265 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7266 SDLoc(SymbolicCallee), 7267 SymbolicCallee->getValueType(0)); 7268 7269 // Get the real number of arguments participating in the call <numArgs> 7270 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7271 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7272 7273 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7274 // Intrinsics include all meta-operands up to but not including CC. 7275 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7276 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7277 "Not enough arguments provided to the patchpoint intrinsic"); 7278 7279 // For AnyRegCC the arguments are lowered later on manually. 7280 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7281 Type *ReturnTy = 7282 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7283 7284 TargetLowering::CallLoweringInfo CLI(DAG); 7285 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7286 true); 7287 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7288 7289 SDNode *CallEnd = Result.second.getNode(); 7290 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7291 CallEnd = CallEnd->getOperand(0).getNode(); 7292 7293 /// Get a call instruction from the call sequence chain. 7294 /// Tail calls are not allowed. 7295 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7296 "Expected a callseq node."); 7297 SDNode *Call = CallEnd->getOperand(0).getNode(); 7298 bool HasGlue = Call->getGluedNode(); 7299 7300 // Replace the target specific call node with the patchable intrinsic. 7301 SmallVector<SDValue, 8> Ops; 7302 7303 // Add the <id> and <numBytes> constants. 7304 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7305 Ops.push_back(DAG.getTargetConstant( 7306 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7307 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7308 Ops.push_back(DAG.getTargetConstant( 7309 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7310 MVT::i32)); 7311 7312 // Add the callee. 7313 Ops.push_back(Callee); 7314 7315 // Adjust <numArgs> to account for any arguments that have been passed on the 7316 // stack instead. 7317 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7318 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7319 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7320 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7321 7322 // Add the calling convention 7323 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7324 7325 // Add the arguments we omitted previously. The register allocator should 7326 // place these in any free register. 7327 if (IsAnyRegCC) 7328 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7329 Ops.push_back(getValue(CS.getArgument(i))); 7330 7331 // Push the arguments from the call instruction up to the register mask. 7332 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7333 Ops.append(Call->op_begin() + 2, e); 7334 7335 // Push live variables for the stack map. 7336 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7337 7338 // Push the register mask info. 7339 if (HasGlue) 7340 Ops.push_back(*(Call->op_end()-2)); 7341 else 7342 Ops.push_back(*(Call->op_end()-1)); 7343 7344 // Push the chain (this is originally the first operand of the call, but 7345 // becomes now the last or second to last operand). 7346 Ops.push_back(*(Call->op_begin())); 7347 7348 // Push the glue flag (last operand). 7349 if (HasGlue) 7350 Ops.push_back(*(Call->op_end()-1)); 7351 7352 SDVTList NodeTys; 7353 if (IsAnyRegCC && HasDef) { 7354 // Create the return types based on the intrinsic definition 7355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7356 SmallVector<EVT, 3> ValueVTs; 7357 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7358 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7359 7360 // There is always a chain and a glue type at the end 7361 ValueVTs.push_back(MVT::Other); 7362 ValueVTs.push_back(MVT::Glue); 7363 NodeTys = DAG.getVTList(ValueVTs); 7364 } else 7365 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7366 7367 // Replace the target specific call node with a PATCHPOINT node. 7368 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7369 dl, NodeTys, Ops); 7370 7371 // Update the NodeMap. 7372 if (HasDef) { 7373 if (IsAnyRegCC) 7374 setValue(CS.getInstruction(), SDValue(MN, 0)); 7375 else 7376 setValue(CS.getInstruction(), Result.first); 7377 } 7378 7379 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7380 // call sequence. Furthermore the location of the chain and glue can change 7381 // when the AnyReg calling convention is used and the intrinsic returns a 7382 // value. 7383 if (IsAnyRegCC && HasDef) { 7384 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7385 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7386 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7387 } else 7388 DAG.ReplaceAllUsesWith(Call, MN); 7389 DAG.DeleteNode(Call); 7390 7391 // Inform the Frame Information that we have a patchpoint in this function. 7392 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7393 } 7394 7395 /// Returns an AttributeSet representing the attributes applied to the return 7396 /// value of the given call. 7397 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7398 SmallVector<Attribute::AttrKind, 2> Attrs; 7399 if (CLI.RetSExt) 7400 Attrs.push_back(Attribute::SExt); 7401 if (CLI.RetZExt) 7402 Attrs.push_back(Attribute::ZExt); 7403 if (CLI.IsInReg) 7404 Attrs.push_back(Attribute::InReg); 7405 7406 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7407 Attrs); 7408 } 7409 7410 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7411 /// implementation, which just calls LowerCall. 7412 /// FIXME: When all targets are 7413 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7414 std::pair<SDValue, SDValue> 7415 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7416 // Handle the incoming return values from the call. 7417 CLI.Ins.clear(); 7418 Type *OrigRetTy = CLI.RetTy; 7419 SmallVector<EVT, 4> RetTys; 7420 SmallVector<uint64_t, 4> Offsets; 7421 auto &DL = CLI.DAG.getDataLayout(); 7422 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7423 7424 SmallVector<ISD::OutputArg, 4> Outs; 7425 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7426 7427 bool CanLowerReturn = 7428 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7429 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7430 7431 SDValue DemoteStackSlot; 7432 int DemoteStackIdx = -100; 7433 if (!CanLowerReturn) { 7434 // FIXME: equivalent assert? 7435 // assert(!CS.hasInAllocaArgument() && 7436 // "sret demotion is incompatible with inalloca"); 7437 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7438 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7439 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7440 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7441 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7442 7443 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7444 ArgListEntry Entry; 7445 Entry.Node = DemoteStackSlot; 7446 Entry.Ty = StackSlotPtrType; 7447 Entry.isSExt = false; 7448 Entry.isZExt = false; 7449 Entry.isInReg = false; 7450 Entry.isSRet = true; 7451 Entry.isNest = false; 7452 Entry.isByVal = false; 7453 Entry.isReturned = false; 7454 Entry.isSwiftSelf = false; 7455 Entry.isSwiftError = false; 7456 Entry.Alignment = Align; 7457 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7458 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7459 7460 // sret demotion isn't compatible with tail-calls, since the sret argument 7461 // points into the callers stack frame. 7462 CLI.IsTailCall = false; 7463 } else { 7464 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7465 EVT VT = RetTys[I]; 7466 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7467 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7468 for (unsigned i = 0; i != NumRegs; ++i) { 7469 ISD::InputArg MyFlags; 7470 MyFlags.VT = RegisterVT; 7471 MyFlags.ArgVT = VT; 7472 MyFlags.Used = CLI.IsReturnValueUsed; 7473 if (CLI.RetSExt) 7474 MyFlags.Flags.setSExt(); 7475 if (CLI.RetZExt) 7476 MyFlags.Flags.setZExt(); 7477 if (CLI.IsInReg) 7478 MyFlags.Flags.setInReg(); 7479 CLI.Ins.push_back(MyFlags); 7480 } 7481 } 7482 } 7483 7484 // We push in swifterror return as the last element of CLI.Ins. 7485 ArgListTy &Args = CLI.getArgs(); 7486 if (supportSwiftError()) { 7487 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7488 if (Args[i].isSwiftError) { 7489 ISD::InputArg MyFlags; 7490 MyFlags.VT = getPointerTy(DL); 7491 MyFlags.ArgVT = EVT(getPointerTy(DL)); 7492 MyFlags.Flags.setSwiftError(); 7493 CLI.Ins.push_back(MyFlags); 7494 } 7495 } 7496 } 7497 7498 // Handle all of the outgoing arguments. 7499 CLI.Outs.clear(); 7500 CLI.OutVals.clear(); 7501 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7502 SmallVector<EVT, 4> ValueVTs; 7503 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7504 Type *FinalType = Args[i].Ty; 7505 if (Args[i].isByVal) 7506 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7507 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7508 FinalType, CLI.CallConv, CLI.IsVarArg); 7509 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7510 ++Value) { 7511 EVT VT = ValueVTs[Value]; 7512 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7513 SDValue Op = SDValue(Args[i].Node.getNode(), 7514 Args[i].Node.getResNo() + Value); 7515 ISD::ArgFlagsTy Flags; 7516 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7517 7518 if (Args[i].isZExt) 7519 Flags.setZExt(); 7520 if (Args[i].isSExt) 7521 Flags.setSExt(); 7522 if (Args[i].isInReg) 7523 Flags.setInReg(); 7524 if (Args[i].isSRet) 7525 Flags.setSRet(); 7526 if (Args[i].isSwiftSelf) 7527 Flags.setSwiftSelf(); 7528 if (Args[i].isSwiftError) 7529 Flags.setSwiftError(); 7530 if (Args[i].isByVal) 7531 Flags.setByVal(); 7532 if (Args[i].isInAlloca) { 7533 Flags.setInAlloca(); 7534 // Set the byval flag for CCAssignFn callbacks that don't know about 7535 // inalloca. This way we can know how many bytes we should've allocated 7536 // and how many bytes a callee cleanup function will pop. If we port 7537 // inalloca to more targets, we'll have to add custom inalloca handling 7538 // in the various CC lowering callbacks. 7539 Flags.setByVal(); 7540 } 7541 if (Args[i].isByVal || Args[i].isInAlloca) { 7542 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7543 Type *ElementTy = Ty->getElementType(); 7544 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7545 // For ByVal, alignment should come from FE. BE will guess if this 7546 // info is not there but there are cases it cannot get right. 7547 unsigned FrameAlign; 7548 if (Args[i].Alignment) 7549 FrameAlign = Args[i].Alignment; 7550 else 7551 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7552 Flags.setByValAlign(FrameAlign); 7553 } 7554 if (Args[i].isNest) 7555 Flags.setNest(); 7556 if (NeedsRegBlock) 7557 Flags.setInConsecutiveRegs(); 7558 Flags.setOrigAlign(OriginalAlignment); 7559 7560 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7561 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7562 SmallVector<SDValue, 4> Parts(NumParts); 7563 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7564 7565 if (Args[i].isSExt) 7566 ExtendKind = ISD::SIGN_EXTEND; 7567 else if (Args[i].isZExt) 7568 ExtendKind = ISD::ZERO_EXTEND; 7569 7570 // Conservatively only handle 'returned' on non-vectors for now 7571 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7572 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7573 "unexpected use of 'returned'"); 7574 // Before passing 'returned' to the target lowering code, ensure that 7575 // either the register MVT and the actual EVT are the same size or that 7576 // the return value and argument are extended in the same way; in these 7577 // cases it's safe to pass the argument register value unchanged as the 7578 // return register value (although it's at the target's option whether 7579 // to do so) 7580 // TODO: allow code generation to take advantage of partially preserved 7581 // registers rather than clobbering the entire register when the 7582 // parameter extension method is not compatible with the return 7583 // extension method 7584 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7585 (ExtendKind != ISD::ANY_EXTEND && 7586 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7587 Flags.setReturned(); 7588 } 7589 7590 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7591 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7592 7593 for (unsigned j = 0; j != NumParts; ++j) { 7594 // if it isn't first piece, alignment must be 1 7595 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7596 i < CLI.NumFixedArgs, 7597 i, j*Parts[j].getValueType().getStoreSize()); 7598 if (NumParts > 1 && j == 0) 7599 MyFlags.Flags.setSplit(); 7600 else if (j != 0) { 7601 MyFlags.Flags.setOrigAlign(1); 7602 if (j == NumParts - 1) 7603 MyFlags.Flags.setSplitEnd(); 7604 } 7605 7606 CLI.Outs.push_back(MyFlags); 7607 CLI.OutVals.push_back(Parts[j]); 7608 } 7609 7610 if (NeedsRegBlock && Value == NumValues - 1) 7611 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7612 } 7613 } 7614 7615 SmallVector<SDValue, 4> InVals; 7616 CLI.Chain = LowerCall(CLI, InVals); 7617 7618 // Update CLI.InVals to use outside of this function. 7619 CLI.InVals = InVals; 7620 7621 // Verify that the target's LowerCall behaved as expected. 7622 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7623 "LowerCall didn't return a valid chain!"); 7624 assert((!CLI.IsTailCall || InVals.empty()) && 7625 "LowerCall emitted a return value for a tail call!"); 7626 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7627 "LowerCall didn't emit the correct number of values!"); 7628 7629 // For a tail call, the return value is merely live-out and there aren't 7630 // any nodes in the DAG representing it. Return a special value to 7631 // indicate that a tail call has been emitted and no more Instructions 7632 // should be processed in the current block. 7633 if (CLI.IsTailCall) { 7634 CLI.DAG.setRoot(CLI.Chain); 7635 return std::make_pair(SDValue(), SDValue()); 7636 } 7637 7638 #ifndef NDEBUG 7639 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7640 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 7641 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7642 "LowerCall emitted a value with the wrong type!"); 7643 } 7644 #endif 7645 7646 SmallVector<SDValue, 4> ReturnValues; 7647 if (!CanLowerReturn) { 7648 // The instruction result is the result of loading from the 7649 // hidden sret parameter. 7650 SmallVector<EVT, 1> PVTs; 7651 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7652 7653 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7654 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7655 EVT PtrVT = PVTs[0]; 7656 7657 unsigned NumValues = RetTys.size(); 7658 ReturnValues.resize(NumValues); 7659 SmallVector<SDValue, 4> Chains(NumValues); 7660 7661 // An aggregate return value cannot wrap around the address space, so 7662 // offsets to its parts don't wrap either. 7663 SDNodeFlags Flags; 7664 Flags.setNoUnsignedWrap(true); 7665 7666 for (unsigned i = 0; i < NumValues; ++i) { 7667 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7668 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7669 PtrVT), &Flags); 7670 SDValue L = CLI.DAG.getLoad( 7671 RetTys[i], CLI.DL, CLI.Chain, Add, 7672 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7673 DemoteStackIdx, Offsets[i]), 7674 false, false, false, 1); 7675 ReturnValues[i] = L; 7676 Chains[i] = L.getValue(1); 7677 } 7678 7679 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7680 } else { 7681 // Collect the legal value parts into potentially illegal values 7682 // that correspond to the original function's return values. 7683 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7684 if (CLI.RetSExt) 7685 AssertOp = ISD::AssertSext; 7686 else if (CLI.RetZExt) 7687 AssertOp = ISD::AssertZext; 7688 unsigned CurReg = 0; 7689 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7690 EVT VT = RetTys[I]; 7691 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7692 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7693 7694 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7695 NumRegs, RegisterVT, VT, nullptr, 7696 AssertOp)); 7697 CurReg += NumRegs; 7698 } 7699 7700 // For a function returning void, there is no return value. We can't create 7701 // such a node, so we just return a null return value in that case. In 7702 // that case, nothing will actually look at the value. 7703 if (ReturnValues.empty()) 7704 return std::make_pair(SDValue(), CLI.Chain); 7705 } 7706 7707 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7708 CLI.DAG.getVTList(RetTys), ReturnValues); 7709 return std::make_pair(Res, CLI.Chain); 7710 } 7711 7712 void TargetLowering::LowerOperationWrapper(SDNode *N, 7713 SmallVectorImpl<SDValue> &Results, 7714 SelectionDAG &DAG) const { 7715 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7716 Results.push_back(Res); 7717 } 7718 7719 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7720 llvm_unreachable("LowerOperation not implemented for this target!"); 7721 } 7722 7723 void 7724 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7725 SDValue Op = getNonRegisterValue(V); 7726 assert((Op.getOpcode() != ISD::CopyFromReg || 7727 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7728 "Copy from a reg to the same reg!"); 7729 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7730 7731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7732 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7733 V->getType()); 7734 SDValue Chain = DAG.getEntryNode(); 7735 7736 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7737 FuncInfo.PreferredExtendType.end()) 7738 ? ISD::ANY_EXTEND 7739 : FuncInfo.PreferredExtendType[V]; 7740 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7741 PendingExports.push_back(Chain); 7742 } 7743 7744 #include "llvm/CodeGen/SelectionDAGISel.h" 7745 7746 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7747 /// entry block, return true. This includes arguments used by switches, since 7748 /// the switch may expand into multiple basic blocks. 7749 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7750 // With FastISel active, we may be splitting blocks, so force creation 7751 // of virtual registers for all non-dead arguments. 7752 if (FastISel) 7753 return A->use_empty(); 7754 7755 const BasicBlock &Entry = A->getParent()->front(); 7756 for (const User *U : A->users()) 7757 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7758 return false; // Use not in entry block. 7759 7760 return true; 7761 } 7762 7763 void SelectionDAGISel::LowerArguments(const Function &F) { 7764 SelectionDAG &DAG = SDB->DAG; 7765 SDLoc dl = SDB->getCurSDLoc(); 7766 const DataLayout &DL = DAG.getDataLayout(); 7767 SmallVector<ISD::InputArg, 16> Ins; 7768 7769 if (!FuncInfo->CanLowerReturn) { 7770 // Put in an sret pointer parameter before all the other parameters. 7771 SmallVector<EVT, 1> ValueVTs; 7772 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7773 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7774 7775 // NOTE: Assuming that a pointer will never break down to more than one VT 7776 // or one register. 7777 ISD::ArgFlagsTy Flags; 7778 Flags.setSRet(); 7779 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7780 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7781 ISD::InputArg::NoArgIndex, 0); 7782 Ins.push_back(RetArg); 7783 } 7784 7785 // Set up the incoming argument description vector. 7786 unsigned Idx = 1; 7787 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7788 I != E; ++I, ++Idx) { 7789 SmallVector<EVT, 4> ValueVTs; 7790 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7791 bool isArgValueUsed = !I->use_empty(); 7792 unsigned PartBase = 0; 7793 Type *FinalType = I->getType(); 7794 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7795 FinalType = cast<PointerType>(FinalType)->getElementType(); 7796 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7797 FinalType, F.getCallingConv(), F.isVarArg()); 7798 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7799 Value != NumValues; ++Value) { 7800 EVT VT = ValueVTs[Value]; 7801 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7802 ISD::ArgFlagsTy Flags; 7803 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7804 7805 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7806 Flags.setZExt(); 7807 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7808 Flags.setSExt(); 7809 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7810 Flags.setInReg(); 7811 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7812 Flags.setSRet(); 7813 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf)) 7814 Flags.setSwiftSelf(); 7815 if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) 7816 Flags.setSwiftError(); 7817 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7818 Flags.setByVal(); 7819 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7820 Flags.setInAlloca(); 7821 // Set the byval flag for CCAssignFn callbacks that don't know about 7822 // inalloca. This way we can know how many bytes we should've allocated 7823 // and how many bytes a callee cleanup function will pop. If we port 7824 // inalloca to more targets, we'll have to add custom inalloca handling 7825 // in the various CC lowering callbacks. 7826 Flags.setByVal(); 7827 } 7828 if (F.getCallingConv() == CallingConv::X86_INTR) { 7829 // IA Interrupt passes frame (1st parameter) by value in the stack. 7830 if (Idx == 1) 7831 Flags.setByVal(); 7832 } 7833 if (Flags.isByVal() || Flags.isInAlloca()) { 7834 PointerType *Ty = cast<PointerType>(I->getType()); 7835 Type *ElementTy = Ty->getElementType(); 7836 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7837 // For ByVal, alignment should be passed from FE. BE will guess if 7838 // this info is not there but there are cases it cannot get right. 7839 unsigned FrameAlign; 7840 if (F.getParamAlignment(Idx)) 7841 FrameAlign = F.getParamAlignment(Idx); 7842 else 7843 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7844 Flags.setByValAlign(FrameAlign); 7845 } 7846 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7847 Flags.setNest(); 7848 if (NeedsRegBlock) 7849 Flags.setInConsecutiveRegs(); 7850 Flags.setOrigAlign(OriginalAlignment); 7851 7852 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7853 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7854 for (unsigned i = 0; i != NumRegs; ++i) { 7855 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7856 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7857 if (NumRegs > 1 && i == 0) 7858 MyFlags.Flags.setSplit(); 7859 // if it isn't first piece, alignment must be 1 7860 else if (i > 0) { 7861 MyFlags.Flags.setOrigAlign(1); 7862 if (i == NumRegs - 1) 7863 MyFlags.Flags.setSplitEnd(); 7864 } 7865 Ins.push_back(MyFlags); 7866 } 7867 if (NeedsRegBlock && Value == NumValues - 1) 7868 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7869 PartBase += VT.getStoreSize(); 7870 } 7871 } 7872 7873 // Call the target to set up the argument values. 7874 SmallVector<SDValue, 8> InVals; 7875 SDValue NewRoot = TLI->LowerFormalArguments( 7876 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7877 7878 // Verify that the target's LowerFormalArguments behaved as expected. 7879 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7880 "LowerFormalArguments didn't return a valid chain!"); 7881 assert(InVals.size() == Ins.size() && 7882 "LowerFormalArguments didn't emit the correct number of values!"); 7883 DEBUG({ 7884 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7885 assert(InVals[i].getNode() && 7886 "LowerFormalArguments emitted a null value!"); 7887 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7888 "LowerFormalArguments emitted a value with the wrong type!"); 7889 } 7890 }); 7891 7892 // Update the DAG with the new chain value resulting from argument lowering. 7893 DAG.setRoot(NewRoot); 7894 7895 // Set up the argument values. 7896 unsigned i = 0; 7897 Idx = 1; 7898 if (!FuncInfo->CanLowerReturn) { 7899 // Create a virtual register for the sret pointer, and put in a copy 7900 // from the sret argument into it. 7901 SmallVector<EVT, 1> ValueVTs; 7902 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7903 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7904 MVT VT = ValueVTs[0].getSimpleVT(); 7905 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7906 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7907 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7908 RegVT, VT, nullptr, AssertOp); 7909 7910 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7911 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7912 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7913 FuncInfo->DemoteRegister = SRetReg; 7914 NewRoot = 7915 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7916 DAG.setRoot(NewRoot); 7917 7918 // i indexes lowered arguments. Bump it past the hidden sret argument. 7919 // Idx indexes LLVM arguments. Don't touch it. 7920 ++i; 7921 } 7922 7923 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7924 ++I, ++Idx) { 7925 SmallVector<SDValue, 4> ArgValues; 7926 SmallVector<EVT, 4> ValueVTs; 7927 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7928 unsigned NumValues = ValueVTs.size(); 7929 7930 // If this argument is unused then remember its value. It is used to generate 7931 // debugging information. 7932 if (I->use_empty() && NumValues) { 7933 SDB->setUnusedArgValue(&*I, InVals[i]); 7934 7935 // Also remember any frame index for use in FastISel. 7936 if (FrameIndexSDNode *FI = 7937 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7938 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7939 } 7940 7941 for (unsigned Val = 0; Val != NumValues; ++Val) { 7942 EVT VT = ValueVTs[Val]; 7943 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7944 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7945 7946 if (!I->use_empty()) { 7947 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7948 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7949 AssertOp = ISD::AssertSext; 7950 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7951 AssertOp = ISD::AssertZext; 7952 7953 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7954 NumParts, PartVT, VT, 7955 nullptr, AssertOp)); 7956 } 7957 7958 i += NumParts; 7959 } 7960 7961 // We don't need to do anything else for unused arguments. 7962 if (ArgValues.empty()) 7963 continue; 7964 7965 // Note down frame index. 7966 if (FrameIndexSDNode *FI = 7967 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7968 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7969 7970 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7971 SDB->getCurSDLoc()); 7972 7973 SDB->setValue(&*I, Res); 7974 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7975 if (LoadSDNode *LNode = 7976 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7977 if (FrameIndexSDNode *FI = 7978 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7979 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7980 } 7981 7982 // Update SwiftErrorMap. 7983 if (Res.getOpcode() == ISD::CopyFromReg && TLI->supportSwiftError() && 7984 F.getAttributes().hasAttribute(Idx, Attribute::SwiftError)) { 7985 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7986 if (TargetRegisterInfo::isVirtualRegister(Reg)) 7987 FuncInfo->SwiftErrorMap[FuncInfo->MBB][0] = Reg; 7988 } 7989 7990 // If this argument is live outside of the entry block, insert a copy from 7991 // wherever we got it to the vreg that other BB's will reference it as. 7992 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7993 // If we can, though, try to skip creating an unnecessary vreg. 7994 // FIXME: This isn't very clean... it would be nice to make this more 7995 // general. It's also subtly incompatible with the hacks FastISel 7996 // uses with vregs. 7997 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7998 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7999 FuncInfo->ValueMap[&*I] = Reg; 8000 continue; 8001 } 8002 } 8003 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 8004 FuncInfo->InitializeRegForValue(&*I); 8005 SDB->CopyToExportRegsIfNeeded(&*I); 8006 } 8007 } 8008 8009 assert(i == InVals.size() && "Argument register count mismatch!"); 8010 8011 // Finally, if the target has anything special to do, allow it to do so. 8012 EmitFunctionEntryCode(); 8013 } 8014 8015 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8016 /// ensure constants are generated when needed. Remember the virtual registers 8017 /// that need to be added to the Machine PHI nodes as input. We cannot just 8018 /// directly add them, because expansion might result in multiple MBB's for one 8019 /// BB. As such, the start of the BB might correspond to a different MBB than 8020 /// the end. 8021 /// 8022 void 8023 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8024 const TerminatorInst *TI = LLVMBB->getTerminator(); 8025 8026 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8027 8028 // Check PHI nodes in successors that expect a value to be available from this 8029 // block. 8030 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8031 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8032 if (!isa<PHINode>(SuccBB->begin())) continue; 8033 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8034 8035 // If this terminator has multiple identical successors (common for 8036 // switches), only handle each succ once. 8037 if (!SuccsHandled.insert(SuccMBB).second) 8038 continue; 8039 8040 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8041 8042 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8043 // nodes and Machine PHI nodes, but the incoming operands have not been 8044 // emitted yet. 8045 for (BasicBlock::const_iterator I = SuccBB->begin(); 8046 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8047 // Ignore dead phi's. 8048 if (PN->use_empty()) continue; 8049 8050 // Skip empty types 8051 if (PN->getType()->isEmptyTy()) 8052 continue; 8053 8054 unsigned Reg; 8055 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8056 8057 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8058 unsigned &RegOut = ConstantsOut[C]; 8059 if (RegOut == 0) { 8060 RegOut = FuncInfo.CreateRegs(C->getType()); 8061 CopyValueToVirtualRegister(C, RegOut); 8062 } 8063 Reg = RegOut; 8064 } else { 8065 DenseMap<const Value *, unsigned>::iterator I = 8066 FuncInfo.ValueMap.find(PHIOp); 8067 if (I != FuncInfo.ValueMap.end()) 8068 Reg = I->second; 8069 else { 8070 assert(isa<AllocaInst>(PHIOp) && 8071 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8072 "Didn't codegen value into a register!??"); 8073 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8074 CopyValueToVirtualRegister(PHIOp, Reg); 8075 } 8076 } 8077 8078 // Remember that this register needs to added to the machine PHI node as 8079 // the input for this MBB. 8080 SmallVector<EVT, 4> ValueVTs; 8081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8082 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8083 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8084 EVT VT = ValueVTs[vti]; 8085 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8086 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8087 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 8088 Reg += NumRegisters; 8089 } 8090 } 8091 } 8092 8093 ConstantsOut.clear(); 8094 } 8095 8096 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8097 /// is 0. 8098 MachineBasicBlock * 8099 SelectionDAGBuilder::StackProtectorDescriptor:: 8100 AddSuccessorMBB(const BasicBlock *BB, 8101 MachineBasicBlock *ParentMBB, 8102 bool IsLikely, 8103 MachineBasicBlock *SuccMBB) { 8104 // If SuccBB has not been created yet, create it. 8105 if (!SuccMBB) { 8106 MachineFunction *MF = ParentMBB->getParent(); 8107 MachineFunction::iterator BBI(ParentMBB); 8108 SuccMBB = MF->CreateMachineBasicBlock(BB); 8109 MF->insert(++BBI, SuccMBB); 8110 } 8111 // Add it as a successor of ParentMBB. 8112 ParentMBB->addSuccessor( 8113 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8114 return SuccMBB; 8115 } 8116 8117 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8118 MachineFunction::iterator I(MBB); 8119 if (++I == FuncInfo.MF->end()) 8120 return nullptr; 8121 return &*I; 8122 } 8123 8124 /// During lowering new call nodes can be created (such as memset, etc.). 8125 /// Those will become new roots of the current DAG, but complications arise 8126 /// when they are tail calls. In such cases, the call lowering will update 8127 /// the root, but the builder still needs to know that a tail call has been 8128 /// lowered in order to avoid generating an additional return. 8129 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8130 // If the node is null, we do have a tail call. 8131 if (MaybeTC.getNode() != nullptr) 8132 DAG.setRoot(MaybeTC); 8133 else 8134 HasTailCall = true; 8135 } 8136 8137 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 8138 unsigned *TotalCases, unsigned First, 8139 unsigned Last, 8140 unsigned Density) { 8141 assert(Last >= First); 8142 assert(TotalCases[Last] >= TotalCases[First]); 8143 8144 APInt LowCase = Clusters[First].Low->getValue(); 8145 APInt HighCase = Clusters[Last].High->getValue(); 8146 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8147 8148 // FIXME: A range of consecutive cases has 100% density, but only requires one 8149 // comparison to lower. We should discriminate against such consecutive ranges 8150 // in jump tables. 8151 8152 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 8153 uint64_t Range = Diff + 1; 8154 8155 uint64_t NumCases = 8156 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8157 8158 assert(NumCases < UINT64_MAX / 100); 8159 assert(Range >= NumCases); 8160 8161 return NumCases * 100 >= Range * Density; 8162 } 8163 8164 static inline bool areJTsAllowed(const TargetLowering &TLI, 8165 const SwitchInst *SI) { 8166 const Function *Fn = SI->getParent()->getParent(); 8167 if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") 8168 return false; 8169 8170 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 8171 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 8172 } 8173 8174 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 8175 unsigned First, unsigned Last, 8176 const SwitchInst *SI, 8177 MachineBasicBlock *DefaultMBB, 8178 CaseCluster &JTCluster) { 8179 assert(First <= Last); 8180 8181 auto Prob = BranchProbability::getZero(); 8182 unsigned NumCmps = 0; 8183 std::vector<MachineBasicBlock*> Table; 8184 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8185 8186 // Initialize probabilities in JTProbs. 8187 for (unsigned I = First; I <= Last; ++I) 8188 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8189 8190 for (unsigned I = First; I <= Last; ++I) { 8191 assert(Clusters[I].Kind == CC_Range); 8192 Prob += Clusters[I].Prob; 8193 APInt Low = Clusters[I].Low->getValue(); 8194 APInt High = Clusters[I].High->getValue(); 8195 NumCmps += (Low == High) ? 1 : 2; 8196 if (I != First) { 8197 // Fill the gap between this and the previous cluster. 8198 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 8199 assert(PreviousHigh.slt(Low)); 8200 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8201 for (uint64_t J = 0; J < Gap; J++) 8202 Table.push_back(DefaultMBB); 8203 } 8204 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8205 for (uint64_t J = 0; J < ClusterSize; ++J) 8206 Table.push_back(Clusters[I].MBB); 8207 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8208 } 8209 8210 unsigned NumDests = JTProbs.size(); 8211 if (isSuitableForBitTests(NumDests, NumCmps, 8212 Clusters[First].Low->getValue(), 8213 Clusters[Last].High->getValue())) { 8214 // Clusters[First..Last] should be lowered as bit tests instead. 8215 return false; 8216 } 8217 8218 // Create the MBB that will load from and jump through the table. 8219 // Note: We create it here, but it's not inserted into the function yet. 8220 MachineFunction *CurMF = FuncInfo.MF; 8221 MachineBasicBlock *JumpTableMBB = 8222 CurMF->CreateMachineBasicBlock(SI->getParent()); 8223 8224 // Add successors. Note: use table order for determinism. 8225 SmallPtrSet<MachineBasicBlock *, 8> Done; 8226 for (MachineBasicBlock *Succ : Table) { 8227 if (Done.count(Succ)) 8228 continue; 8229 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8230 Done.insert(Succ); 8231 } 8232 JumpTableMBB->normalizeSuccProbs(); 8233 8234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8235 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8236 ->createJumpTableIndex(Table); 8237 8238 // Set up the jump table info. 8239 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8240 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8241 Clusters[Last].High->getValue(), SI->getCondition(), 8242 nullptr, false); 8243 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8244 8245 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8246 JTCases.size() - 1, Prob); 8247 return true; 8248 } 8249 8250 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8251 const SwitchInst *SI, 8252 MachineBasicBlock *DefaultMBB) { 8253 #ifndef NDEBUG 8254 // Clusters must be non-empty, sorted, and only contain Range clusters. 8255 assert(!Clusters.empty()); 8256 for (CaseCluster &C : Clusters) 8257 assert(C.Kind == CC_Range); 8258 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8259 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8260 #endif 8261 8262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8263 if (!areJTsAllowed(TLI, SI)) 8264 return; 8265 8266 const int64_t N = Clusters.size(); 8267 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8268 8269 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8270 SmallVector<unsigned, 8> TotalCases(N); 8271 8272 for (unsigned i = 0; i < N; ++i) { 8273 APInt Hi = Clusters[i].High->getValue(); 8274 APInt Lo = Clusters[i].Low->getValue(); 8275 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8276 if (i != 0) 8277 TotalCases[i] += TotalCases[i - 1]; 8278 } 8279 8280 unsigned MinDensity = JumpTableDensity; 8281 if (DefaultMBB->getParent()->getFunction()->optForSize()) 8282 MinDensity = OptsizeJumpTableDensity; 8283 if (N >= MinJumpTableSize 8284 && isDense(Clusters, &TotalCases[0], 0, N - 1, MinDensity)) { 8285 // Cheap case: the whole range might be suitable for jump table. 8286 CaseCluster JTCluster; 8287 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8288 Clusters[0] = JTCluster; 8289 Clusters.resize(1); 8290 return; 8291 } 8292 } 8293 8294 // The algorithm below is not suitable for -O0. 8295 if (TM.getOptLevel() == CodeGenOpt::None) 8296 return; 8297 8298 // Split Clusters into minimum number of dense partitions. The algorithm uses 8299 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8300 // for the Case Statement'" (1994), but builds the MinPartitions array in 8301 // reverse order to make it easier to reconstruct the partitions in ascending 8302 // order. In the choice between two optimal partitionings, it picks the one 8303 // which yields more jump tables. 8304 8305 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8306 SmallVector<unsigned, 8> MinPartitions(N); 8307 // LastElement[i] is the last element of the partition starting at i. 8308 SmallVector<unsigned, 8> LastElement(N); 8309 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8310 SmallVector<unsigned, 8> NumTables(N); 8311 8312 // Base case: There is only one way to partition Clusters[N-1]. 8313 MinPartitions[N - 1] = 1; 8314 LastElement[N - 1] = N - 1; 8315 assert(MinJumpTableSize > 1); 8316 NumTables[N - 1] = 0; 8317 8318 // Note: loop indexes are signed to avoid underflow. 8319 for (int64_t i = N - 2; i >= 0; i--) { 8320 // Find optimal partitioning of Clusters[i..N-1]. 8321 // Baseline: Put Clusters[i] into a partition on its own. 8322 MinPartitions[i] = MinPartitions[i + 1] + 1; 8323 LastElement[i] = i; 8324 NumTables[i] = NumTables[i + 1]; 8325 8326 // Search for a solution that results in fewer partitions. 8327 for (int64_t j = N - 1; j > i; j--) { 8328 // Try building a partition from Clusters[i..j]. 8329 if (isDense(Clusters, &TotalCases[0], i, j, MinDensity)) { 8330 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8331 bool IsTable = j - i + 1 >= MinJumpTableSize; 8332 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8333 8334 // If this j leads to fewer partitions, or same number of partitions 8335 // with more lookup tables, it is a better partitioning. 8336 if (NumPartitions < MinPartitions[i] || 8337 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8338 MinPartitions[i] = NumPartitions; 8339 LastElement[i] = j; 8340 NumTables[i] = Tables; 8341 } 8342 } 8343 } 8344 } 8345 8346 // Iterate over the partitions, replacing some with jump tables in-place. 8347 unsigned DstIndex = 0; 8348 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8349 Last = LastElement[First]; 8350 assert(Last >= First); 8351 assert(DstIndex <= First); 8352 unsigned NumClusters = Last - First + 1; 8353 8354 CaseCluster JTCluster; 8355 if (NumClusters >= MinJumpTableSize && 8356 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8357 Clusters[DstIndex++] = JTCluster; 8358 } else { 8359 for (unsigned I = First; I <= Last; ++I) 8360 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8361 } 8362 } 8363 Clusters.resize(DstIndex); 8364 } 8365 8366 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8367 // FIXME: Using the pointer type doesn't seem ideal. 8368 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8369 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8370 return Range <= BW; 8371 } 8372 8373 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8374 unsigned NumCmps, 8375 const APInt &Low, 8376 const APInt &High) { 8377 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8378 // range of cases both require only one branch to lower. Just looking at the 8379 // number of clusters and destinations should be enough to decide whether to 8380 // build bit tests. 8381 8382 // To lower a range with bit tests, the range must fit the bitwidth of a 8383 // machine word. 8384 if (!rangeFitsInWord(Low, High)) 8385 return false; 8386 8387 // Decide whether it's profitable to lower this range with bit tests. Each 8388 // destination requires a bit test and branch, and there is an overall range 8389 // check branch. For a small number of clusters, separate comparisons might be 8390 // cheaper, and for many destinations, splitting the range might be better. 8391 return (NumDests == 1 && NumCmps >= 3) || 8392 (NumDests == 2 && NumCmps >= 5) || 8393 (NumDests == 3 && NumCmps >= 6); 8394 } 8395 8396 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8397 unsigned First, unsigned Last, 8398 const SwitchInst *SI, 8399 CaseCluster &BTCluster) { 8400 assert(First <= Last); 8401 if (First == Last) 8402 return false; 8403 8404 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8405 unsigned NumCmps = 0; 8406 for (int64_t I = First; I <= Last; ++I) { 8407 assert(Clusters[I].Kind == CC_Range); 8408 Dests.set(Clusters[I].MBB->getNumber()); 8409 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8410 } 8411 unsigned NumDests = Dests.count(); 8412 8413 APInt Low = Clusters[First].Low->getValue(); 8414 APInt High = Clusters[Last].High->getValue(); 8415 assert(Low.slt(High)); 8416 8417 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8418 return false; 8419 8420 APInt LowBound; 8421 APInt CmpRange; 8422 8423 const int BitWidth = DAG.getTargetLoweringInfo() 8424 .getPointerTy(DAG.getDataLayout()) 8425 .getSizeInBits(); 8426 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8427 8428 // Check if the clusters cover a contiguous range such that no value in the 8429 // range will jump to the default statement. 8430 bool ContiguousRange = true; 8431 for (int64_t I = First + 1; I <= Last; ++I) { 8432 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8433 ContiguousRange = false; 8434 break; 8435 } 8436 } 8437 8438 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8439 // Optimize the case where all the case values fit in a word without having 8440 // to subtract minValue. In this case, we can optimize away the subtraction. 8441 LowBound = APInt::getNullValue(Low.getBitWidth()); 8442 CmpRange = High; 8443 ContiguousRange = false; 8444 } else { 8445 LowBound = Low; 8446 CmpRange = High - Low; 8447 } 8448 8449 CaseBitsVector CBV; 8450 auto TotalProb = BranchProbability::getZero(); 8451 for (unsigned i = First; i <= Last; ++i) { 8452 // Find the CaseBits for this destination. 8453 unsigned j; 8454 for (j = 0; j < CBV.size(); ++j) 8455 if (CBV[j].BB == Clusters[i].MBB) 8456 break; 8457 if (j == CBV.size()) 8458 CBV.push_back( 8459 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8460 CaseBits *CB = &CBV[j]; 8461 8462 // Update Mask, Bits and ExtraProb. 8463 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8464 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8465 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8466 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8467 CB->Bits += Hi - Lo + 1; 8468 CB->ExtraProb += Clusters[i].Prob; 8469 TotalProb += Clusters[i].Prob; 8470 } 8471 8472 BitTestInfo BTI; 8473 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8474 // Sort by probability first, number of bits second. 8475 if (a.ExtraProb != b.ExtraProb) 8476 return a.ExtraProb > b.ExtraProb; 8477 return a.Bits > b.Bits; 8478 }); 8479 8480 for (auto &CB : CBV) { 8481 MachineBasicBlock *BitTestBB = 8482 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8483 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8484 } 8485 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8486 SI->getCondition(), -1U, MVT::Other, false, 8487 ContiguousRange, nullptr, nullptr, std::move(BTI), 8488 TotalProb); 8489 8490 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8491 BitTestCases.size() - 1, TotalProb); 8492 return true; 8493 } 8494 8495 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8496 const SwitchInst *SI) { 8497 // Partition Clusters into as few subsets as possible, where each subset has a 8498 // range that fits in a machine word and has <= 3 unique destinations. 8499 8500 #ifndef NDEBUG 8501 // Clusters must be sorted and contain Range or JumpTable clusters. 8502 assert(!Clusters.empty()); 8503 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8504 for (const CaseCluster &C : Clusters) 8505 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8506 for (unsigned i = 1; i < Clusters.size(); ++i) 8507 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8508 #endif 8509 8510 // The algorithm below is not suitable for -O0. 8511 if (TM.getOptLevel() == CodeGenOpt::None) 8512 return; 8513 8514 // If target does not have legal shift left, do not emit bit tests at all. 8515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8516 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8517 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8518 return; 8519 8520 int BitWidth = PTy.getSizeInBits(); 8521 const int64_t N = Clusters.size(); 8522 8523 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8524 SmallVector<unsigned, 8> MinPartitions(N); 8525 // LastElement[i] is the last element of the partition starting at i. 8526 SmallVector<unsigned, 8> LastElement(N); 8527 8528 // FIXME: This might not be the best algorithm for finding bit test clusters. 8529 8530 // Base case: There is only one way to partition Clusters[N-1]. 8531 MinPartitions[N - 1] = 1; 8532 LastElement[N - 1] = N - 1; 8533 8534 // Note: loop indexes are signed to avoid underflow. 8535 for (int64_t i = N - 2; i >= 0; --i) { 8536 // Find optimal partitioning of Clusters[i..N-1]. 8537 // Baseline: Put Clusters[i] into a partition on its own. 8538 MinPartitions[i] = MinPartitions[i + 1] + 1; 8539 LastElement[i] = i; 8540 8541 // Search for a solution that results in fewer partitions. 8542 // Note: the search is limited by BitWidth, reducing time complexity. 8543 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8544 // Try building a partition from Clusters[i..j]. 8545 8546 // Check the range. 8547 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8548 Clusters[j].High->getValue())) 8549 continue; 8550 8551 // Check nbr of destinations and cluster types. 8552 // FIXME: This works, but doesn't seem very efficient. 8553 bool RangesOnly = true; 8554 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8555 for (int64_t k = i; k <= j; k++) { 8556 if (Clusters[k].Kind != CC_Range) { 8557 RangesOnly = false; 8558 break; 8559 } 8560 Dests.set(Clusters[k].MBB->getNumber()); 8561 } 8562 if (!RangesOnly || Dests.count() > 3) 8563 break; 8564 8565 // Check if it's a better partition. 8566 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8567 if (NumPartitions < MinPartitions[i]) { 8568 // Found a better partition. 8569 MinPartitions[i] = NumPartitions; 8570 LastElement[i] = j; 8571 } 8572 } 8573 } 8574 8575 // Iterate over the partitions, replacing with bit-test clusters in-place. 8576 unsigned DstIndex = 0; 8577 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8578 Last = LastElement[First]; 8579 assert(First <= Last); 8580 assert(DstIndex <= First); 8581 8582 CaseCluster BitTestCluster; 8583 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8584 Clusters[DstIndex++] = BitTestCluster; 8585 } else { 8586 size_t NumClusters = Last - First + 1; 8587 std::memmove(&Clusters[DstIndex], &Clusters[First], 8588 sizeof(Clusters[0]) * NumClusters); 8589 DstIndex += NumClusters; 8590 } 8591 } 8592 Clusters.resize(DstIndex); 8593 } 8594 8595 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8596 MachineBasicBlock *SwitchMBB, 8597 MachineBasicBlock *DefaultMBB) { 8598 MachineFunction *CurMF = FuncInfo.MF; 8599 MachineBasicBlock *NextMBB = nullptr; 8600 MachineFunction::iterator BBI(W.MBB); 8601 if (++BBI != FuncInfo.MF->end()) 8602 NextMBB = &*BBI; 8603 8604 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8605 8606 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8607 8608 if (Size == 2 && W.MBB == SwitchMBB) { 8609 // If any two of the cases has the same destination, and if one value 8610 // is the same as the other, but has one bit unset that the other has set, 8611 // use bit manipulation to do two compares at once. For example: 8612 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8613 // TODO: This could be extended to merge any 2 cases in switches with 3 8614 // cases. 8615 // TODO: Handle cases where W.CaseBB != SwitchBB. 8616 CaseCluster &Small = *W.FirstCluster; 8617 CaseCluster &Big = *W.LastCluster; 8618 8619 if (Small.Low == Small.High && Big.Low == Big.High && 8620 Small.MBB == Big.MBB) { 8621 const APInt &SmallValue = Small.Low->getValue(); 8622 const APInt &BigValue = Big.Low->getValue(); 8623 8624 // Check that there is only one bit different. 8625 APInt CommonBit = BigValue ^ SmallValue; 8626 if (CommonBit.isPowerOf2()) { 8627 SDValue CondLHS = getValue(Cond); 8628 EVT VT = CondLHS.getValueType(); 8629 SDLoc DL = getCurSDLoc(); 8630 8631 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8632 DAG.getConstant(CommonBit, DL, VT)); 8633 SDValue Cond = DAG.getSetCC( 8634 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8635 ISD::SETEQ); 8636 8637 // Update successor info. 8638 // Both Small and Big will jump to Small.BB, so we sum up the 8639 // probabilities. 8640 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8641 if (BPI) 8642 addSuccessorWithProb( 8643 SwitchMBB, DefaultMBB, 8644 // The default destination is the first successor in IR. 8645 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8646 else 8647 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8648 8649 // Insert the true branch. 8650 SDValue BrCond = 8651 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8652 DAG.getBasicBlock(Small.MBB)); 8653 // Insert the false branch. 8654 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8655 DAG.getBasicBlock(DefaultMBB)); 8656 8657 DAG.setRoot(BrCond); 8658 return; 8659 } 8660 } 8661 } 8662 8663 if (TM.getOptLevel() != CodeGenOpt::None) { 8664 // Order cases by probability so the most likely case will be checked first. 8665 std::sort(W.FirstCluster, W.LastCluster + 1, 8666 [](const CaseCluster &a, const CaseCluster &b) { 8667 return a.Prob > b.Prob; 8668 }); 8669 8670 // Rearrange the case blocks so that the last one falls through if possible 8671 // without without changing the order of probabilities. 8672 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8673 --I; 8674 if (I->Prob > W.LastCluster->Prob) 8675 break; 8676 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8677 std::swap(*I, *W.LastCluster); 8678 break; 8679 } 8680 } 8681 } 8682 8683 // Compute total probability. 8684 BranchProbability DefaultProb = W.DefaultProb; 8685 BranchProbability UnhandledProbs = DefaultProb; 8686 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8687 UnhandledProbs += I->Prob; 8688 8689 MachineBasicBlock *CurMBB = W.MBB; 8690 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8691 MachineBasicBlock *Fallthrough; 8692 if (I == W.LastCluster) { 8693 // For the last cluster, fall through to the default destination. 8694 Fallthrough = DefaultMBB; 8695 } else { 8696 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8697 CurMF->insert(BBI, Fallthrough); 8698 // Put Cond in a virtual register to make it available from the new blocks. 8699 ExportFromCurrentBlock(Cond); 8700 } 8701 UnhandledProbs -= I->Prob; 8702 8703 switch (I->Kind) { 8704 case CC_JumpTable: { 8705 // FIXME: Optimize away range check based on pivot comparisons. 8706 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8707 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8708 8709 // The jump block hasn't been inserted yet; insert it here. 8710 MachineBasicBlock *JumpMBB = JT->MBB; 8711 CurMF->insert(BBI, JumpMBB); 8712 8713 auto JumpProb = I->Prob; 8714 auto FallthroughProb = UnhandledProbs; 8715 8716 // If the default statement is a target of the jump table, we evenly 8717 // distribute the default probability to successors of CurMBB. Also 8718 // update the probability on the edge from JumpMBB to Fallthrough. 8719 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8720 SE = JumpMBB->succ_end(); 8721 SI != SE; ++SI) { 8722 if (*SI == DefaultMBB) { 8723 JumpProb += DefaultProb / 2; 8724 FallthroughProb -= DefaultProb / 2; 8725 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8726 JumpMBB->normalizeSuccProbs(); 8727 break; 8728 } 8729 } 8730 8731 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8732 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8733 CurMBB->normalizeSuccProbs(); 8734 8735 // The jump table header will be inserted in our current block, do the 8736 // range check, and fall through to our fallthrough block. 8737 JTH->HeaderBB = CurMBB; 8738 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8739 8740 // If we're in the right place, emit the jump table header right now. 8741 if (CurMBB == SwitchMBB) { 8742 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8743 JTH->Emitted = true; 8744 } 8745 break; 8746 } 8747 case CC_BitTests: { 8748 // FIXME: Optimize away range check based on pivot comparisons. 8749 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8750 8751 // The bit test blocks haven't been inserted yet; insert them here. 8752 for (BitTestCase &BTC : BTB->Cases) 8753 CurMF->insert(BBI, BTC.ThisBB); 8754 8755 // Fill in fields of the BitTestBlock. 8756 BTB->Parent = CurMBB; 8757 BTB->Default = Fallthrough; 8758 8759 BTB->DefaultProb = UnhandledProbs; 8760 // If the cases in bit test don't form a contiguous range, we evenly 8761 // distribute the probability on the edge to Fallthrough to two 8762 // successors of CurMBB. 8763 if (!BTB->ContiguousRange) { 8764 BTB->Prob += DefaultProb / 2; 8765 BTB->DefaultProb -= DefaultProb / 2; 8766 } 8767 8768 // If we're in the right place, emit the bit test header right now. 8769 if (CurMBB == SwitchMBB) { 8770 visitBitTestHeader(*BTB, SwitchMBB); 8771 BTB->Emitted = true; 8772 } 8773 break; 8774 } 8775 case CC_Range: { 8776 const Value *RHS, *LHS, *MHS; 8777 ISD::CondCode CC; 8778 if (I->Low == I->High) { 8779 // Check Cond == I->Low. 8780 CC = ISD::SETEQ; 8781 LHS = Cond; 8782 RHS=I->Low; 8783 MHS = nullptr; 8784 } else { 8785 // Check I->Low <= Cond <= I->High. 8786 CC = ISD::SETLE; 8787 LHS = I->Low; 8788 MHS = Cond; 8789 RHS = I->High; 8790 } 8791 8792 // The false probability is the sum of all unhandled cases. 8793 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8794 UnhandledProbs); 8795 8796 if (CurMBB == SwitchMBB) 8797 visitSwitchCase(CB, SwitchMBB); 8798 else 8799 SwitchCases.push_back(CB); 8800 8801 break; 8802 } 8803 } 8804 CurMBB = Fallthrough; 8805 } 8806 } 8807 8808 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8809 CaseClusterIt First, 8810 CaseClusterIt Last) { 8811 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8812 if (X.Prob != CC.Prob) 8813 return X.Prob > CC.Prob; 8814 8815 // Ties are broken by comparing the case value. 8816 return X.Low->getValue().slt(CC.Low->getValue()); 8817 }); 8818 } 8819 8820 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8821 const SwitchWorkListItem &W, 8822 Value *Cond, 8823 MachineBasicBlock *SwitchMBB) { 8824 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8825 "Clusters not sorted?"); 8826 8827 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8828 8829 // Balance the tree based on branch probabilities to create a near-optimal (in 8830 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8831 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8832 CaseClusterIt LastLeft = W.FirstCluster; 8833 CaseClusterIt FirstRight = W.LastCluster; 8834 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8835 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8836 8837 // Move LastLeft and FirstRight towards each other from opposite directions to 8838 // find a partitioning of the clusters which balances the probability on both 8839 // sides. If LeftProb and RightProb are equal, alternate which side is 8840 // taken to ensure 0-probability nodes are distributed evenly. 8841 unsigned I = 0; 8842 while (LastLeft + 1 < FirstRight) { 8843 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8844 LeftProb += (++LastLeft)->Prob; 8845 else 8846 RightProb += (--FirstRight)->Prob; 8847 I++; 8848 } 8849 8850 for (;;) { 8851 // Our binary search tree differs from a typical BST in that ours can have up 8852 // to three values in each leaf. The pivot selection above doesn't take that 8853 // into account, which means the tree might require more nodes and be less 8854 // efficient. We compensate for this here. 8855 8856 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8857 unsigned NumRight = W.LastCluster - FirstRight + 1; 8858 8859 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8860 // If one side has less than 3 clusters, and the other has more than 3, 8861 // consider taking a cluster from the other side. 8862 8863 if (NumLeft < NumRight) { 8864 // Consider moving the first cluster on the right to the left side. 8865 CaseCluster &CC = *FirstRight; 8866 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8867 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8868 if (LeftSideRank <= RightSideRank) { 8869 // Moving the cluster to the left does not demote it. 8870 ++LastLeft; 8871 ++FirstRight; 8872 continue; 8873 } 8874 } else { 8875 assert(NumRight < NumLeft); 8876 // Consider moving the last element on the left to the right side. 8877 CaseCluster &CC = *LastLeft; 8878 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8879 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8880 if (RightSideRank <= LeftSideRank) { 8881 // Moving the cluster to the right does not demot it. 8882 --LastLeft; 8883 --FirstRight; 8884 continue; 8885 } 8886 } 8887 } 8888 break; 8889 } 8890 8891 assert(LastLeft + 1 == FirstRight); 8892 assert(LastLeft >= W.FirstCluster); 8893 assert(FirstRight <= W.LastCluster); 8894 8895 // Use the first element on the right as pivot since we will make less-than 8896 // comparisons against it. 8897 CaseClusterIt PivotCluster = FirstRight; 8898 assert(PivotCluster > W.FirstCluster); 8899 assert(PivotCluster <= W.LastCluster); 8900 8901 CaseClusterIt FirstLeft = W.FirstCluster; 8902 CaseClusterIt LastRight = W.LastCluster; 8903 8904 const ConstantInt *Pivot = PivotCluster->Low; 8905 8906 // New blocks will be inserted immediately after the current one. 8907 MachineFunction::iterator BBI(W.MBB); 8908 ++BBI; 8909 8910 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8911 // we can branch to its destination directly if it's squeezed exactly in 8912 // between the known lower bound and Pivot - 1. 8913 MachineBasicBlock *LeftMBB; 8914 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8915 FirstLeft->Low == W.GE && 8916 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8917 LeftMBB = FirstLeft->MBB; 8918 } else { 8919 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8920 FuncInfo.MF->insert(BBI, LeftMBB); 8921 WorkList.push_back( 8922 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8923 // Put Cond in a virtual register to make it available from the new blocks. 8924 ExportFromCurrentBlock(Cond); 8925 } 8926 8927 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8928 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8929 // directly if RHS.High equals the current upper bound. 8930 MachineBasicBlock *RightMBB; 8931 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8932 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8933 RightMBB = FirstRight->MBB; 8934 } else { 8935 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8936 FuncInfo.MF->insert(BBI, RightMBB); 8937 WorkList.push_back( 8938 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8939 // Put Cond in a virtual register to make it available from the new blocks. 8940 ExportFromCurrentBlock(Cond); 8941 } 8942 8943 // Create the CaseBlock record that will be used to lower the branch. 8944 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8945 LeftProb, RightProb); 8946 8947 if (W.MBB == SwitchMBB) 8948 visitSwitchCase(CB, SwitchMBB); 8949 else 8950 SwitchCases.push_back(CB); 8951 } 8952 8953 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8954 // Extract cases from the switch. 8955 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8956 CaseClusterVector Clusters; 8957 Clusters.reserve(SI.getNumCases()); 8958 for (auto I : SI.cases()) { 8959 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8960 const ConstantInt *CaseVal = I.getCaseValue(); 8961 BranchProbability Prob = 8962 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8963 : BranchProbability(1, SI.getNumCases() + 1); 8964 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8965 } 8966 8967 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8968 8969 // Cluster adjacent cases with the same destination. We do this at all 8970 // optimization levels because it's cheap to do and will make codegen faster 8971 // if there are many clusters. 8972 sortAndRangeify(Clusters); 8973 8974 if (TM.getOptLevel() != CodeGenOpt::None) { 8975 // Replace an unreachable default with the most popular destination. 8976 // FIXME: Exploit unreachable default more aggressively. 8977 bool UnreachableDefault = 8978 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8979 if (UnreachableDefault && !Clusters.empty()) { 8980 DenseMap<const BasicBlock *, unsigned> Popularity; 8981 unsigned MaxPop = 0; 8982 const BasicBlock *MaxBB = nullptr; 8983 for (auto I : SI.cases()) { 8984 const BasicBlock *BB = I.getCaseSuccessor(); 8985 if (++Popularity[BB] > MaxPop) { 8986 MaxPop = Popularity[BB]; 8987 MaxBB = BB; 8988 } 8989 } 8990 // Set new default. 8991 assert(MaxPop > 0 && MaxBB); 8992 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8993 8994 // Remove cases that were pointing to the destination that is now the 8995 // default. 8996 CaseClusterVector New; 8997 New.reserve(Clusters.size()); 8998 for (CaseCluster &CC : Clusters) { 8999 if (CC.MBB != DefaultMBB) 9000 New.push_back(CC); 9001 } 9002 Clusters = std::move(New); 9003 } 9004 } 9005 9006 // If there is only the default destination, jump there directly. 9007 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9008 if (Clusters.empty()) { 9009 SwitchMBB->addSuccessor(DefaultMBB); 9010 if (DefaultMBB != NextBlock(SwitchMBB)) { 9011 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9012 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9013 } 9014 return; 9015 } 9016 9017 findJumpTables(Clusters, &SI, DefaultMBB); 9018 findBitTestClusters(Clusters, &SI); 9019 9020 DEBUG({ 9021 dbgs() << "Case clusters: "; 9022 for (const CaseCluster &C : Clusters) { 9023 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9024 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9025 9026 C.Low->getValue().print(dbgs(), true); 9027 if (C.Low != C.High) { 9028 dbgs() << '-'; 9029 C.High->getValue().print(dbgs(), true); 9030 } 9031 dbgs() << ' '; 9032 } 9033 dbgs() << '\n'; 9034 }); 9035 9036 assert(!Clusters.empty()); 9037 SwitchWorkList WorkList; 9038 CaseClusterIt First = Clusters.begin(); 9039 CaseClusterIt Last = Clusters.end() - 1; 9040 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9041 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9042 9043 while (!WorkList.empty()) { 9044 SwitchWorkListItem W = WorkList.back(); 9045 WorkList.pop_back(); 9046 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9047 9048 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 9049 // For optimized builds, lower large range as a balanced binary tree. 9050 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9051 continue; 9052 } 9053 9054 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9055 } 9056 } 9057