1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/DiagnosticInfo.h" 73 #include "llvm/IR/Function.h" 74 #include "llvm/IR/GetElementPtrTypeIterator.h" 75 #include "llvm/IR/InlineAsm.h" 76 #include "llvm/IR/InstrTypes.h" 77 #include "llvm/IR/Instructions.h" 78 #include "llvm/IR/IntrinsicInst.h" 79 #include "llvm/IR/Intrinsics.h" 80 #include "llvm/IR/IntrinsicsAArch64.h" 81 #include "llvm/IR/IntrinsicsWebAssembly.h" 82 #include "llvm/IR/LLVMContext.h" 83 #include "llvm/IR/Metadata.h" 84 #include "llvm/IR/Module.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/IR/PatternMatch.h" 87 #include "llvm/IR/Statepoint.h" 88 #include "llvm/IR/Type.h" 89 #include "llvm/IR/User.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/MC/MCContext.h" 92 #include "llvm/MC/MCSymbol.h" 93 #include "llvm/Support/AtomicOrdering.h" 94 #include "llvm/Support/Casting.h" 95 #include "llvm/Support/CommandLine.h" 96 #include "llvm/Support/Compiler.h" 97 #include "llvm/Support/Debug.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Target/TargetIntrinsicInfo.h" 101 #include "llvm/Target/TargetMachine.h" 102 #include "llvm/Target/TargetOptions.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <cstddef> 105 #include <cstring> 106 #include <iterator> 107 #include <limits> 108 #include <numeric> 109 #include <tuple> 110 111 using namespace llvm; 112 using namespace PatternMatch; 113 using namespace SwitchCG; 114 115 #define DEBUG_TYPE "isel" 116 117 /// LimitFloatPrecision - Generate low-precision inline sequences for 118 /// some float libcalls (6, 8 or 12 bits). 119 static unsigned LimitFloatPrecision; 120 121 static cl::opt<bool> 122 InsertAssertAlign("insert-assert-align", cl::init(true), 123 cl::desc("Insert the experimental `assertalign` node."), 124 cl::ReallyHidden); 125 126 static cl::opt<unsigned, true> 127 LimitFPPrecision("limit-float-precision", 128 cl::desc("Generate low-precision inline sequences " 129 "for some float libcalls"), 130 cl::location(LimitFloatPrecision), cl::Hidden, 131 cl::init(0)); 132 133 static cl::opt<unsigned> SwitchPeelThreshold( 134 "switch-peel-threshold", cl::Hidden, cl::init(66), 135 cl::desc("Set the case probability threshold for peeling the case from a " 136 "switch statement. A value greater than 100 will void this " 137 "optimization")); 138 139 // Limit the width of DAG chains. This is important in general to prevent 140 // DAG-based analysis from blowing up. For example, alias analysis and 141 // load clustering may not complete in reasonable time. It is difficult to 142 // recognize and avoid this situation within each individual analysis, and 143 // future analyses are likely to have the same behavior. Limiting DAG width is 144 // the safe approach and will be especially important with global DAGs. 145 // 146 // MaxParallelChains default is arbitrarily high to avoid affecting 147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 148 // sequence over this should have been converted to llvm.memcpy by the 149 // frontend. It is easy to induce this behavior with .ll code such as: 150 // %buffer = alloca [4096 x i8] 151 // %data = load [4096 x i8]* %argPtr 152 // store [4096 x i8] %data, [4096 x i8]* %buffer 153 static const unsigned MaxParallelChains = 64; 154 155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 156 const SDValue *Parts, unsigned NumParts, 157 MVT PartVT, EVT ValueVT, const Value *V, 158 Optional<CallingConv::ID> CC); 159 160 /// getCopyFromParts - Create a value that contains the specified legal parts 161 /// combined into the value they represent. If the parts combine to a type 162 /// larger than ValueVT then AssertOp can be used to specify whether the extra 163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 164 /// (ISD::AssertSext). 165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 166 const SDValue *Parts, unsigned NumParts, 167 MVT PartVT, EVT ValueVT, const Value *V, 168 Optional<CallingConv::ID> CC = None, 169 Optional<ISD::NodeType> AssertOp = None) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = 191 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 192 unsigned RoundBits = PartBits * RoundParts; 193 EVT RoundVT = RoundBits == ValueBits ? 194 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 195 SDValue Lo, Hi; 196 197 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 198 199 if (RoundParts > 2) { 200 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 201 PartVT, HalfVT, V); 202 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 203 RoundParts / 2, PartVT, HalfVT, V); 204 } else { 205 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 206 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 207 } 208 209 if (DAG.getDataLayout().isBigEndian()) 210 std::swap(Lo, Hi); 211 212 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 213 214 if (RoundParts < NumParts) { 215 // Assemble the trailing non-power-of-2 part. 216 unsigned OddParts = NumParts - RoundParts; 217 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 218 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 219 OddVT, V, CC); 220 221 // Combine the round and odd parts. 222 Lo = Val; 223 if (DAG.getDataLayout().isBigEndian()) 224 std::swap(Lo, Hi); 225 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 226 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 227 Hi = 228 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 229 DAG.getConstant(Lo.getValueSizeInBits(), DL, 230 TLI.getPointerTy(DAG.getDataLayout()))); 231 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 232 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 233 } 234 } else if (PartVT.isFloatingPoint()) { 235 // FP split into multiple FP parts (for ppcf128) 236 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 237 "Unexpected split"); 238 SDValue Lo, Hi; 239 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 241 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 242 std::swap(Lo, Hi); 243 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 244 } else { 245 // FP split into integer parts (soft fp) 246 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 247 !PartVT.isVector() && "Unexpected split"); 248 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 249 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp.hasValue()) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) 290 return DAG.getNode( 291 ISD::FP_ROUND, DL, ValueVT, Val, 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 293 294 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 295 } 296 297 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 298 // then truncating. 299 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 300 ValueVT.bitsLT(PartEVT)) { 301 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 302 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 303 } 304 305 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 306 } 307 308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 309 const Twine &ErrMsg) { 310 const Instruction *I = dyn_cast_or_null<Instruction>(V); 311 if (!V) 312 return Ctx.emitError(ErrMsg); 313 314 const char *AsmError = ", possible invalid constraint for vector type"; 315 if (const CallInst *CI = dyn_cast<CallInst>(I)) 316 if (CI->isInlineAsm()) 317 return Ctx.emitError(I, ErrMsg + AsmError); 318 319 return Ctx.emitError(I, ErrMsg); 320 } 321 322 /// getCopyFromPartsVector - Create a value that contains the specified legal 323 /// parts combined into the value they represent. If the parts combine to a 324 /// type larger than ValueVT then AssertOp can be used to specify whether the 325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 326 /// ValueVT (ISD::AssertSext). 327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 328 const SDValue *Parts, unsigned NumParts, 329 MVT PartVT, EVT ValueVT, const Value *V, 330 Optional<CallingConv::ID> CallConv) { 331 assert(ValueVT.isVector() && "Not a vector value"); 332 assert(NumParts > 0 && "No parts to assemble!"); 333 const bool IsABIRegCopy = CallConv.hasValue(); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 SDValue Val = Parts[0]; 337 338 // Handle a multi-element vector. 339 if (NumParts > 1) { 340 EVT IntermediateVT; 341 MVT RegisterVT; 342 unsigned NumIntermediates; 343 unsigned NumRegs; 344 345 if (IsABIRegCopy) { 346 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 347 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } else { 350 NumRegs = 351 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 352 NumIntermediates, RegisterVT); 353 } 354 355 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 356 NumParts = NumRegs; // Silence a compiler warning. 357 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 358 assert(RegisterVT.getSizeInBits() == 359 Parts[0].getSimpleValueType().getSizeInBits() && 360 "Part type sizes don't match!"); 361 362 // Assemble the parts into intermediate operands. 363 SmallVector<SDValue, 8> Ops(NumIntermediates); 364 if (NumIntermediates == NumParts) { 365 // If the register was not expanded, truncate or copy the value, 366 // as appropriate. 367 for (unsigned i = 0; i != NumParts; ++i) 368 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 369 PartVT, IntermediateVT, V, CallConv); 370 } else if (NumParts > 0) { 371 // If the intermediate type was expanded, build the intermediate 372 // operands from the parts. 373 assert(NumParts % NumIntermediates == 0 && 374 "Must expand into a divisible number of parts!"); 375 unsigned Factor = NumParts / NumIntermediates; 376 for (unsigned i = 0; i != NumIntermediates; ++i) 377 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 378 PartVT, IntermediateVT, V, CallConv); 379 } 380 381 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 382 // intermediate operands. 383 EVT BuiltVectorTy = 384 IntermediateVT.isVector() 385 ? EVT::getVectorVT( 386 *DAG.getContext(), IntermediateVT.getScalarType(), 387 IntermediateVT.getVectorElementCount() * NumParts) 388 : EVT::getVectorVT(*DAG.getContext(), 389 IntermediateVT.getScalarType(), 390 NumIntermediates); 391 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 392 : ISD::BUILD_VECTOR, 393 DL, BuiltVectorTy, Ops); 394 } 395 396 // There is now one part, held in Val. Correct it to match ValueVT. 397 EVT PartEVT = Val.getValueType(); 398 399 if (PartEVT == ValueVT) 400 return Val; 401 402 if (PartEVT.isVector()) { 403 // Vector/Vector bitcast. 404 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 405 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 407 // If the element type of the source/dest vectors are the same, but the 408 // parts vector has more elements than the value vector, then we have a 409 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 410 // elements we want. 411 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 412 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 413 ValueVT.getVectorElementCount().getKnownMinValue()) && 414 (PartEVT.getVectorElementCount().isScalable() == 415 ValueVT.getVectorElementCount().isScalable()) && 416 "Cannot narrow, it would be a lossy transformation"); 417 PartEVT = 418 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 419 ValueVT.getVectorElementCount()); 420 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 421 DAG.getVectorIdxConstant(0, DL)); 422 if (PartEVT == ValueVT) 423 return Val; 424 } 425 426 // Promoted vector extract 427 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 428 } 429 430 // Trivial bitcast if the types are the same size and the destination 431 // vector type is legal. 432 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 433 TLI.isTypeLegal(ValueVT)) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 if (ValueVT.getVectorNumElements() != 1) { 437 // Certain ABIs require that vectors are passed as integers. For vectors 438 // are the same size, this is an obvious bitcast. 439 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 440 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 441 } else if (ValueVT.bitsLT(PartEVT)) { 442 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 443 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 444 // Drop the extra bits. 445 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 446 return DAG.getBitcast(ValueVT, Val); 447 } 448 449 diagnosePossiblyInvalidConstraint( 450 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 451 return DAG.getUNDEF(ValueVT); 452 } 453 454 // Handle cases such as i8 -> <1 x i1> 455 EVT ValueSVT = ValueVT.getVectorElementType(); 456 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 457 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 459 else 460 Val = ValueVT.isFloatingPoint() 461 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 462 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 463 } 464 465 return DAG.getBuildVector(ValueVT, DL, Val); 466 } 467 468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 469 SDValue Val, SDValue *Parts, unsigned NumParts, 470 MVT PartVT, const Value *V, 471 Optional<CallingConv::ID> CallConv); 472 473 /// getCopyToParts - Create a series of nodes that contain the specified value 474 /// split into legal parts. If the parts contain more bits than Val, then, for 475 /// integers, ExtendKind can be used to specify how to generate the extra bits. 476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 477 SDValue *Parts, unsigned NumParts, MVT PartVT, 478 const Value *V, 479 Optional<CallingConv::ID> CallConv = None, 480 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 481 // Let the target split the parts if it wants to 482 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 483 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 484 CallConv)) 485 return; 486 EVT ValueVT = Val.getValueType(); 487 488 // Handle the vector case separately. 489 if (ValueVT.isVector()) 490 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 491 CallConv); 492 493 unsigned PartBits = PartVT.getSizeInBits(); 494 unsigned OrigNumParts = NumParts; 495 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 496 "Copying to an illegal type!"); 497 498 if (NumParts == 0) 499 return; 500 501 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 502 EVT PartEVT = PartVT; 503 if (PartEVT == ValueVT) { 504 assert(NumParts == 1 && "No-op copy with multiple parts!"); 505 Parts[0] = Val; 506 return; 507 } 508 509 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 510 // If the parts cover more bits than the value has, promote the value. 511 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 512 assert(NumParts == 1 && "Do not know what to promote to!"); 513 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 514 } else { 515 if (ValueVT.isFloatingPoint()) { 516 // FP values need to be bitcast, then extended if they are being put 517 // into a larger container. 518 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 519 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 520 } 521 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 522 ValueVT.isInteger() && 523 "Unknown mismatch!"); 524 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 525 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 526 if (PartVT == MVT::x86mmx) 527 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 528 } 529 } else if (PartBits == ValueVT.getSizeInBits()) { 530 // Different types of the same size. 531 assert(NumParts == 1 && PartEVT != ValueVT); 532 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 533 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 534 // If the parts cover less bits than value has, truncate the value. 535 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 536 ValueVT.isInteger() && 537 "Unknown mismatch!"); 538 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 539 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 540 if (PartVT == MVT::x86mmx) 541 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 542 } 543 544 // The value may have changed - recompute ValueVT. 545 ValueVT = Val.getValueType(); 546 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 547 "Failed to tile the value with PartVT!"); 548 549 if (NumParts == 1) { 550 if (PartEVT != ValueVT) { 551 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 552 "scalar-to-vector conversion failed"); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 556 Parts[0] = Val; 557 return; 558 } 559 560 // Expand the value into multiple parts. 561 if (NumParts & (NumParts - 1)) { 562 // The number of parts is not a power of 2. Split off and copy the tail. 563 assert(PartVT.isInteger() && ValueVT.isInteger() && 564 "Do not know what to expand to!"); 565 unsigned RoundParts = 1 << Log2_32(NumParts); 566 unsigned RoundBits = RoundParts * PartBits; 567 unsigned OddParts = NumParts - RoundParts; 568 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 569 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 570 571 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 572 CallConv); 573 574 if (DAG.getDataLayout().isBigEndian()) 575 // The odd parts were reversed by getCopyToParts - unreverse them. 576 std::reverse(Parts + RoundParts, Parts + NumParts); 577 578 NumParts = RoundParts; 579 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 580 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 581 } 582 583 // The number of parts is a power of 2. Repeatedly bisect the value using 584 // EXTRACT_ELEMENT. 585 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 586 EVT::getIntegerVT(*DAG.getContext(), 587 ValueVT.getSizeInBits()), 588 Val); 589 590 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 591 for (unsigned i = 0; i < NumParts; i += StepSize) { 592 unsigned ThisBits = StepSize * PartBits / 2; 593 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 594 SDValue &Part0 = Parts[i]; 595 SDValue &Part1 = Parts[i+StepSize/2]; 596 597 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 598 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 599 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 600 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 601 602 if (ThisBits == PartBits && ThisVT != PartVT) { 603 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 604 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 605 } 606 } 607 } 608 609 if (DAG.getDataLayout().isBigEndian()) 610 std::reverse(Parts, Parts + OrigNumParts); 611 } 612 613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 614 const SDLoc &DL, EVT PartVT) { 615 if (!PartVT.isVector()) 616 return SDValue(); 617 618 EVT ValueVT = Val.getValueType(); 619 ElementCount PartNumElts = PartVT.getVectorElementCount(); 620 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 621 622 // We only support widening vectors with equivalent element types and 623 // fixed/scalable properties. If a target needs to widen a fixed-length type 624 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 625 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 626 PartNumElts.isScalable() != ValueNumElts.isScalable() || 627 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 628 return SDValue(); 629 630 // Widening a scalable vector to another scalable vector is done by inserting 631 // the vector into a larger undef one. 632 if (PartNumElts.isScalable()) 633 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 634 Val, DAG.getVectorIdxConstant(0, DL)); 635 636 EVT ElementVT = PartVT.getVectorElementType(); 637 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 638 // undef elements. 639 SmallVector<SDValue, 16> Ops; 640 DAG.ExtractVectorElements(Val, Ops); 641 SDValue EltUndef = DAG.getUNDEF(ElementVT); 642 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 return DAG.getBuildVector(PartVT, DL, Ops); 646 } 647 648 /// getCopyToPartsVector - Create a series of nodes that contain the specified 649 /// value split into legal parts. 650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 651 SDValue Val, SDValue *Parts, unsigned NumParts, 652 MVT PartVT, const Value *V, 653 Optional<CallingConv::ID> CallConv) { 654 EVT ValueVT = Val.getValueType(); 655 assert(ValueVT.isVector() && "Not a vector"); 656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 657 const bool IsABIRegCopy = CallConv.hasValue(); 658 659 if (NumParts == 1) { 660 EVT PartEVT = PartVT; 661 if (PartEVT == ValueVT) { 662 // Nothing to do. 663 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 664 // Bitconvert vector->vector case. 665 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 666 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 667 Val = Widened; 668 } else if (PartVT.isVector() && 669 PartEVT.getVectorElementType().bitsGE( 670 ValueVT.getVectorElementType()) && 671 PartEVT.getVectorElementCount() == 672 ValueVT.getVectorElementCount()) { 673 674 // Promoted vector extract 675 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 676 } else if (PartEVT.isVector() && 677 PartEVT.getVectorElementType() != 678 ValueVT.getVectorElementType() && 679 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 680 TargetLowering::TypeWidenVector) { 681 // Combination of widening and promotion. 682 EVT WidenVT = 683 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 684 PartVT.getVectorElementCount()); 685 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 686 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorElementCount().isScalar()) { 689 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 690 DAG.getVectorIdxConstant(0, DL)); 691 } else { 692 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 693 assert(PartVT.getFixedSizeInBits() > ValueSize && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 696 Val = DAG.getBitcast(IntermediateType, Val); 697 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 698 } 699 } 700 701 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 702 Parts[0] = Val; 703 return; 704 } 705 706 // Handle a multi-element vector. 707 EVT IntermediateVT; 708 MVT RegisterVT; 709 unsigned NumIntermediates; 710 unsigned NumRegs; 711 if (IsABIRegCopy) { 712 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 713 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 714 NumIntermediates, RegisterVT); 715 } else { 716 NumRegs = 717 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 718 NumIntermediates, RegisterVT); 719 } 720 721 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 722 NumParts = NumRegs; // Silence a compiler warning. 723 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 724 725 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 726 "Mixing scalable and fixed vectors when copying in parts"); 727 728 Optional<ElementCount> DestEltCnt; 729 730 if (IntermediateVT.isVector()) 731 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 732 else 733 DestEltCnt = ElementCount::getFixed(NumIntermediates); 734 735 EVT BuiltVectorTy = EVT::getVectorVT( 736 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 737 738 if (ValueVT == BuiltVectorTy) { 739 // Nothing to do. 740 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 741 // Bitconvert vector->vector case. 742 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 743 } else { 744 if (BuiltVectorTy.getVectorElementType().bitsGT( 745 ValueVT.getVectorElementType())) { 746 // Integer promotion. 747 ValueVT = EVT::getVectorVT(*DAG.getContext(), 748 BuiltVectorTy.getVectorElementType(), 749 ValueVT.getVectorElementCount()); 750 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 751 } 752 753 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 754 Val = Widened; 755 } 756 } 757 758 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 759 760 // Split the vector into intermediate operands. 761 SmallVector<SDValue, 8> Ops(NumIntermediates); 762 for (unsigned i = 0; i != NumIntermediates; ++i) { 763 if (IntermediateVT.isVector()) { 764 // This does something sensible for scalable vectors - see the 765 // definition of EXTRACT_SUBVECTOR for further details. 766 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 767 Ops[i] = 768 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 769 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 770 } else { 771 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 772 DAG.getVectorIdxConstant(i, DL)); 773 } 774 } 775 776 // Split the intermediate operands into legal parts. 777 if (NumParts == NumIntermediates) { 778 // If the register was not expanded, promote or copy the value, 779 // as appropriate. 780 for (unsigned i = 0; i != NumParts; ++i) 781 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 782 } else if (NumParts > 0) { 783 // If the intermediate type was expanded, split each the value into 784 // legal parts. 785 assert(NumIntermediates != 0 && "division by zero"); 786 assert(NumParts % NumIntermediates == 0 && 787 "Must expand into a divisible number of parts!"); 788 unsigned Factor = NumParts / NumIntermediates; 789 for (unsigned i = 0; i != NumIntermediates; ++i) 790 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 791 CallConv); 792 } 793 } 794 795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 796 EVT valuevt, Optional<CallingConv::ID> CC) 797 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 798 RegCount(1, regs.size()), CallConv(CC) {} 799 800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 801 const DataLayout &DL, unsigned Reg, Type *Ty, 802 Optional<CallingConv::ID> CC) { 803 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 804 805 CallConv = CC; 806 807 for (EVT ValueVT : ValueVTs) { 808 unsigned NumRegs = 809 isABIMangled() 810 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 811 : TLI.getNumRegisters(Context, ValueVT); 812 MVT RegisterVT = 813 isABIMangled() 814 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 815 : TLI.getRegisterType(Context, ValueVT); 816 for (unsigned i = 0; i != NumRegs; ++i) 817 Regs.push_back(Reg + i); 818 RegVTs.push_back(RegisterVT); 819 RegCount.push_back(NumRegs); 820 Reg += NumRegs; 821 } 822 } 823 824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 825 FunctionLoweringInfo &FuncInfo, 826 const SDLoc &dl, SDValue &Chain, 827 SDValue *Flag, const Value *V) const { 828 // A Value with type {} or [0 x %t] needs no registers. 829 if (ValueVTs.empty()) 830 return SDValue(); 831 832 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 833 834 // Assemble the legal parts into the final values. 835 SmallVector<SDValue, 4> Values(ValueVTs.size()); 836 SmallVector<SDValue, 8> Parts; 837 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 838 // Copy the legal parts from the registers. 839 EVT ValueVT = ValueVTs[Value]; 840 unsigned NumRegs = RegCount[Value]; 841 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 842 *DAG.getContext(), 843 CallConv.getValue(), RegVTs[Value]) 844 : RegVTs[Value]; 845 846 Parts.resize(NumRegs); 847 for (unsigned i = 0; i != NumRegs; ++i) { 848 SDValue P; 849 if (!Flag) { 850 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 851 } else { 852 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 853 *Flag = P.getValue(2); 854 } 855 856 Chain = P.getValue(1); 857 Parts[i] = P; 858 859 // If the source register was virtual and if we know something about it, 860 // add an assert node. 861 if (!Register::isVirtualRegister(Regs[Part + i]) || 862 !RegisterVT.isInteger()) 863 continue; 864 865 const FunctionLoweringInfo::LiveOutInfo *LOI = 866 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 867 if (!LOI) 868 continue; 869 870 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 871 unsigned NumSignBits = LOI->NumSignBits; 872 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 873 874 if (NumZeroBits == RegSize) { 875 // The current value is a zero. 876 // Explicitly express that as it would be easier for 877 // optimizations to kick in. 878 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 879 continue; 880 } 881 882 // FIXME: We capture more information than the dag can represent. For 883 // now, just use the tightest assertzext/assertsext possible. 884 bool isSExt; 885 EVT FromVT(MVT::Other); 886 if (NumZeroBits) { 887 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 888 isSExt = false; 889 } else if (NumSignBits > 1) { 890 FromVT = 891 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 892 isSExt = true; 893 } else { 894 continue; 895 } 896 // Add an assertion node. 897 assert(FromVT != MVT::Other); 898 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 899 RegisterVT, P, DAG.getValueType(FromVT)); 900 } 901 902 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 903 RegisterVT, ValueVT, V, CallConv); 904 Part += NumRegs; 905 Parts.clear(); 906 } 907 908 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 909 } 910 911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 912 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 913 const Value *V, 914 ISD::NodeType PreferredExtendType) const { 915 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 916 ISD::NodeType ExtendKind = PreferredExtendType; 917 918 // Get the list of the values's legal parts. 919 unsigned NumRegs = Regs.size(); 920 SmallVector<SDValue, 8> Parts(NumRegs); 921 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 922 unsigned NumParts = RegCount[Value]; 923 924 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 925 *DAG.getContext(), 926 CallConv.getValue(), RegVTs[Value]) 927 : RegVTs[Value]; 928 929 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 930 ExtendKind = ISD::ZERO_EXTEND; 931 932 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 933 NumParts, RegisterVT, V, CallConv, ExtendKind); 934 Part += NumParts; 935 } 936 937 // Copy the parts into the registers. 938 SmallVector<SDValue, 8> Chains(NumRegs); 939 for (unsigned i = 0; i != NumRegs; ++i) { 940 SDValue Part; 941 if (!Flag) { 942 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 943 } else { 944 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 945 *Flag = Part.getValue(1); 946 } 947 948 Chains[i] = Part.getValue(0); 949 } 950 951 if (NumRegs == 1 || Flag) 952 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 953 // flagged to it. That is the CopyToReg nodes and the user are considered 954 // a single scheduling unit. If we create a TokenFactor and return it as 955 // chain, then the TokenFactor is both a predecessor (operand) of the 956 // user as well as a successor (the TF operands are flagged to the user). 957 // c1, f1 = CopyToReg 958 // c2, f2 = CopyToReg 959 // c3 = TokenFactor c1, c2 960 // ... 961 // = op c3, ..., f2 962 Chain = Chains[NumRegs-1]; 963 else 964 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 965 } 966 967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 968 unsigned MatchingIdx, const SDLoc &dl, 969 SelectionDAG &DAG, 970 std::vector<SDValue> &Ops) const { 971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 972 973 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 974 if (HasMatching) 975 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 976 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 977 // Put the register class of the virtual registers in the flag word. That 978 // way, later passes can recompute register class constraints for inline 979 // assembly as well as normal instructions. 980 // Don't do this for tied operands that can use the regclass information 981 // from the def. 982 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 983 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 984 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 985 } 986 987 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 988 Ops.push_back(Res); 989 990 if (Code == InlineAsm::Kind_Clobber) { 991 // Clobbers should always have a 1:1 mapping with registers, and may 992 // reference registers that have illegal (e.g. vector) types. Hence, we 993 // shouldn't try to apply any sort of splitting logic to them. 994 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 995 "No 1:1 mapping from clobbers to regs?"); 996 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 997 (void)SP; 998 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 999 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1000 assert( 1001 (Regs[I] != SP || 1002 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1003 "If we clobbered the stack pointer, MFI should know about it."); 1004 } 1005 return; 1006 } 1007 1008 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1009 MVT RegisterVT = RegVTs[Value]; 1010 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1011 RegisterVT); 1012 for (unsigned i = 0; i != NumRegs; ++i) { 1013 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1014 unsigned TheReg = Regs[Reg++]; 1015 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1016 } 1017 } 1018 } 1019 1020 SmallVector<std::pair<unsigned, TypeSize>, 4> 1021 RegsForValue::getRegsAndSizes() const { 1022 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1023 unsigned I = 0; 1024 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1025 unsigned RegCount = std::get<0>(CountAndVT); 1026 MVT RegisterVT = std::get<1>(CountAndVT); 1027 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1028 for (unsigned E = I + RegCount; I != E; ++I) 1029 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1030 } 1031 return OutVec; 1032 } 1033 1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1035 const TargetLibraryInfo *li) { 1036 AA = aa; 1037 GFI = gfi; 1038 LibInfo = li; 1039 Context = DAG.getContext(); 1040 LPadToCallSiteMap.clear(); 1041 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1042 } 1043 1044 void SelectionDAGBuilder::clear() { 1045 NodeMap.clear(); 1046 UnusedArgNodeMap.clear(); 1047 PendingLoads.clear(); 1048 PendingExports.clear(); 1049 PendingConstrainedFP.clear(); 1050 PendingConstrainedFPStrict.clear(); 1051 CurInst = nullptr; 1052 HasTailCall = false; 1053 SDNodeOrder = LowestSDNodeOrder; 1054 StatepointLowering.clear(); 1055 } 1056 1057 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1058 DanglingDebugInfoMap.clear(); 1059 } 1060 1061 // Update DAG root to include dependencies on Pending chains. 1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1063 SDValue Root = DAG.getRoot(); 1064 1065 if (Pending.empty()) 1066 return Root; 1067 1068 // Add current root to PendingChains, unless we already indirectly 1069 // depend on it. 1070 if (Root.getOpcode() != ISD::EntryToken) { 1071 unsigned i = 0, e = Pending.size(); 1072 for (; i != e; ++i) { 1073 assert(Pending[i].getNode()->getNumOperands() > 1); 1074 if (Pending[i].getNode()->getOperand(0) == Root) 1075 break; // Don't add the root if we already indirectly depend on it. 1076 } 1077 1078 if (i == e) 1079 Pending.push_back(Root); 1080 } 1081 1082 if (Pending.size() == 1) 1083 Root = Pending[0]; 1084 else 1085 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1086 1087 DAG.setRoot(Root); 1088 Pending.clear(); 1089 return Root; 1090 } 1091 1092 SDValue SelectionDAGBuilder::getMemoryRoot() { 1093 return updateRoot(PendingLoads); 1094 } 1095 1096 SDValue SelectionDAGBuilder::getRoot() { 1097 // Chain up all pending constrained intrinsics together with all 1098 // pending loads, by simply appending them to PendingLoads and 1099 // then calling getMemoryRoot(). 1100 PendingLoads.reserve(PendingLoads.size() + 1101 PendingConstrainedFP.size() + 1102 PendingConstrainedFPStrict.size()); 1103 PendingLoads.append(PendingConstrainedFP.begin(), 1104 PendingConstrainedFP.end()); 1105 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1106 PendingConstrainedFPStrict.end()); 1107 PendingConstrainedFP.clear(); 1108 PendingConstrainedFPStrict.clear(); 1109 return getMemoryRoot(); 1110 } 1111 1112 SDValue SelectionDAGBuilder::getControlRoot() { 1113 // We need to emit pending fpexcept.strict constrained intrinsics, 1114 // so append them to the PendingExports list. 1115 PendingExports.append(PendingConstrainedFPStrict.begin(), 1116 PendingConstrainedFPStrict.end()); 1117 PendingConstrainedFPStrict.clear(); 1118 return updateRoot(PendingExports); 1119 } 1120 1121 void SelectionDAGBuilder::visit(const Instruction &I) { 1122 // Set up outgoing PHI node register values before emitting the terminator. 1123 if (I.isTerminator()) { 1124 HandlePHINodesInSuccessorBlocks(I.getParent()); 1125 } 1126 1127 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1128 if (!isa<DbgInfoIntrinsic>(I)) 1129 ++SDNodeOrder; 1130 1131 CurInst = &I; 1132 1133 visit(I.getOpcode(), I); 1134 1135 if (!I.isTerminator() && !HasTailCall && 1136 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1137 CopyToExportRegsIfNeeded(&I); 1138 1139 CurInst = nullptr; 1140 } 1141 1142 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1143 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1144 } 1145 1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1147 // Note: this doesn't use InstVisitor, because it has to work with 1148 // ConstantExpr's in addition to instructions. 1149 switch (Opcode) { 1150 default: llvm_unreachable("Unknown instruction type encountered!"); 1151 // Build the switch statement using the Instruction.def file. 1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1153 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1154 #include "llvm/IR/Instruction.def" 1155 } 1156 } 1157 1158 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1159 DebugLoc DL, unsigned Order) { 1160 // We treat variadic dbg_values differently at this stage. 1161 if (DI->hasArgList()) { 1162 // For variadic dbg_values we will now insert an undef. 1163 // FIXME: We can potentially recover these! 1164 SmallVector<SDDbgOperand, 2> Locs; 1165 for (const Value *V : DI->getValues()) { 1166 auto Undef = UndefValue::get(V->getType()); 1167 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1168 } 1169 SDDbgValue *SDV = DAG.getDbgValueList( 1170 DI->getVariable(), DI->getExpression(), Locs, {}, 1171 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1172 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1173 } else { 1174 // TODO: Dangling debug info will eventually either be resolved or produce 1175 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1176 // between the original dbg.value location and its resolved DBG_VALUE, 1177 // which we should ideally fill with an extra Undef DBG_VALUE. 1178 assert(DI->getNumVariableLocationOps() == 1 && 1179 "DbgValueInst without an ArgList should have a single location " 1180 "operand."); 1181 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1182 } 1183 } 1184 1185 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1186 const DIExpression *Expr) { 1187 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1188 const DbgValueInst *DI = DDI.getDI(); 1189 DIVariable *DanglingVariable = DI->getVariable(); 1190 DIExpression *DanglingExpr = DI->getExpression(); 1191 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1192 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1193 return true; 1194 } 1195 return false; 1196 }; 1197 1198 for (auto &DDIMI : DanglingDebugInfoMap) { 1199 DanglingDebugInfoVector &DDIV = DDIMI.second; 1200 1201 // If debug info is to be dropped, run it through final checks to see 1202 // whether it can be salvaged. 1203 for (auto &DDI : DDIV) 1204 if (isMatchingDbgValue(DDI)) 1205 salvageUnresolvedDbgValue(DDI); 1206 1207 erase_if(DDIV, isMatchingDbgValue); 1208 } 1209 } 1210 1211 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1212 // generate the debug data structures now that we've seen its definition. 1213 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1214 SDValue Val) { 1215 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1216 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1217 return; 1218 1219 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1220 for (auto &DDI : DDIV) { 1221 const DbgValueInst *DI = DDI.getDI(); 1222 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1223 assert(DI && "Ill-formed DanglingDebugInfo"); 1224 DebugLoc dl = DDI.getdl(); 1225 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1226 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1227 DILocalVariable *Variable = DI->getVariable(); 1228 DIExpression *Expr = DI->getExpression(); 1229 assert(Variable->isValidLocationForIntrinsic(dl) && 1230 "Expected inlined-at fields to agree"); 1231 SDDbgValue *SDV; 1232 if (Val.getNode()) { 1233 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1234 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1235 // we couldn't resolve it directly when examining the DbgValue intrinsic 1236 // in the first place we should not be more successful here). Unless we 1237 // have some test case that prove this to be correct we should avoid 1238 // calling EmitFuncArgumentDbgValue here. 1239 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1240 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1241 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1242 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1243 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1244 // inserted after the definition of Val when emitting the instructions 1245 // after ISel. An alternative could be to teach 1246 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1247 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1248 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1249 << ValSDNodeOrder << "\n"); 1250 SDV = getDbgValue(Val, Variable, Expr, dl, 1251 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1252 DAG.AddDbgValue(SDV, false); 1253 } else 1254 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1255 << "in EmitFuncArgumentDbgValue\n"); 1256 } else { 1257 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1258 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1259 auto SDV = 1260 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1261 DAG.AddDbgValue(SDV, false); 1262 } 1263 } 1264 DDIV.clear(); 1265 } 1266 1267 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1268 // TODO: For the variadic implementation, instead of only checking the fail 1269 // state of `handleDebugValue`, we need know specifically which values were 1270 // invalid, so that we attempt to salvage only those values when processing 1271 // a DIArgList. 1272 assert(!DDI.getDI()->hasArgList() && 1273 "Not implemented for variadic dbg_values"); 1274 Value *V = DDI.getDI()->getValue(0); 1275 DILocalVariable *Var = DDI.getDI()->getVariable(); 1276 DIExpression *Expr = DDI.getDI()->getExpression(); 1277 DebugLoc DL = DDI.getdl(); 1278 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1279 unsigned SDOrder = DDI.getSDNodeOrder(); 1280 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1281 // that DW_OP_stack_value is desired. 1282 assert(isa<DbgValueInst>(DDI.getDI())); 1283 bool StackValue = true; 1284 1285 // Can this Value can be encoded without any further work? 1286 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1287 return; 1288 1289 // Attempt to salvage back through as many instructions as possible. Bail if 1290 // a non-instruction is seen, such as a constant expression or global 1291 // variable. FIXME: Further work could recover those too. 1292 while (isa<Instruction>(V)) { 1293 Instruction &VAsInst = *cast<Instruction>(V); 1294 // Temporary "0", awaiting real implementation. 1295 SmallVector<uint64_t, 16> Ops; 1296 SmallVector<Value *, 4> AdditionalValues; 1297 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1298 AdditionalValues); 1299 // If we cannot salvage any further, and haven't yet found a suitable debug 1300 // expression, bail out. 1301 if (!V) 1302 break; 1303 1304 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1305 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1306 // here for variadic dbg_values, remove that condition. 1307 if (!AdditionalValues.empty()) 1308 break; 1309 1310 // New value and expr now represent this debuginfo. 1311 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1312 1313 // Some kind of simplification occurred: check whether the operand of the 1314 // salvaged debug expression can be encoded in this DAG. 1315 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1316 /*IsVariadic=*/false)) { 1317 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1318 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1319 return; 1320 } 1321 } 1322 1323 // This was the final opportunity to salvage this debug information, and it 1324 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1325 // any earlier variable location. 1326 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1327 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1328 DAG.AddDbgValue(SDV, false); 1329 1330 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1331 << "\n"); 1332 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1333 << "\n"); 1334 } 1335 1336 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1337 DILocalVariable *Var, 1338 DIExpression *Expr, DebugLoc dl, 1339 DebugLoc InstDL, unsigned Order, 1340 bool IsVariadic) { 1341 if (Values.empty()) 1342 return true; 1343 SmallVector<SDDbgOperand> LocationOps; 1344 SmallVector<SDNode *> Dependencies; 1345 for (const Value *V : Values) { 1346 // Constant value. 1347 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1348 isa<ConstantPointerNull>(V)) { 1349 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1350 continue; 1351 } 1352 1353 // If the Value is a frame index, we can create a FrameIndex debug value 1354 // without relying on the DAG at all. 1355 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1356 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1357 if (SI != FuncInfo.StaticAllocaMap.end()) { 1358 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1359 continue; 1360 } 1361 } 1362 1363 // Do not use getValue() in here; we don't want to generate code at 1364 // this point if it hasn't been done yet. 1365 SDValue N = NodeMap[V]; 1366 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1367 N = UnusedArgNodeMap[V]; 1368 if (N.getNode()) { 1369 // Only emit func arg dbg value for non-variadic dbg.values for now. 1370 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1371 return true; 1372 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1373 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1374 // describe stack slot locations. 1375 // 1376 // Consider "int x = 0; int *px = &x;". There are two kinds of 1377 // interesting debug values here after optimization: 1378 // 1379 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1380 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1381 // 1382 // Both describe the direct values of their associated variables. 1383 Dependencies.push_back(N.getNode()); 1384 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1385 continue; 1386 } 1387 LocationOps.emplace_back( 1388 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1389 continue; 1390 } 1391 1392 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1393 // Special rules apply for the first dbg.values of parameter variables in a 1394 // function. Identify them by the fact they reference Argument Values, that 1395 // they're parameters, and they are parameters of the current function. We 1396 // need to let them dangle until they get an SDNode. 1397 bool IsParamOfFunc = 1398 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1399 if (IsParamOfFunc) 1400 return false; 1401 1402 // The value is not used in this block yet (or it would have an SDNode). 1403 // We still want the value to appear for the user if possible -- if it has 1404 // an associated VReg, we can refer to that instead. 1405 auto VMI = FuncInfo.ValueMap.find(V); 1406 if (VMI != FuncInfo.ValueMap.end()) { 1407 unsigned Reg = VMI->second; 1408 // If this is a PHI node, it may be split up into several MI PHI nodes 1409 // (in FunctionLoweringInfo::set). 1410 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1411 V->getType(), None); 1412 if (RFV.occupiesMultipleRegs()) { 1413 // FIXME: We could potentially support variadic dbg_values here. 1414 if (IsVariadic) 1415 return false; 1416 unsigned Offset = 0; 1417 unsigned BitsToDescribe = 0; 1418 if (auto VarSize = Var->getSizeInBits()) 1419 BitsToDescribe = *VarSize; 1420 if (auto Fragment = Expr->getFragmentInfo()) 1421 BitsToDescribe = Fragment->SizeInBits; 1422 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1423 // Bail out if all bits are described already. 1424 if (Offset >= BitsToDescribe) 1425 break; 1426 // TODO: handle scalable vectors. 1427 unsigned RegisterSize = RegAndSize.second; 1428 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1429 ? BitsToDescribe - Offset 1430 : RegisterSize; 1431 auto FragmentExpr = DIExpression::createFragmentExpression( 1432 Expr, Offset, FragmentSize); 1433 if (!FragmentExpr) 1434 continue; 1435 SDDbgValue *SDV = DAG.getVRegDbgValue( 1436 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1437 DAG.AddDbgValue(SDV, false); 1438 Offset += RegisterSize; 1439 } 1440 return true; 1441 } 1442 // We can use simple vreg locations for variadic dbg_values as well. 1443 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1444 continue; 1445 } 1446 // We failed to create a SDDbgOperand for V. 1447 return false; 1448 } 1449 1450 // We have created a SDDbgOperand for each Value in Values. 1451 // Should use Order instead of SDNodeOrder? 1452 assert(!LocationOps.empty()); 1453 SDDbgValue *SDV = 1454 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1455 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1456 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1457 return true; 1458 } 1459 1460 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1461 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1462 for (auto &Pair : DanglingDebugInfoMap) 1463 for (auto &DDI : Pair.second) 1464 salvageUnresolvedDbgValue(DDI); 1465 clearDanglingDebugInfo(); 1466 } 1467 1468 /// getCopyFromRegs - If there was virtual register allocated for the value V 1469 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1470 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1471 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1472 SDValue Result; 1473 1474 if (It != FuncInfo.ValueMap.end()) { 1475 Register InReg = It->second; 1476 1477 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1478 DAG.getDataLayout(), InReg, Ty, 1479 None); // This is not an ABI copy. 1480 SDValue Chain = DAG.getEntryNode(); 1481 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1482 V); 1483 resolveDanglingDebugInfo(V, Result); 1484 } 1485 1486 return Result; 1487 } 1488 1489 /// getValue - Return an SDValue for the given Value. 1490 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1491 // If we already have an SDValue for this value, use it. It's important 1492 // to do this first, so that we don't create a CopyFromReg if we already 1493 // have a regular SDValue. 1494 SDValue &N = NodeMap[V]; 1495 if (N.getNode()) return N; 1496 1497 // If there's a virtual register allocated and initialized for this 1498 // value, use it. 1499 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1500 return copyFromReg; 1501 1502 // Otherwise create a new SDValue and remember it. 1503 SDValue Val = getValueImpl(V); 1504 NodeMap[V] = Val; 1505 resolveDanglingDebugInfo(V, Val); 1506 return Val; 1507 } 1508 1509 /// getNonRegisterValue - Return an SDValue for the given Value, but 1510 /// don't look in FuncInfo.ValueMap for a virtual register. 1511 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1512 // If we already have an SDValue for this value, use it. 1513 SDValue &N = NodeMap[V]; 1514 if (N.getNode()) { 1515 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1516 // Remove the debug location from the node as the node is about to be used 1517 // in a location which may differ from the original debug location. This 1518 // is relevant to Constant and ConstantFP nodes because they can appear 1519 // as constant expressions inside PHI nodes. 1520 N->setDebugLoc(DebugLoc()); 1521 } 1522 return N; 1523 } 1524 1525 // Otherwise create a new SDValue and remember it. 1526 SDValue Val = getValueImpl(V); 1527 NodeMap[V] = Val; 1528 resolveDanglingDebugInfo(V, Val); 1529 return Val; 1530 } 1531 1532 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1533 /// Create an SDValue for the given value. 1534 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1536 1537 if (const Constant *C = dyn_cast<Constant>(V)) { 1538 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1539 1540 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1541 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1542 1543 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1544 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1545 1546 if (isa<ConstantPointerNull>(C)) { 1547 unsigned AS = V->getType()->getPointerAddressSpace(); 1548 return DAG.getConstant(0, getCurSDLoc(), 1549 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1550 } 1551 1552 if (match(C, m_VScale(DAG.getDataLayout()))) 1553 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1554 1555 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1556 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1557 1558 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1559 return DAG.getUNDEF(VT); 1560 1561 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1562 visit(CE->getOpcode(), *CE); 1563 SDValue N1 = NodeMap[V]; 1564 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1565 return N1; 1566 } 1567 1568 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1569 SmallVector<SDValue, 4> Constants; 1570 for (const Use &U : C->operands()) { 1571 SDNode *Val = getValue(U).getNode(); 1572 // If the operand is an empty aggregate, there are no values. 1573 if (!Val) continue; 1574 // Add each leaf value from the operand to the Constants list 1575 // to form a flattened list of all the values. 1576 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1577 Constants.push_back(SDValue(Val, i)); 1578 } 1579 1580 return DAG.getMergeValues(Constants, getCurSDLoc()); 1581 } 1582 1583 if (const ConstantDataSequential *CDS = 1584 dyn_cast<ConstantDataSequential>(C)) { 1585 SmallVector<SDValue, 4> Ops; 1586 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1587 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1588 // Add each leaf value from the operand to the Constants list 1589 // to form a flattened list of all the values. 1590 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1591 Ops.push_back(SDValue(Val, i)); 1592 } 1593 1594 if (isa<ArrayType>(CDS->getType())) 1595 return DAG.getMergeValues(Ops, getCurSDLoc()); 1596 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1597 } 1598 1599 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1600 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1601 "Unknown struct or array constant!"); 1602 1603 SmallVector<EVT, 4> ValueVTs; 1604 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1605 unsigned NumElts = ValueVTs.size(); 1606 if (NumElts == 0) 1607 return SDValue(); // empty struct 1608 SmallVector<SDValue, 4> Constants(NumElts); 1609 for (unsigned i = 0; i != NumElts; ++i) { 1610 EVT EltVT = ValueVTs[i]; 1611 if (isa<UndefValue>(C)) 1612 Constants[i] = DAG.getUNDEF(EltVT); 1613 else if (EltVT.isFloatingPoint()) 1614 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1615 else 1616 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1617 } 1618 1619 return DAG.getMergeValues(Constants, getCurSDLoc()); 1620 } 1621 1622 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1623 return DAG.getBlockAddress(BA, VT); 1624 1625 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1626 return getValue(Equiv->getGlobalValue()); 1627 1628 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1629 return getValue(NC->getGlobalValue()); 1630 1631 VectorType *VecTy = cast<VectorType>(V->getType()); 1632 1633 // Now that we know the number and type of the elements, get that number of 1634 // elements into the Ops array based on what kind of constant it is. 1635 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1636 SmallVector<SDValue, 16> Ops; 1637 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1638 for (unsigned i = 0; i != NumElements; ++i) 1639 Ops.push_back(getValue(CV->getOperand(i))); 1640 1641 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1642 } else if (isa<ConstantAggregateZero>(C)) { 1643 EVT EltVT = 1644 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1645 1646 SDValue Op; 1647 if (EltVT.isFloatingPoint()) 1648 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1649 else 1650 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1651 1652 if (isa<ScalableVectorType>(VecTy)) 1653 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1654 else { 1655 SmallVector<SDValue, 16> Ops; 1656 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1657 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1658 } 1659 } 1660 llvm_unreachable("Unknown vector constant"); 1661 } 1662 1663 // If this is a static alloca, generate it as the frameindex instead of 1664 // computation. 1665 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1666 DenseMap<const AllocaInst*, int>::iterator SI = 1667 FuncInfo.StaticAllocaMap.find(AI); 1668 if (SI != FuncInfo.StaticAllocaMap.end()) 1669 return DAG.getFrameIndex(SI->second, 1670 TLI.getFrameIndexTy(DAG.getDataLayout())); 1671 } 1672 1673 // If this is an instruction which fast-isel has deferred, select it now. 1674 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1675 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1676 1677 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1678 Inst->getType(), None); 1679 SDValue Chain = DAG.getEntryNode(); 1680 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1681 } 1682 1683 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1684 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1685 } 1686 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1687 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1688 llvm_unreachable("Can't get register for value!"); 1689 } 1690 1691 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1692 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1693 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1694 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1695 bool IsSEH = isAsynchronousEHPersonality(Pers); 1696 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1697 if (!IsSEH) 1698 CatchPadMBB->setIsEHScopeEntry(); 1699 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1700 if (IsMSVCCXX || IsCoreCLR) 1701 CatchPadMBB->setIsEHFuncletEntry(); 1702 } 1703 1704 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1705 // Update machine-CFG edge. 1706 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1707 FuncInfo.MBB->addSuccessor(TargetMBB); 1708 TargetMBB->setIsEHCatchretTarget(true); 1709 DAG.getMachineFunction().setHasEHCatchret(true); 1710 1711 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1712 bool IsSEH = isAsynchronousEHPersonality(Pers); 1713 if (IsSEH) { 1714 // If this is not a fall-through branch or optimizations are switched off, 1715 // emit the branch. 1716 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1717 TM.getOptLevel() == CodeGenOpt::None) 1718 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1719 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1720 return; 1721 } 1722 1723 // Figure out the funclet membership for the catchret's successor. 1724 // This will be used by the FuncletLayout pass to determine how to order the 1725 // BB's. 1726 // A 'catchret' returns to the outer scope's color. 1727 Value *ParentPad = I.getCatchSwitchParentPad(); 1728 const BasicBlock *SuccessorColor; 1729 if (isa<ConstantTokenNone>(ParentPad)) 1730 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1731 else 1732 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1733 assert(SuccessorColor && "No parent funclet for catchret!"); 1734 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1735 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1736 1737 // Create the terminator node. 1738 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1739 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1740 DAG.getBasicBlock(SuccessorColorMBB)); 1741 DAG.setRoot(Ret); 1742 } 1743 1744 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1745 // Don't emit any special code for the cleanuppad instruction. It just marks 1746 // the start of an EH scope/funclet. 1747 FuncInfo.MBB->setIsEHScopeEntry(); 1748 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1749 if (Pers != EHPersonality::Wasm_CXX) { 1750 FuncInfo.MBB->setIsEHFuncletEntry(); 1751 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1752 } 1753 } 1754 1755 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1756 // not match, it is OK to add only the first unwind destination catchpad to the 1757 // successors, because there will be at least one invoke instruction within the 1758 // catch scope that points to the next unwind destination, if one exists, so 1759 // CFGSort cannot mess up with BB sorting order. 1760 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1761 // call within them, and catchpads only consisting of 'catch (...)' have a 1762 // '__cxa_end_catch' call within them, both of which generate invokes in case 1763 // the next unwind destination exists, i.e., the next unwind destination is not 1764 // the caller.) 1765 // 1766 // Having at most one EH pad successor is also simpler and helps later 1767 // transformations. 1768 // 1769 // For example, 1770 // current: 1771 // invoke void @foo to ... unwind label %catch.dispatch 1772 // catch.dispatch: 1773 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1774 // catch.start: 1775 // ... 1776 // ... in this BB or some other child BB dominated by this BB there will be an 1777 // invoke that points to 'next' BB as an unwind destination 1778 // 1779 // next: ; We don't need to add this to 'current' BB's successor 1780 // ... 1781 static void findWasmUnwindDestinations( 1782 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1783 BranchProbability Prob, 1784 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1785 &UnwindDests) { 1786 while (EHPadBB) { 1787 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1788 if (isa<CleanupPadInst>(Pad)) { 1789 // Stop on cleanup pads. 1790 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1791 UnwindDests.back().first->setIsEHScopeEntry(); 1792 break; 1793 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1794 // Add the catchpad handlers to the possible destinations. We don't 1795 // continue to the unwind destination of the catchswitch for wasm. 1796 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1797 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1798 UnwindDests.back().first->setIsEHScopeEntry(); 1799 } 1800 break; 1801 } else { 1802 continue; 1803 } 1804 } 1805 } 1806 1807 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1808 /// many places it could ultimately go. In the IR, we have a single unwind 1809 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1810 /// This function skips over imaginary basic blocks that hold catchswitch 1811 /// instructions, and finds all the "real" machine 1812 /// basic block destinations. As those destinations may not be successors of 1813 /// EHPadBB, here we also calculate the edge probability to those destinations. 1814 /// The passed-in Prob is the edge probability to EHPadBB. 1815 static void findUnwindDestinations( 1816 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1817 BranchProbability Prob, 1818 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1819 &UnwindDests) { 1820 EHPersonality Personality = 1821 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1822 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1823 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1824 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1825 bool IsSEH = isAsynchronousEHPersonality(Personality); 1826 1827 if (IsWasmCXX) { 1828 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1829 assert(UnwindDests.size() <= 1 && 1830 "There should be at most one unwind destination for wasm"); 1831 return; 1832 } 1833 1834 while (EHPadBB) { 1835 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1836 BasicBlock *NewEHPadBB = nullptr; 1837 if (isa<LandingPadInst>(Pad)) { 1838 // Stop on landingpads. They are not funclets. 1839 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1840 break; 1841 } else if (isa<CleanupPadInst>(Pad)) { 1842 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1843 // personalities. 1844 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1845 UnwindDests.back().first->setIsEHScopeEntry(); 1846 UnwindDests.back().first->setIsEHFuncletEntry(); 1847 break; 1848 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1849 // Add the catchpad handlers to the possible destinations. 1850 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1851 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1852 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1853 if (IsMSVCCXX || IsCoreCLR) 1854 UnwindDests.back().first->setIsEHFuncletEntry(); 1855 if (!IsSEH) 1856 UnwindDests.back().first->setIsEHScopeEntry(); 1857 } 1858 NewEHPadBB = CatchSwitch->getUnwindDest(); 1859 } else { 1860 continue; 1861 } 1862 1863 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1864 if (BPI && NewEHPadBB) 1865 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1866 EHPadBB = NewEHPadBB; 1867 } 1868 } 1869 1870 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1871 // Update successor info. 1872 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1873 auto UnwindDest = I.getUnwindDest(); 1874 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1875 BranchProbability UnwindDestProb = 1876 (BPI && UnwindDest) 1877 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1878 : BranchProbability::getZero(); 1879 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1880 for (auto &UnwindDest : UnwindDests) { 1881 UnwindDest.first->setIsEHPad(); 1882 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1883 } 1884 FuncInfo.MBB->normalizeSuccProbs(); 1885 1886 // Create the terminator node. 1887 SDValue Ret = 1888 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1889 DAG.setRoot(Ret); 1890 } 1891 1892 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1893 report_fatal_error("visitCatchSwitch not yet implemented!"); 1894 } 1895 1896 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1898 auto &DL = DAG.getDataLayout(); 1899 SDValue Chain = getControlRoot(); 1900 SmallVector<ISD::OutputArg, 8> Outs; 1901 SmallVector<SDValue, 8> OutVals; 1902 1903 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1904 // lower 1905 // 1906 // %val = call <ty> @llvm.experimental.deoptimize() 1907 // ret <ty> %val 1908 // 1909 // differently. 1910 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1911 LowerDeoptimizingReturn(); 1912 return; 1913 } 1914 1915 if (!FuncInfo.CanLowerReturn) { 1916 unsigned DemoteReg = FuncInfo.DemoteRegister; 1917 const Function *F = I.getParent()->getParent(); 1918 1919 // Emit a store of the return value through the virtual register. 1920 // Leave Outs empty so that LowerReturn won't try to load return 1921 // registers the usual way. 1922 SmallVector<EVT, 1> PtrValueVTs; 1923 ComputeValueVTs(TLI, DL, 1924 F->getReturnType()->getPointerTo( 1925 DAG.getDataLayout().getAllocaAddrSpace()), 1926 PtrValueVTs); 1927 1928 SDValue RetPtr = 1929 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 1930 SDValue RetOp = getValue(I.getOperand(0)); 1931 1932 SmallVector<EVT, 4> ValueVTs, MemVTs; 1933 SmallVector<uint64_t, 4> Offsets; 1934 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1935 &Offsets); 1936 unsigned NumValues = ValueVTs.size(); 1937 1938 SmallVector<SDValue, 4> Chains(NumValues); 1939 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1940 for (unsigned i = 0; i != NumValues; ++i) { 1941 // An aggregate return value cannot wrap around the address space, so 1942 // offsets to its parts don't wrap either. 1943 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1944 TypeSize::Fixed(Offsets[i])); 1945 1946 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1947 if (MemVTs[i] != ValueVTs[i]) 1948 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1949 Chains[i] = DAG.getStore( 1950 Chain, getCurSDLoc(), Val, 1951 // FIXME: better loc info would be nice. 1952 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1953 commonAlignment(BaseAlign, Offsets[i])); 1954 } 1955 1956 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1957 MVT::Other, Chains); 1958 } else if (I.getNumOperands() != 0) { 1959 SmallVector<EVT, 4> ValueVTs; 1960 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1961 unsigned NumValues = ValueVTs.size(); 1962 if (NumValues) { 1963 SDValue RetOp = getValue(I.getOperand(0)); 1964 1965 const Function *F = I.getParent()->getParent(); 1966 1967 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1968 I.getOperand(0)->getType(), F->getCallingConv(), 1969 /*IsVarArg*/ false, DL); 1970 1971 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1972 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 1973 ExtendKind = ISD::SIGN_EXTEND; 1974 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 1975 ExtendKind = ISD::ZERO_EXTEND; 1976 1977 LLVMContext &Context = F->getContext(); 1978 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 1979 1980 for (unsigned j = 0; j != NumValues; ++j) { 1981 EVT VT = ValueVTs[j]; 1982 1983 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1984 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1985 1986 CallingConv::ID CC = F->getCallingConv(); 1987 1988 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1989 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1990 SmallVector<SDValue, 4> Parts(NumParts); 1991 getCopyToParts(DAG, getCurSDLoc(), 1992 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1993 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1994 1995 // 'inreg' on function refers to return value 1996 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1997 if (RetInReg) 1998 Flags.setInReg(); 1999 2000 if (I.getOperand(0)->getType()->isPointerTy()) { 2001 Flags.setPointer(); 2002 Flags.setPointerAddrSpace( 2003 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2004 } 2005 2006 if (NeedsRegBlock) { 2007 Flags.setInConsecutiveRegs(); 2008 if (j == NumValues - 1) 2009 Flags.setInConsecutiveRegsLast(); 2010 } 2011 2012 // Propagate extension type if any 2013 if (ExtendKind == ISD::SIGN_EXTEND) 2014 Flags.setSExt(); 2015 else if (ExtendKind == ISD::ZERO_EXTEND) 2016 Flags.setZExt(); 2017 2018 for (unsigned i = 0; i < NumParts; ++i) { 2019 Outs.push_back(ISD::OutputArg(Flags, 2020 Parts[i].getValueType().getSimpleVT(), 2021 VT, /*isfixed=*/true, 0, 0)); 2022 OutVals.push_back(Parts[i]); 2023 } 2024 } 2025 } 2026 } 2027 2028 // Push in swifterror virtual register as the last element of Outs. This makes 2029 // sure swifterror virtual register will be returned in the swifterror 2030 // physical register. 2031 const Function *F = I.getParent()->getParent(); 2032 if (TLI.supportSwiftError() && 2033 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2034 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2035 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2036 Flags.setSwiftError(); 2037 Outs.push_back(ISD::OutputArg( 2038 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2039 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2040 // Create SDNode for the swifterror virtual register. 2041 OutVals.push_back( 2042 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2043 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2044 EVT(TLI.getPointerTy(DL)))); 2045 } 2046 2047 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2048 CallingConv::ID CallConv = 2049 DAG.getMachineFunction().getFunction().getCallingConv(); 2050 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2051 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2052 2053 // Verify that the target's LowerReturn behaved as expected. 2054 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2055 "LowerReturn didn't return a valid chain!"); 2056 2057 // Update the DAG with the new chain value resulting from return lowering. 2058 DAG.setRoot(Chain); 2059 } 2060 2061 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2062 /// created for it, emit nodes to copy the value into the virtual 2063 /// registers. 2064 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2065 // Skip empty types 2066 if (V->getType()->isEmptyTy()) 2067 return; 2068 2069 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2070 if (VMI != FuncInfo.ValueMap.end()) { 2071 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2072 CopyValueToVirtualRegister(V, VMI->second); 2073 } 2074 } 2075 2076 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2077 /// the current basic block, add it to ValueMap now so that we'll get a 2078 /// CopyTo/FromReg. 2079 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2080 // No need to export constants. 2081 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2082 2083 // Already exported? 2084 if (FuncInfo.isExportedInst(V)) return; 2085 2086 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2087 CopyValueToVirtualRegister(V, Reg); 2088 } 2089 2090 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2091 const BasicBlock *FromBB) { 2092 // The operands of the setcc have to be in this block. We don't know 2093 // how to export them from some other block. 2094 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2095 // Can export from current BB. 2096 if (VI->getParent() == FromBB) 2097 return true; 2098 2099 // Is already exported, noop. 2100 return FuncInfo.isExportedInst(V); 2101 } 2102 2103 // If this is an argument, we can export it if the BB is the entry block or 2104 // if it is already exported. 2105 if (isa<Argument>(V)) { 2106 if (FromBB->isEntryBlock()) 2107 return true; 2108 2109 // Otherwise, can only export this if it is already exported. 2110 return FuncInfo.isExportedInst(V); 2111 } 2112 2113 // Otherwise, constants can always be exported. 2114 return true; 2115 } 2116 2117 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2118 BranchProbability 2119 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2120 const MachineBasicBlock *Dst) const { 2121 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2122 const BasicBlock *SrcBB = Src->getBasicBlock(); 2123 const BasicBlock *DstBB = Dst->getBasicBlock(); 2124 if (!BPI) { 2125 // If BPI is not available, set the default probability as 1 / N, where N is 2126 // the number of successors. 2127 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2128 return BranchProbability(1, SuccSize); 2129 } 2130 return BPI->getEdgeProbability(SrcBB, DstBB); 2131 } 2132 2133 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2134 MachineBasicBlock *Dst, 2135 BranchProbability Prob) { 2136 if (!FuncInfo.BPI) 2137 Src->addSuccessorWithoutProb(Dst); 2138 else { 2139 if (Prob.isUnknown()) 2140 Prob = getEdgeProbability(Src, Dst); 2141 Src->addSuccessor(Dst, Prob); 2142 } 2143 } 2144 2145 static bool InBlock(const Value *V, const BasicBlock *BB) { 2146 if (const Instruction *I = dyn_cast<Instruction>(V)) 2147 return I->getParent() == BB; 2148 return true; 2149 } 2150 2151 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2152 /// This function emits a branch and is used at the leaves of an OR or an 2153 /// AND operator tree. 2154 void 2155 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2156 MachineBasicBlock *TBB, 2157 MachineBasicBlock *FBB, 2158 MachineBasicBlock *CurBB, 2159 MachineBasicBlock *SwitchBB, 2160 BranchProbability TProb, 2161 BranchProbability FProb, 2162 bool InvertCond) { 2163 const BasicBlock *BB = CurBB->getBasicBlock(); 2164 2165 // If the leaf of the tree is a comparison, merge the condition into 2166 // the caseblock. 2167 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2168 // The operands of the cmp have to be in this block. We don't know 2169 // how to export them from some other block. If this is the first block 2170 // of the sequence, no exporting is needed. 2171 if (CurBB == SwitchBB || 2172 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2173 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2174 ISD::CondCode Condition; 2175 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2176 ICmpInst::Predicate Pred = 2177 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2178 Condition = getICmpCondCode(Pred); 2179 } else { 2180 const FCmpInst *FC = cast<FCmpInst>(Cond); 2181 FCmpInst::Predicate Pred = 2182 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2183 Condition = getFCmpCondCode(Pred); 2184 if (TM.Options.NoNaNsFPMath) 2185 Condition = getFCmpCodeWithoutNaN(Condition); 2186 } 2187 2188 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2189 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2190 SL->SwitchCases.push_back(CB); 2191 return; 2192 } 2193 } 2194 2195 // Create a CaseBlock record representing this branch. 2196 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2197 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2198 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2199 SL->SwitchCases.push_back(CB); 2200 } 2201 2202 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2203 MachineBasicBlock *TBB, 2204 MachineBasicBlock *FBB, 2205 MachineBasicBlock *CurBB, 2206 MachineBasicBlock *SwitchBB, 2207 Instruction::BinaryOps Opc, 2208 BranchProbability TProb, 2209 BranchProbability FProb, 2210 bool InvertCond) { 2211 // Skip over not part of the tree and remember to invert op and operands at 2212 // next level. 2213 Value *NotCond; 2214 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2215 InBlock(NotCond, CurBB->getBasicBlock())) { 2216 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2217 !InvertCond); 2218 return; 2219 } 2220 2221 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2222 const Value *BOpOp0, *BOpOp1; 2223 // Compute the effective opcode for Cond, taking into account whether it needs 2224 // to be inverted, e.g. 2225 // and (not (or A, B)), C 2226 // gets lowered as 2227 // and (and (not A, not B), C) 2228 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2229 if (BOp) { 2230 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2231 ? Instruction::And 2232 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2233 ? Instruction::Or 2234 : (Instruction::BinaryOps)0); 2235 if (InvertCond) { 2236 if (BOpc == Instruction::And) 2237 BOpc = Instruction::Or; 2238 else if (BOpc == Instruction::Or) 2239 BOpc = Instruction::And; 2240 } 2241 } 2242 2243 // If this node is not part of the or/and tree, emit it as a branch. 2244 // Note that all nodes in the tree should have same opcode. 2245 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2246 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2247 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2248 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2249 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2250 TProb, FProb, InvertCond); 2251 return; 2252 } 2253 2254 // Create TmpBB after CurBB. 2255 MachineFunction::iterator BBI(CurBB); 2256 MachineFunction &MF = DAG.getMachineFunction(); 2257 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2258 CurBB->getParent()->insert(++BBI, TmpBB); 2259 2260 if (Opc == Instruction::Or) { 2261 // Codegen X | Y as: 2262 // BB1: 2263 // jmp_if_X TBB 2264 // jmp TmpBB 2265 // TmpBB: 2266 // jmp_if_Y TBB 2267 // jmp FBB 2268 // 2269 2270 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2271 // The requirement is that 2272 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2273 // = TrueProb for original BB. 2274 // Assuming the original probabilities are A and B, one choice is to set 2275 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2276 // A/(1+B) and 2B/(1+B). This choice assumes that 2277 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2278 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2279 // TmpBB, but the math is more complicated. 2280 2281 auto NewTrueProb = TProb / 2; 2282 auto NewFalseProb = TProb / 2 + FProb; 2283 // Emit the LHS condition. 2284 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2285 NewFalseProb, InvertCond); 2286 2287 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2288 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2289 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2290 // Emit the RHS condition into TmpBB. 2291 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2292 Probs[1], InvertCond); 2293 } else { 2294 assert(Opc == Instruction::And && "Unknown merge op!"); 2295 // Codegen X & Y as: 2296 // BB1: 2297 // jmp_if_X TmpBB 2298 // jmp FBB 2299 // TmpBB: 2300 // jmp_if_Y TBB 2301 // jmp FBB 2302 // 2303 // This requires creation of TmpBB after CurBB. 2304 2305 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2306 // The requirement is that 2307 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2308 // = FalseProb for original BB. 2309 // Assuming the original probabilities are A and B, one choice is to set 2310 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2311 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2312 // TrueProb for BB1 * FalseProb for TmpBB. 2313 2314 auto NewTrueProb = TProb + FProb / 2; 2315 auto NewFalseProb = FProb / 2; 2316 // Emit the LHS condition. 2317 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2318 NewFalseProb, InvertCond); 2319 2320 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2321 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2322 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2323 // Emit the RHS condition into TmpBB. 2324 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2325 Probs[1], InvertCond); 2326 } 2327 } 2328 2329 /// If the set of cases should be emitted as a series of branches, return true. 2330 /// If we should emit this as a bunch of and/or'd together conditions, return 2331 /// false. 2332 bool 2333 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2334 if (Cases.size() != 2) return true; 2335 2336 // If this is two comparisons of the same values or'd or and'd together, they 2337 // will get folded into a single comparison, so don't emit two blocks. 2338 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2339 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2340 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2341 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2342 return false; 2343 } 2344 2345 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2346 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2347 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2348 Cases[0].CC == Cases[1].CC && 2349 isa<Constant>(Cases[0].CmpRHS) && 2350 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2351 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2352 return false; 2353 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2354 return false; 2355 } 2356 2357 return true; 2358 } 2359 2360 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2361 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2362 2363 // Update machine-CFG edges. 2364 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2365 2366 if (I.isUnconditional()) { 2367 // Update machine-CFG edges. 2368 BrMBB->addSuccessor(Succ0MBB); 2369 2370 // If this is not a fall-through branch or optimizations are switched off, 2371 // emit the branch. 2372 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2373 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2374 MVT::Other, getControlRoot(), 2375 DAG.getBasicBlock(Succ0MBB))); 2376 2377 return; 2378 } 2379 2380 // If this condition is one of the special cases we handle, do special stuff 2381 // now. 2382 const Value *CondVal = I.getCondition(); 2383 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2384 2385 // If this is a series of conditions that are or'd or and'd together, emit 2386 // this as a sequence of branches instead of setcc's with and/or operations. 2387 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2388 // unpredictable branches, and vector extracts because those jumps are likely 2389 // expensive for any target), this should improve performance. 2390 // For example, instead of something like: 2391 // cmp A, B 2392 // C = seteq 2393 // cmp D, E 2394 // F = setle 2395 // or C, F 2396 // jnz foo 2397 // Emit: 2398 // cmp A, B 2399 // je foo 2400 // cmp D, E 2401 // jle foo 2402 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2403 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2404 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2405 Value *Vec; 2406 const Value *BOp0, *BOp1; 2407 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2408 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2409 Opcode = Instruction::And; 2410 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2411 Opcode = Instruction::Or; 2412 2413 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2414 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2415 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2416 getEdgeProbability(BrMBB, Succ0MBB), 2417 getEdgeProbability(BrMBB, Succ1MBB), 2418 /*InvertCond=*/false); 2419 // If the compares in later blocks need to use values not currently 2420 // exported from this block, export them now. This block should always 2421 // be the first entry. 2422 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2423 2424 // Allow some cases to be rejected. 2425 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2426 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2427 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2428 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2429 } 2430 2431 // Emit the branch for this block. 2432 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2433 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2434 return; 2435 } 2436 2437 // Okay, we decided not to do this, remove any inserted MBB's and clear 2438 // SwitchCases. 2439 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2440 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2441 2442 SL->SwitchCases.clear(); 2443 } 2444 } 2445 2446 // Create a CaseBlock record representing this branch. 2447 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2448 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2449 2450 // Use visitSwitchCase to actually insert the fast branch sequence for this 2451 // cond branch. 2452 visitSwitchCase(CB, BrMBB); 2453 } 2454 2455 /// visitSwitchCase - Emits the necessary code to represent a single node in 2456 /// the binary search tree resulting from lowering a switch instruction. 2457 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2458 MachineBasicBlock *SwitchBB) { 2459 SDValue Cond; 2460 SDValue CondLHS = getValue(CB.CmpLHS); 2461 SDLoc dl = CB.DL; 2462 2463 if (CB.CC == ISD::SETTRUE) { 2464 // Branch or fall through to TrueBB. 2465 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2466 SwitchBB->normalizeSuccProbs(); 2467 if (CB.TrueBB != NextBlock(SwitchBB)) { 2468 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2469 DAG.getBasicBlock(CB.TrueBB))); 2470 } 2471 return; 2472 } 2473 2474 auto &TLI = DAG.getTargetLoweringInfo(); 2475 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2476 2477 // Build the setcc now. 2478 if (!CB.CmpMHS) { 2479 // Fold "(X == true)" to X and "(X == false)" to !X to 2480 // handle common cases produced by branch lowering. 2481 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2482 CB.CC == ISD::SETEQ) 2483 Cond = CondLHS; 2484 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2485 CB.CC == ISD::SETEQ) { 2486 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2487 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2488 } else { 2489 SDValue CondRHS = getValue(CB.CmpRHS); 2490 2491 // If a pointer's DAG type is larger than its memory type then the DAG 2492 // values are zero-extended. This breaks signed comparisons so truncate 2493 // back to the underlying type before doing the compare. 2494 if (CondLHS.getValueType() != MemVT) { 2495 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2496 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2497 } 2498 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2499 } 2500 } else { 2501 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2502 2503 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2504 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2505 2506 SDValue CmpOp = getValue(CB.CmpMHS); 2507 EVT VT = CmpOp.getValueType(); 2508 2509 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2510 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2511 ISD::SETLE); 2512 } else { 2513 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2514 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2515 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2516 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2517 } 2518 } 2519 2520 // Update successor info 2521 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2522 // TrueBB and FalseBB are always different unless the incoming IR is 2523 // degenerate. This only happens when running llc on weird IR. 2524 if (CB.TrueBB != CB.FalseBB) 2525 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2526 SwitchBB->normalizeSuccProbs(); 2527 2528 // If the lhs block is the next block, invert the condition so that we can 2529 // fall through to the lhs instead of the rhs block. 2530 if (CB.TrueBB == NextBlock(SwitchBB)) { 2531 std::swap(CB.TrueBB, CB.FalseBB); 2532 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2533 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2534 } 2535 2536 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2537 MVT::Other, getControlRoot(), Cond, 2538 DAG.getBasicBlock(CB.TrueBB)); 2539 2540 // Insert the false branch. Do this even if it's a fall through branch, 2541 // this makes it easier to do DAG optimizations which require inverting 2542 // the branch condition. 2543 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2544 DAG.getBasicBlock(CB.FalseBB)); 2545 2546 DAG.setRoot(BrCond); 2547 } 2548 2549 /// visitJumpTable - Emit JumpTable node in the current MBB 2550 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2551 // Emit the code for the jump table 2552 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2553 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2554 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2555 JT.Reg, PTy); 2556 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2557 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2558 MVT::Other, Index.getValue(1), 2559 Table, Index); 2560 DAG.setRoot(BrJumpTable); 2561 } 2562 2563 /// visitJumpTableHeader - This function emits necessary code to produce index 2564 /// in the JumpTable from switch case. 2565 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2566 JumpTableHeader &JTH, 2567 MachineBasicBlock *SwitchBB) { 2568 SDLoc dl = getCurSDLoc(); 2569 2570 // Subtract the lowest switch case value from the value being switched on. 2571 SDValue SwitchOp = getValue(JTH.SValue); 2572 EVT VT = SwitchOp.getValueType(); 2573 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2574 DAG.getConstant(JTH.First, dl, VT)); 2575 2576 // The SDNode we just created, which holds the value being switched on minus 2577 // the smallest case value, needs to be copied to a virtual register so it 2578 // can be used as an index into the jump table in a subsequent basic block. 2579 // This value may be smaller or larger than the target's pointer type, and 2580 // therefore require extension or truncating. 2581 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2582 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2583 2584 unsigned JumpTableReg = 2585 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2586 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2587 JumpTableReg, SwitchOp); 2588 JT.Reg = JumpTableReg; 2589 2590 if (!JTH.FallthroughUnreachable) { 2591 // Emit the range check for the jump table, and branch to the default block 2592 // for the switch statement if the value being switched on exceeds the 2593 // largest case in the switch. 2594 SDValue CMP = DAG.getSetCC( 2595 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2596 Sub.getValueType()), 2597 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2598 2599 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2600 MVT::Other, CopyTo, CMP, 2601 DAG.getBasicBlock(JT.Default)); 2602 2603 // Avoid emitting unnecessary branches to the next block. 2604 if (JT.MBB != NextBlock(SwitchBB)) 2605 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2606 DAG.getBasicBlock(JT.MBB)); 2607 2608 DAG.setRoot(BrCond); 2609 } else { 2610 // Avoid emitting unnecessary branches to the next block. 2611 if (JT.MBB != NextBlock(SwitchBB)) 2612 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2613 DAG.getBasicBlock(JT.MBB))); 2614 else 2615 DAG.setRoot(CopyTo); 2616 } 2617 } 2618 2619 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2620 /// variable if there exists one. 2621 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2622 SDValue &Chain) { 2623 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2624 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2625 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2626 MachineFunction &MF = DAG.getMachineFunction(); 2627 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2628 MachineSDNode *Node = 2629 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2630 if (Global) { 2631 MachinePointerInfo MPInfo(Global); 2632 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2633 MachineMemOperand::MODereferenceable; 2634 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2635 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2636 DAG.setNodeMemRefs(Node, {MemRef}); 2637 } 2638 if (PtrTy != PtrMemTy) 2639 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2640 return SDValue(Node, 0); 2641 } 2642 2643 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2644 /// tail spliced into a stack protector check success bb. 2645 /// 2646 /// For a high level explanation of how this fits into the stack protector 2647 /// generation see the comment on the declaration of class 2648 /// StackProtectorDescriptor. 2649 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2650 MachineBasicBlock *ParentBB) { 2651 2652 // First create the loads to the guard/stack slot for the comparison. 2653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2654 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2655 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2656 2657 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2658 int FI = MFI.getStackProtectorIndex(); 2659 2660 SDValue Guard; 2661 SDLoc dl = getCurSDLoc(); 2662 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2663 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2664 Align Align = 2665 DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2666 2667 // Generate code to load the content of the guard slot. 2668 SDValue GuardVal = DAG.getLoad( 2669 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2670 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2671 MachineMemOperand::MOVolatile); 2672 2673 if (TLI.useStackGuardXorFP()) 2674 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2675 2676 // Retrieve guard check function, nullptr if instrumentation is inlined. 2677 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2678 // The target provides a guard check function to validate the guard value. 2679 // Generate a call to that function with the content of the guard slot as 2680 // argument. 2681 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2682 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2683 2684 TargetLowering::ArgListTy Args; 2685 TargetLowering::ArgListEntry Entry; 2686 Entry.Node = GuardVal; 2687 Entry.Ty = FnTy->getParamType(0); 2688 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2689 Entry.IsInReg = true; 2690 Args.push_back(Entry); 2691 2692 TargetLowering::CallLoweringInfo CLI(DAG); 2693 CLI.setDebugLoc(getCurSDLoc()) 2694 .setChain(DAG.getEntryNode()) 2695 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2696 getValue(GuardCheckFn), std::move(Args)); 2697 2698 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2699 DAG.setRoot(Result.second); 2700 return; 2701 } 2702 2703 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2704 // Otherwise, emit a volatile load to retrieve the stack guard value. 2705 SDValue Chain = DAG.getEntryNode(); 2706 if (TLI.useLoadStackGuardNode()) { 2707 Guard = getLoadStackGuard(DAG, dl, Chain); 2708 } else { 2709 const Value *IRGuard = TLI.getSDagStackGuard(M); 2710 SDValue GuardPtr = getValue(IRGuard); 2711 2712 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2713 MachinePointerInfo(IRGuard, 0), Align, 2714 MachineMemOperand::MOVolatile); 2715 } 2716 2717 // Perform the comparison via a getsetcc. 2718 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2719 *DAG.getContext(), 2720 Guard.getValueType()), 2721 Guard, GuardVal, ISD::SETNE); 2722 2723 // If the guard/stackslot do not equal, branch to failure MBB. 2724 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2725 MVT::Other, GuardVal.getOperand(0), 2726 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2727 // Otherwise branch to success MBB. 2728 SDValue Br = DAG.getNode(ISD::BR, dl, 2729 MVT::Other, BrCond, 2730 DAG.getBasicBlock(SPD.getSuccessMBB())); 2731 2732 DAG.setRoot(Br); 2733 } 2734 2735 /// Codegen the failure basic block for a stack protector check. 2736 /// 2737 /// A failure stack protector machine basic block consists simply of a call to 2738 /// __stack_chk_fail(). 2739 /// 2740 /// For a high level explanation of how this fits into the stack protector 2741 /// generation see the comment on the declaration of class 2742 /// StackProtectorDescriptor. 2743 void 2744 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2745 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2746 TargetLowering::MakeLibCallOptions CallOptions; 2747 CallOptions.setDiscardResult(true); 2748 SDValue Chain = 2749 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2750 None, CallOptions, getCurSDLoc()).second; 2751 // On PS4, the "return address" must still be within the calling function, 2752 // even if it's at the very end, so emit an explicit TRAP here. 2753 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2754 if (TM.getTargetTriple().isPS4CPU()) 2755 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2756 // WebAssembly needs an unreachable instruction after a non-returning call, 2757 // because the function return type can be different from __stack_chk_fail's 2758 // return type (void). 2759 if (TM.getTargetTriple().isWasm()) 2760 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2761 2762 DAG.setRoot(Chain); 2763 } 2764 2765 /// visitBitTestHeader - This function emits necessary code to produce value 2766 /// suitable for "bit tests" 2767 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2768 MachineBasicBlock *SwitchBB) { 2769 SDLoc dl = getCurSDLoc(); 2770 2771 // Subtract the minimum value. 2772 SDValue SwitchOp = getValue(B.SValue); 2773 EVT VT = SwitchOp.getValueType(); 2774 SDValue RangeSub = 2775 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2776 2777 // Determine the type of the test operands. 2778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2779 bool UsePtrType = false; 2780 if (!TLI.isTypeLegal(VT)) { 2781 UsePtrType = true; 2782 } else { 2783 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2784 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2785 // Switch table case range are encoded into series of masks. 2786 // Just use pointer type, it's guaranteed to fit. 2787 UsePtrType = true; 2788 break; 2789 } 2790 } 2791 SDValue Sub = RangeSub; 2792 if (UsePtrType) { 2793 VT = TLI.getPointerTy(DAG.getDataLayout()); 2794 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2795 } 2796 2797 B.RegVT = VT.getSimpleVT(); 2798 B.Reg = FuncInfo.CreateReg(B.RegVT); 2799 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2800 2801 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2802 2803 if (!B.FallthroughUnreachable) 2804 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2805 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2806 SwitchBB->normalizeSuccProbs(); 2807 2808 SDValue Root = CopyTo; 2809 if (!B.FallthroughUnreachable) { 2810 // Conditional branch to the default block. 2811 SDValue RangeCmp = DAG.getSetCC(dl, 2812 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2813 RangeSub.getValueType()), 2814 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2815 ISD::SETUGT); 2816 2817 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2818 DAG.getBasicBlock(B.Default)); 2819 } 2820 2821 // Avoid emitting unnecessary branches to the next block. 2822 if (MBB != NextBlock(SwitchBB)) 2823 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2824 2825 DAG.setRoot(Root); 2826 } 2827 2828 /// visitBitTestCase - this function produces one "bit test" 2829 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2830 MachineBasicBlock* NextMBB, 2831 BranchProbability BranchProbToNext, 2832 unsigned Reg, 2833 BitTestCase &B, 2834 MachineBasicBlock *SwitchBB) { 2835 SDLoc dl = getCurSDLoc(); 2836 MVT VT = BB.RegVT; 2837 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2838 SDValue Cmp; 2839 unsigned PopCount = countPopulation(B.Mask); 2840 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2841 if (PopCount == 1) { 2842 // Testing for a single bit; just compare the shift count with what it 2843 // would need to be to shift a 1 bit in that position. 2844 Cmp = DAG.getSetCC( 2845 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2846 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2847 ISD::SETEQ); 2848 } else if (PopCount == BB.Range) { 2849 // There is only one zero bit in the range, test for it directly. 2850 Cmp = DAG.getSetCC( 2851 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2852 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2853 ISD::SETNE); 2854 } else { 2855 // Make desired shift 2856 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2857 DAG.getConstant(1, dl, VT), ShiftOp); 2858 2859 // Emit bit tests and jumps 2860 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2861 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2862 Cmp = DAG.getSetCC( 2863 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2864 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2865 } 2866 2867 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2868 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2869 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2870 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2871 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2872 // one as they are relative probabilities (and thus work more like weights), 2873 // and hence we need to normalize them to let the sum of them become one. 2874 SwitchBB->normalizeSuccProbs(); 2875 2876 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2877 MVT::Other, getControlRoot(), 2878 Cmp, DAG.getBasicBlock(B.TargetBB)); 2879 2880 // Avoid emitting unnecessary branches to the next block. 2881 if (NextMBB != NextBlock(SwitchBB)) 2882 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2883 DAG.getBasicBlock(NextMBB)); 2884 2885 DAG.setRoot(BrAnd); 2886 } 2887 2888 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2889 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2890 2891 // Retrieve successors. Look through artificial IR level blocks like 2892 // catchswitch for successors. 2893 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2894 const BasicBlock *EHPadBB = I.getSuccessor(1); 2895 2896 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2897 // have to do anything here to lower funclet bundles. 2898 assert(!I.hasOperandBundlesOtherThan( 2899 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2900 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2901 LLVMContext::OB_cfguardtarget, 2902 LLVMContext::OB_clang_arc_attachedcall}) && 2903 "Cannot lower invokes with arbitrary operand bundles yet!"); 2904 2905 const Value *Callee(I.getCalledOperand()); 2906 const Function *Fn = dyn_cast<Function>(Callee); 2907 if (isa<InlineAsm>(Callee)) 2908 visitInlineAsm(I, EHPadBB); 2909 else if (Fn && Fn->isIntrinsic()) { 2910 switch (Fn->getIntrinsicID()) { 2911 default: 2912 llvm_unreachable("Cannot invoke this intrinsic"); 2913 case Intrinsic::donothing: 2914 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2915 case Intrinsic::seh_try_begin: 2916 case Intrinsic::seh_scope_begin: 2917 case Intrinsic::seh_try_end: 2918 case Intrinsic::seh_scope_end: 2919 break; 2920 case Intrinsic::experimental_patchpoint_void: 2921 case Intrinsic::experimental_patchpoint_i64: 2922 visitPatchpoint(I, EHPadBB); 2923 break; 2924 case Intrinsic::experimental_gc_statepoint: 2925 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2926 break; 2927 case Intrinsic::wasm_rethrow: { 2928 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2929 // special because it can be invoked, so we manually lower it to a DAG 2930 // node here. 2931 SmallVector<SDValue, 8> Ops; 2932 Ops.push_back(getRoot()); // inchain 2933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2934 Ops.push_back( 2935 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2936 TLI.getPointerTy(DAG.getDataLayout()))); 2937 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2938 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2939 break; 2940 } 2941 } 2942 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2943 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2944 // Eventually we will support lowering the @llvm.experimental.deoptimize 2945 // intrinsic, and right now there are no plans to support other intrinsics 2946 // with deopt state. 2947 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2948 } else { 2949 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2950 } 2951 2952 // If the value of the invoke is used outside of its defining block, make it 2953 // available as a virtual register. 2954 // We already took care of the exported value for the statepoint instruction 2955 // during call to the LowerStatepoint. 2956 if (!isa<GCStatepointInst>(I)) { 2957 CopyToExportRegsIfNeeded(&I); 2958 } 2959 2960 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2961 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2962 BranchProbability EHPadBBProb = 2963 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2964 : BranchProbability::getZero(); 2965 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2966 2967 // Update successor info. 2968 addSuccessorWithProb(InvokeMBB, Return); 2969 for (auto &UnwindDest : UnwindDests) { 2970 UnwindDest.first->setIsEHPad(); 2971 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2972 } 2973 InvokeMBB->normalizeSuccProbs(); 2974 2975 // Drop into normal successor. 2976 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2977 DAG.getBasicBlock(Return))); 2978 } 2979 2980 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2981 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2982 2983 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2984 // have to do anything here to lower funclet bundles. 2985 assert(!I.hasOperandBundlesOtherThan( 2986 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2987 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2988 2989 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2990 visitInlineAsm(I); 2991 CopyToExportRegsIfNeeded(&I); 2992 2993 // Retrieve successors. 2994 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2995 2996 // Update successor info. 2997 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2998 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2999 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 3000 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3001 Target->setIsInlineAsmBrIndirectTarget(); 3002 } 3003 CallBrMBB->normalizeSuccProbs(); 3004 3005 // Drop into default successor. 3006 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3007 MVT::Other, getControlRoot(), 3008 DAG.getBasicBlock(Return))); 3009 } 3010 3011 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3012 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3013 } 3014 3015 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3016 assert(FuncInfo.MBB->isEHPad() && 3017 "Call to landingpad not in landing pad!"); 3018 3019 // If there aren't registers to copy the values into (e.g., during SjLj 3020 // exceptions), then don't bother to create these DAG nodes. 3021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3022 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3023 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3024 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3025 return; 3026 3027 // If landingpad's return type is token type, we don't create DAG nodes 3028 // for its exception pointer and selector value. The extraction of exception 3029 // pointer or selector value from token type landingpads is not currently 3030 // supported. 3031 if (LP.getType()->isTokenTy()) 3032 return; 3033 3034 SmallVector<EVT, 2> ValueVTs; 3035 SDLoc dl = getCurSDLoc(); 3036 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3037 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3038 3039 // Get the two live-in registers as SDValues. The physregs have already been 3040 // copied into virtual registers. 3041 SDValue Ops[2]; 3042 if (FuncInfo.ExceptionPointerVirtReg) { 3043 Ops[0] = DAG.getZExtOrTrunc( 3044 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3045 FuncInfo.ExceptionPointerVirtReg, 3046 TLI.getPointerTy(DAG.getDataLayout())), 3047 dl, ValueVTs[0]); 3048 } else { 3049 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3050 } 3051 Ops[1] = DAG.getZExtOrTrunc( 3052 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3053 FuncInfo.ExceptionSelectorVirtReg, 3054 TLI.getPointerTy(DAG.getDataLayout())), 3055 dl, ValueVTs[1]); 3056 3057 // Merge into one. 3058 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3059 DAG.getVTList(ValueVTs), Ops); 3060 setValue(&LP, Res); 3061 } 3062 3063 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3064 MachineBasicBlock *Last) { 3065 // Update JTCases. 3066 for (JumpTableBlock &JTB : SL->JTCases) 3067 if (JTB.first.HeaderBB == First) 3068 JTB.first.HeaderBB = Last; 3069 3070 // Update BitTestCases. 3071 for (BitTestBlock &BTB : SL->BitTestCases) 3072 if (BTB.Parent == First) 3073 BTB.Parent = Last; 3074 } 3075 3076 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3077 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3078 3079 // Update machine-CFG edges with unique successors. 3080 SmallSet<BasicBlock*, 32> Done; 3081 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3082 BasicBlock *BB = I.getSuccessor(i); 3083 bool Inserted = Done.insert(BB).second; 3084 if (!Inserted) 3085 continue; 3086 3087 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3088 addSuccessorWithProb(IndirectBrMBB, Succ); 3089 } 3090 IndirectBrMBB->normalizeSuccProbs(); 3091 3092 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3093 MVT::Other, getControlRoot(), 3094 getValue(I.getAddress()))); 3095 } 3096 3097 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3098 if (!DAG.getTarget().Options.TrapUnreachable) 3099 return; 3100 3101 // We may be able to ignore unreachable behind a noreturn call. 3102 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3103 const BasicBlock &BB = *I.getParent(); 3104 if (&I != &BB.front()) { 3105 BasicBlock::const_iterator PredI = 3106 std::prev(BasicBlock::const_iterator(&I)); 3107 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3108 if (Call->doesNotReturn()) 3109 return; 3110 } 3111 } 3112 } 3113 3114 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3115 } 3116 3117 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3118 SDNodeFlags Flags; 3119 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3120 Flags.copyFMF(*FPOp); 3121 3122 SDValue Op = getValue(I.getOperand(0)); 3123 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3124 Op, Flags); 3125 setValue(&I, UnNodeValue); 3126 } 3127 3128 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3129 SDNodeFlags Flags; 3130 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3131 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3132 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3133 } 3134 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3135 Flags.setExact(ExactOp->isExact()); 3136 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3137 Flags.copyFMF(*FPOp); 3138 3139 SDValue Op1 = getValue(I.getOperand(0)); 3140 SDValue Op2 = getValue(I.getOperand(1)); 3141 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3142 Op1, Op2, Flags); 3143 setValue(&I, BinNodeValue); 3144 } 3145 3146 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3147 SDValue Op1 = getValue(I.getOperand(0)); 3148 SDValue Op2 = getValue(I.getOperand(1)); 3149 3150 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3151 Op1.getValueType(), DAG.getDataLayout()); 3152 3153 // Coerce the shift amount to the right type if we can. 3154 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3155 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3156 unsigned Op2Size = Op2.getValueSizeInBits(); 3157 SDLoc DL = getCurSDLoc(); 3158 3159 // If the operand is smaller than the shift count type, promote it. 3160 if (ShiftSize > Op2Size) 3161 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3162 3163 // If the operand is larger than the shift count type but the shift 3164 // count type has enough bits to represent any shift value, truncate 3165 // it now. This is a common case and it exposes the truncate to 3166 // optimization early. 3167 else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits())) 3168 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3169 // Otherwise we'll need to temporarily settle for some other convenient 3170 // type. Type legalization will make adjustments once the shiftee is split. 3171 else 3172 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3173 } 3174 3175 bool nuw = false; 3176 bool nsw = false; 3177 bool exact = false; 3178 3179 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3180 3181 if (const OverflowingBinaryOperator *OFBinOp = 3182 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3183 nuw = OFBinOp->hasNoUnsignedWrap(); 3184 nsw = OFBinOp->hasNoSignedWrap(); 3185 } 3186 if (const PossiblyExactOperator *ExactOp = 3187 dyn_cast<const PossiblyExactOperator>(&I)) 3188 exact = ExactOp->isExact(); 3189 } 3190 SDNodeFlags Flags; 3191 Flags.setExact(exact); 3192 Flags.setNoSignedWrap(nsw); 3193 Flags.setNoUnsignedWrap(nuw); 3194 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3195 Flags); 3196 setValue(&I, Res); 3197 } 3198 3199 void SelectionDAGBuilder::visitSDiv(const User &I) { 3200 SDValue Op1 = getValue(I.getOperand(0)); 3201 SDValue Op2 = getValue(I.getOperand(1)); 3202 3203 SDNodeFlags Flags; 3204 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3205 cast<PossiblyExactOperator>(&I)->isExact()); 3206 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3207 Op2, Flags)); 3208 } 3209 3210 void SelectionDAGBuilder::visitICmp(const User &I) { 3211 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3212 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3213 predicate = IC->getPredicate(); 3214 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3215 predicate = ICmpInst::Predicate(IC->getPredicate()); 3216 SDValue Op1 = getValue(I.getOperand(0)); 3217 SDValue Op2 = getValue(I.getOperand(1)); 3218 ISD::CondCode Opcode = getICmpCondCode(predicate); 3219 3220 auto &TLI = DAG.getTargetLoweringInfo(); 3221 EVT MemVT = 3222 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3223 3224 // If a pointer's DAG type is larger than its memory type then the DAG values 3225 // are zero-extended. This breaks signed comparisons so truncate back to the 3226 // underlying type before doing the compare. 3227 if (Op1.getValueType() != MemVT) { 3228 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3229 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3230 } 3231 3232 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3233 I.getType()); 3234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3235 } 3236 3237 void SelectionDAGBuilder::visitFCmp(const User &I) { 3238 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3239 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3240 predicate = FC->getPredicate(); 3241 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3242 predicate = FCmpInst::Predicate(FC->getPredicate()); 3243 SDValue Op1 = getValue(I.getOperand(0)); 3244 SDValue Op2 = getValue(I.getOperand(1)); 3245 3246 ISD::CondCode Condition = getFCmpCondCode(predicate); 3247 auto *FPMO = cast<FPMathOperator>(&I); 3248 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3249 Condition = getFCmpCodeWithoutNaN(Condition); 3250 3251 SDNodeFlags Flags; 3252 Flags.copyFMF(*FPMO); 3253 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3254 3255 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3256 I.getType()); 3257 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3258 } 3259 3260 // Check if the condition of the select has one use or two users that are both 3261 // selects with the same condition. 3262 static bool hasOnlySelectUsers(const Value *Cond) { 3263 return llvm::all_of(Cond->users(), [](const Value *V) { 3264 return isa<SelectInst>(V); 3265 }); 3266 } 3267 3268 void SelectionDAGBuilder::visitSelect(const User &I) { 3269 SmallVector<EVT, 4> ValueVTs; 3270 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3271 ValueVTs); 3272 unsigned NumValues = ValueVTs.size(); 3273 if (NumValues == 0) return; 3274 3275 SmallVector<SDValue, 4> Values(NumValues); 3276 SDValue Cond = getValue(I.getOperand(0)); 3277 SDValue LHSVal = getValue(I.getOperand(1)); 3278 SDValue RHSVal = getValue(I.getOperand(2)); 3279 SmallVector<SDValue, 1> BaseOps(1, Cond); 3280 ISD::NodeType OpCode = 3281 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3282 3283 bool IsUnaryAbs = false; 3284 bool Negate = false; 3285 3286 SDNodeFlags Flags; 3287 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3288 Flags.copyFMF(*FPOp); 3289 3290 // Min/max matching is only viable if all output VTs are the same. 3291 if (is_splat(ValueVTs)) { 3292 EVT VT = ValueVTs[0]; 3293 LLVMContext &Ctx = *DAG.getContext(); 3294 auto &TLI = DAG.getTargetLoweringInfo(); 3295 3296 // We care about the legality of the operation after it has been type 3297 // legalized. 3298 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3299 VT = TLI.getTypeToTransformTo(Ctx, VT); 3300 3301 // If the vselect is legal, assume we want to leave this as a vector setcc + 3302 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3303 // min/max is legal on the scalar type. 3304 bool UseScalarMinMax = VT.isVector() && 3305 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3306 3307 Value *LHS, *RHS; 3308 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3309 ISD::NodeType Opc = ISD::DELETED_NODE; 3310 switch (SPR.Flavor) { 3311 case SPF_UMAX: Opc = ISD::UMAX; break; 3312 case SPF_UMIN: Opc = ISD::UMIN; break; 3313 case SPF_SMAX: Opc = ISD::SMAX; break; 3314 case SPF_SMIN: Opc = ISD::SMIN; break; 3315 case SPF_FMINNUM: 3316 switch (SPR.NaNBehavior) { 3317 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3318 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3319 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3320 case SPNB_RETURNS_ANY: { 3321 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3322 Opc = ISD::FMINNUM; 3323 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3324 Opc = ISD::FMINIMUM; 3325 else if (UseScalarMinMax) 3326 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3327 ISD::FMINNUM : ISD::FMINIMUM; 3328 break; 3329 } 3330 } 3331 break; 3332 case SPF_FMAXNUM: 3333 switch (SPR.NaNBehavior) { 3334 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3335 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3336 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3337 case SPNB_RETURNS_ANY: 3338 3339 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3340 Opc = ISD::FMAXNUM; 3341 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3342 Opc = ISD::FMAXIMUM; 3343 else if (UseScalarMinMax) 3344 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3345 ISD::FMAXNUM : ISD::FMAXIMUM; 3346 break; 3347 } 3348 break; 3349 case SPF_NABS: 3350 Negate = true; 3351 LLVM_FALLTHROUGH; 3352 case SPF_ABS: 3353 IsUnaryAbs = true; 3354 Opc = ISD::ABS; 3355 break; 3356 default: break; 3357 } 3358 3359 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3360 (TLI.isOperationLegalOrCustom(Opc, VT) || 3361 (UseScalarMinMax && 3362 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3363 // If the underlying comparison instruction is used by any other 3364 // instruction, the consumed instructions won't be destroyed, so it is 3365 // not profitable to convert to a min/max. 3366 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3367 OpCode = Opc; 3368 LHSVal = getValue(LHS); 3369 RHSVal = getValue(RHS); 3370 BaseOps.clear(); 3371 } 3372 3373 if (IsUnaryAbs) { 3374 OpCode = Opc; 3375 LHSVal = getValue(LHS); 3376 BaseOps.clear(); 3377 } 3378 } 3379 3380 if (IsUnaryAbs) { 3381 for (unsigned i = 0; i != NumValues; ++i) { 3382 SDLoc dl = getCurSDLoc(); 3383 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3384 Values[i] = 3385 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3386 if (Negate) 3387 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3388 Values[i]); 3389 } 3390 } else { 3391 for (unsigned i = 0; i != NumValues; ++i) { 3392 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3393 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3394 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3395 Values[i] = DAG.getNode( 3396 OpCode, getCurSDLoc(), 3397 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3398 } 3399 } 3400 3401 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3402 DAG.getVTList(ValueVTs), Values)); 3403 } 3404 3405 void SelectionDAGBuilder::visitTrunc(const User &I) { 3406 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3407 SDValue N = getValue(I.getOperand(0)); 3408 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3409 I.getType()); 3410 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3411 } 3412 3413 void SelectionDAGBuilder::visitZExt(const User &I) { 3414 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3415 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3416 SDValue N = getValue(I.getOperand(0)); 3417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3418 I.getType()); 3419 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3420 } 3421 3422 void SelectionDAGBuilder::visitSExt(const User &I) { 3423 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3424 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3425 SDValue N = getValue(I.getOperand(0)); 3426 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3427 I.getType()); 3428 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3429 } 3430 3431 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3432 // FPTrunc is never a no-op cast, no need to check 3433 SDValue N = getValue(I.getOperand(0)); 3434 SDLoc dl = getCurSDLoc(); 3435 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3436 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3437 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3438 DAG.getTargetConstant( 3439 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3440 } 3441 3442 void SelectionDAGBuilder::visitFPExt(const User &I) { 3443 // FPExt is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3451 // FPToUI is never a no-op cast, no need to check 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3459 // FPToSI is never a no-op cast, no need to check 3460 SDValue N = getValue(I.getOperand(0)); 3461 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3462 I.getType()); 3463 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3464 } 3465 3466 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3467 // UIToFP is never a no-op cast, no need to check 3468 SDValue N = getValue(I.getOperand(0)); 3469 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3470 I.getType()); 3471 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3472 } 3473 3474 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3475 // SIToFP is never a no-op cast, no need to check 3476 SDValue N = getValue(I.getOperand(0)); 3477 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3478 I.getType()); 3479 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3480 } 3481 3482 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3483 // What to do depends on the size of the integer and the size of the pointer. 3484 // We can either truncate, zero extend, or no-op, accordingly. 3485 SDValue N = getValue(I.getOperand(0)); 3486 auto &TLI = DAG.getTargetLoweringInfo(); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 EVT PtrMemVT = 3490 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3491 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3492 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3493 setValue(&I, N); 3494 } 3495 3496 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3497 // What to do depends on the size of the integer and the size of the pointer. 3498 // We can either truncate, zero extend, or no-op, accordingly. 3499 SDValue N = getValue(I.getOperand(0)); 3500 auto &TLI = DAG.getTargetLoweringInfo(); 3501 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3502 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3503 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3504 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3505 setValue(&I, N); 3506 } 3507 3508 void SelectionDAGBuilder::visitBitCast(const User &I) { 3509 SDValue N = getValue(I.getOperand(0)); 3510 SDLoc dl = getCurSDLoc(); 3511 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3512 I.getType()); 3513 3514 // BitCast assures us that source and destination are the same size so this is 3515 // either a BITCAST or a no-op. 3516 if (DestVT != N.getValueType()) 3517 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3518 DestVT, N)); // convert types. 3519 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3520 // might fold any kind of constant expression to an integer constant and that 3521 // is not what we are looking for. Only recognize a bitcast of a genuine 3522 // constant integer as an opaque constant. 3523 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3524 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3525 /*isOpaque*/true)); 3526 else 3527 setValue(&I, N); // noop cast. 3528 } 3529 3530 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3532 const Value *SV = I.getOperand(0); 3533 SDValue N = getValue(SV); 3534 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3535 3536 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3537 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3538 3539 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3540 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3541 3542 setValue(&I, N); 3543 } 3544 3545 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3547 SDValue InVec = getValue(I.getOperand(0)); 3548 SDValue InVal = getValue(I.getOperand(1)); 3549 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3550 TLI.getVectorIdxTy(DAG.getDataLayout())); 3551 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3552 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3553 InVec, InVal, InIdx)); 3554 } 3555 3556 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 SDValue InVec = getValue(I.getOperand(0)); 3559 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3560 TLI.getVectorIdxTy(DAG.getDataLayout())); 3561 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3562 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3563 InVec, InIdx)); 3564 } 3565 3566 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3567 SDValue Src1 = getValue(I.getOperand(0)); 3568 SDValue Src2 = getValue(I.getOperand(1)); 3569 ArrayRef<int> Mask; 3570 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3571 Mask = SVI->getShuffleMask(); 3572 else 3573 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3574 SDLoc DL = getCurSDLoc(); 3575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3576 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3577 EVT SrcVT = Src1.getValueType(); 3578 3579 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3580 VT.isScalableVector()) { 3581 // Canonical splat form of first element of first input vector. 3582 SDValue FirstElt = 3583 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3584 DAG.getVectorIdxConstant(0, DL)); 3585 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3586 return; 3587 } 3588 3589 // For now, we only handle splats for scalable vectors. 3590 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3591 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3592 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3593 3594 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3595 unsigned MaskNumElts = Mask.size(); 3596 3597 if (SrcNumElts == MaskNumElts) { 3598 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3599 return; 3600 } 3601 3602 // Normalize the shuffle vector since mask and vector length don't match. 3603 if (SrcNumElts < MaskNumElts) { 3604 // Mask is longer than the source vectors. We can use concatenate vector to 3605 // make the mask and vectors lengths match. 3606 3607 if (MaskNumElts % SrcNumElts == 0) { 3608 // Mask length is a multiple of the source vector length. 3609 // Check if the shuffle is some kind of concatenation of the input 3610 // vectors. 3611 unsigned NumConcat = MaskNumElts / SrcNumElts; 3612 bool IsConcat = true; 3613 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3614 for (unsigned i = 0; i != MaskNumElts; ++i) { 3615 int Idx = Mask[i]; 3616 if (Idx < 0) 3617 continue; 3618 // Ensure the indices in each SrcVT sized piece are sequential and that 3619 // the same source is used for the whole piece. 3620 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3621 (ConcatSrcs[i / SrcNumElts] >= 0 && 3622 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3623 IsConcat = false; 3624 break; 3625 } 3626 // Remember which source this index came from. 3627 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3628 } 3629 3630 // The shuffle is concatenating multiple vectors together. Just emit 3631 // a CONCAT_VECTORS operation. 3632 if (IsConcat) { 3633 SmallVector<SDValue, 8> ConcatOps; 3634 for (auto Src : ConcatSrcs) { 3635 if (Src < 0) 3636 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3637 else if (Src == 0) 3638 ConcatOps.push_back(Src1); 3639 else 3640 ConcatOps.push_back(Src2); 3641 } 3642 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3643 return; 3644 } 3645 } 3646 3647 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3648 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3649 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3650 PaddedMaskNumElts); 3651 3652 // Pad both vectors with undefs to make them the same length as the mask. 3653 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3654 3655 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3656 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3657 MOps1[0] = Src1; 3658 MOps2[0] = Src2; 3659 3660 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3661 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3662 3663 // Readjust mask for new input vector length. 3664 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3665 for (unsigned i = 0; i != MaskNumElts; ++i) { 3666 int Idx = Mask[i]; 3667 if (Idx >= (int)SrcNumElts) 3668 Idx -= SrcNumElts - PaddedMaskNumElts; 3669 MappedOps[i] = Idx; 3670 } 3671 3672 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3673 3674 // If the concatenated vector was padded, extract a subvector with the 3675 // correct number of elements. 3676 if (MaskNumElts != PaddedMaskNumElts) 3677 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3678 DAG.getVectorIdxConstant(0, DL)); 3679 3680 setValue(&I, Result); 3681 return; 3682 } 3683 3684 if (SrcNumElts > MaskNumElts) { 3685 // Analyze the access pattern of the vector to see if we can extract 3686 // two subvectors and do the shuffle. 3687 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3688 bool CanExtract = true; 3689 for (int Idx : Mask) { 3690 unsigned Input = 0; 3691 if (Idx < 0) 3692 continue; 3693 3694 if (Idx >= (int)SrcNumElts) { 3695 Input = 1; 3696 Idx -= SrcNumElts; 3697 } 3698 3699 // If all the indices come from the same MaskNumElts sized portion of 3700 // the sources we can use extract. Also make sure the extract wouldn't 3701 // extract past the end of the source. 3702 int NewStartIdx = alignDown(Idx, MaskNumElts); 3703 if (NewStartIdx + MaskNumElts > SrcNumElts || 3704 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3705 CanExtract = false; 3706 // Make sure we always update StartIdx as we use it to track if all 3707 // elements are undef. 3708 StartIdx[Input] = NewStartIdx; 3709 } 3710 3711 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3712 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3713 return; 3714 } 3715 if (CanExtract) { 3716 // Extract appropriate subvector and generate a vector shuffle 3717 for (unsigned Input = 0; Input < 2; ++Input) { 3718 SDValue &Src = Input == 0 ? Src1 : Src2; 3719 if (StartIdx[Input] < 0) 3720 Src = DAG.getUNDEF(VT); 3721 else { 3722 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3723 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3724 } 3725 } 3726 3727 // Calculate new mask. 3728 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3729 for (int &Idx : MappedOps) { 3730 if (Idx >= (int)SrcNumElts) 3731 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3732 else if (Idx >= 0) 3733 Idx -= StartIdx[0]; 3734 } 3735 3736 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3737 return; 3738 } 3739 } 3740 3741 // We can't use either concat vectors or extract subvectors so fall back to 3742 // replacing the shuffle with extract and build vector. 3743 // to insert and build vector. 3744 EVT EltVT = VT.getVectorElementType(); 3745 SmallVector<SDValue,8> Ops; 3746 for (int Idx : Mask) { 3747 SDValue Res; 3748 3749 if (Idx < 0) { 3750 Res = DAG.getUNDEF(EltVT); 3751 } else { 3752 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3753 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3754 3755 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3756 DAG.getVectorIdxConstant(Idx, DL)); 3757 } 3758 3759 Ops.push_back(Res); 3760 } 3761 3762 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3763 } 3764 3765 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3766 ArrayRef<unsigned> Indices; 3767 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3768 Indices = IV->getIndices(); 3769 else 3770 Indices = cast<ConstantExpr>(&I)->getIndices(); 3771 3772 const Value *Op0 = I.getOperand(0); 3773 const Value *Op1 = I.getOperand(1); 3774 Type *AggTy = I.getType(); 3775 Type *ValTy = Op1->getType(); 3776 bool IntoUndef = isa<UndefValue>(Op0); 3777 bool FromUndef = isa<UndefValue>(Op1); 3778 3779 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3780 3781 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3782 SmallVector<EVT, 4> AggValueVTs; 3783 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3784 SmallVector<EVT, 4> ValValueVTs; 3785 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3786 3787 unsigned NumAggValues = AggValueVTs.size(); 3788 unsigned NumValValues = ValValueVTs.size(); 3789 SmallVector<SDValue, 4> Values(NumAggValues); 3790 3791 // Ignore an insertvalue that produces an empty object 3792 if (!NumAggValues) { 3793 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3794 return; 3795 } 3796 3797 SDValue Agg = getValue(Op0); 3798 unsigned i = 0; 3799 // Copy the beginning value(s) from the original aggregate. 3800 for (; i != LinearIndex; ++i) 3801 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3802 SDValue(Agg.getNode(), Agg.getResNo() + i); 3803 // Copy values from the inserted value(s). 3804 if (NumValValues) { 3805 SDValue Val = getValue(Op1); 3806 for (; i != LinearIndex + NumValValues; ++i) 3807 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3808 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3809 } 3810 // Copy remaining value(s) from the original aggregate. 3811 for (; i != NumAggValues; ++i) 3812 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3813 SDValue(Agg.getNode(), Agg.getResNo() + i); 3814 3815 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3816 DAG.getVTList(AggValueVTs), Values)); 3817 } 3818 3819 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3820 ArrayRef<unsigned> Indices; 3821 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3822 Indices = EV->getIndices(); 3823 else 3824 Indices = cast<ConstantExpr>(&I)->getIndices(); 3825 3826 const Value *Op0 = I.getOperand(0); 3827 Type *AggTy = Op0->getType(); 3828 Type *ValTy = I.getType(); 3829 bool OutOfUndef = isa<UndefValue>(Op0); 3830 3831 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3832 3833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3834 SmallVector<EVT, 4> ValValueVTs; 3835 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3836 3837 unsigned NumValValues = ValValueVTs.size(); 3838 3839 // Ignore a extractvalue that produces an empty object 3840 if (!NumValValues) { 3841 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3842 return; 3843 } 3844 3845 SmallVector<SDValue, 4> Values(NumValValues); 3846 3847 SDValue Agg = getValue(Op0); 3848 // Copy out the selected value(s). 3849 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3850 Values[i - LinearIndex] = 3851 OutOfUndef ? 3852 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3853 SDValue(Agg.getNode(), Agg.getResNo() + i); 3854 3855 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3856 DAG.getVTList(ValValueVTs), Values)); 3857 } 3858 3859 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3860 Value *Op0 = I.getOperand(0); 3861 // Note that the pointer operand may be a vector of pointers. Take the scalar 3862 // element which holds a pointer. 3863 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3864 SDValue N = getValue(Op0); 3865 SDLoc dl = getCurSDLoc(); 3866 auto &TLI = DAG.getTargetLoweringInfo(); 3867 3868 // Normalize Vector GEP - all scalar operands should be converted to the 3869 // splat vector. 3870 bool IsVectorGEP = I.getType()->isVectorTy(); 3871 ElementCount VectorElementCount = 3872 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3873 : ElementCount::getFixed(0); 3874 3875 if (IsVectorGEP && !N.getValueType().isVector()) { 3876 LLVMContext &Context = *DAG.getContext(); 3877 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3878 if (VectorElementCount.isScalable()) 3879 N = DAG.getSplatVector(VT, dl, N); 3880 else 3881 N = DAG.getSplatBuildVector(VT, dl, N); 3882 } 3883 3884 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3885 GTI != E; ++GTI) { 3886 const Value *Idx = GTI.getOperand(); 3887 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3888 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3889 if (Field) { 3890 // N = N + Offset 3891 uint64_t Offset = 3892 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 3893 3894 // In an inbounds GEP with an offset that is nonnegative even when 3895 // interpreted as signed, assume there is no unsigned overflow. 3896 SDNodeFlags Flags; 3897 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3898 Flags.setNoUnsignedWrap(true); 3899 3900 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3901 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3902 } 3903 } else { 3904 // IdxSize is the width of the arithmetic according to IR semantics. 3905 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3906 // (and fix up the result later). 3907 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3908 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3909 TypeSize ElementSize = 3910 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 3911 // We intentionally mask away the high bits here; ElementSize may not 3912 // fit in IdxTy. 3913 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3914 bool ElementScalable = ElementSize.isScalable(); 3915 3916 // If this is a scalar constant or a splat vector of constants, 3917 // handle it quickly. 3918 const auto *C = dyn_cast<Constant>(Idx); 3919 if (C && isa<VectorType>(C->getType())) 3920 C = C->getSplatValue(); 3921 3922 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3923 if (CI && CI->isZero()) 3924 continue; 3925 if (CI && !ElementScalable) { 3926 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3927 LLVMContext &Context = *DAG.getContext(); 3928 SDValue OffsVal; 3929 if (IsVectorGEP) 3930 OffsVal = DAG.getConstant( 3931 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3932 else 3933 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3934 3935 // In an inbounds GEP with an offset that is nonnegative even when 3936 // interpreted as signed, assume there is no unsigned overflow. 3937 SDNodeFlags Flags; 3938 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3939 Flags.setNoUnsignedWrap(true); 3940 3941 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3942 3943 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3944 continue; 3945 } 3946 3947 // N = N + Idx * ElementMul; 3948 SDValue IdxN = getValue(Idx); 3949 3950 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3951 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3952 VectorElementCount); 3953 if (VectorElementCount.isScalable()) 3954 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3955 else 3956 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3957 } 3958 3959 // If the index is smaller or larger than intptr_t, truncate or extend 3960 // it. 3961 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3962 3963 if (ElementScalable) { 3964 EVT VScaleTy = N.getValueType().getScalarType(); 3965 SDValue VScale = DAG.getNode( 3966 ISD::VSCALE, dl, VScaleTy, 3967 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3968 if (IsVectorGEP) 3969 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3970 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3971 } else { 3972 // If this is a multiply by a power of two, turn it into a shl 3973 // immediately. This is a very common case. 3974 if (ElementMul != 1) { 3975 if (ElementMul.isPowerOf2()) { 3976 unsigned Amt = ElementMul.logBase2(); 3977 IdxN = DAG.getNode(ISD::SHL, dl, 3978 N.getValueType(), IdxN, 3979 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3980 } else { 3981 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3982 IdxN.getValueType()); 3983 IdxN = DAG.getNode(ISD::MUL, dl, 3984 N.getValueType(), IdxN, Scale); 3985 } 3986 } 3987 } 3988 3989 N = DAG.getNode(ISD::ADD, dl, 3990 N.getValueType(), N, IdxN); 3991 } 3992 } 3993 3994 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3995 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3996 if (IsVectorGEP) { 3997 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3998 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3999 } 4000 4001 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4002 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4003 4004 setValue(&I, N); 4005 } 4006 4007 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4008 // If this is a fixed sized alloca in the entry block of the function, 4009 // allocate it statically on the stack. 4010 if (FuncInfo.StaticAllocaMap.count(&I)) 4011 return; // getValue will auto-populate this. 4012 4013 SDLoc dl = getCurSDLoc(); 4014 Type *Ty = I.getAllocatedType(); 4015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4016 auto &DL = DAG.getDataLayout(); 4017 uint64_t TySize = DL.getTypeAllocSize(Ty); 4018 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4019 4020 SDValue AllocSize = getValue(I.getArraySize()); 4021 4022 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 4023 if (AllocSize.getValueType() != IntPtr) 4024 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4025 4026 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4027 AllocSize, 4028 DAG.getConstant(TySize, dl, IntPtr)); 4029 4030 // Handle alignment. If the requested alignment is less than or equal to 4031 // the stack alignment, ignore it. If the size is greater than or equal to 4032 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4033 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4034 if (*Alignment <= StackAlign) 4035 Alignment = None; 4036 4037 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4038 // Round the size of the allocation up to the stack alignment size 4039 // by add SA-1 to the size. This doesn't overflow because we're computing 4040 // an address inside an alloca. 4041 SDNodeFlags Flags; 4042 Flags.setNoUnsignedWrap(true); 4043 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4044 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4045 4046 // Mask out the low bits for alignment purposes. 4047 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4048 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4049 4050 SDValue Ops[] = { 4051 getRoot(), AllocSize, 4052 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4053 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4054 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4055 setValue(&I, DSA); 4056 DAG.setRoot(DSA.getValue(1)); 4057 4058 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4059 } 4060 4061 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4062 if (I.isAtomic()) 4063 return visitAtomicLoad(I); 4064 4065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4066 const Value *SV = I.getOperand(0); 4067 if (TLI.supportSwiftError()) { 4068 // Swifterror values can come from either a function parameter with 4069 // swifterror attribute or an alloca with swifterror attribute. 4070 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4071 if (Arg->hasSwiftErrorAttr()) 4072 return visitLoadFromSwiftError(I); 4073 } 4074 4075 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4076 if (Alloca->isSwiftError()) 4077 return visitLoadFromSwiftError(I); 4078 } 4079 } 4080 4081 SDValue Ptr = getValue(SV); 4082 4083 Type *Ty = I.getType(); 4084 Align Alignment = I.getAlign(); 4085 4086 AAMDNodes AAInfo = I.getAAMetadata(); 4087 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4088 4089 SmallVector<EVT, 4> ValueVTs, MemVTs; 4090 SmallVector<uint64_t, 4> Offsets; 4091 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4092 unsigned NumValues = ValueVTs.size(); 4093 if (NumValues == 0) 4094 return; 4095 4096 bool isVolatile = I.isVolatile(); 4097 4098 SDValue Root; 4099 bool ConstantMemory = false; 4100 if (isVolatile) 4101 // Serialize volatile loads with other side effects. 4102 Root = getRoot(); 4103 else if (NumValues > MaxParallelChains) 4104 Root = getMemoryRoot(); 4105 else if (AA && 4106 AA->pointsToConstantMemory(MemoryLocation( 4107 SV, 4108 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4109 AAInfo))) { 4110 // Do not serialize (non-volatile) loads of constant memory with anything. 4111 Root = DAG.getEntryNode(); 4112 ConstantMemory = true; 4113 } else { 4114 // Do not serialize non-volatile loads against each other. 4115 Root = DAG.getRoot(); 4116 } 4117 4118 SDLoc dl = getCurSDLoc(); 4119 4120 if (isVolatile) 4121 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4122 4123 // An aggregate load cannot wrap around the address space, so offsets to its 4124 // parts don't wrap either. 4125 SDNodeFlags Flags; 4126 Flags.setNoUnsignedWrap(true); 4127 4128 SmallVector<SDValue, 4> Values(NumValues); 4129 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4130 EVT PtrVT = Ptr.getValueType(); 4131 4132 MachineMemOperand::Flags MMOFlags 4133 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4134 4135 unsigned ChainI = 0; 4136 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4137 // Serializing loads here may result in excessive register pressure, and 4138 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4139 // could recover a bit by hoisting nodes upward in the chain by recognizing 4140 // they are side-effect free or do not alias. The optimizer should really 4141 // avoid this case by converting large object/array copies to llvm.memcpy 4142 // (MaxParallelChains should always remain as failsafe). 4143 if (ChainI == MaxParallelChains) { 4144 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4145 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4146 makeArrayRef(Chains.data(), ChainI)); 4147 Root = Chain; 4148 ChainI = 0; 4149 } 4150 SDValue A = DAG.getNode(ISD::ADD, dl, 4151 PtrVT, Ptr, 4152 DAG.getConstant(Offsets[i], dl, PtrVT), 4153 Flags); 4154 4155 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4156 MachinePointerInfo(SV, Offsets[i]), Alignment, 4157 MMOFlags, AAInfo, Ranges); 4158 Chains[ChainI] = L.getValue(1); 4159 4160 if (MemVTs[i] != ValueVTs[i]) 4161 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4162 4163 Values[i] = L; 4164 } 4165 4166 if (!ConstantMemory) { 4167 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4168 makeArrayRef(Chains.data(), ChainI)); 4169 if (isVolatile) 4170 DAG.setRoot(Chain); 4171 else 4172 PendingLoads.push_back(Chain); 4173 } 4174 4175 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4176 DAG.getVTList(ValueVTs), Values)); 4177 } 4178 4179 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4180 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4181 "call visitStoreToSwiftError when backend supports swifterror"); 4182 4183 SmallVector<EVT, 4> ValueVTs; 4184 SmallVector<uint64_t, 4> Offsets; 4185 const Value *SrcV = I.getOperand(0); 4186 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4187 SrcV->getType(), ValueVTs, &Offsets); 4188 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4189 "expect a single EVT for swifterror"); 4190 4191 SDValue Src = getValue(SrcV); 4192 // Create a virtual register, then update the virtual register. 4193 Register VReg = 4194 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4195 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4196 // Chain can be getRoot or getControlRoot. 4197 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4198 SDValue(Src.getNode(), Src.getResNo())); 4199 DAG.setRoot(CopyNode); 4200 } 4201 4202 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4203 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4204 "call visitLoadFromSwiftError when backend supports swifterror"); 4205 4206 assert(!I.isVolatile() && 4207 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4208 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4209 "Support volatile, non temporal, invariant for load_from_swift_error"); 4210 4211 const Value *SV = I.getOperand(0); 4212 Type *Ty = I.getType(); 4213 assert( 4214 (!AA || 4215 !AA->pointsToConstantMemory(MemoryLocation( 4216 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4217 I.getAAMetadata()))) && 4218 "load_from_swift_error should not be constant memory"); 4219 4220 SmallVector<EVT, 4> ValueVTs; 4221 SmallVector<uint64_t, 4> Offsets; 4222 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4223 ValueVTs, &Offsets); 4224 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4225 "expect a single EVT for swifterror"); 4226 4227 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4228 SDValue L = DAG.getCopyFromReg( 4229 getRoot(), getCurSDLoc(), 4230 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4231 4232 setValue(&I, L); 4233 } 4234 4235 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4236 if (I.isAtomic()) 4237 return visitAtomicStore(I); 4238 4239 const Value *SrcV = I.getOperand(0); 4240 const Value *PtrV = I.getOperand(1); 4241 4242 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4243 if (TLI.supportSwiftError()) { 4244 // Swifterror values can come from either a function parameter with 4245 // swifterror attribute or an alloca with swifterror attribute. 4246 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4247 if (Arg->hasSwiftErrorAttr()) 4248 return visitStoreToSwiftError(I); 4249 } 4250 4251 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4252 if (Alloca->isSwiftError()) 4253 return visitStoreToSwiftError(I); 4254 } 4255 } 4256 4257 SmallVector<EVT, 4> ValueVTs, MemVTs; 4258 SmallVector<uint64_t, 4> Offsets; 4259 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4260 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4261 unsigned NumValues = ValueVTs.size(); 4262 if (NumValues == 0) 4263 return; 4264 4265 // Get the lowered operands. Note that we do this after 4266 // checking if NumResults is zero, because with zero results 4267 // the operands won't have values in the map. 4268 SDValue Src = getValue(SrcV); 4269 SDValue Ptr = getValue(PtrV); 4270 4271 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4272 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4273 SDLoc dl = getCurSDLoc(); 4274 Align Alignment = I.getAlign(); 4275 AAMDNodes AAInfo = I.getAAMetadata(); 4276 4277 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4278 4279 // An aggregate load cannot wrap around the address space, so offsets to its 4280 // parts don't wrap either. 4281 SDNodeFlags Flags; 4282 Flags.setNoUnsignedWrap(true); 4283 4284 unsigned ChainI = 0; 4285 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4286 // See visitLoad comments. 4287 if (ChainI == MaxParallelChains) { 4288 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4289 makeArrayRef(Chains.data(), ChainI)); 4290 Root = Chain; 4291 ChainI = 0; 4292 } 4293 SDValue Add = 4294 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4295 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4296 if (MemVTs[i] != ValueVTs[i]) 4297 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4298 SDValue St = 4299 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4300 Alignment, MMOFlags, AAInfo); 4301 Chains[ChainI] = St; 4302 } 4303 4304 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4305 makeArrayRef(Chains.data(), ChainI)); 4306 DAG.setRoot(StoreNode); 4307 } 4308 4309 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4310 bool IsCompressing) { 4311 SDLoc sdl = getCurSDLoc(); 4312 4313 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4314 MaybeAlign &Alignment) { 4315 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4316 Src0 = I.getArgOperand(0); 4317 Ptr = I.getArgOperand(1); 4318 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4319 Mask = I.getArgOperand(3); 4320 }; 4321 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4322 MaybeAlign &Alignment) { 4323 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4324 Src0 = I.getArgOperand(0); 4325 Ptr = I.getArgOperand(1); 4326 Mask = I.getArgOperand(2); 4327 Alignment = None; 4328 }; 4329 4330 Value *PtrOperand, *MaskOperand, *Src0Operand; 4331 MaybeAlign Alignment; 4332 if (IsCompressing) 4333 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4334 else 4335 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4336 4337 SDValue Ptr = getValue(PtrOperand); 4338 SDValue Src0 = getValue(Src0Operand); 4339 SDValue Mask = getValue(MaskOperand); 4340 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4341 4342 EVT VT = Src0.getValueType(); 4343 if (!Alignment) 4344 Alignment = DAG.getEVTAlign(VT); 4345 4346 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4347 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4348 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4349 SDValue StoreNode = 4350 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4351 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4352 DAG.setRoot(StoreNode); 4353 setValue(&I, StoreNode); 4354 } 4355 4356 // Get a uniform base for the Gather/Scatter intrinsic. 4357 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4358 // We try to represent it as a base pointer + vector of indices. 4359 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4360 // The first operand of the GEP may be a single pointer or a vector of pointers 4361 // Example: 4362 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4363 // or 4364 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4365 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4366 // 4367 // When the first GEP operand is a single pointer - it is the uniform base we 4368 // are looking for. If first operand of the GEP is a splat vector - we 4369 // extract the splat value and use it as a uniform base. 4370 // In all other cases the function returns 'false'. 4371 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4372 ISD::MemIndexType &IndexType, SDValue &Scale, 4373 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4374 SelectionDAG& DAG = SDB->DAG; 4375 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4376 const DataLayout &DL = DAG.getDataLayout(); 4377 4378 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4379 4380 // Handle splat constant pointer. 4381 if (auto *C = dyn_cast<Constant>(Ptr)) { 4382 C = C->getSplatValue(); 4383 if (!C) 4384 return false; 4385 4386 Base = SDB->getValue(C); 4387 4388 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4389 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4390 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4391 IndexType = ISD::SIGNED_SCALED; 4392 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4393 return true; 4394 } 4395 4396 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4397 if (!GEP || GEP->getParent() != CurBB) 4398 return false; 4399 4400 if (GEP->getNumOperands() != 2) 4401 return false; 4402 4403 const Value *BasePtr = GEP->getPointerOperand(); 4404 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4405 4406 // Make sure the base is scalar and the index is a vector. 4407 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4408 return false; 4409 4410 Base = SDB->getValue(BasePtr); 4411 Index = SDB->getValue(IndexVal); 4412 IndexType = ISD::SIGNED_SCALED; 4413 Scale = DAG.getTargetConstant( 4414 DL.getTypeAllocSize(GEP->getResultElementType()), 4415 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4416 return true; 4417 } 4418 4419 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4420 SDLoc sdl = getCurSDLoc(); 4421 4422 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4423 const Value *Ptr = I.getArgOperand(1); 4424 SDValue Src0 = getValue(I.getArgOperand(0)); 4425 SDValue Mask = getValue(I.getArgOperand(3)); 4426 EVT VT = Src0.getValueType(); 4427 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4428 ->getMaybeAlignValue() 4429 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4430 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4431 4432 SDValue Base; 4433 SDValue Index; 4434 ISD::MemIndexType IndexType; 4435 SDValue Scale; 4436 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4437 I.getParent()); 4438 4439 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4440 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4441 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4442 // TODO: Make MachineMemOperands aware of scalable 4443 // vectors. 4444 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4445 if (!UniformBase) { 4446 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4447 Index = getValue(Ptr); 4448 IndexType = ISD::SIGNED_UNSCALED; 4449 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4450 } 4451 4452 EVT IdxVT = Index.getValueType(); 4453 EVT EltTy = IdxVT.getVectorElementType(); 4454 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4455 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4456 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4457 } 4458 4459 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4460 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4461 Ops, MMO, IndexType, false); 4462 DAG.setRoot(Scatter); 4463 setValue(&I, Scatter); 4464 } 4465 4466 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4467 SDLoc sdl = getCurSDLoc(); 4468 4469 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4470 MaybeAlign &Alignment) { 4471 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4472 Ptr = I.getArgOperand(0); 4473 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4474 Mask = I.getArgOperand(2); 4475 Src0 = I.getArgOperand(3); 4476 }; 4477 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4478 MaybeAlign &Alignment) { 4479 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4480 Ptr = I.getArgOperand(0); 4481 Alignment = None; 4482 Mask = I.getArgOperand(1); 4483 Src0 = I.getArgOperand(2); 4484 }; 4485 4486 Value *PtrOperand, *MaskOperand, *Src0Operand; 4487 MaybeAlign Alignment; 4488 if (IsExpanding) 4489 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4490 else 4491 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4492 4493 SDValue Ptr = getValue(PtrOperand); 4494 SDValue Src0 = getValue(Src0Operand); 4495 SDValue Mask = getValue(MaskOperand); 4496 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4497 4498 EVT VT = Src0.getValueType(); 4499 if (!Alignment) 4500 Alignment = DAG.getEVTAlign(VT); 4501 4502 AAMDNodes AAInfo = I.getAAMetadata(); 4503 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4504 4505 // Do not serialize masked loads of constant memory with anything. 4506 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4507 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4508 4509 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4510 4511 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4512 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4513 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4514 4515 SDValue Load = 4516 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4517 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4518 if (AddToChain) 4519 PendingLoads.push_back(Load.getValue(1)); 4520 setValue(&I, Load); 4521 } 4522 4523 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4524 SDLoc sdl = getCurSDLoc(); 4525 4526 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4527 const Value *Ptr = I.getArgOperand(0); 4528 SDValue Src0 = getValue(I.getArgOperand(3)); 4529 SDValue Mask = getValue(I.getArgOperand(2)); 4530 4531 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4532 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4533 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4534 ->getMaybeAlignValue() 4535 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4536 4537 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4538 4539 SDValue Root = DAG.getRoot(); 4540 SDValue Base; 4541 SDValue Index; 4542 ISD::MemIndexType IndexType; 4543 SDValue Scale; 4544 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4545 I.getParent()); 4546 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4547 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4548 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4549 // TODO: Make MachineMemOperands aware of scalable 4550 // vectors. 4551 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4552 4553 if (!UniformBase) { 4554 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4555 Index = getValue(Ptr); 4556 IndexType = ISD::SIGNED_UNSCALED; 4557 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4558 } 4559 4560 EVT IdxVT = Index.getValueType(); 4561 EVT EltTy = IdxVT.getVectorElementType(); 4562 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4563 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4564 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4565 } 4566 4567 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4568 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4569 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4570 4571 PendingLoads.push_back(Gather.getValue(1)); 4572 setValue(&I, Gather); 4573 } 4574 4575 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4576 SDLoc dl = getCurSDLoc(); 4577 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4578 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4579 SyncScope::ID SSID = I.getSyncScopeID(); 4580 4581 SDValue InChain = getRoot(); 4582 4583 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4584 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4585 4586 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4587 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4588 4589 MachineFunction &MF = DAG.getMachineFunction(); 4590 MachineMemOperand *MMO = MF.getMachineMemOperand( 4591 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4592 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4593 FailureOrdering); 4594 4595 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4596 dl, MemVT, VTs, InChain, 4597 getValue(I.getPointerOperand()), 4598 getValue(I.getCompareOperand()), 4599 getValue(I.getNewValOperand()), MMO); 4600 4601 SDValue OutChain = L.getValue(2); 4602 4603 setValue(&I, L); 4604 DAG.setRoot(OutChain); 4605 } 4606 4607 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4608 SDLoc dl = getCurSDLoc(); 4609 ISD::NodeType NT; 4610 switch (I.getOperation()) { 4611 default: llvm_unreachable("Unknown atomicrmw operation"); 4612 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4613 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4614 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4615 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4616 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4617 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4618 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4619 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4620 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4621 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4622 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4623 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4624 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4625 } 4626 AtomicOrdering Ordering = I.getOrdering(); 4627 SyncScope::ID SSID = I.getSyncScopeID(); 4628 4629 SDValue InChain = getRoot(); 4630 4631 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4633 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4634 4635 MachineFunction &MF = DAG.getMachineFunction(); 4636 MachineMemOperand *MMO = MF.getMachineMemOperand( 4637 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4638 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4639 4640 SDValue L = 4641 DAG.getAtomic(NT, dl, MemVT, InChain, 4642 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4643 MMO); 4644 4645 SDValue OutChain = L.getValue(1); 4646 4647 setValue(&I, L); 4648 DAG.setRoot(OutChain); 4649 } 4650 4651 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4652 SDLoc dl = getCurSDLoc(); 4653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4654 SDValue Ops[3]; 4655 Ops[0] = getRoot(); 4656 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4657 TLI.getFenceOperandTy(DAG.getDataLayout())); 4658 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4659 TLI.getFenceOperandTy(DAG.getDataLayout())); 4660 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4661 } 4662 4663 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4664 SDLoc dl = getCurSDLoc(); 4665 AtomicOrdering Order = I.getOrdering(); 4666 SyncScope::ID SSID = I.getSyncScopeID(); 4667 4668 SDValue InChain = getRoot(); 4669 4670 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4671 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4672 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4673 4674 if (!TLI.supportsUnalignedAtomics() && 4675 I.getAlignment() < MemVT.getSizeInBits() / 8) 4676 report_fatal_error("Cannot generate unaligned atomic load"); 4677 4678 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4679 4680 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4681 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4682 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4683 4684 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4685 4686 SDValue Ptr = getValue(I.getPointerOperand()); 4687 4688 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4689 // TODO: Once this is better exercised by tests, it should be merged with 4690 // the normal path for loads to prevent future divergence. 4691 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4692 if (MemVT != VT) 4693 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4694 4695 setValue(&I, L); 4696 SDValue OutChain = L.getValue(1); 4697 if (!I.isUnordered()) 4698 DAG.setRoot(OutChain); 4699 else 4700 PendingLoads.push_back(OutChain); 4701 return; 4702 } 4703 4704 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4705 Ptr, MMO); 4706 4707 SDValue OutChain = L.getValue(1); 4708 if (MemVT != VT) 4709 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4710 4711 setValue(&I, L); 4712 DAG.setRoot(OutChain); 4713 } 4714 4715 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4716 SDLoc dl = getCurSDLoc(); 4717 4718 AtomicOrdering Ordering = I.getOrdering(); 4719 SyncScope::ID SSID = I.getSyncScopeID(); 4720 4721 SDValue InChain = getRoot(); 4722 4723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4724 EVT MemVT = 4725 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4726 4727 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4728 report_fatal_error("Cannot generate unaligned atomic store"); 4729 4730 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4731 4732 MachineFunction &MF = DAG.getMachineFunction(); 4733 MachineMemOperand *MMO = MF.getMachineMemOperand( 4734 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4735 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4736 4737 SDValue Val = getValue(I.getValueOperand()); 4738 if (Val.getValueType() != MemVT) 4739 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4740 SDValue Ptr = getValue(I.getPointerOperand()); 4741 4742 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4743 // TODO: Once this is better exercised by tests, it should be merged with 4744 // the normal path for stores to prevent future divergence. 4745 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4746 DAG.setRoot(S); 4747 return; 4748 } 4749 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4750 Ptr, Val, MMO); 4751 4752 4753 DAG.setRoot(OutChain); 4754 } 4755 4756 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4757 /// node. 4758 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4759 unsigned Intrinsic) { 4760 // Ignore the callsite's attributes. A specific call site may be marked with 4761 // readnone, but the lowering code will expect the chain based on the 4762 // definition. 4763 const Function *F = I.getCalledFunction(); 4764 bool HasChain = !F->doesNotAccessMemory(); 4765 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4766 4767 // Build the operand list. 4768 SmallVector<SDValue, 8> Ops; 4769 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4770 if (OnlyLoad) { 4771 // We don't need to serialize loads against other loads. 4772 Ops.push_back(DAG.getRoot()); 4773 } else { 4774 Ops.push_back(getRoot()); 4775 } 4776 } 4777 4778 // Info is set by getTgtMemInstrinsic 4779 TargetLowering::IntrinsicInfo Info; 4780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4781 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4782 DAG.getMachineFunction(), 4783 Intrinsic); 4784 4785 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4786 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4787 Info.opc == ISD::INTRINSIC_W_CHAIN) 4788 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4789 TLI.getPointerTy(DAG.getDataLayout()))); 4790 4791 // Add all operands of the call to the operand list. 4792 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4793 const Value *Arg = I.getArgOperand(i); 4794 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4795 Ops.push_back(getValue(Arg)); 4796 continue; 4797 } 4798 4799 // Use TargetConstant instead of a regular constant for immarg. 4800 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4801 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4802 assert(CI->getBitWidth() <= 64 && 4803 "large intrinsic immediates not handled"); 4804 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4805 } else { 4806 Ops.push_back( 4807 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4808 } 4809 } 4810 4811 SmallVector<EVT, 4> ValueVTs; 4812 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4813 4814 if (HasChain) 4815 ValueVTs.push_back(MVT::Other); 4816 4817 SDVTList VTs = DAG.getVTList(ValueVTs); 4818 4819 // Propagate fast-math-flags from IR to node(s). 4820 SDNodeFlags Flags; 4821 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4822 Flags.copyFMF(*FPMO); 4823 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4824 4825 // Create the node. 4826 SDValue Result; 4827 if (IsTgtIntrinsic) { 4828 // This is target intrinsic that touches memory 4829 Result = 4830 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4831 MachinePointerInfo(Info.ptrVal, Info.offset), 4832 Info.align, Info.flags, Info.size, 4833 I.getAAMetadata()); 4834 } else if (!HasChain) { 4835 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4836 } else if (!I.getType()->isVoidTy()) { 4837 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4838 } else { 4839 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4840 } 4841 4842 if (HasChain) { 4843 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4844 if (OnlyLoad) 4845 PendingLoads.push_back(Chain); 4846 else 4847 DAG.setRoot(Chain); 4848 } 4849 4850 if (!I.getType()->isVoidTy()) { 4851 if (!isa<VectorType>(I.getType())) 4852 Result = lowerRangeToAssertZExt(DAG, I, Result); 4853 4854 MaybeAlign Alignment = I.getRetAlign(); 4855 if (!Alignment) 4856 Alignment = F->getAttributes().getRetAlignment(); 4857 // Insert `assertalign` node if there's an alignment. 4858 if (InsertAssertAlign && Alignment) { 4859 Result = 4860 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4861 } 4862 4863 setValue(&I, Result); 4864 } 4865 } 4866 4867 /// GetSignificand - Get the significand and build it into a floating-point 4868 /// number with exponent of 1: 4869 /// 4870 /// Op = (Op & 0x007fffff) | 0x3f800000; 4871 /// 4872 /// where Op is the hexadecimal representation of floating point value. 4873 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4874 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4875 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4876 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4877 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4878 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4879 } 4880 4881 /// GetExponent - Get the exponent: 4882 /// 4883 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4884 /// 4885 /// where Op is the hexadecimal representation of floating point value. 4886 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4887 const TargetLowering &TLI, const SDLoc &dl) { 4888 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4889 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4890 SDValue t1 = DAG.getNode( 4891 ISD::SRL, dl, MVT::i32, t0, 4892 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4893 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4894 DAG.getConstant(127, dl, MVT::i32)); 4895 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4896 } 4897 4898 /// getF32Constant - Get 32-bit floating point constant. 4899 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4900 const SDLoc &dl) { 4901 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4902 MVT::f32); 4903 } 4904 4905 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4906 SelectionDAG &DAG) { 4907 // TODO: What fast-math-flags should be set on the floating-point nodes? 4908 4909 // IntegerPartOfX = ((int32_t)(t0); 4910 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4911 4912 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4913 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4914 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4915 4916 // IntegerPartOfX <<= 23; 4917 IntegerPartOfX = DAG.getNode( 4918 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4919 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4920 DAG.getDataLayout()))); 4921 4922 SDValue TwoToFractionalPartOfX; 4923 if (LimitFloatPrecision <= 6) { 4924 // For floating-point precision of 6: 4925 // 4926 // TwoToFractionalPartOfX = 4927 // 0.997535578f + 4928 // (0.735607626f + 0.252464424f * x) * x; 4929 // 4930 // error 0.0144103317, which is 6 bits 4931 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4932 getF32Constant(DAG, 0x3e814304, dl)); 4933 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4934 getF32Constant(DAG, 0x3f3c50c8, dl)); 4935 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4936 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4937 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4938 } else if (LimitFloatPrecision <= 12) { 4939 // For floating-point precision of 12: 4940 // 4941 // TwoToFractionalPartOfX = 4942 // 0.999892986f + 4943 // (0.696457318f + 4944 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4945 // 4946 // error 0.000107046256, which is 13 to 14 bits 4947 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4948 getF32Constant(DAG, 0x3da235e3, dl)); 4949 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4950 getF32Constant(DAG, 0x3e65b8f3, dl)); 4951 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4952 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4953 getF32Constant(DAG, 0x3f324b07, dl)); 4954 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4955 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4956 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4957 } else { // LimitFloatPrecision <= 18 4958 // For floating-point precision of 18: 4959 // 4960 // TwoToFractionalPartOfX = 4961 // 0.999999982f + 4962 // (0.693148872f + 4963 // (0.240227044f + 4964 // (0.554906021e-1f + 4965 // (0.961591928e-2f + 4966 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4967 // error 2.47208000*10^(-7), which is better than 18 bits 4968 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4969 getF32Constant(DAG, 0x3924b03e, dl)); 4970 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4971 getF32Constant(DAG, 0x3ab24b87, dl)); 4972 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4973 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4974 getF32Constant(DAG, 0x3c1d8c17, dl)); 4975 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4976 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4977 getF32Constant(DAG, 0x3d634a1d, dl)); 4978 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4979 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4980 getF32Constant(DAG, 0x3e75fe14, dl)); 4981 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4982 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4983 getF32Constant(DAG, 0x3f317234, dl)); 4984 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4985 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4986 getF32Constant(DAG, 0x3f800000, dl)); 4987 } 4988 4989 // Add the exponent into the result in integer domain. 4990 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4991 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4992 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4993 } 4994 4995 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4996 /// limited-precision mode. 4997 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4998 const TargetLowering &TLI, SDNodeFlags Flags) { 4999 if (Op.getValueType() == MVT::f32 && 5000 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5001 5002 // Put the exponent in the right bit position for later addition to the 5003 // final result: 5004 // 5005 // t0 = Op * log2(e) 5006 5007 // TODO: What fast-math-flags should be set here? 5008 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5009 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5010 return getLimitedPrecisionExp2(t0, dl, DAG); 5011 } 5012 5013 // No special expansion. 5014 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5015 } 5016 5017 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5018 /// limited-precision mode. 5019 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5020 const TargetLowering &TLI, SDNodeFlags Flags) { 5021 // TODO: What fast-math-flags should be set on the floating-point nodes? 5022 5023 if (Op.getValueType() == MVT::f32 && 5024 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5025 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5026 5027 // Scale the exponent by log(2). 5028 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5029 SDValue LogOfExponent = 5030 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5031 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5032 5033 // Get the significand and build it into a floating-point number with 5034 // exponent of 1. 5035 SDValue X = GetSignificand(DAG, Op1, dl); 5036 5037 SDValue LogOfMantissa; 5038 if (LimitFloatPrecision <= 6) { 5039 // For floating-point precision of 6: 5040 // 5041 // LogofMantissa = 5042 // -1.1609546f + 5043 // (1.4034025f - 0.23903021f * x) * x; 5044 // 5045 // error 0.0034276066, which is better than 8 bits 5046 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5047 getF32Constant(DAG, 0xbe74c456, dl)); 5048 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5049 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5050 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5051 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5052 getF32Constant(DAG, 0x3f949a29, dl)); 5053 } else if (LimitFloatPrecision <= 12) { 5054 // For floating-point precision of 12: 5055 // 5056 // LogOfMantissa = 5057 // -1.7417939f + 5058 // (2.8212026f + 5059 // (-1.4699568f + 5060 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5061 // 5062 // error 0.000061011436, which is 14 bits 5063 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5064 getF32Constant(DAG, 0xbd67b6d6, dl)); 5065 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5066 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5067 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5068 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5069 getF32Constant(DAG, 0x3fbc278b, dl)); 5070 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5071 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5072 getF32Constant(DAG, 0x40348e95, dl)); 5073 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5074 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5075 getF32Constant(DAG, 0x3fdef31a, dl)); 5076 } else { // LimitFloatPrecision <= 18 5077 // For floating-point precision of 18: 5078 // 5079 // LogOfMantissa = 5080 // -2.1072184f + 5081 // (4.2372794f + 5082 // (-3.7029485f + 5083 // (2.2781945f + 5084 // (-0.87823314f + 5085 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5086 // 5087 // error 0.0000023660568, which is better than 18 bits 5088 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5089 getF32Constant(DAG, 0xbc91e5ac, dl)); 5090 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5091 getF32Constant(DAG, 0x3e4350aa, dl)); 5092 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5093 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5094 getF32Constant(DAG, 0x3f60d3e3, dl)); 5095 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5096 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5097 getF32Constant(DAG, 0x4011cdf0, dl)); 5098 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5099 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5100 getF32Constant(DAG, 0x406cfd1c, dl)); 5101 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5102 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5103 getF32Constant(DAG, 0x408797cb, dl)); 5104 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5105 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5106 getF32Constant(DAG, 0x4006dcab, dl)); 5107 } 5108 5109 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5110 } 5111 5112 // No special expansion. 5113 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5114 } 5115 5116 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5117 /// limited-precision mode. 5118 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5119 const TargetLowering &TLI, SDNodeFlags Flags) { 5120 // TODO: What fast-math-flags should be set on the floating-point nodes? 5121 5122 if (Op.getValueType() == MVT::f32 && 5123 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5124 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5125 5126 // Get the exponent. 5127 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5128 5129 // Get the significand and build it into a floating-point number with 5130 // exponent of 1. 5131 SDValue X = GetSignificand(DAG, Op1, dl); 5132 5133 // Different possible minimax approximations of significand in 5134 // floating-point for various degrees of accuracy over [1,2]. 5135 SDValue Log2ofMantissa; 5136 if (LimitFloatPrecision <= 6) { 5137 // For floating-point precision of 6: 5138 // 5139 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5140 // 5141 // error 0.0049451742, which is more than 7 bits 5142 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5143 getF32Constant(DAG, 0xbeb08fe0, dl)); 5144 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5145 getF32Constant(DAG, 0x40019463, dl)); 5146 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5147 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5148 getF32Constant(DAG, 0x3fd6633d, dl)); 5149 } else if (LimitFloatPrecision <= 12) { 5150 // For floating-point precision of 12: 5151 // 5152 // Log2ofMantissa = 5153 // -2.51285454f + 5154 // (4.07009056f + 5155 // (-2.12067489f + 5156 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5157 // 5158 // error 0.0000876136000, which is better than 13 bits 5159 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5160 getF32Constant(DAG, 0xbda7262e, dl)); 5161 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5162 getF32Constant(DAG, 0x3f25280b, dl)); 5163 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5164 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5165 getF32Constant(DAG, 0x4007b923, dl)); 5166 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5167 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5168 getF32Constant(DAG, 0x40823e2f, dl)); 5169 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5170 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5171 getF32Constant(DAG, 0x4020d29c, dl)); 5172 } else { // LimitFloatPrecision <= 18 5173 // For floating-point precision of 18: 5174 // 5175 // Log2ofMantissa = 5176 // -3.0400495f + 5177 // (6.1129976f + 5178 // (-5.3420409f + 5179 // (3.2865683f + 5180 // (-1.2669343f + 5181 // (0.27515199f - 5182 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5183 // 5184 // error 0.0000018516, which is better than 18 bits 5185 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5186 getF32Constant(DAG, 0xbcd2769e, dl)); 5187 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5188 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5189 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5190 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5191 getF32Constant(DAG, 0x3fa22ae7, dl)); 5192 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5193 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5194 getF32Constant(DAG, 0x40525723, dl)); 5195 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5196 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5197 getF32Constant(DAG, 0x40aaf200, dl)); 5198 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5199 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5200 getF32Constant(DAG, 0x40c39dad, dl)); 5201 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5202 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5203 getF32Constant(DAG, 0x4042902c, dl)); 5204 } 5205 5206 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5207 } 5208 5209 // No special expansion. 5210 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5211 } 5212 5213 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5214 /// limited-precision mode. 5215 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5216 const TargetLowering &TLI, SDNodeFlags Flags) { 5217 // TODO: What fast-math-flags should be set on the floating-point nodes? 5218 5219 if (Op.getValueType() == MVT::f32 && 5220 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5221 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5222 5223 // Scale the exponent by log10(2) [0.30102999f]. 5224 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5225 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5226 getF32Constant(DAG, 0x3e9a209a, dl)); 5227 5228 // Get the significand and build it into a floating-point number with 5229 // exponent of 1. 5230 SDValue X = GetSignificand(DAG, Op1, dl); 5231 5232 SDValue Log10ofMantissa; 5233 if (LimitFloatPrecision <= 6) { 5234 // For floating-point precision of 6: 5235 // 5236 // Log10ofMantissa = 5237 // -0.50419619f + 5238 // (0.60948995f - 0.10380950f * x) * x; 5239 // 5240 // error 0.0014886165, which is 6 bits 5241 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5242 getF32Constant(DAG, 0xbdd49a13, dl)); 5243 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5244 getF32Constant(DAG, 0x3f1c0789, dl)); 5245 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5246 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5247 getF32Constant(DAG, 0x3f011300, dl)); 5248 } else if (LimitFloatPrecision <= 12) { 5249 // For floating-point precision of 12: 5250 // 5251 // Log10ofMantissa = 5252 // -0.64831180f + 5253 // (0.91751397f + 5254 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5255 // 5256 // error 0.00019228036, which is better than 12 bits 5257 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5258 getF32Constant(DAG, 0x3d431f31, dl)); 5259 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5260 getF32Constant(DAG, 0x3ea21fb2, dl)); 5261 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5262 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5263 getF32Constant(DAG, 0x3f6ae232, dl)); 5264 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5265 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5266 getF32Constant(DAG, 0x3f25f7c3, dl)); 5267 } else { // LimitFloatPrecision <= 18 5268 // For floating-point precision of 18: 5269 // 5270 // Log10ofMantissa = 5271 // -0.84299375f + 5272 // (1.5327582f + 5273 // (-1.0688956f + 5274 // (0.49102474f + 5275 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5276 // 5277 // error 0.0000037995730, which is better than 18 bits 5278 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5279 getF32Constant(DAG, 0x3c5d51ce, dl)); 5280 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5281 getF32Constant(DAG, 0x3e00685a, dl)); 5282 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5283 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5284 getF32Constant(DAG, 0x3efb6798, dl)); 5285 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5286 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5287 getF32Constant(DAG, 0x3f88d192, dl)); 5288 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5289 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5290 getF32Constant(DAG, 0x3fc4316c, dl)); 5291 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5292 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5293 getF32Constant(DAG, 0x3f57ce70, dl)); 5294 } 5295 5296 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5297 } 5298 5299 // No special expansion. 5300 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5301 } 5302 5303 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5304 /// limited-precision mode. 5305 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5306 const TargetLowering &TLI, SDNodeFlags Flags) { 5307 if (Op.getValueType() == MVT::f32 && 5308 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5309 return getLimitedPrecisionExp2(Op, dl, DAG); 5310 5311 // No special expansion. 5312 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5313 } 5314 5315 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5316 /// limited-precision mode with x == 10.0f. 5317 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5318 SelectionDAG &DAG, const TargetLowering &TLI, 5319 SDNodeFlags Flags) { 5320 bool IsExp10 = false; 5321 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5322 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5323 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5324 APFloat Ten(10.0f); 5325 IsExp10 = LHSC->isExactlyValue(Ten); 5326 } 5327 } 5328 5329 // TODO: What fast-math-flags should be set on the FMUL node? 5330 if (IsExp10) { 5331 // Put the exponent in the right bit position for later addition to the 5332 // final result: 5333 // 5334 // #define LOG2OF10 3.3219281f 5335 // t0 = Op * LOG2OF10; 5336 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5337 getF32Constant(DAG, 0x40549a78, dl)); 5338 return getLimitedPrecisionExp2(t0, dl, DAG); 5339 } 5340 5341 // No special expansion. 5342 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5343 } 5344 5345 /// ExpandPowI - Expand a llvm.powi intrinsic. 5346 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5347 SelectionDAG &DAG) { 5348 // If RHS is a constant, we can expand this out to a multiplication tree, 5349 // otherwise we end up lowering to a call to __powidf2 (for example). When 5350 // optimizing for size, we only want to do this if the expansion would produce 5351 // a small number of multiplies, otherwise we do the full expansion. 5352 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5353 // Get the exponent as a positive value. 5354 unsigned Val = RHSC->getSExtValue(); 5355 if ((int)Val < 0) Val = -Val; 5356 5357 // powi(x, 0) -> 1.0 5358 if (Val == 0) 5359 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5360 5361 bool OptForSize = DAG.shouldOptForSize(); 5362 if (!OptForSize || 5363 // If optimizing for size, don't insert too many multiplies. 5364 // This inserts up to 5 multiplies. 5365 countPopulation(Val) + Log2_32(Val) < 7) { 5366 // We use the simple binary decomposition method to generate the multiply 5367 // sequence. There are more optimal ways to do this (for example, 5368 // powi(x,15) generates one more multiply than it should), but this has 5369 // the benefit of being both really simple and much better than a libcall. 5370 SDValue Res; // Logically starts equal to 1.0 5371 SDValue CurSquare = LHS; 5372 // TODO: Intrinsics should have fast-math-flags that propagate to these 5373 // nodes. 5374 while (Val) { 5375 if (Val & 1) { 5376 if (Res.getNode()) 5377 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5378 else 5379 Res = CurSquare; // 1.0*CurSquare. 5380 } 5381 5382 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5383 CurSquare, CurSquare); 5384 Val >>= 1; 5385 } 5386 5387 // If the original was negative, invert the result, producing 1/(x*x*x). 5388 if (RHSC->getSExtValue() < 0) 5389 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5390 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5391 return Res; 5392 } 5393 } 5394 5395 // Otherwise, expand to a libcall. 5396 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5397 } 5398 5399 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5400 SDValue LHS, SDValue RHS, SDValue Scale, 5401 SelectionDAG &DAG, const TargetLowering &TLI) { 5402 EVT VT = LHS.getValueType(); 5403 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5404 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5405 LLVMContext &Ctx = *DAG.getContext(); 5406 5407 // If the type is legal but the operation isn't, this node might survive all 5408 // the way to operation legalization. If we end up there and we do not have 5409 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5410 // node. 5411 5412 // Coax the legalizer into expanding the node during type legalization instead 5413 // by bumping the size by one bit. This will force it to Promote, enabling the 5414 // early expansion and avoiding the need to expand later. 5415 5416 // We don't have to do this if Scale is 0; that can always be expanded, unless 5417 // it's a saturating signed operation. Those can experience true integer 5418 // division overflow, a case which we must avoid. 5419 5420 // FIXME: We wouldn't have to do this (or any of the early 5421 // expansion/promotion) if it was possible to expand a libcall of an 5422 // illegal type during operation legalization. But it's not, so things 5423 // get a bit hacky. 5424 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5425 if ((ScaleInt > 0 || (Saturating && Signed)) && 5426 (TLI.isTypeLegal(VT) || 5427 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5428 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5429 Opcode, VT, ScaleInt); 5430 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5431 EVT PromVT; 5432 if (VT.isScalarInteger()) 5433 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5434 else if (VT.isVector()) { 5435 PromVT = VT.getVectorElementType(); 5436 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5437 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5438 } else 5439 llvm_unreachable("Wrong VT for DIVFIX?"); 5440 if (Signed) { 5441 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5442 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5443 } else { 5444 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5445 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5446 } 5447 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5448 // For saturating operations, we need to shift up the LHS to get the 5449 // proper saturation width, and then shift down again afterwards. 5450 if (Saturating) 5451 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5452 DAG.getConstant(1, DL, ShiftTy)); 5453 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5454 if (Saturating) 5455 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5456 DAG.getConstant(1, DL, ShiftTy)); 5457 return DAG.getZExtOrTrunc(Res, DL, VT); 5458 } 5459 } 5460 5461 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5462 } 5463 5464 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5465 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5466 static void 5467 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5468 const SDValue &N) { 5469 switch (N.getOpcode()) { 5470 case ISD::CopyFromReg: { 5471 SDValue Op = N.getOperand(1); 5472 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5473 Op.getValueType().getSizeInBits()); 5474 return; 5475 } 5476 case ISD::BITCAST: 5477 case ISD::AssertZext: 5478 case ISD::AssertSext: 5479 case ISD::TRUNCATE: 5480 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5481 return; 5482 case ISD::BUILD_PAIR: 5483 case ISD::BUILD_VECTOR: 5484 case ISD::CONCAT_VECTORS: 5485 for (SDValue Op : N->op_values()) 5486 getUnderlyingArgRegs(Regs, Op); 5487 return; 5488 default: 5489 return; 5490 } 5491 } 5492 5493 /// If the DbgValueInst is a dbg_value of a function argument, create the 5494 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5495 /// instruction selection, they will be inserted to the entry BB. 5496 /// We don't currently support this for variadic dbg_values, as they shouldn't 5497 /// appear for function arguments or in the prologue. 5498 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5499 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5500 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5501 const Argument *Arg = dyn_cast<Argument>(V); 5502 if (!Arg) 5503 return false; 5504 5505 MachineFunction &MF = DAG.getMachineFunction(); 5506 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5507 5508 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5509 // we've been asked to pursue. 5510 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5511 bool Indirect) { 5512 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5513 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5514 // pointing at the VReg, which will be patched up later. 5515 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5516 auto MIB = BuildMI(MF, DL, Inst); 5517 MIB.addReg(Reg); 5518 MIB.addImm(0); 5519 MIB.addMetadata(Variable); 5520 auto *NewDIExpr = FragExpr; 5521 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5522 // the DIExpression. 5523 if (Indirect) 5524 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5525 MIB.addMetadata(NewDIExpr); 5526 return MIB; 5527 } else { 5528 // Create a completely standard DBG_VALUE. 5529 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5530 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5531 } 5532 }; 5533 5534 if (!IsDbgDeclare) { 5535 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5536 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5537 // the entry block. 5538 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5539 if (!IsInEntryBlock) 5540 return false; 5541 5542 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5543 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5544 // variable that also is a param. 5545 // 5546 // Although, if we are at the top of the entry block already, we can still 5547 // emit using ArgDbgValue. This might catch some situations when the 5548 // dbg.value refers to an argument that isn't used in the entry block, so 5549 // any CopyToReg node would be optimized out and the only way to express 5550 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5551 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5552 // we should only emit as ArgDbgValue if the Variable is an argument to the 5553 // current function, and the dbg.value intrinsic is found in the entry 5554 // block. 5555 bool VariableIsFunctionInputArg = Variable->isParameter() && 5556 !DL->getInlinedAt(); 5557 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5558 if (!IsInPrologue && !VariableIsFunctionInputArg) 5559 return false; 5560 5561 // Here we assume that a function argument on IR level only can be used to 5562 // describe one input parameter on source level. If we for example have 5563 // source code like this 5564 // 5565 // struct A { long x, y; }; 5566 // void foo(struct A a, long b) { 5567 // ... 5568 // b = a.x; 5569 // ... 5570 // } 5571 // 5572 // and IR like this 5573 // 5574 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5575 // entry: 5576 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5577 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5578 // call void @llvm.dbg.value(metadata i32 %b, "b", 5579 // ... 5580 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5581 // ... 5582 // 5583 // then the last dbg.value is describing a parameter "b" using a value that 5584 // is an argument. But since we already has used %a1 to describe a parameter 5585 // we should not handle that last dbg.value here (that would result in an 5586 // incorrect hoisting of the DBG_VALUE to the function entry). 5587 // Notice that we allow one dbg.value per IR level argument, to accommodate 5588 // for the situation with fragments above. 5589 if (VariableIsFunctionInputArg) { 5590 unsigned ArgNo = Arg->getArgNo(); 5591 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5592 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5593 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5594 return false; 5595 FuncInfo.DescribedArgs.set(ArgNo); 5596 } 5597 } 5598 5599 bool IsIndirect = false; 5600 Optional<MachineOperand> Op; 5601 // Some arguments' frame index is recorded during argument lowering. 5602 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5603 if (FI != std::numeric_limits<int>::max()) 5604 Op = MachineOperand::CreateFI(FI); 5605 5606 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5607 if (!Op && N.getNode()) { 5608 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5609 Register Reg; 5610 if (ArgRegsAndSizes.size() == 1) 5611 Reg = ArgRegsAndSizes.front().first; 5612 5613 if (Reg && Reg.isVirtual()) { 5614 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5615 Register PR = RegInfo.getLiveInPhysReg(Reg); 5616 if (PR) 5617 Reg = PR; 5618 } 5619 if (Reg) { 5620 Op = MachineOperand::CreateReg(Reg, false); 5621 IsIndirect = IsDbgDeclare; 5622 } 5623 } 5624 5625 if (!Op && N.getNode()) { 5626 // Check if frame index is available. 5627 SDValue LCandidate = peekThroughBitcasts(N); 5628 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5629 if (FrameIndexSDNode *FINode = 5630 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5631 Op = MachineOperand::CreateFI(FINode->getIndex()); 5632 } 5633 5634 if (!Op) { 5635 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5636 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5637 SplitRegs) { 5638 unsigned Offset = 0; 5639 for (const auto &RegAndSize : SplitRegs) { 5640 // If the expression is already a fragment, the current register 5641 // offset+size might extend beyond the fragment. In this case, only 5642 // the register bits that are inside the fragment are relevant. 5643 int RegFragmentSizeInBits = RegAndSize.second; 5644 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5645 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5646 // The register is entirely outside the expression fragment, 5647 // so is irrelevant for debug info. 5648 if (Offset >= ExprFragmentSizeInBits) 5649 break; 5650 // The register is partially outside the expression fragment, only 5651 // the low bits within the fragment are relevant for debug info. 5652 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5653 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5654 } 5655 } 5656 5657 auto FragmentExpr = DIExpression::createFragmentExpression( 5658 Expr, Offset, RegFragmentSizeInBits); 5659 Offset += RegAndSize.second; 5660 // If a valid fragment expression cannot be created, the variable's 5661 // correct value cannot be determined and so it is set as Undef. 5662 if (!FragmentExpr) { 5663 SDDbgValue *SDV = DAG.getConstantDbgValue( 5664 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5665 DAG.AddDbgValue(SDV, false); 5666 continue; 5667 } 5668 MachineInstr *NewMI = 5669 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare); 5670 FuncInfo.ArgDbgValues.push_back(NewMI); 5671 } 5672 }; 5673 5674 // Check if ValueMap has reg number. 5675 DenseMap<const Value *, Register>::const_iterator 5676 VMI = FuncInfo.ValueMap.find(V); 5677 if (VMI != FuncInfo.ValueMap.end()) { 5678 const auto &TLI = DAG.getTargetLoweringInfo(); 5679 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5680 V->getType(), None); 5681 if (RFV.occupiesMultipleRegs()) { 5682 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5683 return true; 5684 } 5685 5686 Op = MachineOperand::CreateReg(VMI->second, false); 5687 IsIndirect = IsDbgDeclare; 5688 } else if (ArgRegsAndSizes.size() > 1) { 5689 // This was split due to the calling convention, and no virtual register 5690 // mapping exists for the value. 5691 splitMultiRegDbgValue(ArgRegsAndSizes); 5692 return true; 5693 } 5694 } 5695 5696 if (!Op) 5697 return false; 5698 5699 assert(Variable->isValidLocationForIntrinsic(DL) && 5700 "Expected inlined-at fields to agree"); 5701 MachineInstr *NewMI = nullptr; 5702 5703 if (Op->isReg()) 5704 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5705 else 5706 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5707 Variable, Expr); 5708 5709 FuncInfo.ArgDbgValues.push_back(NewMI); 5710 return true; 5711 } 5712 5713 /// Return the appropriate SDDbgValue based on N. 5714 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5715 DILocalVariable *Variable, 5716 DIExpression *Expr, 5717 const DebugLoc &dl, 5718 unsigned DbgSDNodeOrder) { 5719 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5720 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5721 // stack slot locations. 5722 // 5723 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5724 // debug values here after optimization: 5725 // 5726 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5727 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5728 // 5729 // Both describe the direct values of their associated variables. 5730 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5731 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5732 } 5733 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5734 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5735 } 5736 5737 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5738 switch (Intrinsic) { 5739 case Intrinsic::smul_fix: 5740 return ISD::SMULFIX; 5741 case Intrinsic::umul_fix: 5742 return ISD::UMULFIX; 5743 case Intrinsic::smul_fix_sat: 5744 return ISD::SMULFIXSAT; 5745 case Intrinsic::umul_fix_sat: 5746 return ISD::UMULFIXSAT; 5747 case Intrinsic::sdiv_fix: 5748 return ISD::SDIVFIX; 5749 case Intrinsic::udiv_fix: 5750 return ISD::UDIVFIX; 5751 case Intrinsic::sdiv_fix_sat: 5752 return ISD::SDIVFIXSAT; 5753 case Intrinsic::udiv_fix_sat: 5754 return ISD::UDIVFIXSAT; 5755 default: 5756 llvm_unreachable("Unhandled fixed point intrinsic"); 5757 } 5758 } 5759 5760 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5761 const char *FunctionName) { 5762 assert(FunctionName && "FunctionName must not be nullptr"); 5763 SDValue Callee = DAG.getExternalSymbol( 5764 FunctionName, 5765 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5766 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5767 } 5768 5769 /// Given a @llvm.call.preallocated.setup, return the corresponding 5770 /// preallocated call. 5771 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5772 assert(cast<CallBase>(PreallocatedSetup) 5773 ->getCalledFunction() 5774 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5775 "expected call_preallocated_setup Value"); 5776 for (auto *U : PreallocatedSetup->users()) { 5777 auto *UseCall = cast<CallBase>(U); 5778 const Function *Fn = UseCall->getCalledFunction(); 5779 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5780 return UseCall; 5781 } 5782 } 5783 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5784 } 5785 5786 /// Lower the call to the specified intrinsic function. 5787 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5788 unsigned Intrinsic) { 5789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5790 SDLoc sdl = getCurSDLoc(); 5791 DebugLoc dl = getCurDebugLoc(); 5792 SDValue Res; 5793 5794 SDNodeFlags Flags; 5795 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5796 Flags.copyFMF(*FPOp); 5797 5798 switch (Intrinsic) { 5799 default: 5800 // By default, turn this into a target intrinsic node. 5801 visitTargetIntrinsic(I, Intrinsic); 5802 return; 5803 case Intrinsic::vscale: { 5804 match(&I, m_VScale(DAG.getDataLayout())); 5805 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5806 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5807 return; 5808 } 5809 case Intrinsic::vastart: visitVAStart(I); return; 5810 case Intrinsic::vaend: visitVAEnd(I); return; 5811 case Intrinsic::vacopy: visitVACopy(I); return; 5812 case Intrinsic::returnaddress: 5813 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5814 TLI.getPointerTy(DAG.getDataLayout()), 5815 getValue(I.getArgOperand(0)))); 5816 return; 5817 case Intrinsic::addressofreturnaddress: 5818 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5819 TLI.getPointerTy(DAG.getDataLayout()))); 5820 return; 5821 case Intrinsic::sponentry: 5822 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5823 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5824 return; 5825 case Intrinsic::frameaddress: 5826 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5827 TLI.getFrameIndexTy(DAG.getDataLayout()), 5828 getValue(I.getArgOperand(0)))); 5829 return; 5830 case Intrinsic::read_volatile_register: 5831 case Intrinsic::read_register: { 5832 Value *Reg = I.getArgOperand(0); 5833 SDValue Chain = getRoot(); 5834 SDValue RegName = 5835 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5836 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5837 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5838 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5839 setValue(&I, Res); 5840 DAG.setRoot(Res.getValue(1)); 5841 return; 5842 } 5843 case Intrinsic::write_register: { 5844 Value *Reg = I.getArgOperand(0); 5845 Value *RegValue = I.getArgOperand(1); 5846 SDValue Chain = getRoot(); 5847 SDValue RegName = 5848 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5849 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5850 RegName, getValue(RegValue))); 5851 return; 5852 } 5853 case Intrinsic::memcpy: { 5854 const auto &MCI = cast<MemCpyInst>(I); 5855 SDValue Op1 = getValue(I.getArgOperand(0)); 5856 SDValue Op2 = getValue(I.getArgOperand(1)); 5857 SDValue Op3 = getValue(I.getArgOperand(2)); 5858 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5859 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5860 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5861 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5862 bool isVol = MCI.isVolatile(); 5863 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5864 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5865 // node. 5866 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5867 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5868 /* AlwaysInline */ false, isTC, 5869 MachinePointerInfo(I.getArgOperand(0)), 5870 MachinePointerInfo(I.getArgOperand(1)), 5871 I.getAAMetadata()); 5872 updateDAGForMaybeTailCall(MC); 5873 return; 5874 } 5875 case Intrinsic::memcpy_inline: { 5876 const auto &MCI = cast<MemCpyInlineInst>(I); 5877 SDValue Dst = getValue(I.getArgOperand(0)); 5878 SDValue Src = getValue(I.getArgOperand(1)); 5879 SDValue Size = getValue(I.getArgOperand(2)); 5880 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5881 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5882 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5883 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5884 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5885 bool isVol = MCI.isVolatile(); 5886 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5887 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5888 // node. 5889 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5890 /* AlwaysInline */ true, isTC, 5891 MachinePointerInfo(I.getArgOperand(0)), 5892 MachinePointerInfo(I.getArgOperand(1)), 5893 I.getAAMetadata()); 5894 updateDAGForMaybeTailCall(MC); 5895 return; 5896 } 5897 case Intrinsic::memset: { 5898 const auto &MSI = cast<MemSetInst>(I); 5899 SDValue Op1 = getValue(I.getArgOperand(0)); 5900 SDValue Op2 = getValue(I.getArgOperand(1)); 5901 SDValue Op3 = getValue(I.getArgOperand(2)); 5902 // @llvm.memset defines 0 and 1 to both mean no alignment. 5903 Align Alignment = MSI.getDestAlign().valueOrOne(); 5904 bool isVol = MSI.isVolatile(); 5905 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5906 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5907 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5908 MachinePointerInfo(I.getArgOperand(0)), 5909 I.getAAMetadata()); 5910 updateDAGForMaybeTailCall(MS); 5911 return; 5912 } 5913 case Intrinsic::memmove: { 5914 const auto &MMI = cast<MemMoveInst>(I); 5915 SDValue Op1 = getValue(I.getArgOperand(0)); 5916 SDValue Op2 = getValue(I.getArgOperand(1)); 5917 SDValue Op3 = getValue(I.getArgOperand(2)); 5918 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5919 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5920 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5921 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5922 bool isVol = MMI.isVolatile(); 5923 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5924 // FIXME: Support passing different dest/src alignments to the memmove DAG 5925 // node. 5926 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5927 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5928 isTC, MachinePointerInfo(I.getArgOperand(0)), 5929 MachinePointerInfo(I.getArgOperand(1)), 5930 I.getAAMetadata()); 5931 updateDAGForMaybeTailCall(MM); 5932 return; 5933 } 5934 case Intrinsic::memcpy_element_unordered_atomic: { 5935 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5936 SDValue Dst = getValue(MI.getRawDest()); 5937 SDValue Src = getValue(MI.getRawSource()); 5938 SDValue Length = getValue(MI.getLength()); 5939 5940 unsigned DstAlign = MI.getDestAlignment(); 5941 unsigned SrcAlign = MI.getSourceAlignment(); 5942 Type *LengthTy = MI.getLength()->getType(); 5943 unsigned ElemSz = MI.getElementSizeInBytes(); 5944 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5945 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5946 SrcAlign, Length, LengthTy, ElemSz, isTC, 5947 MachinePointerInfo(MI.getRawDest()), 5948 MachinePointerInfo(MI.getRawSource())); 5949 updateDAGForMaybeTailCall(MC); 5950 return; 5951 } 5952 case Intrinsic::memmove_element_unordered_atomic: { 5953 auto &MI = cast<AtomicMemMoveInst>(I); 5954 SDValue Dst = getValue(MI.getRawDest()); 5955 SDValue Src = getValue(MI.getRawSource()); 5956 SDValue Length = getValue(MI.getLength()); 5957 5958 unsigned DstAlign = MI.getDestAlignment(); 5959 unsigned SrcAlign = MI.getSourceAlignment(); 5960 Type *LengthTy = MI.getLength()->getType(); 5961 unsigned ElemSz = MI.getElementSizeInBytes(); 5962 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5963 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5964 SrcAlign, Length, LengthTy, ElemSz, isTC, 5965 MachinePointerInfo(MI.getRawDest()), 5966 MachinePointerInfo(MI.getRawSource())); 5967 updateDAGForMaybeTailCall(MC); 5968 return; 5969 } 5970 case Intrinsic::memset_element_unordered_atomic: { 5971 auto &MI = cast<AtomicMemSetInst>(I); 5972 SDValue Dst = getValue(MI.getRawDest()); 5973 SDValue Val = getValue(MI.getValue()); 5974 SDValue Length = getValue(MI.getLength()); 5975 5976 unsigned DstAlign = MI.getDestAlignment(); 5977 Type *LengthTy = MI.getLength()->getType(); 5978 unsigned ElemSz = MI.getElementSizeInBytes(); 5979 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5980 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5981 LengthTy, ElemSz, isTC, 5982 MachinePointerInfo(MI.getRawDest())); 5983 updateDAGForMaybeTailCall(MC); 5984 return; 5985 } 5986 case Intrinsic::call_preallocated_setup: { 5987 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5988 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5989 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5990 getRoot(), SrcValue); 5991 setValue(&I, Res); 5992 DAG.setRoot(Res); 5993 return; 5994 } 5995 case Intrinsic::call_preallocated_arg: { 5996 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5997 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5998 SDValue Ops[3]; 5999 Ops[0] = getRoot(); 6000 Ops[1] = SrcValue; 6001 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6002 MVT::i32); // arg index 6003 SDValue Res = DAG.getNode( 6004 ISD::PREALLOCATED_ARG, sdl, 6005 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6006 setValue(&I, Res); 6007 DAG.setRoot(Res.getValue(1)); 6008 return; 6009 } 6010 case Intrinsic::dbg_addr: 6011 case Intrinsic::dbg_declare: { 6012 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 6013 // they are non-variadic. 6014 const auto &DI = cast<DbgVariableIntrinsic>(I); 6015 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6016 DILocalVariable *Variable = DI.getVariable(); 6017 DIExpression *Expression = DI.getExpression(); 6018 dropDanglingDebugInfo(Variable, Expression); 6019 assert(Variable && "Missing variable"); 6020 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6021 << "\n"); 6022 // Check if address has undef value. 6023 const Value *Address = DI.getVariableLocationOp(0); 6024 if (!Address || isa<UndefValue>(Address) || 6025 (Address->use_empty() && !isa<Argument>(Address))) { 6026 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6027 << " (bad/undef/unused-arg address)\n"); 6028 return; 6029 } 6030 6031 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6032 6033 // Check if this variable can be described by a frame index, typically 6034 // either as a static alloca or a byval parameter. 6035 int FI = std::numeric_limits<int>::max(); 6036 if (const auto *AI = 6037 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6038 if (AI->isStaticAlloca()) { 6039 auto I = FuncInfo.StaticAllocaMap.find(AI); 6040 if (I != FuncInfo.StaticAllocaMap.end()) 6041 FI = I->second; 6042 } 6043 } else if (const auto *Arg = dyn_cast<Argument>( 6044 Address->stripInBoundsConstantOffsets())) { 6045 FI = FuncInfo.getArgumentFrameIndex(Arg); 6046 } 6047 6048 // llvm.dbg.addr is control dependent and always generates indirect 6049 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6050 // the MachineFunction variable table. 6051 if (FI != std::numeric_limits<int>::max()) { 6052 if (Intrinsic == Intrinsic::dbg_addr) { 6053 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6054 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6055 dl, SDNodeOrder); 6056 DAG.AddDbgValue(SDV, isParameter); 6057 } else { 6058 LLVM_DEBUG(dbgs() << "Skipping " << DI 6059 << " (variable info stashed in MF side table)\n"); 6060 } 6061 return; 6062 } 6063 6064 SDValue &N = NodeMap[Address]; 6065 if (!N.getNode() && isa<Argument>(Address)) 6066 // Check unused arguments map. 6067 N = UnusedArgNodeMap[Address]; 6068 SDDbgValue *SDV; 6069 if (N.getNode()) { 6070 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6071 Address = BCI->getOperand(0); 6072 // Parameters are handled specially. 6073 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6074 if (isParameter && FINode) { 6075 // Byval parameter. We have a frame index at this point. 6076 SDV = 6077 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6078 /*IsIndirect*/ true, dl, SDNodeOrder); 6079 } else if (isa<Argument>(Address)) { 6080 // Address is an argument, so try to emit its dbg value using 6081 // virtual register info from the FuncInfo.ValueMap. 6082 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6083 return; 6084 } else { 6085 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6086 true, dl, SDNodeOrder); 6087 } 6088 DAG.AddDbgValue(SDV, isParameter); 6089 } else { 6090 // If Address is an argument then try to emit its dbg value using 6091 // virtual register info from the FuncInfo.ValueMap. 6092 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6093 N)) { 6094 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6095 << " (could not emit func-arg dbg_value)\n"); 6096 } 6097 } 6098 return; 6099 } 6100 case Intrinsic::dbg_label: { 6101 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6102 DILabel *Label = DI.getLabel(); 6103 assert(Label && "Missing label"); 6104 6105 SDDbgLabel *SDV; 6106 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6107 DAG.AddDbgLabel(SDV); 6108 return; 6109 } 6110 case Intrinsic::dbg_value: { 6111 const DbgValueInst &DI = cast<DbgValueInst>(I); 6112 assert(DI.getVariable() && "Missing variable"); 6113 6114 DILocalVariable *Variable = DI.getVariable(); 6115 DIExpression *Expression = DI.getExpression(); 6116 dropDanglingDebugInfo(Variable, Expression); 6117 SmallVector<Value *, 4> Values(DI.getValues()); 6118 if (Values.empty()) 6119 return; 6120 6121 if (llvm::is_contained(Values, nullptr)) 6122 return; 6123 6124 bool IsVariadic = DI.hasArgList(); 6125 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6126 SDNodeOrder, IsVariadic)) 6127 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6128 return; 6129 } 6130 6131 case Intrinsic::eh_typeid_for: { 6132 // Find the type id for the given typeinfo. 6133 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6134 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6135 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6136 setValue(&I, Res); 6137 return; 6138 } 6139 6140 case Intrinsic::eh_return_i32: 6141 case Intrinsic::eh_return_i64: 6142 DAG.getMachineFunction().setCallsEHReturn(true); 6143 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6144 MVT::Other, 6145 getControlRoot(), 6146 getValue(I.getArgOperand(0)), 6147 getValue(I.getArgOperand(1)))); 6148 return; 6149 case Intrinsic::eh_unwind_init: 6150 DAG.getMachineFunction().setCallsUnwindInit(true); 6151 return; 6152 case Intrinsic::eh_dwarf_cfa: 6153 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6154 TLI.getPointerTy(DAG.getDataLayout()), 6155 getValue(I.getArgOperand(0)))); 6156 return; 6157 case Intrinsic::eh_sjlj_callsite: { 6158 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6159 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6160 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6161 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6162 6163 MMI.setCurrentCallSite(CI->getZExtValue()); 6164 return; 6165 } 6166 case Intrinsic::eh_sjlj_functioncontext: { 6167 // Get and store the index of the function context. 6168 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6169 AllocaInst *FnCtx = 6170 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6171 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6172 MFI.setFunctionContextIndex(FI); 6173 return; 6174 } 6175 case Intrinsic::eh_sjlj_setjmp: { 6176 SDValue Ops[2]; 6177 Ops[0] = getRoot(); 6178 Ops[1] = getValue(I.getArgOperand(0)); 6179 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6180 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6181 setValue(&I, Op.getValue(0)); 6182 DAG.setRoot(Op.getValue(1)); 6183 return; 6184 } 6185 case Intrinsic::eh_sjlj_longjmp: 6186 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6187 getRoot(), getValue(I.getArgOperand(0)))); 6188 return; 6189 case Intrinsic::eh_sjlj_setup_dispatch: 6190 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6191 getRoot())); 6192 return; 6193 case Intrinsic::masked_gather: 6194 visitMaskedGather(I); 6195 return; 6196 case Intrinsic::masked_load: 6197 visitMaskedLoad(I); 6198 return; 6199 case Intrinsic::masked_scatter: 6200 visitMaskedScatter(I); 6201 return; 6202 case Intrinsic::masked_store: 6203 visitMaskedStore(I); 6204 return; 6205 case Intrinsic::masked_expandload: 6206 visitMaskedLoad(I, true /* IsExpanding */); 6207 return; 6208 case Intrinsic::masked_compressstore: 6209 visitMaskedStore(I, true /* IsCompressing */); 6210 return; 6211 case Intrinsic::powi: 6212 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6213 getValue(I.getArgOperand(1)), DAG)); 6214 return; 6215 case Intrinsic::log: 6216 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6217 return; 6218 case Intrinsic::log2: 6219 setValue(&I, 6220 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6221 return; 6222 case Intrinsic::log10: 6223 setValue(&I, 6224 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6225 return; 6226 case Intrinsic::exp: 6227 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6228 return; 6229 case Intrinsic::exp2: 6230 setValue(&I, 6231 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6232 return; 6233 case Intrinsic::pow: 6234 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6235 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6236 return; 6237 case Intrinsic::sqrt: 6238 case Intrinsic::fabs: 6239 case Intrinsic::sin: 6240 case Intrinsic::cos: 6241 case Intrinsic::floor: 6242 case Intrinsic::ceil: 6243 case Intrinsic::trunc: 6244 case Intrinsic::rint: 6245 case Intrinsic::nearbyint: 6246 case Intrinsic::round: 6247 case Intrinsic::roundeven: 6248 case Intrinsic::canonicalize: { 6249 unsigned Opcode; 6250 switch (Intrinsic) { 6251 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6252 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6253 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6254 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6255 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6256 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6257 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6258 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6259 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6260 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6261 case Intrinsic::round: Opcode = ISD::FROUND; break; 6262 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6263 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6264 } 6265 6266 setValue(&I, DAG.getNode(Opcode, sdl, 6267 getValue(I.getArgOperand(0)).getValueType(), 6268 getValue(I.getArgOperand(0)), Flags)); 6269 return; 6270 } 6271 case Intrinsic::lround: 6272 case Intrinsic::llround: 6273 case Intrinsic::lrint: 6274 case Intrinsic::llrint: { 6275 unsigned Opcode; 6276 switch (Intrinsic) { 6277 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6278 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6279 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6280 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6281 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6282 } 6283 6284 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6285 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6286 getValue(I.getArgOperand(0)))); 6287 return; 6288 } 6289 case Intrinsic::minnum: 6290 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6291 getValue(I.getArgOperand(0)).getValueType(), 6292 getValue(I.getArgOperand(0)), 6293 getValue(I.getArgOperand(1)), Flags)); 6294 return; 6295 case Intrinsic::maxnum: 6296 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6297 getValue(I.getArgOperand(0)).getValueType(), 6298 getValue(I.getArgOperand(0)), 6299 getValue(I.getArgOperand(1)), Flags)); 6300 return; 6301 case Intrinsic::minimum: 6302 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6303 getValue(I.getArgOperand(0)).getValueType(), 6304 getValue(I.getArgOperand(0)), 6305 getValue(I.getArgOperand(1)), Flags)); 6306 return; 6307 case Intrinsic::maximum: 6308 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6309 getValue(I.getArgOperand(0)).getValueType(), 6310 getValue(I.getArgOperand(0)), 6311 getValue(I.getArgOperand(1)), Flags)); 6312 return; 6313 case Intrinsic::copysign: 6314 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6315 getValue(I.getArgOperand(0)).getValueType(), 6316 getValue(I.getArgOperand(0)), 6317 getValue(I.getArgOperand(1)), Flags)); 6318 return; 6319 case Intrinsic::arithmetic_fence: { 6320 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6321 getValue(I.getArgOperand(0)).getValueType(), 6322 getValue(I.getArgOperand(0)), Flags)); 6323 return; 6324 } 6325 case Intrinsic::fma: 6326 setValue(&I, DAG.getNode( 6327 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6328 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6329 getValue(I.getArgOperand(2)), Flags)); 6330 return; 6331 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6332 case Intrinsic::INTRINSIC: 6333 #include "llvm/IR/ConstrainedOps.def" 6334 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6335 return; 6336 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6337 #include "llvm/IR/VPIntrinsics.def" 6338 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6339 return; 6340 case Intrinsic::fmuladd: { 6341 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6342 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6343 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6344 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6345 getValue(I.getArgOperand(0)).getValueType(), 6346 getValue(I.getArgOperand(0)), 6347 getValue(I.getArgOperand(1)), 6348 getValue(I.getArgOperand(2)), Flags)); 6349 } else { 6350 // TODO: Intrinsic calls should have fast-math-flags. 6351 SDValue Mul = DAG.getNode( 6352 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6353 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6354 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6355 getValue(I.getArgOperand(0)).getValueType(), 6356 Mul, getValue(I.getArgOperand(2)), Flags); 6357 setValue(&I, Add); 6358 } 6359 return; 6360 } 6361 case Intrinsic::convert_to_fp16: 6362 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6363 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6364 getValue(I.getArgOperand(0)), 6365 DAG.getTargetConstant(0, sdl, 6366 MVT::i32)))); 6367 return; 6368 case Intrinsic::convert_from_fp16: 6369 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6370 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6371 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6372 getValue(I.getArgOperand(0))))); 6373 return; 6374 case Intrinsic::fptosi_sat: { 6375 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6376 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6377 getValue(I.getArgOperand(0)), 6378 DAG.getValueType(VT.getScalarType()))); 6379 return; 6380 } 6381 case Intrinsic::fptoui_sat: { 6382 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6383 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6384 getValue(I.getArgOperand(0)), 6385 DAG.getValueType(VT.getScalarType()))); 6386 return; 6387 } 6388 case Intrinsic::set_rounding: 6389 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6390 {getRoot(), getValue(I.getArgOperand(0))}); 6391 setValue(&I, Res); 6392 DAG.setRoot(Res.getValue(0)); 6393 return; 6394 case Intrinsic::pcmarker: { 6395 SDValue Tmp = getValue(I.getArgOperand(0)); 6396 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6397 return; 6398 } 6399 case Intrinsic::readcyclecounter: { 6400 SDValue Op = getRoot(); 6401 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6402 DAG.getVTList(MVT::i64, MVT::Other), Op); 6403 setValue(&I, Res); 6404 DAG.setRoot(Res.getValue(1)); 6405 return; 6406 } 6407 case Intrinsic::bitreverse: 6408 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6409 getValue(I.getArgOperand(0)).getValueType(), 6410 getValue(I.getArgOperand(0)))); 6411 return; 6412 case Intrinsic::bswap: 6413 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6414 getValue(I.getArgOperand(0)).getValueType(), 6415 getValue(I.getArgOperand(0)))); 6416 return; 6417 case Intrinsic::cttz: { 6418 SDValue Arg = getValue(I.getArgOperand(0)); 6419 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6420 EVT Ty = Arg.getValueType(); 6421 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6422 sdl, Ty, Arg)); 6423 return; 6424 } 6425 case Intrinsic::ctlz: { 6426 SDValue Arg = getValue(I.getArgOperand(0)); 6427 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6428 EVT Ty = Arg.getValueType(); 6429 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6430 sdl, Ty, Arg)); 6431 return; 6432 } 6433 case Intrinsic::ctpop: { 6434 SDValue Arg = getValue(I.getArgOperand(0)); 6435 EVT Ty = Arg.getValueType(); 6436 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6437 return; 6438 } 6439 case Intrinsic::fshl: 6440 case Intrinsic::fshr: { 6441 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6442 SDValue X = getValue(I.getArgOperand(0)); 6443 SDValue Y = getValue(I.getArgOperand(1)); 6444 SDValue Z = getValue(I.getArgOperand(2)); 6445 EVT VT = X.getValueType(); 6446 6447 if (X == Y) { 6448 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6449 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6450 } else { 6451 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6452 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6453 } 6454 return; 6455 } 6456 case Intrinsic::sadd_sat: { 6457 SDValue Op1 = getValue(I.getArgOperand(0)); 6458 SDValue Op2 = getValue(I.getArgOperand(1)); 6459 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6460 return; 6461 } 6462 case Intrinsic::uadd_sat: { 6463 SDValue Op1 = getValue(I.getArgOperand(0)); 6464 SDValue Op2 = getValue(I.getArgOperand(1)); 6465 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6466 return; 6467 } 6468 case Intrinsic::ssub_sat: { 6469 SDValue Op1 = getValue(I.getArgOperand(0)); 6470 SDValue Op2 = getValue(I.getArgOperand(1)); 6471 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6472 return; 6473 } 6474 case Intrinsic::usub_sat: { 6475 SDValue Op1 = getValue(I.getArgOperand(0)); 6476 SDValue Op2 = getValue(I.getArgOperand(1)); 6477 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6478 return; 6479 } 6480 case Intrinsic::sshl_sat: { 6481 SDValue Op1 = getValue(I.getArgOperand(0)); 6482 SDValue Op2 = getValue(I.getArgOperand(1)); 6483 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6484 return; 6485 } 6486 case Intrinsic::ushl_sat: { 6487 SDValue Op1 = getValue(I.getArgOperand(0)); 6488 SDValue Op2 = getValue(I.getArgOperand(1)); 6489 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6490 return; 6491 } 6492 case Intrinsic::smul_fix: 6493 case Intrinsic::umul_fix: 6494 case Intrinsic::smul_fix_sat: 6495 case Intrinsic::umul_fix_sat: { 6496 SDValue Op1 = getValue(I.getArgOperand(0)); 6497 SDValue Op2 = getValue(I.getArgOperand(1)); 6498 SDValue Op3 = getValue(I.getArgOperand(2)); 6499 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6500 Op1.getValueType(), Op1, Op2, Op3)); 6501 return; 6502 } 6503 case Intrinsic::sdiv_fix: 6504 case Intrinsic::udiv_fix: 6505 case Intrinsic::sdiv_fix_sat: 6506 case Intrinsic::udiv_fix_sat: { 6507 SDValue Op1 = getValue(I.getArgOperand(0)); 6508 SDValue Op2 = getValue(I.getArgOperand(1)); 6509 SDValue Op3 = getValue(I.getArgOperand(2)); 6510 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6511 Op1, Op2, Op3, DAG, TLI)); 6512 return; 6513 } 6514 case Intrinsic::smax: { 6515 SDValue Op1 = getValue(I.getArgOperand(0)); 6516 SDValue Op2 = getValue(I.getArgOperand(1)); 6517 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6518 return; 6519 } 6520 case Intrinsic::smin: { 6521 SDValue Op1 = getValue(I.getArgOperand(0)); 6522 SDValue Op2 = getValue(I.getArgOperand(1)); 6523 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6524 return; 6525 } 6526 case Intrinsic::umax: { 6527 SDValue Op1 = getValue(I.getArgOperand(0)); 6528 SDValue Op2 = getValue(I.getArgOperand(1)); 6529 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6530 return; 6531 } 6532 case Intrinsic::umin: { 6533 SDValue Op1 = getValue(I.getArgOperand(0)); 6534 SDValue Op2 = getValue(I.getArgOperand(1)); 6535 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6536 return; 6537 } 6538 case Intrinsic::abs: { 6539 // TODO: Preserve "int min is poison" arg in SDAG? 6540 SDValue Op1 = getValue(I.getArgOperand(0)); 6541 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6542 return; 6543 } 6544 case Intrinsic::stacksave: { 6545 SDValue Op = getRoot(); 6546 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6547 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6548 setValue(&I, Res); 6549 DAG.setRoot(Res.getValue(1)); 6550 return; 6551 } 6552 case Intrinsic::stackrestore: 6553 Res = getValue(I.getArgOperand(0)); 6554 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6555 return; 6556 case Intrinsic::get_dynamic_area_offset: { 6557 SDValue Op = getRoot(); 6558 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6559 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6560 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6561 // target. 6562 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6563 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6564 " intrinsic!"); 6565 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6566 Op); 6567 DAG.setRoot(Op); 6568 setValue(&I, Res); 6569 return; 6570 } 6571 case Intrinsic::stackguard: { 6572 MachineFunction &MF = DAG.getMachineFunction(); 6573 const Module &M = *MF.getFunction().getParent(); 6574 SDValue Chain = getRoot(); 6575 if (TLI.useLoadStackGuardNode()) { 6576 Res = getLoadStackGuard(DAG, sdl, Chain); 6577 } else { 6578 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6579 const Value *Global = TLI.getSDagStackGuard(M); 6580 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6581 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6582 MachinePointerInfo(Global, 0), Align, 6583 MachineMemOperand::MOVolatile); 6584 } 6585 if (TLI.useStackGuardXorFP()) 6586 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6587 DAG.setRoot(Chain); 6588 setValue(&I, Res); 6589 return; 6590 } 6591 case Intrinsic::stackprotector: { 6592 // Emit code into the DAG to store the stack guard onto the stack. 6593 MachineFunction &MF = DAG.getMachineFunction(); 6594 MachineFrameInfo &MFI = MF.getFrameInfo(); 6595 SDValue Src, Chain = getRoot(); 6596 6597 if (TLI.useLoadStackGuardNode()) 6598 Src = getLoadStackGuard(DAG, sdl, Chain); 6599 else 6600 Src = getValue(I.getArgOperand(0)); // The guard's value. 6601 6602 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6603 6604 int FI = FuncInfo.StaticAllocaMap[Slot]; 6605 MFI.setStackProtectorIndex(FI); 6606 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6607 6608 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6609 6610 // Store the stack protector onto the stack. 6611 Res = DAG.getStore( 6612 Chain, sdl, Src, FIN, 6613 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6614 MaybeAlign(), MachineMemOperand::MOVolatile); 6615 setValue(&I, Res); 6616 DAG.setRoot(Res); 6617 return; 6618 } 6619 case Intrinsic::objectsize: 6620 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6621 6622 case Intrinsic::is_constant: 6623 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6624 6625 case Intrinsic::annotation: 6626 case Intrinsic::ptr_annotation: 6627 case Intrinsic::launder_invariant_group: 6628 case Intrinsic::strip_invariant_group: 6629 // Drop the intrinsic, but forward the value 6630 setValue(&I, getValue(I.getOperand(0))); 6631 return; 6632 6633 case Intrinsic::assume: 6634 case Intrinsic::experimental_noalias_scope_decl: 6635 case Intrinsic::var_annotation: 6636 case Intrinsic::sideeffect: 6637 // Discard annotate attributes, noalias scope declarations, assumptions, and 6638 // artificial side-effects. 6639 return; 6640 6641 case Intrinsic::codeview_annotation: { 6642 // Emit a label associated with this metadata. 6643 MachineFunction &MF = DAG.getMachineFunction(); 6644 MCSymbol *Label = 6645 MF.getMMI().getContext().createTempSymbol("annotation", true); 6646 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6647 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6648 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6649 DAG.setRoot(Res); 6650 return; 6651 } 6652 6653 case Intrinsic::init_trampoline: { 6654 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6655 6656 SDValue Ops[6]; 6657 Ops[0] = getRoot(); 6658 Ops[1] = getValue(I.getArgOperand(0)); 6659 Ops[2] = getValue(I.getArgOperand(1)); 6660 Ops[3] = getValue(I.getArgOperand(2)); 6661 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6662 Ops[5] = DAG.getSrcValue(F); 6663 6664 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6665 6666 DAG.setRoot(Res); 6667 return; 6668 } 6669 case Intrinsic::adjust_trampoline: 6670 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6671 TLI.getPointerTy(DAG.getDataLayout()), 6672 getValue(I.getArgOperand(0)))); 6673 return; 6674 case Intrinsic::gcroot: { 6675 assert(DAG.getMachineFunction().getFunction().hasGC() && 6676 "only valid in functions with gc specified, enforced by Verifier"); 6677 assert(GFI && "implied by previous"); 6678 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6679 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6680 6681 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6682 GFI->addStackRoot(FI->getIndex(), TypeMap); 6683 return; 6684 } 6685 case Intrinsic::gcread: 6686 case Intrinsic::gcwrite: 6687 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6688 case Intrinsic::flt_rounds: 6689 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6690 setValue(&I, Res); 6691 DAG.setRoot(Res.getValue(1)); 6692 return; 6693 6694 case Intrinsic::expect: 6695 // Just replace __builtin_expect(exp, c) with EXP. 6696 setValue(&I, getValue(I.getArgOperand(0))); 6697 return; 6698 6699 case Intrinsic::ubsantrap: 6700 case Intrinsic::debugtrap: 6701 case Intrinsic::trap: { 6702 StringRef TrapFuncName = 6703 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 6704 if (TrapFuncName.empty()) { 6705 switch (Intrinsic) { 6706 case Intrinsic::trap: 6707 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6708 break; 6709 case Intrinsic::debugtrap: 6710 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6711 break; 6712 case Intrinsic::ubsantrap: 6713 DAG.setRoot(DAG.getNode( 6714 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6715 DAG.getTargetConstant( 6716 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6717 MVT::i32))); 6718 break; 6719 default: llvm_unreachable("unknown trap intrinsic"); 6720 } 6721 return; 6722 } 6723 TargetLowering::ArgListTy Args; 6724 if (Intrinsic == Intrinsic::ubsantrap) { 6725 Args.push_back(TargetLoweringBase::ArgListEntry()); 6726 Args[0].Val = I.getArgOperand(0); 6727 Args[0].Node = getValue(Args[0].Val); 6728 Args[0].Ty = Args[0].Val->getType(); 6729 } 6730 6731 TargetLowering::CallLoweringInfo CLI(DAG); 6732 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6733 CallingConv::C, I.getType(), 6734 DAG.getExternalSymbol(TrapFuncName.data(), 6735 TLI.getPointerTy(DAG.getDataLayout())), 6736 std::move(Args)); 6737 6738 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6739 DAG.setRoot(Result.second); 6740 return; 6741 } 6742 6743 case Intrinsic::uadd_with_overflow: 6744 case Intrinsic::sadd_with_overflow: 6745 case Intrinsic::usub_with_overflow: 6746 case Intrinsic::ssub_with_overflow: 6747 case Intrinsic::umul_with_overflow: 6748 case Intrinsic::smul_with_overflow: { 6749 ISD::NodeType Op; 6750 switch (Intrinsic) { 6751 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6752 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6753 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6754 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6755 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6756 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6757 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6758 } 6759 SDValue Op1 = getValue(I.getArgOperand(0)); 6760 SDValue Op2 = getValue(I.getArgOperand(1)); 6761 6762 EVT ResultVT = Op1.getValueType(); 6763 EVT OverflowVT = MVT::i1; 6764 if (ResultVT.isVector()) 6765 OverflowVT = EVT::getVectorVT( 6766 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6767 6768 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6769 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6770 return; 6771 } 6772 case Intrinsic::prefetch: { 6773 SDValue Ops[5]; 6774 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6775 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6776 Ops[0] = DAG.getRoot(); 6777 Ops[1] = getValue(I.getArgOperand(0)); 6778 Ops[2] = getValue(I.getArgOperand(1)); 6779 Ops[3] = getValue(I.getArgOperand(2)); 6780 Ops[4] = getValue(I.getArgOperand(3)); 6781 SDValue Result = DAG.getMemIntrinsicNode( 6782 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6783 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6784 /* align */ None, Flags); 6785 6786 // Chain the prefetch in parallell with any pending loads, to stay out of 6787 // the way of later optimizations. 6788 PendingLoads.push_back(Result); 6789 Result = getRoot(); 6790 DAG.setRoot(Result); 6791 return; 6792 } 6793 case Intrinsic::lifetime_start: 6794 case Intrinsic::lifetime_end: { 6795 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6796 // Stack coloring is not enabled in O0, discard region information. 6797 if (TM.getOptLevel() == CodeGenOpt::None) 6798 return; 6799 6800 const int64_t ObjectSize = 6801 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6802 Value *const ObjectPtr = I.getArgOperand(1); 6803 SmallVector<const Value *, 4> Allocas; 6804 getUnderlyingObjects(ObjectPtr, Allocas); 6805 6806 for (const Value *Alloca : Allocas) { 6807 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6808 6809 // Could not find an Alloca. 6810 if (!LifetimeObject) 6811 continue; 6812 6813 // First check that the Alloca is static, otherwise it won't have a 6814 // valid frame index. 6815 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6816 if (SI == FuncInfo.StaticAllocaMap.end()) 6817 return; 6818 6819 const int FrameIndex = SI->second; 6820 int64_t Offset; 6821 if (GetPointerBaseWithConstantOffset( 6822 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6823 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6824 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6825 Offset); 6826 DAG.setRoot(Res); 6827 } 6828 return; 6829 } 6830 case Intrinsic::pseudoprobe: { 6831 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6832 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6833 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6834 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6835 DAG.setRoot(Res); 6836 return; 6837 } 6838 case Intrinsic::invariant_start: 6839 // Discard region information. 6840 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6841 return; 6842 case Intrinsic::invariant_end: 6843 // Discard region information. 6844 return; 6845 case Intrinsic::clear_cache: 6846 /// FunctionName may be null. 6847 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6848 lowerCallToExternalSymbol(I, FunctionName); 6849 return; 6850 case Intrinsic::donothing: 6851 case Intrinsic::seh_try_begin: 6852 case Intrinsic::seh_scope_begin: 6853 case Intrinsic::seh_try_end: 6854 case Intrinsic::seh_scope_end: 6855 // ignore 6856 return; 6857 case Intrinsic::experimental_stackmap: 6858 visitStackmap(I); 6859 return; 6860 case Intrinsic::experimental_patchpoint_void: 6861 case Intrinsic::experimental_patchpoint_i64: 6862 visitPatchpoint(I); 6863 return; 6864 case Intrinsic::experimental_gc_statepoint: 6865 LowerStatepoint(cast<GCStatepointInst>(I)); 6866 return; 6867 case Intrinsic::experimental_gc_result: 6868 visitGCResult(cast<GCResultInst>(I)); 6869 return; 6870 case Intrinsic::experimental_gc_relocate: 6871 visitGCRelocate(cast<GCRelocateInst>(I)); 6872 return; 6873 case Intrinsic::instrprof_increment: 6874 llvm_unreachable("instrprof failed to lower an increment"); 6875 case Intrinsic::instrprof_value_profile: 6876 llvm_unreachable("instrprof failed to lower a value profiling call"); 6877 case Intrinsic::localescape: { 6878 MachineFunction &MF = DAG.getMachineFunction(); 6879 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6880 6881 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6882 // is the same on all targets. 6883 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 6884 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6885 if (isa<ConstantPointerNull>(Arg)) 6886 continue; // Skip null pointers. They represent a hole in index space. 6887 AllocaInst *Slot = cast<AllocaInst>(Arg); 6888 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6889 "can only escape static allocas"); 6890 int FI = FuncInfo.StaticAllocaMap[Slot]; 6891 MCSymbol *FrameAllocSym = 6892 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6893 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6894 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6895 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6896 .addSym(FrameAllocSym) 6897 .addFrameIndex(FI); 6898 } 6899 6900 return; 6901 } 6902 6903 case Intrinsic::localrecover: { 6904 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6905 MachineFunction &MF = DAG.getMachineFunction(); 6906 6907 // Get the symbol that defines the frame offset. 6908 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6909 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6910 unsigned IdxVal = 6911 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6912 MCSymbol *FrameAllocSym = 6913 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6914 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6915 6916 Value *FP = I.getArgOperand(1); 6917 SDValue FPVal = getValue(FP); 6918 EVT PtrVT = FPVal.getValueType(); 6919 6920 // Create a MCSymbol for the label to avoid any target lowering 6921 // that would make this PC relative. 6922 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6923 SDValue OffsetVal = 6924 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6925 6926 // Add the offset to the FP. 6927 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6928 setValue(&I, Add); 6929 6930 return; 6931 } 6932 6933 case Intrinsic::eh_exceptionpointer: 6934 case Intrinsic::eh_exceptioncode: { 6935 // Get the exception pointer vreg, copy from it, and resize it to fit. 6936 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6937 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6938 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6939 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6940 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 6941 if (Intrinsic == Intrinsic::eh_exceptioncode) 6942 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 6943 setValue(&I, N); 6944 return; 6945 } 6946 case Intrinsic::xray_customevent: { 6947 // Here we want to make sure that the intrinsic behaves as if it has a 6948 // specific calling convention, and only for x86_64. 6949 // FIXME: Support other platforms later. 6950 const auto &Triple = DAG.getTarget().getTargetTriple(); 6951 if (Triple.getArch() != Triple::x86_64) 6952 return; 6953 6954 SmallVector<SDValue, 8> Ops; 6955 6956 // We want to say that we always want the arguments in registers. 6957 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6958 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6959 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6960 SDValue Chain = getRoot(); 6961 Ops.push_back(LogEntryVal); 6962 Ops.push_back(StrSizeVal); 6963 Ops.push_back(Chain); 6964 6965 // We need to enforce the calling convention for the callsite, so that 6966 // argument ordering is enforced correctly, and that register allocation can 6967 // see that some registers may be assumed clobbered and have to preserve 6968 // them across calls to the intrinsic. 6969 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6970 sdl, NodeTys, Ops); 6971 SDValue patchableNode = SDValue(MN, 0); 6972 DAG.setRoot(patchableNode); 6973 setValue(&I, patchableNode); 6974 return; 6975 } 6976 case Intrinsic::xray_typedevent: { 6977 // Here we want to make sure that the intrinsic behaves as if it has a 6978 // specific calling convention, and only for x86_64. 6979 // FIXME: Support other platforms later. 6980 const auto &Triple = DAG.getTarget().getTargetTriple(); 6981 if (Triple.getArch() != Triple::x86_64) 6982 return; 6983 6984 SmallVector<SDValue, 8> Ops; 6985 6986 // We want to say that we always want the arguments in registers. 6987 // It's unclear to me how manipulating the selection DAG here forces callers 6988 // to provide arguments in registers instead of on the stack. 6989 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6990 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6991 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6992 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6993 SDValue Chain = getRoot(); 6994 Ops.push_back(LogTypeId); 6995 Ops.push_back(LogEntryVal); 6996 Ops.push_back(StrSizeVal); 6997 Ops.push_back(Chain); 6998 6999 // We need to enforce the calling convention for the callsite, so that 7000 // argument ordering is enforced correctly, and that register allocation can 7001 // see that some registers may be assumed clobbered and have to preserve 7002 // them across calls to the intrinsic. 7003 MachineSDNode *MN = DAG.getMachineNode( 7004 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7005 SDValue patchableNode = SDValue(MN, 0); 7006 DAG.setRoot(patchableNode); 7007 setValue(&I, patchableNode); 7008 return; 7009 } 7010 case Intrinsic::experimental_deoptimize: 7011 LowerDeoptimizeCall(&I); 7012 return; 7013 case Intrinsic::experimental_stepvector: 7014 visitStepVector(I); 7015 return; 7016 case Intrinsic::vector_reduce_fadd: 7017 case Intrinsic::vector_reduce_fmul: 7018 case Intrinsic::vector_reduce_add: 7019 case Intrinsic::vector_reduce_mul: 7020 case Intrinsic::vector_reduce_and: 7021 case Intrinsic::vector_reduce_or: 7022 case Intrinsic::vector_reduce_xor: 7023 case Intrinsic::vector_reduce_smax: 7024 case Intrinsic::vector_reduce_smin: 7025 case Intrinsic::vector_reduce_umax: 7026 case Intrinsic::vector_reduce_umin: 7027 case Intrinsic::vector_reduce_fmax: 7028 case Intrinsic::vector_reduce_fmin: 7029 visitVectorReduce(I, Intrinsic); 7030 return; 7031 7032 case Intrinsic::icall_branch_funnel: { 7033 SmallVector<SDValue, 16> Ops; 7034 Ops.push_back(getValue(I.getArgOperand(0))); 7035 7036 int64_t Offset; 7037 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7038 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7039 if (!Base) 7040 report_fatal_error( 7041 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7042 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7043 7044 struct BranchFunnelTarget { 7045 int64_t Offset; 7046 SDValue Target; 7047 }; 7048 SmallVector<BranchFunnelTarget, 8> Targets; 7049 7050 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7051 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7052 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7053 if (ElemBase != Base) 7054 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7055 "to the same GlobalValue"); 7056 7057 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7058 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7059 if (!GA) 7060 report_fatal_error( 7061 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7062 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7063 GA->getGlobal(), sdl, Val.getValueType(), 7064 GA->getOffset())}); 7065 } 7066 llvm::sort(Targets, 7067 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7068 return T1.Offset < T2.Offset; 7069 }); 7070 7071 for (auto &T : Targets) { 7072 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7073 Ops.push_back(T.Target); 7074 } 7075 7076 Ops.push_back(DAG.getRoot()); // Chain 7077 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7078 MVT::Other, Ops), 7079 0); 7080 DAG.setRoot(N); 7081 setValue(&I, N); 7082 HasTailCall = true; 7083 return; 7084 } 7085 7086 case Intrinsic::wasm_landingpad_index: 7087 // Information this intrinsic contained has been transferred to 7088 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7089 // delete it now. 7090 return; 7091 7092 case Intrinsic::aarch64_settag: 7093 case Intrinsic::aarch64_settag_zero: { 7094 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7095 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7096 SDValue Val = TSI.EmitTargetCodeForSetTag( 7097 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7098 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7099 ZeroMemory); 7100 DAG.setRoot(Val); 7101 setValue(&I, Val); 7102 return; 7103 } 7104 case Intrinsic::ptrmask: { 7105 SDValue Ptr = getValue(I.getOperand(0)); 7106 SDValue Const = getValue(I.getOperand(1)); 7107 7108 EVT PtrVT = Ptr.getValueType(); 7109 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, 7110 DAG.getZExtOrTrunc(Const, sdl, PtrVT))); 7111 return; 7112 } 7113 case Intrinsic::get_active_lane_mask: { 7114 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7115 SDValue Index = getValue(I.getOperand(0)); 7116 EVT ElementVT = Index.getValueType(); 7117 7118 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7119 visitTargetIntrinsic(I, Intrinsic); 7120 return; 7121 } 7122 7123 SDValue TripCount = getValue(I.getOperand(1)); 7124 auto VecTy = CCVT.changeVectorElementType(ElementVT); 7125 7126 SDValue VectorIndex, VectorTripCount; 7127 if (VecTy.isScalableVector()) { 7128 VectorIndex = DAG.getSplatVector(VecTy, sdl, Index); 7129 VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount); 7130 } else { 7131 VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index); 7132 VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount); 7133 } 7134 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7135 SDValue VectorInduction = DAG.getNode( 7136 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7137 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7138 VectorTripCount, ISD::CondCode::SETULT); 7139 setValue(&I, SetCC); 7140 return; 7141 } 7142 case Intrinsic::experimental_vector_insert: { 7143 SDValue Vec = getValue(I.getOperand(0)); 7144 SDValue SubVec = getValue(I.getOperand(1)); 7145 SDValue Index = getValue(I.getOperand(2)); 7146 7147 // The intrinsic's index type is i64, but the SDNode requires an index type 7148 // suitable for the target. Convert the index as required. 7149 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7150 if (Index.getValueType() != VectorIdxTy) 7151 Index = DAG.getVectorIdxConstant( 7152 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7153 7154 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7155 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7156 Index)); 7157 return; 7158 } 7159 case Intrinsic::experimental_vector_extract: { 7160 SDValue Vec = getValue(I.getOperand(0)); 7161 SDValue Index = getValue(I.getOperand(1)); 7162 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7163 7164 // The intrinsic's index type is i64, but the SDNode requires an index type 7165 // suitable for the target. Convert the index as required. 7166 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7167 if (Index.getValueType() != VectorIdxTy) 7168 Index = DAG.getVectorIdxConstant( 7169 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7170 7171 setValue(&I, 7172 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7173 return; 7174 } 7175 case Intrinsic::experimental_vector_reverse: 7176 visitVectorReverse(I); 7177 return; 7178 case Intrinsic::experimental_vector_splice: 7179 visitVectorSplice(I); 7180 return; 7181 } 7182 } 7183 7184 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7185 const ConstrainedFPIntrinsic &FPI) { 7186 SDLoc sdl = getCurSDLoc(); 7187 7188 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7189 SmallVector<EVT, 4> ValueVTs; 7190 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7191 ValueVTs.push_back(MVT::Other); // Out chain 7192 7193 // We do not need to serialize constrained FP intrinsics against 7194 // each other or against (nonvolatile) loads, so they can be 7195 // chained like loads. 7196 SDValue Chain = DAG.getRoot(); 7197 SmallVector<SDValue, 4> Opers; 7198 Opers.push_back(Chain); 7199 if (FPI.isUnaryOp()) { 7200 Opers.push_back(getValue(FPI.getArgOperand(0))); 7201 } else if (FPI.isTernaryOp()) { 7202 Opers.push_back(getValue(FPI.getArgOperand(0))); 7203 Opers.push_back(getValue(FPI.getArgOperand(1))); 7204 Opers.push_back(getValue(FPI.getArgOperand(2))); 7205 } else { 7206 Opers.push_back(getValue(FPI.getArgOperand(0))); 7207 Opers.push_back(getValue(FPI.getArgOperand(1))); 7208 } 7209 7210 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7211 assert(Result.getNode()->getNumValues() == 2); 7212 7213 // Push node to the appropriate list so that future instructions can be 7214 // chained up correctly. 7215 SDValue OutChain = Result.getValue(1); 7216 switch (EB) { 7217 case fp::ExceptionBehavior::ebIgnore: 7218 // The only reason why ebIgnore nodes still need to be chained is that 7219 // they might depend on the current rounding mode, and therefore must 7220 // not be moved across instruction that may change that mode. 7221 LLVM_FALLTHROUGH; 7222 case fp::ExceptionBehavior::ebMayTrap: 7223 // These must not be moved across calls or instructions that may change 7224 // floating-point exception masks. 7225 PendingConstrainedFP.push_back(OutChain); 7226 break; 7227 case fp::ExceptionBehavior::ebStrict: 7228 // These must not be moved across calls or instructions that may change 7229 // floating-point exception masks or read floating-point exception flags. 7230 // In addition, they cannot be optimized out even if unused. 7231 PendingConstrainedFPStrict.push_back(OutChain); 7232 break; 7233 } 7234 }; 7235 7236 SDVTList VTs = DAG.getVTList(ValueVTs); 7237 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7238 7239 SDNodeFlags Flags; 7240 if (EB == fp::ExceptionBehavior::ebIgnore) 7241 Flags.setNoFPExcept(true); 7242 7243 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7244 Flags.copyFMF(*FPOp); 7245 7246 unsigned Opcode; 7247 switch (FPI.getIntrinsicID()) { 7248 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7249 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7250 case Intrinsic::INTRINSIC: \ 7251 Opcode = ISD::STRICT_##DAGN; \ 7252 break; 7253 #include "llvm/IR/ConstrainedOps.def" 7254 case Intrinsic::experimental_constrained_fmuladd: { 7255 Opcode = ISD::STRICT_FMA; 7256 // Break fmuladd into fmul and fadd. 7257 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7258 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7259 ValueVTs[0])) { 7260 Opers.pop_back(); 7261 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7262 pushOutChain(Mul, EB); 7263 Opcode = ISD::STRICT_FADD; 7264 Opers.clear(); 7265 Opers.push_back(Mul.getValue(1)); 7266 Opers.push_back(Mul.getValue(0)); 7267 Opers.push_back(getValue(FPI.getArgOperand(2))); 7268 } 7269 break; 7270 } 7271 } 7272 7273 // A few strict DAG nodes carry additional operands that are not 7274 // set up by the default code above. 7275 switch (Opcode) { 7276 default: break; 7277 case ISD::STRICT_FP_ROUND: 7278 Opers.push_back( 7279 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7280 break; 7281 case ISD::STRICT_FSETCC: 7282 case ISD::STRICT_FSETCCS: { 7283 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7284 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7285 if (TM.Options.NoNaNsFPMath) 7286 Condition = getFCmpCodeWithoutNaN(Condition); 7287 Opers.push_back(DAG.getCondCode(Condition)); 7288 break; 7289 } 7290 } 7291 7292 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7293 pushOutChain(Result, EB); 7294 7295 SDValue FPResult = Result.getValue(0); 7296 setValue(&FPI, FPResult); 7297 } 7298 7299 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7300 Optional<unsigned> ResOPC; 7301 switch (VPIntrin.getIntrinsicID()) { 7302 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 7303 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD; 7304 #define END_REGISTER_VP_INTRINSIC(VPID) break; 7305 #include "llvm/IR/VPIntrinsics.def" 7306 } 7307 7308 if (!ResOPC.hasValue()) 7309 llvm_unreachable( 7310 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7311 7312 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7313 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7314 if (VPIntrin.getFastMathFlags().allowReassoc()) 7315 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7316 : ISD::VP_REDUCE_FMUL; 7317 } 7318 7319 return ResOPC.getValue(); 7320 } 7321 7322 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT, 7323 SmallVector<SDValue, 7> &OpValues, 7324 bool IsGather) { 7325 SDLoc DL = getCurSDLoc(); 7326 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7327 Value *PtrOperand = VPIntrin.getArgOperand(0); 7328 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7329 if (!Alignment) 7330 Alignment = DAG.getEVTAlign(VT); 7331 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7332 const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range); 7333 SDValue LD; 7334 bool AddToChain = true; 7335 if (!IsGather) { 7336 // Do not serialize variable-length loads of constant memory with 7337 // anything. 7338 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7339 AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7340 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7341 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7342 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7343 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7344 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7345 MMO, false /*IsExpanding */); 7346 } else { 7347 unsigned AS = 7348 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7349 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7350 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7351 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7352 SDValue Base, Index, Scale; 7353 ISD::MemIndexType IndexType; 7354 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7355 this, VPIntrin.getParent()); 7356 if (!UniformBase) { 7357 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7358 Index = getValue(PtrOperand); 7359 IndexType = ISD::SIGNED_UNSCALED; 7360 Scale = 7361 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7362 } 7363 EVT IdxVT = Index.getValueType(); 7364 EVT EltTy = IdxVT.getVectorElementType(); 7365 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7366 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7367 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7368 } 7369 LD = DAG.getGatherVP( 7370 DAG.getVTList(VT, MVT::Other), VT, DL, 7371 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7372 IndexType); 7373 } 7374 if (AddToChain) 7375 PendingLoads.push_back(LD.getValue(1)); 7376 setValue(&VPIntrin, LD); 7377 } 7378 7379 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin, 7380 SmallVector<SDValue, 7> &OpValues, 7381 bool IsScatter) { 7382 SDLoc DL = getCurSDLoc(); 7383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7384 Value *PtrOperand = VPIntrin.getArgOperand(1); 7385 EVT VT = OpValues[0].getValueType(); 7386 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7387 if (!Alignment) 7388 Alignment = DAG.getEVTAlign(VT); 7389 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7390 SDValue ST; 7391 if (!IsScatter) { 7392 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7393 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7394 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7395 ST = 7396 DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], OpValues[1], 7397 OpValues[2], OpValues[3], MMO, false /* IsTruncating */); 7398 } else { 7399 unsigned AS = 7400 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7401 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7402 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7403 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7404 SDValue Base, Index, Scale; 7405 ISD::MemIndexType IndexType; 7406 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7407 this, VPIntrin.getParent()); 7408 if (!UniformBase) { 7409 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7410 Index = getValue(PtrOperand); 7411 IndexType = ISD::SIGNED_UNSCALED; 7412 Scale = 7413 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7414 } 7415 EVT IdxVT = Index.getValueType(); 7416 EVT EltTy = IdxVT.getVectorElementType(); 7417 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7418 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7419 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7420 } 7421 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7422 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7423 OpValues[2], OpValues[3]}, 7424 MMO, IndexType); 7425 } 7426 DAG.setRoot(ST); 7427 setValue(&VPIntrin, ST); 7428 } 7429 7430 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7431 const VPIntrinsic &VPIntrin) { 7432 SDLoc DL = getCurSDLoc(); 7433 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7434 7435 SmallVector<EVT, 4> ValueVTs; 7436 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7437 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7438 SDVTList VTs = DAG.getVTList(ValueVTs); 7439 7440 auto EVLParamPos = 7441 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7442 7443 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7444 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7445 "Unexpected target EVL type"); 7446 7447 // Request operands. 7448 SmallVector<SDValue, 7> OpValues; 7449 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 7450 auto Op = getValue(VPIntrin.getArgOperand(I)); 7451 if (I == EVLParamPos) 7452 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7453 OpValues.push_back(Op); 7454 } 7455 7456 switch (Opcode) { 7457 default: { 7458 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7459 setValue(&VPIntrin, Result); 7460 break; 7461 } 7462 case ISD::VP_LOAD: 7463 case ISD::VP_GATHER: 7464 visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues, 7465 Opcode == ISD::VP_GATHER); 7466 break; 7467 case ISD::VP_STORE: 7468 case ISD::VP_SCATTER: 7469 visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER); 7470 break; 7471 } 7472 } 7473 7474 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7475 const BasicBlock *EHPadBB, 7476 MCSymbol *&BeginLabel) { 7477 MachineFunction &MF = DAG.getMachineFunction(); 7478 MachineModuleInfo &MMI = MF.getMMI(); 7479 7480 // Insert a label before the invoke call to mark the try range. This can be 7481 // used to detect deletion of the invoke via the MachineModuleInfo. 7482 BeginLabel = MMI.getContext().createTempSymbol(); 7483 7484 // For SjLj, keep track of which landing pads go with which invokes 7485 // so as to maintain the ordering of pads in the LSDA. 7486 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7487 if (CallSiteIndex) { 7488 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7489 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7490 7491 // Now that the call site is handled, stop tracking it. 7492 MMI.setCurrentCallSite(0); 7493 } 7494 7495 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7496 } 7497 7498 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7499 const BasicBlock *EHPadBB, 7500 MCSymbol *BeginLabel) { 7501 assert(BeginLabel && "BeginLabel should've been set"); 7502 7503 MachineFunction &MF = DAG.getMachineFunction(); 7504 MachineModuleInfo &MMI = MF.getMMI(); 7505 7506 // Insert a label at the end of the invoke call to mark the try range. This 7507 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7508 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7509 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7510 7511 // Inform MachineModuleInfo of range. 7512 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7513 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7514 // actually use outlined funclets and their LSDA info style. 7515 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7516 assert(II && "II should've been set"); 7517 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7518 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7519 } else if (!isScopedEHPersonality(Pers)) { 7520 assert(EHPadBB); 7521 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7522 } 7523 7524 return Chain; 7525 } 7526 7527 std::pair<SDValue, SDValue> 7528 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7529 const BasicBlock *EHPadBB) { 7530 MCSymbol *BeginLabel = nullptr; 7531 7532 if (EHPadBB) { 7533 // Both PendingLoads and PendingExports must be flushed here; 7534 // this call might not return. 7535 (void)getRoot(); 7536 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7537 CLI.setChain(getRoot()); 7538 } 7539 7540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7541 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7542 7543 assert((CLI.IsTailCall || Result.second.getNode()) && 7544 "Non-null chain expected with non-tail call!"); 7545 assert((Result.second.getNode() || !Result.first.getNode()) && 7546 "Null value expected with tail call!"); 7547 7548 if (!Result.second.getNode()) { 7549 // As a special case, a null chain means that a tail call has been emitted 7550 // and the DAG root is already updated. 7551 HasTailCall = true; 7552 7553 // Since there's no actual continuation from this block, nothing can be 7554 // relying on us setting vregs for them. 7555 PendingExports.clear(); 7556 } else { 7557 DAG.setRoot(Result.second); 7558 } 7559 7560 if (EHPadBB) { 7561 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7562 BeginLabel)); 7563 } 7564 7565 return Result; 7566 } 7567 7568 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7569 bool isTailCall, 7570 bool isMustTailCall, 7571 const BasicBlock *EHPadBB) { 7572 auto &DL = DAG.getDataLayout(); 7573 FunctionType *FTy = CB.getFunctionType(); 7574 Type *RetTy = CB.getType(); 7575 7576 TargetLowering::ArgListTy Args; 7577 Args.reserve(CB.arg_size()); 7578 7579 const Value *SwiftErrorVal = nullptr; 7580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7581 7582 if (isTailCall) { 7583 // Avoid emitting tail calls in functions with the disable-tail-calls 7584 // attribute. 7585 auto *Caller = CB.getParent()->getParent(); 7586 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7587 "true" && !isMustTailCall) 7588 isTailCall = false; 7589 7590 // We can't tail call inside a function with a swifterror argument. Lowering 7591 // does not support this yet. It would have to move into the swifterror 7592 // register before the call. 7593 if (TLI.supportSwiftError() && 7594 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7595 isTailCall = false; 7596 } 7597 7598 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7599 TargetLowering::ArgListEntry Entry; 7600 const Value *V = *I; 7601 7602 // Skip empty types 7603 if (V->getType()->isEmptyTy()) 7604 continue; 7605 7606 SDValue ArgNode = getValue(V); 7607 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7608 7609 Entry.setAttributes(&CB, I - CB.arg_begin()); 7610 7611 // Use swifterror virtual register as input to the call. 7612 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7613 SwiftErrorVal = V; 7614 // We find the virtual register for the actual swifterror argument. 7615 // Instead of using the Value, we use the virtual register instead. 7616 Entry.Node = 7617 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7618 EVT(TLI.getPointerTy(DL))); 7619 } 7620 7621 Args.push_back(Entry); 7622 7623 // If we have an explicit sret argument that is an Instruction, (i.e., it 7624 // might point to function-local memory), we can't meaningfully tail-call. 7625 if (Entry.IsSRet && isa<Instruction>(V)) 7626 isTailCall = false; 7627 } 7628 7629 // If call site has a cfguardtarget operand bundle, create and add an 7630 // additional ArgListEntry. 7631 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7632 TargetLowering::ArgListEntry Entry; 7633 Value *V = Bundle->Inputs[0]; 7634 SDValue ArgNode = getValue(V); 7635 Entry.Node = ArgNode; 7636 Entry.Ty = V->getType(); 7637 Entry.IsCFGuardTarget = true; 7638 Args.push_back(Entry); 7639 } 7640 7641 // Check if target-independent constraints permit a tail call here. 7642 // Target-dependent constraints are checked within TLI->LowerCallTo. 7643 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7644 isTailCall = false; 7645 7646 // Disable tail calls if there is an swifterror argument. Targets have not 7647 // been updated to support tail calls. 7648 if (TLI.supportSwiftError() && SwiftErrorVal) 7649 isTailCall = false; 7650 7651 TargetLowering::CallLoweringInfo CLI(DAG); 7652 CLI.setDebugLoc(getCurSDLoc()) 7653 .setChain(getRoot()) 7654 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7655 .setTailCall(isTailCall) 7656 .setConvergent(CB.isConvergent()) 7657 .setIsPreallocated( 7658 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7659 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7660 7661 if (Result.first.getNode()) { 7662 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7663 setValue(&CB, Result.first); 7664 } 7665 7666 // The last element of CLI.InVals has the SDValue for swifterror return. 7667 // Here we copy it to a virtual register and update SwiftErrorMap for 7668 // book-keeping. 7669 if (SwiftErrorVal && TLI.supportSwiftError()) { 7670 // Get the last element of InVals. 7671 SDValue Src = CLI.InVals.back(); 7672 Register VReg = 7673 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7674 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7675 DAG.setRoot(CopyNode); 7676 } 7677 } 7678 7679 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7680 SelectionDAGBuilder &Builder) { 7681 // Check to see if this load can be trivially constant folded, e.g. if the 7682 // input is from a string literal. 7683 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7684 // Cast pointer to the type we really want to load. 7685 Type *LoadTy = 7686 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7687 if (LoadVT.isVector()) 7688 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7689 7690 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7691 PointerType::getUnqual(LoadTy)); 7692 7693 if (const Constant *LoadCst = 7694 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 7695 LoadTy, Builder.DAG.getDataLayout())) 7696 return Builder.getValue(LoadCst); 7697 } 7698 7699 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7700 // still constant memory, the input chain can be the entry node. 7701 SDValue Root; 7702 bool ConstantMemory = false; 7703 7704 // Do not serialize (non-volatile) loads of constant memory with anything. 7705 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7706 Root = Builder.DAG.getEntryNode(); 7707 ConstantMemory = true; 7708 } else { 7709 // Do not serialize non-volatile loads against each other. 7710 Root = Builder.DAG.getRoot(); 7711 } 7712 7713 SDValue Ptr = Builder.getValue(PtrVal); 7714 SDValue LoadVal = 7715 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7716 MachinePointerInfo(PtrVal), Align(1)); 7717 7718 if (!ConstantMemory) 7719 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7720 return LoadVal; 7721 } 7722 7723 /// Record the value for an instruction that produces an integer result, 7724 /// converting the type where necessary. 7725 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7726 SDValue Value, 7727 bool IsSigned) { 7728 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7729 I.getType(), true); 7730 if (IsSigned) 7731 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7732 else 7733 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7734 setValue(&I, Value); 7735 } 7736 7737 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7738 /// true and lower it. Otherwise return false, and it will be lowered like a 7739 /// normal call. 7740 /// The caller already checked that \p I calls the appropriate LibFunc with a 7741 /// correct prototype. 7742 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7743 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7744 const Value *Size = I.getArgOperand(2); 7745 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7746 if (CSize && CSize->getZExtValue() == 0) { 7747 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7748 I.getType(), true); 7749 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7750 return true; 7751 } 7752 7753 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7754 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7755 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7756 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7757 if (Res.first.getNode()) { 7758 processIntegerCallValue(I, Res.first, true); 7759 PendingLoads.push_back(Res.second); 7760 return true; 7761 } 7762 7763 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7764 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7765 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7766 return false; 7767 7768 // If the target has a fast compare for the given size, it will return a 7769 // preferred load type for that size. Require that the load VT is legal and 7770 // that the target supports unaligned loads of that type. Otherwise, return 7771 // INVALID. 7772 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7774 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7775 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7776 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7777 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7778 // TODO: Check alignment of src and dest ptrs. 7779 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7780 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7781 if (!TLI.isTypeLegal(LVT) || 7782 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7783 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7784 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7785 } 7786 7787 return LVT; 7788 }; 7789 7790 // This turns into unaligned loads. We only do this if the target natively 7791 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7792 // we'll only produce a small number of byte loads. 7793 MVT LoadVT; 7794 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7795 switch (NumBitsToCompare) { 7796 default: 7797 return false; 7798 case 16: 7799 LoadVT = MVT::i16; 7800 break; 7801 case 32: 7802 LoadVT = MVT::i32; 7803 break; 7804 case 64: 7805 case 128: 7806 case 256: 7807 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7808 break; 7809 } 7810 7811 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7812 return false; 7813 7814 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7815 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7816 7817 // Bitcast to a wide integer type if the loads are vectors. 7818 if (LoadVT.isVector()) { 7819 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7820 LoadL = DAG.getBitcast(CmpVT, LoadL); 7821 LoadR = DAG.getBitcast(CmpVT, LoadR); 7822 } 7823 7824 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7825 processIntegerCallValue(I, Cmp, false); 7826 return true; 7827 } 7828 7829 /// See if we can lower a memchr call into an optimized form. If so, return 7830 /// true and lower it. Otherwise return false, and it will be lowered like a 7831 /// normal call. 7832 /// The caller already checked that \p I calls the appropriate LibFunc with a 7833 /// correct prototype. 7834 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7835 const Value *Src = I.getArgOperand(0); 7836 const Value *Char = I.getArgOperand(1); 7837 const Value *Length = I.getArgOperand(2); 7838 7839 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7840 std::pair<SDValue, SDValue> Res = 7841 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7842 getValue(Src), getValue(Char), getValue(Length), 7843 MachinePointerInfo(Src)); 7844 if (Res.first.getNode()) { 7845 setValue(&I, Res.first); 7846 PendingLoads.push_back(Res.second); 7847 return true; 7848 } 7849 7850 return false; 7851 } 7852 7853 /// See if we can lower a mempcpy call into an optimized form. If so, return 7854 /// true and lower it. Otherwise return false, and it will be lowered like a 7855 /// normal call. 7856 /// The caller already checked that \p I calls the appropriate LibFunc with a 7857 /// correct prototype. 7858 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7859 SDValue Dst = getValue(I.getArgOperand(0)); 7860 SDValue Src = getValue(I.getArgOperand(1)); 7861 SDValue Size = getValue(I.getArgOperand(2)); 7862 7863 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7864 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7865 // DAG::getMemcpy needs Alignment to be defined. 7866 Align Alignment = std::min(DstAlign, SrcAlign); 7867 7868 bool isVol = false; 7869 SDLoc sdl = getCurSDLoc(); 7870 7871 // In the mempcpy context we need to pass in a false value for isTailCall 7872 // because the return pointer needs to be adjusted by the size of 7873 // the copied memory. 7874 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7875 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7876 /*isTailCall=*/false, 7877 MachinePointerInfo(I.getArgOperand(0)), 7878 MachinePointerInfo(I.getArgOperand(1)), 7879 I.getAAMetadata()); 7880 assert(MC.getNode() != nullptr && 7881 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7882 DAG.setRoot(MC); 7883 7884 // Check if Size needs to be truncated or extended. 7885 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7886 7887 // Adjust return pointer to point just past the last dst byte. 7888 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7889 Dst, Size); 7890 setValue(&I, DstPlusSize); 7891 return true; 7892 } 7893 7894 /// See if we can lower a strcpy call into an optimized form. If so, return 7895 /// true and lower it, otherwise return false and it will be lowered like a 7896 /// normal call. 7897 /// The caller already checked that \p I calls the appropriate LibFunc with a 7898 /// correct prototype. 7899 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7900 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7901 7902 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7903 std::pair<SDValue, SDValue> Res = 7904 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7905 getValue(Arg0), getValue(Arg1), 7906 MachinePointerInfo(Arg0), 7907 MachinePointerInfo(Arg1), isStpcpy); 7908 if (Res.first.getNode()) { 7909 setValue(&I, Res.first); 7910 DAG.setRoot(Res.second); 7911 return true; 7912 } 7913 7914 return false; 7915 } 7916 7917 /// See if we can lower a strcmp call into an optimized form. If so, return 7918 /// true and lower it, otherwise return false and it will be lowered like a 7919 /// normal call. 7920 /// The caller already checked that \p I calls the appropriate LibFunc with a 7921 /// correct prototype. 7922 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7923 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7924 7925 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7926 std::pair<SDValue, SDValue> Res = 7927 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7928 getValue(Arg0), getValue(Arg1), 7929 MachinePointerInfo(Arg0), 7930 MachinePointerInfo(Arg1)); 7931 if (Res.first.getNode()) { 7932 processIntegerCallValue(I, Res.first, true); 7933 PendingLoads.push_back(Res.second); 7934 return true; 7935 } 7936 7937 return false; 7938 } 7939 7940 /// See if we can lower a strlen call into an optimized form. If so, return 7941 /// true and lower it, otherwise return false and it will be lowered like a 7942 /// normal call. 7943 /// The caller already checked that \p I calls the appropriate LibFunc with a 7944 /// correct prototype. 7945 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7946 const Value *Arg0 = I.getArgOperand(0); 7947 7948 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7949 std::pair<SDValue, SDValue> Res = 7950 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7951 getValue(Arg0), MachinePointerInfo(Arg0)); 7952 if (Res.first.getNode()) { 7953 processIntegerCallValue(I, Res.first, false); 7954 PendingLoads.push_back(Res.second); 7955 return true; 7956 } 7957 7958 return false; 7959 } 7960 7961 /// See if we can lower a strnlen call into an optimized form. If so, return 7962 /// true and lower it, otherwise return false and it will be lowered like a 7963 /// normal call. 7964 /// The caller already checked that \p I calls the appropriate LibFunc with a 7965 /// correct prototype. 7966 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7967 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7968 7969 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7970 std::pair<SDValue, SDValue> Res = 7971 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7972 getValue(Arg0), getValue(Arg1), 7973 MachinePointerInfo(Arg0)); 7974 if (Res.first.getNode()) { 7975 processIntegerCallValue(I, Res.first, false); 7976 PendingLoads.push_back(Res.second); 7977 return true; 7978 } 7979 7980 return false; 7981 } 7982 7983 /// See if we can lower a unary floating-point operation into an SDNode with 7984 /// the specified Opcode. If so, return true and lower it, otherwise return 7985 /// false and it will be lowered like a normal call. 7986 /// The caller already checked that \p I calls the appropriate LibFunc with a 7987 /// correct prototype. 7988 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7989 unsigned Opcode) { 7990 // We already checked this call's prototype; verify it doesn't modify errno. 7991 if (!I.onlyReadsMemory()) 7992 return false; 7993 7994 SDNodeFlags Flags; 7995 Flags.copyFMF(cast<FPMathOperator>(I)); 7996 7997 SDValue Tmp = getValue(I.getArgOperand(0)); 7998 setValue(&I, 7999 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8000 return true; 8001 } 8002 8003 /// See if we can lower a binary floating-point operation into an SDNode with 8004 /// the specified Opcode. If so, return true and lower it. Otherwise return 8005 /// false, and it will be lowered like a normal call. 8006 /// The caller already checked that \p I calls the appropriate LibFunc with a 8007 /// correct prototype. 8008 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8009 unsigned Opcode) { 8010 // We already checked this call's prototype; verify it doesn't modify errno. 8011 if (!I.onlyReadsMemory()) 8012 return false; 8013 8014 SDNodeFlags Flags; 8015 Flags.copyFMF(cast<FPMathOperator>(I)); 8016 8017 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8018 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8019 EVT VT = Tmp0.getValueType(); 8020 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8021 return true; 8022 } 8023 8024 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8025 // Handle inline assembly differently. 8026 if (I.isInlineAsm()) { 8027 visitInlineAsm(I); 8028 return; 8029 } 8030 8031 if (Function *F = I.getCalledFunction()) { 8032 diagnoseDontCall(I); 8033 8034 if (F->isDeclaration()) { 8035 // Is this an LLVM intrinsic or a target-specific intrinsic? 8036 unsigned IID = F->getIntrinsicID(); 8037 if (!IID) 8038 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8039 IID = II->getIntrinsicID(F); 8040 8041 if (IID) { 8042 visitIntrinsicCall(I, IID); 8043 return; 8044 } 8045 } 8046 8047 // Check for well-known libc/libm calls. If the function is internal, it 8048 // can't be a library call. Don't do the check if marked as nobuiltin for 8049 // some reason or the call site requires strict floating point semantics. 8050 LibFunc Func; 8051 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8052 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8053 LibInfo->hasOptimizedCodeGen(Func)) { 8054 switch (Func) { 8055 default: break; 8056 case LibFunc_bcmp: 8057 if (visitMemCmpBCmpCall(I)) 8058 return; 8059 break; 8060 case LibFunc_copysign: 8061 case LibFunc_copysignf: 8062 case LibFunc_copysignl: 8063 // We already checked this call's prototype; verify it doesn't modify 8064 // errno. 8065 if (I.onlyReadsMemory()) { 8066 SDValue LHS = getValue(I.getArgOperand(0)); 8067 SDValue RHS = getValue(I.getArgOperand(1)); 8068 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8069 LHS.getValueType(), LHS, RHS)); 8070 return; 8071 } 8072 break; 8073 case LibFunc_fabs: 8074 case LibFunc_fabsf: 8075 case LibFunc_fabsl: 8076 if (visitUnaryFloatCall(I, ISD::FABS)) 8077 return; 8078 break; 8079 case LibFunc_fmin: 8080 case LibFunc_fminf: 8081 case LibFunc_fminl: 8082 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8083 return; 8084 break; 8085 case LibFunc_fmax: 8086 case LibFunc_fmaxf: 8087 case LibFunc_fmaxl: 8088 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8089 return; 8090 break; 8091 case LibFunc_sin: 8092 case LibFunc_sinf: 8093 case LibFunc_sinl: 8094 if (visitUnaryFloatCall(I, ISD::FSIN)) 8095 return; 8096 break; 8097 case LibFunc_cos: 8098 case LibFunc_cosf: 8099 case LibFunc_cosl: 8100 if (visitUnaryFloatCall(I, ISD::FCOS)) 8101 return; 8102 break; 8103 case LibFunc_sqrt: 8104 case LibFunc_sqrtf: 8105 case LibFunc_sqrtl: 8106 case LibFunc_sqrt_finite: 8107 case LibFunc_sqrtf_finite: 8108 case LibFunc_sqrtl_finite: 8109 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8110 return; 8111 break; 8112 case LibFunc_floor: 8113 case LibFunc_floorf: 8114 case LibFunc_floorl: 8115 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8116 return; 8117 break; 8118 case LibFunc_nearbyint: 8119 case LibFunc_nearbyintf: 8120 case LibFunc_nearbyintl: 8121 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8122 return; 8123 break; 8124 case LibFunc_ceil: 8125 case LibFunc_ceilf: 8126 case LibFunc_ceill: 8127 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8128 return; 8129 break; 8130 case LibFunc_rint: 8131 case LibFunc_rintf: 8132 case LibFunc_rintl: 8133 if (visitUnaryFloatCall(I, ISD::FRINT)) 8134 return; 8135 break; 8136 case LibFunc_round: 8137 case LibFunc_roundf: 8138 case LibFunc_roundl: 8139 if (visitUnaryFloatCall(I, ISD::FROUND)) 8140 return; 8141 break; 8142 case LibFunc_trunc: 8143 case LibFunc_truncf: 8144 case LibFunc_truncl: 8145 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8146 return; 8147 break; 8148 case LibFunc_log2: 8149 case LibFunc_log2f: 8150 case LibFunc_log2l: 8151 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8152 return; 8153 break; 8154 case LibFunc_exp2: 8155 case LibFunc_exp2f: 8156 case LibFunc_exp2l: 8157 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8158 return; 8159 break; 8160 case LibFunc_memcmp: 8161 if (visitMemCmpBCmpCall(I)) 8162 return; 8163 break; 8164 case LibFunc_mempcpy: 8165 if (visitMemPCpyCall(I)) 8166 return; 8167 break; 8168 case LibFunc_memchr: 8169 if (visitMemChrCall(I)) 8170 return; 8171 break; 8172 case LibFunc_strcpy: 8173 if (visitStrCpyCall(I, false)) 8174 return; 8175 break; 8176 case LibFunc_stpcpy: 8177 if (visitStrCpyCall(I, true)) 8178 return; 8179 break; 8180 case LibFunc_strcmp: 8181 if (visitStrCmpCall(I)) 8182 return; 8183 break; 8184 case LibFunc_strlen: 8185 if (visitStrLenCall(I)) 8186 return; 8187 break; 8188 case LibFunc_strnlen: 8189 if (visitStrNLenCall(I)) 8190 return; 8191 break; 8192 } 8193 } 8194 } 8195 8196 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8197 // have to do anything here to lower funclet bundles. 8198 // CFGuardTarget bundles are lowered in LowerCallTo. 8199 assert(!I.hasOperandBundlesOtherThan( 8200 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8201 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8202 LLVMContext::OB_clang_arc_attachedcall}) && 8203 "Cannot lower calls with arbitrary operand bundles!"); 8204 8205 SDValue Callee = getValue(I.getCalledOperand()); 8206 8207 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8208 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8209 else 8210 // Check if we can potentially perform a tail call. More detailed checking 8211 // is be done within LowerCallTo, after more information about the call is 8212 // known. 8213 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8214 } 8215 8216 namespace { 8217 8218 /// AsmOperandInfo - This contains information for each constraint that we are 8219 /// lowering. 8220 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8221 public: 8222 /// CallOperand - If this is the result output operand or a clobber 8223 /// this is null, otherwise it is the incoming operand to the CallInst. 8224 /// This gets modified as the asm is processed. 8225 SDValue CallOperand; 8226 8227 /// AssignedRegs - If this is a register or register class operand, this 8228 /// contains the set of register corresponding to the operand. 8229 RegsForValue AssignedRegs; 8230 8231 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8232 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8233 } 8234 8235 /// Whether or not this operand accesses memory 8236 bool hasMemory(const TargetLowering &TLI) const { 8237 // Indirect operand accesses access memory. 8238 if (isIndirect) 8239 return true; 8240 8241 for (const auto &Code : Codes) 8242 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8243 return true; 8244 8245 return false; 8246 } 8247 8248 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8249 /// corresponds to. If there is no Value* for this operand, it returns 8250 /// MVT::Other. 8251 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8252 const DataLayout &DL, 8253 llvm::Type *ParamElemType) const { 8254 if (!CallOperandVal) return MVT::Other; 8255 8256 if (isa<BasicBlock>(CallOperandVal)) 8257 return TLI.getProgramPointerTy(DL); 8258 8259 llvm::Type *OpTy = CallOperandVal->getType(); 8260 8261 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8262 // If this is an indirect operand, the operand is a pointer to the 8263 // accessed type. 8264 if (isIndirect) { 8265 OpTy = ParamElemType; 8266 assert(OpTy && "Indirect opernad must have elementtype attribute"); 8267 } 8268 8269 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8270 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8271 if (STy->getNumElements() == 1) 8272 OpTy = STy->getElementType(0); 8273 8274 // If OpTy is not a single value, it may be a struct/union that we 8275 // can tile with integers. 8276 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8277 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8278 switch (BitSize) { 8279 default: break; 8280 case 1: 8281 case 8: 8282 case 16: 8283 case 32: 8284 case 64: 8285 case 128: 8286 OpTy = IntegerType::get(Context, BitSize); 8287 break; 8288 } 8289 } 8290 8291 return TLI.getAsmOperandValueType(DL, OpTy, true); 8292 } 8293 }; 8294 8295 8296 } // end anonymous namespace 8297 8298 /// Make sure that the output operand \p OpInfo and its corresponding input 8299 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8300 /// out). 8301 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8302 SDISelAsmOperandInfo &MatchingOpInfo, 8303 SelectionDAG &DAG) { 8304 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8305 return; 8306 8307 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8308 const auto &TLI = DAG.getTargetLoweringInfo(); 8309 8310 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8311 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8312 OpInfo.ConstraintVT); 8313 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8314 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8315 MatchingOpInfo.ConstraintVT); 8316 if ((OpInfo.ConstraintVT.isInteger() != 8317 MatchingOpInfo.ConstraintVT.isInteger()) || 8318 (MatchRC.second != InputRC.second)) { 8319 // FIXME: error out in a more elegant fashion 8320 report_fatal_error("Unsupported asm: input constraint" 8321 " with a matching output constraint of" 8322 " incompatible type!"); 8323 } 8324 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8325 } 8326 8327 /// Get a direct memory input to behave well as an indirect operand. 8328 /// This may introduce stores, hence the need for a \p Chain. 8329 /// \return The (possibly updated) chain. 8330 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8331 SDISelAsmOperandInfo &OpInfo, 8332 SelectionDAG &DAG) { 8333 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8334 8335 // If we don't have an indirect input, put it in the constpool if we can, 8336 // otherwise spill it to a stack slot. 8337 // TODO: This isn't quite right. We need to handle these according to 8338 // the addressing mode that the constraint wants. Also, this may take 8339 // an additional register for the computation and we don't want that 8340 // either. 8341 8342 // If the operand is a float, integer, or vector constant, spill to a 8343 // constant pool entry to get its address. 8344 const Value *OpVal = OpInfo.CallOperandVal; 8345 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8346 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8347 OpInfo.CallOperand = DAG.getConstantPool( 8348 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8349 return Chain; 8350 } 8351 8352 // Otherwise, create a stack slot and emit a store to it before the asm. 8353 Type *Ty = OpVal->getType(); 8354 auto &DL = DAG.getDataLayout(); 8355 uint64_t TySize = DL.getTypeAllocSize(Ty); 8356 MachineFunction &MF = DAG.getMachineFunction(); 8357 int SSFI = MF.getFrameInfo().CreateStackObject( 8358 TySize, DL.getPrefTypeAlign(Ty), false); 8359 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8360 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8361 MachinePointerInfo::getFixedStack(MF, SSFI), 8362 TLI.getMemValueType(DL, Ty)); 8363 OpInfo.CallOperand = StackSlot; 8364 8365 return Chain; 8366 } 8367 8368 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8369 /// specified operand. We prefer to assign virtual registers, to allow the 8370 /// register allocator to handle the assignment process. However, if the asm 8371 /// uses features that we can't model on machineinstrs, we have SDISel do the 8372 /// allocation. This produces generally horrible, but correct, code. 8373 /// 8374 /// OpInfo describes the operand 8375 /// RefOpInfo describes the matching operand if any, the operand otherwise 8376 static llvm::Optional<unsigned> 8377 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8378 SDISelAsmOperandInfo &OpInfo, 8379 SDISelAsmOperandInfo &RefOpInfo) { 8380 LLVMContext &Context = *DAG.getContext(); 8381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8382 8383 MachineFunction &MF = DAG.getMachineFunction(); 8384 SmallVector<unsigned, 4> Regs; 8385 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8386 8387 // No work to do for memory operations. 8388 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8389 return None; 8390 8391 // If this is a constraint for a single physreg, or a constraint for a 8392 // register class, find it. 8393 unsigned AssignedReg; 8394 const TargetRegisterClass *RC; 8395 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8396 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8397 // RC is unset only on failure. Return immediately. 8398 if (!RC) 8399 return None; 8400 8401 // Get the actual register value type. This is important, because the user 8402 // may have asked for (e.g.) the AX register in i32 type. We need to 8403 // remember that AX is actually i16 to get the right extension. 8404 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8405 8406 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8407 // If this is an FP operand in an integer register (or visa versa), or more 8408 // generally if the operand value disagrees with the register class we plan 8409 // to stick it in, fix the operand type. 8410 // 8411 // If this is an input value, the bitcast to the new type is done now. 8412 // Bitcast for output value is done at the end of visitInlineAsm(). 8413 if ((OpInfo.Type == InlineAsm::isOutput || 8414 OpInfo.Type == InlineAsm::isInput) && 8415 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8416 // Try to convert to the first EVT that the reg class contains. If the 8417 // types are identical size, use a bitcast to convert (e.g. two differing 8418 // vector types). Note: output bitcast is done at the end of 8419 // visitInlineAsm(). 8420 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8421 // Exclude indirect inputs while they are unsupported because the code 8422 // to perform the load is missing and thus OpInfo.CallOperand still 8423 // refers to the input address rather than the pointed-to value. 8424 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8425 OpInfo.CallOperand = 8426 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8427 OpInfo.ConstraintVT = RegVT; 8428 // If the operand is an FP value and we want it in integer registers, 8429 // use the corresponding integer type. This turns an f64 value into 8430 // i64, which can be passed with two i32 values on a 32-bit machine. 8431 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8432 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8433 if (OpInfo.Type == InlineAsm::isInput) 8434 OpInfo.CallOperand = 8435 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8436 OpInfo.ConstraintVT = VT; 8437 } 8438 } 8439 } 8440 8441 // No need to allocate a matching input constraint since the constraint it's 8442 // matching to has already been allocated. 8443 if (OpInfo.isMatchingInputConstraint()) 8444 return None; 8445 8446 EVT ValueVT = OpInfo.ConstraintVT; 8447 if (OpInfo.ConstraintVT == MVT::Other) 8448 ValueVT = RegVT; 8449 8450 // Initialize NumRegs. 8451 unsigned NumRegs = 1; 8452 if (OpInfo.ConstraintVT != MVT::Other) 8453 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8454 8455 // If this is a constraint for a specific physical register, like {r17}, 8456 // assign it now. 8457 8458 // If this associated to a specific register, initialize iterator to correct 8459 // place. If virtual, make sure we have enough registers 8460 8461 // Initialize iterator if necessary 8462 TargetRegisterClass::iterator I = RC->begin(); 8463 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8464 8465 // Do not check for single registers. 8466 if (AssignedReg) { 8467 I = std::find(I, RC->end(), AssignedReg); 8468 if (I == RC->end()) { 8469 // RC does not contain the selected register, which indicates a 8470 // mismatch between the register and the required type/bitwidth. 8471 return {AssignedReg}; 8472 } 8473 } 8474 8475 for (; NumRegs; --NumRegs, ++I) { 8476 assert(I != RC->end() && "Ran out of registers to allocate!"); 8477 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8478 Regs.push_back(R); 8479 } 8480 8481 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8482 return None; 8483 } 8484 8485 static unsigned 8486 findMatchingInlineAsmOperand(unsigned OperandNo, 8487 const std::vector<SDValue> &AsmNodeOperands) { 8488 // Scan until we find the definition we already emitted of this operand. 8489 unsigned CurOp = InlineAsm::Op_FirstOperand; 8490 for (; OperandNo; --OperandNo) { 8491 // Advance to the next operand. 8492 unsigned OpFlag = 8493 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8494 assert((InlineAsm::isRegDefKind(OpFlag) || 8495 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8496 InlineAsm::isMemKind(OpFlag)) && 8497 "Skipped past definitions?"); 8498 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8499 } 8500 return CurOp; 8501 } 8502 8503 namespace { 8504 8505 class ExtraFlags { 8506 unsigned Flags = 0; 8507 8508 public: 8509 explicit ExtraFlags(const CallBase &Call) { 8510 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8511 if (IA->hasSideEffects()) 8512 Flags |= InlineAsm::Extra_HasSideEffects; 8513 if (IA->isAlignStack()) 8514 Flags |= InlineAsm::Extra_IsAlignStack; 8515 if (Call.isConvergent()) 8516 Flags |= InlineAsm::Extra_IsConvergent; 8517 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8518 } 8519 8520 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8521 // Ideally, we would only check against memory constraints. However, the 8522 // meaning of an Other constraint can be target-specific and we can't easily 8523 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8524 // for Other constraints as well. 8525 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8526 OpInfo.ConstraintType == TargetLowering::C_Other) { 8527 if (OpInfo.Type == InlineAsm::isInput) 8528 Flags |= InlineAsm::Extra_MayLoad; 8529 else if (OpInfo.Type == InlineAsm::isOutput) 8530 Flags |= InlineAsm::Extra_MayStore; 8531 else if (OpInfo.Type == InlineAsm::isClobber) 8532 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8533 } 8534 } 8535 8536 unsigned get() const { return Flags; } 8537 }; 8538 8539 } // end anonymous namespace 8540 8541 /// visitInlineAsm - Handle a call to an InlineAsm object. 8542 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8543 const BasicBlock *EHPadBB) { 8544 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8545 8546 /// ConstraintOperands - Information about all of the constraints. 8547 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8548 8549 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8550 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8551 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8552 8553 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8554 // AsmDialect, MayLoad, MayStore). 8555 bool HasSideEffect = IA->hasSideEffects(); 8556 ExtraFlags ExtraInfo(Call); 8557 8558 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8559 unsigned ResNo = 0; // ResNo - The result number of the next output. 8560 for (auto &T : TargetConstraints) { 8561 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8562 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8563 8564 // Compute the value type for each operand. 8565 if (OpInfo.hasArg()) { 8566 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 8567 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8568 Type *ParamElemTy = Call.getAttributes().getParamElementType(ArgNo); 8569 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8570 DAG.getDataLayout(), ParamElemTy); 8571 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8572 ArgNo++; 8573 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8574 // The return value of the call is this value. As such, there is no 8575 // corresponding argument. 8576 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8577 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8578 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8579 DAG.getDataLayout(), STy->getElementType(ResNo)); 8580 } else { 8581 assert(ResNo == 0 && "Asm only has one result!"); 8582 OpInfo.ConstraintVT = TLI.getAsmOperandValueType( 8583 DAG.getDataLayout(), Call.getType()).getSimpleVT(); 8584 } 8585 ++ResNo; 8586 } else { 8587 OpInfo.ConstraintVT = MVT::Other; 8588 } 8589 8590 if (!HasSideEffect) 8591 HasSideEffect = OpInfo.hasMemory(TLI); 8592 8593 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8594 // FIXME: Could we compute this on OpInfo rather than T? 8595 8596 // Compute the constraint code and ConstraintType to use. 8597 TLI.ComputeConstraintToUse(T, SDValue()); 8598 8599 if (T.ConstraintType == TargetLowering::C_Immediate && 8600 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8601 // We've delayed emitting a diagnostic like the "n" constraint because 8602 // inlining could cause an integer showing up. 8603 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8604 "' expects an integer constant " 8605 "expression"); 8606 8607 ExtraInfo.update(T); 8608 } 8609 8610 // We won't need to flush pending loads if this asm doesn't touch 8611 // memory and is nonvolatile. 8612 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8613 8614 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8615 if (EmitEHLabels) { 8616 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8617 } 8618 bool IsCallBr = isa<CallBrInst>(Call); 8619 8620 if (IsCallBr || EmitEHLabels) { 8621 // If this is a callbr or invoke we need to flush pending exports since 8622 // inlineasm_br and invoke are terminators. 8623 // We need to do this before nodes are glued to the inlineasm_br node. 8624 Chain = getControlRoot(); 8625 } 8626 8627 MCSymbol *BeginLabel = nullptr; 8628 if (EmitEHLabels) { 8629 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8630 } 8631 8632 // Second pass over the constraints: compute which constraint option to use. 8633 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8634 // If this is an output operand with a matching input operand, look up the 8635 // matching input. If their types mismatch, e.g. one is an integer, the 8636 // other is floating point, or their sizes are different, flag it as an 8637 // error. 8638 if (OpInfo.hasMatchingInput()) { 8639 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8640 patchMatchingInput(OpInfo, Input, DAG); 8641 } 8642 8643 // Compute the constraint code and ConstraintType to use. 8644 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8645 8646 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8647 OpInfo.Type == InlineAsm::isClobber) 8648 continue; 8649 8650 // If this is a memory input, and if the operand is not indirect, do what we 8651 // need to provide an address for the memory input. 8652 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8653 !OpInfo.isIndirect) { 8654 assert((OpInfo.isMultipleAlternative || 8655 (OpInfo.Type == InlineAsm::isInput)) && 8656 "Can only indirectify direct input operands!"); 8657 8658 // Memory operands really want the address of the value. 8659 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8660 8661 // There is no longer a Value* corresponding to this operand. 8662 OpInfo.CallOperandVal = nullptr; 8663 8664 // It is now an indirect operand. 8665 OpInfo.isIndirect = true; 8666 } 8667 8668 } 8669 8670 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8671 std::vector<SDValue> AsmNodeOperands; 8672 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8673 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8674 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8675 8676 // If we have a !srcloc metadata node associated with it, we want to attach 8677 // this to the ultimately generated inline asm machineinstr. To do this, we 8678 // pass in the third operand as this (potentially null) inline asm MDNode. 8679 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8680 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8681 8682 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8683 // bits as operand 3. 8684 AsmNodeOperands.push_back(DAG.getTargetConstant( 8685 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8686 8687 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8688 // this, assign virtual and physical registers for inputs and otput. 8689 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8690 // Assign Registers. 8691 SDISelAsmOperandInfo &RefOpInfo = 8692 OpInfo.isMatchingInputConstraint() 8693 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8694 : OpInfo; 8695 const auto RegError = 8696 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8697 if (RegError.hasValue()) { 8698 const MachineFunction &MF = DAG.getMachineFunction(); 8699 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8700 const char *RegName = TRI.getName(RegError.getValue()); 8701 emitInlineAsmError(Call, "register '" + Twine(RegName) + 8702 "' allocated for constraint '" + 8703 Twine(OpInfo.ConstraintCode) + 8704 "' does not match required type"); 8705 return; 8706 } 8707 8708 auto DetectWriteToReservedRegister = [&]() { 8709 const MachineFunction &MF = DAG.getMachineFunction(); 8710 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8711 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8712 if (Register::isPhysicalRegister(Reg) && 8713 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8714 const char *RegName = TRI.getName(Reg); 8715 emitInlineAsmError(Call, "write to reserved register '" + 8716 Twine(RegName) + "'"); 8717 return true; 8718 } 8719 } 8720 return false; 8721 }; 8722 8723 switch (OpInfo.Type) { 8724 case InlineAsm::isOutput: 8725 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8726 unsigned ConstraintID = 8727 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8728 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8729 "Failed to convert memory constraint code to constraint id."); 8730 8731 // Add information to the INLINEASM node to know about this output. 8732 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8733 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8734 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8735 MVT::i32)); 8736 AsmNodeOperands.push_back(OpInfo.CallOperand); 8737 } else { 8738 // Otherwise, this outputs to a register (directly for C_Register / 8739 // C_RegisterClass, and a target-defined fashion for 8740 // C_Immediate/C_Other). Find a register that we can use. 8741 if (OpInfo.AssignedRegs.Regs.empty()) { 8742 emitInlineAsmError( 8743 Call, "couldn't allocate output register for constraint '" + 8744 Twine(OpInfo.ConstraintCode) + "'"); 8745 return; 8746 } 8747 8748 if (DetectWriteToReservedRegister()) 8749 return; 8750 8751 // Add information to the INLINEASM node to know that this register is 8752 // set. 8753 OpInfo.AssignedRegs.AddInlineAsmOperands( 8754 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8755 : InlineAsm::Kind_RegDef, 8756 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8757 } 8758 break; 8759 8760 case InlineAsm::isInput: { 8761 SDValue InOperandVal = OpInfo.CallOperand; 8762 8763 if (OpInfo.isMatchingInputConstraint()) { 8764 // If this is required to match an output register we have already set, 8765 // just use its register. 8766 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8767 AsmNodeOperands); 8768 unsigned OpFlag = 8769 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8770 if (InlineAsm::isRegDefKind(OpFlag) || 8771 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8772 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8773 if (OpInfo.isIndirect) { 8774 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8775 emitInlineAsmError(Call, "inline asm not supported yet: " 8776 "don't know how to handle tied " 8777 "indirect register inputs"); 8778 return; 8779 } 8780 8781 SmallVector<unsigned, 4> Regs; 8782 MachineFunction &MF = DAG.getMachineFunction(); 8783 MachineRegisterInfo &MRI = MF.getRegInfo(); 8784 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8785 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8786 Register TiedReg = R->getReg(); 8787 MVT RegVT = R->getSimpleValueType(0); 8788 const TargetRegisterClass *RC = 8789 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 8790 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 8791 : TRI.getMinimalPhysRegClass(TiedReg); 8792 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8793 for (unsigned i = 0; i != NumRegs; ++i) 8794 Regs.push_back(MRI.createVirtualRegister(RC)); 8795 8796 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8797 8798 SDLoc dl = getCurSDLoc(); 8799 // Use the produced MatchedRegs object to 8800 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8801 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8802 true, OpInfo.getMatchedOperand(), dl, 8803 DAG, AsmNodeOperands); 8804 break; 8805 } 8806 8807 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8808 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8809 "Unexpected number of operands"); 8810 // Add information to the INLINEASM node to know about this input. 8811 // See InlineAsm.h isUseOperandTiedToDef. 8812 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8813 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8814 OpInfo.getMatchedOperand()); 8815 AsmNodeOperands.push_back(DAG.getTargetConstant( 8816 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8817 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8818 break; 8819 } 8820 8821 // Treat indirect 'X' constraint as memory. 8822 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8823 OpInfo.isIndirect) 8824 OpInfo.ConstraintType = TargetLowering::C_Memory; 8825 8826 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8827 OpInfo.ConstraintType == TargetLowering::C_Other) { 8828 std::vector<SDValue> Ops; 8829 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8830 Ops, DAG); 8831 if (Ops.empty()) { 8832 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8833 if (isa<ConstantSDNode>(InOperandVal)) { 8834 emitInlineAsmError(Call, "value out of range for constraint '" + 8835 Twine(OpInfo.ConstraintCode) + "'"); 8836 return; 8837 } 8838 8839 emitInlineAsmError(Call, 8840 "invalid operand for inline asm constraint '" + 8841 Twine(OpInfo.ConstraintCode) + "'"); 8842 return; 8843 } 8844 8845 // Add information to the INLINEASM node to know about this input. 8846 unsigned ResOpType = 8847 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8848 AsmNodeOperands.push_back(DAG.getTargetConstant( 8849 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8850 llvm::append_range(AsmNodeOperands, Ops); 8851 break; 8852 } 8853 8854 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8855 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8856 assert(InOperandVal.getValueType() == 8857 TLI.getPointerTy(DAG.getDataLayout()) && 8858 "Memory operands expect pointer values"); 8859 8860 unsigned ConstraintID = 8861 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8862 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8863 "Failed to convert memory constraint code to constraint id."); 8864 8865 // Add information to the INLINEASM node to know about this input. 8866 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8867 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8868 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8869 getCurSDLoc(), 8870 MVT::i32)); 8871 AsmNodeOperands.push_back(InOperandVal); 8872 break; 8873 } 8874 8875 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8876 OpInfo.ConstraintType == TargetLowering::C_Register) && 8877 "Unknown constraint type!"); 8878 8879 // TODO: Support this. 8880 if (OpInfo.isIndirect) { 8881 emitInlineAsmError( 8882 Call, "Don't know how to handle indirect register inputs yet " 8883 "for constraint '" + 8884 Twine(OpInfo.ConstraintCode) + "'"); 8885 return; 8886 } 8887 8888 // Copy the input into the appropriate registers. 8889 if (OpInfo.AssignedRegs.Regs.empty()) { 8890 emitInlineAsmError(Call, 8891 "couldn't allocate input reg for constraint '" + 8892 Twine(OpInfo.ConstraintCode) + "'"); 8893 return; 8894 } 8895 8896 if (DetectWriteToReservedRegister()) 8897 return; 8898 8899 SDLoc dl = getCurSDLoc(); 8900 8901 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8902 &Call); 8903 8904 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8905 dl, DAG, AsmNodeOperands); 8906 break; 8907 } 8908 case InlineAsm::isClobber: 8909 // Add the clobbered value to the operand list, so that the register 8910 // allocator is aware that the physreg got clobbered. 8911 if (!OpInfo.AssignedRegs.Regs.empty()) 8912 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8913 false, 0, getCurSDLoc(), DAG, 8914 AsmNodeOperands); 8915 break; 8916 } 8917 } 8918 8919 // Finish up input operands. Set the input chain and add the flag last. 8920 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8921 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8922 8923 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8924 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8925 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8926 Flag = Chain.getValue(1); 8927 8928 // Do additional work to generate outputs. 8929 8930 SmallVector<EVT, 1> ResultVTs; 8931 SmallVector<SDValue, 1> ResultValues; 8932 SmallVector<SDValue, 8> OutChains; 8933 8934 llvm::Type *CallResultType = Call.getType(); 8935 ArrayRef<Type *> ResultTypes; 8936 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8937 ResultTypes = StructResult->elements(); 8938 else if (!CallResultType->isVoidTy()) 8939 ResultTypes = makeArrayRef(CallResultType); 8940 8941 auto CurResultType = ResultTypes.begin(); 8942 auto handleRegAssign = [&](SDValue V) { 8943 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8944 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8945 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8946 ++CurResultType; 8947 // If the type of the inline asm call site return value is different but has 8948 // same size as the type of the asm output bitcast it. One example of this 8949 // is for vectors with different width / number of elements. This can 8950 // happen for register classes that can contain multiple different value 8951 // types. The preg or vreg allocated may not have the same VT as was 8952 // expected. 8953 // 8954 // This can also happen for a return value that disagrees with the register 8955 // class it is put in, eg. a double in a general-purpose register on a 8956 // 32-bit machine. 8957 if (ResultVT != V.getValueType() && 8958 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8959 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8960 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8961 V.getValueType().isInteger()) { 8962 // If a result value was tied to an input value, the computed result 8963 // may have a wider width than the expected result. Extract the 8964 // relevant portion. 8965 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8966 } 8967 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8968 ResultVTs.push_back(ResultVT); 8969 ResultValues.push_back(V); 8970 }; 8971 8972 // Deal with output operands. 8973 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8974 if (OpInfo.Type == InlineAsm::isOutput) { 8975 SDValue Val; 8976 // Skip trivial output operands. 8977 if (OpInfo.AssignedRegs.Regs.empty()) 8978 continue; 8979 8980 switch (OpInfo.ConstraintType) { 8981 case TargetLowering::C_Register: 8982 case TargetLowering::C_RegisterClass: 8983 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8984 Chain, &Flag, &Call); 8985 break; 8986 case TargetLowering::C_Immediate: 8987 case TargetLowering::C_Other: 8988 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8989 OpInfo, DAG); 8990 break; 8991 case TargetLowering::C_Memory: 8992 break; // Already handled. 8993 case TargetLowering::C_Unknown: 8994 assert(false && "Unexpected unknown constraint"); 8995 } 8996 8997 // Indirect output manifest as stores. Record output chains. 8998 if (OpInfo.isIndirect) { 8999 const Value *Ptr = OpInfo.CallOperandVal; 9000 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9001 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9002 MachinePointerInfo(Ptr)); 9003 OutChains.push_back(Store); 9004 } else { 9005 // generate CopyFromRegs to associated registers. 9006 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9007 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9008 for (const SDValue &V : Val->op_values()) 9009 handleRegAssign(V); 9010 } else 9011 handleRegAssign(Val); 9012 } 9013 } 9014 } 9015 9016 // Set results. 9017 if (!ResultValues.empty()) { 9018 assert(CurResultType == ResultTypes.end() && 9019 "Mismatch in number of ResultTypes"); 9020 assert(ResultValues.size() == ResultTypes.size() && 9021 "Mismatch in number of output operands in asm result"); 9022 9023 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9024 DAG.getVTList(ResultVTs), ResultValues); 9025 setValue(&Call, V); 9026 } 9027 9028 // Collect store chains. 9029 if (!OutChains.empty()) 9030 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9031 9032 if (EmitEHLabels) { 9033 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9034 } 9035 9036 // Only Update Root if inline assembly has a memory effect. 9037 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9038 EmitEHLabels) 9039 DAG.setRoot(Chain); 9040 } 9041 9042 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9043 const Twine &Message) { 9044 LLVMContext &Ctx = *DAG.getContext(); 9045 Ctx.emitError(&Call, Message); 9046 9047 // Make sure we leave the DAG in a valid state 9048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9049 SmallVector<EVT, 1> ValueVTs; 9050 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9051 9052 if (ValueVTs.empty()) 9053 return; 9054 9055 SmallVector<SDValue, 1> Ops; 9056 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9057 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9058 9059 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9060 } 9061 9062 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9063 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9064 MVT::Other, getRoot(), 9065 getValue(I.getArgOperand(0)), 9066 DAG.getSrcValue(I.getArgOperand(0)))); 9067 } 9068 9069 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9070 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9071 const DataLayout &DL = DAG.getDataLayout(); 9072 SDValue V = DAG.getVAArg( 9073 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9074 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9075 DL.getABITypeAlign(I.getType()).value()); 9076 DAG.setRoot(V.getValue(1)); 9077 9078 if (I.getType()->isPointerTy()) 9079 V = DAG.getPtrExtOrTrunc( 9080 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9081 setValue(&I, V); 9082 } 9083 9084 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9085 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9086 MVT::Other, getRoot(), 9087 getValue(I.getArgOperand(0)), 9088 DAG.getSrcValue(I.getArgOperand(0)))); 9089 } 9090 9091 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9092 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9093 MVT::Other, getRoot(), 9094 getValue(I.getArgOperand(0)), 9095 getValue(I.getArgOperand(1)), 9096 DAG.getSrcValue(I.getArgOperand(0)), 9097 DAG.getSrcValue(I.getArgOperand(1)))); 9098 } 9099 9100 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9101 const Instruction &I, 9102 SDValue Op) { 9103 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 9104 if (!Range) 9105 return Op; 9106 9107 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9108 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9109 return Op; 9110 9111 APInt Lo = CR.getUnsignedMin(); 9112 if (!Lo.isMinValue()) 9113 return Op; 9114 9115 APInt Hi = CR.getUnsignedMax(); 9116 unsigned Bits = std::max(Hi.getActiveBits(), 9117 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9118 9119 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9120 9121 SDLoc SL = getCurSDLoc(); 9122 9123 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9124 DAG.getValueType(SmallVT)); 9125 unsigned NumVals = Op.getNode()->getNumValues(); 9126 if (NumVals == 1) 9127 return ZExt; 9128 9129 SmallVector<SDValue, 4> Ops; 9130 9131 Ops.push_back(ZExt); 9132 for (unsigned I = 1; I != NumVals; ++I) 9133 Ops.push_back(Op.getValue(I)); 9134 9135 return DAG.getMergeValues(Ops, SL); 9136 } 9137 9138 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9139 /// the call being lowered. 9140 /// 9141 /// This is a helper for lowering intrinsics that follow a target calling 9142 /// convention or require stack pointer adjustment. Only a subset of the 9143 /// intrinsic's operands need to participate in the calling convention. 9144 void SelectionDAGBuilder::populateCallLoweringInfo( 9145 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9146 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9147 bool IsPatchPoint) { 9148 TargetLowering::ArgListTy Args; 9149 Args.reserve(NumArgs); 9150 9151 // Populate the argument list. 9152 // Attributes for args start at offset 1, after the return attribute. 9153 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9154 ArgI != ArgE; ++ArgI) { 9155 const Value *V = Call->getOperand(ArgI); 9156 9157 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9158 9159 TargetLowering::ArgListEntry Entry; 9160 Entry.Node = getValue(V); 9161 Entry.Ty = V->getType(); 9162 Entry.setAttributes(Call, ArgI); 9163 Args.push_back(Entry); 9164 } 9165 9166 CLI.setDebugLoc(getCurSDLoc()) 9167 .setChain(getRoot()) 9168 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9169 .setDiscardResult(Call->use_empty()) 9170 .setIsPatchPoint(IsPatchPoint) 9171 .setIsPreallocated( 9172 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9173 } 9174 9175 /// Add a stack map intrinsic call's live variable operands to a stackmap 9176 /// or patchpoint target node's operand list. 9177 /// 9178 /// Constants are converted to TargetConstants purely as an optimization to 9179 /// avoid constant materialization and register allocation. 9180 /// 9181 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9182 /// generate addess computation nodes, and so FinalizeISel can convert the 9183 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9184 /// address materialization and register allocation, but may also be required 9185 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9186 /// alloca in the entry block, then the runtime may assume that the alloca's 9187 /// StackMap location can be read immediately after compilation and that the 9188 /// location is valid at any point during execution (this is similar to the 9189 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9190 /// only available in a register, then the runtime would need to trap when 9191 /// execution reaches the StackMap in order to read the alloca's location. 9192 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9193 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9194 SelectionDAGBuilder &Builder) { 9195 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9196 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9197 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9198 Ops.push_back( 9199 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9200 Ops.push_back( 9201 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9202 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9203 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9204 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9205 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9206 } else 9207 Ops.push_back(OpVal); 9208 } 9209 } 9210 9211 /// Lower llvm.experimental.stackmap directly to its target opcode. 9212 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9213 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9214 // [live variables...]) 9215 9216 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9217 9218 SDValue Chain, InFlag, Callee, NullPtr; 9219 SmallVector<SDValue, 32> Ops; 9220 9221 SDLoc DL = getCurSDLoc(); 9222 Callee = getValue(CI.getCalledOperand()); 9223 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9224 9225 // The stackmap intrinsic only records the live variables (the arguments 9226 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9227 // intrinsic, this won't be lowered to a function call. This means we don't 9228 // have to worry about calling conventions and target specific lowering code. 9229 // Instead we perform the call lowering right here. 9230 // 9231 // chain, flag = CALLSEQ_START(chain, 0, 0) 9232 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9233 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9234 // 9235 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9236 InFlag = Chain.getValue(1); 9237 9238 // Add the <id> and <numBytes> constants. 9239 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9240 Ops.push_back(DAG.getTargetConstant( 9241 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9242 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9243 Ops.push_back(DAG.getTargetConstant( 9244 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9245 MVT::i32)); 9246 9247 // Push live variables for the stack map. 9248 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9249 9250 // We are not pushing any register mask info here on the operands list, 9251 // because the stackmap doesn't clobber anything. 9252 9253 // Push the chain and the glue flag. 9254 Ops.push_back(Chain); 9255 Ops.push_back(InFlag); 9256 9257 // Create the STACKMAP node. 9258 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9259 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9260 Chain = SDValue(SM, 0); 9261 InFlag = Chain.getValue(1); 9262 9263 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9264 9265 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9266 9267 // Set the root to the target-lowered call chain. 9268 DAG.setRoot(Chain); 9269 9270 // Inform the Frame Information that we have a stackmap in this function. 9271 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9272 } 9273 9274 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9275 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9276 const BasicBlock *EHPadBB) { 9277 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9278 // i32 <numBytes>, 9279 // i8* <target>, 9280 // i32 <numArgs>, 9281 // [Args...], 9282 // [live variables...]) 9283 9284 CallingConv::ID CC = CB.getCallingConv(); 9285 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9286 bool HasDef = !CB.getType()->isVoidTy(); 9287 SDLoc dl = getCurSDLoc(); 9288 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9289 9290 // Handle immediate and symbolic callees. 9291 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9292 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9293 /*isTarget=*/true); 9294 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9295 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9296 SDLoc(SymbolicCallee), 9297 SymbolicCallee->getValueType(0)); 9298 9299 // Get the real number of arguments participating in the call <numArgs> 9300 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9301 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9302 9303 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9304 // Intrinsics include all meta-operands up to but not including CC. 9305 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9306 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9307 "Not enough arguments provided to the patchpoint intrinsic"); 9308 9309 // For AnyRegCC the arguments are lowered later on manually. 9310 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9311 Type *ReturnTy = 9312 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9313 9314 TargetLowering::CallLoweringInfo CLI(DAG); 9315 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9316 ReturnTy, true); 9317 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9318 9319 SDNode *CallEnd = Result.second.getNode(); 9320 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9321 CallEnd = CallEnd->getOperand(0).getNode(); 9322 9323 /// Get a call instruction from the call sequence chain. 9324 /// Tail calls are not allowed. 9325 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9326 "Expected a callseq node."); 9327 SDNode *Call = CallEnd->getOperand(0).getNode(); 9328 bool HasGlue = Call->getGluedNode(); 9329 9330 // Replace the target specific call node with the patchable intrinsic. 9331 SmallVector<SDValue, 8> Ops; 9332 9333 // Add the <id> and <numBytes> constants. 9334 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9335 Ops.push_back(DAG.getTargetConstant( 9336 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9337 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9338 Ops.push_back(DAG.getTargetConstant( 9339 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9340 MVT::i32)); 9341 9342 // Add the callee. 9343 Ops.push_back(Callee); 9344 9345 // Adjust <numArgs> to account for any arguments that have been passed on the 9346 // stack instead. 9347 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9348 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9349 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9350 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9351 9352 // Add the calling convention 9353 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9354 9355 // Add the arguments we omitted previously. The register allocator should 9356 // place these in any free register. 9357 if (IsAnyRegCC) 9358 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9359 Ops.push_back(getValue(CB.getArgOperand(i))); 9360 9361 // Push the arguments from the call instruction up to the register mask. 9362 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9363 Ops.append(Call->op_begin() + 2, e); 9364 9365 // Push live variables for the stack map. 9366 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9367 9368 // Push the register mask info. 9369 if (HasGlue) 9370 Ops.push_back(*(Call->op_end()-2)); 9371 else 9372 Ops.push_back(*(Call->op_end()-1)); 9373 9374 // Push the chain (this is originally the first operand of the call, but 9375 // becomes now the last or second to last operand). 9376 Ops.push_back(*(Call->op_begin())); 9377 9378 // Push the glue flag (last operand). 9379 if (HasGlue) 9380 Ops.push_back(*(Call->op_end()-1)); 9381 9382 SDVTList NodeTys; 9383 if (IsAnyRegCC && HasDef) { 9384 // Create the return types based on the intrinsic definition 9385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9386 SmallVector<EVT, 3> ValueVTs; 9387 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9388 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9389 9390 // There is always a chain and a glue type at the end 9391 ValueVTs.push_back(MVT::Other); 9392 ValueVTs.push_back(MVT::Glue); 9393 NodeTys = DAG.getVTList(ValueVTs); 9394 } else 9395 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9396 9397 // Replace the target specific call node with a PATCHPOINT node. 9398 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9399 dl, NodeTys, Ops); 9400 9401 // Update the NodeMap. 9402 if (HasDef) { 9403 if (IsAnyRegCC) 9404 setValue(&CB, SDValue(MN, 0)); 9405 else 9406 setValue(&CB, Result.first); 9407 } 9408 9409 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9410 // call sequence. Furthermore the location of the chain and glue can change 9411 // when the AnyReg calling convention is used and the intrinsic returns a 9412 // value. 9413 if (IsAnyRegCC && HasDef) { 9414 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9415 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9416 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9417 } else 9418 DAG.ReplaceAllUsesWith(Call, MN); 9419 DAG.DeleteNode(Call); 9420 9421 // Inform the Frame Information that we have a patchpoint in this function. 9422 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9423 } 9424 9425 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9426 unsigned Intrinsic) { 9427 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9428 SDValue Op1 = getValue(I.getArgOperand(0)); 9429 SDValue Op2; 9430 if (I.arg_size() > 1) 9431 Op2 = getValue(I.getArgOperand(1)); 9432 SDLoc dl = getCurSDLoc(); 9433 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9434 SDValue Res; 9435 SDNodeFlags SDFlags; 9436 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9437 SDFlags.copyFMF(*FPMO); 9438 9439 switch (Intrinsic) { 9440 case Intrinsic::vector_reduce_fadd: 9441 if (SDFlags.hasAllowReassociation()) 9442 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9443 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9444 SDFlags); 9445 else 9446 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9447 break; 9448 case Intrinsic::vector_reduce_fmul: 9449 if (SDFlags.hasAllowReassociation()) 9450 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9451 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9452 SDFlags); 9453 else 9454 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9455 break; 9456 case Intrinsic::vector_reduce_add: 9457 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9458 break; 9459 case Intrinsic::vector_reduce_mul: 9460 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9461 break; 9462 case Intrinsic::vector_reduce_and: 9463 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9464 break; 9465 case Intrinsic::vector_reduce_or: 9466 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9467 break; 9468 case Intrinsic::vector_reduce_xor: 9469 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9470 break; 9471 case Intrinsic::vector_reduce_smax: 9472 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9473 break; 9474 case Intrinsic::vector_reduce_smin: 9475 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9476 break; 9477 case Intrinsic::vector_reduce_umax: 9478 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9479 break; 9480 case Intrinsic::vector_reduce_umin: 9481 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9482 break; 9483 case Intrinsic::vector_reduce_fmax: 9484 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9485 break; 9486 case Intrinsic::vector_reduce_fmin: 9487 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9488 break; 9489 default: 9490 llvm_unreachable("Unhandled vector reduce intrinsic"); 9491 } 9492 setValue(&I, Res); 9493 } 9494 9495 /// Returns an AttributeList representing the attributes applied to the return 9496 /// value of the given call. 9497 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9498 SmallVector<Attribute::AttrKind, 2> Attrs; 9499 if (CLI.RetSExt) 9500 Attrs.push_back(Attribute::SExt); 9501 if (CLI.RetZExt) 9502 Attrs.push_back(Attribute::ZExt); 9503 if (CLI.IsInReg) 9504 Attrs.push_back(Attribute::InReg); 9505 9506 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9507 Attrs); 9508 } 9509 9510 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9511 /// implementation, which just calls LowerCall. 9512 /// FIXME: When all targets are 9513 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9514 std::pair<SDValue, SDValue> 9515 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9516 // Handle the incoming return values from the call. 9517 CLI.Ins.clear(); 9518 Type *OrigRetTy = CLI.RetTy; 9519 SmallVector<EVT, 4> RetTys; 9520 SmallVector<uint64_t, 4> Offsets; 9521 auto &DL = CLI.DAG.getDataLayout(); 9522 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9523 9524 if (CLI.IsPostTypeLegalization) { 9525 // If we are lowering a libcall after legalization, split the return type. 9526 SmallVector<EVT, 4> OldRetTys; 9527 SmallVector<uint64_t, 4> OldOffsets; 9528 RetTys.swap(OldRetTys); 9529 Offsets.swap(OldOffsets); 9530 9531 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9532 EVT RetVT = OldRetTys[i]; 9533 uint64_t Offset = OldOffsets[i]; 9534 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9535 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9536 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9537 RetTys.append(NumRegs, RegisterVT); 9538 for (unsigned j = 0; j != NumRegs; ++j) 9539 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9540 } 9541 } 9542 9543 SmallVector<ISD::OutputArg, 4> Outs; 9544 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9545 9546 bool CanLowerReturn = 9547 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9548 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9549 9550 SDValue DemoteStackSlot; 9551 int DemoteStackIdx = -100; 9552 if (!CanLowerReturn) { 9553 // FIXME: equivalent assert? 9554 // assert(!CS.hasInAllocaArgument() && 9555 // "sret demotion is incompatible with inalloca"); 9556 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9557 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9558 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9559 DemoteStackIdx = 9560 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9561 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9562 DL.getAllocaAddrSpace()); 9563 9564 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9565 ArgListEntry Entry; 9566 Entry.Node = DemoteStackSlot; 9567 Entry.Ty = StackSlotPtrType; 9568 Entry.IsSExt = false; 9569 Entry.IsZExt = false; 9570 Entry.IsInReg = false; 9571 Entry.IsSRet = true; 9572 Entry.IsNest = false; 9573 Entry.IsByVal = false; 9574 Entry.IsByRef = false; 9575 Entry.IsReturned = false; 9576 Entry.IsSwiftSelf = false; 9577 Entry.IsSwiftAsync = false; 9578 Entry.IsSwiftError = false; 9579 Entry.IsCFGuardTarget = false; 9580 Entry.Alignment = Alignment; 9581 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9582 CLI.NumFixedArgs += 1; 9583 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9584 9585 // sret demotion isn't compatible with tail-calls, since the sret argument 9586 // points into the callers stack frame. 9587 CLI.IsTailCall = false; 9588 } else { 9589 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9590 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9591 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9592 ISD::ArgFlagsTy Flags; 9593 if (NeedsRegBlock) { 9594 Flags.setInConsecutiveRegs(); 9595 if (I == RetTys.size() - 1) 9596 Flags.setInConsecutiveRegsLast(); 9597 } 9598 EVT VT = RetTys[I]; 9599 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9600 CLI.CallConv, VT); 9601 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9602 CLI.CallConv, VT); 9603 for (unsigned i = 0; i != NumRegs; ++i) { 9604 ISD::InputArg MyFlags; 9605 MyFlags.Flags = Flags; 9606 MyFlags.VT = RegisterVT; 9607 MyFlags.ArgVT = VT; 9608 MyFlags.Used = CLI.IsReturnValueUsed; 9609 if (CLI.RetTy->isPointerTy()) { 9610 MyFlags.Flags.setPointer(); 9611 MyFlags.Flags.setPointerAddrSpace( 9612 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9613 } 9614 if (CLI.RetSExt) 9615 MyFlags.Flags.setSExt(); 9616 if (CLI.RetZExt) 9617 MyFlags.Flags.setZExt(); 9618 if (CLI.IsInReg) 9619 MyFlags.Flags.setInReg(); 9620 CLI.Ins.push_back(MyFlags); 9621 } 9622 } 9623 } 9624 9625 // We push in swifterror return as the last element of CLI.Ins. 9626 ArgListTy &Args = CLI.getArgs(); 9627 if (supportSwiftError()) { 9628 for (const ArgListEntry &Arg : Args) { 9629 if (Arg.IsSwiftError) { 9630 ISD::InputArg MyFlags; 9631 MyFlags.VT = getPointerTy(DL); 9632 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9633 MyFlags.Flags.setSwiftError(); 9634 CLI.Ins.push_back(MyFlags); 9635 } 9636 } 9637 } 9638 9639 // Handle all of the outgoing arguments. 9640 CLI.Outs.clear(); 9641 CLI.OutVals.clear(); 9642 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9643 SmallVector<EVT, 4> ValueVTs; 9644 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9645 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9646 Type *FinalType = Args[i].Ty; 9647 if (Args[i].IsByVal) 9648 FinalType = Args[i].IndirectType; 9649 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9650 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9651 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9652 ++Value) { 9653 EVT VT = ValueVTs[Value]; 9654 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9655 SDValue Op = SDValue(Args[i].Node.getNode(), 9656 Args[i].Node.getResNo() + Value); 9657 ISD::ArgFlagsTy Flags; 9658 9659 // Certain targets (such as MIPS), may have a different ABI alignment 9660 // for a type depending on the context. Give the target a chance to 9661 // specify the alignment it wants. 9662 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9663 Flags.setOrigAlign(OriginalAlignment); 9664 9665 if (Args[i].Ty->isPointerTy()) { 9666 Flags.setPointer(); 9667 Flags.setPointerAddrSpace( 9668 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9669 } 9670 if (Args[i].IsZExt) 9671 Flags.setZExt(); 9672 if (Args[i].IsSExt) 9673 Flags.setSExt(); 9674 if (Args[i].IsInReg) { 9675 // If we are using vectorcall calling convention, a structure that is 9676 // passed InReg - is surely an HVA 9677 if (CLI.CallConv == CallingConv::X86_VectorCall && 9678 isa<StructType>(FinalType)) { 9679 // The first value of a structure is marked 9680 if (0 == Value) 9681 Flags.setHvaStart(); 9682 Flags.setHva(); 9683 } 9684 // Set InReg Flag 9685 Flags.setInReg(); 9686 } 9687 if (Args[i].IsSRet) 9688 Flags.setSRet(); 9689 if (Args[i].IsSwiftSelf) 9690 Flags.setSwiftSelf(); 9691 if (Args[i].IsSwiftAsync) 9692 Flags.setSwiftAsync(); 9693 if (Args[i].IsSwiftError) 9694 Flags.setSwiftError(); 9695 if (Args[i].IsCFGuardTarget) 9696 Flags.setCFGuardTarget(); 9697 if (Args[i].IsByVal) 9698 Flags.setByVal(); 9699 if (Args[i].IsByRef) 9700 Flags.setByRef(); 9701 if (Args[i].IsPreallocated) { 9702 Flags.setPreallocated(); 9703 // Set the byval flag for CCAssignFn callbacks that don't know about 9704 // preallocated. This way we can know how many bytes we should've 9705 // allocated and how many bytes a callee cleanup function will pop. If 9706 // we port preallocated to more targets, we'll have to add custom 9707 // preallocated handling in the various CC lowering callbacks. 9708 Flags.setByVal(); 9709 } 9710 if (Args[i].IsInAlloca) { 9711 Flags.setInAlloca(); 9712 // Set the byval flag for CCAssignFn callbacks that don't know about 9713 // inalloca. This way we can know how many bytes we should've allocated 9714 // and how many bytes a callee cleanup function will pop. If we port 9715 // inalloca to more targets, we'll have to add custom inalloca handling 9716 // in the various CC lowering callbacks. 9717 Flags.setByVal(); 9718 } 9719 Align MemAlign; 9720 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9721 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 9722 Flags.setByValSize(FrameSize); 9723 9724 // info is not there but there are cases it cannot get right. 9725 if (auto MA = Args[i].Alignment) 9726 MemAlign = *MA; 9727 else 9728 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 9729 } else if (auto MA = Args[i].Alignment) { 9730 MemAlign = *MA; 9731 } else { 9732 MemAlign = OriginalAlignment; 9733 } 9734 Flags.setMemAlign(MemAlign); 9735 if (Args[i].IsNest) 9736 Flags.setNest(); 9737 if (NeedsRegBlock) 9738 Flags.setInConsecutiveRegs(); 9739 9740 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9741 CLI.CallConv, VT); 9742 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9743 CLI.CallConv, VT); 9744 SmallVector<SDValue, 4> Parts(NumParts); 9745 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9746 9747 if (Args[i].IsSExt) 9748 ExtendKind = ISD::SIGN_EXTEND; 9749 else if (Args[i].IsZExt) 9750 ExtendKind = ISD::ZERO_EXTEND; 9751 9752 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9753 // for now. 9754 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9755 CanLowerReturn) { 9756 assert((CLI.RetTy == Args[i].Ty || 9757 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9758 CLI.RetTy->getPointerAddressSpace() == 9759 Args[i].Ty->getPointerAddressSpace())) && 9760 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9761 // Before passing 'returned' to the target lowering code, ensure that 9762 // either the register MVT and the actual EVT are the same size or that 9763 // the return value and argument are extended in the same way; in these 9764 // cases it's safe to pass the argument register value unchanged as the 9765 // return register value (although it's at the target's option whether 9766 // to do so) 9767 // TODO: allow code generation to take advantage of partially preserved 9768 // registers rather than clobbering the entire register when the 9769 // parameter extension method is not compatible with the return 9770 // extension method 9771 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9772 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9773 CLI.RetZExt == Args[i].IsZExt)) 9774 Flags.setReturned(); 9775 } 9776 9777 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9778 CLI.CallConv, ExtendKind); 9779 9780 for (unsigned j = 0; j != NumParts; ++j) { 9781 // if it isn't first piece, alignment must be 1 9782 // For scalable vectors the scalable part is currently handled 9783 // by individual targets, so we just use the known minimum size here. 9784 ISD::OutputArg MyFlags( 9785 Flags, Parts[j].getValueType().getSimpleVT(), VT, 9786 i < CLI.NumFixedArgs, i, 9787 j * Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9788 if (NumParts > 1 && j == 0) 9789 MyFlags.Flags.setSplit(); 9790 else if (j != 0) { 9791 MyFlags.Flags.setOrigAlign(Align(1)); 9792 if (j == NumParts - 1) 9793 MyFlags.Flags.setSplitEnd(); 9794 } 9795 9796 CLI.Outs.push_back(MyFlags); 9797 CLI.OutVals.push_back(Parts[j]); 9798 } 9799 9800 if (NeedsRegBlock && Value == NumValues - 1) 9801 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9802 } 9803 } 9804 9805 SmallVector<SDValue, 4> InVals; 9806 CLI.Chain = LowerCall(CLI, InVals); 9807 9808 // Update CLI.InVals to use outside of this function. 9809 CLI.InVals = InVals; 9810 9811 // Verify that the target's LowerCall behaved as expected. 9812 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9813 "LowerCall didn't return a valid chain!"); 9814 assert((!CLI.IsTailCall || InVals.empty()) && 9815 "LowerCall emitted a return value for a tail call!"); 9816 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9817 "LowerCall didn't emit the correct number of values!"); 9818 9819 // For a tail call, the return value is merely live-out and there aren't 9820 // any nodes in the DAG representing it. Return a special value to 9821 // indicate that a tail call has been emitted and no more Instructions 9822 // should be processed in the current block. 9823 if (CLI.IsTailCall) { 9824 CLI.DAG.setRoot(CLI.Chain); 9825 return std::make_pair(SDValue(), SDValue()); 9826 } 9827 9828 #ifndef NDEBUG 9829 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9830 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9831 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9832 "LowerCall emitted a value with the wrong type!"); 9833 } 9834 #endif 9835 9836 SmallVector<SDValue, 4> ReturnValues; 9837 if (!CanLowerReturn) { 9838 // The instruction result is the result of loading from the 9839 // hidden sret parameter. 9840 SmallVector<EVT, 1> PVTs; 9841 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9842 9843 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9844 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9845 EVT PtrVT = PVTs[0]; 9846 9847 unsigned NumValues = RetTys.size(); 9848 ReturnValues.resize(NumValues); 9849 SmallVector<SDValue, 4> Chains(NumValues); 9850 9851 // An aggregate return value cannot wrap around the address space, so 9852 // offsets to its parts don't wrap either. 9853 SDNodeFlags Flags; 9854 Flags.setNoUnsignedWrap(true); 9855 9856 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9857 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9858 for (unsigned i = 0; i < NumValues; ++i) { 9859 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9860 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9861 PtrVT), Flags); 9862 SDValue L = CLI.DAG.getLoad( 9863 RetTys[i], CLI.DL, CLI.Chain, Add, 9864 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9865 DemoteStackIdx, Offsets[i]), 9866 HiddenSRetAlign); 9867 ReturnValues[i] = L; 9868 Chains[i] = L.getValue(1); 9869 } 9870 9871 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9872 } else { 9873 // Collect the legal value parts into potentially illegal values 9874 // that correspond to the original function's return values. 9875 Optional<ISD::NodeType> AssertOp; 9876 if (CLI.RetSExt) 9877 AssertOp = ISD::AssertSext; 9878 else if (CLI.RetZExt) 9879 AssertOp = ISD::AssertZext; 9880 unsigned CurReg = 0; 9881 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9882 EVT VT = RetTys[I]; 9883 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9884 CLI.CallConv, VT); 9885 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9886 CLI.CallConv, VT); 9887 9888 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9889 NumRegs, RegisterVT, VT, nullptr, 9890 CLI.CallConv, AssertOp)); 9891 CurReg += NumRegs; 9892 } 9893 9894 // For a function returning void, there is no return value. We can't create 9895 // such a node, so we just return a null return value in that case. In 9896 // that case, nothing will actually look at the value. 9897 if (ReturnValues.empty()) 9898 return std::make_pair(SDValue(), CLI.Chain); 9899 } 9900 9901 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9902 CLI.DAG.getVTList(RetTys), ReturnValues); 9903 return std::make_pair(Res, CLI.Chain); 9904 } 9905 9906 /// Places new result values for the node in Results (their number 9907 /// and types must exactly match those of the original return values of 9908 /// the node), or leaves Results empty, which indicates that the node is not 9909 /// to be custom lowered after all. 9910 void TargetLowering::LowerOperationWrapper(SDNode *N, 9911 SmallVectorImpl<SDValue> &Results, 9912 SelectionDAG &DAG) const { 9913 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9914 9915 if (!Res.getNode()) 9916 return; 9917 9918 // If the original node has one result, take the return value from 9919 // LowerOperation as is. It might not be result number 0. 9920 if (N->getNumValues() == 1) { 9921 Results.push_back(Res); 9922 return; 9923 } 9924 9925 // If the original node has multiple results, then the return node should 9926 // have the same number of results. 9927 assert((N->getNumValues() == Res->getNumValues()) && 9928 "Lowering returned the wrong number of results!"); 9929 9930 // Places new result values base on N result number. 9931 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9932 Results.push_back(Res.getValue(I)); 9933 } 9934 9935 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9936 llvm_unreachable("LowerOperation not implemented for this target!"); 9937 } 9938 9939 void 9940 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9941 SDValue Op = getNonRegisterValue(V); 9942 assert((Op.getOpcode() != ISD::CopyFromReg || 9943 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9944 "Copy from a reg to the same reg!"); 9945 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9946 9947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9948 // If this is an InlineAsm we have to match the registers required, not the 9949 // notional registers required by the type. 9950 9951 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9952 None); // This is not an ABI copy. 9953 SDValue Chain = DAG.getEntryNode(); 9954 9955 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 9956 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 9957 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 9958 ExtendType = PreferredExtendIt->second; 9959 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9960 PendingExports.push_back(Chain); 9961 } 9962 9963 #include "llvm/CodeGen/SelectionDAGISel.h" 9964 9965 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9966 /// entry block, return true. This includes arguments used by switches, since 9967 /// the switch may expand into multiple basic blocks. 9968 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9969 // With FastISel active, we may be splitting blocks, so force creation 9970 // of virtual registers for all non-dead arguments. 9971 if (FastISel) 9972 return A->use_empty(); 9973 9974 const BasicBlock &Entry = A->getParent()->front(); 9975 for (const User *U : A->users()) 9976 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9977 return false; // Use not in entry block. 9978 9979 return true; 9980 } 9981 9982 using ArgCopyElisionMapTy = 9983 DenseMap<const Argument *, 9984 std::pair<const AllocaInst *, const StoreInst *>>; 9985 9986 /// Scan the entry block of the function in FuncInfo for arguments that look 9987 /// like copies into a local alloca. Record any copied arguments in 9988 /// ArgCopyElisionCandidates. 9989 static void 9990 findArgumentCopyElisionCandidates(const DataLayout &DL, 9991 FunctionLoweringInfo *FuncInfo, 9992 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9993 // Record the state of every static alloca used in the entry block. Argument 9994 // allocas are all used in the entry block, so we need approximately as many 9995 // entries as we have arguments. 9996 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9997 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9998 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9999 StaticAllocas.reserve(NumArgs * 2); 10000 10001 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10002 if (!V) 10003 return nullptr; 10004 V = V->stripPointerCasts(); 10005 const auto *AI = dyn_cast<AllocaInst>(V); 10006 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10007 return nullptr; 10008 auto Iter = StaticAllocas.insert({AI, Unknown}); 10009 return &Iter.first->second; 10010 }; 10011 10012 // Look for stores of arguments to static allocas. Look through bitcasts and 10013 // GEPs to handle type coercions, as long as the alloca is fully initialized 10014 // by the store. Any non-store use of an alloca escapes it and any subsequent 10015 // unanalyzed store might write it. 10016 // FIXME: Handle structs initialized with multiple stores. 10017 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10018 // Look for stores, and handle non-store uses conservatively. 10019 const auto *SI = dyn_cast<StoreInst>(&I); 10020 if (!SI) { 10021 // We will look through cast uses, so ignore them completely. 10022 if (I.isCast()) 10023 continue; 10024 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10025 // to allocas. 10026 if (I.isDebugOrPseudoInst()) 10027 continue; 10028 // This is an unknown instruction. Assume it escapes or writes to all 10029 // static alloca operands. 10030 for (const Use &U : I.operands()) { 10031 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10032 *Info = StaticAllocaInfo::Clobbered; 10033 } 10034 continue; 10035 } 10036 10037 // If the stored value is a static alloca, mark it as escaped. 10038 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10039 *Info = StaticAllocaInfo::Clobbered; 10040 10041 // Check if the destination is a static alloca. 10042 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10043 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10044 if (!Info) 10045 continue; 10046 const AllocaInst *AI = cast<AllocaInst>(Dst); 10047 10048 // Skip allocas that have been initialized or clobbered. 10049 if (*Info != StaticAllocaInfo::Unknown) 10050 continue; 10051 10052 // Check if the stored value is an argument, and that this store fully 10053 // initializes the alloca. 10054 // If the argument type has padding bits we can't directly forward a pointer 10055 // as the upper bits may contain garbage. 10056 // Don't elide copies from the same argument twice. 10057 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10058 const auto *Arg = dyn_cast<Argument>(Val); 10059 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10060 Arg->getType()->isEmptyTy() || 10061 DL.getTypeStoreSize(Arg->getType()) != 10062 DL.getTypeAllocSize(AI->getAllocatedType()) || 10063 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10064 ArgCopyElisionCandidates.count(Arg)) { 10065 *Info = StaticAllocaInfo::Clobbered; 10066 continue; 10067 } 10068 10069 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10070 << '\n'); 10071 10072 // Mark this alloca and store for argument copy elision. 10073 *Info = StaticAllocaInfo::Elidable; 10074 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10075 10076 // Stop scanning if we've seen all arguments. This will happen early in -O0 10077 // builds, which is useful, because -O0 builds have large entry blocks and 10078 // many allocas. 10079 if (ArgCopyElisionCandidates.size() == NumArgs) 10080 break; 10081 } 10082 } 10083 10084 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10085 /// ArgVal is a load from a suitable fixed stack object. 10086 static void tryToElideArgumentCopy( 10087 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10088 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10089 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10090 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10091 SDValue ArgVal, bool &ArgHasUses) { 10092 // Check if this is a load from a fixed stack object. 10093 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 10094 if (!LNode) 10095 return; 10096 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10097 if (!FINode) 10098 return; 10099 10100 // Check that the fixed stack object is the right size and alignment. 10101 // Look at the alignment that the user wrote on the alloca instead of looking 10102 // at the stack object. 10103 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10104 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10105 const AllocaInst *AI = ArgCopyIter->second.first; 10106 int FixedIndex = FINode->getIndex(); 10107 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10108 int OldIndex = AllocaIndex; 10109 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10110 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10111 LLVM_DEBUG( 10112 dbgs() << " argument copy elision failed due to bad fixed stack " 10113 "object size\n"); 10114 return; 10115 } 10116 Align RequiredAlignment = AI->getAlign(); 10117 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10118 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10119 "greater than stack argument alignment (" 10120 << DebugStr(RequiredAlignment) << " vs " 10121 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10122 return; 10123 } 10124 10125 // Perform the elision. Delete the old stack object and replace its only use 10126 // in the variable info map. Mark the stack object as mutable. 10127 LLVM_DEBUG({ 10128 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10129 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10130 << '\n'; 10131 }); 10132 MFI.RemoveStackObject(OldIndex); 10133 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10134 AllocaIndex = FixedIndex; 10135 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10136 Chains.push_back(ArgVal.getValue(1)); 10137 10138 // Avoid emitting code for the store implementing the copy. 10139 const StoreInst *SI = ArgCopyIter->second.second; 10140 ElidedArgCopyInstrs.insert(SI); 10141 10142 // Check for uses of the argument again so that we can avoid exporting ArgVal 10143 // if it is't used by anything other than the store. 10144 for (const Value *U : Arg.users()) { 10145 if (U != SI) { 10146 ArgHasUses = true; 10147 break; 10148 } 10149 } 10150 } 10151 10152 void SelectionDAGISel::LowerArguments(const Function &F) { 10153 SelectionDAG &DAG = SDB->DAG; 10154 SDLoc dl = SDB->getCurSDLoc(); 10155 const DataLayout &DL = DAG.getDataLayout(); 10156 SmallVector<ISD::InputArg, 16> Ins; 10157 10158 // In Naked functions we aren't going to save any registers. 10159 if (F.hasFnAttribute(Attribute::Naked)) 10160 return; 10161 10162 if (!FuncInfo->CanLowerReturn) { 10163 // Put in an sret pointer parameter before all the other parameters. 10164 SmallVector<EVT, 1> ValueVTs; 10165 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10166 F.getReturnType()->getPointerTo( 10167 DAG.getDataLayout().getAllocaAddrSpace()), 10168 ValueVTs); 10169 10170 // NOTE: Assuming that a pointer will never break down to more than one VT 10171 // or one register. 10172 ISD::ArgFlagsTy Flags; 10173 Flags.setSRet(); 10174 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10175 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10176 ISD::InputArg::NoArgIndex, 0); 10177 Ins.push_back(RetArg); 10178 } 10179 10180 // Look for stores of arguments to static allocas. Mark such arguments with a 10181 // flag to ask the target to give us the memory location of that argument if 10182 // available. 10183 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10184 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10185 ArgCopyElisionCandidates); 10186 10187 // Set up the incoming argument description vector. 10188 for (const Argument &Arg : F.args()) { 10189 unsigned ArgNo = Arg.getArgNo(); 10190 SmallVector<EVT, 4> ValueVTs; 10191 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10192 bool isArgValueUsed = !Arg.use_empty(); 10193 unsigned PartBase = 0; 10194 Type *FinalType = Arg.getType(); 10195 if (Arg.hasAttribute(Attribute::ByVal)) 10196 FinalType = Arg.getParamByValType(); 10197 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10198 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10199 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10200 Value != NumValues; ++Value) { 10201 EVT VT = ValueVTs[Value]; 10202 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10203 ISD::ArgFlagsTy Flags; 10204 10205 10206 if (Arg.getType()->isPointerTy()) { 10207 Flags.setPointer(); 10208 Flags.setPointerAddrSpace( 10209 cast<PointerType>(Arg.getType())->getAddressSpace()); 10210 } 10211 if (Arg.hasAttribute(Attribute::ZExt)) 10212 Flags.setZExt(); 10213 if (Arg.hasAttribute(Attribute::SExt)) 10214 Flags.setSExt(); 10215 if (Arg.hasAttribute(Attribute::InReg)) { 10216 // If we are using vectorcall calling convention, a structure that is 10217 // passed InReg - is surely an HVA 10218 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10219 isa<StructType>(Arg.getType())) { 10220 // The first value of a structure is marked 10221 if (0 == Value) 10222 Flags.setHvaStart(); 10223 Flags.setHva(); 10224 } 10225 // Set InReg Flag 10226 Flags.setInReg(); 10227 } 10228 if (Arg.hasAttribute(Attribute::StructRet)) 10229 Flags.setSRet(); 10230 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10231 Flags.setSwiftSelf(); 10232 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10233 Flags.setSwiftAsync(); 10234 if (Arg.hasAttribute(Attribute::SwiftError)) 10235 Flags.setSwiftError(); 10236 if (Arg.hasAttribute(Attribute::ByVal)) 10237 Flags.setByVal(); 10238 if (Arg.hasAttribute(Attribute::ByRef)) 10239 Flags.setByRef(); 10240 if (Arg.hasAttribute(Attribute::InAlloca)) { 10241 Flags.setInAlloca(); 10242 // Set the byval flag for CCAssignFn callbacks that don't know about 10243 // inalloca. This way we can know how many bytes we should've allocated 10244 // and how many bytes a callee cleanup function will pop. If we port 10245 // inalloca to more targets, we'll have to add custom inalloca handling 10246 // in the various CC lowering callbacks. 10247 Flags.setByVal(); 10248 } 10249 if (Arg.hasAttribute(Attribute::Preallocated)) { 10250 Flags.setPreallocated(); 10251 // Set the byval flag for CCAssignFn callbacks that don't know about 10252 // preallocated. This way we can know how many bytes we should've 10253 // allocated and how many bytes a callee cleanup function will pop. If 10254 // we port preallocated to more targets, we'll have to add custom 10255 // preallocated handling in the various CC lowering callbacks. 10256 Flags.setByVal(); 10257 } 10258 10259 // Certain targets (such as MIPS), may have a different ABI alignment 10260 // for a type depending on the context. Give the target a chance to 10261 // specify the alignment it wants. 10262 const Align OriginalAlignment( 10263 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10264 Flags.setOrigAlign(OriginalAlignment); 10265 10266 Align MemAlign; 10267 Type *ArgMemTy = nullptr; 10268 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10269 Flags.isByRef()) { 10270 if (!ArgMemTy) 10271 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10272 10273 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10274 10275 // For in-memory arguments, size and alignment should be passed from FE. 10276 // BE will guess if this info is not there but there are cases it cannot 10277 // get right. 10278 if (auto ParamAlign = Arg.getParamStackAlign()) 10279 MemAlign = *ParamAlign; 10280 else if ((ParamAlign = Arg.getParamAlign())) 10281 MemAlign = *ParamAlign; 10282 else 10283 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10284 if (Flags.isByRef()) 10285 Flags.setByRefSize(MemSize); 10286 else 10287 Flags.setByValSize(MemSize); 10288 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10289 MemAlign = *ParamAlign; 10290 } else { 10291 MemAlign = OriginalAlignment; 10292 } 10293 Flags.setMemAlign(MemAlign); 10294 10295 if (Arg.hasAttribute(Attribute::Nest)) 10296 Flags.setNest(); 10297 if (NeedsRegBlock) 10298 Flags.setInConsecutiveRegs(); 10299 if (ArgCopyElisionCandidates.count(&Arg)) 10300 Flags.setCopyElisionCandidate(); 10301 if (Arg.hasAttribute(Attribute::Returned)) 10302 Flags.setReturned(); 10303 10304 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10305 *CurDAG->getContext(), F.getCallingConv(), VT); 10306 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10307 *CurDAG->getContext(), F.getCallingConv(), VT); 10308 for (unsigned i = 0; i != NumRegs; ++i) { 10309 // For scalable vectors, use the minimum size; individual targets 10310 // are responsible for handling scalable vector arguments and 10311 // return values. 10312 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10313 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10314 if (NumRegs > 1 && i == 0) 10315 MyFlags.Flags.setSplit(); 10316 // if it isn't first piece, alignment must be 1 10317 else if (i > 0) { 10318 MyFlags.Flags.setOrigAlign(Align(1)); 10319 if (i == NumRegs - 1) 10320 MyFlags.Flags.setSplitEnd(); 10321 } 10322 Ins.push_back(MyFlags); 10323 } 10324 if (NeedsRegBlock && Value == NumValues - 1) 10325 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10326 PartBase += VT.getStoreSize().getKnownMinSize(); 10327 } 10328 } 10329 10330 // Call the target to set up the argument values. 10331 SmallVector<SDValue, 8> InVals; 10332 SDValue NewRoot = TLI->LowerFormalArguments( 10333 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10334 10335 // Verify that the target's LowerFormalArguments behaved as expected. 10336 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10337 "LowerFormalArguments didn't return a valid chain!"); 10338 assert(InVals.size() == Ins.size() && 10339 "LowerFormalArguments didn't emit the correct number of values!"); 10340 LLVM_DEBUG({ 10341 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10342 assert(InVals[i].getNode() && 10343 "LowerFormalArguments emitted a null value!"); 10344 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10345 "LowerFormalArguments emitted a value with the wrong type!"); 10346 } 10347 }); 10348 10349 // Update the DAG with the new chain value resulting from argument lowering. 10350 DAG.setRoot(NewRoot); 10351 10352 // Set up the argument values. 10353 unsigned i = 0; 10354 if (!FuncInfo->CanLowerReturn) { 10355 // Create a virtual register for the sret pointer, and put in a copy 10356 // from the sret argument into it. 10357 SmallVector<EVT, 1> ValueVTs; 10358 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10359 F.getReturnType()->getPointerTo( 10360 DAG.getDataLayout().getAllocaAddrSpace()), 10361 ValueVTs); 10362 MVT VT = ValueVTs[0].getSimpleVT(); 10363 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10364 Optional<ISD::NodeType> AssertOp = None; 10365 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10366 nullptr, F.getCallingConv(), AssertOp); 10367 10368 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10369 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10370 Register SRetReg = 10371 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10372 FuncInfo->DemoteRegister = SRetReg; 10373 NewRoot = 10374 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10375 DAG.setRoot(NewRoot); 10376 10377 // i indexes lowered arguments. Bump it past the hidden sret argument. 10378 ++i; 10379 } 10380 10381 SmallVector<SDValue, 4> Chains; 10382 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10383 for (const Argument &Arg : F.args()) { 10384 SmallVector<SDValue, 4> ArgValues; 10385 SmallVector<EVT, 4> ValueVTs; 10386 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10387 unsigned NumValues = ValueVTs.size(); 10388 if (NumValues == 0) 10389 continue; 10390 10391 bool ArgHasUses = !Arg.use_empty(); 10392 10393 // Elide the copying store if the target loaded this argument from a 10394 // suitable fixed stack object. 10395 if (Ins[i].Flags.isCopyElisionCandidate()) { 10396 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10397 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10398 InVals[i], ArgHasUses); 10399 } 10400 10401 // If this argument is unused then remember its value. It is used to generate 10402 // debugging information. 10403 bool isSwiftErrorArg = 10404 TLI->supportSwiftError() && 10405 Arg.hasAttribute(Attribute::SwiftError); 10406 if (!ArgHasUses && !isSwiftErrorArg) { 10407 SDB->setUnusedArgValue(&Arg, InVals[i]); 10408 10409 // Also remember any frame index for use in FastISel. 10410 if (FrameIndexSDNode *FI = 10411 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10412 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10413 } 10414 10415 for (unsigned Val = 0; Val != NumValues; ++Val) { 10416 EVT VT = ValueVTs[Val]; 10417 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10418 F.getCallingConv(), VT); 10419 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10420 *CurDAG->getContext(), F.getCallingConv(), VT); 10421 10422 // Even an apparent 'unused' swifterror argument needs to be returned. So 10423 // we do generate a copy for it that can be used on return from the 10424 // function. 10425 if (ArgHasUses || isSwiftErrorArg) { 10426 Optional<ISD::NodeType> AssertOp; 10427 if (Arg.hasAttribute(Attribute::SExt)) 10428 AssertOp = ISD::AssertSext; 10429 else if (Arg.hasAttribute(Attribute::ZExt)) 10430 AssertOp = ISD::AssertZext; 10431 10432 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10433 PartVT, VT, nullptr, 10434 F.getCallingConv(), AssertOp)); 10435 } 10436 10437 i += NumParts; 10438 } 10439 10440 // We don't need to do anything else for unused arguments. 10441 if (ArgValues.empty()) 10442 continue; 10443 10444 // Note down frame index. 10445 if (FrameIndexSDNode *FI = 10446 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10447 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10448 10449 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10450 SDB->getCurSDLoc()); 10451 10452 SDB->setValue(&Arg, Res); 10453 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10454 // We want to associate the argument with the frame index, among 10455 // involved operands, that correspond to the lowest address. The 10456 // getCopyFromParts function, called earlier, is swapping the order of 10457 // the operands to BUILD_PAIR depending on endianness. The result of 10458 // that swapping is that the least significant bits of the argument will 10459 // be in the first operand of the BUILD_PAIR node, and the most 10460 // significant bits will be in the second operand. 10461 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10462 if (LoadSDNode *LNode = 10463 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10464 if (FrameIndexSDNode *FI = 10465 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10466 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10467 } 10468 10469 // Analyses past this point are naive and don't expect an assertion. 10470 if (Res.getOpcode() == ISD::AssertZext) 10471 Res = Res.getOperand(0); 10472 10473 // Update the SwiftErrorVRegDefMap. 10474 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10475 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10476 if (Register::isVirtualRegister(Reg)) 10477 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10478 Reg); 10479 } 10480 10481 // If this argument is live outside of the entry block, insert a copy from 10482 // wherever we got it to the vreg that other BB's will reference it as. 10483 if (Res.getOpcode() == ISD::CopyFromReg) { 10484 // If we can, though, try to skip creating an unnecessary vreg. 10485 // FIXME: This isn't very clean... it would be nice to make this more 10486 // general. 10487 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10488 if (Register::isVirtualRegister(Reg)) { 10489 FuncInfo->ValueMap[&Arg] = Reg; 10490 continue; 10491 } 10492 } 10493 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10494 FuncInfo->InitializeRegForValue(&Arg); 10495 SDB->CopyToExportRegsIfNeeded(&Arg); 10496 } 10497 } 10498 10499 if (!Chains.empty()) { 10500 Chains.push_back(NewRoot); 10501 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10502 } 10503 10504 DAG.setRoot(NewRoot); 10505 10506 assert(i == InVals.size() && "Argument register count mismatch!"); 10507 10508 // If any argument copy elisions occurred and we have debug info, update the 10509 // stale frame indices used in the dbg.declare variable info table. 10510 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10511 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10512 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10513 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10514 if (I != ArgCopyElisionFrameIndexMap.end()) 10515 VI.Slot = I->second; 10516 } 10517 } 10518 10519 // Finally, if the target has anything special to do, allow it to do so. 10520 emitFunctionEntryCode(); 10521 } 10522 10523 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10524 /// ensure constants are generated when needed. Remember the virtual registers 10525 /// that need to be added to the Machine PHI nodes as input. We cannot just 10526 /// directly add them, because expansion might result in multiple MBB's for one 10527 /// BB. As such, the start of the BB might correspond to a different MBB than 10528 /// the end. 10529 void 10530 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10531 const Instruction *TI = LLVMBB->getTerminator(); 10532 10533 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10534 10535 // Check PHI nodes in successors that expect a value to be available from this 10536 // block. 10537 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10538 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10539 if (!isa<PHINode>(SuccBB->begin())) continue; 10540 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10541 10542 // If this terminator has multiple identical successors (common for 10543 // switches), only handle each succ once. 10544 if (!SuccsHandled.insert(SuccMBB).second) 10545 continue; 10546 10547 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10548 10549 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10550 // nodes and Machine PHI nodes, but the incoming operands have not been 10551 // emitted yet. 10552 for (const PHINode &PN : SuccBB->phis()) { 10553 // Ignore dead phi's. 10554 if (PN.use_empty()) 10555 continue; 10556 10557 // Skip empty types 10558 if (PN.getType()->isEmptyTy()) 10559 continue; 10560 10561 unsigned Reg; 10562 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10563 10564 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10565 unsigned &RegOut = ConstantsOut[C]; 10566 if (RegOut == 0) { 10567 RegOut = FuncInfo.CreateRegs(C); 10568 CopyValueToVirtualRegister(C, RegOut); 10569 } 10570 Reg = RegOut; 10571 } else { 10572 DenseMap<const Value *, Register>::iterator I = 10573 FuncInfo.ValueMap.find(PHIOp); 10574 if (I != FuncInfo.ValueMap.end()) 10575 Reg = I->second; 10576 else { 10577 assert(isa<AllocaInst>(PHIOp) && 10578 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10579 "Didn't codegen value into a register!??"); 10580 Reg = FuncInfo.CreateRegs(PHIOp); 10581 CopyValueToVirtualRegister(PHIOp, Reg); 10582 } 10583 } 10584 10585 // Remember that this register needs to added to the machine PHI node as 10586 // the input for this MBB. 10587 SmallVector<EVT, 4> ValueVTs; 10588 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10589 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10590 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10591 EVT VT = ValueVTs[vti]; 10592 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10593 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10594 FuncInfo.PHINodesToUpdate.push_back( 10595 std::make_pair(&*MBBI++, Reg + i)); 10596 Reg += NumRegisters; 10597 } 10598 } 10599 } 10600 10601 ConstantsOut.clear(); 10602 } 10603 10604 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10605 MachineFunction::iterator I(MBB); 10606 if (++I == FuncInfo.MF->end()) 10607 return nullptr; 10608 return &*I; 10609 } 10610 10611 /// During lowering new call nodes can be created (such as memset, etc.). 10612 /// Those will become new roots of the current DAG, but complications arise 10613 /// when they are tail calls. In such cases, the call lowering will update 10614 /// the root, but the builder still needs to know that a tail call has been 10615 /// lowered in order to avoid generating an additional return. 10616 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10617 // If the node is null, we do have a tail call. 10618 if (MaybeTC.getNode() != nullptr) 10619 DAG.setRoot(MaybeTC); 10620 else 10621 HasTailCall = true; 10622 } 10623 10624 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10625 MachineBasicBlock *SwitchMBB, 10626 MachineBasicBlock *DefaultMBB) { 10627 MachineFunction *CurMF = FuncInfo.MF; 10628 MachineBasicBlock *NextMBB = nullptr; 10629 MachineFunction::iterator BBI(W.MBB); 10630 if (++BBI != FuncInfo.MF->end()) 10631 NextMBB = &*BBI; 10632 10633 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10634 10635 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10636 10637 if (Size == 2 && W.MBB == SwitchMBB) { 10638 // If any two of the cases has the same destination, and if one value 10639 // is the same as the other, but has one bit unset that the other has set, 10640 // use bit manipulation to do two compares at once. For example: 10641 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10642 // TODO: This could be extended to merge any 2 cases in switches with 3 10643 // cases. 10644 // TODO: Handle cases where W.CaseBB != SwitchBB. 10645 CaseCluster &Small = *W.FirstCluster; 10646 CaseCluster &Big = *W.LastCluster; 10647 10648 if (Small.Low == Small.High && Big.Low == Big.High && 10649 Small.MBB == Big.MBB) { 10650 const APInt &SmallValue = Small.Low->getValue(); 10651 const APInt &BigValue = Big.Low->getValue(); 10652 10653 // Check that there is only one bit different. 10654 APInt CommonBit = BigValue ^ SmallValue; 10655 if (CommonBit.isPowerOf2()) { 10656 SDValue CondLHS = getValue(Cond); 10657 EVT VT = CondLHS.getValueType(); 10658 SDLoc DL = getCurSDLoc(); 10659 10660 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10661 DAG.getConstant(CommonBit, DL, VT)); 10662 SDValue Cond = DAG.getSetCC( 10663 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10664 ISD::SETEQ); 10665 10666 // Update successor info. 10667 // Both Small and Big will jump to Small.BB, so we sum up the 10668 // probabilities. 10669 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10670 if (BPI) 10671 addSuccessorWithProb( 10672 SwitchMBB, DefaultMBB, 10673 // The default destination is the first successor in IR. 10674 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10675 else 10676 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10677 10678 // Insert the true branch. 10679 SDValue BrCond = 10680 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10681 DAG.getBasicBlock(Small.MBB)); 10682 // Insert the false branch. 10683 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10684 DAG.getBasicBlock(DefaultMBB)); 10685 10686 DAG.setRoot(BrCond); 10687 return; 10688 } 10689 } 10690 } 10691 10692 if (TM.getOptLevel() != CodeGenOpt::None) { 10693 // Here, we order cases by probability so the most likely case will be 10694 // checked first. However, two clusters can have the same probability in 10695 // which case their relative ordering is non-deterministic. So we use Low 10696 // as a tie-breaker as clusters are guaranteed to never overlap. 10697 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10698 [](const CaseCluster &a, const CaseCluster &b) { 10699 return a.Prob != b.Prob ? 10700 a.Prob > b.Prob : 10701 a.Low->getValue().slt(b.Low->getValue()); 10702 }); 10703 10704 // Rearrange the case blocks so that the last one falls through if possible 10705 // without changing the order of probabilities. 10706 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10707 --I; 10708 if (I->Prob > W.LastCluster->Prob) 10709 break; 10710 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10711 std::swap(*I, *W.LastCluster); 10712 break; 10713 } 10714 } 10715 } 10716 10717 // Compute total probability. 10718 BranchProbability DefaultProb = W.DefaultProb; 10719 BranchProbability UnhandledProbs = DefaultProb; 10720 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10721 UnhandledProbs += I->Prob; 10722 10723 MachineBasicBlock *CurMBB = W.MBB; 10724 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10725 bool FallthroughUnreachable = false; 10726 MachineBasicBlock *Fallthrough; 10727 if (I == W.LastCluster) { 10728 // For the last cluster, fall through to the default destination. 10729 Fallthrough = DefaultMBB; 10730 FallthroughUnreachable = isa<UnreachableInst>( 10731 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10732 } else { 10733 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10734 CurMF->insert(BBI, Fallthrough); 10735 // Put Cond in a virtual register to make it available from the new blocks. 10736 ExportFromCurrentBlock(Cond); 10737 } 10738 UnhandledProbs -= I->Prob; 10739 10740 switch (I->Kind) { 10741 case CC_JumpTable: { 10742 // FIXME: Optimize away range check based on pivot comparisons. 10743 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10744 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10745 10746 // The jump block hasn't been inserted yet; insert it here. 10747 MachineBasicBlock *JumpMBB = JT->MBB; 10748 CurMF->insert(BBI, JumpMBB); 10749 10750 auto JumpProb = I->Prob; 10751 auto FallthroughProb = UnhandledProbs; 10752 10753 // If the default statement is a target of the jump table, we evenly 10754 // distribute the default probability to successors of CurMBB. Also 10755 // update the probability on the edge from JumpMBB to Fallthrough. 10756 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10757 SE = JumpMBB->succ_end(); 10758 SI != SE; ++SI) { 10759 if (*SI == DefaultMBB) { 10760 JumpProb += DefaultProb / 2; 10761 FallthroughProb -= DefaultProb / 2; 10762 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10763 JumpMBB->normalizeSuccProbs(); 10764 break; 10765 } 10766 } 10767 10768 if (FallthroughUnreachable) 10769 JTH->FallthroughUnreachable = true; 10770 10771 if (!JTH->FallthroughUnreachable) 10772 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10773 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10774 CurMBB->normalizeSuccProbs(); 10775 10776 // The jump table header will be inserted in our current block, do the 10777 // range check, and fall through to our fallthrough block. 10778 JTH->HeaderBB = CurMBB; 10779 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10780 10781 // If we're in the right place, emit the jump table header right now. 10782 if (CurMBB == SwitchMBB) { 10783 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10784 JTH->Emitted = true; 10785 } 10786 break; 10787 } 10788 case CC_BitTests: { 10789 // FIXME: Optimize away range check based on pivot comparisons. 10790 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10791 10792 // The bit test blocks haven't been inserted yet; insert them here. 10793 for (BitTestCase &BTC : BTB->Cases) 10794 CurMF->insert(BBI, BTC.ThisBB); 10795 10796 // Fill in fields of the BitTestBlock. 10797 BTB->Parent = CurMBB; 10798 BTB->Default = Fallthrough; 10799 10800 BTB->DefaultProb = UnhandledProbs; 10801 // If the cases in bit test don't form a contiguous range, we evenly 10802 // distribute the probability on the edge to Fallthrough to two 10803 // successors of CurMBB. 10804 if (!BTB->ContiguousRange) { 10805 BTB->Prob += DefaultProb / 2; 10806 BTB->DefaultProb -= DefaultProb / 2; 10807 } 10808 10809 if (FallthroughUnreachable) 10810 BTB->FallthroughUnreachable = true; 10811 10812 // If we're in the right place, emit the bit test header right now. 10813 if (CurMBB == SwitchMBB) { 10814 visitBitTestHeader(*BTB, SwitchMBB); 10815 BTB->Emitted = true; 10816 } 10817 break; 10818 } 10819 case CC_Range: { 10820 const Value *RHS, *LHS, *MHS; 10821 ISD::CondCode CC; 10822 if (I->Low == I->High) { 10823 // Check Cond == I->Low. 10824 CC = ISD::SETEQ; 10825 LHS = Cond; 10826 RHS=I->Low; 10827 MHS = nullptr; 10828 } else { 10829 // Check I->Low <= Cond <= I->High. 10830 CC = ISD::SETLE; 10831 LHS = I->Low; 10832 MHS = Cond; 10833 RHS = I->High; 10834 } 10835 10836 // If Fallthrough is unreachable, fold away the comparison. 10837 if (FallthroughUnreachable) 10838 CC = ISD::SETTRUE; 10839 10840 // The false probability is the sum of all unhandled cases. 10841 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10842 getCurSDLoc(), I->Prob, UnhandledProbs); 10843 10844 if (CurMBB == SwitchMBB) 10845 visitSwitchCase(CB, SwitchMBB); 10846 else 10847 SL->SwitchCases.push_back(CB); 10848 10849 break; 10850 } 10851 } 10852 CurMBB = Fallthrough; 10853 } 10854 } 10855 10856 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10857 CaseClusterIt First, 10858 CaseClusterIt Last) { 10859 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10860 if (X.Prob != CC.Prob) 10861 return X.Prob > CC.Prob; 10862 10863 // Ties are broken by comparing the case value. 10864 return X.Low->getValue().slt(CC.Low->getValue()); 10865 }); 10866 } 10867 10868 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10869 const SwitchWorkListItem &W, 10870 Value *Cond, 10871 MachineBasicBlock *SwitchMBB) { 10872 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10873 "Clusters not sorted?"); 10874 10875 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10876 10877 // Balance the tree based on branch probabilities to create a near-optimal (in 10878 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10879 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10880 CaseClusterIt LastLeft = W.FirstCluster; 10881 CaseClusterIt FirstRight = W.LastCluster; 10882 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10883 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10884 10885 // Move LastLeft and FirstRight towards each other from opposite directions to 10886 // find a partitioning of the clusters which balances the probability on both 10887 // sides. If LeftProb and RightProb are equal, alternate which side is 10888 // taken to ensure 0-probability nodes are distributed evenly. 10889 unsigned I = 0; 10890 while (LastLeft + 1 < FirstRight) { 10891 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10892 LeftProb += (++LastLeft)->Prob; 10893 else 10894 RightProb += (--FirstRight)->Prob; 10895 I++; 10896 } 10897 10898 while (true) { 10899 // Our binary search tree differs from a typical BST in that ours can have up 10900 // to three values in each leaf. The pivot selection above doesn't take that 10901 // into account, which means the tree might require more nodes and be less 10902 // efficient. We compensate for this here. 10903 10904 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10905 unsigned NumRight = W.LastCluster - FirstRight + 1; 10906 10907 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10908 // If one side has less than 3 clusters, and the other has more than 3, 10909 // consider taking a cluster from the other side. 10910 10911 if (NumLeft < NumRight) { 10912 // Consider moving the first cluster on the right to the left side. 10913 CaseCluster &CC = *FirstRight; 10914 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10915 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10916 if (LeftSideRank <= RightSideRank) { 10917 // Moving the cluster to the left does not demote it. 10918 ++LastLeft; 10919 ++FirstRight; 10920 continue; 10921 } 10922 } else { 10923 assert(NumRight < NumLeft); 10924 // Consider moving the last element on the left to the right side. 10925 CaseCluster &CC = *LastLeft; 10926 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10927 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10928 if (RightSideRank <= LeftSideRank) { 10929 // Moving the cluster to the right does not demot it. 10930 --LastLeft; 10931 --FirstRight; 10932 continue; 10933 } 10934 } 10935 } 10936 break; 10937 } 10938 10939 assert(LastLeft + 1 == FirstRight); 10940 assert(LastLeft >= W.FirstCluster); 10941 assert(FirstRight <= W.LastCluster); 10942 10943 // Use the first element on the right as pivot since we will make less-than 10944 // comparisons against it. 10945 CaseClusterIt PivotCluster = FirstRight; 10946 assert(PivotCluster > W.FirstCluster); 10947 assert(PivotCluster <= W.LastCluster); 10948 10949 CaseClusterIt FirstLeft = W.FirstCluster; 10950 CaseClusterIt LastRight = W.LastCluster; 10951 10952 const ConstantInt *Pivot = PivotCluster->Low; 10953 10954 // New blocks will be inserted immediately after the current one. 10955 MachineFunction::iterator BBI(W.MBB); 10956 ++BBI; 10957 10958 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10959 // we can branch to its destination directly if it's squeezed exactly in 10960 // between the known lower bound and Pivot - 1. 10961 MachineBasicBlock *LeftMBB; 10962 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10963 FirstLeft->Low == W.GE && 10964 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10965 LeftMBB = FirstLeft->MBB; 10966 } else { 10967 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10968 FuncInfo.MF->insert(BBI, LeftMBB); 10969 WorkList.push_back( 10970 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10971 // Put Cond in a virtual register to make it available from the new blocks. 10972 ExportFromCurrentBlock(Cond); 10973 } 10974 10975 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10976 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10977 // directly if RHS.High equals the current upper bound. 10978 MachineBasicBlock *RightMBB; 10979 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10980 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10981 RightMBB = FirstRight->MBB; 10982 } else { 10983 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10984 FuncInfo.MF->insert(BBI, RightMBB); 10985 WorkList.push_back( 10986 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10987 // Put Cond in a virtual register to make it available from the new blocks. 10988 ExportFromCurrentBlock(Cond); 10989 } 10990 10991 // Create the CaseBlock record that will be used to lower the branch. 10992 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10993 getCurSDLoc(), LeftProb, RightProb); 10994 10995 if (W.MBB == SwitchMBB) 10996 visitSwitchCase(CB, SwitchMBB); 10997 else 10998 SL->SwitchCases.push_back(CB); 10999 } 11000 11001 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11002 // from the swith statement. 11003 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11004 BranchProbability PeeledCaseProb) { 11005 if (PeeledCaseProb == BranchProbability::getOne()) 11006 return BranchProbability::getZero(); 11007 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11008 11009 uint32_t Numerator = CaseProb.getNumerator(); 11010 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11011 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11012 } 11013 11014 // Try to peel the top probability case if it exceeds the threshold. 11015 // Return current MachineBasicBlock for the switch statement if the peeling 11016 // does not occur. 11017 // If the peeling is performed, return the newly created MachineBasicBlock 11018 // for the peeled switch statement. Also update Clusters to remove the peeled 11019 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11020 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11021 const SwitchInst &SI, CaseClusterVector &Clusters, 11022 BranchProbability &PeeledCaseProb) { 11023 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11024 // Don't perform if there is only one cluster or optimizing for size. 11025 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11026 TM.getOptLevel() == CodeGenOpt::None || 11027 SwitchMBB->getParent()->getFunction().hasMinSize()) 11028 return SwitchMBB; 11029 11030 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11031 unsigned PeeledCaseIndex = 0; 11032 bool SwitchPeeled = false; 11033 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11034 CaseCluster &CC = Clusters[Index]; 11035 if (CC.Prob < TopCaseProb) 11036 continue; 11037 TopCaseProb = CC.Prob; 11038 PeeledCaseIndex = Index; 11039 SwitchPeeled = true; 11040 } 11041 if (!SwitchPeeled) 11042 return SwitchMBB; 11043 11044 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11045 << TopCaseProb << "\n"); 11046 11047 // Record the MBB for the peeled switch statement. 11048 MachineFunction::iterator BBI(SwitchMBB); 11049 ++BBI; 11050 MachineBasicBlock *PeeledSwitchMBB = 11051 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11052 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11053 11054 ExportFromCurrentBlock(SI.getCondition()); 11055 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11056 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11057 nullptr, nullptr, TopCaseProb.getCompl()}; 11058 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11059 11060 Clusters.erase(PeeledCaseIt); 11061 for (CaseCluster &CC : Clusters) { 11062 LLVM_DEBUG( 11063 dbgs() << "Scale the probablity for one cluster, before scaling: " 11064 << CC.Prob << "\n"); 11065 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11066 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11067 } 11068 PeeledCaseProb = TopCaseProb; 11069 return PeeledSwitchMBB; 11070 } 11071 11072 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11073 // Extract cases from the switch. 11074 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11075 CaseClusterVector Clusters; 11076 Clusters.reserve(SI.getNumCases()); 11077 for (auto I : SI.cases()) { 11078 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11079 const ConstantInt *CaseVal = I.getCaseValue(); 11080 BranchProbability Prob = 11081 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11082 : BranchProbability(1, SI.getNumCases() + 1); 11083 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11084 } 11085 11086 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11087 11088 // Cluster adjacent cases with the same destination. We do this at all 11089 // optimization levels because it's cheap to do and will make codegen faster 11090 // if there are many clusters. 11091 sortAndRangeify(Clusters); 11092 11093 // The branch probablity of the peeled case. 11094 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11095 MachineBasicBlock *PeeledSwitchMBB = 11096 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11097 11098 // If there is only the default destination, jump there directly. 11099 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11100 if (Clusters.empty()) { 11101 assert(PeeledSwitchMBB == SwitchMBB); 11102 SwitchMBB->addSuccessor(DefaultMBB); 11103 if (DefaultMBB != NextBlock(SwitchMBB)) { 11104 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11105 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11106 } 11107 return; 11108 } 11109 11110 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11111 SL->findBitTestClusters(Clusters, &SI); 11112 11113 LLVM_DEBUG({ 11114 dbgs() << "Case clusters: "; 11115 for (const CaseCluster &C : Clusters) { 11116 if (C.Kind == CC_JumpTable) 11117 dbgs() << "JT:"; 11118 if (C.Kind == CC_BitTests) 11119 dbgs() << "BT:"; 11120 11121 C.Low->getValue().print(dbgs(), true); 11122 if (C.Low != C.High) { 11123 dbgs() << '-'; 11124 C.High->getValue().print(dbgs(), true); 11125 } 11126 dbgs() << ' '; 11127 } 11128 dbgs() << '\n'; 11129 }); 11130 11131 assert(!Clusters.empty()); 11132 SwitchWorkList WorkList; 11133 CaseClusterIt First = Clusters.begin(); 11134 CaseClusterIt Last = Clusters.end() - 1; 11135 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11136 // Scale the branchprobability for DefaultMBB if the peel occurs and 11137 // DefaultMBB is not replaced. 11138 if (PeeledCaseProb != BranchProbability::getZero() && 11139 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11140 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11141 WorkList.push_back( 11142 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11143 11144 while (!WorkList.empty()) { 11145 SwitchWorkListItem W = WorkList.pop_back_val(); 11146 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11147 11148 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11149 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11150 // For optimized builds, lower large range as a balanced binary tree. 11151 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11152 continue; 11153 } 11154 11155 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11156 } 11157 } 11158 11159 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11160 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11161 auto DL = getCurSDLoc(); 11162 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11163 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11164 } 11165 11166 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11167 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11168 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11169 11170 SDLoc DL = getCurSDLoc(); 11171 SDValue V = getValue(I.getOperand(0)); 11172 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11173 11174 if (VT.isScalableVector()) { 11175 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11176 return; 11177 } 11178 11179 // Use VECTOR_SHUFFLE for the fixed-length vector 11180 // to maintain existing behavior. 11181 SmallVector<int, 8> Mask; 11182 unsigned NumElts = VT.getVectorMinNumElements(); 11183 for (unsigned i = 0; i != NumElts; ++i) 11184 Mask.push_back(NumElts - 1 - i); 11185 11186 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11187 } 11188 11189 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11190 SmallVector<EVT, 4> ValueVTs; 11191 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11192 ValueVTs); 11193 unsigned NumValues = ValueVTs.size(); 11194 if (NumValues == 0) return; 11195 11196 SmallVector<SDValue, 4> Values(NumValues); 11197 SDValue Op = getValue(I.getOperand(0)); 11198 11199 for (unsigned i = 0; i != NumValues; ++i) 11200 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11201 SDValue(Op.getNode(), Op.getResNo() + i)); 11202 11203 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11204 DAG.getVTList(ValueVTs), Values)); 11205 } 11206 11207 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11209 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11210 11211 SDLoc DL = getCurSDLoc(); 11212 SDValue V1 = getValue(I.getOperand(0)); 11213 SDValue V2 = getValue(I.getOperand(1)); 11214 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11215 11216 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11217 if (VT.isScalableVector()) { 11218 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11219 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11220 DAG.getConstant(Imm, DL, IdxVT))); 11221 return; 11222 } 11223 11224 unsigned NumElts = VT.getVectorNumElements(); 11225 11226 uint64_t Idx = (NumElts + Imm) % NumElts; 11227 11228 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11229 SmallVector<int, 8> Mask; 11230 for (unsigned i = 0; i < NumElts; ++i) 11231 Mask.push_back(Idx + i); 11232 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11233 } 11234