xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision e0841f692017cad1edf866e9c6907bffda5ea02c)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/DiagnosticInfo.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/InlineAsm.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/IntrinsicInst.h"
79 #include "llvm/IR/Intrinsics.h"
80 #include "llvm/IR/IntrinsicsAArch64.h"
81 #include "llvm/IR/IntrinsicsWebAssembly.h"
82 #include "llvm/IR/LLVMContext.h"
83 #include "llvm/IR/Metadata.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/IR/Statepoint.h"
88 #include "llvm/IR/Type.h"
89 #include "llvm/IR/User.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/MC/MCContext.h"
92 #include "llvm/MC/MCSymbol.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Target/TargetIntrinsicInfo.h"
101 #include "llvm/Target/TargetMachine.h"
102 #include "llvm/Target/TargetOptions.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <cstddef>
105 #include <cstring>
106 #include <iterator>
107 #include <limits>
108 #include <numeric>
109 #include <tuple>
110 
111 using namespace llvm;
112 using namespace PatternMatch;
113 using namespace SwitchCG;
114 
115 #define DEBUG_TYPE "isel"
116 
117 /// LimitFloatPrecision - Generate low-precision inline sequences for
118 /// some float libcalls (6, 8 or 12 bits).
119 static unsigned LimitFloatPrecision;
120 
121 static cl::opt<bool>
122     InsertAssertAlign("insert-assert-align", cl::init(true),
123                       cl::desc("Insert the experimental `assertalign` node."),
124                       cl::ReallyHidden);
125 
126 static cl::opt<unsigned, true>
127     LimitFPPrecision("limit-float-precision",
128                      cl::desc("Generate low-precision inline sequences "
129                               "for some float libcalls"),
130                      cl::location(LimitFloatPrecision), cl::Hidden,
131                      cl::init(0));
132 
133 static cl::opt<unsigned> SwitchPeelThreshold(
134     "switch-peel-threshold", cl::Hidden, cl::init(66),
135     cl::desc("Set the case probability threshold for peeling the case from a "
136              "switch statement. A value greater than 100 will void this "
137              "optimization"));
138 
139 // Limit the width of DAG chains. This is important in general to prevent
140 // DAG-based analysis from blowing up. For example, alias analysis and
141 // load clustering may not complete in reasonable time. It is difficult to
142 // recognize and avoid this situation within each individual analysis, and
143 // future analyses are likely to have the same behavior. Limiting DAG width is
144 // the safe approach and will be especially important with global DAGs.
145 //
146 // MaxParallelChains default is arbitrarily high to avoid affecting
147 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
148 // sequence over this should have been converted to llvm.memcpy by the
149 // frontend. It is easy to induce this behavior with .ll code such as:
150 // %buffer = alloca [4096 x i8]
151 // %data = load [4096 x i8]* %argPtr
152 // store [4096 x i8] %data, [4096 x i8]* %buffer
153 static const unsigned MaxParallelChains = 64;
154 
155 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
156                                       const SDValue *Parts, unsigned NumParts,
157                                       MVT PartVT, EVT ValueVT, const Value *V,
158                                       Optional<CallingConv::ID> CC);
159 
160 /// getCopyFromParts - Create a value that contains the specified legal parts
161 /// combined into the value they represent.  If the parts combine to a type
162 /// larger than ValueVT then AssertOp can be used to specify whether the extra
163 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
164 /// (ISD::AssertSext).
165 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
166                                 const SDValue *Parts, unsigned NumParts,
167                                 MVT PartVT, EVT ValueVT, const Value *V,
168                                 Optional<CallingConv::ID> CC = None,
169                                 Optional<ISD::NodeType> AssertOp = None) {
170   // Let the target assemble the parts if it wants to
171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
172   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
173                                                    PartVT, ValueVT, CC))
174     return Val;
175 
176   if (ValueVT.isVector())
177     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
178                                   CC);
179 
180   assert(NumParts > 0 && "No parts to assemble!");
181   SDValue Val = Parts[0];
182 
183   if (NumParts > 1) {
184     // Assemble the value from multiple parts.
185     if (ValueVT.isInteger()) {
186       unsigned PartBits = PartVT.getSizeInBits();
187       unsigned ValueBits = ValueVT.getSizeInBits();
188 
189       // Assemble the power of 2 part.
190       unsigned RoundParts =
191           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
192       unsigned RoundBits = PartBits * RoundParts;
193       EVT RoundVT = RoundBits == ValueBits ?
194         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
195       SDValue Lo, Hi;
196 
197       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 
199       if (RoundParts > 2) {
200         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
201                               PartVT, HalfVT, V);
202         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
203                               RoundParts / 2, PartVT, HalfVT, V);
204       } else {
205         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
206         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
207       }
208 
209       if (DAG.getDataLayout().isBigEndian())
210         std::swap(Lo, Hi);
211 
212       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 
214       if (RoundParts < NumParts) {
215         // Assemble the trailing non-power-of-2 part.
216         unsigned OddParts = NumParts - RoundParts;
217         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
218         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
219                               OddVT, V, CC);
220 
221         // Combine the round and odd parts.
222         Lo = Val;
223         if (DAG.getDataLayout().isBigEndian())
224           std::swap(Lo, Hi);
225         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
226         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
227         Hi =
228             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
229                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
230                                         TLI.getPointerTy(DAG.getDataLayout())));
231         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
232         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233       }
234     } else if (PartVT.isFloatingPoint()) {
235       // FP split into multiple FP parts (for ppcf128)
236       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
237              "Unexpected split");
238       SDValue Lo, Hi;
239       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
240       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
241       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
242         std::swap(Lo, Hi);
243       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
244     } else {
245       // FP split into integer parts (soft fp)
246       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
247              !PartVT.isVector() && "Unexpected split");
248       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
249       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
250     }
251   }
252 
253   // There is now one part, held in Val.  Correct it to match ValueVT.
254   // PartEVT is the type of the register class that holds the value.
255   // ValueVT is the type of the inline asm operation.
256   EVT PartEVT = Val.getValueType();
257 
258   if (PartEVT == ValueVT)
259     return Val;
260 
261   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
262       ValueVT.bitsLT(PartEVT)) {
263     // For an FP value in an integer part, we need to truncate to the right
264     // width first.
265     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
266     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
267   }
268 
269   // Handle types that have the same size.
270   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
271     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 
273   // Handle types with different sizes.
274   if (PartEVT.isInteger() && ValueVT.isInteger()) {
275     if (ValueVT.bitsLT(PartEVT)) {
276       // For a truncate, see if we have any information to
277       // indicate whether the truncated bits will always be
278       // zero or sign-extension.
279       if (AssertOp.hasValue())
280         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
281                           DAG.getValueType(ValueVT));
282       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283     }
284     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
285   }
286 
287   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
288     // FP_ROUND's are always exact here.
289     if (ValueVT.bitsLT(Val.getValueType()))
290       return DAG.getNode(
291           ISD::FP_ROUND, DL, ValueVT, Val,
292           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
293 
294     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
295   }
296 
297   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
298   // then truncating.
299   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
300       ValueVT.bitsLT(PartEVT)) {
301     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
302     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
303   }
304 
305   report_fatal_error("Unknown mismatch in getCopyFromParts!");
306 }
307 
308 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
309                                               const Twine &ErrMsg) {
310   const Instruction *I = dyn_cast_or_null<Instruction>(V);
311   if (!V)
312     return Ctx.emitError(ErrMsg);
313 
314   const char *AsmError = ", possible invalid constraint for vector type";
315   if (const CallInst *CI = dyn_cast<CallInst>(I))
316     if (CI->isInlineAsm())
317       return Ctx.emitError(I, ErrMsg + AsmError);
318 
319   return Ctx.emitError(I, ErrMsg);
320 }
321 
322 /// getCopyFromPartsVector - Create a value that contains the specified legal
323 /// parts combined into the value they represent.  If the parts combine to a
324 /// type larger than ValueVT then AssertOp can be used to specify whether the
325 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
326 /// ValueVT (ISD::AssertSext).
327 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
328                                       const SDValue *Parts, unsigned NumParts,
329                                       MVT PartVT, EVT ValueVT, const Value *V,
330                                       Optional<CallingConv::ID> CallConv) {
331   assert(ValueVT.isVector() && "Not a vector value");
332   assert(NumParts > 0 && "No parts to assemble!");
333   const bool IsABIRegCopy = CallConv.hasValue();
334 
335   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
336   SDValue Val = Parts[0];
337 
338   // Handle a multi-element vector.
339   if (NumParts > 1) {
340     EVT IntermediateVT;
341     MVT RegisterVT;
342     unsigned NumIntermediates;
343     unsigned NumRegs;
344 
345     if (IsABIRegCopy) {
346       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
347           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
348           NumIntermediates, RegisterVT);
349     } else {
350       NumRegs =
351           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
352                                      NumIntermediates, RegisterVT);
353     }
354 
355     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
356     NumParts = NumRegs; // Silence a compiler warning.
357     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
358     assert(RegisterVT.getSizeInBits() ==
359            Parts[0].getSimpleValueType().getSizeInBits() &&
360            "Part type sizes don't match!");
361 
362     // Assemble the parts into intermediate operands.
363     SmallVector<SDValue, 8> Ops(NumIntermediates);
364     if (NumIntermediates == NumParts) {
365       // If the register was not expanded, truncate or copy the value,
366       // as appropriate.
367       for (unsigned i = 0; i != NumParts; ++i)
368         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
369                                   PartVT, IntermediateVT, V, CallConv);
370     } else if (NumParts > 0) {
371       // If the intermediate type was expanded, build the intermediate
372       // operands from the parts.
373       assert(NumParts % NumIntermediates == 0 &&
374              "Must expand into a divisible number of parts!");
375       unsigned Factor = NumParts / NumIntermediates;
376       for (unsigned i = 0; i != NumIntermediates; ++i)
377         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
378                                   PartVT, IntermediateVT, V, CallConv);
379     }
380 
381     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
382     // intermediate operands.
383     EVT BuiltVectorTy =
384         IntermediateVT.isVector()
385             ? EVT::getVectorVT(
386                   *DAG.getContext(), IntermediateVT.getScalarType(),
387                   IntermediateVT.getVectorElementCount() * NumParts)
388             : EVT::getVectorVT(*DAG.getContext(),
389                                IntermediateVT.getScalarType(),
390                                NumIntermediates);
391     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
392                                                 : ISD::BUILD_VECTOR,
393                       DL, BuiltVectorTy, Ops);
394   }
395 
396   // There is now one part, held in Val.  Correct it to match ValueVT.
397   EVT PartEVT = Val.getValueType();
398 
399   if (PartEVT == ValueVT)
400     return Val;
401 
402   if (PartEVT.isVector()) {
403     // Vector/Vector bitcast.
404     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
405       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
406 
407     // If the element type of the source/dest vectors are the same, but the
408     // parts vector has more elements than the value vector, then we have a
409     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
410     // elements we want.
411     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
412       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
413               ValueVT.getVectorElementCount().getKnownMinValue()) &&
414              (PartEVT.getVectorElementCount().isScalable() ==
415               ValueVT.getVectorElementCount().isScalable()) &&
416              "Cannot narrow, it would be a lossy transformation");
417       PartEVT =
418           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
419                            ValueVT.getVectorElementCount());
420       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
421                         DAG.getVectorIdxConstant(0, DL));
422       if (PartEVT == ValueVT)
423         return Val;
424     }
425 
426     // Promoted vector extract
427     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
428   }
429 
430   // Trivial bitcast if the types are the same size and the destination
431   // vector type is legal.
432   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
433       TLI.isTypeLegal(ValueVT))
434     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 
436   if (ValueVT.getVectorNumElements() != 1) {
437      // Certain ABIs require that vectors are passed as integers. For vectors
438      // are the same size, this is an obvious bitcast.
439      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
440        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
441      } else if (ValueVT.bitsLT(PartEVT)) {
442        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
443        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
444        // Drop the extra bits.
445        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
446        return DAG.getBitcast(ValueVT, Val);
447      }
448 
449      diagnosePossiblyInvalidConstraint(
450          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
451      return DAG.getUNDEF(ValueVT);
452   }
453 
454   // Handle cases such as i8 -> <1 x i1>
455   EVT ValueSVT = ValueVT.getVectorElementType();
456   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
457     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
458       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
459     else
460       Val = ValueVT.isFloatingPoint()
461                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
462                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
463   }
464 
465   return DAG.getBuildVector(ValueVT, DL, Val);
466 }
467 
468 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
469                                  SDValue Val, SDValue *Parts, unsigned NumParts,
470                                  MVT PartVT, const Value *V,
471                                  Optional<CallingConv::ID> CallConv);
472 
473 /// getCopyToParts - Create a series of nodes that contain the specified value
474 /// split into legal parts.  If the parts contain more bits than Val, then, for
475 /// integers, ExtendKind can be used to specify how to generate the extra bits.
476 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
477                            SDValue *Parts, unsigned NumParts, MVT PartVT,
478                            const Value *V,
479                            Optional<CallingConv::ID> CallConv = None,
480                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
481   // Let the target split the parts if it wants to
482   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
483   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
484                                       CallConv))
485     return;
486   EVT ValueVT = Val.getValueType();
487 
488   // Handle the vector case separately.
489   if (ValueVT.isVector())
490     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
491                                 CallConv);
492 
493   unsigned PartBits = PartVT.getSizeInBits();
494   unsigned OrigNumParts = NumParts;
495   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
496          "Copying to an illegal type!");
497 
498   if (NumParts == 0)
499     return;
500 
501   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
502   EVT PartEVT = PartVT;
503   if (PartEVT == ValueVT) {
504     assert(NumParts == 1 && "No-op copy with multiple parts!");
505     Parts[0] = Val;
506     return;
507   }
508 
509   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
510     // If the parts cover more bits than the value has, promote the value.
511     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
512       assert(NumParts == 1 && "Do not know what to promote to!");
513       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
514     } else {
515       if (ValueVT.isFloatingPoint()) {
516         // FP values need to be bitcast, then extended if they are being put
517         // into a larger container.
518         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
519         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520       }
521       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
522              ValueVT.isInteger() &&
523              "Unknown mismatch!");
524       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
525       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
526       if (PartVT == MVT::x86mmx)
527         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     }
529   } else if (PartBits == ValueVT.getSizeInBits()) {
530     // Different types of the same size.
531     assert(NumParts == 1 && PartEVT != ValueVT);
532     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
533   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
534     // If the parts cover less bits than value has, truncate the value.
535     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
536            ValueVT.isInteger() &&
537            "Unknown mismatch!");
538     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
539     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
540     if (PartVT == MVT::x86mmx)
541       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
542   }
543 
544   // The value may have changed - recompute ValueVT.
545   ValueVT = Val.getValueType();
546   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
547          "Failed to tile the value with PartVT!");
548 
549   if (NumParts == 1) {
550     if (PartEVT != ValueVT) {
551       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
552                                         "scalar-to-vector conversion failed");
553       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554     }
555 
556     Parts[0] = Val;
557     return;
558   }
559 
560   // Expand the value into multiple parts.
561   if (NumParts & (NumParts - 1)) {
562     // The number of parts is not a power of 2.  Split off and copy the tail.
563     assert(PartVT.isInteger() && ValueVT.isInteger() &&
564            "Do not know what to expand to!");
565     unsigned RoundParts = 1 << Log2_32(NumParts);
566     unsigned RoundBits = RoundParts * PartBits;
567     unsigned OddParts = NumParts - RoundParts;
568     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
569       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 
571     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
572                    CallConv);
573 
574     if (DAG.getDataLayout().isBigEndian())
575       // The odd parts were reversed by getCopyToParts - unreverse them.
576       std::reverse(Parts + RoundParts, Parts + NumParts);
577 
578     NumParts = RoundParts;
579     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
580     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
581   }
582 
583   // The number of parts is a power of 2.  Repeatedly bisect the value using
584   // EXTRACT_ELEMENT.
585   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
586                          EVT::getIntegerVT(*DAG.getContext(),
587                                            ValueVT.getSizeInBits()),
588                          Val);
589 
590   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
591     for (unsigned i = 0; i < NumParts; i += StepSize) {
592       unsigned ThisBits = StepSize * PartBits / 2;
593       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
594       SDValue &Part0 = Parts[i];
595       SDValue &Part1 = Parts[i+StepSize/2];
596 
597       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
598                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
599       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
600                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 
602       if (ThisBits == PartBits && ThisVT != PartVT) {
603         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
604         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
605       }
606     }
607   }
608 
609   if (DAG.getDataLayout().isBigEndian())
610     std::reverse(Parts, Parts + OrigNumParts);
611 }
612 
613 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
614                                      const SDLoc &DL, EVT PartVT) {
615   if (!PartVT.isVector())
616     return SDValue();
617 
618   EVT ValueVT = Val.getValueType();
619   ElementCount PartNumElts = PartVT.getVectorElementCount();
620   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
621 
622   // We only support widening vectors with equivalent element types and
623   // fixed/scalable properties. If a target needs to widen a fixed-length type
624   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
625   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
626       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
627       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
628     return SDValue();
629 
630   // Widening a scalable vector to another scalable vector is done by inserting
631   // the vector into a larger undef one.
632   if (PartNumElts.isScalable())
633     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
634                        Val, DAG.getVectorIdxConstant(0, DL));
635 
636   EVT ElementVT = PartVT.getVectorElementType();
637   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
638   // undef elements.
639   SmallVector<SDValue, 16> Ops;
640   DAG.ExtractVectorElements(Val, Ops);
641   SDValue EltUndef = DAG.getUNDEF(ElementVT);
642   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
643 
644   // FIXME: Use CONCAT for 2x -> 4x.
645   return DAG.getBuildVector(PartVT, DL, Ops);
646 }
647 
648 /// getCopyToPartsVector - Create a series of nodes that contain the specified
649 /// value split into legal parts.
650 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
651                                  SDValue Val, SDValue *Parts, unsigned NumParts,
652                                  MVT PartVT, const Value *V,
653                                  Optional<CallingConv::ID> CallConv) {
654   EVT ValueVT = Val.getValueType();
655   assert(ValueVT.isVector() && "Not a vector");
656   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
657   const bool IsABIRegCopy = CallConv.hasValue();
658 
659   if (NumParts == 1) {
660     EVT PartEVT = PartVT;
661     if (PartEVT == ValueVT) {
662       // Nothing to do.
663     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
664       // Bitconvert vector->vector case.
665       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
666     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
667       Val = Widened;
668     } else if (PartVT.isVector() &&
669                PartEVT.getVectorElementType().bitsGE(
670                    ValueVT.getVectorElementType()) &&
671                PartEVT.getVectorElementCount() ==
672                    ValueVT.getVectorElementCount()) {
673 
674       // Promoted vector extract
675       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
676     } else if (PartEVT.isVector() &&
677                PartEVT.getVectorElementType() !=
678                    ValueVT.getVectorElementType() &&
679                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
680                    TargetLowering::TypeWidenVector) {
681       // Combination of widening and promotion.
682       EVT WidenVT =
683           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
684                            PartVT.getVectorElementCount());
685       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
686       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
687     } else {
688       if (ValueVT.getVectorElementCount().isScalar()) {
689         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
690                           DAG.getVectorIdxConstant(0, DL));
691       } else {
692         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
693         assert(PartVT.getFixedSizeInBits() > ValueSize &&
694                "lossy conversion of vector to scalar type");
695         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
696         Val = DAG.getBitcast(IntermediateType, Val);
697         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
698       }
699     }
700 
701     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
702     Parts[0] = Val;
703     return;
704   }
705 
706   // Handle a multi-element vector.
707   EVT IntermediateVT;
708   MVT RegisterVT;
709   unsigned NumIntermediates;
710   unsigned NumRegs;
711   if (IsABIRegCopy) {
712     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
713         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
714         NumIntermediates, RegisterVT);
715   } else {
716     NumRegs =
717         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
718                                    NumIntermediates, RegisterVT);
719   }
720 
721   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
722   NumParts = NumRegs; // Silence a compiler warning.
723   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
724 
725   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
726          "Mixing scalable and fixed vectors when copying in parts");
727 
728   Optional<ElementCount> DestEltCnt;
729 
730   if (IntermediateVT.isVector())
731     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
732   else
733     DestEltCnt = ElementCount::getFixed(NumIntermediates);
734 
735   EVT BuiltVectorTy = EVT::getVectorVT(
736       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
737 
738   if (ValueVT == BuiltVectorTy) {
739     // Nothing to do.
740   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
741     // Bitconvert vector->vector case.
742     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
743   } else {
744     if (BuiltVectorTy.getVectorElementType().bitsGT(
745             ValueVT.getVectorElementType())) {
746       // Integer promotion.
747       ValueVT = EVT::getVectorVT(*DAG.getContext(),
748                                  BuiltVectorTy.getVectorElementType(),
749                                  ValueVT.getVectorElementCount());
750       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
751     }
752 
753     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
754       Val = Widened;
755     }
756   }
757 
758   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
759 
760   // Split the vector into intermediate operands.
761   SmallVector<SDValue, 8> Ops(NumIntermediates);
762   for (unsigned i = 0; i != NumIntermediates; ++i) {
763     if (IntermediateVT.isVector()) {
764       // This does something sensible for scalable vectors - see the
765       // definition of EXTRACT_SUBVECTOR for further details.
766       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
767       Ops[i] =
768           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
769                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
770     } else {
771       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
772                            DAG.getVectorIdxConstant(i, DL));
773     }
774   }
775 
776   // Split the intermediate operands into legal parts.
777   if (NumParts == NumIntermediates) {
778     // If the register was not expanded, promote or copy the value,
779     // as appropriate.
780     for (unsigned i = 0; i != NumParts; ++i)
781       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
782   } else if (NumParts > 0) {
783     // If the intermediate type was expanded, split each the value into
784     // legal parts.
785     assert(NumIntermediates != 0 && "division by zero");
786     assert(NumParts % NumIntermediates == 0 &&
787            "Must expand into a divisible number of parts!");
788     unsigned Factor = NumParts / NumIntermediates;
789     for (unsigned i = 0; i != NumIntermediates; ++i)
790       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
791                      CallConv);
792   }
793 }
794 
795 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
796                            EVT valuevt, Optional<CallingConv::ID> CC)
797     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
798       RegCount(1, regs.size()), CallConv(CC) {}
799 
800 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
801                            const DataLayout &DL, unsigned Reg, Type *Ty,
802                            Optional<CallingConv::ID> CC) {
803   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
804 
805   CallConv = CC;
806 
807   for (EVT ValueVT : ValueVTs) {
808     unsigned NumRegs =
809         isABIMangled()
810             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
811             : TLI.getNumRegisters(Context, ValueVT);
812     MVT RegisterVT =
813         isABIMangled()
814             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
815             : TLI.getRegisterType(Context, ValueVT);
816     for (unsigned i = 0; i != NumRegs; ++i)
817       Regs.push_back(Reg + i);
818     RegVTs.push_back(RegisterVT);
819     RegCount.push_back(NumRegs);
820     Reg += NumRegs;
821   }
822 }
823 
824 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
825                                       FunctionLoweringInfo &FuncInfo,
826                                       const SDLoc &dl, SDValue &Chain,
827                                       SDValue *Flag, const Value *V) const {
828   // A Value with type {} or [0 x %t] needs no registers.
829   if (ValueVTs.empty())
830     return SDValue();
831 
832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
833 
834   // Assemble the legal parts into the final values.
835   SmallVector<SDValue, 4> Values(ValueVTs.size());
836   SmallVector<SDValue, 8> Parts;
837   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
838     // Copy the legal parts from the registers.
839     EVT ValueVT = ValueVTs[Value];
840     unsigned NumRegs = RegCount[Value];
841     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
842                                           *DAG.getContext(),
843                                           CallConv.getValue(), RegVTs[Value])
844                                     : RegVTs[Value];
845 
846     Parts.resize(NumRegs);
847     for (unsigned i = 0; i != NumRegs; ++i) {
848       SDValue P;
849       if (!Flag) {
850         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
851       } else {
852         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
853         *Flag = P.getValue(2);
854       }
855 
856       Chain = P.getValue(1);
857       Parts[i] = P;
858 
859       // If the source register was virtual and if we know something about it,
860       // add an assert node.
861       if (!Register::isVirtualRegister(Regs[Part + i]) ||
862           !RegisterVT.isInteger())
863         continue;
864 
865       const FunctionLoweringInfo::LiveOutInfo *LOI =
866         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
867       if (!LOI)
868         continue;
869 
870       unsigned RegSize = RegisterVT.getScalarSizeInBits();
871       unsigned NumSignBits = LOI->NumSignBits;
872       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
873 
874       if (NumZeroBits == RegSize) {
875         // The current value is a zero.
876         // Explicitly express that as it would be easier for
877         // optimizations to kick in.
878         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
879         continue;
880       }
881 
882       // FIXME: We capture more information than the dag can represent.  For
883       // now, just use the tightest assertzext/assertsext possible.
884       bool isSExt;
885       EVT FromVT(MVT::Other);
886       if (NumZeroBits) {
887         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
888         isSExt = false;
889       } else if (NumSignBits > 1) {
890         FromVT =
891             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
892         isSExt = true;
893       } else {
894         continue;
895       }
896       // Add an assertion node.
897       assert(FromVT != MVT::Other);
898       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
899                              RegisterVT, P, DAG.getValueType(FromVT));
900     }
901 
902     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
903                                      RegisterVT, ValueVT, V, CallConv);
904     Part += NumRegs;
905     Parts.clear();
906   }
907 
908   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
909 }
910 
911 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
912                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
913                                  const Value *V,
914                                  ISD::NodeType PreferredExtendType) const {
915   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
916   ISD::NodeType ExtendKind = PreferredExtendType;
917 
918   // Get the list of the values's legal parts.
919   unsigned NumRegs = Regs.size();
920   SmallVector<SDValue, 8> Parts(NumRegs);
921   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
922     unsigned NumParts = RegCount[Value];
923 
924     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
925                                           *DAG.getContext(),
926                                           CallConv.getValue(), RegVTs[Value])
927                                     : RegVTs[Value];
928 
929     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
930       ExtendKind = ISD::ZERO_EXTEND;
931 
932     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
933                    NumParts, RegisterVT, V, CallConv, ExtendKind);
934     Part += NumParts;
935   }
936 
937   // Copy the parts into the registers.
938   SmallVector<SDValue, 8> Chains(NumRegs);
939   for (unsigned i = 0; i != NumRegs; ++i) {
940     SDValue Part;
941     if (!Flag) {
942       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
943     } else {
944       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
945       *Flag = Part.getValue(1);
946     }
947 
948     Chains[i] = Part.getValue(0);
949   }
950 
951   if (NumRegs == 1 || Flag)
952     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
953     // flagged to it. That is the CopyToReg nodes and the user are considered
954     // a single scheduling unit. If we create a TokenFactor and return it as
955     // chain, then the TokenFactor is both a predecessor (operand) of the
956     // user as well as a successor (the TF operands are flagged to the user).
957     // c1, f1 = CopyToReg
958     // c2, f2 = CopyToReg
959     // c3     = TokenFactor c1, c2
960     // ...
961     //        = op c3, ..., f2
962     Chain = Chains[NumRegs-1];
963   else
964     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
965 }
966 
967 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
968                                         unsigned MatchingIdx, const SDLoc &dl,
969                                         SelectionDAG &DAG,
970                                         std::vector<SDValue> &Ops) const {
971   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
972 
973   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
974   if (HasMatching)
975     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
976   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
977     // Put the register class of the virtual registers in the flag word.  That
978     // way, later passes can recompute register class constraints for inline
979     // assembly as well as normal instructions.
980     // Don't do this for tied operands that can use the regclass information
981     // from the def.
982     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
983     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
984     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
985   }
986 
987   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
988   Ops.push_back(Res);
989 
990   if (Code == InlineAsm::Kind_Clobber) {
991     // Clobbers should always have a 1:1 mapping with registers, and may
992     // reference registers that have illegal (e.g. vector) types. Hence, we
993     // shouldn't try to apply any sort of splitting logic to them.
994     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
995            "No 1:1 mapping from clobbers to regs?");
996     Register SP = TLI.getStackPointerRegisterToSaveRestore();
997     (void)SP;
998     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
999       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1000       assert(
1001           (Regs[I] != SP ||
1002            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1003           "If we clobbered the stack pointer, MFI should know about it.");
1004     }
1005     return;
1006   }
1007 
1008   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1009     MVT RegisterVT = RegVTs[Value];
1010     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1011                                            RegisterVT);
1012     for (unsigned i = 0; i != NumRegs; ++i) {
1013       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1014       unsigned TheReg = Regs[Reg++];
1015       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1016     }
1017   }
1018 }
1019 
1020 SmallVector<std::pair<unsigned, TypeSize>, 4>
1021 RegsForValue::getRegsAndSizes() const {
1022   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1023   unsigned I = 0;
1024   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1025     unsigned RegCount = std::get<0>(CountAndVT);
1026     MVT RegisterVT = std::get<1>(CountAndVT);
1027     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1028     for (unsigned E = I + RegCount; I != E; ++I)
1029       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1030   }
1031   return OutVec;
1032 }
1033 
1034 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1035                                const TargetLibraryInfo *li) {
1036   AA = aa;
1037   GFI = gfi;
1038   LibInfo = li;
1039   Context = DAG.getContext();
1040   LPadToCallSiteMap.clear();
1041   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1042 }
1043 
1044 void SelectionDAGBuilder::clear() {
1045   NodeMap.clear();
1046   UnusedArgNodeMap.clear();
1047   PendingLoads.clear();
1048   PendingExports.clear();
1049   PendingConstrainedFP.clear();
1050   PendingConstrainedFPStrict.clear();
1051   CurInst = nullptr;
1052   HasTailCall = false;
1053   SDNodeOrder = LowestSDNodeOrder;
1054   StatepointLowering.clear();
1055 }
1056 
1057 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1058   DanglingDebugInfoMap.clear();
1059 }
1060 
1061 // Update DAG root to include dependencies on Pending chains.
1062 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1063   SDValue Root = DAG.getRoot();
1064 
1065   if (Pending.empty())
1066     return Root;
1067 
1068   // Add current root to PendingChains, unless we already indirectly
1069   // depend on it.
1070   if (Root.getOpcode() != ISD::EntryToken) {
1071     unsigned i = 0, e = Pending.size();
1072     for (; i != e; ++i) {
1073       assert(Pending[i].getNode()->getNumOperands() > 1);
1074       if (Pending[i].getNode()->getOperand(0) == Root)
1075         break;  // Don't add the root if we already indirectly depend on it.
1076     }
1077 
1078     if (i == e)
1079       Pending.push_back(Root);
1080   }
1081 
1082   if (Pending.size() == 1)
1083     Root = Pending[0];
1084   else
1085     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1086 
1087   DAG.setRoot(Root);
1088   Pending.clear();
1089   return Root;
1090 }
1091 
1092 SDValue SelectionDAGBuilder::getMemoryRoot() {
1093   return updateRoot(PendingLoads);
1094 }
1095 
1096 SDValue SelectionDAGBuilder::getRoot() {
1097   // Chain up all pending constrained intrinsics together with all
1098   // pending loads, by simply appending them to PendingLoads and
1099   // then calling getMemoryRoot().
1100   PendingLoads.reserve(PendingLoads.size() +
1101                        PendingConstrainedFP.size() +
1102                        PendingConstrainedFPStrict.size());
1103   PendingLoads.append(PendingConstrainedFP.begin(),
1104                       PendingConstrainedFP.end());
1105   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1106                       PendingConstrainedFPStrict.end());
1107   PendingConstrainedFP.clear();
1108   PendingConstrainedFPStrict.clear();
1109   return getMemoryRoot();
1110 }
1111 
1112 SDValue SelectionDAGBuilder::getControlRoot() {
1113   // We need to emit pending fpexcept.strict constrained intrinsics,
1114   // so append them to the PendingExports list.
1115   PendingExports.append(PendingConstrainedFPStrict.begin(),
1116                         PendingConstrainedFPStrict.end());
1117   PendingConstrainedFPStrict.clear();
1118   return updateRoot(PendingExports);
1119 }
1120 
1121 void SelectionDAGBuilder::visit(const Instruction &I) {
1122   // Set up outgoing PHI node register values before emitting the terminator.
1123   if (I.isTerminator()) {
1124     HandlePHINodesInSuccessorBlocks(I.getParent());
1125   }
1126 
1127   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1128   if (!isa<DbgInfoIntrinsic>(I))
1129     ++SDNodeOrder;
1130 
1131   CurInst = &I;
1132 
1133   visit(I.getOpcode(), I);
1134 
1135   if (!I.isTerminator() && !HasTailCall &&
1136       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1137     CopyToExportRegsIfNeeded(&I);
1138 
1139   CurInst = nullptr;
1140 }
1141 
1142 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1143   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1144 }
1145 
1146 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1147   // Note: this doesn't use InstVisitor, because it has to work with
1148   // ConstantExpr's in addition to instructions.
1149   switch (Opcode) {
1150   default: llvm_unreachable("Unknown instruction type encountered!");
1151     // Build the switch statement using the Instruction.def file.
1152 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1153     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1154 #include "llvm/IR/Instruction.def"
1155   }
1156 }
1157 
1158 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1159                                                DebugLoc DL, unsigned Order) {
1160   // We treat variadic dbg_values differently at this stage.
1161   if (DI->hasArgList()) {
1162     // For variadic dbg_values we will now insert an undef.
1163     // FIXME: We can potentially recover these!
1164     SmallVector<SDDbgOperand, 2> Locs;
1165     for (const Value *V : DI->getValues()) {
1166       auto Undef = UndefValue::get(V->getType());
1167       Locs.push_back(SDDbgOperand::fromConst(Undef));
1168     }
1169     SDDbgValue *SDV = DAG.getDbgValueList(
1170         DI->getVariable(), DI->getExpression(), Locs, {},
1171         /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1172     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1173   } else {
1174     // TODO: Dangling debug info will eventually either be resolved or produce
1175     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1176     // between the original dbg.value location and its resolved DBG_VALUE,
1177     // which we should ideally fill with an extra Undef DBG_VALUE.
1178     assert(DI->getNumVariableLocationOps() == 1 &&
1179            "DbgValueInst without an ArgList should have a single location "
1180            "operand.");
1181     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1182   }
1183 }
1184 
1185 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1186                                                 const DIExpression *Expr) {
1187   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1188     const DbgValueInst *DI = DDI.getDI();
1189     DIVariable *DanglingVariable = DI->getVariable();
1190     DIExpression *DanglingExpr = DI->getExpression();
1191     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1192       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1193       return true;
1194     }
1195     return false;
1196   };
1197 
1198   for (auto &DDIMI : DanglingDebugInfoMap) {
1199     DanglingDebugInfoVector &DDIV = DDIMI.second;
1200 
1201     // If debug info is to be dropped, run it through final checks to see
1202     // whether it can be salvaged.
1203     for (auto &DDI : DDIV)
1204       if (isMatchingDbgValue(DDI))
1205         salvageUnresolvedDbgValue(DDI);
1206 
1207     erase_if(DDIV, isMatchingDbgValue);
1208   }
1209 }
1210 
1211 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1212 // generate the debug data structures now that we've seen its definition.
1213 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1214                                                    SDValue Val) {
1215   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1216   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1217     return;
1218 
1219   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1220   for (auto &DDI : DDIV) {
1221     const DbgValueInst *DI = DDI.getDI();
1222     assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1223     assert(DI && "Ill-formed DanglingDebugInfo");
1224     DebugLoc dl = DDI.getdl();
1225     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1226     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1227     DILocalVariable *Variable = DI->getVariable();
1228     DIExpression *Expr = DI->getExpression();
1229     assert(Variable->isValidLocationForIntrinsic(dl) &&
1230            "Expected inlined-at fields to agree");
1231     SDDbgValue *SDV;
1232     if (Val.getNode()) {
1233       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1234       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1235       // we couldn't resolve it directly when examining the DbgValue intrinsic
1236       // in the first place we should not be more successful here). Unless we
1237       // have some test case that prove this to be correct we should avoid
1238       // calling EmitFuncArgumentDbgValue here.
1239       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1240         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1241                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1242         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1243         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1244         // inserted after the definition of Val when emitting the instructions
1245         // after ISel. An alternative could be to teach
1246         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1247         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1248                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1249                    << ValSDNodeOrder << "\n");
1250         SDV = getDbgValue(Val, Variable, Expr, dl,
1251                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1252         DAG.AddDbgValue(SDV, false);
1253       } else
1254         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1255                           << "in EmitFuncArgumentDbgValue\n");
1256     } else {
1257       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1258       auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1259       auto SDV =
1260           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1261       DAG.AddDbgValue(SDV, false);
1262     }
1263   }
1264   DDIV.clear();
1265 }
1266 
1267 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1268   // TODO: For the variadic implementation, instead of only checking the fail
1269   // state of `handleDebugValue`, we need know specifically which values were
1270   // invalid, so that we attempt to salvage only those values when processing
1271   // a DIArgList.
1272   assert(!DDI.getDI()->hasArgList() &&
1273          "Not implemented for variadic dbg_values");
1274   Value *V = DDI.getDI()->getValue(0);
1275   DILocalVariable *Var = DDI.getDI()->getVariable();
1276   DIExpression *Expr = DDI.getDI()->getExpression();
1277   DebugLoc DL = DDI.getdl();
1278   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1279   unsigned SDOrder = DDI.getSDNodeOrder();
1280   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1281   // that DW_OP_stack_value is desired.
1282   assert(isa<DbgValueInst>(DDI.getDI()));
1283   bool StackValue = true;
1284 
1285   // Can this Value can be encoded without any further work?
1286   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1287     return;
1288 
1289   // Attempt to salvage back through as many instructions as possible. Bail if
1290   // a non-instruction is seen, such as a constant expression or global
1291   // variable. FIXME: Further work could recover those too.
1292   while (isa<Instruction>(V)) {
1293     Instruction &VAsInst = *cast<Instruction>(V);
1294     // Temporary "0", awaiting real implementation.
1295     SmallVector<uint64_t, 16> Ops;
1296     SmallVector<Value *, 4> AdditionalValues;
1297     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1298                              AdditionalValues);
1299     // If we cannot salvage any further, and haven't yet found a suitable debug
1300     // expression, bail out.
1301     if (!V)
1302       break;
1303 
1304     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1305     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1306     // here for variadic dbg_values, remove that condition.
1307     if (!AdditionalValues.empty())
1308       break;
1309 
1310     // New value and expr now represent this debuginfo.
1311     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1312 
1313     // Some kind of simplification occurred: check whether the operand of the
1314     // salvaged debug expression can be encoded in this DAG.
1315     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1316                          /*IsVariadic=*/false)) {
1317       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1318                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1319       return;
1320     }
1321   }
1322 
1323   // This was the final opportunity to salvage this debug information, and it
1324   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1325   // any earlier variable location.
1326   auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1327   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1328   DAG.AddDbgValue(SDV, false);
1329 
1330   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1331                     << "\n");
1332   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1333                     << "\n");
1334 }
1335 
1336 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1337                                            DILocalVariable *Var,
1338                                            DIExpression *Expr, DebugLoc dl,
1339                                            DebugLoc InstDL, unsigned Order,
1340                                            bool IsVariadic) {
1341   if (Values.empty())
1342     return true;
1343   SmallVector<SDDbgOperand> LocationOps;
1344   SmallVector<SDNode *> Dependencies;
1345   for (const Value *V : Values) {
1346     // Constant value.
1347     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1348         isa<ConstantPointerNull>(V)) {
1349       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1350       continue;
1351     }
1352 
1353     // If the Value is a frame index, we can create a FrameIndex debug value
1354     // without relying on the DAG at all.
1355     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1356       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1357       if (SI != FuncInfo.StaticAllocaMap.end()) {
1358         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1359         continue;
1360       }
1361     }
1362 
1363     // Do not use getValue() in here; we don't want to generate code at
1364     // this point if it hasn't been done yet.
1365     SDValue N = NodeMap[V];
1366     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1367       N = UnusedArgNodeMap[V];
1368     if (N.getNode()) {
1369       // Only emit func arg dbg value for non-variadic dbg.values for now.
1370       if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1371         return true;
1372       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1373         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1374         // describe stack slot locations.
1375         //
1376         // Consider "int x = 0; int *px = &x;". There are two kinds of
1377         // interesting debug values here after optimization:
1378         //
1379         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1380         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1381         //
1382         // Both describe the direct values of their associated variables.
1383         Dependencies.push_back(N.getNode());
1384         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1385         continue;
1386       }
1387       LocationOps.emplace_back(
1388           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1389       continue;
1390     }
1391 
1392     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1393     // Special rules apply for the first dbg.values of parameter variables in a
1394     // function. Identify them by the fact they reference Argument Values, that
1395     // they're parameters, and they are parameters of the current function. We
1396     // need to let them dangle until they get an SDNode.
1397     bool IsParamOfFunc =
1398         isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1399     if (IsParamOfFunc)
1400       return false;
1401 
1402     // The value is not used in this block yet (or it would have an SDNode).
1403     // We still want the value to appear for the user if possible -- if it has
1404     // an associated VReg, we can refer to that instead.
1405     auto VMI = FuncInfo.ValueMap.find(V);
1406     if (VMI != FuncInfo.ValueMap.end()) {
1407       unsigned Reg = VMI->second;
1408       // If this is a PHI node, it may be split up into several MI PHI nodes
1409       // (in FunctionLoweringInfo::set).
1410       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1411                        V->getType(), None);
1412       if (RFV.occupiesMultipleRegs()) {
1413         // FIXME: We could potentially support variadic dbg_values here.
1414         if (IsVariadic)
1415           return false;
1416         unsigned Offset = 0;
1417         unsigned BitsToDescribe = 0;
1418         if (auto VarSize = Var->getSizeInBits())
1419           BitsToDescribe = *VarSize;
1420         if (auto Fragment = Expr->getFragmentInfo())
1421           BitsToDescribe = Fragment->SizeInBits;
1422         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1423           // Bail out if all bits are described already.
1424           if (Offset >= BitsToDescribe)
1425             break;
1426           // TODO: handle scalable vectors.
1427           unsigned RegisterSize = RegAndSize.second;
1428           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1429                                       ? BitsToDescribe - Offset
1430                                       : RegisterSize;
1431           auto FragmentExpr = DIExpression::createFragmentExpression(
1432               Expr, Offset, FragmentSize);
1433           if (!FragmentExpr)
1434             continue;
1435           SDDbgValue *SDV = DAG.getVRegDbgValue(
1436               Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1437           DAG.AddDbgValue(SDV, false);
1438           Offset += RegisterSize;
1439         }
1440         return true;
1441       }
1442       // We can use simple vreg locations for variadic dbg_values as well.
1443       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1444       continue;
1445     }
1446     // We failed to create a SDDbgOperand for V.
1447     return false;
1448   }
1449 
1450   // We have created a SDDbgOperand for each Value in Values.
1451   // Should use Order instead of SDNodeOrder?
1452   assert(!LocationOps.empty());
1453   SDDbgValue *SDV =
1454       DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1455                           /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1456   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1457   return true;
1458 }
1459 
1460 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1461   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1462   for (auto &Pair : DanglingDebugInfoMap)
1463     for (auto &DDI : Pair.second)
1464       salvageUnresolvedDbgValue(DDI);
1465   clearDanglingDebugInfo();
1466 }
1467 
1468 /// getCopyFromRegs - If there was virtual register allocated for the value V
1469 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1470 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1471   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1472   SDValue Result;
1473 
1474   if (It != FuncInfo.ValueMap.end()) {
1475     Register InReg = It->second;
1476 
1477     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1478                      DAG.getDataLayout(), InReg, Ty,
1479                      None); // This is not an ABI copy.
1480     SDValue Chain = DAG.getEntryNode();
1481     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1482                                  V);
1483     resolveDanglingDebugInfo(V, Result);
1484   }
1485 
1486   return Result;
1487 }
1488 
1489 /// getValue - Return an SDValue for the given Value.
1490 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1491   // If we already have an SDValue for this value, use it. It's important
1492   // to do this first, so that we don't create a CopyFromReg if we already
1493   // have a regular SDValue.
1494   SDValue &N = NodeMap[V];
1495   if (N.getNode()) return N;
1496 
1497   // If there's a virtual register allocated and initialized for this
1498   // value, use it.
1499   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1500     return copyFromReg;
1501 
1502   // Otherwise create a new SDValue and remember it.
1503   SDValue Val = getValueImpl(V);
1504   NodeMap[V] = Val;
1505   resolveDanglingDebugInfo(V, Val);
1506   return Val;
1507 }
1508 
1509 /// getNonRegisterValue - Return an SDValue for the given Value, but
1510 /// don't look in FuncInfo.ValueMap for a virtual register.
1511 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1512   // If we already have an SDValue for this value, use it.
1513   SDValue &N = NodeMap[V];
1514   if (N.getNode()) {
1515     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1516       // Remove the debug location from the node as the node is about to be used
1517       // in a location which may differ from the original debug location.  This
1518       // is relevant to Constant and ConstantFP nodes because they can appear
1519       // as constant expressions inside PHI nodes.
1520       N->setDebugLoc(DebugLoc());
1521     }
1522     return N;
1523   }
1524 
1525   // Otherwise create a new SDValue and remember it.
1526   SDValue Val = getValueImpl(V);
1527   NodeMap[V] = Val;
1528   resolveDanglingDebugInfo(V, Val);
1529   return Val;
1530 }
1531 
1532 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1533 /// Create an SDValue for the given value.
1534 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1535   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1536 
1537   if (const Constant *C = dyn_cast<Constant>(V)) {
1538     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1539 
1540     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1541       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1542 
1543     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1544       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1545 
1546     if (isa<ConstantPointerNull>(C)) {
1547       unsigned AS = V->getType()->getPointerAddressSpace();
1548       return DAG.getConstant(0, getCurSDLoc(),
1549                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1550     }
1551 
1552     if (match(C, m_VScale(DAG.getDataLayout())))
1553       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1554 
1555     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1556       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1557 
1558     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1559       return DAG.getUNDEF(VT);
1560 
1561     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1562       visit(CE->getOpcode(), *CE);
1563       SDValue N1 = NodeMap[V];
1564       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1565       return N1;
1566     }
1567 
1568     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1569       SmallVector<SDValue, 4> Constants;
1570       for (const Use &U : C->operands()) {
1571         SDNode *Val = getValue(U).getNode();
1572         // If the operand is an empty aggregate, there are no values.
1573         if (!Val) continue;
1574         // Add each leaf value from the operand to the Constants list
1575         // to form a flattened list of all the values.
1576         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1577           Constants.push_back(SDValue(Val, i));
1578       }
1579 
1580       return DAG.getMergeValues(Constants, getCurSDLoc());
1581     }
1582 
1583     if (const ConstantDataSequential *CDS =
1584           dyn_cast<ConstantDataSequential>(C)) {
1585       SmallVector<SDValue, 4> Ops;
1586       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1587         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1588         // Add each leaf value from the operand to the Constants list
1589         // to form a flattened list of all the values.
1590         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1591           Ops.push_back(SDValue(Val, i));
1592       }
1593 
1594       if (isa<ArrayType>(CDS->getType()))
1595         return DAG.getMergeValues(Ops, getCurSDLoc());
1596       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1597     }
1598 
1599     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1600       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1601              "Unknown struct or array constant!");
1602 
1603       SmallVector<EVT, 4> ValueVTs;
1604       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1605       unsigned NumElts = ValueVTs.size();
1606       if (NumElts == 0)
1607         return SDValue(); // empty struct
1608       SmallVector<SDValue, 4> Constants(NumElts);
1609       for (unsigned i = 0; i != NumElts; ++i) {
1610         EVT EltVT = ValueVTs[i];
1611         if (isa<UndefValue>(C))
1612           Constants[i] = DAG.getUNDEF(EltVT);
1613         else if (EltVT.isFloatingPoint())
1614           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1615         else
1616           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1617       }
1618 
1619       return DAG.getMergeValues(Constants, getCurSDLoc());
1620     }
1621 
1622     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1623       return DAG.getBlockAddress(BA, VT);
1624 
1625     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1626       return getValue(Equiv->getGlobalValue());
1627 
1628     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1629       return getValue(NC->getGlobalValue());
1630 
1631     VectorType *VecTy = cast<VectorType>(V->getType());
1632 
1633     // Now that we know the number and type of the elements, get that number of
1634     // elements into the Ops array based on what kind of constant it is.
1635     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1636       SmallVector<SDValue, 16> Ops;
1637       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1638       for (unsigned i = 0; i != NumElements; ++i)
1639         Ops.push_back(getValue(CV->getOperand(i)));
1640 
1641       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1642     } else if (isa<ConstantAggregateZero>(C)) {
1643       EVT EltVT =
1644           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1645 
1646       SDValue Op;
1647       if (EltVT.isFloatingPoint())
1648         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1649       else
1650         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1651 
1652       if (isa<ScalableVectorType>(VecTy))
1653         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1654       else {
1655         SmallVector<SDValue, 16> Ops;
1656         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1657         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1658       }
1659     }
1660     llvm_unreachable("Unknown vector constant");
1661   }
1662 
1663   // If this is a static alloca, generate it as the frameindex instead of
1664   // computation.
1665   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1666     DenseMap<const AllocaInst*, int>::iterator SI =
1667       FuncInfo.StaticAllocaMap.find(AI);
1668     if (SI != FuncInfo.StaticAllocaMap.end())
1669       return DAG.getFrameIndex(SI->second,
1670                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1671   }
1672 
1673   // If this is an instruction which fast-isel has deferred, select it now.
1674   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1675     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1676 
1677     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1678                      Inst->getType(), None);
1679     SDValue Chain = DAG.getEntryNode();
1680     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1681   }
1682 
1683   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1684     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1685   }
1686   if (const auto *BB = dyn_cast<BasicBlock>(V))
1687     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1688   llvm_unreachable("Can't get register for value!");
1689 }
1690 
1691 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1692   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1693   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1694   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1695   bool IsSEH = isAsynchronousEHPersonality(Pers);
1696   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1697   if (!IsSEH)
1698     CatchPadMBB->setIsEHScopeEntry();
1699   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1700   if (IsMSVCCXX || IsCoreCLR)
1701     CatchPadMBB->setIsEHFuncletEntry();
1702 }
1703 
1704 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1705   // Update machine-CFG edge.
1706   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1707   FuncInfo.MBB->addSuccessor(TargetMBB);
1708   TargetMBB->setIsEHCatchretTarget(true);
1709   DAG.getMachineFunction().setHasEHCatchret(true);
1710 
1711   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1712   bool IsSEH = isAsynchronousEHPersonality(Pers);
1713   if (IsSEH) {
1714     // If this is not a fall-through branch or optimizations are switched off,
1715     // emit the branch.
1716     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1717         TM.getOptLevel() == CodeGenOpt::None)
1718       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1719                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1720     return;
1721   }
1722 
1723   // Figure out the funclet membership for the catchret's successor.
1724   // This will be used by the FuncletLayout pass to determine how to order the
1725   // BB's.
1726   // A 'catchret' returns to the outer scope's color.
1727   Value *ParentPad = I.getCatchSwitchParentPad();
1728   const BasicBlock *SuccessorColor;
1729   if (isa<ConstantTokenNone>(ParentPad))
1730     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1731   else
1732     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1733   assert(SuccessorColor && "No parent funclet for catchret!");
1734   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1735   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1736 
1737   // Create the terminator node.
1738   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1739                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1740                             DAG.getBasicBlock(SuccessorColorMBB));
1741   DAG.setRoot(Ret);
1742 }
1743 
1744 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1745   // Don't emit any special code for the cleanuppad instruction. It just marks
1746   // the start of an EH scope/funclet.
1747   FuncInfo.MBB->setIsEHScopeEntry();
1748   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1749   if (Pers != EHPersonality::Wasm_CXX) {
1750     FuncInfo.MBB->setIsEHFuncletEntry();
1751     FuncInfo.MBB->setIsCleanupFuncletEntry();
1752   }
1753 }
1754 
1755 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1756 // not match, it is OK to add only the first unwind destination catchpad to the
1757 // successors, because there will be at least one invoke instruction within the
1758 // catch scope that points to the next unwind destination, if one exists, so
1759 // CFGSort cannot mess up with BB sorting order.
1760 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1761 // call within them, and catchpads only consisting of 'catch (...)' have a
1762 // '__cxa_end_catch' call within them, both of which generate invokes in case
1763 // the next unwind destination exists, i.e., the next unwind destination is not
1764 // the caller.)
1765 //
1766 // Having at most one EH pad successor is also simpler and helps later
1767 // transformations.
1768 //
1769 // For example,
1770 // current:
1771 //   invoke void @foo to ... unwind label %catch.dispatch
1772 // catch.dispatch:
1773 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1774 // catch.start:
1775 //   ...
1776 //   ... in this BB or some other child BB dominated by this BB there will be an
1777 //   invoke that points to 'next' BB as an unwind destination
1778 //
1779 // next: ; We don't need to add this to 'current' BB's successor
1780 //   ...
1781 static void findWasmUnwindDestinations(
1782     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1783     BranchProbability Prob,
1784     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1785         &UnwindDests) {
1786   while (EHPadBB) {
1787     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1788     if (isa<CleanupPadInst>(Pad)) {
1789       // Stop on cleanup pads.
1790       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1791       UnwindDests.back().first->setIsEHScopeEntry();
1792       break;
1793     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1794       // Add the catchpad handlers to the possible destinations. We don't
1795       // continue to the unwind destination of the catchswitch for wasm.
1796       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1797         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1798         UnwindDests.back().first->setIsEHScopeEntry();
1799       }
1800       break;
1801     } else {
1802       continue;
1803     }
1804   }
1805 }
1806 
1807 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1808 /// many places it could ultimately go. In the IR, we have a single unwind
1809 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1810 /// This function skips over imaginary basic blocks that hold catchswitch
1811 /// instructions, and finds all the "real" machine
1812 /// basic block destinations. As those destinations may not be successors of
1813 /// EHPadBB, here we also calculate the edge probability to those destinations.
1814 /// The passed-in Prob is the edge probability to EHPadBB.
1815 static void findUnwindDestinations(
1816     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1817     BranchProbability Prob,
1818     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1819         &UnwindDests) {
1820   EHPersonality Personality =
1821     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1822   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1823   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1824   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1825   bool IsSEH = isAsynchronousEHPersonality(Personality);
1826 
1827   if (IsWasmCXX) {
1828     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1829     assert(UnwindDests.size() <= 1 &&
1830            "There should be at most one unwind destination for wasm");
1831     return;
1832   }
1833 
1834   while (EHPadBB) {
1835     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1836     BasicBlock *NewEHPadBB = nullptr;
1837     if (isa<LandingPadInst>(Pad)) {
1838       // Stop on landingpads. They are not funclets.
1839       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1840       break;
1841     } else if (isa<CleanupPadInst>(Pad)) {
1842       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1843       // personalities.
1844       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1845       UnwindDests.back().first->setIsEHScopeEntry();
1846       UnwindDests.back().first->setIsEHFuncletEntry();
1847       break;
1848     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1849       // Add the catchpad handlers to the possible destinations.
1850       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1851         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1852         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1853         if (IsMSVCCXX || IsCoreCLR)
1854           UnwindDests.back().first->setIsEHFuncletEntry();
1855         if (!IsSEH)
1856           UnwindDests.back().first->setIsEHScopeEntry();
1857       }
1858       NewEHPadBB = CatchSwitch->getUnwindDest();
1859     } else {
1860       continue;
1861     }
1862 
1863     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1864     if (BPI && NewEHPadBB)
1865       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1866     EHPadBB = NewEHPadBB;
1867   }
1868 }
1869 
1870 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1871   // Update successor info.
1872   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1873   auto UnwindDest = I.getUnwindDest();
1874   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1875   BranchProbability UnwindDestProb =
1876       (BPI && UnwindDest)
1877           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1878           : BranchProbability::getZero();
1879   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1880   for (auto &UnwindDest : UnwindDests) {
1881     UnwindDest.first->setIsEHPad();
1882     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1883   }
1884   FuncInfo.MBB->normalizeSuccProbs();
1885 
1886   // Create the terminator node.
1887   SDValue Ret =
1888       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1889   DAG.setRoot(Ret);
1890 }
1891 
1892 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1893   report_fatal_error("visitCatchSwitch not yet implemented!");
1894 }
1895 
1896 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1898   auto &DL = DAG.getDataLayout();
1899   SDValue Chain = getControlRoot();
1900   SmallVector<ISD::OutputArg, 8> Outs;
1901   SmallVector<SDValue, 8> OutVals;
1902 
1903   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1904   // lower
1905   //
1906   //   %val = call <ty> @llvm.experimental.deoptimize()
1907   //   ret <ty> %val
1908   //
1909   // differently.
1910   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1911     LowerDeoptimizingReturn();
1912     return;
1913   }
1914 
1915   if (!FuncInfo.CanLowerReturn) {
1916     unsigned DemoteReg = FuncInfo.DemoteRegister;
1917     const Function *F = I.getParent()->getParent();
1918 
1919     // Emit a store of the return value through the virtual register.
1920     // Leave Outs empty so that LowerReturn won't try to load return
1921     // registers the usual way.
1922     SmallVector<EVT, 1> PtrValueVTs;
1923     ComputeValueVTs(TLI, DL,
1924                     F->getReturnType()->getPointerTo(
1925                         DAG.getDataLayout().getAllocaAddrSpace()),
1926                     PtrValueVTs);
1927 
1928     SDValue RetPtr =
1929         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1930     SDValue RetOp = getValue(I.getOperand(0));
1931 
1932     SmallVector<EVT, 4> ValueVTs, MemVTs;
1933     SmallVector<uint64_t, 4> Offsets;
1934     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1935                     &Offsets);
1936     unsigned NumValues = ValueVTs.size();
1937 
1938     SmallVector<SDValue, 4> Chains(NumValues);
1939     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1940     for (unsigned i = 0; i != NumValues; ++i) {
1941       // An aggregate return value cannot wrap around the address space, so
1942       // offsets to its parts don't wrap either.
1943       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1944                                            TypeSize::Fixed(Offsets[i]));
1945 
1946       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1947       if (MemVTs[i] != ValueVTs[i])
1948         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1949       Chains[i] = DAG.getStore(
1950           Chain, getCurSDLoc(), Val,
1951           // FIXME: better loc info would be nice.
1952           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1953           commonAlignment(BaseAlign, Offsets[i]));
1954     }
1955 
1956     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1957                         MVT::Other, Chains);
1958   } else if (I.getNumOperands() != 0) {
1959     SmallVector<EVT, 4> ValueVTs;
1960     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1961     unsigned NumValues = ValueVTs.size();
1962     if (NumValues) {
1963       SDValue RetOp = getValue(I.getOperand(0));
1964 
1965       const Function *F = I.getParent()->getParent();
1966 
1967       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1968           I.getOperand(0)->getType(), F->getCallingConv(),
1969           /*IsVarArg*/ false, DL);
1970 
1971       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1972       if (F->getAttributes().hasRetAttr(Attribute::SExt))
1973         ExtendKind = ISD::SIGN_EXTEND;
1974       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1975         ExtendKind = ISD::ZERO_EXTEND;
1976 
1977       LLVMContext &Context = F->getContext();
1978       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1979 
1980       for (unsigned j = 0; j != NumValues; ++j) {
1981         EVT VT = ValueVTs[j];
1982 
1983         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1984           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1985 
1986         CallingConv::ID CC = F->getCallingConv();
1987 
1988         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1989         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1990         SmallVector<SDValue, 4> Parts(NumParts);
1991         getCopyToParts(DAG, getCurSDLoc(),
1992                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1993                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1994 
1995         // 'inreg' on function refers to return value
1996         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1997         if (RetInReg)
1998           Flags.setInReg();
1999 
2000         if (I.getOperand(0)->getType()->isPointerTy()) {
2001           Flags.setPointer();
2002           Flags.setPointerAddrSpace(
2003               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2004         }
2005 
2006         if (NeedsRegBlock) {
2007           Flags.setInConsecutiveRegs();
2008           if (j == NumValues - 1)
2009             Flags.setInConsecutiveRegsLast();
2010         }
2011 
2012         // Propagate extension type if any
2013         if (ExtendKind == ISD::SIGN_EXTEND)
2014           Flags.setSExt();
2015         else if (ExtendKind == ISD::ZERO_EXTEND)
2016           Flags.setZExt();
2017 
2018         for (unsigned i = 0; i < NumParts; ++i) {
2019           Outs.push_back(ISD::OutputArg(Flags,
2020                                         Parts[i].getValueType().getSimpleVT(),
2021                                         VT, /*isfixed=*/true, 0, 0));
2022           OutVals.push_back(Parts[i]);
2023         }
2024       }
2025     }
2026   }
2027 
2028   // Push in swifterror virtual register as the last element of Outs. This makes
2029   // sure swifterror virtual register will be returned in the swifterror
2030   // physical register.
2031   const Function *F = I.getParent()->getParent();
2032   if (TLI.supportSwiftError() &&
2033       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2034     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2035     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2036     Flags.setSwiftError();
2037     Outs.push_back(ISD::OutputArg(
2038         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2039         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2040     // Create SDNode for the swifterror virtual register.
2041     OutVals.push_back(
2042         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2043                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2044                         EVT(TLI.getPointerTy(DL))));
2045   }
2046 
2047   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2048   CallingConv::ID CallConv =
2049     DAG.getMachineFunction().getFunction().getCallingConv();
2050   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2051       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2052 
2053   // Verify that the target's LowerReturn behaved as expected.
2054   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2055          "LowerReturn didn't return a valid chain!");
2056 
2057   // Update the DAG with the new chain value resulting from return lowering.
2058   DAG.setRoot(Chain);
2059 }
2060 
2061 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2062 /// created for it, emit nodes to copy the value into the virtual
2063 /// registers.
2064 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2065   // Skip empty types
2066   if (V->getType()->isEmptyTy())
2067     return;
2068 
2069   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2070   if (VMI != FuncInfo.ValueMap.end()) {
2071     assert(!V->use_empty() && "Unused value assigned virtual registers!");
2072     CopyValueToVirtualRegister(V, VMI->second);
2073   }
2074 }
2075 
2076 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2077 /// the current basic block, add it to ValueMap now so that we'll get a
2078 /// CopyTo/FromReg.
2079 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2080   // No need to export constants.
2081   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2082 
2083   // Already exported?
2084   if (FuncInfo.isExportedInst(V)) return;
2085 
2086   unsigned Reg = FuncInfo.InitializeRegForValue(V);
2087   CopyValueToVirtualRegister(V, Reg);
2088 }
2089 
2090 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2091                                                      const BasicBlock *FromBB) {
2092   // The operands of the setcc have to be in this block.  We don't know
2093   // how to export them from some other block.
2094   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2095     // Can export from current BB.
2096     if (VI->getParent() == FromBB)
2097       return true;
2098 
2099     // Is already exported, noop.
2100     return FuncInfo.isExportedInst(V);
2101   }
2102 
2103   // If this is an argument, we can export it if the BB is the entry block or
2104   // if it is already exported.
2105   if (isa<Argument>(V)) {
2106     if (FromBB->isEntryBlock())
2107       return true;
2108 
2109     // Otherwise, can only export this if it is already exported.
2110     return FuncInfo.isExportedInst(V);
2111   }
2112 
2113   // Otherwise, constants can always be exported.
2114   return true;
2115 }
2116 
2117 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2118 BranchProbability
2119 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2120                                         const MachineBasicBlock *Dst) const {
2121   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2122   const BasicBlock *SrcBB = Src->getBasicBlock();
2123   const BasicBlock *DstBB = Dst->getBasicBlock();
2124   if (!BPI) {
2125     // If BPI is not available, set the default probability as 1 / N, where N is
2126     // the number of successors.
2127     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2128     return BranchProbability(1, SuccSize);
2129   }
2130   return BPI->getEdgeProbability(SrcBB, DstBB);
2131 }
2132 
2133 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2134                                                MachineBasicBlock *Dst,
2135                                                BranchProbability Prob) {
2136   if (!FuncInfo.BPI)
2137     Src->addSuccessorWithoutProb(Dst);
2138   else {
2139     if (Prob.isUnknown())
2140       Prob = getEdgeProbability(Src, Dst);
2141     Src->addSuccessor(Dst, Prob);
2142   }
2143 }
2144 
2145 static bool InBlock(const Value *V, const BasicBlock *BB) {
2146   if (const Instruction *I = dyn_cast<Instruction>(V))
2147     return I->getParent() == BB;
2148   return true;
2149 }
2150 
2151 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2152 /// This function emits a branch and is used at the leaves of an OR or an
2153 /// AND operator tree.
2154 void
2155 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2156                                                   MachineBasicBlock *TBB,
2157                                                   MachineBasicBlock *FBB,
2158                                                   MachineBasicBlock *CurBB,
2159                                                   MachineBasicBlock *SwitchBB,
2160                                                   BranchProbability TProb,
2161                                                   BranchProbability FProb,
2162                                                   bool InvertCond) {
2163   const BasicBlock *BB = CurBB->getBasicBlock();
2164 
2165   // If the leaf of the tree is a comparison, merge the condition into
2166   // the caseblock.
2167   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2168     // The operands of the cmp have to be in this block.  We don't know
2169     // how to export them from some other block.  If this is the first block
2170     // of the sequence, no exporting is needed.
2171     if (CurBB == SwitchBB ||
2172         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2173          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2174       ISD::CondCode Condition;
2175       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2176         ICmpInst::Predicate Pred =
2177             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2178         Condition = getICmpCondCode(Pred);
2179       } else {
2180         const FCmpInst *FC = cast<FCmpInst>(Cond);
2181         FCmpInst::Predicate Pred =
2182             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2183         Condition = getFCmpCondCode(Pred);
2184         if (TM.Options.NoNaNsFPMath)
2185           Condition = getFCmpCodeWithoutNaN(Condition);
2186       }
2187 
2188       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2189                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2190       SL->SwitchCases.push_back(CB);
2191       return;
2192     }
2193   }
2194 
2195   // Create a CaseBlock record representing this branch.
2196   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2197   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2198                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2199   SL->SwitchCases.push_back(CB);
2200 }
2201 
2202 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2203                                                MachineBasicBlock *TBB,
2204                                                MachineBasicBlock *FBB,
2205                                                MachineBasicBlock *CurBB,
2206                                                MachineBasicBlock *SwitchBB,
2207                                                Instruction::BinaryOps Opc,
2208                                                BranchProbability TProb,
2209                                                BranchProbability FProb,
2210                                                bool InvertCond) {
2211   // Skip over not part of the tree and remember to invert op and operands at
2212   // next level.
2213   Value *NotCond;
2214   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2215       InBlock(NotCond, CurBB->getBasicBlock())) {
2216     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2217                          !InvertCond);
2218     return;
2219   }
2220 
2221   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2222   const Value *BOpOp0, *BOpOp1;
2223   // Compute the effective opcode for Cond, taking into account whether it needs
2224   // to be inverted, e.g.
2225   //   and (not (or A, B)), C
2226   // gets lowered as
2227   //   and (and (not A, not B), C)
2228   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2229   if (BOp) {
2230     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2231                ? Instruction::And
2232                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2233                       ? Instruction::Or
2234                       : (Instruction::BinaryOps)0);
2235     if (InvertCond) {
2236       if (BOpc == Instruction::And)
2237         BOpc = Instruction::Or;
2238       else if (BOpc == Instruction::Or)
2239         BOpc = Instruction::And;
2240     }
2241   }
2242 
2243   // If this node is not part of the or/and tree, emit it as a branch.
2244   // Note that all nodes in the tree should have same opcode.
2245   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2246   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2247       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2248       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2249     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2250                                  TProb, FProb, InvertCond);
2251     return;
2252   }
2253 
2254   //  Create TmpBB after CurBB.
2255   MachineFunction::iterator BBI(CurBB);
2256   MachineFunction &MF = DAG.getMachineFunction();
2257   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2258   CurBB->getParent()->insert(++BBI, TmpBB);
2259 
2260   if (Opc == Instruction::Or) {
2261     // Codegen X | Y as:
2262     // BB1:
2263     //   jmp_if_X TBB
2264     //   jmp TmpBB
2265     // TmpBB:
2266     //   jmp_if_Y TBB
2267     //   jmp FBB
2268     //
2269 
2270     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2271     // The requirement is that
2272     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2273     //     = TrueProb for original BB.
2274     // Assuming the original probabilities are A and B, one choice is to set
2275     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2276     // A/(1+B) and 2B/(1+B). This choice assumes that
2277     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2278     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2279     // TmpBB, but the math is more complicated.
2280 
2281     auto NewTrueProb = TProb / 2;
2282     auto NewFalseProb = TProb / 2 + FProb;
2283     // Emit the LHS condition.
2284     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2285                          NewFalseProb, InvertCond);
2286 
2287     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2288     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2289     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2290     // Emit the RHS condition into TmpBB.
2291     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2292                          Probs[1], InvertCond);
2293   } else {
2294     assert(Opc == Instruction::And && "Unknown merge op!");
2295     // Codegen X & Y as:
2296     // BB1:
2297     //   jmp_if_X TmpBB
2298     //   jmp FBB
2299     // TmpBB:
2300     //   jmp_if_Y TBB
2301     //   jmp FBB
2302     //
2303     //  This requires creation of TmpBB after CurBB.
2304 
2305     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2306     // The requirement is that
2307     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2308     //     = FalseProb for original BB.
2309     // Assuming the original probabilities are A and B, one choice is to set
2310     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2311     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2312     // TrueProb for BB1 * FalseProb for TmpBB.
2313 
2314     auto NewTrueProb = TProb + FProb / 2;
2315     auto NewFalseProb = FProb / 2;
2316     // Emit the LHS condition.
2317     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2318                          NewFalseProb, InvertCond);
2319 
2320     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2321     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2322     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2323     // Emit the RHS condition into TmpBB.
2324     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2325                          Probs[1], InvertCond);
2326   }
2327 }
2328 
2329 /// If the set of cases should be emitted as a series of branches, return true.
2330 /// If we should emit this as a bunch of and/or'd together conditions, return
2331 /// false.
2332 bool
2333 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2334   if (Cases.size() != 2) return true;
2335 
2336   // If this is two comparisons of the same values or'd or and'd together, they
2337   // will get folded into a single comparison, so don't emit two blocks.
2338   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2339        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2340       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2341        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2342     return false;
2343   }
2344 
2345   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2346   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2347   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2348       Cases[0].CC == Cases[1].CC &&
2349       isa<Constant>(Cases[0].CmpRHS) &&
2350       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2351     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2352       return false;
2353     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2354       return false;
2355   }
2356 
2357   return true;
2358 }
2359 
2360 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2361   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2362 
2363   // Update machine-CFG edges.
2364   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2365 
2366   if (I.isUnconditional()) {
2367     // Update machine-CFG edges.
2368     BrMBB->addSuccessor(Succ0MBB);
2369 
2370     // If this is not a fall-through branch or optimizations are switched off,
2371     // emit the branch.
2372     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2373       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2374                               MVT::Other, getControlRoot(),
2375                               DAG.getBasicBlock(Succ0MBB)));
2376 
2377     return;
2378   }
2379 
2380   // If this condition is one of the special cases we handle, do special stuff
2381   // now.
2382   const Value *CondVal = I.getCondition();
2383   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2384 
2385   // If this is a series of conditions that are or'd or and'd together, emit
2386   // this as a sequence of branches instead of setcc's with and/or operations.
2387   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2388   // unpredictable branches, and vector extracts because those jumps are likely
2389   // expensive for any target), this should improve performance.
2390   // For example, instead of something like:
2391   //     cmp A, B
2392   //     C = seteq
2393   //     cmp D, E
2394   //     F = setle
2395   //     or C, F
2396   //     jnz foo
2397   // Emit:
2398   //     cmp A, B
2399   //     je foo
2400   //     cmp D, E
2401   //     jle foo
2402   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2403   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2404       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2405     Value *Vec;
2406     const Value *BOp0, *BOp1;
2407     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2408     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2409       Opcode = Instruction::And;
2410     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2411       Opcode = Instruction::Or;
2412 
2413     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2414                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2415       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2416                            getEdgeProbability(BrMBB, Succ0MBB),
2417                            getEdgeProbability(BrMBB, Succ1MBB),
2418                            /*InvertCond=*/false);
2419       // If the compares in later blocks need to use values not currently
2420       // exported from this block, export them now.  This block should always
2421       // be the first entry.
2422       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2423 
2424       // Allow some cases to be rejected.
2425       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2426         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2427           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2428           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2429         }
2430 
2431         // Emit the branch for this block.
2432         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2433         SL->SwitchCases.erase(SL->SwitchCases.begin());
2434         return;
2435       }
2436 
2437       // Okay, we decided not to do this, remove any inserted MBB's and clear
2438       // SwitchCases.
2439       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2440         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2441 
2442       SL->SwitchCases.clear();
2443     }
2444   }
2445 
2446   // Create a CaseBlock record representing this branch.
2447   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2448                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2449 
2450   // Use visitSwitchCase to actually insert the fast branch sequence for this
2451   // cond branch.
2452   visitSwitchCase(CB, BrMBB);
2453 }
2454 
2455 /// visitSwitchCase - Emits the necessary code to represent a single node in
2456 /// the binary search tree resulting from lowering a switch instruction.
2457 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2458                                           MachineBasicBlock *SwitchBB) {
2459   SDValue Cond;
2460   SDValue CondLHS = getValue(CB.CmpLHS);
2461   SDLoc dl = CB.DL;
2462 
2463   if (CB.CC == ISD::SETTRUE) {
2464     // Branch or fall through to TrueBB.
2465     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2466     SwitchBB->normalizeSuccProbs();
2467     if (CB.TrueBB != NextBlock(SwitchBB)) {
2468       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2469                               DAG.getBasicBlock(CB.TrueBB)));
2470     }
2471     return;
2472   }
2473 
2474   auto &TLI = DAG.getTargetLoweringInfo();
2475   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2476 
2477   // Build the setcc now.
2478   if (!CB.CmpMHS) {
2479     // Fold "(X == true)" to X and "(X == false)" to !X to
2480     // handle common cases produced by branch lowering.
2481     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2482         CB.CC == ISD::SETEQ)
2483       Cond = CondLHS;
2484     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2485              CB.CC == ISD::SETEQ) {
2486       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2487       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2488     } else {
2489       SDValue CondRHS = getValue(CB.CmpRHS);
2490 
2491       // If a pointer's DAG type is larger than its memory type then the DAG
2492       // values are zero-extended. This breaks signed comparisons so truncate
2493       // back to the underlying type before doing the compare.
2494       if (CondLHS.getValueType() != MemVT) {
2495         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2496         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2497       }
2498       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2499     }
2500   } else {
2501     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2502 
2503     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2504     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2505 
2506     SDValue CmpOp = getValue(CB.CmpMHS);
2507     EVT VT = CmpOp.getValueType();
2508 
2509     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2510       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2511                           ISD::SETLE);
2512     } else {
2513       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2514                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2515       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2516                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2517     }
2518   }
2519 
2520   // Update successor info
2521   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2522   // TrueBB and FalseBB are always different unless the incoming IR is
2523   // degenerate. This only happens when running llc on weird IR.
2524   if (CB.TrueBB != CB.FalseBB)
2525     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2526   SwitchBB->normalizeSuccProbs();
2527 
2528   // If the lhs block is the next block, invert the condition so that we can
2529   // fall through to the lhs instead of the rhs block.
2530   if (CB.TrueBB == NextBlock(SwitchBB)) {
2531     std::swap(CB.TrueBB, CB.FalseBB);
2532     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2533     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2534   }
2535 
2536   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2537                                MVT::Other, getControlRoot(), Cond,
2538                                DAG.getBasicBlock(CB.TrueBB));
2539 
2540   // Insert the false branch. Do this even if it's a fall through branch,
2541   // this makes it easier to do DAG optimizations which require inverting
2542   // the branch condition.
2543   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2544                        DAG.getBasicBlock(CB.FalseBB));
2545 
2546   DAG.setRoot(BrCond);
2547 }
2548 
2549 /// visitJumpTable - Emit JumpTable node in the current MBB
2550 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2551   // Emit the code for the jump table
2552   assert(JT.Reg != -1U && "Should lower JT Header first!");
2553   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2554   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2555                                      JT.Reg, PTy);
2556   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2557   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2558                                     MVT::Other, Index.getValue(1),
2559                                     Table, Index);
2560   DAG.setRoot(BrJumpTable);
2561 }
2562 
2563 /// visitJumpTableHeader - This function emits necessary code to produce index
2564 /// in the JumpTable from switch case.
2565 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2566                                                JumpTableHeader &JTH,
2567                                                MachineBasicBlock *SwitchBB) {
2568   SDLoc dl = getCurSDLoc();
2569 
2570   // Subtract the lowest switch case value from the value being switched on.
2571   SDValue SwitchOp = getValue(JTH.SValue);
2572   EVT VT = SwitchOp.getValueType();
2573   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2574                             DAG.getConstant(JTH.First, dl, VT));
2575 
2576   // The SDNode we just created, which holds the value being switched on minus
2577   // the smallest case value, needs to be copied to a virtual register so it
2578   // can be used as an index into the jump table in a subsequent basic block.
2579   // This value may be smaller or larger than the target's pointer type, and
2580   // therefore require extension or truncating.
2581   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2582   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2583 
2584   unsigned JumpTableReg =
2585       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2586   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2587                                     JumpTableReg, SwitchOp);
2588   JT.Reg = JumpTableReg;
2589 
2590   if (!JTH.FallthroughUnreachable) {
2591     // Emit the range check for the jump table, and branch to the default block
2592     // for the switch statement if the value being switched on exceeds the
2593     // largest case in the switch.
2594     SDValue CMP = DAG.getSetCC(
2595         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2596                                    Sub.getValueType()),
2597         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2598 
2599     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2600                                  MVT::Other, CopyTo, CMP,
2601                                  DAG.getBasicBlock(JT.Default));
2602 
2603     // Avoid emitting unnecessary branches to the next block.
2604     if (JT.MBB != NextBlock(SwitchBB))
2605       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2606                            DAG.getBasicBlock(JT.MBB));
2607 
2608     DAG.setRoot(BrCond);
2609   } else {
2610     // Avoid emitting unnecessary branches to the next block.
2611     if (JT.MBB != NextBlock(SwitchBB))
2612       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2613                               DAG.getBasicBlock(JT.MBB)));
2614     else
2615       DAG.setRoot(CopyTo);
2616   }
2617 }
2618 
2619 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2620 /// variable if there exists one.
2621 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2622                                  SDValue &Chain) {
2623   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2624   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2625   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2626   MachineFunction &MF = DAG.getMachineFunction();
2627   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2628   MachineSDNode *Node =
2629       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2630   if (Global) {
2631     MachinePointerInfo MPInfo(Global);
2632     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2633                  MachineMemOperand::MODereferenceable;
2634     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2635         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2636     DAG.setNodeMemRefs(Node, {MemRef});
2637   }
2638   if (PtrTy != PtrMemTy)
2639     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2640   return SDValue(Node, 0);
2641 }
2642 
2643 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2644 /// tail spliced into a stack protector check success bb.
2645 ///
2646 /// For a high level explanation of how this fits into the stack protector
2647 /// generation see the comment on the declaration of class
2648 /// StackProtectorDescriptor.
2649 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2650                                                   MachineBasicBlock *ParentBB) {
2651 
2652   // First create the loads to the guard/stack slot for the comparison.
2653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2654   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2655   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2656 
2657   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2658   int FI = MFI.getStackProtectorIndex();
2659 
2660   SDValue Guard;
2661   SDLoc dl = getCurSDLoc();
2662   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2663   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2664   Align Align =
2665       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2666 
2667   // Generate code to load the content of the guard slot.
2668   SDValue GuardVal = DAG.getLoad(
2669       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2670       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2671       MachineMemOperand::MOVolatile);
2672 
2673   if (TLI.useStackGuardXorFP())
2674     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2675 
2676   // Retrieve guard check function, nullptr if instrumentation is inlined.
2677   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2678     // The target provides a guard check function to validate the guard value.
2679     // Generate a call to that function with the content of the guard slot as
2680     // argument.
2681     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2682     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2683 
2684     TargetLowering::ArgListTy Args;
2685     TargetLowering::ArgListEntry Entry;
2686     Entry.Node = GuardVal;
2687     Entry.Ty = FnTy->getParamType(0);
2688     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2689       Entry.IsInReg = true;
2690     Args.push_back(Entry);
2691 
2692     TargetLowering::CallLoweringInfo CLI(DAG);
2693     CLI.setDebugLoc(getCurSDLoc())
2694         .setChain(DAG.getEntryNode())
2695         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2696                    getValue(GuardCheckFn), std::move(Args));
2697 
2698     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2699     DAG.setRoot(Result.second);
2700     return;
2701   }
2702 
2703   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2704   // Otherwise, emit a volatile load to retrieve the stack guard value.
2705   SDValue Chain = DAG.getEntryNode();
2706   if (TLI.useLoadStackGuardNode()) {
2707     Guard = getLoadStackGuard(DAG, dl, Chain);
2708   } else {
2709     const Value *IRGuard = TLI.getSDagStackGuard(M);
2710     SDValue GuardPtr = getValue(IRGuard);
2711 
2712     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2713                         MachinePointerInfo(IRGuard, 0), Align,
2714                         MachineMemOperand::MOVolatile);
2715   }
2716 
2717   // Perform the comparison via a getsetcc.
2718   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2719                                                         *DAG.getContext(),
2720                                                         Guard.getValueType()),
2721                              Guard, GuardVal, ISD::SETNE);
2722 
2723   // If the guard/stackslot do not equal, branch to failure MBB.
2724   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2725                                MVT::Other, GuardVal.getOperand(0),
2726                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2727   // Otherwise branch to success MBB.
2728   SDValue Br = DAG.getNode(ISD::BR, dl,
2729                            MVT::Other, BrCond,
2730                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2731 
2732   DAG.setRoot(Br);
2733 }
2734 
2735 /// Codegen the failure basic block for a stack protector check.
2736 ///
2737 /// A failure stack protector machine basic block consists simply of a call to
2738 /// __stack_chk_fail().
2739 ///
2740 /// For a high level explanation of how this fits into the stack protector
2741 /// generation see the comment on the declaration of class
2742 /// StackProtectorDescriptor.
2743 void
2744 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2745   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2746   TargetLowering::MakeLibCallOptions CallOptions;
2747   CallOptions.setDiscardResult(true);
2748   SDValue Chain =
2749       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2750                       None, CallOptions, getCurSDLoc()).second;
2751   // On PS4, the "return address" must still be within the calling function,
2752   // even if it's at the very end, so emit an explicit TRAP here.
2753   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2754   if (TM.getTargetTriple().isPS4CPU())
2755     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2756   // WebAssembly needs an unreachable instruction after a non-returning call,
2757   // because the function return type can be different from __stack_chk_fail's
2758   // return type (void).
2759   if (TM.getTargetTriple().isWasm())
2760     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2761 
2762   DAG.setRoot(Chain);
2763 }
2764 
2765 /// visitBitTestHeader - This function emits necessary code to produce value
2766 /// suitable for "bit tests"
2767 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2768                                              MachineBasicBlock *SwitchBB) {
2769   SDLoc dl = getCurSDLoc();
2770 
2771   // Subtract the minimum value.
2772   SDValue SwitchOp = getValue(B.SValue);
2773   EVT VT = SwitchOp.getValueType();
2774   SDValue RangeSub =
2775       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2776 
2777   // Determine the type of the test operands.
2778   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2779   bool UsePtrType = false;
2780   if (!TLI.isTypeLegal(VT)) {
2781     UsePtrType = true;
2782   } else {
2783     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2784       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2785         // Switch table case range are encoded into series of masks.
2786         // Just use pointer type, it's guaranteed to fit.
2787         UsePtrType = true;
2788         break;
2789       }
2790   }
2791   SDValue Sub = RangeSub;
2792   if (UsePtrType) {
2793     VT = TLI.getPointerTy(DAG.getDataLayout());
2794     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2795   }
2796 
2797   B.RegVT = VT.getSimpleVT();
2798   B.Reg = FuncInfo.CreateReg(B.RegVT);
2799   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2800 
2801   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2802 
2803   if (!B.FallthroughUnreachable)
2804     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2805   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2806   SwitchBB->normalizeSuccProbs();
2807 
2808   SDValue Root = CopyTo;
2809   if (!B.FallthroughUnreachable) {
2810     // Conditional branch to the default block.
2811     SDValue RangeCmp = DAG.getSetCC(dl,
2812         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2813                                RangeSub.getValueType()),
2814         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2815         ISD::SETUGT);
2816 
2817     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2818                        DAG.getBasicBlock(B.Default));
2819   }
2820 
2821   // Avoid emitting unnecessary branches to the next block.
2822   if (MBB != NextBlock(SwitchBB))
2823     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2824 
2825   DAG.setRoot(Root);
2826 }
2827 
2828 /// visitBitTestCase - this function produces one "bit test"
2829 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2830                                            MachineBasicBlock* NextMBB,
2831                                            BranchProbability BranchProbToNext,
2832                                            unsigned Reg,
2833                                            BitTestCase &B,
2834                                            MachineBasicBlock *SwitchBB) {
2835   SDLoc dl = getCurSDLoc();
2836   MVT VT = BB.RegVT;
2837   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2838   SDValue Cmp;
2839   unsigned PopCount = countPopulation(B.Mask);
2840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2841   if (PopCount == 1) {
2842     // Testing for a single bit; just compare the shift count with what it
2843     // would need to be to shift a 1 bit in that position.
2844     Cmp = DAG.getSetCC(
2845         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2846         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2847         ISD::SETEQ);
2848   } else if (PopCount == BB.Range) {
2849     // There is only one zero bit in the range, test for it directly.
2850     Cmp = DAG.getSetCC(
2851         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2852         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2853         ISD::SETNE);
2854   } else {
2855     // Make desired shift
2856     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2857                                     DAG.getConstant(1, dl, VT), ShiftOp);
2858 
2859     // Emit bit tests and jumps
2860     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2861                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2862     Cmp = DAG.getSetCC(
2863         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2864         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2865   }
2866 
2867   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2868   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2869   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2870   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2871   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2872   // one as they are relative probabilities (and thus work more like weights),
2873   // and hence we need to normalize them to let the sum of them become one.
2874   SwitchBB->normalizeSuccProbs();
2875 
2876   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2877                               MVT::Other, getControlRoot(),
2878                               Cmp, DAG.getBasicBlock(B.TargetBB));
2879 
2880   // Avoid emitting unnecessary branches to the next block.
2881   if (NextMBB != NextBlock(SwitchBB))
2882     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2883                         DAG.getBasicBlock(NextMBB));
2884 
2885   DAG.setRoot(BrAnd);
2886 }
2887 
2888 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2889   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2890 
2891   // Retrieve successors. Look through artificial IR level blocks like
2892   // catchswitch for successors.
2893   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2894   const BasicBlock *EHPadBB = I.getSuccessor(1);
2895 
2896   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2897   // have to do anything here to lower funclet bundles.
2898   assert(!I.hasOperandBundlesOtherThan(
2899              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2900               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2901               LLVMContext::OB_cfguardtarget,
2902               LLVMContext::OB_clang_arc_attachedcall}) &&
2903          "Cannot lower invokes with arbitrary operand bundles yet!");
2904 
2905   const Value *Callee(I.getCalledOperand());
2906   const Function *Fn = dyn_cast<Function>(Callee);
2907   if (isa<InlineAsm>(Callee))
2908     visitInlineAsm(I, EHPadBB);
2909   else if (Fn && Fn->isIntrinsic()) {
2910     switch (Fn->getIntrinsicID()) {
2911     default:
2912       llvm_unreachable("Cannot invoke this intrinsic");
2913     case Intrinsic::donothing:
2914       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2915     case Intrinsic::seh_try_begin:
2916     case Intrinsic::seh_scope_begin:
2917     case Intrinsic::seh_try_end:
2918     case Intrinsic::seh_scope_end:
2919       break;
2920     case Intrinsic::experimental_patchpoint_void:
2921     case Intrinsic::experimental_patchpoint_i64:
2922       visitPatchpoint(I, EHPadBB);
2923       break;
2924     case Intrinsic::experimental_gc_statepoint:
2925       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2926       break;
2927     case Intrinsic::wasm_rethrow: {
2928       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2929       // special because it can be invoked, so we manually lower it to a DAG
2930       // node here.
2931       SmallVector<SDValue, 8> Ops;
2932       Ops.push_back(getRoot()); // inchain
2933       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2934       Ops.push_back(
2935           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2936                                 TLI.getPointerTy(DAG.getDataLayout())));
2937       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2938       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2939       break;
2940     }
2941     }
2942   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2943     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2944     // Eventually we will support lowering the @llvm.experimental.deoptimize
2945     // intrinsic, and right now there are no plans to support other intrinsics
2946     // with deopt state.
2947     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2948   } else {
2949     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2950   }
2951 
2952   // If the value of the invoke is used outside of its defining block, make it
2953   // available as a virtual register.
2954   // We already took care of the exported value for the statepoint instruction
2955   // during call to the LowerStatepoint.
2956   if (!isa<GCStatepointInst>(I)) {
2957     CopyToExportRegsIfNeeded(&I);
2958   }
2959 
2960   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2961   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2962   BranchProbability EHPadBBProb =
2963       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2964           : BranchProbability::getZero();
2965   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2966 
2967   // Update successor info.
2968   addSuccessorWithProb(InvokeMBB, Return);
2969   for (auto &UnwindDest : UnwindDests) {
2970     UnwindDest.first->setIsEHPad();
2971     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2972   }
2973   InvokeMBB->normalizeSuccProbs();
2974 
2975   // Drop into normal successor.
2976   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2977                           DAG.getBasicBlock(Return)));
2978 }
2979 
2980 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2981   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2982 
2983   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2984   // have to do anything here to lower funclet bundles.
2985   assert(!I.hasOperandBundlesOtherThan(
2986              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2987          "Cannot lower callbrs with arbitrary operand bundles yet!");
2988 
2989   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2990   visitInlineAsm(I);
2991   CopyToExportRegsIfNeeded(&I);
2992 
2993   // Retrieve successors.
2994   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2995 
2996   // Update successor info.
2997   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2998   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2999     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
3000     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3001     Target->setIsInlineAsmBrIndirectTarget();
3002   }
3003   CallBrMBB->normalizeSuccProbs();
3004 
3005   // Drop into default successor.
3006   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3007                           MVT::Other, getControlRoot(),
3008                           DAG.getBasicBlock(Return)));
3009 }
3010 
3011 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3012   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3013 }
3014 
3015 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3016   assert(FuncInfo.MBB->isEHPad() &&
3017          "Call to landingpad not in landing pad!");
3018 
3019   // If there aren't registers to copy the values into (e.g., during SjLj
3020   // exceptions), then don't bother to create these DAG nodes.
3021   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3022   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3023   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3024       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3025     return;
3026 
3027   // If landingpad's return type is token type, we don't create DAG nodes
3028   // for its exception pointer and selector value. The extraction of exception
3029   // pointer or selector value from token type landingpads is not currently
3030   // supported.
3031   if (LP.getType()->isTokenTy())
3032     return;
3033 
3034   SmallVector<EVT, 2> ValueVTs;
3035   SDLoc dl = getCurSDLoc();
3036   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3037   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3038 
3039   // Get the two live-in registers as SDValues. The physregs have already been
3040   // copied into virtual registers.
3041   SDValue Ops[2];
3042   if (FuncInfo.ExceptionPointerVirtReg) {
3043     Ops[0] = DAG.getZExtOrTrunc(
3044         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3045                            FuncInfo.ExceptionPointerVirtReg,
3046                            TLI.getPointerTy(DAG.getDataLayout())),
3047         dl, ValueVTs[0]);
3048   } else {
3049     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3050   }
3051   Ops[1] = DAG.getZExtOrTrunc(
3052       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3053                          FuncInfo.ExceptionSelectorVirtReg,
3054                          TLI.getPointerTy(DAG.getDataLayout())),
3055       dl, ValueVTs[1]);
3056 
3057   // Merge into one.
3058   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3059                             DAG.getVTList(ValueVTs), Ops);
3060   setValue(&LP, Res);
3061 }
3062 
3063 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3064                                            MachineBasicBlock *Last) {
3065   // Update JTCases.
3066   for (JumpTableBlock &JTB : SL->JTCases)
3067     if (JTB.first.HeaderBB == First)
3068       JTB.first.HeaderBB = Last;
3069 
3070   // Update BitTestCases.
3071   for (BitTestBlock &BTB : SL->BitTestCases)
3072     if (BTB.Parent == First)
3073       BTB.Parent = Last;
3074 }
3075 
3076 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3077   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3078 
3079   // Update machine-CFG edges with unique successors.
3080   SmallSet<BasicBlock*, 32> Done;
3081   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3082     BasicBlock *BB = I.getSuccessor(i);
3083     bool Inserted = Done.insert(BB).second;
3084     if (!Inserted)
3085         continue;
3086 
3087     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3088     addSuccessorWithProb(IndirectBrMBB, Succ);
3089   }
3090   IndirectBrMBB->normalizeSuccProbs();
3091 
3092   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3093                           MVT::Other, getControlRoot(),
3094                           getValue(I.getAddress())));
3095 }
3096 
3097 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3098   if (!DAG.getTarget().Options.TrapUnreachable)
3099     return;
3100 
3101   // We may be able to ignore unreachable behind a noreturn call.
3102   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3103     const BasicBlock &BB = *I.getParent();
3104     if (&I != &BB.front()) {
3105       BasicBlock::const_iterator PredI =
3106         std::prev(BasicBlock::const_iterator(&I));
3107       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3108         if (Call->doesNotReturn())
3109           return;
3110       }
3111     }
3112   }
3113 
3114   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3115 }
3116 
3117 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3118   SDNodeFlags Flags;
3119   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3120     Flags.copyFMF(*FPOp);
3121 
3122   SDValue Op = getValue(I.getOperand(0));
3123   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3124                                     Op, Flags);
3125   setValue(&I, UnNodeValue);
3126 }
3127 
3128 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3129   SDNodeFlags Flags;
3130   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3131     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3132     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3133   }
3134   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3135     Flags.setExact(ExactOp->isExact());
3136   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3137     Flags.copyFMF(*FPOp);
3138 
3139   SDValue Op1 = getValue(I.getOperand(0));
3140   SDValue Op2 = getValue(I.getOperand(1));
3141   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3142                                      Op1, Op2, Flags);
3143   setValue(&I, BinNodeValue);
3144 }
3145 
3146 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3147   SDValue Op1 = getValue(I.getOperand(0));
3148   SDValue Op2 = getValue(I.getOperand(1));
3149 
3150   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3151       Op1.getValueType(), DAG.getDataLayout());
3152 
3153   // Coerce the shift amount to the right type if we can.
3154   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3155     unsigned ShiftSize = ShiftTy.getSizeInBits();
3156     unsigned Op2Size = Op2.getValueSizeInBits();
3157     SDLoc DL = getCurSDLoc();
3158 
3159     // If the operand is smaller than the shift count type, promote it.
3160     if (ShiftSize > Op2Size)
3161       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3162 
3163     // If the operand is larger than the shift count type but the shift
3164     // count type has enough bits to represent any shift value, truncate
3165     // it now. This is a common case and it exposes the truncate to
3166     // optimization early.
3167     else if (ShiftSize >= Log2_32_Ceil(Op1.getValueSizeInBits()))
3168       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3169     // Otherwise we'll need to temporarily settle for some other convenient
3170     // type.  Type legalization will make adjustments once the shiftee is split.
3171     else
3172       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3173   }
3174 
3175   bool nuw = false;
3176   bool nsw = false;
3177   bool exact = false;
3178 
3179   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3180 
3181     if (const OverflowingBinaryOperator *OFBinOp =
3182             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3183       nuw = OFBinOp->hasNoUnsignedWrap();
3184       nsw = OFBinOp->hasNoSignedWrap();
3185     }
3186     if (const PossiblyExactOperator *ExactOp =
3187             dyn_cast<const PossiblyExactOperator>(&I))
3188       exact = ExactOp->isExact();
3189   }
3190   SDNodeFlags Flags;
3191   Flags.setExact(exact);
3192   Flags.setNoSignedWrap(nsw);
3193   Flags.setNoUnsignedWrap(nuw);
3194   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3195                             Flags);
3196   setValue(&I, Res);
3197 }
3198 
3199 void SelectionDAGBuilder::visitSDiv(const User &I) {
3200   SDValue Op1 = getValue(I.getOperand(0));
3201   SDValue Op2 = getValue(I.getOperand(1));
3202 
3203   SDNodeFlags Flags;
3204   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3205                  cast<PossiblyExactOperator>(&I)->isExact());
3206   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3207                            Op2, Flags));
3208 }
3209 
3210 void SelectionDAGBuilder::visitICmp(const User &I) {
3211   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3212   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3213     predicate = IC->getPredicate();
3214   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3215     predicate = ICmpInst::Predicate(IC->getPredicate());
3216   SDValue Op1 = getValue(I.getOperand(0));
3217   SDValue Op2 = getValue(I.getOperand(1));
3218   ISD::CondCode Opcode = getICmpCondCode(predicate);
3219 
3220   auto &TLI = DAG.getTargetLoweringInfo();
3221   EVT MemVT =
3222       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3223 
3224   // If a pointer's DAG type is larger than its memory type then the DAG values
3225   // are zero-extended. This breaks signed comparisons so truncate back to the
3226   // underlying type before doing the compare.
3227   if (Op1.getValueType() != MemVT) {
3228     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3229     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3230   }
3231 
3232   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3233                                                         I.getType());
3234   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3235 }
3236 
3237 void SelectionDAGBuilder::visitFCmp(const User &I) {
3238   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3239   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3240     predicate = FC->getPredicate();
3241   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3242     predicate = FCmpInst::Predicate(FC->getPredicate());
3243   SDValue Op1 = getValue(I.getOperand(0));
3244   SDValue Op2 = getValue(I.getOperand(1));
3245 
3246   ISD::CondCode Condition = getFCmpCondCode(predicate);
3247   auto *FPMO = cast<FPMathOperator>(&I);
3248   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3249     Condition = getFCmpCodeWithoutNaN(Condition);
3250 
3251   SDNodeFlags Flags;
3252   Flags.copyFMF(*FPMO);
3253   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3254 
3255   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3256                                                         I.getType());
3257   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3258 }
3259 
3260 // Check if the condition of the select has one use or two users that are both
3261 // selects with the same condition.
3262 static bool hasOnlySelectUsers(const Value *Cond) {
3263   return llvm::all_of(Cond->users(), [](const Value *V) {
3264     return isa<SelectInst>(V);
3265   });
3266 }
3267 
3268 void SelectionDAGBuilder::visitSelect(const User &I) {
3269   SmallVector<EVT, 4> ValueVTs;
3270   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3271                   ValueVTs);
3272   unsigned NumValues = ValueVTs.size();
3273   if (NumValues == 0) return;
3274 
3275   SmallVector<SDValue, 4> Values(NumValues);
3276   SDValue Cond     = getValue(I.getOperand(0));
3277   SDValue LHSVal   = getValue(I.getOperand(1));
3278   SDValue RHSVal   = getValue(I.getOperand(2));
3279   SmallVector<SDValue, 1> BaseOps(1, Cond);
3280   ISD::NodeType OpCode =
3281       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3282 
3283   bool IsUnaryAbs = false;
3284   bool Negate = false;
3285 
3286   SDNodeFlags Flags;
3287   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3288     Flags.copyFMF(*FPOp);
3289 
3290   // Min/max matching is only viable if all output VTs are the same.
3291   if (is_splat(ValueVTs)) {
3292     EVT VT = ValueVTs[0];
3293     LLVMContext &Ctx = *DAG.getContext();
3294     auto &TLI = DAG.getTargetLoweringInfo();
3295 
3296     // We care about the legality of the operation after it has been type
3297     // legalized.
3298     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3299       VT = TLI.getTypeToTransformTo(Ctx, VT);
3300 
3301     // If the vselect is legal, assume we want to leave this as a vector setcc +
3302     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3303     // min/max is legal on the scalar type.
3304     bool UseScalarMinMax = VT.isVector() &&
3305       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3306 
3307     Value *LHS, *RHS;
3308     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3309     ISD::NodeType Opc = ISD::DELETED_NODE;
3310     switch (SPR.Flavor) {
3311     case SPF_UMAX:    Opc = ISD::UMAX; break;
3312     case SPF_UMIN:    Opc = ISD::UMIN; break;
3313     case SPF_SMAX:    Opc = ISD::SMAX; break;
3314     case SPF_SMIN:    Opc = ISD::SMIN; break;
3315     case SPF_FMINNUM:
3316       switch (SPR.NaNBehavior) {
3317       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3318       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3319       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3320       case SPNB_RETURNS_ANY: {
3321         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3322           Opc = ISD::FMINNUM;
3323         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3324           Opc = ISD::FMINIMUM;
3325         else if (UseScalarMinMax)
3326           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3327             ISD::FMINNUM : ISD::FMINIMUM;
3328         break;
3329       }
3330       }
3331       break;
3332     case SPF_FMAXNUM:
3333       switch (SPR.NaNBehavior) {
3334       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3335       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3336       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3337       case SPNB_RETURNS_ANY:
3338 
3339         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3340           Opc = ISD::FMAXNUM;
3341         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3342           Opc = ISD::FMAXIMUM;
3343         else if (UseScalarMinMax)
3344           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3345             ISD::FMAXNUM : ISD::FMAXIMUM;
3346         break;
3347       }
3348       break;
3349     case SPF_NABS:
3350       Negate = true;
3351       LLVM_FALLTHROUGH;
3352     case SPF_ABS:
3353       IsUnaryAbs = true;
3354       Opc = ISD::ABS;
3355       break;
3356     default: break;
3357     }
3358 
3359     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3360         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3361          (UseScalarMinMax &&
3362           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3363         // If the underlying comparison instruction is used by any other
3364         // instruction, the consumed instructions won't be destroyed, so it is
3365         // not profitable to convert to a min/max.
3366         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3367       OpCode = Opc;
3368       LHSVal = getValue(LHS);
3369       RHSVal = getValue(RHS);
3370       BaseOps.clear();
3371     }
3372 
3373     if (IsUnaryAbs) {
3374       OpCode = Opc;
3375       LHSVal = getValue(LHS);
3376       BaseOps.clear();
3377     }
3378   }
3379 
3380   if (IsUnaryAbs) {
3381     for (unsigned i = 0; i != NumValues; ++i) {
3382       SDLoc dl = getCurSDLoc();
3383       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3384       Values[i] =
3385           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3386       if (Negate)
3387         Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3388                                 Values[i]);
3389     }
3390   } else {
3391     for (unsigned i = 0; i != NumValues; ++i) {
3392       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3393       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3394       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3395       Values[i] = DAG.getNode(
3396           OpCode, getCurSDLoc(),
3397           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3398     }
3399   }
3400 
3401   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3402                            DAG.getVTList(ValueVTs), Values));
3403 }
3404 
3405 void SelectionDAGBuilder::visitTrunc(const User &I) {
3406   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3407   SDValue N = getValue(I.getOperand(0));
3408   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3409                                                         I.getType());
3410   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3411 }
3412 
3413 void SelectionDAGBuilder::visitZExt(const User &I) {
3414   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3415   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3416   SDValue N = getValue(I.getOperand(0));
3417   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3418                                                         I.getType());
3419   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3420 }
3421 
3422 void SelectionDAGBuilder::visitSExt(const User &I) {
3423   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3424   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3425   SDValue N = getValue(I.getOperand(0));
3426   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3427                                                         I.getType());
3428   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3429 }
3430 
3431 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3432   // FPTrunc is never a no-op cast, no need to check
3433   SDValue N = getValue(I.getOperand(0));
3434   SDLoc dl = getCurSDLoc();
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3437   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3438                            DAG.getTargetConstant(
3439                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3440 }
3441 
3442 void SelectionDAGBuilder::visitFPExt(const User &I) {
3443   // FPExt is never a no-op cast, no need to check
3444   SDValue N = getValue(I.getOperand(0));
3445   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3446                                                         I.getType());
3447   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3448 }
3449 
3450 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3451   // FPToUI is never a no-op cast, no need to check
3452   SDValue N = getValue(I.getOperand(0));
3453   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3454                                                         I.getType());
3455   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3456 }
3457 
3458 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3459   // FPToSI is never a no-op cast, no need to check
3460   SDValue N = getValue(I.getOperand(0));
3461   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3462                                                         I.getType());
3463   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3464 }
3465 
3466 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3467   // UIToFP is never a no-op cast, no need to check
3468   SDValue N = getValue(I.getOperand(0));
3469   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3470                                                         I.getType());
3471   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3472 }
3473 
3474 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3475   // SIToFP is never a no-op cast, no need to check
3476   SDValue N = getValue(I.getOperand(0));
3477   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3478                                                         I.getType());
3479   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3480 }
3481 
3482 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3483   // What to do depends on the size of the integer and the size of the pointer.
3484   // We can either truncate, zero extend, or no-op, accordingly.
3485   SDValue N = getValue(I.getOperand(0));
3486   auto &TLI = DAG.getTargetLoweringInfo();
3487   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3488                                                         I.getType());
3489   EVT PtrMemVT =
3490       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3491   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3492   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3493   setValue(&I, N);
3494 }
3495 
3496 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3497   // What to do depends on the size of the integer and the size of the pointer.
3498   // We can either truncate, zero extend, or no-op, accordingly.
3499   SDValue N = getValue(I.getOperand(0));
3500   auto &TLI = DAG.getTargetLoweringInfo();
3501   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3502   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3503   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3504   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3505   setValue(&I, N);
3506 }
3507 
3508 void SelectionDAGBuilder::visitBitCast(const User &I) {
3509   SDValue N = getValue(I.getOperand(0));
3510   SDLoc dl = getCurSDLoc();
3511   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3512                                                         I.getType());
3513 
3514   // BitCast assures us that source and destination are the same size so this is
3515   // either a BITCAST or a no-op.
3516   if (DestVT != N.getValueType())
3517     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3518                              DestVT, N)); // convert types.
3519   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3520   // might fold any kind of constant expression to an integer constant and that
3521   // is not what we are looking for. Only recognize a bitcast of a genuine
3522   // constant integer as an opaque constant.
3523   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3524     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3525                                  /*isOpaque*/true));
3526   else
3527     setValue(&I, N);            // noop cast.
3528 }
3529 
3530 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3532   const Value *SV = I.getOperand(0);
3533   SDValue N = getValue(SV);
3534   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3535 
3536   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3537   unsigned DestAS = I.getType()->getPointerAddressSpace();
3538 
3539   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3540     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3541 
3542   setValue(&I, N);
3543 }
3544 
3545 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3547   SDValue InVec = getValue(I.getOperand(0));
3548   SDValue InVal = getValue(I.getOperand(1));
3549   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3550                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3551   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3552                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3553                            InVec, InVal, InIdx));
3554 }
3555 
3556 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3557   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3558   SDValue InVec = getValue(I.getOperand(0));
3559   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3560                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3561   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3562                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3563                            InVec, InIdx));
3564 }
3565 
3566 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3567   SDValue Src1 = getValue(I.getOperand(0));
3568   SDValue Src2 = getValue(I.getOperand(1));
3569   ArrayRef<int> Mask;
3570   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3571     Mask = SVI->getShuffleMask();
3572   else
3573     Mask = cast<ConstantExpr>(I).getShuffleMask();
3574   SDLoc DL = getCurSDLoc();
3575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3576   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3577   EVT SrcVT = Src1.getValueType();
3578 
3579   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3580       VT.isScalableVector()) {
3581     // Canonical splat form of first element of first input vector.
3582     SDValue FirstElt =
3583         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3584                     DAG.getVectorIdxConstant(0, DL));
3585     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3586     return;
3587   }
3588 
3589   // For now, we only handle splats for scalable vectors.
3590   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3591   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3592   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3593 
3594   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3595   unsigned MaskNumElts = Mask.size();
3596 
3597   if (SrcNumElts == MaskNumElts) {
3598     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3599     return;
3600   }
3601 
3602   // Normalize the shuffle vector since mask and vector length don't match.
3603   if (SrcNumElts < MaskNumElts) {
3604     // Mask is longer than the source vectors. We can use concatenate vector to
3605     // make the mask and vectors lengths match.
3606 
3607     if (MaskNumElts % SrcNumElts == 0) {
3608       // Mask length is a multiple of the source vector length.
3609       // Check if the shuffle is some kind of concatenation of the input
3610       // vectors.
3611       unsigned NumConcat = MaskNumElts / SrcNumElts;
3612       bool IsConcat = true;
3613       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3614       for (unsigned i = 0; i != MaskNumElts; ++i) {
3615         int Idx = Mask[i];
3616         if (Idx < 0)
3617           continue;
3618         // Ensure the indices in each SrcVT sized piece are sequential and that
3619         // the same source is used for the whole piece.
3620         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3621             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3622              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3623           IsConcat = false;
3624           break;
3625         }
3626         // Remember which source this index came from.
3627         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3628       }
3629 
3630       // The shuffle is concatenating multiple vectors together. Just emit
3631       // a CONCAT_VECTORS operation.
3632       if (IsConcat) {
3633         SmallVector<SDValue, 8> ConcatOps;
3634         for (auto Src : ConcatSrcs) {
3635           if (Src < 0)
3636             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3637           else if (Src == 0)
3638             ConcatOps.push_back(Src1);
3639           else
3640             ConcatOps.push_back(Src2);
3641         }
3642         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3643         return;
3644       }
3645     }
3646 
3647     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3648     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3649     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3650                                     PaddedMaskNumElts);
3651 
3652     // Pad both vectors with undefs to make them the same length as the mask.
3653     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3654 
3655     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3656     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3657     MOps1[0] = Src1;
3658     MOps2[0] = Src2;
3659 
3660     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3661     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3662 
3663     // Readjust mask for new input vector length.
3664     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3665     for (unsigned i = 0; i != MaskNumElts; ++i) {
3666       int Idx = Mask[i];
3667       if (Idx >= (int)SrcNumElts)
3668         Idx -= SrcNumElts - PaddedMaskNumElts;
3669       MappedOps[i] = Idx;
3670     }
3671 
3672     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3673 
3674     // If the concatenated vector was padded, extract a subvector with the
3675     // correct number of elements.
3676     if (MaskNumElts != PaddedMaskNumElts)
3677       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3678                            DAG.getVectorIdxConstant(0, DL));
3679 
3680     setValue(&I, Result);
3681     return;
3682   }
3683 
3684   if (SrcNumElts > MaskNumElts) {
3685     // Analyze the access pattern of the vector to see if we can extract
3686     // two subvectors and do the shuffle.
3687     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3688     bool CanExtract = true;
3689     for (int Idx : Mask) {
3690       unsigned Input = 0;
3691       if (Idx < 0)
3692         continue;
3693 
3694       if (Idx >= (int)SrcNumElts) {
3695         Input = 1;
3696         Idx -= SrcNumElts;
3697       }
3698 
3699       // If all the indices come from the same MaskNumElts sized portion of
3700       // the sources we can use extract. Also make sure the extract wouldn't
3701       // extract past the end of the source.
3702       int NewStartIdx = alignDown(Idx, MaskNumElts);
3703       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3704           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3705         CanExtract = false;
3706       // Make sure we always update StartIdx as we use it to track if all
3707       // elements are undef.
3708       StartIdx[Input] = NewStartIdx;
3709     }
3710 
3711     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3712       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3713       return;
3714     }
3715     if (CanExtract) {
3716       // Extract appropriate subvector and generate a vector shuffle
3717       for (unsigned Input = 0; Input < 2; ++Input) {
3718         SDValue &Src = Input == 0 ? Src1 : Src2;
3719         if (StartIdx[Input] < 0)
3720           Src = DAG.getUNDEF(VT);
3721         else {
3722           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3723                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3724         }
3725       }
3726 
3727       // Calculate new mask.
3728       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3729       for (int &Idx : MappedOps) {
3730         if (Idx >= (int)SrcNumElts)
3731           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3732         else if (Idx >= 0)
3733           Idx -= StartIdx[0];
3734       }
3735 
3736       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3737       return;
3738     }
3739   }
3740 
3741   // We can't use either concat vectors or extract subvectors so fall back to
3742   // replacing the shuffle with extract and build vector.
3743   // to insert and build vector.
3744   EVT EltVT = VT.getVectorElementType();
3745   SmallVector<SDValue,8> Ops;
3746   for (int Idx : Mask) {
3747     SDValue Res;
3748 
3749     if (Idx < 0) {
3750       Res = DAG.getUNDEF(EltVT);
3751     } else {
3752       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3753       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3754 
3755       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3756                         DAG.getVectorIdxConstant(Idx, DL));
3757     }
3758 
3759     Ops.push_back(Res);
3760   }
3761 
3762   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3763 }
3764 
3765 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3766   ArrayRef<unsigned> Indices;
3767   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3768     Indices = IV->getIndices();
3769   else
3770     Indices = cast<ConstantExpr>(&I)->getIndices();
3771 
3772   const Value *Op0 = I.getOperand(0);
3773   const Value *Op1 = I.getOperand(1);
3774   Type *AggTy = I.getType();
3775   Type *ValTy = Op1->getType();
3776   bool IntoUndef = isa<UndefValue>(Op0);
3777   bool FromUndef = isa<UndefValue>(Op1);
3778 
3779   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3780 
3781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3782   SmallVector<EVT, 4> AggValueVTs;
3783   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3784   SmallVector<EVT, 4> ValValueVTs;
3785   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3786 
3787   unsigned NumAggValues = AggValueVTs.size();
3788   unsigned NumValValues = ValValueVTs.size();
3789   SmallVector<SDValue, 4> Values(NumAggValues);
3790 
3791   // Ignore an insertvalue that produces an empty object
3792   if (!NumAggValues) {
3793     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3794     return;
3795   }
3796 
3797   SDValue Agg = getValue(Op0);
3798   unsigned i = 0;
3799   // Copy the beginning value(s) from the original aggregate.
3800   for (; i != LinearIndex; ++i)
3801     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3802                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3803   // Copy values from the inserted value(s).
3804   if (NumValValues) {
3805     SDValue Val = getValue(Op1);
3806     for (; i != LinearIndex + NumValValues; ++i)
3807       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3808                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3809   }
3810   // Copy remaining value(s) from the original aggregate.
3811   for (; i != NumAggValues; ++i)
3812     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3813                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3814 
3815   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3816                            DAG.getVTList(AggValueVTs), Values));
3817 }
3818 
3819 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3820   ArrayRef<unsigned> Indices;
3821   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3822     Indices = EV->getIndices();
3823   else
3824     Indices = cast<ConstantExpr>(&I)->getIndices();
3825 
3826   const Value *Op0 = I.getOperand(0);
3827   Type *AggTy = Op0->getType();
3828   Type *ValTy = I.getType();
3829   bool OutOfUndef = isa<UndefValue>(Op0);
3830 
3831   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3832 
3833   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3834   SmallVector<EVT, 4> ValValueVTs;
3835   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3836 
3837   unsigned NumValValues = ValValueVTs.size();
3838 
3839   // Ignore a extractvalue that produces an empty object
3840   if (!NumValValues) {
3841     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3842     return;
3843   }
3844 
3845   SmallVector<SDValue, 4> Values(NumValValues);
3846 
3847   SDValue Agg = getValue(Op0);
3848   // Copy out the selected value(s).
3849   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3850     Values[i - LinearIndex] =
3851       OutOfUndef ?
3852         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3853         SDValue(Agg.getNode(), Agg.getResNo() + i);
3854 
3855   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3856                            DAG.getVTList(ValValueVTs), Values));
3857 }
3858 
3859 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3860   Value *Op0 = I.getOperand(0);
3861   // Note that the pointer operand may be a vector of pointers. Take the scalar
3862   // element which holds a pointer.
3863   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3864   SDValue N = getValue(Op0);
3865   SDLoc dl = getCurSDLoc();
3866   auto &TLI = DAG.getTargetLoweringInfo();
3867 
3868   // Normalize Vector GEP - all scalar operands should be converted to the
3869   // splat vector.
3870   bool IsVectorGEP = I.getType()->isVectorTy();
3871   ElementCount VectorElementCount =
3872       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3873                   : ElementCount::getFixed(0);
3874 
3875   if (IsVectorGEP && !N.getValueType().isVector()) {
3876     LLVMContext &Context = *DAG.getContext();
3877     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3878     if (VectorElementCount.isScalable())
3879       N = DAG.getSplatVector(VT, dl, N);
3880     else
3881       N = DAG.getSplatBuildVector(VT, dl, N);
3882   }
3883 
3884   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3885        GTI != E; ++GTI) {
3886     const Value *Idx = GTI.getOperand();
3887     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3888       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3889       if (Field) {
3890         // N = N + Offset
3891         uint64_t Offset =
3892             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3893 
3894         // In an inbounds GEP with an offset that is nonnegative even when
3895         // interpreted as signed, assume there is no unsigned overflow.
3896         SDNodeFlags Flags;
3897         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3898           Flags.setNoUnsignedWrap(true);
3899 
3900         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3901                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3902       }
3903     } else {
3904       // IdxSize is the width of the arithmetic according to IR semantics.
3905       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3906       // (and fix up the result later).
3907       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3908       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3909       TypeSize ElementSize =
3910           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3911       // We intentionally mask away the high bits here; ElementSize may not
3912       // fit in IdxTy.
3913       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3914       bool ElementScalable = ElementSize.isScalable();
3915 
3916       // If this is a scalar constant or a splat vector of constants,
3917       // handle it quickly.
3918       const auto *C = dyn_cast<Constant>(Idx);
3919       if (C && isa<VectorType>(C->getType()))
3920         C = C->getSplatValue();
3921 
3922       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3923       if (CI && CI->isZero())
3924         continue;
3925       if (CI && !ElementScalable) {
3926         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3927         LLVMContext &Context = *DAG.getContext();
3928         SDValue OffsVal;
3929         if (IsVectorGEP)
3930           OffsVal = DAG.getConstant(
3931               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3932         else
3933           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3934 
3935         // In an inbounds GEP with an offset that is nonnegative even when
3936         // interpreted as signed, assume there is no unsigned overflow.
3937         SDNodeFlags Flags;
3938         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3939           Flags.setNoUnsignedWrap(true);
3940 
3941         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3942 
3943         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3944         continue;
3945       }
3946 
3947       // N = N + Idx * ElementMul;
3948       SDValue IdxN = getValue(Idx);
3949 
3950       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3951         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3952                                   VectorElementCount);
3953         if (VectorElementCount.isScalable())
3954           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3955         else
3956           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3957       }
3958 
3959       // If the index is smaller or larger than intptr_t, truncate or extend
3960       // it.
3961       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3962 
3963       if (ElementScalable) {
3964         EVT VScaleTy = N.getValueType().getScalarType();
3965         SDValue VScale = DAG.getNode(
3966             ISD::VSCALE, dl, VScaleTy,
3967             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3968         if (IsVectorGEP)
3969           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3970         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3971       } else {
3972         // If this is a multiply by a power of two, turn it into a shl
3973         // immediately.  This is a very common case.
3974         if (ElementMul != 1) {
3975           if (ElementMul.isPowerOf2()) {
3976             unsigned Amt = ElementMul.logBase2();
3977             IdxN = DAG.getNode(ISD::SHL, dl,
3978                                N.getValueType(), IdxN,
3979                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3980           } else {
3981             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3982                                             IdxN.getValueType());
3983             IdxN = DAG.getNode(ISD::MUL, dl,
3984                                N.getValueType(), IdxN, Scale);
3985           }
3986         }
3987       }
3988 
3989       N = DAG.getNode(ISD::ADD, dl,
3990                       N.getValueType(), N, IdxN);
3991     }
3992   }
3993 
3994   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3995   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3996   if (IsVectorGEP) {
3997     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3998     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3999   }
4000 
4001   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4002     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4003 
4004   setValue(&I, N);
4005 }
4006 
4007 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4008   // If this is a fixed sized alloca in the entry block of the function,
4009   // allocate it statically on the stack.
4010   if (FuncInfo.StaticAllocaMap.count(&I))
4011     return;   // getValue will auto-populate this.
4012 
4013   SDLoc dl = getCurSDLoc();
4014   Type *Ty = I.getAllocatedType();
4015   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4016   auto &DL = DAG.getDataLayout();
4017   uint64_t TySize = DL.getTypeAllocSize(Ty);
4018   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4019 
4020   SDValue AllocSize = getValue(I.getArraySize());
4021 
4022   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4023   if (AllocSize.getValueType() != IntPtr)
4024     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4025 
4026   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4027                           AllocSize,
4028                           DAG.getConstant(TySize, dl, IntPtr));
4029 
4030   // Handle alignment.  If the requested alignment is less than or equal to
4031   // the stack alignment, ignore it.  If the size is greater than or equal to
4032   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4033   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4034   if (*Alignment <= StackAlign)
4035     Alignment = None;
4036 
4037   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4038   // Round the size of the allocation up to the stack alignment size
4039   // by add SA-1 to the size. This doesn't overflow because we're computing
4040   // an address inside an alloca.
4041   SDNodeFlags Flags;
4042   Flags.setNoUnsignedWrap(true);
4043   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4044                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4045 
4046   // Mask out the low bits for alignment purposes.
4047   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4048                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4049 
4050   SDValue Ops[] = {
4051       getRoot(), AllocSize,
4052       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4053   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4054   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4055   setValue(&I, DSA);
4056   DAG.setRoot(DSA.getValue(1));
4057 
4058   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4059 }
4060 
4061 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4062   if (I.isAtomic())
4063     return visitAtomicLoad(I);
4064 
4065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4066   const Value *SV = I.getOperand(0);
4067   if (TLI.supportSwiftError()) {
4068     // Swifterror values can come from either a function parameter with
4069     // swifterror attribute or an alloca with swifterror attribute.
4070     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4071       if (Arg->hasSwiftErrorAttr())
4072         return visitLoadFromSwiftError(I);
4073     }
4074 
4075     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4076       if (Alloca->isSwiftError())
4077         return visitLoadFromSwiftError(I);
4078     }
4079   }
4080 
4081   SDValue Ptr = getValue(SV);
4082 
4083   Type *Ty = I.getType();
4084   Align Alignment = I.getAlign();
4085 
4086   AAMDNodes AAInfo = I.getAAMetadata();
4087   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4088 
4089   SmallVector<EVT, 4> ValueVTs, MemVTs;
4090   SmallVector<uint64_t, 4> Offsets;
4091   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4092   unsigned NumValues = ValueVTs.size();
4093   if (NumValues == 0)
4094     return;
4095 
4096   bool isVolatile = I.isVolatile();
4097 
4098   SDValue Root;
4099   bool ConstantMemory = false;
4100   if (isVolatile)
4101     // Serialize volatile loads with other side effects.
4102     Root = getRoot();
4103   else if (NumValues > MaxParallelChains)
4104     Root = getMemoryRoot();
4105   else if (AA &&
4106            AA->pointsToConstantMemory(MemoryLocation(
4107                SV,
4108                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4109                AAInfo))) {
4110     // Do not serialize (non-volatile) loads of constant memory with anything.
4111     Root = DAG.getEntryNode();
4112     ConstantMemory = true;
4113   } else {
4114     // Do not serialize non-volatile loads against each other.
4115     Root = DAG.getRoot();
4116   }
4117 
4118   SDLoc dl = getCurSDLoc();
4119 
4120   if (isVolatile)
4121     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4122 
4123   // An aggregate load cannot wrap around the address space, so offsets to its
4124   // parts don't wrap either.
4125   SDNodeFlags Flags;
4126   Flags.setNoUnsignedWrap(true);
4127 
4128   SmallVector<SDValue, 4> Values(NumValues);
4129   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4130   EVT PtrVT = Ptr.getValueType();
4131 
4132   MachineMemOperand::Flags MMOFlags
4133     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4134 
4135   unsigned ChainI = 0;
4136   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4137     // Serializing loads here may result in excessive register pressure, and
4138     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4139     // could recover a bit by hoisting nodes upward in the chain by recognizing
4140     // they are side-effect free or do not alias. The optimizer should really
4141     // avoid this case by converting large object/array copies to llvm.memcpy
4142     // (MaxParallelChains should always remain as failsafe).
4143     if (ChainI == MaxParallelChains) {
4144       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4145       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4146                                   makeArrayRef(Chains.data(), ChainI));
4147       Root = Chain;
4148       ChainI = 0;
4149     }
4150     SDValue A = DAG.getNode(ISD::ADD, dl,
4151                             PtrVT, Ptr,
4152                             DAG.getConstant(Offsets[i], dl, PtrVT),
4153                             Flags);
4154 
4155     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4156                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4157                             MMOFlags, AAInfo, Ranges);
4158     Chains[ChainI] = L.getValue(1);
4159 
4160     if (MemVTs[i] != ValueVTs[i])
4161       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4162 
4163     Values[i] = L;
4164   }
4165 
4166   if (!ConstantMemory) {
4167     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4168                                 makeArrayRef(Chains.data(), ChainI));
4169     if (isVolatile)
4170       DAG.setRoot(Chain);
4171     else
4172       PendingLoads.push_back(Chain);
4173   }
4174 
4175   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4176                            DAG.getVTList(ValueVTs), Values));
4177 }
4178 
4179 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4180   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4181          "call visitStoreToSwiftError when backend supports swifterror");
4182 
4183   SmallVector<EVT, 4> ValueVTs;
4184   SmallVector<uint64_t, 4> Offsets;
4185   const Value *SrcV = I.getOperand(0);
4186   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4187                   SrcV->getType(), ValueVTs, &Offsets);
4188   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4189          "expect a single EVT for swifterror");
4190 
4191   SDValue Src = getValue(SrcV);
4192   // Create a virtual register, then update the virtual register.
4193   Register VReg =
4194       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4195   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4196   // Chain can be getRoot or getControlRoot.
4197   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4198                                       SDValue(Src.getNode(), Src.getResNo()));
4199   DAG.setRoot(CopyNode);
4200 }
4201 
4202 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4203   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4204          "call visitLoadFromSwiftError when backend supports swifterror");
4205 
4206   assert(!I.isVolatile() &&
4207          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4208          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4209          "Support volatile, non temporal, invariant for load_from_swift_error");
4210 
4211   const Value *SV = I.getOperand(0);
4212   Type *Ty = I.getType();
4213   assert(
4214       (!AA ||
4215        !AA->pointsToConstantMemory(MemoryLocation(
4216            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4217            I.getAAMetadata()))) &&
4218       "load_from_swift_error should not be constant memory");
4219 
4220   SmallVector<EVT, 4> ValueVTs;
4221   SmallVector<uint64_t, 4> Offsets;
4222   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4223                   ValueVTs, &Offsets);
4224   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4225          "expect a single EVT for swifterror");
4226 
4227   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4228   SDValue L = DAG.getCopyFromReg(
4229       getRoot(), getCurSDLoc(),
4230       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4231 
4232   setValue(&I, L);
4233 }
4234 
4235 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4236   if (I.isAtomic())
4237     return visitAtomicStore(I);
4238 
4239   const Value *SrcV = I.getOperand(0);
4240   const Value *PtrV = I.getOperand(1);
4241 
4242   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4243   if (TLI.supportSwiftError()) {
4244     // Swifterror values can come from either a function parameter with
4245     // swifterror attribute or an alloca with swifterror attribute.
4246     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4247       if (Arg->hasSwiftErrorAttr())
4248         return visitStoreToSwiftError(I);
4249     }
4250 
4251     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4252       if (Alloca->isSwiftError())
4253         return visitStoreToSwiftError(I);
4254     }
4255   }
4256 
4257   SmallVector<EVT, 4> ValueVTs, MemVTs;
4258   SmallVector<uint64_t, 4> Offsets;
4259   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4260                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4261   unsigned NumValues = ValueVTs.size();
4262   if (NumValues == 0)
4263     return;
4264 
4265   // Get the lowered operands. Note that we do this after
4266   // checking if NumResults is zero, because with zero results
4267   // the operands won't have values in the map.
4268   SDValue Src = getValue(SrcV);
4269   SDValue Ptr = getValue(PtrV);
4270 
4271   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4272   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4273   SDLoc dl = getCurSDLoc();
4274   Align Alignment = I.getAlign();
4275   AAMDNodes AAInfo = I.getAAMetadata();
4276 
4277   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4278 
4279   // An aggregate load cannot wrap around the address space, so offsets to its
4280   // parts don't wrap either.
4281   SDNodeFlags Flags;
4282   Flags.setNoUnsignedWrap(true);
4283 
4284   unsigned ChainI = 0;
4285   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4286     // See visitLoad comments.
4287     if (ChainI == MaxParallelChains) {
4288       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4289                                   makeArrayRef(Chains.data(), ChainI));
4290       Root = Chain;
4291       ChainI = 0;
4292     }
4293     SDValue Add =
4294         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4295     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4296     if (MemVTs[i] != ValueVTs[i])
4297       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4298     SDValue St =
4299         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4300                      Alignment, MMOFlags, AAInfo);
4301     Chains[ChainI] = St;
4302   }
4303 
4304   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4305                                   makeArrayRef(Chains.data(), ChainI));
4306   DAG.setRoot(StoreNode);
4307 }
4308 
4309 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4310                                            bool IsCompressing) {
4311   SDLoc sdl = getCurSDLoc();
4312 
4313   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4314                                MaybeAlign &Alignment) {
4315     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4316     Src0 = I.getArgOperand(0);
4317     Ptr = I.getArgOperand(1);
4318     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4319     Mask = I.getArgOperand(3);
4320   };
4321   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4322                                     MaybeAlign &Alignment) {
4323     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4324     Src0 = I.getArgOperand(0);
4325     Ptr = I.getArgOperand(1);
4326     Mask = I.getArgOperand(2);
4327     Alignment = None;
4328   };
4329 
4330   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4331   MaybeAlign Alignment;
4332   if (IsCompressing)
4333     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4334   else
4335     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4336 
4337   SDValue Ptr = getValue(PtrOperand);
4338   SDValue Src0 = getValue(Src0Operand);
4339   SDValue Mask = getValue(MaskOperand);
4340   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4341 
4342   EVT VT = Src0.getValueType();
4343   if (!Alignment)
4344     Alignment = DAG.getEVTAlign(VT);
4345 
4346   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4347       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4348       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4349   SDValue StoreNode =
4350       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4351                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4352   DAG.setRoot(StoreNode);
4353   setValue(&I, StoreNode);
4354 }
4355 
4356 // Get a uniform base for the Gather/Scatter intrinsic.
4357 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4358 // We try to represent it as a base pointer + vector of indices.
4359 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4360 // The first operand of the GEP may be a single pointer or a vector of pointers
4361 // Example:
4362 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4363 //  or
4364 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4365 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4366 //
4367 // When the first GEP operand is a single pointer - it is the uniform base we
4368 // are looking for. If first operand of the GEP is a splat vector - we
4369 // extract the splat value and use it as a uniform base.
4370 // In all other cases the function returns 'false'.
4371 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4372                            ISD::MemIndexType &IndexType, SDValue &Scale,
4373                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4374   SelectionDAG& DAG = SDB->DAG;
4375   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4376   const DataLayout &DL = DAG.getDataLayout();
4377 
4378   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4379 
4380   // Handle splat constant pointer.
4381   if (auto *C = dyn_cast<Constant>(Ptr)) {
4382     C = C->getSplatValue();
4383     if (!C)
4384       return false;
4385 
4386     Base = SDB->getValue(C);
4387 
4388     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4389     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4390     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4391     IndexType = ISD::SIGNED_SCALED;
4392     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4393     return true;
4394   }
4395 
4396   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4397   if (!GEP || GEP->getParent() != CurBB)
4398     return false;
4399 
4400   if (GEP->getNumOperands() != 2)
4401     return false;
4402 
4403   const Value *BasePtr = GEP->getPointerOperand();
4404   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4405 
4406   // Make sure the base is scalar and the index is a vector.
4407   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4408     return false;
4409 
4410   Base = SDB->getValue(BasePtr);
4411   Index = SDB->getValue(IndexVal);
4412   IndexType = ISD::SIGNED_SCALED;
4413   Scale = DAG.getTargetConstant(
4414               DL.getTypeAllocSize(GEP->getResultElementType()),
4415               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4416   return true;
4417 }
4418 
4419 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4420   SDLoc sdl = getCurSDLoc();
4421 
4422   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4423   const Value *Ptr = I.getArgOperand(1);
4424   SDValue Src0 = getValue(I.getArgOperand(0));
4425   SDValue Mask = getValue(I.getArgOperand(3));
4426   EVT VT = Src0.getValueType();
4427   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4428                         ->getMaybeAlignValue()
4429                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4430   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4431 
4432   SDValue Base;
4433   SDValue Index;
4434   ISD::MemIndexType IndexType;
4435   SDValue Scale;
4436   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4437                                     I.getParent());
4438 
4439   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4440   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4441       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4442       // TODO: Make MachineMemOperands aware of scalable
4443       // vectors.
4444       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4445   if (!UniformBase) {
4446     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4447     Index = getValue(Ptr);
4448     IndexType = ISD::SIGNED_UNSCALED;
4449     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4450   }
4451 
4452   EVT IdxVT = Index.getValueType();
4453   EVT EltTy = IdxVT.getVectorElementType();
4454   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4455     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4456     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4457   }
4458 
4459   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4460   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4461                                          Ops, MMO, IndexType, false);
4462   DAG.setRoot(Scatter);
4463   setValue(&I, Scatter);
4464 }
4465 
4466 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4467   SDLoc sdl = getCurSDLoc();
4468 
4469   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4470                               MaybeAlign &Alignment) {
4471     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4472     Ptr = I.getArgOperand(0);
4473     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4474     Mask = I.getArgOperand(2);
4475     Src0 = I.getArgOperand(3);
4476   };
4477   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4478                                  MaybeAlign &Alignment) {
4479     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4480     Ptr = I.getArgOperand(0);
4481     Alignment = None;
4482     Mask = I.getArgOperand(1);
4483     Src0 = I.getArgOperand(2);
4484   };
4485 
4486   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4487   MaybeAlign Alignment;
4488   if (IsExpanding)
4489     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4490   else
4491     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4492 
4493   SDValue Ptr = getValue(PtrOperand);
4494   SDValue Src0 = getValue(Src0Operand);
4495   SDValue Mask = getValue(MaskOperand);
4496   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4497 
4498   EVT VT = Src0.getValueType();
4499   if (!Alignment)
4500     Alignment = DAG.getEVTAlign(VT);
4501 
4502   AAMDNodes AAInfo = I.getAAMetadata();
4503   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4504 
4505   // Do not serialize masked loads of constant memory with anything.
4506   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4507   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4508 
4509   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4510 
4511   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4512       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4513       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4514 
4515   SDValue Load =
4516       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4517                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4518   if (AddToChain)
4519     PendingLoads.push_back(Load.getValue(1));
4520   setValue(&I, Load);
4521 }
4522 
4523 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4524   SDLoc sdl = getCurSDLoc();
4525 
4526   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4527   const Value *Ptr = I.getArgOperand(0);
4528   SDValue Src0 = getValue(I.getArgOperand(3));
4529   SDValue Mask = getValue(I.getArgOperand(2));
4530 
4531   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4532   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4533   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4534                         ->getMaybeAlignValue()
4535                         .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4536 
4537   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4538 
4539   SDValue Root = DAG.getRoot();
4540   SDValue Base;
4541   SDValue Index;
4542   ISD::MemIndexType IndexType;
4543   SDValue Scale;
4544   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4545                                     I.getParent());
4546   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4547   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4548       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4549       // TODO: Make MachineMemOperands aware of scalable
4550       // vectors.
4551       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4552 
4553   if (!UniformBase) {
4554     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4555     Index = getValue(Ptr);
4556     IndexType = ISD::SIGNED_UNSCALED;
4557     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4558   }
4559 
4560   EVT IdxVT = Index.getValueType();
4561   EVT EltTy = IdxVT.getVectorElementType();
4562   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4563     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4564     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4565   }
4566 
4567   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4568   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4569                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4570 
4571   PendingLoads.push_back(Gather.getValue(1));
4572   setValue(&I, Gather);
4573 }
4574 
4575 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4576   SDLoc dl = getCurSDLoc();
4577   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4578   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4579   SyncScope::ID SSID = I.getSyncScopeID();
4580 
4581   SDValue InChain = getRoot();
4582 
4583   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4584   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4585 
4586   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4587   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4588 
4589   MachineFunction &MF = DAG.getMachineFunction();
4590   MachineMemOperand *MMO = MF.getMachineMemOperand(
4591       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4592       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4593       FailureOrdering);
4594 
4595   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4596                                    dl, MemVT, VTs, InChain,
4597                                    getValue(I.getPointerOperand()),
4598                                    getValue(I.getCompareOperand()),
4599                                    getValue(I.getNewValOperand()), MMO);
4600 
4601   SDValue OutChain = L.getValue(2);
4602 
4603   setValue(&I, L);
4604   DAG.setRoot(OutChain);
4605 }
4606 
4607 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4608   SDLoc dl = getCurSDLoc();
4609   ISD::NodeType NT;
4610   switch (I.getOperation()) {
4611   default: llvm_unreachable("Unknown atomicrmw operation");
4612   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4613   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4614   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4615   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4616   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4617   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4618   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4619   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4620   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4621   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4622   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4623   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4624   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4625   }
4626   AtomicOrdering Ordering = I.getOrdering();
4627   SyncScope::ID SSID = I.getSyncScopeID();
4628 
4629   SDValue InChain = getRoot();
4630 
4631   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4633   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4634 
4635   MachineFunction &MF = DAG.getMachineFunction();
4636   MachineMemOperand *MMO = MF.getMachineMemOperand(
4637       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4638       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4639 
4640   SDValue L =
4641     DAG.getAtomic(NT, dl, MemVT, InChain,
4642                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4643                   MMO);
4644 
4645   SDValue OutChain = L.getValue(1);
4646 
4647   setValue(&I, L);
4648   DAG.setRoot(OutChain);
4649 }
4650 
4651 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4652   SDLoc dl = getCurSDLoc();
4653   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4654   SDValue Ops[3];
4655   Ops[0] = getRoot();
4656   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4657                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4658   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4659                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4660   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4661 }
4662 
4663 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4664   SDLoc dl = getCurSDLoc();
4665   AtomicOrdering Order = I.getOrdering();
4666   SyncScope::ID SSID = I.getSyncScopeID();
4667 
4668   SDValue InChain = getRoot();
4669 
4670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4671   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4672   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4673 
4674   if (!TLI.supportsUnalignedAtomics() &&
4675       I.getAlignment() < MemVT.getSizeInBits() / 8)
4676     report_fatal_error("Cannot generate unaligned atomic load");
4677 
4678   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4679 
4680   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4681       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4682       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4683 
4684   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4685 
4686   SDValue Ptr = getValue(I.getPointerOperand());
4687 
4688   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4689     // TODO: Once this is better exercised by tests, it should be merged with
4690     // the normal path for loads to prevent future divergence.
4691     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4692     if (MemVT != VT)
4693       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4694 
4695     setValue(&I, L);
4696     SDValue OutChain = L.getValue(1);
4697     if (!I.isUnordered())
4698       DAG.setRoot(OutChain);
4699     else
4700       PendingLoads.push_back(OutChain);
4701     return;
4702   }
4703 
4704   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4705                             Ptr, MMO);
4706 
4707   SDValue OutChain = L.getValue(1);
4708   if (MemVT != VT)
4709     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4710 
4711   setValue(&I, L);
4712   DAG.setRoot(OutChain);
4713 }
4714 
4715 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4716   SDLoc dl = getCurSDLoc();
4717 
4718   AtomicOrdering Ordering = I.getOrdering();
4719   SyncScope::ID SSID = I.getSyncScopeID();
4720 
4721   SDValue InChain = getRoot();
4722 
4723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4724   EVT MemVT =
4725       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4726 
4727   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4728     report_fatal_error("Cannot generate unaligned atomic store");
4729 
4730   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4731 
4732   MachineFunction &MF = DAG.getMachineFunction();
4733   MachineMemOperand *MMO = MF.getMachineMemOperand(
4734       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4735       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4736 
4737   SDValue Val = getValue(I.getValueOperand());
4738   if (Val.getValueType() != MemVT)
4739     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4740   SDValue Ptr = getValue(I.getPointerOperand());
4741 
4742   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4743     // TODO: Once this is better exercised by tests, it should be merged with
4744     // the normal path for stores to prevent future divergence.
4745     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4746     DAG.setRoot(S);
4747     return;
4748   }
4749   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4750                                    Ptr, Val, MMO);
4751 
4752 
4753   DAG.setRoot(OutChain);
4754 }
4755 
4756 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4757 /// node.
4758 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4759                                                unsigned Intrinsic) {
4760   // Ignore the callsite's attributes. A specific call site may be marked with
4761   // readnone, but the lowering code will expect the chain based on the
4762   // definition.
4763   const Function *F = I.getCalledFunction();
4764   bool HasChain = !F->doesNotAccessMemory();
4765   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4766 
4767   // Build the operand list.
4768   SmallVector<SDValue, 8> Ops;
4769   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4770     if (OnlyLoad) {
4771       // We don't need to serialize loads against other loads.
4772       Ops.push_back(DAG.getRoot());
4773     } else {
4774       Ops.push_back(getRoot());
4775     }
4776   }
4777 
4778   // Info is set by getTgtMemInstrinsic
4779   TargetLowering::IntrinsicInfo Info;
4780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4781   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4782                                                DAG.getMachineFunction(),
4783                                                Intrinsic);
4784 
4785   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4786   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4787       Info.opc == ISD::INTRINSIC_W_CHAIN)
4788     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4789                                         TLI.getPointerTy(DAG.getDataLayout())));
4790 
4791   // Add all operands of the call to the operand list.
4792   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4793     const Value *Arg = I.getArgOperand(i);
4794     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4795       Ops.push_back(getValue(Arg));
4796       continue;
4797     }
4798 
4799     // Use TargetConstant instead of a regular constant for immarg.
4800     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4801     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4802       assert(CI->getBitWidth() <= 64 &&
4803              "large intrinsic immediates not handled");
4804       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4805     } else {
4806       Ops.push_back(
4807           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4808     }
4809   }
4810 
4811   SmallVector<EVT, 4> ValueVTs;
4812   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4813 
4814   if (HasChain)
4815     ValueVTs.push_back(MVT::Other);
4816 
4817   SDVTList VTs = DAG.getVTList(ValueVTs);
4818 
4819   // Propagate fast-math-flags from IR to node(s).
4820   SDNodeFlags Flags;
4821   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4822     Flags.copyFMF(*FPMO);
4823   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4824 
4825   // Create the node.
4826   SDValue Result;
4827   if (IsTgtIntrinsic) {
4828     // This is target intrinsic that touches memory
4829     Result =
4830         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4831                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4832                                 Info.align, Info.flags, Info.size,
4833                                 I.getAAMetadata());
4834   } else if (!HasChain) {
4835     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4836   } else if (!I.getType()->isVoidTy()) {
4837     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4838   } else {
4839     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4840   }
4841 
4842   if (HasChain) {
4843     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4844     if (OnlyLoad)
4845       PendingLoads.push_back(Chain);
4846     else
4847       DAG.setRoot(Chain);
4848   }
4849 
4850   if (!I.getType()->isVoidTy()) {
4851     if (!isa<VectorType>(I.getType()))
4852       Result = lowerRangeToAssertZExt(DAG, I, Result);
4853 
4854     MaybeAlign Alignment = I.getRetAlign();
4855     if (!Alignment)
4856       Alignment = F->getAttributes().getRetAlignment();
4857     // Insert `assertalign` node if there's an alignment.
4858     if (InsertAssertAlign && Alignment) {
4859       Result =
4860           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4861     }
4862 
4863     setValue(&I, Result);
4864   }
4865 }
4866 
4867 /// GetSignificand - Get the significand and build it into a floating-point
4868 /// number with exponent of 1:
4869 ///
4870 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4871 ///
4872 /// where Op is the hexadecimal representation of floating point value.
4873 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4874   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4875                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4876   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4877                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4878   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4879 }
4880 
4881 /// GetExponent - Get the exponent:
4882 ///
4883 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4884 ///
4885 /// where Op is the hexadecimal representation of floating point value.
4886 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4887                            const TargetLowering &TLI, const SDLoc &dl) {
4888   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4889                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4890   SDValue t1 = DAG.getNode(
4891       ISD::SRL, dl, MVT::i32, t0,
4892       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4893   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4894                            DAG.getConstant(127, dl, MVT::i32));
4895   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4896 }
4897 
4898 /// getF32Constant - Get 32-bit floating point constant.
4899 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4900                               const SDLoc &dl) {
4901   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4902                            MVT::f32);
4903 }
4904 
4905 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4906                                        SelectionDAG &DAG) {
4907   // TODO: What fast-math-flags should be set on the floating-point nodes?
4908 
4909   //   IntegerPartOfX = ((int32_t)(t0);
4910   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4911 
4912   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4913   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4914   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4915 
4916   //   IntegerPartOfX <<= 23;
4917   IntegerPartOfX = DAG.getNode(
4918       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4919       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4920                                   DAG.getDataLayout())));
4921 
4922   SDValue TwoToFractionalPartOfX;
4923   if (LimitFloatPrecision <= 6) {
4924     // For floating-point precision of 6:
4925     //
4926     //   TwoToFractionalPartOfX =
4927     //     0.997535578f +
4928     //       (0.735607626f + 0.252464424f * x) * x;
4929     //
4930     // error 0.0144103317, which is 6 bits
4931     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4932                              getF32Constant(DAG, 0x3e814304, dl));
4933     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4934                              getF32Constant(DAG, 0x3f3c50c8, dl));
4935     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4936     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4937                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4938   } else if (LimitFloatPrecision <= 12) {
4939     // For floating-point precision of 12:
4940     //
4941     //   TwoToFractionalPartOfX =
4942     //     0.999892986f +
4943     //       (0.696457318f +
4944     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4945     //
4946     // error 0.000107046256, which is 13 to 14 bits
4947     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4948                              getF32Constant(DAG, 0x3da235e3, dl));
4949     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4950                              getF32Constant(DAG, 0x3e65b8f3, dl));
4951     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4952     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4953                              getF32Constant(DAG, 0x3f324b07, dl));
4954     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4955     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4956                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4957   } else { // LimitFloatPrecision <= 18
4958     // For floating-point precision of 18:
4959     //
4960     //   TwoToFractionalPartOfX =
4961     //     0.999999982f +
4962     //       (0.693148872f +
4963     //         (0.240227044f +
4964     //           (0.554906021e-1f +
4965     //             (0.961591928e-2f +
4966     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4967     // error 2.47208000*10^(-7), which is better than 18 bits
4968     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4969                              getF32Constant(DAG, 0x3924b03e, dl));
4970     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4971                              getF32Constant(DAG, 0x3ab24b87, dl));
4972     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4973     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4974                              getF32Constant(DAG, 0x3c1d8c17, dl));
4975     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4976     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4977                              getF32Constant(DAG, 0x3d634a1d, dl));
4978     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4979     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4980                              getF32Constant(DAG, 0x3e75fe14, dl));
4981     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4982     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4983                               getF32Constant(DAG, 0x3f317234, dl));
4984     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4985     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4986                                          getF32Constant(DAG, 0x3f800000, dl));
4987   }
4988 
4989   // Add the exponent into the result in integer domain.
4990   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4991   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4992                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4993 }
4994 
4995 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4996 /// limited-precision mode.
4997 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4998                          const TargetLowering &TLI, SDNodeFlags Flags) {
4999   if (Op.getValueType() == MVT::f32 &&
5000       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5001 
5002     // Put the exponent in the right bit position for later addition to the
5003     // final result:
5004     //
5005     // t0 = Op * log2(e)
5006 
5007     // TODO: What fast-math-flags should be set here?
5008     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5009                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5010     return getLimitedPrecisionExp2(t0, dl, DAG);
5011   }
5012 
5013   // No special expansion.
5014   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5015 }
5016 
5017 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5018 /// limited-precision mode.
5019 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5020                          const TargetLowering &TLI, SDNodeFlags Flags) {
5021   // TODO: What fast-math-flags should be set on the floating-point nodes?
5022 
5023   if (Op.getValueType() == MVT::f32 &&
5024       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5025     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5026 
5027     // Scale the exponent by log(2).
5028     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5029     SDValue LogOfExponent =
5030         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5031                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5032 
5033     // Get the significand and build it into a floating-point number with
5034     // exponent of 1.
5035     SDValue X = GetSignificand(DAG, Op1, dl);
5036 
5037     SDValue LogOfMantissa;
5038     if (LimitFloatPrecision <= 6) {
5039       // For floating-point precision of 6:
5040       //
5041       //   LogofMantissa =
5042       //     -1.1609546f +
5043       //       (1.4034025f - 0.23903021f * x) * x;
5044       //
5045       // error 0.0034276066, which is better than 8 bits
5046       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5047                                getF32Constant(DAG, 0xbe74c456, dl));
5048       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5049                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5050       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5051       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5052                                   getF32Constant(DAG, 0x3f949a29, dl));
5053     } else if (LimitFloatPrecision <= 12) {
5054       // For floating-point precision of 12:
5055       //
5056       //   LogOfMantissa =
5057       //     -1.7417939f +
5058       //       (2.8212026f +
5059       //         (-1.4699568f +
5060       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5061       //
5062       // error 0.000061011436, which is 14 bits
5063       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5064                                getF32Constant(DAG, 0xbd67b6d6, dl));
5065       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5066                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5067       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5068       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5069                                getF32Constant(DAG, 0x3fbc278b, dl));
5070       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5071       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5072                                getF32Constant(DAG, 0x40348e95, dl));
5073       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5074       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5075                                   getF32Constant(DAG, 0x3fdef31a, dl));
5076     } else { // LimitFloatPrecision <= 18
5077       // For floating-point precision of 18:
5078       //
5079       //   LogOfMantissa =
5080       //     -2.1072184f +
5081       //       (4.2372794f +
5082       //         (-3.7029485f +
5083       //           (2.2781945f +
5084       //             (-0.87823314f +
5085       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5086       //
5087       // error 0.0000023660568, which is better than 18 bits
5088       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5089                                getF32Constant(DAG, 0xbc91e5ac, dl));
5090       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5091                                getF32Constant(DAG, 0x3e4350aa, dl));
5092       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5093       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5094                                getF32Constant(DAG, 0x3f60d3e3, dl));
5095       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5096       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5097                                getF32Constant(DAG, 0x4011cdf0, dl));
5098       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5099       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5100                                getF32Constant(DAG, 0x406cfd1c, dl));
5101       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5102       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5103                                getF32Constant(DAG, 0x408797cb, dl));
5104       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5105       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5106                                   getF32Constant(DAG, 0x4006dcab, dl));
5107     }
5108 
5109     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5110   }
5111 
5112   // No special expansion.
5113   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5114 }
5115 
5116 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5117 /// limited-precision mode.
5118 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5119                           const TargetLowering &TLI, SDNodeFlags Flags) {
5120   // TODO: What fast-math-flags should be set on the floating-point nodes?
5121 
5122   if (Op.getValueType() == MVT::f32 &&
5123       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5124     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5125 
5126     // Get the exponent.
5127     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5128 
5129     // Get the significand and build it into a floating-point number with
5130     // exponent of 1.
5131     SDValue X = GetSignificand(DAG, Op1, dl);
5132 
5133     // Different possible minimax approximations of significand in
5134     // floating-point for various degrees of accuracy over [1,2].
5135     SDValue Log2ofMantissa;
5136     if (LimitFloatPrecision <= 6) {
5137       // For floating-point precision of 6:
5138       //
5139       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5140       //
5141       // error 0.0049451742, which is more than 7 bits
5142       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5143                                getF32Constant(DAG, 0xbeb08fe0, dl));
5144       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5145                                getF32Constant(DAG, 0x40019463, dl));
5146       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5147       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5148                                    getF32Constant(DAG, 0x3fd6633d, dl));
5149     } else if (LimitFloatPrecision <= 12) {
5150       // For floating-point precision of 12:
5151       //
5152       //   Log2ofMantissa =
5153       //     -2.51285454f +
5154       //       (4.07009056f +
5155       //         (-2.12067489f +
5156       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5157       //
5158       // error 0.0000876136000, which is better than 13 bits
5159       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5160                                getF32Constant(DAG, 0xbda7262e, dl));
5161       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5162                                getF32Constant(DAG, 0x3f25280b, dl));
5163       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5164       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5165                                getF32Constant(DAG, 0x4007b923, dl));
5166       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5167       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5168                                getF32Constant(DAG, 0x40823e2f, dl));
5169       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5170       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5171                                    getF32Constant(DAG, 0x4020d29c, dl));
5172     } else { // LimitFloatPrecision <= 18
5173       // For floating-point precision of 18:
5174       //
5175       //   Log2ofMantissa =
5176       //     -3.0400495f +
5177       //       (6.1129976f +
5178       //         (-5.3420409f +
5179       //           (3.2865683f +
5180       //             (-1.2669343f +
5181       //               (0.27515199f -
5182       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5183       //
5184       // error 0.0000018516, which is better than 18 bits
5185       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5186                                getF32Constant(DAG, 0xbcd2769e, dl));
5187       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5188                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5189       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5190       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5191                                getF32Constant(DAG, 0x3fa22ae7, dl));
5192       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5193       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5194                                getF32Constant(DAG, 0x40525723, dl));
5195       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5196       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5197                                getF32Constant(DAG, 0x40aaf200, dl));
5198       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5199       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5200                                getF32Constant(DAG, 0x40c39dad, dl));
5201       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5202       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5203                                    getF32Constant(DAG, 0x4042902c, dl));
5204     }
5205 
5206     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5207   }
5208 
5209   // No special expansion.
5210   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5211 }
5212 
5213 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5214 /// limited-precision mode.
5215 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5216                            const TargetLowering &TLI, SDNodeFlags Flags) {
5217   // TODO: What fast-math-flags should be set on the floating-point nodes?
5218 
5219   if (Op.getValueType() == MVT::f32 &&
5220       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5221     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5222 
5223     // Scale the exponent by log10(2) [0.30102999f].
5224     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5225     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5226                                         getF32Constant(DAG, 0x3e9a209a, dl));
5227 
5228     // Get the significand and build it into a floating-point number with
5229     // exponent of 1.
5230     SDValue X = GetSignificand(DAG, Op1, dl);
5231 
5232     SDValue Log10ofMantissa;
5233     if (LimitFloatPrecision <= 6) {
5234       // For floating-point precision of 6:
5235       //
5236       //   Log10ofMantissa =
5237       //     -0.50419619f +
5238       //       (0.60948995f - 0.10380950f * x) * x;
5239       //
5240       // error 0.0014886165, which is 6 bits
5241       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5242                                getF32Constant(DAG, 0xbdd49a13, dl));
5243       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5244                                getF32Constant(DAG, 0x3f1c0789, dl));
5245       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5246       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5247                                     getF32Constant(DAG, 0x3f011300, dl));
5248     } else if (LimitFloatPrecision <= 12) {
5249       // For floating-point precision of 12:
5250       //
5251       //   Log10ofMantissa =
5252       //     -0.64831180f +
5253       //       (0.91751397f +
5254       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5255       //
5256       // error 0.00019228036, which is better than 12 bits
5257       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5258                                getF32Constant(DAG, 0x3d431f31, dl));
5259       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5260                                getF32Constant(DAG, 0x3ea21fb2, dl));
5261       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5262       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5263                                getF32Constant(DAG, 0x3f6ae232, dl));
5264       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5265       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5266                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5267     } else { // LimitFloatPrecision <= 18
5268       // For floating-point precision of 18:
5269       //
5270       //   Log10ofMantissa =
5271       //     -0.84299375f +
5272       //       (1.5327582f +
5273       //         (-1.0688956f +
5274       //           (0.49102474f +
5275       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5276       //
5277       // error 0.0000037995730, which is better than 18 bits
5278       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5279                                getF32Constant(DAG, 0x3c5d51ce, dl));
5280       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5281                                getF32Constant(DAG, 0x3e00685a, dl));
5282       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5283       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5284                                getF32Constant(DAG, 0x3efb6798, dl));
5285       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5286       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5287                                getF32Constant(DAG, 0x3f88d192, dl));
5288       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5289       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5290                                getF32Constant(DAG, 0x3fc4316c, dl));
5291       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5292       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5293                                     getF32Constant(DAG, 0x3f57ce70, dl));
5294     }
5295 
5296     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5297   }
5298 
5299   // No special expansion.
5300   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5301 }
5302 
5303 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5304 /// limited-precision mode.
5305 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5306                           const TargetLowering &TLI, SDNodeFlags Flags) {
5307   if (Op.getValueType() == MVT::f32 &&
5308       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5309     return getLimitedPrecisionExp2(Op, dl, DAG);
5310 
5311   // No special expansion.
5312   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5313 }
5314 
5315 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5316 /// limited-precision mode with x == 10.0f.
5317 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5318                          SelectionDAG &DAG, const TargetLowering &TLI,
5319                          SDNodeFlags Flags) {
5320   bool IsExp10 = false;
5321   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5322       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5323     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5324       APFloat Ten(10.0f);
5325       IsExp10 = LHSC->isExactlyValue(Ten);
5326     }
5327   }
5328 
5329   // TODO: What fast-math-flags should be set on the FMUL node?
5330   if (IsExp10) {
5331     // Put the exponent in the right bit position for later addition to the
5332     // final result:
5333     //
5334     //   #define LOG2OF10 3.3219281f
5335     //   t0 = Op * LOG2OF10;
5336     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5337                              getF32Constant(DAG, 0x40549a78, dl));
5338     return getLimitedPrecisionExp2(t0, dl, DAG);
5339   }
5340 
5341   // No special expansion.
5342   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5343 }
5344 
5345 /// ExpandPowI - Expand a llvm.powi intrinsic.
5346 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5347                           SelectionDAG &DAG) {
5348   // If RHS is a constant, we can expand this out to a multiplication tree,
5349   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5350   // optimizing for size, we only want to do this if the expansion would produce
5351   // a small number of multiplies, otherwise we do the full expansion.
5352   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5353     // Get the exponent as a positive value.
5354     unsigned Val = RHSC->getSExtValue();
5355     if ((int)Val < 0) Val = -Val;
5356 
5357     // powi(x, 0) -> 1.0
5358     if (Val == 0)
5359       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5360 
5361     bool OptForSize = DAG.shouldOptForSize();
5362     if (!OptForSize ||
5363         // If optimizing for size, don't insert too many multiplies.
5364         // This inserts up to 5 multiplies.
5365         countPopulation(Val) + Log2_32(Val) < 7) {
5366       // We use the simple binary decomposition method to generate the multiply
5367       // sequence.  There are more optimal ways to do this (for example,
5368       // powi(x,15) generates one more multiply than it should), but this has
5369       // the benefit of being both really simple and much better than a libcall.
5370       SDValue Res;  // Logically starts equal to 1.0
5371       SDValue CurSquare = LHS;
5372       // TODO: Intrinsics should have fast-math-flags that propagate to these
5373       // nodes.
5374       while (Val) {
5375         if (Val & 1) {
5376           if (Res.getNode())
5377             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5378           else
5379             Res = CurSquare;  // 1.0*CurSquare.
5380         }
5381 
5382         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5383                                 CurSquare, CurSquare);
5384         Val >>= 1;
5385       }
5386 
5387       // If the original was negative, invert the result, producing 1/(x*x*x).
5388       if (RHSC->getSExtValue() < 0)
5389         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5390                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5391       return Res;
5392     }
5393   }
5394 
5395   // Otherwise, expand to a libcall.
5396   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5397 }
5398 
5399 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5400                             SDValue LHS, SDValue RHS, SDValue Scale,
5401                             SelectionDAG &DAG, const TargetLowering &TLI) {
5402   EVT VT = LHS.getValueType();
5403   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5404   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5405   LLVMContext &Ctx = *DAG.getContext();
5406 
5407   // If the type is legal but the operation isn't, this node might survive all
5408   // the way to operation legalization. If we end up there and we do not have
5409   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5410   // node.
5411 
5412   // Coax the legalizer into expanding the node during type legalization instead
5413   // by bumping the size by one bit. This will force it to Promote, enabling the
5414   // early expansion and avoiding the need to expand later.
5415 
5416   // We don't have to do this if Scale is 0; that can always be expanded, unless
5417   // it's a saturating signed operation. Those can experience true integer
5418   // division overflow, a case which we must avoid.
5419 
5420   // FIXME: We wouldn't have to do this (or any of the early
5421   // expansion/promotion) if it was possible to expand a libcall of an
5422   // illegal type during operation legalization. But it's not, so things
5423   // get a bit hacky.
5424   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5425   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5426       (TLI.isTypeLegal(VT) ||
5427        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5428     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5429         Opcode, VT, ScaleInt);
5430     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5431       EVT PromVT;
5432       if (VT.isScalarInteger())
5433         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5434       else if (VT.isVector()) {
5435         PromVT = VT.getVectorElementType();
5436         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5437         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5438       } else
5439         llvm_unreachable("Wrong VT for DIVFIX?");
5440       if (Signed) {
5441         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5442         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5443       } else {
5444         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5445         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5446       }
5447       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5448       // For saturating operations, we need to shift up the LHS to get the
5449       // proper saturation width, and then shift down again afterwards.
5450       if (Saturating)
5451         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5452                           DAG.getConstant(1, DL, ShiftTy));
5453       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5454       if (Saturating)
5455         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5456                           DAG.getConstant(1, DL, ShiftTy));
5457       return DAG.getZExtOrTrunc(Res, DL, VT);
5458     }
5459   }
5460 
5461   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5462 }
5463 
5464 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5465 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5466 static void
5467 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5468                      const SDValue &N) {
5469   switch (N.getOpcode()) {
5470   case ISD::CopyFromReg: {
5471     SDValue Op = N.getOperand(1);
5472     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5473                       Op.getValueType().getSizeInBits());
5474     return;
5475   }
5476   case ISD::BITCAST:
5477   case ISD::AssertZext:
5478   case ISD::AssertSext:
5479   case ISD::TRUNCATE:
5480     getUnderlyingArgRegs(Regs, N.getOperand(0));
5481     return;
5482   case ISD::BUILD_PAIR:
5483   case ISD::BUILD_VECTOR:
5484   case ISD::CONCAT_VECTORS:
5485     for (SDValue Op : N->op_values())
5486       getUnderlyingArgRegs(Regs, Op);
5487     return;
5488   default:
5489     return;
5490   }
5491 }
5492 
5493 /// If the DbgValueInst is a dbg_value of a function argument, create the
5494 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5495 /// instruction selection, they will be inserted to the entry BB.
5496 /// We don't currently support this for variadic dbg_values, as they shouldn't
5497 /// appear for function arguments or in the prologue.
5498 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5499     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5500     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5501   const Argument *Arg = dyn_cast<Argument>(V);
5502   if (!Arg)
5503     return false;
5504 
5505   MachineFunction &MF = DAG.getMachineFunction();
5506   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5507 
5508   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5509   // we've been asked to pursue.
5510   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5511                               bool Indirect) {
5512     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5513       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5514       // pointing at the VReg, which will be patched up later.
5515       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5516       auto MIB = BuildMI(MF, DL, Inst);
5517       MIB.addReg(Reg);
5518       MIB.addImm(0);
5519       MIB.addMetadata(Variable);
5520       auto *NewDIExpr = FragExpr;
5521       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5522       // the DIExpression.
5523       if (Indirect)
5524         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5525       MIB.addMetadata(NewDIExpr);
5526       return MIB;
5527     } else {
5528       // Create a completely standard DBG_VALUE.
5529       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5530       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5531     }
5532   };
5533 
5534   if (!IsDbgDeclare) {
5535     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5536     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5537     // the entry block.
5538     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5539     if (!IsInEntryBlock)
5540       return false;
5541 
5542     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5543     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5544     // variable that also is a param.
5545     //
5546     // Although, if we are at the top of the entry block already, we can still
5547     // emit using ArgDbgValue. This might catch some situations when the
5548     // dbg.value refers to an argument that isn't used in the entry block, so
5549     // any CopyToReg node would be optimized out and the only way to express
5550     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5551     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5552     // we should only emit as ArgDbgValue if the Variable is an argument to the
5553     // current function, and the dbg.value intrinsic is found in the entry
5554     // block.
5555     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5556         !DL->getInlinedAt();
5557     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5558     if (!IsInPrologue && !VariableIsFunctionInputArg)
5559       return false;
5560 
5561     // Here we assume that a function argument on IR level only can be used to
5562     // describe one input parameter on source level. If we for example have
5563     // source code like this
5564     //
5565     //    struct A { long x, y; };
5566     //    void foo(struct A a, long b) {
5567     //      ...
5568     //      b = a.x;
5569     //      ...
5570     //    }
5571     //
5572     // and IR like this
5573     //
5574     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5575     //  entry:
5576     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5577     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5578     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5579     //    ...
5580     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5581     //    ...
5582     //
5583     // then the last dbg.value is describing a parameter "b" using a value that
5584     // is an argument. But since we already has used %a1 to describe a parameter
5585     // we should not handle that last dbg.value here (that would result in an
5586     // incorrect hoisting of the DBG_VALUE to the function entry).
5587     // Notice that we allow one dbg.value per IR level argument, to accommodate
5588     // for the situation with fragments above.
5589     if (VariableIsFunctionInputArg) {
5590       unsigned ArgNo = Arg->getArgNo();
5591       if (ArgNo >= FuncInfo.DescribedArgs.size())
5592         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5593       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5594         return false;
5595       FuncInfo.DescribedArgs.set(ArgNo);
5596     }
5597   }
5598 
5599   bool IsIndirect = false;
5600   Optional<MachineOperand> Op;
5601   // Some arguments' frame index is recorded during argument lowering.
5602   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5603   if (FI != std::numeric_limits<int>::max())
5604     Op = MachineOperand::CreateFI(FI);
5605 
5606   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5607   if (!Op && N.getNode()) {
5608     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5609     Register Reg;
5610     if (ArgRegsAndSizes.size() == 1)
5611       Reg = ArgRegsAndSizes.front().first;
5612 
5613     if (Reg && Reg.isVirtual()) {
5614       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5615       Register PR = RegInfo.getLiveInPhysReg(Reg);
5616       if (PR)
5617         Reg = PR;
5618     }
5619     if (Reg) {
5620       Op = MachineOperand::CreateReg(Reg, false);
5621       IsIndirect = IsDbgDeclare;
5622     }
5623   }
5624 
5625   if (!Op && N.getNode()) {
5626     // Check if frame index is available.
5627     SDValue LCandidate = peekThroughBitcasts(N);
5628     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5629       if (FrameIndexSDNode *FINode =
5630           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5631         Op = MachineOperand::CreateFI(FINode->getIndex());
5632   }
5633 
5634   if (!Op) {
5635     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5636     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5637                                          SplitRegs) {
5638       unsigned Offset = 0;
5639       for (const auto &RegAndSize : SplitRegs) {
5640         // If the expression is already a fragment, the current register
5641         // offset+size might extend beyond the fragment. In this case, only
5642         // the register bits that are inside the fragment are relevant.
5643         int RegFragmentSizeInBits = RegAndSize.second;
5644         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5645           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5646           // The register is entirely outside the expression fragment,
5647           // so is irrelevant for debug info.
5648           if (Offset >= ExprFragmentSizeInBits)
5649             break;
5650           // The register is partially outside the expression fragment, only
5651           // the low bits within the fragment are relevant for debug info.
5652           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5653             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5654           }
5655         }
5656 
5657         auto FragmentExpr = DIExpression::createFragmentExpression(
5658             Expr, Offset, RegFragmentSizeInBits);
5659         Offset += RegAndSize.second;
5660         // If a valid fragment expression cannot be created, the variable's
5661         // correct value cannot be determined and so it is set as Undef.
5662         if (!FragmentExpr) {
5663           SDDbgValue *SDV = DAG.getConstantDbgValue(
5664               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5665           DAG.AddDbgValue(SDV, false);
5666           continue;
5667         }
5668         MachineInstr *NewMI =
5669             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5670         FuncInfo.ArgDbgValues.push_back(NewMI);
5671       }
5672     };
5673 
5674     // Check if ValueMap has reg number.
5675     DenseMap<const Value *, Register>::const_iterator
5676       VMI = FuncInfo.ValueMap.find(V);
5677     if (VMI != FuncInfo.ValueMap.end()) {
5678       const auto &TLI = DAG.getTargetLoweringInfo();
5679       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5680                        V->getType(), None);
5681       if (RFV.occupiesMultipleRegs()) {
5682         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5683         return true;
5684       }
5685 
5686       Op = MachineOperand::CreateReg(VMI->second, false);
5687       IsIndirect = IsDbgDeclare;
5688     } else if (ArgRegsAndSizes.size() > 1) {
5689       // This was split due to the calling convention, and no virtual register
5690       // mapping exists for the value.
5691       splitMultiRegDbgValue(ArgRegsAndSizes);
5692       return true;
5693     }
5694   }
5695 
5696   if (!Op)
5697     return false;
5698 
5699   assert(Variable->isValidLocationForIntrinsic(DL) &&
5700          "Expected inlined-at fields to agree");
5701   MachineInstr *NewMI = nullptr;
5702 
5703   if (Op->isReg())
5704     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5705   else
5706     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5707                     Variable, Expr);
5708 
5709   FuncInfo.ArgDbgValues.push_back(NewMI);
5710   return true;
5711 }
5712 
5713 /// Return the appropriate SDDbgValue based on N.
5714 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5715                                              DILocalVariable *Variable,
5716                                              DIExpression *Expr,
5717                                              const DebugLoc &dl,
5718                                              unsigned DbgSDNodeOrder) {
5719   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5720     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5721     // stack slot locations.
5722     //
5723     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5724     // debug values here after optimization:
5725     //
5726     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5727     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5728     //
5729     // Both describe the direct values of their associated variables.
5730     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5731                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5732   }
5733   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5734                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5735 }
5736 
5737 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5738   switch (Intrinsic) {
5739   case Intrinsic::smul_fix:
5740     return ISD::SMULFIX;
5741   case Intrinsic::umul_fix:
5742     return ISD::UMULFIX;
5743   case Intrinsic::smul_fix_sat:
5744     return ISD::SMULFIXSAT;
5745   case Intrinsic::umul_fix_sat:
5746     return ISD::UMULFIXSAT;
5747   case Intrinsic::sdiv_fix:
5748     return ISD::SDIVFIX;
5749   case Intrinsic::udiv_fix:
5750     return ISD::UDIVFIX;
5751   case Intrinsic::sdiv_fix_sat:
5752     return ISD::SDIVFIXSAT;
5753   case Intrinsic::udiv_fix_sat:
5754     return ISD::UDIVFIXSAT;
5755   default:
5756     llvm_unreachable("Unhandled fixed point intrinsic");
5757   }
5758 }
5759 
5760 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5761                                            const char *FunctionName) {
5762   assert(FunctionName && "FunctionName must not be nullptr");
5763   SDValue Callee = DAG.getExternalSymbol(
5764       FunctionName,
5765       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5766   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5767 }
5768 
5769 /// Given a @llvm.call.preallocated.setup, return the corresponding
5770 /// preallocated call.
5771 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5772   assert(cast<CallBase>(PreallocatedSetup)
5773                  ->getCalledFunction()
5774                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5775          "expected call_preallocated_setup Value");
5776   for (auto *U : PreallocatedSetup->users()) {
5777     auto *UseCall = cast<CallBase>(U);
5778     const Function *Fn = UseCall->getCalledFunction();
5779     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5780       return UseCall;
5781     }
5782   }
5783   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5784 }
5785 
5786 /// Lower the call to the specified intrinsic function.
5787 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5788                                              unsigned Intrinsic) {
5789   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5790   SDLoc sdl = getCurSDLoc();
5791   DebugLoc dl = getCurDebugLoc();
5792   SDValue Res;
5793 
5794   SDNodeFlags Flags;
5795   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5796     Flags.copyFMF(*FPOp);
5797 
5798   switch (Intrinsic) {
5799   default:
5800     // By default, turn this into a target intrinsic node.
5801     visitTargetIntrinsic(I, Intrinsic);
5802     return;
5803   case Intrinsic::vscale: {
5804     match(&I, m_VScale(DAG.getDataLayout()));
5805     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5806     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5807     return;
5808   }
5809   case Intrinsic::vastart:  visitVAStart(I); return;
5810   case Intrinsic::vaend:    visitVAEnd(I); return;
5811   case Intrinsic::vacopy:   visitVACopy(I); return;
5812   case Intrinsic::returnaddress:
5813     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5814                              TLI.getPointerTy(DAG.getDataLayout()),
5815                              getValue(I.getArgOperand(0))));
5816     return;
5817   case Intrinsic::addressofreturnaddress:
5818     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5819                              TLI.getPointerTy(DAG.getDataLayout())));
5820     return;
5821   case Intrinsic::sponentry:
5822     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5823                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5824     return;
5825   case Intrinsic::frameaddress:
5826     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5827                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5828                              getValue(I.getArgOperand(0))));
5829     return;
5830   case Intrinsic::read_volatile_register:
5831   case Intrinsic::read_register: {
5832     Value *Reg = I.getArgOperand(0);
5833     SDValue Chain = getRoot();
5834     SDValue RegName =
5835         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5836     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5837     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5838       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5839     setValue(&I, Res);
5840     DAG.setRoot(Res.getValue(1));
5841     return;
5842   }
5843   case Intrinsic::write_register: {
5844     Value *Reg = I.getArgOperand(0);
5845     Value *RegValue = I.getArgOperand(1);
5846     SDValue Chain = getRoot();
5847     SDValue RegName =
5848         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5849     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5850                             RegName, getValue(RegValue)));
5851     return;
5852   }
5853   case Intrinsic::memcpy: {
5854     const auto &MCI = cast<MemCpyInst>(I);
5855     SDValue Op1 = getValue(I.getArgOperand(0));
5856     SDValue Op2 = getValue(I.getArgOperand(1));
5857     SDValue Op3 = getValue(I.getArgOperand(2));
5858     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5859     Align DstAlign = MCI.getDestAlign().valueOrOne();
5860     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5861     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5862     bool isVol = MCI.isVolatile();
5863     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5864     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5865     // node.
5866     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5867     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5868                                /* AlwaysInline */ false, isTC,
5869                                MachinePointerInfo(I.getArgOperand(0)),
5870                                MachinePointerInfo(I.getArgOperand(1)),
5871                                I.getAAMetadata());
5872     updateDAGForMaybeTailCall(MC);
5873     return;
5874   }
5875   case Intrinsic::memcpy_inline: {
5876     const auto &MCI = cast<MemCpyInlineInst>(I);
5877     SDValue Dst = getValue(I.getArgOperand(0));
5878     SDValue Src = getValue(I.getArgOperand(1));
5879     SDValue Size = getValue(I.getArgOperand(2));
5880     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5881     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5882     Align DstAlign = MCI.getDestAlign().valueOrOne();
5883     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5884     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5885     bool isVol = MCI.isVolatile();
5886     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5887     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5888     // node.
5889     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5890                                /* AlwaysInline */ true, isTC,
5891                                MachinePointerInfo(I.getArgOperand(0)),
5892                                MachinePointerInfo(I.getArgOperand(1)),
5893                                I.getAAMetadata());
5894     updateDAGForMaybeTailCall(MC);
5895     return;
5896   }
5897   case Intrinsic::memset: {
5898     const auto &MSI = cast<MemSetInst>(I);
5899     SDValue Op1 = getValue(I.getArgOperand(0));
5900     SDValue Op2 = getValue(I.getArgOperand(1));
5901     SDValue Op3 = getValue(I.getArgOperand(2));
5902     // @llvm.memset defines 0 and 1 to both mean no alignment.
5903     Align Alignment = MSI.getDestAlign().valueOrOne();
5904     bool isVol = MSI.isVolatile();
5905     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5906     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5907     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5908                                MachinePointerInfo(I.getArgOperand(0)),
5909                                I.getAAMetadata());
5910     updateDAGForMaybeTailCall(MS);
5911     return;
5912   }
5913   case Intrinsic::memmove: {
5914     const auto &MMI = cast<MemMoveInst>(I);
5915     SDValue Op1 = getValue(I.getArgOperand(0));
5916     SDValue Op2 = getValue(I.getArgOperand(1));
5917     SDValue Op3 = getValue(I.getArgOperand(2));
5918     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5919     Align DstAlign = MMI.getDestAlign().valueOrOne();
5920     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5921     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5922     bool isVol = MMI.isVolatile();
5923     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5924     // FIXME: Support passing different dest/src alignments to the memmove DAG
5925     // node.
5926     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5927     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5928                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5929                                 MachinePointerInfo(I.getArgOperand(1)),
5930                                 I.getAAMetadata());
5931     updateDAGForMaybeTailCall(MM);
5932     return;
5933   }
5934   case Intrinsic::memcpy_element_unordered_atomic: {
5935     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5936     SDValue Dst = getValue(MI.getRawDest());
5937     SDValue Src = getValue(MI.getRawSource());
5938     SDValue Length = getValue(MI.getLength());
5939 
5940     unsigned DstAlign = MI.getDestAlignment();
5941     unsigned SrcAlign = MI.getSourceAlignment();
5942     Type *LengthTy = MI.getLength()->getType();
5943     unsigned ElemSz = MI.getElementSizeInBytes();
5944     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5945     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5946                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5947                                      MachinePointerInfo(MI.getRawDest()),
5948                                      MachinePointerInfo(MI.getRawSource()));
5949     updateDAGForMaybeTailCall(MC);
5950     return;
5951   }
5952   case Intrinsic::memmove_element_unordered_atomic: {
5953     auto &MI = cast<AtomicMemMoveInst>(I);
5954     SDValue Dst = getValue(MI.getRawDest());
5955     SDValue Src = getValue(MI.getRawSource());
5956     SDValue Length = getValue(MI.getLength());
5957 
5958     unsigned DstAlign = MI.getDestAlignment();
5959     unsigned SrcAlign = MI.getSourceAlignment();
5960     Type *LengthTy = MI.getLength()->getType();
5961     unsigned ElemSz = MI.getElementSizeInBytes();
5962     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5963     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5964                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5965                                       MachinePointerInfo(MI.getRawDest()),
5966                                       MachinePointerInfo(MI.getRawSource()));
5967     updateDAGForMaybeTailCall(MC);
5968     return;
5969   }
5970   case Intrinsic::memset_element_unordered_atomic: {
5971     auto &MI = cast<AtomicMemSetInst>(I);
5972     SDValue Dst = getValue(MI.getRawDest());
5973     SDValue Val = getValue(MI.getValue());
5974     SDValue Length = getValue(MI.getLength());
5975 
5976     unsigned DstAlign = MI.getDestAlignment();
5977     Type *LengthTy = MI.getLength()->getType();
5978     unsigned ElemSz = MI.getElementSizeInBytes();
5979     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5980     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5981                                      LengthTy, ElemSz, isTC,
5982                                      MachinePointerInfo(MI.getRawDest()));
5983     updateDAGForMaybeTailCall(MC);
5984     return;
5985   }
5986   case Intrinsic::call_preallocated_setup: {
5987     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5988     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5989     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5990                               getRoot(), SrcValue);
5991     setValue(&I, Res);
5992     DAG.setRoot(Res);
5993     return;
5994   }
5995   case Intrinsic::call_preallocated_arg: {
5996     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5997     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5998     SDValue Ops[3];
5999     Ops[0] = getRoot();
6000     Ops[1] = SrcValue;
6001     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6002                                    MVT::i32); // arg index
6003     SDValue Res = DAG.getNode(
6004         ISD::PREALLOCATED_ARG, sdl,
6005         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6006     setValue(&I, Res);
6007     DAG.setRoot(Res.getValue(1));
6008     return;
6009   }
6010   case Intrinsic::dbg_addr:
6011   case Intrinsic::dbg_declare: {
6012     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6013     // they are non-variadic.
6014     const auto &DI = cast<DbgVariableIntrinsic>(I);
6015     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6016     DILocalVariable *Variable = DI.getVariable();
6017     DIExpression *Expression = DI.getExpression();
6018     dropDanglingDebugInfo(Variable, Expression);
6019     assert(Variable && "Missing variable");
6020     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6021                       << "\n");
6022     // Check if address has undef value.
6023     const Value *Address = DI.getVariableLocationOp(0);
6024     if (!Address || isa<UndefValue>(Address) ||
6025         (Address->use_empty() && !isa<Argument>(Address))) {
6026       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6027                         << " (bad/undef/unused-arg address)\n");
6028       return;
6029     }
6030 
6031     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6032 
6033     // Check if this variable can be described by a frame index, typically
6034     // either as a static alloca or a byval parameter.
6035     int FI = std::numeric_limits<int>::max();
6036     if (const auto *AI =
6037             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6038       if (AI->isStaticAlloca()) {
6039         auto I = FuncInfo.StaticAllocaMap.find(AI);
6040         if (I != FuncInfo.StaticAllocaMap.end())
6041           FI = I->second;
6042       }
6043     } else if (const auto *Arg = dyn_cast<Argument>(
6044                    Address->stripInBoundsConstantOffsets())) {
6045       FI = FuncInfo.getArgumentFrameIndex(Arg);
6046     }
6047 
6048     // llvm.dbg.addr is control dependent and always generates indirect
6049     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6050     // the MachineFunction variable table.
6051     if (FI != std::numeric_limits<int>::max()) {
6052       if (Intrinsic == Intrinsic::dbg_addr) {
6053         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6054             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6055             dl, SDNodeOrder);
6056         DAG.AddDbgValue(SDV, isParameter);
6057       } else {
6058         LLVM_DEBUG(dbgs() << "Skipping " << DI
6059                           << " (variable info stashed in MF side table)\n");
6060       }
6061       return;
6062     }
6063 
6064     SDValue &N = NodeMap[Address];
6065     if (!N.getNode() && isa<Argument>(Address))
6066       // Check unused arguments map.
6067       N = UnusedArgNodeMap[Address];
6068     SDDbgValue *SDV;
6069     if (N.getNode()) {
6070       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6071         Address = BCI->getOperand(0);
6072       // Parameters are handled specially.
6073       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6074       if (isParameter && FINode) {
6075         // Byval parameter. We have a frame index at this point.
6076         SDV =
6077             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6078                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6079       } else if (isa<Argument>(Address)) {
6080         // Address is an argument, so try to emit its dbg value using
6081         // virtual register info from the FuncInfo.ValueMap.
6082         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6083         return;
6084       } else {
6085         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6086                               true, dl, SDNodeOrder);
6087       }
6088       DAG.AddDbgValue(SDV, isParameter);
6089     } else {
6090       // If Address is an argument then try to emit its dbg value using
6091       // virtual register info from the FuncInfo.ValueMap.
6092       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6093                                     N)) {
6094         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6095                           << " (could not emit func-arg dbg_value)\n");
6096       }
6097     }
6098     return;
6099   }
6100   case Intrinsic::dbg_label: {
6101     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6102     DILabel *Label = DI.getLabel();
6103     assert(Label && "Missing label");
6104 
6105     SDDbgLabel *SDV;
6106     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6107     DAG.AddDbgLabel(SDV);
6108     return;
6109   }
6110   case Intrinsic::dbg_value: {
6111     const DbgValueInst &DI = cast<DbgValueInst>(I);
6112     assert(DI.getVariable() && "Missing variable");
6113 
6114     DILocalVariable *Variable = DI.getVariable();
6115     DIExpression *Expression = DI.getExpression();
6116     dropDanglingDebugInfo(Variable, Expression);
6117     SmallVector<Value *, 4> Values(DI.getValues());
6118     if (Values.empty())
6119       return;
6120 
6121     if (llvm::is_contained(Values, nullptr))
6122       return;
6123 
6124     bool IsVariadic = DI.hasArgList();
6125     if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6126                           SDNodeOrder, IsVariadic))
6127       addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6128     return;
6129   }
6130 
6131   case Intrinsic::eh_typeid_for: {
6132     // Find the type id for the given typeinfo.
6133     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6134     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6135     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6136     setValue(&I, Res);
6137     return;
6138   }
6139 
6140   case Intrinsic::eh_return_i32:
6141   case Intrinsic::eh_return_i64:
6142     DAG.getMachineFunction().setCallsEHReturn(true);
6143     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6144                             MVT::Other,
6145                             getControlRoot(),
6146                             getValue(I.getArgOperand(0)),
6147                             getValue(I.getArgOperand(1))));
6148     return;
6149   case Intrinsic::eh_unwind_init:
6150     DAG.getMachineFunction().setCallsUnwindInit(true);
6151     return;
6152   case Intrinsic::eh_dwarf_cfa:
6153     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6154                              TLI.getPointerTy(DAG.getDataLayout()),
6155                              getValue(I.getArgOperand(0))));
6156     return;
6157   case Intrinsic::eh_sjlj_callsite: {
6158     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6159     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6160     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6161     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6162 
6163     MMI.setCurrentCallSite(CI->getZExtValue());
6164     return;
6165   }
6166   case Intrinsic::eh_sjlj_functioncontext: {
6167     // Get and store the index of the function context.
6168     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6169     AllocaInst *FnCtx =
6170       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6171     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6172     MFI.setFunctionContextIndex(FI);
6173     return;
6174   }
6175   case Intrinsic::eh_sjlj_setjmp: {
6176     SDValue Ops[2];
6177     Ops[0] = getRoot();
6178     Ops[1] = getValue(I.getArgOperand(0));
6179     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6180                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6181     setValue(&I, Op.getValue(0));
6182     DAG.setRoot(Op.getValue(1));
6183     return;
6184   }
6185   case Intrinsic::eh_sjlj_longjmp:
6186     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6187                             getRoot(), getValue(I.getArgOperand(0))));
6188     return;
6189   case Intrinsic::eh_sjlj_setup_dispatch:
6190     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6191                             getRoot()));
6192     return;
6193   case Intrinsic::masked_gather:
6194     visitMaskedGather(I);
6195     return;
6196   case Intrinsic::masked_load:
6197     visitMaskedLoad(I);
6198     return;
6199   case Intrinsic::masked_scatter:
6200     visitMaskedScatter(I);
6201     return;
6202   case Intrinsic::masked_store:
6203     visitMaskedStore(I);
6204     return;
6205   case Intrinsic::masked_expandload:
6206     visitMaskedLoad(I, true /* IsExpanding */);
6207     return;
6208   case Intrinsic::masked_compressstore:
6209     visitMaskedStore(I, true /* IsCompressing */);
6210     return;
6211   case Intrinsic::powi:
6212     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6213                             getValue(I.getArgOperand(1)), DAG));
6214     return;
6215   case Intrinsic::log:
6216     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6217     return;
6218   case Intrinsic::log2:
6219     setValue(&I,
6220              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6221     return;
6222   case Intrinsic::log10:
6223     setValue(&I,
6224              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6225     return;
6226   case Intrinsic::exp:
6227     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6228     return;
6229   case Intrinsic::exp2:
6230     setValue(&I,
6231              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6232     return;
6233   case Intrinsic::pow:
6234     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6235                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6236     return;
6237   case Intrinsic::sqrt:
6238   case Intrinsic::fabs:
6239   case Intrinsic::sin:
6240   case Intrinsic::cos:
6241   case Intrinsic::floor:
6242   case Intrinsic::ceil:
6243   case Intrinsic::trunc:
6244   case Intrinsic::rint:
6245   case Intrinsic::nearbyint:
6246   case Intrinsic::round:
6247   case Intrinsic::roundeven:
6248   case Intrinsic::canonicalize: {
6249     unsigned Opcode;
6250     switch (Intrinsic) {
6251     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6252     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6253     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6254     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6255     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6256     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6257     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6258     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6259     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6260     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6261     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6262     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6263     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6264     }
6265 
6266     setValue(&I, DAG.getNode(Opcode, sdl,
6267                              getValue(I.getArgOperand(0)).getValueType(),
6268                              getValue(I.getArgOperand(0)), Flags));
6269     return;
6270   }
6271   case Intrinsic::lround:
6272   case Intrinsic::llround:
6273   case Intrinsic::lrint:
6274   case Intrinsic::llrint: {
6275     unsigned Opcode;
6276     switch (Intrinsic) {
6277     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6278     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6279     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6280     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6281     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6282     }
6283 
6284     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6285     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6286                              getValue(I.getArgOperand(0))));
6287     return;
6288   }
6289   case Intrinsic::minnum:
6290     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6291                              getValue(I.getArgOperand(0)).getValueType(),
6292                              getValue(I.getArgOperand(0)),
6293                              getValue(I.getArgOperand(1)), Flags));
6294     return;
6295   case Intrinsic::maxnum:
6296     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6297                              getValue(I.getArgOperand(0)).getValueType(),
6298                              getValue(I.getArgOperand(0)),
6299                              getValue(I.getArgOperand(1)), Flags));
6300     return;
6301   case Intrinsic::minimum:
6302     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6303                              getValue(I.getArgOperand(0)).getValueType(),
6304                              getValue(I.getArgOperand(0)),
6305                              getValue(I.getArgOperand(1)), Flags));
6306     return;
6307   case Intrinsic::maximum:
6308     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6309                              getValue(I.getArgOperand(0)).getValueType(),
6310                              getValue(I.getArgOperand(0)),
6311                              getValue(I.getArgOperand(1)), Flags));
6312     return;
6313   case Intrinsic::copysign:
6314     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6315                              getValue(I.getArgOperand(0)).getValueType(),
6316                              getValue(I.getArgOperand(0)),
6317                              getValue(I.getArgOperand(1)), Flags));
6318     return;
6319   case Intrinsic::arithmetic_fence: {
6320     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6321                              getValue(I.getArgOperand(0)).getValueType(),
6322                              getValue(I.getArgOperand(0)), Flags));
6323     return;
6324   }
6325   case Intrinsic::fma:
6326     setValue(&I, DAG.getNode(
6327                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6328                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6329                      getValue(I.getArgOperand(2)), Flags));
6330     return;
6331 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6332   case Intrinsic::INTRINSIC:
6333 #include "llvm/IR/ConstrainedOps.def"
6334     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6335     return;
6336 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6337 #include "llvm/IR/VPIntrinsics.def"
6338     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6339     return;
6340   case Intrinsic::fmuladd: {
6341     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6342     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6343         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6344       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6345                                getValue(I.getArgOperand(0)).getValueType(),
6346                                getValue(I.getArgOperand(0)),
6347                                getValue(I.getArgOperand(1)),
6348                                getValue(I.getArgOperand(2)), Flags));
6349     } else {
6350       // TODO: Intrinsic calls should have fast-math-flags.
6351       SDValue Mul = DAG.getNode(
6352           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6353           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6354       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6355                                 getValue(I.getArgOperand(0)).getValueType(),
6356                                 Mul, getValue(I.getArgOperand(2)), Flags);
6357       setValue(&I, Add);
6358     }
6359     return;
6360   }
6361   case Intrinsic::convert_to_fp16:
6362     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6363                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6364                                          getValue(I.getArgOperand(0)),
6365                                          DAG.getTargetConstant(0, sdl,
6366                                                                MVT::i32))));
6367     return;
6368   case Intrinsic::convert_from_fp16:
6369     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6370                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6371                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6372                                          getValue(I.getArgOperand(0)))));
6373     return;
6374   case Intrinsic::fptosi_sat: {
6375     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6376     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6377                              getValue(I.getArgOperand(0)),
6378                              DAG.getValueType(VT.getScalarType())));
6379     return;
6380   }
6381   case Intrinsic::fptoui_sat: {
6382     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6383     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6384                              getValue(I.getArgOperand(0)),
6385                              DAG.getValueType(VT.getScalarType())));
6386     return;
6387   }
6388   case Intrinsic::set_rounding:
6389     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6390                       {getRoot(), getValue(I.getArgOperand(0))});
6391     setValue(&I, Res);
6392     DAG.setRoot(Res.getValue(0));
6393     return;
6394   case Intrinsic::pcmarker: {
6395     SDValue Tmp = getValue(I.getArgOperand(0));
6396     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6397     return;
6398   }
6399   case Intrinsic::readcyclecounter: {
6400     SDValue Op = getRoot();
6401     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6402                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6403     setValue(&I, Res);
6404     DAG.setRoot(Res.getValue(1));
6405     return;
6406   }
6407   case Intrinsic::bitreverse:
6408     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6409                              getValue(I.getArgOperand(0)).getValueType(),
6410                              getValue(I.getArgOperand(0))));
6411     return;
6412   case Intrinsic::bswap:
6413     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6414                              getValue(I.getArgOperand(0)).getValueType(),
6415                              getValue(I.getArgOperand(0))));
6416     return;
6417   case Intrinsic::cttz: {
6418     SDValue Arg = getValue(I.getArgOperand(0));
6419     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6420     EVT Ty = Arg.getValueType();
6421     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6422                              sdl, Ty, Arg));
6423     return;
6424   }
6425   case Intrinsic::ctlz: {
6426     SDValue Arg = getValue(I.getArgOperand(0));
6427     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6428     EVT Ty = Arg.getValueType();
6429     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6430                              sdl, Ty, Arg));
6431     return;
6432   }
6433   case Intrinsic::ctpop: {
6434     SDValue Arg = getValue(I.getArgOperand(0));
6435     EVT Ty = Arg.getValueType();
6436     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6437     return;
6438   }
6439   case Intrinsic::fshl:
6440   case Intrinsic::fshr: {
6441     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6442     SDValue X = getValue(I.getArgOperand(0));
6443     SDValue Y = getValue(I.getArgOperand(1));
6444     SDValue Z = getValue(I.getArgOperand(2));
6445     EVT VT = X.getValueType();
6446 
6447     if (X == Y) {
6448       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6449       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6450     } else {
6451       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6452       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6453     }
6454     return;
6455   }
6456   case Intrinsic::sadd_sat: {
6457     SDValue Op1 = getValue(I.getArgOperand(0));
6458     SDValue Op2 = getValue(I.getArgOperand(1));
6459     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6460     return;
6461   }
6462   case Intrinsic::uadd_sat: {
6463     SDValue Op1 = getValue(I.getArgOperand(0));
6464     SDValue Op2 = getValue(I.getArgOperand(1));
6465     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6466     return;
6467   }
6468   case Intrinsic::ssub_sat: {
6469     SDValue Op1 = getValue(I.getArgOperand(0));
6470     SDValue Op2 = getValue(I.getArgOperand(1));
6471     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6472     return;
6473   }
6474   case Intrinsic::usub_sat: {
6475     SDValue Op1 = getValue(I.getArgOperand(0));
6476     SDValue Op2 = getValue(I.getArgOperand(1));
6477     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6478     return;
6479   }
6480   case Intrinsic::sshl_sat: {
6481     SDValue Op1 = getValue(I.getArgOperand(0));
6482     SDValue Op2 = getValue(I.getArgOperand(1));
6483     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6484     return;
6485   }
6486   case Intrinsic::ushl_sat: {
6487     SDValue Op1 = getValue(I.getArgOperand(0));
6488     SDValue Op2 = getValue(I.getArgOperand(1));
6489     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6490     return;
6491   }
6492   case Intrinsic::smul_fix:
6493   case Intrinsic::umul_fix:
6494   case Intrinsic::smul_fix_sat:
6495   case Intrinsic::umul_fix_sat: {
6496     SDValue Op1 = getValue(I.getArgOperand(0));
6497     SDValue Op2 = getValue(I.getArgOperand(1));
6498     SDValue Op3 = getValue(I.getArgOperand(2));
6499     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6500                              Op1.getValueType(), Op1, Op2, Op3));
6501     return;
6502   }
6503   case Intrinsic::sdiv_fix:
6504   case Intrinsic::udiv_fix:
6505   case Intrinsic::sdiv_fix_sat:
6506   case Intrinsic::udiv_fix_sat: {
6507     SDValue Op1 = getValue(I.getArgOperand(0));
6508     SDValue Op2 = getValue(I.getArgOperand(1));
6509     SDValue Op3 = getValue(I.getArgOperand(2));
6510     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6511                               Op1, Op2, Op3, DAG, TLI));
6512     return;
6513   }
6514   case Intrinsic::smax: {
6515     SDValue Op1 = getValue(I.getArgOperand(0));
6516     SDValue Op2 = getValue(I.getArgOperand(1));
6517     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6518     return;
6519   }
6520   case Intrinsic::smin: {
6521     SDValue Op1 = getValue(I.getArgOperand(0));
6522     SDValue Op2 = getValue(I.getArgOperand(1));
6523     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6524     return;
6525   }
6526   case Intrinsic::umax: {
6527     SDValue Op1 = getValue(I.getArgOperand(0));
6528     SDValue Op2 = getValue(I.getArgOperand(1));
6529     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6530     return;
6531   }
6532   case Intrinsic::umin: {
6533     SDValue Op1 = getValue(I.getArgOperand(0));
6534     SDValue Op2 = getValue(I.getArgOperand(1));
6535     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6536     return;
6537   }
6538   case Intrinsic::abs: {
6539     // TODO: Preserve "int min is poison" arg in SDAG?
6540     SDValue Op1 = getValue(I.getArgOperand(0));
6541     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6542     return;
6543   }
6544   case Intrinsic::stacksave: {
6545     SDValue Op = getRoot();
6546     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6547     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6548     setValue(&I, Res);
6549     DAG.setRoot(Res.getValue(1));
6550     return;
6551   }
6552   case Intrinsic::stackrestore:
6553     Res = getValue(I.getArgOperand(0));
6554     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6555     return;
6556   case Intrinsic::get_dynamic_area_offset: {
6557     SDValue Op = getRoot();
6558     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6559     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6560     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6561     // target.
6562     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6563       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6564                          " intrinsic!");
6565     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6566                       Op);
6567     DAG.setRoot(Op);
6568     setValue(&I, Res);
6569     return;
6570   }
6571   case Intrinsic::stackguard: {
6572     MachineFunction &MF = DAG.getMachineFunction();
6573     const Module &M = *MF.getFunction().getParent();
6574     SDValue Chain = getRoot();
6575     if (TLI.useLoadStackGuardNode()) {
6576       Res = getLoadStackGuard(DAG, sdl, Chain);
6577     } else {
6578       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6579       const Value *Global = TLI.getSDagStackGuard(M);
6580       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6581       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6582                         MachinePointerInfo(Global, 0), Align,
6583                         MachineMemOperand::MOVolatile);
6584     }
6585     if (TLI.useStackGuardXorFP())
6586       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6587     DAG.setRoot(Chain);
6588     setValue(&I, Res);
6589     return;
6590   }
6591   case Intrinsic::stackprotector: {
6592     // Emit code into the DAG to store the stack guard onto the stack.
6593     MachineFunction &MF = DAG.getMachineFunction();
6594     MachineFrameInfo &MFI = MF.getFrameInfo();
6595     SDValue Src, Chain = getRoot();
6596 
6597     if (TLI.useLoadStackGuardNode())
6598       Src = getLoadStackGuard(DAG, sdl, Chain);
6599     else
6600       Src = getValue(I.getArgOperand(0));   // The guard's value.
6601 
6602     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6603 
6604     int FI = FuncInfo.StaticAllocaMap[Slot];
6605     MFI.setStackProtectorIndex(FI);
6606     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6607 
6608     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6609 
6610     // Store the stack protector onto the stack.
6611     Res = DAG.getStore(
6612         Chain, sdl, Src, FIN,
6613         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6614         MaybeAlign(), MachineMemOperand::MOVolatile);
6615     setValue(&I, Res);
6616     DAG.setRoot(Res);
6617     return;
6618   }
6619   case Intrinsic::objectsize:
6620     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6621 
6622   case Intrinsic::is_constant:
6623     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6624 
6625   case Intrinsic::annotation:
6626   case Intrinsic::ptr_annotation:
6627   case Intrinsic::launder_invariant_group:
6628   case Intrinsic::strip_invariant_group:
6629     // Drop the intrinsic, but forward the value
6630     setValue(&I, getValue(I.getOperand(0)));
6631     return;
6632 
6633   case Intrinsic::assume:
6634   case Intrinsic::experimental_noalias_scope_decl:
6635   case Intrinsic::var_annotation:
6636   case Intrinsic::sideeffect:
6637     // Discard annotate attributes, noalias scope declarations, assumptions, and
6638     // artificial side-effects.
6639     return;
6640 
6641   case Intrinsic::codeview_annotation: {
6642     // Emit a label associated with this metadata.
6643     MachineFunction &MF = DAG.getMachineFunction();
6644     MCSymbol *Label =
6645         MF.getMMI().getContext().createTempSymbol("annotation", true);
6646     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6647     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6648     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6649     DAG.setRoot(Res);
6650     return;
6651   }
6652 
6653   case Intrinsic::init_trampoline: {
6654     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6655 
6656     SDValue Ops[6];
6657     Ops[0] = getRoot();
6658     Ops[1] = getValue(I.getArgOperand(0));
6659     Ops[2] = getValue(I.getArgOperand(1));
6660     Ops[3] = getValue(I.getArgOperand(2));
6661     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6662     Ops[5] = DAG.getSrcValue(F);
6663 
6664     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6665 
6666     DAG.setRoot(Res);
6667     return;
6668   }
6669   case Intrinsic::adjust_trampoline:
6670     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6671                              TLI.getPointerTy(DAG.getDataLayout()),
6672                              getValue(I.getArgOperand(0))));
6673     return;
6674   case Intrinsic::gcroot: {
6675     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6676            "only valid in functions with gc specified, enforced by Verifier");
6677     assert(GFI && "implied by previous");
6678     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6679     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6680 
6681     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6682     GFI->addStackRoot(FI->getIndex(), TypeMap);
6683     return;
6684   }
6685   case Intrinsic::gcread:
6686   case Intrinsic::gcwrite:
6687     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6688   case Intrinsic::flt_rounds:
6689     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6690     setValue(&I, Res);
6691     DAG.setRoot(Res.getValue(1));
6692     return;
6693 
6694   case Intrinsic::expect:
6695     // Just replace __builtin_expect(exp, c) with EXP.
6696     setValue(&I, getValue(I.getArgOperand(0)));
6697     return;
6698 
6699   case Intrinsic::ubsantrap:
6700   case Intrinsic::debugtrap:
6701   case Intrinsic::trap: {
6702     StringRef TrapFuncName =
6703         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6704     if (TrapFuncName.empty()) {
6705       switch (Intrinsic) {
6706       case Intrinsic::trap:
6707         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6708         break;
6709       case Intrinsic::debugtrap:
6710         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6711         break;
6712       case Intrinsic::ubsantrap:
6713         DAG.setRoot(DAG.getNode(
6714             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6715             DAG.getTargetConstant(
6716                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6717                 MVT::i32)));
6718         break;
6719       default: llvm_unreachable("unknown trap intrinsic");
6720       }
6721       return;
6722     }
6723     TargetLowering::ArgListTy Args;
6724     if (Intrinsic == Intrinsic::ubsantrap) {
6725       Args.push_back(TargetLoweringBase::ArgListEntry());
6726       Args[0].Val = I.getArgOperand(0);
6727       Args[0].Node = getValue(Args[0].Val);
6728       Args[0].Ty = Args[0].Val->getType();
6729     }
6730 
6731     TargetLowering::CallLoweringInfo CLI(DAG);
6732     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6733         CallingConv::C, I.getType(),
6734         DAG.getExternalSymbol(TrapFuncName.data(),
6735                               TLI.getPointerTy(DAG.getDataLayout())),
6736         std::move(Args));
6737 
6738     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6739     DAG.setRoot(Result.second);
6740     return;
6741   }
6742 
6743   case Intrinsic::uadd_with_overflow:
6744   case Intrinsic::sadd_with_overflow:
6745   case Intrinsic::usub_with_overflow:
6746   case Intrinsic::ssub_with_overflow:
6747   case Intrinsic::umul_with_overflow:
6748   case Intrinsic::smul_with_overflow: {
6749     ISD::NodeType Op;
6750     switch (Intrinsic) {
6751     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6752     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6753     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6754     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6755     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6756     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6757     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6758     }
6759     SDValue Op1 = getValue(I.getArgOperand(0));
6760     SDValue Op2 = getValue(I.getArgOperand(1));
6761 
6762     EVT ResultVT = Op1.getValueType();
6763     EVT OverflowVT = MVT::i1;
6764     if (ResultVT.isVector())
6765       OverflowVT = EVT::getVectorVT(
6766           *Context, OverflowVT, ResultVT.getVectorElementCount());
6767 
6768     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6769     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6770     return;
6771   }
6772   case Intrinsic::prefetch: {
6773     SDValue Ops[5];
6774     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6775     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6776     Ops[0] = DAG.getRoot();
6777     Ops[1] = getValue(I.getArgOperand(0));
6778     Ops[2] = getValue(I.getArgOperand(1));
6779     Ops[3] = getValue(I.getArgOperand(2));
6780     Ops[4] = getValue(I.getArgOperand(3));
6781     SDValue Result = DAG.getMemIntrinsicNode(
6782         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6783         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6784         /* align */ None, Flags);
6785 
6786     // Chain the prefetch in parallell with any pending loads, to stay out of
6787     // the way of later optimizations.
6788     PendingLoads.push_back(Result);
6789     Result = getRoot();
6790     DAG.setRoot(Result);
6791     return;
6792   }
6793   case Intrinsic::lifetime_start:
6794   case Intrinsic::lifetime_end: {
6795     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6796     // Stack coloring is not enabled in O0, discard region information.
6797     if (TM.getOptLevel() == CodeGenOpt::None)
6798       return;
6799 
6800     const int64_t ObjectSize =
6801         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6802     Value *const ObjectPtr = I.getArgOperand(1);
6803     SmallVector<const Value *, 4> Allocas;
6804     getUnderlyingObjects(ObjectPtr, Allocas);
6805 
6806     for (const Value *Alloca : Allocas) {
6807       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6808 
6809       // Could not find an Alloca.
6810       if (!LifetimeObject)
6811         continue;
6812 
6813       // First check that the Alloca is static, otherwise it won't have a
6814       // valid frame index.
6815       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6816       if (SI == FuncInfo.StaticAllocaMap.end())
6817         return;
6818 
6819       const int FrameIndex = SI->second;
6820       int64_t Offset;
6821       if (GetPointerBaseWithConstantOffset(
6822               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6823         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6824       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6825                                 Offset);
6826       DAG.setRoot(Res);
6827     }
6828     return;
6829   }
6830   case Intrinsic::pseudoprobe: {
6831     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6832     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6833     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6834     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6835     DAG.setRoot(Res);
6836     return;
6837   }
6838   case Intrinsic::invariant_start:
6839     // Discard region information.
6840     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6841     return;
6842   case Intrinsic::invariant_end:
6843     // Discard region information.
6844     return;
6845   case Intrinsic::clear_cache:
6846     /// FunctionName may be null.
6847     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6848       lowerCallToExternalSymbol(I, FunctionName);
6849     return;
6850   case Intrinsic::donothing:
6851   case Intrinsic::seh_try_begin:
6852   case Intrinsic::seh_scope_begin:
6853   case Intrinsic::seh_try_end:
6854   case Intrinsic::seh_scope_end:
6855     // ignore
6856     return;
6857   case Intrinsic::experimental_stackmap:
6858     visitStackmap(I);
6859     return;
6860   case Intrinsic::experimental_patchpoint_void:
6861   case Intrinsic::experimental_patchpoint_i64:
6862     visitPatchpoint(I);
6863     return;
6864   case Intrinsic::experimental_gc_statepoint:
6865     LowerStatepoint(cast<GCStatepointInst>(I));
6866     return;
6867   case Intrinsic::experimental_gc_result:
6868     visitGCResult(cast<GCResultInst>(I));
6869     return;
6870   case Intrinsic::experimental_gc_relocate:
6871     visitGCRelocate(cast<GCRelocateInst>(I));
6872     return;
6873   case Intrinsic::instrprof_increment:
6874     llvm_unreachable("instrprof failed to lower an increment");
6875   case Intrinsic::instrprof_value_profile:
6876     llvm_unreachable("instrprof failed to lower a value profiling call");
6877   case Intrinsic::localescape: {
6878     MachineFunction &MF = DAG.getMachineFunction();
6879     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6880 
6881     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6882     // is the same on all targets.
6883     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
6884       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6885       if (isa<ConstantPointerNull>(Arg))
6886         continue; // Skip null pointers. They represent a hole in index space.
6887       AllocaInst *Slot = cast<AllocaInst>(Arg);
6888       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6889              "can only escape static allocas");
6890       int FI = FuncInfo.StaticAllocaMap[Slot];
6891       MCSymbol *FrameAllocSym =
6892           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6893               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6894       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6895               TII->get(TargetOpcode::LOCAL_ESCAPE))
6896           .addSym(FrameAllocSym)
6897           .addFrameIndex(FI);
6898     }
6899 
6900     return;
6901   }
6902 
6903   case Intrinsic::localrecover: {
6904     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6905     MachineFunction &MF = DAG.getMachineFunction();
6906 
6907     // Get the symbol that defines the frame offset.
6908     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6909     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6910     unsigned IdxVal =
6911         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6912     MCSymbol *FrameAllocSym =
6913         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6914             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6915 
6916     Value *FP = I.getArgOperand(1);
6917     SDValue FPVal = getValue(FP);
6918     EVT PtrVT = FPVal.getValueType();
6919 
6920     // Create a MCSymbol for the label to avoid any target lowering
6921     // that would make this PC relative.
6922     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6923     SDValue OffsetVal =
6924         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6925 
6926     // Add the offset to the FP.
6927     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6928     setValue(&I, Add);
6929 
6930     return;
6931   }
6932 
6933   case Intrinsic::eh_exceptionpointer:
6934   case Intrinsic::eh_exceptioncode: {
6935     // Get the exception pointer vreg, copy from it, and resize it to fit.
6936     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6937     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6938     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6939     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6940     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
6941     if (Intrinsic == Intrinsic::eh_exceptioncode)
6942       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
6943     setValue(&I, N);
6944     return;
6945   }
6946   case Intrinsic::xray_customevent: {
6947     // Here we want to make sure that the intrinsic behaves as if it has a
6948     // specific calling convention, and only for x86_64.
6949     // FIXME: Support other platforms later.
6950     const auto &Triple = DAG.getTarget().getTargetTriple();
6951     if (Triple.getArch() != Triple::x86_64)
6952       return;
6953 
6954     SmallVector<SDValue, 8> Ops;
6955 
6956     // We want to say that we always want the arguments in registers.
6957     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6958     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6959     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6960     SDValue Chain = getRoot();
6961     Ops.push_back(LogEntryVal);
6962     Ops.push_back(StrSizeVal);
6963     Ops.push_back(Chain);
6964 
6965     // We need to enforce the calling convention for the callsite, so that
6966     // argument ordering is enforced correctly, and that register allocation can
6967     // see that some registers may be assumed clobbered and have to preserve
6968     // them across calls to the intrinsic.
6969     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6970                                            sdl, NodeTys, Ops);
6971     SDValue patchableNode = SDValue(MN, 0);
6972     DAG.setRoot(patchableNode);
6973     setValue(&I, patchableNode);
6974     return;
6975   }
6976   case Intrinsic::xray_typedevent: {
6977     // Here we want to make sure that the intrinsic behaves as if it has a
6978     // specific calling convention, and only for x86_64.
6979     // FIXME: Support other platforms later.
6980     const auto &Triple = DAG.getTarget().getTargetTriple();
6981     if (Triple.getArch() != Triple::x86_64)
6982       return;
6983 
6984     SmallVector<SDValue, 8> Ops;
6985 
6986     // We want to say that we always want the arguments in registers.
6987     // It's unclear to me how manipulating the selection DAG here forces callers
6988     // to provide arguments in registers instead of on the stack.
6989     SDValue LogTypeId = getValue(I.getArgOperand(0));
6990     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6991     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6992     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6993     SDValue Chain = getRoot();
6994     Ops.push_back(LogTypeId);
6995     Ops.push_back(LogEntryVal);
6996     Ops.push_back(StrSizeVal);
6997     Ops.push_back(Chain);
6998 
6999     // We need to enforce the calling convention for the callsite, so that
7000     // argument ordering is enforced correctly, and that register allocation can
7001     // see that some registers may be assumed clobbered and have to preserve
7002     // them across calls to the intrinsic.
7003     MachineSDNode *MN = DAG.getMachineNode(
7004         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7005     SDValue patchableNode = SDValue(MN, 0);
7006     DAG.setRoot(patchableNode);
7007     setValue(&I, patchableNode);
7008     return;
7009   }
7010   case Intrinsic::experimental_deoptimize:
7011     LowerDeoptimizeCall(&I);
7012     return;
7013   case Intrinsic::experimental_stepvector:
7014     visitStepVector(I);
7015     return;
7016   case Intrinsic::vector_reduce_fadd:
7017   case Intrinsic::vector_reduce_fmul:
7018   case Intrinsic::vector_reduce_add:
7019   case Intrinsic::vector_reduce_mul:
7020   case Intrinsic::vector_reduce_and:
7021   case Intrinsic::vector_reduce_or:
7022   case Intrinsic::vector_reduce_xor:
7023   case Intrinsic::vector_reduce_smax:
7024   case Intrinsic::vector_reduce_smin:
7025   case Intrinsic::vector_reduce_umax:
7026   case Intrinsic::vector_reduce_umin:
7027   case Intrinsic::vector_reduce_fmax:
7028   case Intrinsic::vector_reduce_fmin:
7029     visitVectorReduce(I, Intrinsic);
7030     return;
7031 
7032   case Intrinsic::icall_branch_funnel: {
7033     SmallVector<SDValue, 16> Ops;
7034     Ops.push_back(getValue(I.getArgOperand(0)));
7035 
7036     int64_t Offset;
7037     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7038         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7039     if (!Base)
7040       report_fatal_error(
7041           "llvm.icall.branch.funnel operand must be a GlobalValue");
7042     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7043 
7044     struct BranchFunnelTarget {
7045       int64_t Offset;
7046       SDValue Target;
7047     };
7048     SmallVector<BranchFunnelTarget, 8> Targets;
7049 
7050     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7051       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7052           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7053       if (ElemBase != Base)
7054         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7055                            "to the same GlobalValue");
7056 
7057       SDValue Val = getValue(I.getArgOperand(Op + 1));
7058       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7059       if (!GA)
7060         report_fatal_error(
7061             "llvm.icall.branch.funnel operand must be a GlobalValue");
7062       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7063                                      GA->getGlobal(), sdl, Val.getValueType(),
7064                                      GA->getOffset())});
7065     }
7066     llvm::sort(Targets,
7067                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7068                  return T1.Offset < T2.Offset;
7069                });
7070 
7071     for (auto &T : Targets) {
7072       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7073       Ops.push_back(T.Target);
7074     }
7075 
7076     Ops.push_back(DAG.getRoot()); // Chain
7077     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7078                                  MVT::Other, Ops),
7079               0);
7080     DAG.setRoot(N);
7081     setValue(&I, N);
7082     HasTailCall = true;
7083     return;
7084   }
7085 
7086   case Intrinsic::wasm_landingpad_index:
7087     // Information this intrinsic contained has been transferred to
7088     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7089     // delete it now.
7090     return;
7091 
7092   case Intrinsic::aarch64_settag:
7093   case Intrinsic::aarch64_settag_zero: {
7094     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7095     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7096     SDValue Val = TSI.EmitTargetCodeForSetTag(
7097         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7098         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7099         ZeroMemory);
7100     DAG.setRoot(Val);
7101     setValue(&I, Val);
7102     return;
7103   }
7104   case Intrinsic::ptrmask: {
7105     SDValue Ptr = getValue(I.getOperand(0));
7106     SDValue Const = getValue(I.getOperand(1));
7107 
7108     EVT PtrVT = Ptr.getValueType();
7109     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7110                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7111     return;
7112   }
7113   case Intrinsic::get_active_lane_mask: {
7114     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7115     SDValue Index = getValue(I.getOperand(0));
7116     EVT ElementVT = Index.getValueType();
7117 
7118     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7119       visitTargetIntrinsic(I, Intrinsic);
7120       return;
7121     }
7122 
7123     SDValue TripCount = getValue(I.getOperand(1));
7124     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7125 
7126     SDValue VectorIndex, VectorTripCount;
7127     if (VecTy.isScalableVector()) {
7128       VectorIndex = DAG.getSplatVector(VecTy, sdl, Index);
7129       VectorTripCount = DAG.getSplatVector(VecTy, sdl, TripCount);
7130     } else {
7131       VectorIndex = DAG.getSplatBuildVector(VecTy, sdl, Index);
7132       VectorTripCount = DAG.getSplatBuildVector(VecTy, sdl, TripCount);
7133     }
7134     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7135     SDValue VectorInduction = DAG.getNode(
7136         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7137     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7138                                  VectorTripCount, ISD::CondCode::SETULT);
7139     setValue(&I, SetCC);
7140     return;
7141   }
7142   case Intrinsic::experimental_vector_insert: {
7143     SDValue Vec = getValue(I.getOperand(0));
7144     SDValue SubVec = getValue(I.getOperand(1));
7145     SDValue Index = getValue(I.getOperand(2));
7146 
7147     // The intrinsic's index type is i64, but the SDNode requires an index type
7148     // suitable for the target. Convert the index as required.
7149     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7150     if (Index.getValueType() != VectorIdxTy)
7151       Index = DAG.getVectorIdxConstant(
7152           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7153 
7154     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7155     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7156                              Index));
7157     return;
7158   }
7159   case Intrinsic::experimental_vector_extract: {
7160     SDValue Vec = getValue(I.getOperand(0));
7161     SDValue Index = getValue(I.getOperand(1));
7162     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7163 
7164     // The intrinsic's index type is i64, but the SDNode requires an index type
7165     // suitable for the target. Convert the index as required.
7166     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7167     if (Index.getValueType() != VectorIdxTy)
7168       Index = DAG.getVectorIdxConstant(
7169           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7170 
7171     setValue(&I,
7172              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7173     return;
7174   }
7175   case Intrinsic::experimental_vector_reverse:
7176     visitVectorReverse(I);
7177     return;
7178   case Intrinsic::experimental_vector_splice:
7179     visitVectorSplice(I);
7180     return;
7181   }
7182 }
7183 
7184 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7185     const ConstrainedFPIntrinsic &FPI) {
7186   SDLoc sdl = getCurSDLoc();
7187 
7188   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7189   SmallVector<EVT, 4> ValueVTs;
7190   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7191   ValueVTs.push_back(MVT::Other); // Out chain
7192 
7193   // We do not need to serialize constrained FP intrinsics against
7194   // each other or against (nonvolatile) loads, so they can be
7195   // chained like loads.
7196   SDValue Chain = DAG.getRoot();
7197   SmallVector<SDValue, 4> Opers;
7198   Opers.push_back(Chain);
7199   if (FPI.isUnaryOp()) {
7200     Opers.push_back(getValue(FPI.getArgOperand(0)));
7201   } else if (FPI.isTernaryOp()) {
7202     Opers.push_back(getValue(FPI.getArgOperand(0)));
7203     Opers.push_back(getValue(FPI.getArgOperand(1)));
7204     Opers.push_back(getValue(FPI.getArgOperand(2)));
7205   } else {
7206     Opers.push_back(getValue(FPI.getArgOperand(0)));
7207     Opers.push_back(getValue(FPI.getArgOperand(1)));
7208   }
7209 
7210   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7211     assert(Result.getNode()->getNumValues() == 2);
7212 
7213     // Push node to the appropriate list so that future instructions can be
7214     // chained up correctly.
7215     SDValue OutChain = Result.getValue(1);
7216     switch (EB) {
7217     case fp::ExceptionBehavior::ebIgnore:
7218       // The only reason why ebIgnore nodes still need to be chained is that
7219       // they might depend on the current rounding mode, and therefore must
7220       // not be moved across instruction that may change that mode.
7221       LLVM_FALLTHROUGH;
7222     case fp::ExceptionBehavior::ebMayTrap:
7223       // These must not be moved across calls or instructions that may change
7224       // floating-point exception masks.
7225       PendingConstrainedFP.push_back(OutChain);
7226       break;
7227     case fp::ExceptionBehavior::ebStrict:
7228       // These must not be moved across calls or instructions that may change
7229       // floating-point exception masks or read floating-point exception flags.
7230       // In addition, they cannot be optimized out even if unused.
7231       PendingConstrainedFPStrict.push_back(OutChain);
7232       break;
7233     }
7234   };
7235 
7236   SDVTList VTs = DAG.getVTList(ValueVTs);
7237   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7238 
7239   SDNodeFlags Flags;
7240   if (EB == fp::ExceptionBehavior::ebIgnore)
7241     Flags.setNoFPExcept(true);
7242 
7243   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7244     Flags.copyFMF(*FPOp);
7245 
7246   unsigned Opcode;
7247   switch (FPI.getIntrinsicID()) {
7248   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7249 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7250   case Intrinsic::INTRINSIC:                                                   \
7251     Opcode = ISD::STRICT_##DAGN;                                               \
7252     break;
7253 #include "llvm/IR/ConstrainedOps.def"
7254   case Intrinsic::experimental_constrained_fmuladd: {
7255     Opcode = ISD::STRICT_FMA;
7256     // Break fmuladd into fmul and fadd.
7257     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7258         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7259                                         ValueVTs[0])) {
7260       Opers.pop_back();
7261       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7262       pushOutChain(Mul, EB);
7263       Opcode = ISD::STRICT_FADD;
7264       Opers.clear();
7265       Opers.push_back(Mul.getValue(1));
7266       Opers.push_back(Mul.getValue(0));
7267       Opers.push_back(getValue(FPI.getArgOperand(2)));
7268     }
7269     break;
7270   }
7271   }
7272 
7273   // A few strict DAG nodes carry additional operands that are not
7274   // set up by the default code above.
7275   switch (Opcode) {
7276   default: break;
7277   case ISD::STRICT_FP_ROUND:
7278     Opers.push_back(
7279         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7280     break;
7281   case ISD::STRICT_FSETCC:
7282   case ISD::STRICT_FSETCCS: {
7283     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7284     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7285     if (TM.Options.NoNaNsFPMath)
7286       Condition = getFCmpCodeWithoutNaN(Condition);
7287     Opers.push_back(DAG.getCondCode(Condition));
7288     break;
7289   }
7290   }
7291 
7292   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7293   pushOutChain(Result, EB);
7294 
7295   SDValue FPResult = Result.getValue(0);
7296   setValue(&FPI, FPResult);
7297 }
7298 
7299 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7300   Optional<unsigned> ResOPC;
7301   switch (VPIntrin.getIntrinsicID()) {
7302 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
7303 #define BEGIN_REGISTER_VP_SDNODE(VPSD, ...) ResOPC = ISD::VPSD;
7304 #define END_REGISTER_VP_INTRINSIC(VPID) break;
7305 #include "llvm/IR/VPIntrinsics.def"
7306   }
7307 
7308   if (!ResOPC.hasValue())
7309     llvm_unreachable(
7310         "Inconsistency: no SDNode available for this VPIntrinsic!");
7311 
7312   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7313       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7314     if (VPIntrin.getFastMathFlags().allowReassoc())
7315       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7316                                                 : ISD::VP_REDUCE_FMUL;
7317   }
7318 
7319   return ResOPC.getValue();
7320 }
7321 
7322 void SelectionDAGBuilder::visitVPLoadGather(const VPIntrinsic &VPIntrin, EVT VT,
7323                                             SmallVector<SDValue, 7> &OpValues,
7324                                             bool IsGather) {
7325   SDLoc DL = getCurSDLoc();
7326   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7327   Value *PtrOperand = VPIntrin.getArgOperand(0);
7328   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7329   if (!Alignment)
7330     Alignment = DAG.getEVTAlign(VT);
7331   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7332   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7333   SDValue LD;
7334   bool AddToChain = true;
7335   if (!IsGather) {
7336     // Do not serialize variable-length loads of constant memory with
7337     // anything.
7338     MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7339     AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7340     SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7341     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7342         MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7343         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7344     LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7345                        MMO, false /*IsExpanding */);
7346   } else {
7347     unsigned AS =
7348         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7349     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7350         MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7351         MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7352     SDValue Base, Index, Scale;
7353     ISD::MemIndexType IndexType;
7354     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7355                                       this, VPIntrin.getParent());
7356     if (!UniformBase) {
7357       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7358       Index = getValue(PtrOperand);
7359       IndexType = ISD::SIGNED_UNSCALED;
7360       Scale =
7361           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7362     }
7363     EVT IdxVT = Index.getValueType();
7364     EVT EltTy = IdxVT.getVectorElementType();
7365     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7366       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7367       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7368     }
7369     LD = DAG.getGatherVP(
7370         DAG.getVTList(VT, MVT::Other), VT, DL,
7371         {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7372         IndexType);
7373   }
7374   if (AddToChain)
7375     PendingLoads.push_back(LD.getValue(1));
7376   setValue(&VPIntrin, LD);
7377 }
7378 
7379 void SelectionDAGBuilder::visitVPStoreScatter(const VPIntrinsic &VPIntrin,
7380                                               SmallVector<SDValue, 7> &OpValues,
7381                                               bool IsScatter) {
7382   SDLoc DL = getCurSDLoc();
7383   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7384   Value *PtrOperand = VPIntrin.getArgOperand(1);
7385   EVT VT = OpValues[0].getValueType();
7386   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7387   if (!Alignment)
7388     Alignment = DAG.getEVTAlign(VT);
7389   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7390   SDValue ST;
7391   if (!IsScatter) {
7392     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7393         MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7394         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7395     ST =
7396         DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], OpValues[1],
7397                        OpValues[2], OpValues[3], MMO, false /* IsTruncating */);
7398   } else {
7399     unsigned AS =
7400         PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7401     MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7402         MachinePointerInfo(AS), MachineMemOperand::MOStore,
7403         MemoryLocation::UnknownSize, *Alignment, AAInfo);
7404     SDValue Base, Index, Scale;
7405     ISD::MemIndexType IndexType;
7406     bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7407                                       this, VPIntrin.getParent());
7408     if (!UniformBase) {
7409       Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7410       Index = getValue(PtrOperand);
7411       IndexType = ISD::SIGNED_UNSCALED;
7412       Scale =
7413           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7414     }
7415     EVT IdxVT = Index.getValueType();
7416     EVT EltTy = IdxVT.getVectorElementType();
7417     if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7418       EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7419       Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7420     }
7421     ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7422                           {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7423                            OpValues[2], OpValues[3]},
7424                           MMO, IndexType);
7425   }
7426   DAG.setRoot(ST);
7427   setValue(&VPIntrin, ST);
7428 }
7429 
7430 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7431     const VPIntrinsic &VPIntrin) {
7432   SDLoc DL = getCurSDLoc();
7433   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7434 
7435   SmallVector<EVT, 4> ValueVTs;
7436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7437   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7438   SDVTList VTs = DAG.getVTList(ValueVTs);
7439 
7440   auto EVLParamPos =
7441       VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7442 
7443   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7444   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7445          "Unexpected target EVL type");
7446 
7447   // Request operands.
7448   SmallVector<SDValue, 7> OpValues;
7449   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7450     auto Op = getValue(VPIntrin.getArgOperand(I));
7451     if (I == EVLParamPos)
7452       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7453     OpValues.push_back(Op);
7454   }
7455 
7456   switch (Opcode) {
7457   default: {
7458     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7459     setValue(&VPIntrin, Result);
7460     break;
7461   }
7462   case ISD::VP_LOAD:
7463   case ISD::VP_GATHER:
7464     visitVPLoadGather(VPIntrin, ValueVTs[0], OpValues,
7465                       Opcode == ISD::VP_GATHER);
7466     break;
7467   case ISD::VP_STORE:
7468   case ISD::VP_SCATTER:
7469     visitVPStoreScatter(VPIntrin, OpValues, Opcode == ISD::VP_SCATTER);
7470     break;
7471   }
7472 }
7473 
7474 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7475                                           const BasicBlock *EHPadBB,
7476                                           MCSymbol *&BeginLabel) {
7477   MachineFunction &MF = DAG.getMachineFunction();
7478   MachineModuleInfo &MMI = MF.getMMI();
7479 
7480   // Insert a label before the invoke call to mark the try range.  This can be
7481   // used to detect deletion of the invoke via the MachineModuleInfo.
7482   BeginLabel = MMI.getContext().createTempSymbol();
7483 
7484   // For SjLj, keep track of which landing pads go with which invokes
7485   // so as to maintain the ordering of pads in the LSDA.
7486   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7487   if (CallSiteIndex) {
7488     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7489     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7490 
7491     // Now that the call site is handled, stop tracking it.
7492     MMI.setCurrentCallSite(0);
7493   }
7494 
7495   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7496 }
7497 
7498 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7499                                         const BasicBlock *EHPadBB,
7500                                         MCSymbol *BeginLabel) {
7501   assert(BeginLabel && "BeginLabel should've been set");
7502 
7503   MachineFunction &MF = DAG.getMachineFunction();
7504   MachineModuleInfo &MMI = MF.getMMI();
7505 
7506   // Insert a label at the end of the invoke call to mark the try range.  This
7507   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7508   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7509   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7510 
7511   // Inform MachineModuleInfo of range.
7512   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7513   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7514   // actually use outlined funclets and their LSDA info style.
7515   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7516     assert(II && "II should've been set");
7517     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7518     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7519   } else if (!isScopedEHPersonality(Pers)) {
7520     assert(EHPadBB);
7521     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7522   }
7523 
7524   return Chain;
7525 }
7526 
7527 std::pair<SDValue, SDValue>
7528 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7529                                     const BasicBlock *EHPadBB) {
7530   MCSymbol *BeginLabel = nullptr;
7531 
7532   if (EHPadBB) {
7533     // Both PendingLoads and PendingExports must be flushed here;
7534     // this call might not return.
7535     (void)getRoot();
7536     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7537     CLI.setChain(getRoot());
7538   }
7539 
7540   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7541   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7542 
7543   assert((CLI.IsTailCall || Result.second.getNode()) &&
7544          "Non-null chain expected with non-tail call!");
7545   assert((Result.second.getNode() || !Result.first.getNode()) &&
7546          "Null value expected with tail call!");
7547 
7548   if (!Result.second.getNode()) {
7549     // As a special case, a null chain means that a tail call has been emitted
7550     // and the DAG root is already updated.
7551     HasTailCall = true;
7552 
7553     // Since there's no actual continuation from this block, nothing can be
7554     // relying on us setting vregs for them.
7555     PendingExports.clear();
7556   } else {
7557     DAG.setRoot(Result.second);
7558   }
7559 
7560   if (EHPadBB) {
7561     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7562                            BeginLabel));
7563   }
7564 
7565   return Result;
7566 }
7567 
7568 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7569                                       bool isTailCall,
7570                                       bool isMustTailCall,
7571                                       const BasicBlock *EHPadBB) {
7572   auto &DL = DAG.getDataLayout();
7573   FunctionType *FTy = CB.getFunctionType();
7574   Type *RetTy = CB.getType();
7575 
7576   TargetLowering::ArgListTy Args;
7577   Args.reserve(CB.arg_size());
7578 
7579   const Value *SwiftErrorVal = nullptr;
7580   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7581 
7582   if (isTailCall) {
7583     // Avoid emitting tail calls in functions with the disable-tail-calls
7584     // attribute.
7585     auto *Caller = CB.getParent()->getParent();
7586     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7587         "true" && !isMustTailCall)
7588       isTailCall = false;
7589 
7590     // We can't tail call inside a function with a swifterror argument. Lowering
7591     // does not support this yet. It would have to move into the swifterror
7592     // register before the call.
7593     if (TLI.supportSwiftError() &&
7594         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7595       isTailCall = false;
7596   }
7597 
7598   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7599     TargetLowering::ArgListEntry Entry;
7600     const Value *V = *I;
7601 
7602     // Skip empty types
7603     if (V->getType()->isEmptyTy())
7604       continue;
7605 
7606     SDValue ArgNode = getValue(V);
7607     Entry.Node = ArgNode; Entry.Ty = V->getType();
7608 
7609     Entry.setAttributes(&CB, I - CB.arg_begin());
7610 
7611     // Use swifterror virtual register as input to the call.
7612     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7613       SwiftErrorVal = V;
7614       // We find the virtual register for the actual swifterror argument.
7615       // Instead of using the Value, we use the virtual register instead.
7616       Entry.Node =
7617           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7618                           EVT(TLI.getPointerTy(DL)));
7619     }
7620 
7621     Args.push_back(Entry);
7622 
7623     // If we have an explicit sret argument that is an Instruction, (i.e., it
7624     // might point to function-local memory), we can't meaningfully tail-call.
7625     if (Entry.IsSRet && isa<Instruction>(V))
7626       isTailCall = false;
7627   }
7628 
7629   // If call site has a cfguardtarget operand bundle, create and add an
7630   // additional ArgListEntry.
7631   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7632     TargetLowering::ArgListEntry Entry;
7633     Value *V = Bundle->Inputs[0];
7634     SDValue ArgNode = getValue(V);
7635     Entry.Node = ArgNode;
7636     Entry.Ty = V->getType();
7637     Entry.IsCFGuardTarget = true;
7638     Args.push_back(Entry);
7639   }
7640 
7641   // Check if target-independent constraints permit a tail call here.
7642   // Target-dependent constraints are checked within TLI->LowerCallTo.
7643   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7644     isTailCall = false;
7645 
7646   // Disable tail calls if there is an swifterror argument. Targets have not
7647   // been updated to support tail calls.
7648   if (TLI.supportSwiftError() && SwiftErrorVal)
7649     isTailCall = false;
7650 
7651   TargetLowering::CallLoweringInfo CLI(DAG);
7652   CLI.setDebugLoc(getCurSDLoc())
7653       .setChain(getRoot())
7654       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7655       .setTailCall(isTailCall)
7656       .setConvergent(CB.isConvergent())
7657       .setIsPreallocated(
7658           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7659   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7660 
7661   if (Result.first.getNode()) {
7662     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7663     setValue(&CB, Result.first);
7664   }
7665 
7666   // The last element of CLI.InVals has the SDValue for swifterror return.
7667   // Here we copy it to a virtual register and update SwiftErrorMap for
7668   // book-keeping.
7669   if (SwiftErrorVal && TLI.supportSwiftError()) {
7670     // Get the last element of InVals.
7671     SDValue Src = CLI.InVals.back();
7672     Register VReg =
7673         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7674     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7675     DAG.setRoot(CopyNode);
7676   }
7677 }
7678 
7679 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7680                              SelectionDAGBuilder &Builder) {
7681   // Check to see if this load can be trivially constant folded, e.g. if the
7682   // input is from a string literal.
7683   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7684     // Cast pointer to the type we really want to load.
7685     Type *LoadTy =
7686         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7687     if (LoadVT.isVector())
7688       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7689 
7690     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7691                                          PointerType::getUnqual(LoadTy));
7692 
7693     if (const Constant *LoadCst =
7694             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
7695                                          LoadTy, Builder.DAG.getDataLayout()))
7696       return Builder.getValue(LoadCst);
7697   }
7698 
7699   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7700   // still constant memory, the input chain can be the entry node.
7701   SDValue Root;
7702   bool ConstantMemory = false;
7703 
7704   // Do not serialize (non-volatile) loads of constant memory with anything.
7705   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7706     Root = Builder.DAG.getEntryNode();
7707     ConstantMemory = true;
7708   } else {
7709     // Do not serialize non-volatile loads against each other.
7710     Root = Builder.DAG.getRoot();
7711   }
7712 
7713   SDValue Ptr = Builder.getValue(PtrVal);
7714   SDValue LoadVal =
7715       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7716                           MachinePointerInfo(PtrVal), Align(1));
7717 
7718   if (!ConstantMemory)
7719     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7720   return LoadVal;
7721 }
7722 
7723 /// Record the value for an instruction that produces an integer result,
7724 /// converting the type where necessary.
7725 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7726                                                   SDValue Value,
7727                                                   bool IsSigned) {
7728   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7729                                                     I.getType(), true);
7730   if (IsSigned)
7731     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7732   else
7733     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7734   setValue(&I, Value);
7735 }
7736 
7737 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7738 /// true and lower it. Otherwise return false, and it will be lowered like a
7739 /// normal call.
7740 /// The caller already checked that \p I calls the appropriate LibFunc with a
7741 /// correct prototype.
7742 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7743   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7744   const Value *Size = I.getArgOperand(2);
7745   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7746   if (CSize && CSize->getZExtValue() == 0) {
7747     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7748                                                           I.getType(), true);
7749     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7750     return true;
7751   }
7752 
7753   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7754   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7755       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7756       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7757   if (Res.first.getNode()) {
7758     processIntegerCallValue(I, Res.first, true);
7759     PendingLoads.push_back(Res.second);
7760     return true;
7761   }
7762 
7763   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7764   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7765   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7766     return false;
7767 
7768   // If the target has a fast compare for the given size, it will return a
7769   // preferred load type for that size. Require that the load VT is legal and
7770   // that the target supports unaligned loads of that type. Otherwise, return
7771   // INVALID.
7772   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7773     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7774     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7775     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7776       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7777       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7778       // TODO: Check alignment of src and dest ptrs.
7779       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7780       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7781       if (!TLI.isTypeLegal(LVT) ||
7782           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7783           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7784         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7785     }
7786 
7787     return LVT;
7788   };
7789 
7790   // This turns into unaligned loads. We only do this if the target natively
7791   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7792   // we'll only produce a small number of byte loads.
7793   MVT LoadVT;
7794   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7795   switch (NumBitsToCompare) {
7796   default:
7797     return false;
7798   case 16:
7799     LoadVT = MVT::i16;
7800     break;
7801   case 32:
7802     LoadVT = MVT::i32;
7803     break;
7804   case 64:
7805   case 128:
7806   case 256:
7807     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7808     break;
7809   }
7810 
7811   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7812     return false;
7813 
7814   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7815   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7816 
7817   // Bitcast to a wide integer type if the loads are vectors.
7818   if (LoadVT.isVector()) {
7819     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7820     LoadL = DAG.getBitcast(CmpVT, LoadL);
7821     LoadR = DAG.getBitcast(CmpVT, LoadR);
7822   }
7823 
7824   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7825   processIntegerCallValue(I, Cmp, false);
7826   return true;
7827 }
7828 
7829 /// See if we can lower a memchr call into an optimized form. If so, return
7830 /// true and lower it. Otherwise return false, and it will be lowered like a
7831 /// normal call.
7832 /// The caller already checked that \p I calls the appropriate LibFunc with a
7833 /// correct prototype.
7834 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7835   const Value *Src = I.getArgOperand(0);
7836   const Value *Char = I.getArgOperand(1);
7837   const Value *Length = I.getArgOperand(2);
7838 
7839   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7840   std::pair<SDValue, SDValue> Res =
7841     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7842                                 getValue(Src), getValue(Char), getValue(Length),
7843                                 MachinePointerInfo(Src));
7844   if (Res.first.getNode()) {
7845     setValue(&I, Res.first);
7846     PendingLoads.push_back(Res.second);
7847     return true;
7848   }
7849 
7850   return false;
7851 }
7852 
7853 /// See if we can lower a mempcpy call into an optimized form. If so, return
7854 /// true and lower it. Otherwise return false, and it will be lowered like a
7855 /// normal call.
7856 /// The caller already checked that \p I calls the appropriate LibFunc with a
7857 /// correct prototype.
7858 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7859   SDValue Dst = getValue(I.getArgOperand(0));
7860   SDValue Src = getValue(I.getArgOperand(1));
7861   SDValue Size = getValue(I.getArgOperand(2));
7862 
7863   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7864   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7865   // DAG::getMemcpy needs Alignment to be defined.
7866   Align Alignment = std::min(DstAlign, SrcAlign);
7867 
7868   bool isVol = false;
7869   SDLoc sdl = getCurSDLoc();
7870 
7871   // In the mempcpy context we need to pass in a false value for isTailCall
7872   // because the return pointer needs to be adjusted by the size of
7873   // the copied memory.
7874   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7875   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7876                              /*isTailCall=*/false,
7877                              MachinePointerInfo(I.getArgOperand(0)),
7878                              MachinePointerInfo(I.getArgOperand(1)),
7879                              I.getAAMetadata());
7880   assert(MC.getNode() != nullptr &&
7881          "** memcpy should not be lowered as TailCall in mempcpy context **");
7882   DAG.setRoot(MC);
7883 
7884   // Check if Size needs to be truncated or extended.
7885   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7886 
7887   // Adjust return pointer to point just past the last dst byte.
7888   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7889                                     Dst, Size);
7890   setValue(&I, DstPlusSize);
7891   return true;
7892 }
7893 
7894 /// See if we can lower a strcpy call into an optimized form.  If so, return
7895 /// true and lower it, otherwise return false and it will be lowered like a
7896 /// normal call.
7897 /// The caller already checked that \p I calls the appropriate LibFunc with a
7898 /// correct prototype.
7899 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7900   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7901 
7902   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7903   std::pair<SDValue, SDValue> Res =
7904     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7905                                 getValue(Arg0), getValue(Arg1),
7906                                 MachinePointerInfo(Arg0),
7907                                 MachinePointerInfo(Arg1), isStpcpy);
7908   if (Res.first.getNode()) {
7909     setValue(&I, Res.first);
7910     DAG.setRoot(Res.second);
7911     return true;
7912   }
7913 
7914   return false;
7915 }
7916 
7917 /// See if we can lower a strcmp call into an optimized form.  If so, return
7918 /// true and lower it, otherwise return false and it will be lowered like a
7919 /// normal call.
7920 /// The caller already checked that \p I calls the appropriate LibFunc with a
7921 /// correct prototype.
7922 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7923   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7924 
7925   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7926   std::pair<SDValue, SDValue> Res =
7927     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7928                                 getValue(Arg0), getValue(Arg1),
7929                                 MachinePointerInfo(Arg0),
7930                                 MachinePointerInfo(Arg1));
7931   if (Res.first.getNode()) {
7932     processIntegerCallValue(I, Res.first, true);
7933     PendingLoads.push_back(Res.second);
7934     return true;
7935   }
7936 
7937   return false;
7938 }
7939 
7940 /// See if we can lower a strlen call into an optimized form.  If so, return
7941 /// true and lower it, otherwise return false and it will be lowered like a
7942 /// normal call.
7943 /// The caller already checked that \p I calls the appropriate LibFunc with a
7944 /// correct prototype.
7945 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7946   const Value *Arg0 = I.getArgOperand(0);
7947 
7948   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7949   std::pair<SDValue, SDValue> Res =
7950     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7951                                 getValue(Arg0), MachinePointerInfo(Arg0));
7952   if (Res.first.getNode()) {
7953     processIntegerCallValue(I, Res.first, false);
7954     PendingLoads.push_back(Res.second);
7955     return true;
7956   }
7957 
7958   return false;
7959 }
7960 
7961 /// See if we can lower a strnlen call into an optimized form.  If so, return
7962 /// true and lower it, otherwise return false and it will be lowered like a
7963 /// normal call.
7964 /// The caller already checked that \p I calls the appropriate LibFunc with a
7965 /// correct prototype.
7966 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7967   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7968 
7969   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7970   std::pair<SDValue, SDValue> Res =
7971     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7972                                  getValue(Arg0), getValue(Arg1),
7973                                  MachinePointerInfo(Arg0));
7974   if (Res.first.getNode()) {
7975     processIntegerCallValue(I, Res.first, false);
7976     PendingLoads.push_back(Res.second);
7977     return true;
7978   }
7979 
7980   return false;
7981 }
7982 
7983 /// See if we can lower a unary floating-point operation into an SDNode with
7984 /// the specified Opcode.  If so, return true and lower it, otherwise return
7985 /// false and it will be lowered like a normal call.
7986 /// The caller already checked that \p I calls the appropriate LibFunc with a
7987 /// correct prototype.
7988 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7989                                               unsigned Opcode) {
7990   // We already checked this call's prototype; verify it doesn't modify errno.
7991   if (!I.onlyReadsMemory())
7992     return false;
7993 
7994   SDNodeFlags Flags;
7995   Flags.copyFMF(cast<FPMathOperator>(I));
7996 
7997   SDValue Tmp = getValue(I.getArgOperand(0));
7998   setValue(&I,
7999            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8000   return true;
8001 }
8002 
8003 /// See if we can lower a binary floating-point operation into an SDNode with
8004 /// the specified Opcode. If so, return true and lower it. Otherwise return
8005 /// false, and it will be lowered like a normal call.
8006 /// The caller already checked that \p I calls the appropriate LibFunc with a
8007 /// correct prototype.
8008 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8009                                                unsigned Opcode) {
8010   // We already checked this call's prototype; verify it doesn't modify errno.
8011   if (!I.onlyReadsMemory())
8012     return false;
8013 
8014   SDNodeFlags Flags;
8015   Flags.copyFMF(cast<FPMathOperator>(I));
8016 
8017   SDValue Tmp0 = getValue(I.getArgOperand(0));
8018   SDValue Tmp1 = getValue(I.getArgOperand(1));
8019   EVT VT = Tmp0.getValueType();
8020   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8021   return true;
8022 }
8023 
8024 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8025   // Handle inline assembly differently.
8026   if (I.isInlineAsm()) {
8027     visitInlineAsm(I);
8028     return;
8029   }
8030 
8031   if (Function *F = I.getCalledFunction()) {
8032     diagnoseDontCall(I);
8033 
8034     if (F->isDeclaration()) {
8035       // Is this an LLVM intrinsic or a target-specific intrinsic?
8036       unsigned IID = F->getIntrinsicID();
8037       if (!IID)
8038         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8039           IID = II->getIntrinsicID(F);
8040 
8041       if (IID) {
8042         visitIntrinsicCall(I, IID);
8043         return;
8044       }
8045     }
8046 
8047     // Check for well-known libc/libm calls.  If the function is internal, it
8048     // can't be a library call.  Don't do the check if marked as nobuiltin for
8049     // some reason or the call site requires strict floating point semantics.
8050     LibFunc Func;
8051     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8052         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8053         LibInfo->hasOptimizedCodeGen(Func)) {
8054       switch (Func) {
8055       default: break;
8056       case LibFunc_bcmp:
8057         if (visitMemCmpBCmpCall(I))
8058           return;
8059         break;
8060       case LibFunc_copysign:
8061       case LibFunc_copysignf:
8062       case LibFunc_copysignl:
8063         // We already checked this call's prototype; verify it doesn't modify
8064         // errno.
8065         if (I.onlyReadsMemory()) {
8066           SDValue LHS = getValue(I.getArgOperand(0));
8067           SDValue RHS = getValue(I.getArgOperand(1));
8068           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8069                                    LHS.getValueType(), LHS, RHS));
8070           return;
8071         }
8072         break;
8073       case LibFunc_fabs:
8074       case LibFunc_fabsf:
8075       case LibFunc_fabsl:
8076         if (visitUnaryFloatCall(I, ISD::FABS))
8077           return;
8078         break;
8079       case LibFunc_fmin:
8080       case LibFunc_fminf:
8081       case LibFunc_fminl:
8082         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8083           return;
8084         break;
8085       case LibFunc_fmax:
8086       case LibFunc_fmaxf:
8087       case LibFunc_fmaxl:
8088         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8089           return;
8090         break;
8091       case LibFunc_sin:
8092       case LibFunc_sinf:
8093       case LibFunc_sinl:
8094         if (visitUnaryFloatCall(I, ISD::FSIN))
8095           return;
8096         break;
8097       case LibFunc_cos:
8098       case LibFunc_cosf:
8099       case LibFunc_cosl:
8100         if (visitUnaryFloatCall(I, ISD::FCOS))
8101           return;
8102         break;
8103       case LibFunc_sqrt:
8104       case LibFunc_sqrtf:
8105       case LibFunc_sqrtl:
8106       case LibFunc_sqrt_finite:
8107       case LibFunc_sqrtf_finite:
8108       case LibFunc_sqrtl_finite:
8109         if (visitUnaryFloatCall(I, ISD::FSQRT))
8110           return;
8111         break;
8112       case LibFunc_floor:
8113       case LibFunc_floorf:
8114       case LibFunc_floorl:
8115         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8116           return;
8117         break;
8118       case LibFunc_nearbyint:
8119       case LibFunc_nearbyintf:
8120       case LibFunc_nearbyintl:
8121         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8122           return;
8123         break;
8124       case LibFunc_ceil:
8125       case LibFunc_ceilf:
8126       case LibFunc_ceill:
8127         if (visitUnaryFloatCall(I, ISD::FCEIL))
8128           return;
8129         break;
8130       case LibFunc_rint:
8131       case LibFunc_rintf:
8132       case LibFunc_rintl:
8133         if (visitUnaryFloatCall(I, ISD::FRINT))
8134           return;
8135         break;
8136       case LibFunc_round:
8137       case LibFunc_roundf:
8138       case LibFunc_roundl:
8139         if (visitUnaryFloatCall(I, ISD::FROUND))
8140           return;
8141         break;
8142       case LibFunc_trunc:
8143       case LibFunc_truncf:
8144       case LibFunc_truncl:
8145         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8146           return;
8147         break;
8148       case LibFunc_log2:
8149       case LibFunc_log2f:
8150       case LibFunc_log2l:
8151         if (visitUnaryFloatCall(I, ISD::FLOG2))
8152           return;
8153         break;
8154       case LibFunc_exp2:
8155       case LibFunc_exp2f:
8156       case LibFunc_exp2l:
8157         if (visitUnaryFloatCall(I, ISD::FEXP2))
8158           return;
8159         break;
8160       case LibFunc_memcmp:
8161         if (visitMemCmpBCmpCall(I))
8162           return;
8163         break;
8164       case LibFunc_mempcpy:
8165         if (visitMemPCpyCall(I))
8166           return;
8167         break;
8168       case LibFunc_memchr:
8169         if (visitMemChrCall(I))
8170           return;
8171         break;
8172       case LibFunc_strcpy:
8173         if (visitStrCpyCall(I, false))
8174           return;
8175         break;
8176       case LibFunc_stpcpy:
8177         if (visitStrCpyCall(I, true))
8178           return;
8179         break;
8180       case LibFunc_strcmp:
8181         if (visitStrCmpCall(I))
8182           return;
8183         break;
8184       case LibFunc_strlen:
8185         if (visitStrLenCall(I))
8186           return;
8187         break;
8188       case LibFunc_strnlen:
8189         if (visitStrNLenCall(I))
8190           return;
8191         break;
8192       }
8193     }
8194   }
8195 
8196   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8197   // have to do anything here to lower funclet bundles.
8198   // CFGuardTarget bundles are lowered in LowerCallTo.
8199   assert(!I.hasOperandBundlesOtherThan(
8200              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8201               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8202               LLVMContext::OB_clang_arc_attachedcall}) &&
8203          "Cannot lower calls with arbitrary operand bundles!");
8204 
8205   SDValue Callee = getValue(I.getCalledOperand());
8206 
8207   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8208     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8209   else
8210     // Check if we can potentially perform a tail call. More detailed checking
8211     // is be done within LowerCallTo, after more information about the call is
8212     // known.
8213     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8214 }
8215 
8216 namespace {
8217 
8218 /// AsmOperandInfo - This contains information for each constraint that we are
8219 /// lowering.
8220 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8221 public:
8222   /// CallOperand - If this is the result output operand or a clobber
8223   /// this is null, otherwise it is the incoming operand to the CallInst.
8224   /// This gets modified as the asm is processed.
8225   SDValue CallOperand;
8226 
8227   /// AssignedRegs - If this is a register or register class operand, this
8228   /// contains the set of register corresponding to the operand.
8229   RegsForValue AssignedRegs;
8230 
8231   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8232     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8233   }
8234 
8235   /// Whether or not this operand accesses memory
8236   bool hasMemory(const TargetLowering &TLI) const {
8237     // Indirect operand accesses access memory.
8238     if (isIndirect)
8239       return true;
8240 
8241     for (const auto &Code : Codes)
8242       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8243         return true;
8244 
8245     return false;
8246   }
8247 
8248   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8249   /// corresponds to.  If there is no Value* for this operand, it returns
8250   /// MVT::Other.
8251   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8252                            const DataLayout &DL,
8253                            llvm::Type *ParamElemType) const {
8254     if (!CallOperandVal) return MVT::Other;
8255 
8256     if (isa<BasicBlock>(CallOperandVal))
8257       return TLI.getProgramPointerTy(DL);
8258 
8259     llvm::Type *OpTy = CallOperandVal->getType();
8260 
8261     // FIXME: code duplicated from TargetLowering::ParseConstraints().
8262     // If this is an indirect operand, the operand is a pointer to the
8263     // accessed type.
8264     if (isIndirect) {
8265       OpTy = ParamElemType;
8266       assert(OpTy && "Indirect opernad must have elementtype attribute");
8267     }
8268 
8269     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8270     if (StructType *STy = dyn_cast<StructType>(OpTy))
8271       if (STy->getNumElements() == 1)
8272         OpTy = STy->getElementType(0);
8273 
8274     // If OpTy is not a single value, it may be a struct/union that we
8275     // can tile with integers.
8276     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8277       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8278       switch (BitSize) {
8279       default: break;
8280       case 1:
8281       case 8:
8282       case 16:
8283       case 32:
8284       case 64:
8285       case 128:
8286         OpTy = IntegerType::get(Context, BitSize);
8287         break;
8288       }
8289     }
8290 
8291     return TLI.getAsmOperandValueType(DL, OpTy, true);
8292   }
8293 };
8294 
8295 
8296 } // end anonymous namespace
8297 
8298 /// Make sure that the output operand \p OpInfo and its corresponding input
8299 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8300 /// out).
8301 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8302                                SDISelAsmOperandInfo &MatchingOpInfo,
8303                                SelectionDAG &DAG) {
8304   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8305     return;
8306 
8307   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8308   const auto &TLI = DAG.getTargetLoweringInfo();
8309 
8310   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8311       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8312                                        OpInfo.ConstraintVT);
8313   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8314       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8315                                        MatchingOpInfo.ConstraintVT);
8316   if ((OpInfo.ConstraintVT.isInteger() !=
8317        MatchingOpInfo.ConstraintVT.isInteger()) ||
8318       (MatchRC.second != InputRC.second)) {
8319     // FIXME: error out in a more elegant fashion
8320     report_fatal_error("Unsupported asm: input constraint"
8321                        " with a matching output constraint of"
8322                        " incompatible type!");
8323   }
8324   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8325 }
8326 
8327 /// Get a direct memory input to behave well as an indirect operand.
8328 /// This may introduce stores, hence the need for a \p Chain.
8329 /// \return The (possibly updated) chain.
8330 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8331                                         SDISelAsmOperandInfo &OpInfo,
8332                                         SelectionDAG &DAG) {
8333   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8334 
8335   // If we don't have an indirect input, put it in the constpool if we can,
8336   // otherwise spill it to a stack slot.
8337   // TODO: This isn't quite right. We need to handle these according to
8338   // the addressing mode that the constraint wants. Also, this may take
8339   // an additional register for the computation and we don't want that
8340   // either.
8341 
8342   // If the operand is a float, integer, or vector constant, spill to a
8343   // constant pool entry to get its address.
8344   const Value *OpVal = OpInfo.CallOperandVal;
8345   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8346       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8347     OpInfo.CallOperand = DAG.getConstantPool(
8348         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8349     return Chain;
8350   }
8351 
8352   // Otherwise, create a stack slot and emit a store to it before the asm.
8353   Type *Ty = OpVal->getType();
8354   auto &DL = DAG.getDataLayout();
8355   uint64_t TySize = DL.getTypeAllocSize(Ty);
8356   MachineFunction &MF = DAG.getMachineFunction();
8357   int SSFI = MF.getFrameInfo().CreateStackObject(
8358       TySize, DL.getPrefTypeAlign(Ty), false);
8359   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8360   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8361                             MachinePointerInfo::getFixedStack(MF, SSFI),
8362                             TLI.getMemValueType(DL, Ty));
8363   OpInfo.CallOperand = StackSlot;
8364 
8365   return Chain;
8366 }
8367 
8368 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8369 /// specified operand.  We prefer to assign virtual registers, to allow the
8370 /// register allocator to handle the assignment process.  However, if the asm
8371 /// uses features that we can't model on machineinstrs, we have SDISel do the
8372 /// allocation.  This produces generally horrible, but correct, code.
8373 ///
8374 ///   OpInfo describes the operand
8375 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8376 static llvm::Optional<unsigned>
8377 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8378                      SDISelAsmOperandInfo &OpInfo,
8379                      SDISelAsmOperandInfo &RefOpInfo) {
8380   LLVMContext &Context = *DAG.getContext();
8381   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8382 
8383   MachineFunction &MF = DAG.getMachineFunction();
8384   SmallVector<unsigned, 4> Regs;
8385   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8386 
8387   // No work to do for memory operations.
8388   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8389     return None;
8390 
8391   // If this is a constraint for a single physreg, or a constraint for a
8392   // register class, find it.
8393   unsigned AssignedReg;
8394   const TargetRegisterClass *RC;
8395   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8396       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8397   // RC is unset only on failure. Return immediately.
8398   if (!RC)
8399     return None;
8400 
8401   // Get the actual register value type.  This is important, because the user
8402   // may have asked for (e.g.) the AX register in i32 type.  We need to
8403   // remember that AX is actually i16 to get the right extension.
8404   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8405 
8406   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8407     // If this is an FP operand in an integer register (or visa versa), or more
8408     // generally if the operand value disagrees with the register class we plan
8409     // to stick it in, fix the operand type.
8410     //
8411     // If this is an input value, the bitcast to the new type is done now.
8412     // Bitcast for output value is done at the end of visitInlineAsm().
8413     if ((OpInfo.Type == InlineAsm::isOutput ||
8414          OpInfo.Type == InlineAsm::isInput) &&
8415         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8416       // Try to convert to the first EVT that the reg class contains.  If the
8417       // types are identical size, use a bitcast to convert (e.g. two differing
8418       // vector types).  Note: output bitcast is done at the end of
8419       // visitInlineAsm().
8420       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8421         // Exclude indirect inputs while they are unsupported because the code
8422         // to perform the load is missing and thus OpInfo.CallOperand still
8423         // refers to the input address rather than the pointed-to value.
8424         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8425           OpInfo.CallOperand =
8426               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8427         OpInfo.ConstraintVT = RegVT;
8428         // If the operand is an FP value and we want it in integer registers,
8429         // use the corresponding integer type. This turns an f64 value into
8430         // i64, which can be passed with two i32 values on a 32-bit machine.
8431       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8432         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8433         if (OpInfo.Type == InlineAsm::isInput)
8434           OpInfo.CallOperand =
8435               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8436         OpInfo.ConstraintVT = VT;
8437       }
8438     }
8439   }
8440 
8441   // No need to allocate a matching input constraint since the constraint it's
8442   // matching to has already been allocated.
8443   if (OpInfo.isMatchingInputConstraint())
8444     return None;
8445 
8446   EVT ValueVT = OpInfo.ConstraintVT;
8447   if (OpInfo.ConstraintVT == MVT::Other)
8448     ValueVT = RegVT;
8449 
8450   // Initialize NumRegs.
8451   unsigned NumRegs = 1;
8452   if (OpInfo.ConstraintVT != MVT::Other)
8453     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8454 
8455   // If this is a constraint for a specific physical register, like {r17},
8456   // assign it now.
8457 
8458   // If this associated to a specific register, initialize iterator to correct
8459   // place. If virtual, make sure we have enough registers
8460 
8461   // Initialize iterator if necessary
8462   TargetRegisterClass::iterator I = RC->begin();
8463   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8464 
8465   // Do not check for single registers.
8466   if (AssignedReg) {
8467     I = std::find(I, RC->end(), AssignedReg);
8468     if (I == RC->end()) {
8469       // RC does not contain the selected register, which indicates a
8470       // mismatch between the register and the required type/bitwidth.
8471       return {AssignedReg};
8472     }
8473   }
8474 
8475   for (; NumRegs; --NumRegs, ++I) {
8476     assert(I != RC->end() && "Ran out of registers to allocate!");
8477     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8478     Regs.push_back(R);
8479   }
8480 
8481   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8482   return None;
8483 }
8484 
8485 static unsigned
8486 findMatchingInlineAsmOperand(unsigned OperandNo,
8487                              const std::vector<SDValue> &AsmNodeOperands) {
8488   // Scan until we find the definition we already emitted of this operand.
8489   unsigned CurOp = InlineAsm::Op_FirstOperand;
8490   for (; OperandNo; --OperandNo) {
8491     // Advance to the next operand.
8492     unsigned OpFlag =
8493         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8494     assert((InlineAsm::isRegDefKind(OpFlag) ||
8495             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8496             InlineAsm::isMemKind(OpFlag)) &&
8497            "Skipped past definitions?");
8498     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8499   }
8500   return CurOp;
8501 }
8502 
8503 namespace {
8504 
8505 class ExtraFlags {
8506   unsigned Flags = 0;
8507 
8508 public:
8509   explicit ExtraFlags(const CallBase &Call) {
8510     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8511     if (IA->hasSideEffects())
8512       Flags |= InlineAsm::Extra_HasSideEffects;
8513     if (IA->isAlignStack())
8514       Flags |= InlineAsm::Extra_IsAlignStack;
8515     if (Call.isConvergent())
8516       Flags |= InlineAsm::Extra_IsConvergent;
8517     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8518   }
8519 
8520   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8521     // Ideally, we would only check against memory constraints.  However, the
8522     // meaning of an Other constraint can be target-specific and we can't easily
8523     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8524     // for Other constraints as well.
8525     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8526         OpInfo.ConstraintType == TargetLowering::C_Other) {
8527       if (OpInfo.Type == InlineAsm::isInput)
8528         Flags |= InlineAsm::Extra_MayLoad;
8529       else if (OpInfo.Type == InlineAsm::isOutput)
8530         Flags |= InlineAsm::Extra_MayStore;
8531       else if (OpInfo.Type == InlineAsm::isClobber)
8532         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8533     }
8534   }
8535 
8536   unsigned get() const { return Flags; }
8537 };
8538 
8539 } // end anonymous namespace
8540 
8541 /// visitInlineAsm - Handle a call to an InlineAsm object.
8542 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8543                                          const BasicBlock *EHPadBB) {
8544   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8545 
8546   /// ConstraintOperands - Information about all of the constraints.
8547   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8548 
8549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8550   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8551       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8552 
8553   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8554   // AsmDialect, MayLoad, MayStore).
8555   bool HasSideEffect = IA->hasSideEffects();
8556   ExtraFlags ExtraInfo(Call);
8557 
8558   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8559   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8560   for (auto &T : TargetConstraints) {
8561     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8562     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8563 
8564     // Compute the value type for each operand.
8565     if (OpInfo.hasArg()) {
8566       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
8567       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8568       Type *ParamElemTy = Call.getAttributes().getParamElementType(ArgNo);
8569       EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8570                                            DAG.getDataLayout(), ParamElemTy);
8571       OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8572       ArgNo++;
8573     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8574       // The return value of the call is this value.  As such, there is no
8575       // corresponding argument.
8576       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8577       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8578         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8579             DAG.getDataLayout(), STy->getElementType(ResNo));
8580       } else {
8581         assert(ResNo == 0 && "Asm only has one result!");
8582         OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8583             DAG.getDataLayout(), Call.getType()).getSimpleVT();
8584       }
8585       ++ResNo;
8586     } else {
8587       OpInfo.ConstraintVT = MVT::Other;
8588     }
8589 
8590     if (!HasSideEffect)
8591       HasSideEffect = OpInfo.hasMemory(TLI);
8592 
8593     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8594     // FIXME: Could we compute this on OpInfo rather than T?
8595 
8596     // Compute the constraint code and ConstraintType to use.
8597     TLI.ComputeConstraintToUse(T, SDValue());
8598 
8599     if (T.ConstraintType == TargetLowering::C_Immediate &&
8600         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8601       // We've delayed emitting a diagnostic like the "n" constraint because
8602       // inlining could cause an integer showing up.
8603       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8604                                           "' expects an integer constant "
8605                                           "expression");
8606 
8607     ExtraInfo.update(T);
8608   }
8609 
8610   // We won't need to flush pending loads if this asm doesn't touch
8611   // memory and is nonvolatile.
8612   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8613 
8614   bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8615   if (EmitEHLabels) {
8616     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8617   }
8618   bool IsCallBr = isa<CallBrInst>(Call);
8619 
8620   if (IsCallBr || EmitEHLabels) {
8621     // If this is a callbr or invoke we need to flush pending exports since
8622     // inlineasm_br and invoke are terminators.
8623     // We need to do this before nodes are glued to the inlineasm_br node.
8624     Chain = getControlRoot();
8625   }
8626 
8627   MCSymbol *BeginLabel = nullptr;
8628   if (EmitEHLabels) {
8629     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8630   }
8631 
8632   // Second pass over the constraints: compute which constraint option to use.
8633   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8634     // If this is an output operand with a matching input operand, look up the
8635     // matching input. If their types mismatch, e.g. one is an integer, the
8636     // other is floating point, or their sizes are different, flag it as an
8637     // error.
8638     if (OpInfo.hasMatchingInput()) {
8639       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8640       patchMatchingInput(OpInfo, Input, DAG);
8641     }
8642 
8643     // Compute the constraint code and ConstraintType to use.
8644     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8645 
8646     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8647         OpInfo.Type == InlineAsm::isClobber)
8648       continue;
8649 
8650     // If this is a memory input, and if the operand is not indirect, do what we
8651     // need to provide an address for the memory input.
8652     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8653         !OpInfo.isIndirect) {
8654       assert((OpInfo.isMultipleAlternative ||
8655               (OpInfo.Type == InlineAsm::isInput)) &&
8656              "Can only indirectify direct input operands!");
8657 
8658       // Memory operands really want the address of the value.
8659       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8660 
8661       // There is no longer a Value* corresponding to this operand.
8662       OpInfo.CallOperandVal = nullptr;
8663 
8664       // It is now an indirect operand.
8665       OpInfo.isIndirect = true;
8666     }
8667 
8668   }
8669 
8670   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8671   std::vector<SDValue> AsmNodeOperands;
8672   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8673   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8674       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8675 
8676   // If we have a !srcloc metadata node associated with it, we want to attach
8677   // this to the ultimately generated inline asm machineinstr.  To do this, we
8678   // pass in the third operand as this (potentially null) inline asm MDNode.
8679   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8680   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8681 
8682   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8683   // bits as operand 3.
8684   AsmNodeOperands.push_back(DAG.getTargetConstant(
8685       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8686 
8687   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8688   // this, assign virtual and physical registers for inputs and otput.
8689   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8690     // Assign Registers.
8691     SDISelAsmOperandInfo &RefOpInfo =
8692         OpInfo.isMatchingInputConstraint()
8693             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8694             : OpInfo;
8695     const auto RegError =
8696         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8697     if (RegError.hasValue()) {
8698       const MachineFunction &MF = DAG.getMachineFunction();
8699       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8700       const char *RegName = TRI.getName(RegError.getValue());
8701       emitInlineAsmError(Call, "register '" + Twine(RegName) +
8702                                    "' allocated for constraint '" +
8703                                    Twine(OpInfo.ConstraintCode) +
8704                                    "' does not match required type");
8705       return;
8706     }
8707 
8708     auto DetectWriteToReservedRegister = [&]() {
8709       const MachineFunction &MF = DAG.getMachineFunction();
8710       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8711       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8712         if (Register::isPhysicalRegister(Reg) &&
8713             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8714           const char *RegName = TRI.getName(Reg);
8715           emitInlineAsmError(Call, "write to reserved register '" +
8716                                        Twine(RegName) + "'");
8717           return true;
8718         }
8719       }
8720       return false;
8721     };
8722 
8723     switch (OpInfo.Type) {
8724     case InlineAsm::isOutput:
8725       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8726         unsigned ConstraintID =
8727             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8728         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8729                "Failed to convert memory constraint code to constraint id.");
8730 
8731         // Add information to the INLINEASM node to know about this output.
8732         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8733         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8734         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8735                                                         MVT::i32));
8736         AsmNodeOperands.push_back(OpInfo.CallOperand);
8737       } else {
8738         // Otherwise, this outputs to a register (directly for C_Register /
8739         // C_RegisterClass, and a target-defined fashion for
8740         // C_Immediate/C_Other). Find a register that we can use.
8741         if (OpInfo.AssignedRegs.Regs.empty()) {
8742           emitInlineAsmError(
8743               Call, "couldn't allocate output register for constraint '" +
8744                         Twine(OpInfo.ConstraintCode) + "'");
8745           return;
8746         }
8747 
8748         if (DetectWriteToReservedRegister())
8749           return;
8750 
8751         // Add information to the INLINEASM node to know that this register is
8752         // set.
8753         OpInfo.AssignedRegs.AddInlineAsmOperands(
8754             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8755                                   : InlineAsm::Kind_RegDef,
8756             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8757       }
8758       break;
8759 
8760     case InlineAsm::isInput: {
8761       SDValue InOperandVal = OpInfo.CallOperand;
8762 
8763       if (OpInfo.isMatchingInputConstraint()) {
8764         // If this is required to match an output register we have already set,
8765         // just use its register.
8766         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8767                                                   AsmNodeOperands);
8768         unsigned OpFlag =
8769           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8770         if (InlineAsm::isRegDefKind(OpFlag) ||
8771             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8772           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8773           if (OpInfo.isIndirect) {
8774             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8775             emitInlineAsmError(Call, "inline asm not supported yet: "
8776                                      "don't know how to handle tied "
8777                                      "indirect register inputs");
8778             return;
8779           }
8780 
8781           SmallVector<unsigned, 4> Regs;
8782           MachineFunction &MF = DAG.getMachineFunction();
8783           MachineRegisterInfo &MRI = MF.getRegInfo();
8784           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8785           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8786           Register TiedReg = R->getReg();
8787           MVT RegVT = R->getSimpleValueType(0);
8788           const TargetRegisterClass *RC =
8789               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
8790               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
8791                                       : TRI.getMinimalPhysRegClass(TiedReg);
8792           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8793           for (unsigned i = 0; i != NumRegs; ++i)
8794             Regs.push_back(MRI.createVirtualRegister(RC));
8795 
8796           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8797 
8798           SDLoc dl = getCurSDLoc();
8799           // Use the produced MatchedRegs object to
8800           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8801           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8802                                            true, OpInfo.getMatchedOperand(), dl,
8803                                            DAG, AsmNodeOperands);
8804           break;
8805         }
8806 
8807         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8808         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8809                "Unexpected number of operands");
8810         // Add information to the INLINEASM node to know about this input.
8811         // See InlineAsm.h isUseOperandTiedToDef.
8812         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8813         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8814                                                     OpInfo.getMatchedOperand());
8815         AsmNodeOperands.push_back(DAG.getTargetConstant(
8816             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8817         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8818         break;
8819       }
8820 
8821       // Treat indirect 'X' constraint as memory.
8822       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8823           OpInfo.isIndirect)
8824         OpInfo.ConstraintType = TargetLowering::C_Memory;
8825 
8826       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8827           OpInfo.ConstraintType == TargetLowering::C_Other) {
8828         std::vector<SDValue> Ops;
8829         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8830                                           Ops, DAG);
8831         if (Ops.empty()) {
8832           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8833             if (isa<ConstantSDNode>(InOperandVal)) {
8834               emitInlineAsmError(Call, "value out of range for constraint '" +
8835                                            Twine(OpInfo.ConstraintCode) + "'");
8836               return;
8837             }
8838 
8839           emitInlineAsmError(Call,
8840                              "invalid operand for inline asm constraint '" +
8841                                  Twine(OpInfo.ConstraintCode) + "'");
8842           return;
8843         }
8844 
8845         // Add information to the INLINEASM node to know about this input.
8846         unsigned ResOpType =
8847           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8848         AsmNodeOperands.push_back(DAG.getTargetConstant(
8849             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8850         llvm::append_range(AsmNodeOperands, Ops);
8851         break;
8852       }
8853 
8854       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8855         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8856         assert(InOperandVal.getValueType() ==
8857                    TLI.getPointerTy(DAG.getDataLayout()) &&
8858                "Memory operands expect pointer values");
8859 
8860         unsigned ConstraintID =
8861             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8862         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8863                "Failed to convert memory constraint code to constraint id.");
8864 
8865         // Add information to the INLINEASM node to know about this input.
8866         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8867         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8868         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8869                                                         getCurSDLoc(),
8870                                                         MVT::i32));
8871         AsmNodeOperands.push_back(InOperandVal);
8872         break;
8873       }
8874 
8875       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8876               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8877              "Unknown constraint type!");
8878 
8879       // TODO: Support this.
8880       if (OpInfo.isIndirect) {
8881         emitInlineAsmError(
8882             Call, "Don't know how to handle indirect register inputs yet "
8883                   "for constraint '" +
8884                       Twine(OpInfo.ConstraintCode) + "'");
8885         return;
8886       }
8887 
8888       // Copy the input into the appropriate registers.
8889       if (OpInfo.AssignedRegs.Regs.empty()) {
8890         emitInlineAsmError(Call,
8891                            "couldn't allocate input reg for constraint '" +
8892                                Twine(OpInfo.ConstraintCode) + "'");
8893         return;
8894       }
8895 
8896       if (DetectWriteToReservedRegister())
8897         return;
8898 
8899       SDLoc dl = getCurSDLoc();
8900 
8901       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8902                                         &Call);
8903 
8904       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8905                                                dl, DAG, AsmNodeOperands);
8906       break;
8907     }
8908     case InlineAsm::isClobber:
8909       // Add the clobbered value to the operand list, so that the register
8910       // allocator is aware that the physreg got clobbered.
8911       if (!OpInfo.AssignedRegs.Regs.empty())
8912         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8913                                                  false, 0, getCurSDLoc(), DAG,
8914                                                  AsmNodeOperands);
8915       break;
8916     }
8917   }
8918 
8919   // Finish up input operands.  Set the input chain and add the flag last.
8920   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8921   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8922 
8923   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8924   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8925                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8926   Flag = Chain.getValue(1);
8927 
8928   // Do additional work to generate outputs.
8929 
8930   SmallVector<EVT, 1> ResultVTs;
8931   SmallVector<SDValue, 1> ResultValues;
8932   SmallVector<SDValue, 8> OutChains;
8933 
8934   llvm::Type *CallResultType = Call.getType();
8935   ArrayRef<Type *> ResultTypes;
8936   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8937     ResultTypes = StructResult->elements();
8938   else if (!CallResultType->isVoidTy())
8939     ResultTypes = makeArrayRef(CallResultType);
8940 
8941   auto CurResultType = ResultTypes.begin();
8942   auto handleRegAssign = [&](SDValue V) {
8943     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8944     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8945     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8946     ++CurResultType;
8947     // If the type of the inline asm call site return value is different but has
8948     // same size as the type of the asm output bitcast it.  One example of this
8949     // is for vectors with different width / number of elements.  This can
8950     // happen for register classes that can contain multiple different value
8951     // types.  The preg or vreg allocated may not have the same VT as was
8952     // expected.
8953     //
8954     // This can also happen for a return value that disagrees with the register
8955     // class it is put in, eg. a double in a general-purpose register on a
8956     // 32-bit machine.
8957     if (ResultVT != V.getValueType() &&
8958         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8959       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8960     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8961              V.getValueType().isInteger()) {
8962       // If a result value was tied to an input value, the computed result
8963       // may have a wider width than the expected result.  Extract the
8964       // relevant portion.
8965       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8966     }
8967     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8968     ResultVTs.push_back(ResultVT);
8969     ResultValues.push_back(V);
8970   };
8971 
8972   // Deal with output operands.
8973   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8974     if (OpInfo.Type == InlineAsm::isOutput) {
8975       SDValue Val;
8976       // Skip trivial output operands.
8977       if (OpInfo.AssignedRegs.Regs.empty())
8978         continue;
8979 
8980       switch (OpInfo.ConstraintType) {
8981       case TargetLowering::C_Register:
8982       case TargetLowering::C_RegisterClass:
8983         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8984                                                   Chain, &Flag, &Call);
8985         break;
8986       case TargetLowering::C_Immediate:
8987       case TargetLowering::C_Other:
8988         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8989                                               OpInfo, DAG);
8990         break;
8991       case TargetLowering::C_Memory:
8992         break; // Already handled.
8993       case TargetLowering::C_Unknown:
8994         assert(false && "Unexpected unknown constraint");
8995       }
8996 
8997       // Indirect output manifest as stores. Record output chains.
8998       if (OpInfo.isIndirect) {
8999         const Value *Ptr = OpInfo.CallOperandVal;
9000         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9001         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9002                                      MachinePointerInfo(Ptr));
9003         OutChains.push_back(Store);
9004       } else {
9005         // generate CopyFromRegs to associated registers.
9006         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9007         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9008           for (const SDValue &V : Val->op_values())
9009             handleRegAssign(V);
9010         } else
9011           handleRegAssign(Val);
9012       }
9013     }
9014   }
9015 
9016   // Set results.
9017   if (!ResultValues.empty()) {
9018     assert(CurResultType == ResultTypes.end() &&
9019            "Mismatch in number of ResultTypes");
9020     assert(ResultValues.size() == ResultTypes.size() &&
9021            "Mismatch in number of output operands in asm result");
9022 
9023     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9024                             DAG.getVTList(ResultVTs), ResultValues);
9025     setValue(&Call, V);
9026   }
9027 
9028   // Collect store chains.
9029   if (!OutChains.empty())
9030     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9031 
9032   if (EmitEHLabels) {
9033     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9034   }
9035 
9036   // Only Update Root if inline assembly has a memory effect.
9037   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9038       EmitEHLabels)
9039     DAG.setRoot(Chain);
9040 }
9041 
9042 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9043                                              const Twine &Message) {
9044   LLVMContext &Ctx = *DAG.getContext();
9045   Ctx.emitError(&Call, Message);
9046 
9047   // Make sure we leave the DAG in a valid state
9048   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9049   SmallVector<EVT, 1> ValueVTs;
9050   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9051 
9052   if (ValueVTs.empty())
9053     return;
9054 
9055   SmallVector<SDValue, 1> Ops;
9056   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9057     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9058 
9059   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9060 }
9061 
9062 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9063   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9064                           MVT::Other, getRoot(),
9065                           getValue(I.getArgOperand(0)),
9066                           DAG.getSrcValue(I.getArgOperand(0))));
9067 }
9068 
9069 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9070   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9071   const DataLayout &DL = DAG.getDataLayout();
9072   SDValue V = DAG.getVAArg(
9073       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9074       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9075       DL.getABITypeAlign(I.getType()).value());
9076   DAG.setRoot(V.getValue(1));
9077 
9078   if (I.getType()->isPointerTy())
9079     V = DAG.getPtrExtOrTrunc(
9080         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9081   setValue(&I, V);
9082 }
9083 
9084 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9085   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9086                           MVT::Other, getRoot(),
9087                           getValue(I.getArgOperand(0)),
9088                           DAG.getSrcValue(I.getArgOperand(0))));
9089 }
9090 
9091 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9092   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9093                           MVT::Other, getRoot(),
9094                           getValue(I.getArgOperand(0)),
9095                           getValue(I.getArgOperand(1)),
9096                           DAG.getSrcValue(I.getArgOperand(0)),
9097                           DAG.getSrcValue(I.getArgOperand(1))));
9098 }
9099 
9100 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9101                                                     const Instruction &I,
9102                                                     SDValue Op) {
9103   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9104   if (!Range)
9105     return Op;
9106 
9107   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9108   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9109     return Op;
9110 
9111   APInt Lo = CR.getUnsignedMin();
9112   if (!Lo.isMinValue())
9113     return Op;
9114 
9115   APInt Hi = CR.getUnsignedMax();
9116   unsigned Bits = std::max(Hi.getActiveBits(),
9117                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9118 
9119   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9120 
9121   SDLoc SL = getCurSDLoc();
9122 
9123   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9124                              DAG.getValueType(SmallVT));
9125   unsigned NumVals = Op.getNode()->getNumValues();
9126   if (NumVals == 1)
9127     return ZExt;
9128 
9129   SmallVector<SDValue, 4> Ops;
9130 
9131   Ops.push_back(ZExt);
9132   for (unsigned I = 1; I != NumVals; ++I)
9133     Ops.push_back(Op.getValue(I));
9134 
9135   return DAG.getMergeValues(Ops, SL);
9136 }
9137 
9138 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9139 /// the call being lowered.
9140 ///
9141 /// This is a helper for lowering intrinsics that follow a target calling
9142 /// convention or require stack pointer adjustment. Only a subset of the
9143 /// intrinsic's operands need to participate in the calling convention.
9144 void SelectionDAGBuilder::populateCallLoweringInfo(
9145     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9146     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9147     bool IsPatchPoint) {
9148   TargetLowering::ArgListTy Args;
9149   Args.reserve(NumArgs);
9150 
9151   // Populate the argument list.
9152   // Attributes for args start at offset 1, after the return attribute.
9153   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9154        ArgI != ArgE; ++ArgI) {
9155     const Value *V = Call->getOperand(ArgI);
9156 
9157     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9158 
9159     TargetLowering::ArgListEntry Entry;
9160     Entry.Node = getValue(V);
9161     Entry.Ty = V->getType();
9162     Entry.setAttributes(Call, ArgI);
9163     Args.push_back(Entry);
9164   }
9165 
9166   CLI.setDebugLoc(getCurSDLoc())
9167       .setChain(getRoot())
9168       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9169       .setDiscardResult(Call->use_empty())
9170       .setIsPatchPoint(IsPatchPoint)
9171       .setIsPreallocated(
9172           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9173 }
9174 
9175 /// Add a stack map intrinsic call's live variable operands to a stackmap
9176 /// or patchpoint target node's operand list.
9177 ///
9178 /// Constants are converted to TargetConstants purely as an optimization to
9179 /// avoid constant materialization and register allocation.
9180 ///
9181 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9182 /// generate addess computation nodes, and so FinalizeISel can convert the
9183 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9184 /// address materialization and register allocation, but may also be required
9185 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9186 /// alloca in the entry block, then the runtime may assume that the alloca's
9187 /// StackMap location can be read immediately after compilation and that the
9188 /// location is valid at any point during execution (this is similar to the
9189 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9190 /// only available in a register, then the runtime would need to trap when
9191 /// execution reaches the StackMap in order to read the alloca's location.
9192 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9193                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9194                                 SelectionDAGBuilder &Builder) {
9195   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9196     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9197     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9198       Ops.push_back(
9199         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9200       Ops.push_back(
9201         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9202     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9203       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9204       Ops.push_back(Builder.DAG.getTargetFrameIndex(
9205           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9206     } else
9207       Ops.push_back(OpVal);
9208   }
9209 }
9210 
9211 /// Lower llvm.experimental.stackmap directly to its target opcode.
9212 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9213   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9214   //                                  [live variables...])
9215 
9216   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9217 
9218   SDValue Chain, InFlag, Callee, NullPtr;
9219   SmallVector<SDValue, 32> Ops;
9220 
9221   SDLoc DL = getCurSDLoc();
9222   Callee = getValue(CI.getCalledOperand());
9223   NullPtr = DAG.getIntPtrConstant(0, DL, true);
9224 
9225   // The stackmap intrinsic only records the live variables (the arguments
9226   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9227   // intrinsic, this won't be lowered to a function call. This means we don't
9228   // have to worry about calling conventions and target specific lowering code.
9229   // Instead we perform the call lowering right here.
9230   //
9231   // chain, flag = CALLSEQ_START(chain, 0, 0)
9232   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9233   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9234   //
9235   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9236   InFlag = Chain.getValue(1);
9237 
9238   // Add the <id> and <numBytes> constants.
9239   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9240   Ops.push_back(DAG.getTargetConstant(
9241                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9242   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9243   Ops.push_back(DAG.getTargetConstant(
9244                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9245                   MVT::i32));
9246 
9247   // Push live variables for the stack map.
9248   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9249 
9250   // We are not pushing any register mask info here on the operands list,
9251   // because the stackmap doesn't clobber anything.
9252 
9253   // Push the chain and the glue flag.
9254   Ops.push_back(Chain);
9255   Ops.push_back(InFlag);
9256 
9257   // Create the STACKMAP node.
9258   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9259   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9260   Chain = SDValue(SM, 0);
9261   InFlag = Chain.getValue(1);
9262 
9263   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9264 
9265   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9266 
9267   // Set the root to the target-lowered call chain.
9268   DAG.setRoot(Chain);
9269 
9270   // Inform the Frame Information that we have a stackmap in this function.
9271   FuncInfo.MF->getFrameInfo().setHasStackMap();
9272 }
9273 
9274 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9275 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9276                                           const BasicBlock *EHPadBB) {
9277   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9278   //                                                 i32 <numBytes>,
9279   //                                                 i8* <target>,
9280   //                                                 i32 <numArgs>,
9281   //                                                 [Args...],
9282   //                                                 [live variables...])
9283 
9284   CallingConv::ID CC = CB.getCallingConv();
9285   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9286   bool HasDef = !CB.getType()->isVoidTy();
9287   SDLoc dl = getCurSDLoc();
9288   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9289 
9290   // Handle immediate and symbolic callees.
9291   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9292     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9293                                    /*isTarget=*/true);
9294   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9295     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9296                                          SDLoc(SymbolicCallee),
9297                                          SymbolicCallee->getValueType(0));
9298 
9299   // Get the real number of arguments participating in the call <numArgs>
9300   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9301   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9302 
9303   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9304   // Intrinsics include all meta-operands up to but not including CC.
9305   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9306   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9307          "Not enough arguments provided to the patchpoint intrinsic");
9308 
9309   // For AnyRegCC the arguments are lowered later on manually.
9310   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9311   Type *ReturnTy =
9312       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9313 
9314   TargetLowering::CallLoweringInfo CLI(DAG);
9315   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9316                            ReturnTy, true);
9317   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9318 
9319   SDNode *CallEnd = Result.second.getNode();
9320   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9321     CallEnd = CallEnd->getOperand(0).getNode();
9322 
9323   /// Get a call instruction from the call sequence chain.
9324   /// Tail calls are not allowed.
9325   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9326          "Expected a callseq node.");
9327   SDNode *Call = CallEnd->getOperand(0).getNode();
9328   bool HasGlue = Call->getGluedNode();
9329 
9330   // Replace the target specific call node with the patchable intrinsic.
9331   SmallVector<SDValue, 8> Ops;
9332 
9333   // Add the <id> and <numBytes> constants.
9334   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9335   Ops.push_back(DAG.getTargetConstant(
9336                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9337   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9338   Ops.push_back(DAG.getTargetConstant(
9339                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9340                   MVT::i32));
9341 
9342   // Add the callee.
9343   Ops.push_back(Callee);
9344 
9345   // Adjust <numArgs> to account for any arguments that have been passed on the
9346   // stack instead.
9347   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9348   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9349   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9350   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9351 
9352   // Add the calling convention
9353   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9354 
9355   // Add the arguments we omitted previously. The register allocator should
9356   // place these in any free register.
9357   if (IsAnyRegCC)
9358     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9359       Ops.push_back(getValue(CB.getArgOperand(i)));
9360 
9361   // Push the arguments from the call instruction up to the register mask.
9362   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9363   Ops.append(Call->op_begin() + 2, e);
9364 
9365   // Push live variables for the stack map.
9366   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9367 
9368   // Push the register mask info.
9369   if (HasGlue)
9370     Ops.push_back(*(Call->op_end()-2));
9371   else
9372     Ops.push_back(*(Call->op_end()-1));
9373 
9374   // Push the chain (this is originally the first operand of the call, but
9375   // becomes now the last or second to last operand).
9376   Ops.push_back(*(Call->op_begin()));
9377 
9378   // Push the glue flag (last operand).
9379   if (HasGlue)
9380     Ops.push_back(*(Call->op_end()-1));
9381 
9382   SDVTList NodeTys;
9383   if (IsAnyRegCC && HasDef) {
9384     // Create the return types based on the intrinsic definition
9385     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9386     SmallVector<EVT, 3> ValueVTs;
9387     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9388     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9389 
9390     // There is always a chain and a glue type at the end
9391     ValueVTs.push_back(MVT::Other);
9392     ValueVTs.push_back(MVT::Glue);
9393     NodeTys = DAG.getVTList(ValueVTs);
9394   } else
9395     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9396 
9397   // Replace the target specific call node with a PATCHPOINT node.
9398   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9399                                          dl, NodeTys, Ops);
9400 
9401   // Update the NodeMap.
9402   if (HasDef) {
9403     if (IsAnyRegCC)
9404       setValue(&CB, SDValue(MN, 0));
9405     else
9406       setValue(&CB, Result.first);
9407   }
9408 
9409   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9410   // call sequence. Furthermore the location of the chain and glue can change
9411   // when the AnyReg calling convention is used and the intrinsic returns a
9412   // value.
9413   if (IsAnyRegCC && HasDef) {
9414     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9415     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9416     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9417   } else
9418     DAG.ReplaceAllUsesWith(Call, MN);
9419   DAG.DeleteNode(Call);
9420 
9421   // Inform the Frame Information that we have a patchpoint in this function.
9422   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9423 }
9424 
9425 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9426                                             unsigned Intrinsic) {
9427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9428   SDValue Op1 = getValue(I.getArgOperand(0));
9429   SDValue Op2;
9430   if (I.arg_size() > 1)
9431     Op2 = getValue(I.getArgOperand(1));
9432   SDLoc dl = getCurSDLoc();
9433   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9434   SDValue Res;
9435   SDNodeFlags SDFlags;
9436   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9437     SDFlags.copyFMF(*FPMO);
9438 
9439   switch (Intrinsic) {
9440   case Intrinsic::vector_reduce_fadd:
9441     if (SDFlags.hasAllowReassociation())
9442       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9443                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9444                         SDFlags);
9445     else
9446       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9447     break;
9448   case Intrinsic::vector_reduce_fmul:
9449     if (SDFlags.hasAllowReassociation())
9450       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9451                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9452                         SDFlags);
9453     else
9454       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9455     break;
9456   case Intrinsic::vector_reduce_add:
9457     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9458     break;
9459   case Intrinsic::vector_reduce_mul:
9460     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9461     break;
9462   case Intrinsic::vector_reduce_and:
9463     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9464     break;
9465   case Intrinsic::vector_reduce_or:
9466     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9467     break;
9468   case Intrinsic::vector_reduce_xor:
9469     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9470     break;
9471   case Intrinsic::vector_reduce_smax:
9472     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9473     break;
9474   case Intrinsic::vector_reduce_smin:
9475     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9476     break;
9477   case Intrinsic::vector_reduce_umax:
9478     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9479     break;
9480   case Intrinsic::vector_reduce_umin:
9481     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9482     break;
9483   case Intrinsic::vector_reduce_fmax:
9484     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9485     break;
9486   case Intrinsic::vector_reduce_fmin:
9487     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9488     break;
9489   default:
9490     llvm_unreachable("Unhandled vector reduce intrinsic");
9491   }
9492   setValue(&I, Res);
9493 }
9494 
9495 /// Returns an AttributeList representing the attributes applied to the return
9496 /// value of the given call.
9497 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9498   SmallVector<Attribute::AttrKind, 2> Attrs;
9499   if (CLI.RetSExt)
9500     Attrs.push_back(Attribute::SExt);
9501   if (CLI.RetZExt)
9502     Attrs.push_back(Attribute::ZExt);
9503   if (CLI.IsInReg)
9504     Attrs.push_back(Attribute::InReg);
9505 
9506   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9507                             Attrs);
9508 }
9509 
9510 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9511 /// implementation, which just calls LowerCall.
9512 /// FIXME: When all targets are
9513 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9514 std::pair<SDValue, SDValue>
9515 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9516   // Handle the incoming return values from the call.
9517   CLI.Ins.clear();
9518   Type *OrigRetTy = CLI.RetTy;
9519   SmallVector<EVT, 4> RetTys;
9520   SmallVector<uint64_t, 4> Offsets;
9521   auto &DL = CLI.DAG.getDataLayout();
9522   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9523 
9524   if (CLI.IsPostTypeLegalization) {
9525     // If we are lowering a libcall after legalization, split the return type.
9526     SmallVector<EVT, 4> OldRetTys;
9527     SmallVector<uint64_t, 4> OldOffsets;
9528     RetTys.swap(OldRetTys);
9529     Offsets.swap(OldOffsets);
9530 
9531     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9532       EVT RetVT = OldRetTys[i];
9533       uint64_t Offset = OldOffsets[i];
9534       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9535       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9536       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9537       RetTys.append(NumRegs, RegisterVT);
9538       for (unsigned j = 0; j != NumRegs; ++j)
9539         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9540     }
9541   }
9542 
9543   SmallVector<ISD::OutputArg, 4> Outs;
9544   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9545 
9546   bool CanLowerReturn =
9547       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9548                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9549 
9550   SDValue DemoteStackSlot;
9551   int DemoteStackIdx = -100;
9552   if (!CanLowerReturn) {
9553     // FIXME: equivalent assert?
9554     // assert(!CS.hasInAllocaArgument() &&
9555     //        "sret demotion is incompatible with inalloca");
9556     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9557     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9558     MachineFunction &MF = CLI.DAG.getMachineFunction();
9559     DemoteStackIdx =
9560         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9561     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9562                                               DL.getAllocaAddrSpace());
9563 
9564     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9565     ArgListEntry Entry;
9566     Entry.Node = DemoteStackSlot;
9567     Entry.Ty = StackSlotPtrType;
9568     Entry.IsSExt = false;
9569     Entry.IsZExt = false;
9570     Entry.IsInReg = false;
9571     Entry.IsSRet = true;
9572     Entry.IsNest = false;
9573     Entry.IsByVal = false;
9574     Entry.IsByRef = false;
9575     Entry.IsReturned = false;
9576     Entry.IsSwiftSelf = false;
9577     Entry.IsSwiftAsync = false;
9578     Entry.IsSwiftError = false;
9579     Entry.IsCFGuardTarget = false;
9580     Entry.Alignment = Alignment;
9581     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9582     CLI.NumFixedArgs += 1;
9583     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9584 
9585     // sret demotion isn't compatible with tail-calls, since the sret argument
9586     // points into the callers stack frame.
9587     CLI.IsTailCall = false;
9588   } else {
9589     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9590         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9591     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9592       ISD::ArgFlagsTy Flags;
9593       if (NeedsRegBlock) {
9594         Flags.setInConsecutiveRegs();
9595         if (I == RetTys.size() - 1)
9596           Flags.setInConsecutiveRegsLast();
9597       }
9598       EVT VT = RetTys[I];
9599       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9600                                                      CLI.CallConv, VT);
9601       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9602                                                        CLI.CallConv, VT);
9603       for (unsigned i = 0; i != NumRegs; ++i) {
9604         ISD::InputArg MyFlags;
9605         MyFlags.Flags = Flags;
9606         MyFlags.VT = RegisterVT;
9607         MyFlags.ArgVT = VT;
9608         MyFlags.Used = CLI.IsReturnValueUsed;
9609         if (CLI.RetTy->isPointerTy()) {
9610           MyFlags.Flags.setPointer();
9611           MyFlags.Flags.setPointerAddrSpace(
9612               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9613         }
9614         if (CLI.RetSExt)
9615           MyFlags.Flags.setSExt();
9616         if (CLI.RetZExt)
9617           MyFlags.Flags.setZExt();
9618         if (CLI.IsInReg)
9619           MyFlags.Flags.setInReg();
9620         CLI.Ins.push_back(MyFlags);
9621       }
9622     }
9623   }
9624 
9625   // We push in swifterror return as the last element of CLI.Ins.
9626   ArgListTy &Args = CLI.getArgs();
9627   if (supportSwiftError()) {
9628     for (const ArgListEntry &Arg : Args) {
9629       if (Arg.IsSwiftError) {
9630         ISD::InputArg MyFlags;
9631         MyFlags.VT = getPointerTy(DL);
9632         MyFlags.ArgVT = EVT(getPointerTy(DL));
9633         MyFlags.Flags.setSwiftError();
9634         CLI.Ins.push_back(MyFlags);
9635       }
9636     }
9637   }
9638 
9639   // Handle all of the outgoing arguments.
9640   CLI.Outs.clear();
9641   CLI.OutVals.clear();
9642   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9643     SmallVector<EVT, 4> ValueVTs;
9644     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9645     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9646     Type *FinalType = Args[i].Ty;
9647     if (Args[i].IsByVal)
9648       FinalType = Args[i].IndirectType;
9649     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9650         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9651     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9652          ++Value) {
9653       EVT VT = ValueVTs[Value];
9654       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9655       SDValue Op = SDValue(Args[i].Node.getNode(),
9656                            Args[i].Node.getResNo() + Value);
9657       ISD::ArgFlagsTy Flags;
9658 
9659       // Certain targets (such as MIPS), may have a different ABI alignment
9660       // for a type depending on the context. Give the target a chance to
9661       // specify the alignment it wants.
9662       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9663       Flags.setOrigAlign(OriginalAlignment);
9664 
9665       if (Args[i].Ty->isPointerTy()) {
9666         Flags.setPointer();
9667         Flags.setPointerAddrSpace(
9668             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9669       }
9670       if (Args[i].IsZExt)
9671         Flags.setZExt();
9672       if (Args[i].IsSExt)
9673         Flags.setSExt();
9674       if (Args[i].IsInReg) {
9675         // If we are using vectorcall calling convention, a structure that is
9676         // passed InReg - is surely an HVA
9677         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9678             isa<StructType>(FinalType)) {
9679           // The first value of a structure is marked
9680           if (0 == Value)
9681             Flags.setHvaStart();
9682           Flags.setHva();
9683         }
9684         // Set InReg Flag
9685         Flags.setInReg();
9686       }
9687       if (Args[i].IsSRet)
9688         Flags.setSRet();
9689       if (Args[i].IsSwiftSelf)
9690         Flags.setSwiftSelf();
9691       if (Args[i].IsSwiftAsync)
9692         Flags.setSwiftAsync();
9693       if (Args[i].IsSwiftError)
9694         Flags.setSwiftError();
9695       if (Args[i].IsCFGuardTarget)
9696         Flags.setCFGuardTarget();
9697       if (Args[i].IsByVal)
9698         Flags.setByVal();
9699       if (Args[i].IsByRef)
9700         Flags.setByRef();
9701       if (Args[i].IsPreallocated) {
9702         Flags.setPreallocated();
9703         // Set the byval flag for CCAssignFn callbacks that don't know about
9704         // preallocated.  This way we can know how many bytes we should've
9705         // allocated and how many bytes a callee cleanup function will pop.  If
9706         // we port preallocated to more targets, we'll have to add custom
9707         // preallocated handling in the various CC lowering callbacks.
9708         Flags.setByVal();
9709       }
9710       if (Args[i].IsInAlloca) {
9711         Flags.setInAlloca();
9712         // Set the byval flag for CCAssignFn callbacks that don't know about
9713         // inalloca.  This way we can know how many bytes we should've allocated
9714         // and how many bytes a callee cleanup function will pop.  If we port
9715         // inalloca to more targets, we'll have to add custom inalloca handling
9716         // in the various CC lowering callbacks.
9717         Flags.setByVal();
9718       }
9719       Align MemAlign;
9720       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9721         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9722         Flags.setByValSize(FrameSize);
9723 
9724         // info is not there but there are cases it cannot get right.
9725         if (auto MA = Args[i].Alignment)
9726           MemAlign = *MA;
9727         else
9728           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9729       } else if (auto MA = Args[i].Alignment) {
9730         MemAlign = *MA;
9731       } else {
9732         MemAlign = OriginalAlignment;
9733       }
9734       Flags.setMemAlign(MemAlign);
9735       if (Args[i].IsNest)
9736         Flags.setNest();
9737       if (NeedsRegBlock)
9738         Flags.setInConsecutiveRegs();
9739 
9740       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9741                                                  CLI.CallConv, VT);
9742       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9743                                                         CLI.CallConv, VT);
9744       SmallVector<SDValue, 4> Parts(NumParts);
9745       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9746 
9747       if (Args[i].IsSExt)
9748         ExtendKind = ISD::SIGN_EXTEND;
9749       else if (Args[i].IsZExt)
9750         ExtendKind = ISD::ZERO_EXTEND;
9751 
9752       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9753       // for now.
9754       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9755           CanLowerReturn) {
9756         assert((CLI.RetTy == Args[i].Ty ||
9757                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9758                  CLI.RetTy->getPointerAddressSpace() ==
9759                      Args[i].Ty->getPointerAddressSpace())) &&
9760                RetTys.size() == NumValues && "unexpected use of 'returned'");
9761         // Before passing 'returned' to the target lowering code, ensure that
9762         // either the register MVT and the actual EVT are the same size or that
9763         // the return value and argument are extended in the same way; in these
9764         // cases it's safe to pass the argument register value unchanged as the
9765         // return register value (although it's at the target's option whether
9766         // to do so)
9767         // TODO: allow code generation to take advantage of partially preserved
9768         // registers rather than clobbering the entire register when the
9769         // parameter extension method is not compatible with the return
9770         // extension method
9771         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9772             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9773              CLI.RetZExt == Args[i].IsZExt))
9774           Flags.setReturned();
9775       }
9776 
9777       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9778                      CLI.CallConv, ExtendKind);
9779 
9780       for (unsigned j = 0; j != NumParts; ++j) {
9781         // if it isn't first piece, alignment must be 1
9782         // For scalable vectors the scalable part is currently handled
9783         // by individual targets, so we just use the known minimum size here.
9784         ISD::OutputArg MyFlags(
9785             Flags, Parts[j].getValueType().getSimpleVT(), VT,
9786             i < CLI.NumFixedArgs, i,
9787             j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9788         if (NumParts > 1 && j == 0)
9789           MyFlags.Flags.setSplit();
9790         else if (j != 0) {
9791           MyFlags.Flags.setOrigAlign(Align(1));
9792           if (j == NumParts - 1)
9793             MyFlags.Flags.setSplitEnd();
9794         }
9795 
9796         CLI.Outs.push_back(MyFlags);
9797         CLI.OutVals.push_back(Parts[j]);
9798       }
9799 
9800       if (NeedsRegBlock && Value == NumValues - 1)
9801         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9802     }
9803   }
9804 
9805   SmallVector<SDValue, 4> InVals;
9806   CLI.Chain = LowerCall(CLI, InVals);
9807 
9808   // Update CLI.InVals to use outside of this function.
9809   CLI.InVals = InVals;
9810 
9811   // Verify that the target's LowerCall behaved as expected.
9812   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9813          "LowerCall didn't return a valid chain!");
9814   assert((!CLI.IsTailCall || InVals.empty()) &&
9815          "LowerCall emitted a return value for a tail call!");
9816   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9817          "LowerCall didn't emit the correct number of values!");
9818 
9819   // For a tail call, the return value is merely live-out and there aren't
9820   // any nodes in the DAG representing it. Return a special value to
9821   // indicate that a tail call has been emitted and no more Instructions
9822   // should be processed in the current block.
9823   if (CLI.IsTailCall) {
9824     CLI.DAG.setRoot(CLI.Chain);
9825     return std::make_pair(SDValue(), SDValue());
9826   }
9827 
9828 #ifndef NDEBUG
9829   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9830     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9831     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9832            "LowerCall emitted a value with the wrong type!");
9833   }
9834 #endif
9835 
9836   SmallVector<SDValue, 4> ReturnValues;
9837   if (!CanLowerReturn) {
9838     // The instruction result is the result of loading from the
9839     // hidden sret parameter.
9840     SmallVector<EVT, 1> PVTs;
9841     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9842 
9843     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9844     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9845     EVT PtrVT = PVTs[0];
9846 
9847     unsigned NumValues = RetTys.size();
9848     ReturnValues.resize(NumValues);
9849     SmallVector<SDValue, 4> Chains(NumValues);
9850 
9851     // An aggregate return value cannot wrap around the address space, so
9852     // offsets to its parts don't wrap either.
9853     SDNodeFlags Flags;
9854     Flags.setNoUnsignedWrap(true);
9855 
9856     MachineFunction &MF = CLI.DAG.getMachineFunction();
9857     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9858     for (unsigned i = 0; i < NumValues; ++i) {
9859       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9860                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9861                                                         PtrVT), Flags);
9862       SDValue L = CLI.DAG.getLoad(
9863           RetTys[i], CLI.DL, CLI.Chain, Add,
9864           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9865                                             DemoteStackIdx, Offsets[i]),
9866           HiddenSRetAlign);
9867       ReturnValues[i] = L;
9868       Chains[i] = L.getValue(1);
9869     }
9870 
9871     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9872   } else {
9873     // Collect the legal value parts into potentially illegal values
9874     // that correspond to the original function's return values.
9875     Optional<ISD::NodeType> AssertOp;
9876     if (CLI.RetSExt)
9877       AssertOp = ISD::AssertSext;
9878     else if (CLI.RetZExt)
9879       AssertOp = ISD::AssertZext;
9880     unsigned CurReg = 0;
9881     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9882       EVT VT = RetTys[I];
9883       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9884                                                      CLI.CallConv, VT);
9885       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9886                                                        CLI.CallConv, VT);
9887 
9888       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9889                                               NumRegs, RegisterVT, VT, nullptr,
9890                                               CLI.CallConv, AssertOp));
9891       CurReg += NumRegs;
9892     }
9893 
9894     // For a function returning void, there is no return value. We can't create
9895     // such a node, so we just return a null return value in that case. In
9896     // that case, nothing will actually look at the value.
9897     if (ReturnValues.empty())
9898       return std::make_pair(SDValue(), CLI.Chain);
9899   }
9900 
9901   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9902                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9903   return std::make_pair(Res, CLI.Chain);
9904 }
9905 
9906 /// Places new result values for the node in Results (their number
9907 /// and types must exactly match those of the original return values of
9908 /// the node), or leaves Results empty, which indicates that the node is not
9909 /// to be custom lowered after all.
9910 void TargetLowering::LowerOperationWrapper(SDNode *N,
9911                                            SmallVectorImpl<SDValue> &Results,
9912                                            SelectionDAG &DAG) const {
9913   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9914 
9915   if (!Res.getNode())
9916     return;
9917 
9918   // If the original node has one result, take the return value from
9919   // LowerOperation as is. It might not be result number 0.
9920   if (N->getNumValues() == 1) {
9921     Results.push_back(Res);
9922     return;
9923   }
9924 
9925   // If the original node has multiple results, then the return node should
9926   // have the same number of results.
9927   assert((N->getNumValues() == Res->getNumValues()) &&
9928       "Lowering returned the wrong number of results!");
9929 
9930   // Places new result values base on N result number.
9931   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9932     Results.push_back(Res.getValue(I));
9933 }
9934 
9935 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9936   llvm_unreachable("LowerOperation not implemented for this target!");
9937 }
9938 
9939 void
9940 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9941   SDValue Op = getNonRegisterValue(V);
9942   assert((Op.getOpcode() != ISD::CopyFromReg ||
9943           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9944          "Copy from a reg to the same reg!");
9945   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9946 
9947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9948   // If this is an InlineAsm we have to match the registers required, not the
9949   // notional registers required by the type.
9950 
9951   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9952                    None); // This is not an ABI copy.
9953   SDValue Chain = DAG.getEntryNode();
9954 
9955   ISD::NodeType ExtendType = ISD::ANY_EXTEND;
9956   auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
9957   if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
9958     ExtendType = PreferredExtendIt->second;
9959   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9960   PendingExports.push_back(Chain);
9961 }
9962 
9963 #include "llvm/CodeGen/SelectionDAGISel.h"
9964 
9965 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9966 /// entry block, return true.  This includes arguments used by switches, since
9967 /// the switch may expand into multiple basic blocks.
9968 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9969   // With FastISel active, we may be splitting blocks, so force creation
9970   // of virtual registers for all non-dead arguments.
9971   if (FastISel)
9972     return A->use_empty();
9973 
9974   const BasicBlock &Entry = A->getParent()->front();
9975   for (const User *U : A->users())
9976     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9977       return false;  // Use not in entry block.
9978 
9979   return true;
9980 }
9981 
9982 using ArgCopyElisionMapTy =
9983     DenseMap<const Argument *,
9984              std::pair<const AllocaInst *, const StoreInst *>>;
9985 
9986 /// Scan the entry block of the function in FuncInfo for arguments that look
9987 /// like copies into a local alloca. Record any copied arguments in
9988 /// ArgCopyElisionCandidates.
9989 static void
9990 findArgumentCopyElisionCandidates(const DataLayout &DL,
9991                                   FunctionLoweringInfo *FuncInfo,
9992                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9993   // Record the state of every static alloca used in the entry block. Argument
9994   // allocas are all used in the entry block, so we need approximately as many
9995   // entries as we have arguments.
9996   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9997   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9998   unsigned NumArgs = FuncInfo->Fn->arg_size();
9999   StaticAllocas.reserve(NumArgs * 2);
10000 
10001   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10002     if (!V)
10003       return nullptr;
10004     V = V->stripPointerCasts();
10005     const auto *AI = dyn_cast<AllocaInst>(V);
10006     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10007       return nullptr;
10008     auto Iter = StaticAllocas.insert({AI, Unknown});
10009     return &Iter.first->second;
10010   };
10011 
10012   // Look for stores of arguments to static allocas. Look through bitcasts and
10013   // GEPs to handle type coercions, as long as the alloca is fully initialized
10014   // by the store. Any non-store use of an alloca escapes it and any subsequent
10015   // unanalyzed store might write it.
10016   // FIXME: Handle structs initialized with multiple stores.
10017   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10018     // Look for stores, and handle non-store uses conservatively.
10019     const auto *SI = dyn_cast<StoreInst>(&I);
10020     if (!SI) {
10021       // We will look through cast uses, so ignore them completely.
10022       if (I.isCast())
10023         continue;
10024       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10025       // to allocas.
10026       if (I.isDebugOrPseudoInst())
10027         continue;
10028       // This is an unknown instruction. Assume it escapes or writes to all
10029       // static alloca operands.
10030       for (const Use &U : I.operands()) {
10031         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10032           *Info = StaticAllocaInfo::Clobbered;
10033       }
10034       continue;
10035     }
10036 
10037     // If the stored value is a static alloca, mark it as escaped.
10038     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10039       *Info = StaticAllocaInfo::Clobbered;
10040 
10041     // Check if the destination is a static alloca.
10042     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10043     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10044     if (!Info)
10045       continue;
10046     const AllocaInst *AI = cast<AllocaInst>(Dst);
10047 
10048     // Skip allocas that have been initialized or clobbered.
10049     if (*Info != StaticAllocaInfo::Unknown)
10050       continue;
10051 
10052     // Check if the stored value is an argument, and that this store fully
10053     // initializes the alloca.
10054     // If the argument type has padding bits we can't directly forward a pointer
10055     // as the upper bits may contain garbage.
10056     // Don't elide copies from the same argument twice.
10057     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10058     const auto *Arg = dyn_cast<Argument>(Val);
10059     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10060         Arg->getType()->isEmptyTy() ||
10061         DL.getTypeStoreSize(Arg->getType()) !=
10062             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10063         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10064         ArgCopyElisionCandidates.count(Arg)) {
10065       *Info = StaticAllocaInfo::Clobbered;
10066       continue;
10067     }
10068 
10069     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10070                       << '\n');
10071 
10072     // Mark this alloca and store for argument copy elision.
10073     *Info = StaticAllocaInfo::Elidable;
10074     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10075 
10076     // Stop scanning if we've seen all arguments. This will happen early in -O0
10077     // builds, which is useful, because -O0 builds have large entry blocks and
10078     // many allocas.
10079     if (ArgCopyElisionCandidates.size() == NumArgs)
10080       break;
10081   }
10082 }
10083 
10084 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10085 /// ArgVal is a load from a suitable fixed stack object.
10086 static void tryToElideArgumentCopy(
10087     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10088     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10089     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10090     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10091     SDValue ArgVal, bool &ArgHasUses) {
10092   // Check if this is a load from a fixed stack object.
10093   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10094   if (!LNode)
10095     return;
10096   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10097   if (!FINode)
10098     return;
10099 
10100   // Check that the fixed stack object is the right size and alignment.
10101   // Look at the alignment that the user wrote on the alloca instead of looking
10102   // at the stack object.
10103   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10104   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10105   const AllocaInst *AI = ArgCopyIter->second.first;
10106   int FixedIndex = FINode->getIndex();
10107   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10108   int OldIndex = AllocaIndex;
10109   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10110   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10111     LLVM_DEBUG(
10112         dbgs() << "  argument copy elision failed due to bad fixed stack "
10113                   "object size\n");
10114     return;
10115   }
10116   Align RequiredAlignment = AI->getAlign();
10117   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10118     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10119                          "greater than stack argument alignment ("
10120                       << DebugStr(RequiredAlignment) << " vs "
10121                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10122     return;
10123   }
10124 
10125   // Perform the elision. Delete the old stack object and replace its only use
10126   // in the variable info map. Mark the stack object as mutable.
10127   LLVM_DEBUG({
10128     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10129            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10130            << '\n';
10131   });
10132   MFI.RemoveStackObject(OldIndex);
10133   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10134   AllocaIndex = FixedIndex;
10135   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10136   Chains.push_back(ArgVal.getValue(1));
10137 
10138   // Avoid emitting code for the store implementing the copy.
10139   const StoreInst *SI = ArgCopyIter->second.second;
10140   ElidedArgCopyInstrs.insert(SI);
10141 
10142   // Check for uses of the argument again so that we can avoid exporting ArgVal
10143   // if it is't used by anything other than the store.
10144   for (const Value *U : Arg.users()) {
10145     if (U != SI) {
10146       ArgHasUses = true;
10147       break;
10148     }
10149   }
10150 }
10151 
10152 void SelectionDAGISel::LowerArguments(const Function &F) {
10153   SelectionDAG &DAG = SDB->DAG;
10154   SDLoc dl = SDB->getCurSDLoc();
10155   const DataLayout &DL = DAG.getDataLayout();
10156   SmallVector<ISD::InputArg, 16> Ins;
10157 
10158   // In Naked functions we aren't going to save any registers.
10159   if (F.hasFnAttribute(Attribute::Naked))
10160     return;
10161 
10162   if (!FuncInfo->CanLowerReturn) {
10163     // Put in an sret pointer parameter before all the other parameters.
10164     SmallVector<EVT, 1> ValueVTs;
10165     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10166                     F.getReturnType()->getPointerTo(
10167                         DAG.getDataLayout().getAllocaAddrSpace()),
10168                     ValueVTs);
10169 
10170     // NOTE: Assuming that a pointer will never break down to more than one VT
10171     // or one register.
10172     ISD::ArgFlagsTy Flags;
10173     Flags.setSRet();
10174     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10175     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10176                          ISD::InputArg::NoArgIndex, 0);
10177     Ins.push_back(RetArg);
10178   }
10179 
10180   // Look for stores of arguments to static allocas. Mark such arguments with a
10181   // flag to ask the target to give us the memory location of that argument if
10182   // available.
10183   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10184   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10185                                     ArgCopyElisionCandidates);
10186 
10187   // Set up the incoming argument description vector.
10188   for (const Argument &Arg : F.args()) {
10189     unsigned ArgNo = Arg.getArgNo();
10190     SmallVector<EVT, 4> ValueVTs;
10191     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10192     bool isArgValueUsed = !Arg.use_empty();
10193     unsigned PartBase = 0;
10194     Type *FinalType = Arg.getType();
10195     if (Arg.hasAttribute(Attribute::ByVal))
10196       FinalType = Arg.getParamByValType();
10197     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10198         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10199     for (unsigned Value = 0, NumValues = ValueVTs.size();
10200          Value != NumValues; ++Value) {
10201       EVT VT = ValueVTs[Value];
10202       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10203       ISD::ArgFlagsTy Flags;
10204 
10205 
10206       if (Arg.getType()->isPointerTy()) {
10207         Flags.setPointer();
10208         Flags.setPointerAddrSpace(
10209             cast<PointerType>(Arg.getType())->getAddressSpace());
10210       }
10211       if (Arg.hasAttribute(Attribute::ZExt))
10212         Flags.setZExt();
10213       if (Arg.hasAttribute(Attribute::SExt))
10214         Flags.setSExt();
10215       if (Arg.hasAttribute(Attribute::InReg)) {
10216         // If we are using vectorcall calling convention, a structure that is
10217         // passed InReg - is surely an HVA
10218         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10219             isa<StructType>(Arg.getType())) {
10220           // The first value of a structure is marked
10221           if (0 == Value)
10222             Flags.setHvaStart();
10223           Flags.setHva();
10224         }
10225         // Set InReg Flag
10226         Flags.setInReg();
10227       }
10228       if (Arg.hasAttribute(Attribute::StructRet))
10229         Flags.setSRet();
10230       if (Arg.hasAttribute(Attribute::SwiftSelf))
10231         Flags.setSwiftSelf();
10232       if (Arg.hasAttribute(Attribute::SwiftAsync))
10233         Flags.setSwiftAsync();
10234       if (Arg.hasAttribute(Attribute::SwiftError))
10235         Flags.setSwiftError();
10236       if (Arg.hasAttribute(Attribute::ByVal))
10237         Flags.setByVal();
10238       if (Arg.hasAttribute(Attribute::ByRef))
10239         Flags.setByRef();
10240       if (Arg.hasAttribute(Attribute::InAlloca)) {
10241         Flags.setInAlloca();
10242         // Set the byval flag for CCAssignFn callbacks that don't know about
10243         // inalloca.  This way we can know how many bytes we should've allocated
10244         // and how many bytes a callee cleanup function will pop.  If we port
10245         // inalloca to more targets, we'll have to add custom inalloca handling
10246         // in the various CC lowering callbacks.
10247         Flags.setByVal();
10248       }
10249       if (Arg.hasAttribute(Attribute::Preallocated)) {
10250         Flags.setPreallocated();
10251         // Set the byval flag for CCAssignFn callbacks that don't know about
10252         // preallocated.  This way we can know how many bytes we should've
10253         // allocated and how many bytes a callee cleanup function will pop.  If
10254         // we port preallocated to more targets, we'll have to add custom
10255         // preallocated handling in the various CC lowering callbacks.
10256         Flags.setByVal();
10257       }
10258 
10259       // Certain targets (such as MIPS), may have a different ABI alignment
10260       // for a type depending on the context. Give the target a chance to
10261       // specify the alignment it wants.
10262       const Align OriginalAlignment(
10263           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10264       Flags.setOrigAlign(OriginalAlignment);
10265 
10266       Align MemAlign;
10267       Type *ArgMemTy = nullptr;
10268       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10269           Flags.isByRef()) {
10270         if (!ArgMemTy)
10271           ArgMemTy = Arg.getPointeeInMemoryValueType();
10272 
10273         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10274 
10275         // For in-memory arguments, size and alignment should be passed from FE.
10276         // BE will guess if this info is not there but there are cases it cannot
10277         // get right.
10278         if (auto ParamAlign = Arg.getParamStackAlign())
10279           MemAlign = *ParamAlign;
10280         else if ((ParamAlign = Arg.getParamAlign()))
10281           MemAlign = *ParamAlign;
10282         else
10283           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10284         if (Flags.isByRef())
10285           Flags.setByRefSize(MemSize);
10286         else
10287           Flags.setByValSize(MemSize);
10288       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10289         MemAlign = *ParamAlign;
10290       } else {
10291         MemAlign = OriginalAlignment;
10292       }
10293       Flags.setMemAlign(MemAlign);
10294 
10295       if (Arg.hasAttribute(Attribute::Nest))
10296         Flags.setNest();
10297       if (NeedsRegBlock)
10298         Flags.setInConsecutiveRegs();
10299       if (ArgCopyElisionCandidates.count(&Arg))
10300         Flags.setCopyElisionCandidate();
10301       if (Arg.hasAttribute(Attribute::Returned))
10302         Flags.setReturned();
10303 
10304       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10305           *CurDAG->getContext(), F.getCallingConv(), VT);
10306       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10307           *CurDAG->getContext(), F.getCallingConv(), VT);
10308       for (unsigned i = 0; i != NumRegs; ++i) {
10309         // For scalable vectors, use the minimum size; individual targets
10310         // are responsible for handling scalable vector arguments and
10311         // return values.
10312         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10313                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10314         if (NumRegs > 1 && i == 0)
10315           MyFlags.Flags.setSplit();
10316         // if it isn't first piece, alignment must be 1
10317         else if (i > 0) {
10318           MyFlags.Flags.setOrigAlign(Align(1));
10319           if (i == NumRegs - 1)
10320             MyFlags.Flags.setSplitEnd();
10321         }
10322         Ins.push_back(MyFlags);
10323       }
10324       if (NeedsRegBlock && Value == NumValues - 1)
10325         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10326       PartBase += VT.getStoreSize().getKnownMinSize();
10327     }
10328   }
10329 
10330   // Call the target to set up the argument values.
10331   SmallVector<SDValue, 8> InVals;
10332   SDValue NewRoot = TLI->LowerFormalArguments(
10333       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10334 
10335   // Verify that the target's LowerFormalArguments behaved as expected.
10336   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10337          "LowerFormalArguments didn't return a valid chain!");
10338   assert(InVals.size() == Ins.size() &&
10339          "LowerFormalArguments didn't emit the correct number of values!");
10340   LLVM_DEBUG({
10341     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10342       assert(InVals[i].getNode() &&
10343              "LowerFormalArguments emitted a null value!");
10344       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10345              "LowerFormalArguments emitted a value with the wrong type!");
10346     }
10347   });
10348 
10349   // Update the DAG with the new chain value resulting from argument lowering.
10350   DAG.setRoot(NewRoot);
10351 
10352   // Set up the argument values.
10353   unsigned i = 0;
10354   if (!FuncInfo->CanLowerReturn) {
10355     // Create a virtual register for the sret pointer, and put in a copy
10356     // from the sret argument into it.
10357     SmallVector<EVT, 1> ValueVTs;
10358     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10359                     F.getReturnType()->getPointerTo(
10360                         DAG.getDataLayout().getAllocaAddrSpace()),
10361                     ValueVTs);
10362     MVT VT = ValueVTs[0].getSimpleVT();
10363     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10364     Optional<ISD::NodeType> AssertOp = None;
10365     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10366                                         nullptr, F.getCallingConv(), AssertOp);
10367 
10368     MachineFunction& MF = SDB->DAG.getMachineFunction();
10369     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10370     Register SRetReg =
10371         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10372     FuncInfo->DemoteRegister = SRetReg;
10373     NewRoot =
10374         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10375     DAG.setRoot(NewRoot);
10376 
10377     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10378     ++i;
10379   }
10380 
10381   SmallVector<SDValue, 4> Chains;
10382   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10383   for (const Argument &Arg : F.args()) {
10384     SmallVector<SDValue, 4> ArgValues;
10385     SmallVector<EVT, 4> ValueVTs;
10386     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10387     unsigned NumValues = ValueVTs.size();
10388     if (NumValues == 0)
10389       continue;
10390 
10391     bool ArgHasUses = !Arg.use_empty();
10392 
10393     // Elide the copying store if the target loaded this argument from a
10394     // suitable fixed stack object.
10395     if (Ins[i].Flags.isCopyElisionCandidate()) {
10396       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10397                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10398                              InVals[i], ArgHasUses);
10399     }
10400 
10401     // If this argument is unused then remember its value. It is used to generate
10402     // debugging information.
10403     bool isSwiftErrorArg =
10404         TLI->supportSwiftError() &&
10405         Arg.hasAttribute(Attribute::SwiftError);
10406     if (!ArgHasUses && !isSwiftErrorArg) {
10407       SDB->setUnusedArgValue(&Arg, InVals[i]);
10408 
10409       // Also remember any frame index for use in FastISel.
10410       if (FrameIndexSDNode *FI =
10411           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10412         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10413     }
10414 
10415     for (unsigned Val = 0; Val != NumValues; ++Val) {
10416       EVT VT = ValueVTs[Val];
10417       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10418                                                       F.getCallingConv(), VT);
10419       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10420           *CurDAG->getContext(), F.getCallingConv(), VT);
10421 
10422       // Even an apparent 'unused' swifterror argument needs to be returned. So
10423       // we do generate a copy for it that can be used on return from the
10424       // function.
10425       if (ArgHasUses || isSwiftErrorArg) {
10426         Optional<ISD::NodeType> AssertOp;
10427         if (Arg.hasAttribute(Attribute::SExt))
10428           AssertOp = ISD::AssertSext;
10429         else if (Arg.hasAttribute(Attribute::ZExt))
10430           AssertOp = ISD::AssertZext;
10431 
10432         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10433                                              PartVT, VT, nullptr,
10434                                              F.getCallingConv(), AssertOp));
10435       }
10436 
10437       i += NumParts;
10438     }
10439 
10440     // We don't need to do anything else for unused arguments.
10441     if (ArgValues.empty())
10442       continue;
10443 
10444     // Note down frame index.
10445     if (FrameIndexSDNode *FI =
10446         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10447       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10448 
10449     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10450                                      SDB->getCurSDLoc());
10451 
10452     SDB->setValue(&Arg, Res);
10453     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10454       // We want to associate the argument with the frame index, among
10455       // involved operands, that correspond to the lowest address. The
10456       // getCopyFromParts function, called earlier, is swapping the order of
10457       // the operands to BUILD_PAIR depending on endianness. The result of
10458       // that swapping is that the least significant bits of the argument will
10459       // be in the first operand of the BUILD_PAIR node, and the most
10460       // significant bits will be in the second operand.
10461       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10462       if (LoadSDNode *LNode =
10463           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10464         if (FrameIndexSDNode *FI =
10465             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10466           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10467     }
10468 
10469     // Analyses past this point are naive and don't expect an assertion.
10470     if (Res.getOpcode() == ISD::AssertZext)
10471       Res = Res.getOperand(0);
10472 
10473     // Update the SwiftErrorVRegDefMap.
10474     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10475       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10476       if (Register::isVirtualRegister(Reg))
10477         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10478                                    Reg);
10479     }
10480 
10481     // If this argument is live outside of the entry block, insert a copy from
10482     // wherever we got it to the vreg that other BB's will reference it as.
10483     if (Res.getOpcode() == ISD::CopyFromReg) {
10484       // If we can, though, try to skip creating an unnecessary vreg.
10485       // FIXME: This isn't very clean... it would be nice to make this more
10486       // general.
10487       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10488       if (Register::isVirtualRegister(Reg)) {
10489         FuncInfo->ValueMap[&Arg] = Reg;
10490         continue;
10491       }
10492     }
10493     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10494       FuncInfo->InitializeRegForValue(&Arg);
10495       SDB->CopyToExportRegsIfNeeded(&Arg);
10496     }
10497   }
10498 
10499   if (!Chains.empty()) {
10500     Chains.push_back(NewRoot);
10501     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10502   }
10503 
10504   DAG.setRoot(NewRoot);
10505 
10506   assert(i == InVals.size() && "Argument register count mismatch!");
10507 
10508   // If any argument copy elisions occurred and we have debug info, update the
10509   // stale frame indices used in the dbg.declare variable info table.
10510   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10511   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10512     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10513       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10514       if (I != ArgCopyElisionFrameIndexMap.end())
10515         VI.Slot = I->second;
10516     }
10517   }
10518 
10519   // Finally, if the target has anything special to do, allow it to do so.
10520   emitFunctionEntryCode();
10521 }
10522 
10523 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10524 /// ensure constants are generated when needed.  Remember the virtual registers
10525 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10526 /// directly add them, because expansion might result in multiple MBB's for one
10527 /// BB.  As such, the start of the BB might correspond to a different MBB than
10528 /// the end.
10529 void
10530 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10531   const Instruction *TI = LLVMBB->getTerminator();
10532 
10533   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10534 
10535   // Check PHI nodes in successors that expect a value to be available from this
10536   // block.
10537   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10538     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10539     if (!isa<PHINode>(SuccBB->begin())) continue;
10540     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10541 
10542     // If this terminator has multiple identical successors (common for
10543     // switches), only handle each succ once.
10544     if (!SuccsHandled.insert(SuccMBB).second)
10545       continue;
10546 
10547     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10548 
10549     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10550     // nodes and Machine PHI nodes, but the incoming operands have not been
10551     // emitted yet.
10552     for (const PHINode &PN : SuccBB->phis()) {
10553       // Ignore dead phi's.
10554       if (PN.use_empty())
10555         continue;
10556 
10557       // Skip empty types
10558       if (PN.getType()->isEmptyTy())
10559         continue;
10560 
10561       unsigned Reg;
10562       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10563 
10564       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10565         unsigned &RegOut = ConstantsOut[C];
10566         if (RegOut == 0) {
10567           RegOut = FuncInfo.CreateRegs(C);
10568           CopyValueToVirtualRegister(C, RegOut);
10569         }
10570         Reg = RegOut;
10571       } else {
10572         DenseMap<const Value *, Register>::iterator I =
10573           FuncInfo.ValueMap.find(PHIOp);
10574         if (I != FuncInfo.ValueMap.end())
10575           Reg = I->second;
10576         else {
10577           assert(isa<AllocaInst>(PHIOp) &&
10578                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10579                  "Didn't codegen value into a register!??");
10580           Reg = FuncInfo.CreateRegs(PHIOp);
10581           CopyValueToVirtualRegister(PHIOp, Reg);
10582         }
10583       }
10584 
10585       // Remember that this register needs to added to the machine PHI node as
10586       // the input for this MBB.
10587       SmallVector<EVT, 4> ValueVTs;
10588       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10589       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10590       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10591         EVT VT = ValueVTs[vti];
10592         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10593         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10594           FuncInfo.PHINodesToUpdate.push_back(
10595               std::make_pair(&*MBBI++, Reg + i));
10596         Reg += NumRegisters;
10597       }
10598     }
10599   }
10600 
10601   ConstantsOut.clear();
10602 }
10603 
10604 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10605   MachineFunction::iterator I(MBB);
10606   if (++I == FuncInfo.MF->end())
10607     return nullptr;
10608   return &*I;
10609 }
10610 
10611 /// During lowering new call nodes can be created (such as memset, etc.).
10612 /// Those will become new roots of the current DAG, but complications arise
10613 /// when they are tail calls. In such cases, the call lowering will update
10614 /// the root, but the builder still needs to know that a tail call has been
10615 /// lowered in order to avoid generating an additional return.
10616 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10617   // If the node is null, we do have a tail call.
10618   if (MaybeTC.getNode() != nullptr)
10619     DAG.setRoot(MaybeTC);
10620   else
10621     HasTailCall = true;
10622 }
10623 
10624 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10625                                         MachineBasicBlock *SwitchMBB,
10626                                         MachineBasicBlock *DefaultMBB) {
10627   MachineFunction *CurMF = FuncInfo.MF;
10628   MachineBasicBlock *NextMBB = nullptr;
10629   MachineFunction::iterator BBI(W.MBB);
10630   if (++BBI != FuncInfo.MF->end())
10631     NextMBB = &*BBI;
10632 
10633   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10634 
10635   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10636 
10637   if (Size == 2 && W.MBB == SwitchMBB) {
10638     // If any two of the cases has the same destination, and if one value
10639     // is the same as the other, but has one bit unset that the other has set,
10640     // use bit manipulation to do two compares at once.  For example:
10641     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10642     // TODO: This could be extended to merge any 2 cases in switches with 3
10643     // cases.
10644     // TODO: Handle cases where W.CaseBB != SwitchBB.
10645     CaseCluster &Small = *W.FirstCluster;
10646     CaseCluster &Big = *W.LastCluster;
10647 
10648     if (Small.Low == Small.High && Big.Low == Big.High &&
10649         Small.MBB == Big.MBB) {
10650       const APInt &SmallValue = Small.Low->getValue();
10651       const APInt &BigValue = Big.Low->getValue();
10652 
10653       // Check that there is only one bit different.
10654       APInt CommonBit = BigValue ^ SmallValue;
10655       if (CommonBit.isPowerOf2()) {
10656         SDValue CondLHS = getValue(Cond);
10657         EVT VT = CondLHS.getValueType();
10658         SDLoc DL = getCurSDLoc();
10659 
10660         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10661                                  DAG.getConstant(CommonBit, DL, VT));
10662         SDValue Cond = DAG.getSetCC(
10663             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10664             ISD::SETEQ);
10665 
10666         // Update successor info.
10667         // Both Small and Big will jump to Small.BB, so we sum up the
10668         // probabilities.
10669         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10670         if (BPI)
10671           addSuccessorWithProb(
10672               SwitchMBB, DefaultMBB,
10673               // The default destination is the first successor in IR.
10674               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10675         else
10676           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10677 
10678         // Insert the true branch.
10679         SDValue BrCond =
10680             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10681                         DAG.getBasicBlock(Small.MBB));
10682         // Insert the false branch.
10683         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10684                              DAG.getBasicBlock(DefaultMBB));
10685 
10686         DAG.setRoot(BrCond);
10687         return;
10688       }
10689     }
10690   }
10691 
10692   if (TM.getOptLevel() != CodeGenOpt::None) {
10693     // Here, we order cases by probability so the most likely case will be
10694     // checked first. However, two clusters can have the same probability in
10695     // which case their relative ordering is non-deterministic. So we use Low
10696     // as a tie-breaker as clusters are guaranteed to never overlap.
10697     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10698                [](const CaseCluster &a, const CaseCluster &b) {
10699       return a.Prob != b.Prob ?
10700              a.Prob > b.Prob :
10701              a.Low->getValue().slt(b.Low->getValue());
10702     });
10703 
10704     // Rearrange the case blocks so that the last one falls through if possible
10705     // without changing the order of probabilities.
10706     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10707       --I;
10708       if (I->Prob > W.LastCluster->Prob)
10709         break;
10710       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10711         std::swap(*I, *W.LastCluster);
10712         break;
10713       }
10714     }
10715   }
10716 
10717   // Compute total probability.
10718   BranchProbability DefaultProb = W.DefaultProb;
10719   BranchProbability UnhandledProbs = DefaultProb;
10720   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10721     UnhandledProbs += I->Prob;
10722 
10723   MachineBasicBlock *CurMBB = W.MBB;
10724   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10725     bool FallthroughUnreachable = false;
10726     MachineBasicBlock *Fallthrough;
10727     if (I == W.LastCluster) {
10728       // For the last cluster, fall through to the default destination.
10729       Fallthrough = DefaultMBB;
10730       FallthroughUnreachable = isa<UnreachableInst>(
10731           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10732     } else {
10733       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10734       CurMF->insert(BBI, Fallthrough);
10735       // Put Cond in a virtual register to make it available from the new blocks.
10736       ExportFromCurrentBlock(Cond);
10737     }
10738     UnhandledProbs -= I->Prob;
10739 
10740     switch (I->Kind) {
10741       case CC_JumpTable: {
10742         // FIXME: Optimize away range check based on pivot comparisons.
10743         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10744         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10745 
10746         // The jump block hasn't been inserted yet; insert it here.
10747         MachineBasicBlock *JumpMBB = JT->MBB;
10748         CurMF->insert(BBI, JumpMBB);
10749 
10750         auto JumpProb = I->Prob;
10751         auto FallthroughProb = UnhandledProbs;
10752 
10753         // If the default statement is a target of the jump table, we evenly
10754         // distribute the default probability to successors of CurMBB. Also
10755         // update the probability on the edge from JumpMBB to Fallthrough.
10756         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10757                                               SE = JumpMBB->succ_end();
10758              SI != SE; ++SI) {
10759           if (*SI == DefaultMBB) {
10760             JumpProb += DefaultProb / 2;
10761             FallthroughProb -= DefaultProb / 2;
10762             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10763             JumpMBB->normalizeSuccProbs();
10764             break;
10765           }
10766         }
10767 
10768         if (FallthroughUnreachable)
10769           JTH->FallthroughUnreachable = true;
10770 
10771         if (!JTH->FallthroughUnreachable)
10772           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10773         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10774         CurMBB->normalizeSuccProbs();
10775 
10776         // The jump table header will be inserted in our current block, do the
10777         // range check, and fall through to our fallthrough block.
10778         JTH->HeaderBB = CurMBB;
10779         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10780 
10781         // If we're in the right place, emit the jump table header right now.
10782         if (CurMBB == SwitchMBB) {
10783           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10784           JTH->Emitted = true;
10785         }
10786         break;
10787       }
10788       case CC_BitTests: {
10789         // FIXME: Optimize away range check based on pivot comparisons.
10790         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10791 
10792         // The bit test blocks haven't been inserted yet; insert them here.
10793         for (BitTestCase &BTC : BTB->Cases)
10794           CurMF->insert(BBI, BTC.ThisBB);
10795 
10796         // Fill in fields of the BitTestBlock.
10797         BTB->Parent = CurMBB;
10798         BTB->Default = Fallthrough;
10799 
10800         BTB->DefaultProb = UnhandledProbs;
10801         // If the cases in bit test don't form a contiguous range, we evenly
10802         // distribute the probability on the edge to Fallthrough to two
10803         // successors of CurMBB.
10804         if (!BTB->ContiguousRange) {
10805           BTB->Prob += DefaultProb / 2;
10806           BTB->DefaultProb -= DefaultProb / 2;
10807         }
10808 
10809         if (FallthroughUnreachable)
10810           BTB->FallthroughUnreachable = true;
10811 
10812         // If we're in the right place, emit the bit test header right now.
10813         if (CurMBB == SwitchMBB) {
10814           visitBitTestHeader(*BTB, SwitchMBB);
10815           BTB->Emitted = true;
10816         }
10817         break;
10818       }
10819       case CC_Range: {
10820         const Value *RHS, *LHS, *MHS;
10821         ISD::CondCode CC;
10822         if (I->Low == I->High) {
10823           // Check Cond == I->Low.
10824           CC = ISD::SETEQ;
10825           LHS = Cond;
10826           RHS=I->Low;
10827           MHS = nullptr;
10828         } else {
10829           // Check I->Low <= Cond <= I->High.
10830           CC = ISD::SETLE;
10831           LHS = I->Low;
10832           MHS = Cond;
10833           RHS = I->High;
10834         }
10835 
10836         // If Fallthrough is unreachable, fold away the comparison.
10837         if (FallthroughUnreachable)
10838           CC = ISD::SETTRUE;
10839 
10840         // The false probability is the sum of all unhandled cases.
10841         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10842                      getCurSDLoc(), I->Prob, UnhandledProbs);
10843 
10844         if (CurMBB == SwitchMBB)
10845           visitSwitchCase(CB, SwitchMBB);
10846         else
10847           SL->SwitchCases.push_back(CB);
10848 
10849         break;
10850       }
10851     }
10852     CurMBB = Fallthrough;
10853   }
10854 }
10855 
10856 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10857                                               CaseClusterIt First,
10858                                               CaseClusterIt Last) {
10859   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10860     if (X.Prob != CC.Prob)
10861       return X.Prob > CC.Prob;
10862 
10863     // Ties are broken by comparing the case value.
10864     return X.Low->getValue().slt(CC.Low->getValue());
10865   });
10866 }
10867 
10868 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10869                                         const SwitchWorkListItem &W,
10870                                         Value *Cond,
10871                                         MachineBasicBlock *SwitchMBB) {
10872   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10873          "Clusters not sorted?");
10874 
10875   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10876 
10877   // Balance the tree based on branch probabilities to create a near-optimal (in
10878   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10879   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10880   CaseClusterIt LastLeft = W.FirstCluster;
10881   CaseClusterIt FirstRight = W.LastCluster;
10882   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10883   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10884 
10885   // Move LastLeft and FirstRight towards each other from opposite directions to
10886   // find a partitioning of the clusters which balances the probability on both
10887   // sides. If LeftProb and RightProb are equal, alternate which side is
10888   // taken to ensure 0-probability nodes are distributed evenly.
10889   unsigned I = 0;
10890   while (LastLeft + 1 < FirstRight) {
10891     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10892       LeftProb += (++LastLeft)->Prob;
10893     else
10894       RightProb += (--FirstRight)->Prob;
10895     I++;
10896   }
10897 
10898   while (true) {
10899     // Our binary search tree differs from a typical BST in that ours can have up
10900     // to three values in each leaf. The pivot selection above doesn't take that
10901     // into account, which means the tree might require more nodes and be less
10902     // efficient. We compensate for this here.
10903 
10904     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10905     unsigned NumRight = W.LastCluster - FirstRight + 1;
10906 
10907     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10908       // If one side has less than 3 clusters, and the other has more than 3,
10909       // consider taking a cluster from the other side.
10910 
10911       if (NumLeft < NumRight) {
10912         // Consider moving the first cluster on the right to the left side.
10913         CaseCluster &CC = *FirstRight;
10914         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10915         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10916         if (LeftSideRank <= RightSideRank) {
10917           // Moving the cluster to the left does not demote it.
10918           ++LastLeft;
10919           ++FirstRight;
10920           continue;
10921         }
10922       } else {
10923         assert(NumRight < NumLeft);
10924         // Consider moving the last element on the left to the right side.
10925         CaseCluster &CC = *LastLeft;
10926         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10927         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10928         if (RightSideRank <= LeftSideRank) {
10929           // Moving the cluster to the right does not demot it.
10930           --LastLeft;
10931           --FirstRight;
10932           continue;
10933         }
10934       }
10935     }
10936     break;
10937   }
10938 
10939   assert(LastLeft + 1 == FirstRight);
10940   assert(LastLeft >= W.FirstCluster);
10941   assert(FirstRight <= W.LastCluster);
10942 
10943   // Use the first element on the right as pivot since we will make less-than
10944   // comparisons against it.
10945   CaseClusterIt PivotCluster = FirstRight;
10946   assert(PivotCluster > W.FirstCluster);
10947   assert(PivotCluster <= W.LastCluster);
10948 
10949   CaseClusterIt FirstLeft = W.FirstCluster;
10950   CaseClusterIt LastRight = W.LastCluster;
10951 
10952   const ConstantInt *Pivot = PivotCluster->Low;
10953 
10954   // New blocks will be inserted immediately after the current one.
10955   MachineFunction::iterator BBI(W.MBB);
10956   ++BBI;
10957 
10958   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10959   // we can branch to its destination directly if it's squeezed exactly in
10960   // between the known lower bound and Pivot - 1.
10961   MachineBasicBlock *LeftMBB;
10962   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10963       FirstLeft->Low == W.GE &&
10964       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10965     LeftMBB = FirstLeft->MBB;
10966   } else {
10967     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10968     FuncInfo.MF->insert(BBI, LeftMBB);
10969     WorkList.push_back(
10970         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10971     // Put Cond in a virtual register to make it available from the new blocks.
10972     ExportFromCurrentBlock(Cond);
10973   }
10974 
10975   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10976   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10977   // directly if RHS.High equals the current upper bound.
10978   MachineBasicBlock *RightMBB;
10979   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10980       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10981     RightMBB = FirstRight->MBB;
10982   } else {
10983     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10984     FuncInfo.MF->insert(BBI, RightMBB);
10985     WorkList.push_back(
10986         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10987     // Put Cond in a virtual register to make it available from the new blocks.
10988     ExportFromCurrentBlock(Cond);
10989   }
10990 
10991   // Create the CaseBlock record that will be used to lower the branch.
10992   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10993                getCurSDLoc(), LeftProb, RightProb);
10994 
10995   if (W.MBB == SwitchMBB)
10996     visitSwitchCase(CB, SwitchMBB);
10997   else
10998     SL->SwitchCases.push_back(CB);
10999 }
11000 
11001 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11002 // from the swith statement.
11003 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11004                                             BranchProbability PeeledCaseProb) {
11005   if (PeeledCaseProb == BranchProbability::getOne())
11006     return BranchProbability::getZero();
11007   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11008 
11009   uint32_t Numerator = CaseProb.getNumerator();
11010   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11011   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11012 }
11013 
11014 // Try to peel the top probability case if it exceeds the threshold.
11015 // Return current MachineBasicBlock for the switch statement if the peeling
11016 // does not occur.
11017 // If the peeling is performed, return the newly created MachineBasicBlock
11018 // for the peeled switch statement. Also update Clusters to remove the peeled
11019 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11020 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11021     const SwitchInst &SI, CaseClusterVector &Clusters,
11022     BranchProbability &PeeledCaseProb) {
11023   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11024   // Don't perform if there is only one cluster or optimizing for size.
11025   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11026       TM.getOptLevel() == CodeGenOpt::None ||
11027       SwitchMBB->getParent()->getFunction().hasMinSize())
11028     return SwitchMBB;
11029 
11030   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11031   unsigned PeeledCaseIndex = 0;
11032   bool SwitchPeeled = false;
11033   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11034     CaseCluster &CC = Clusters[Index];
11035     if (CC.Prob < TopCaseProb)
11036       continue;
11037     TopCaseProb = CC.Prob;
11038     PeeledCaseIndex = Index;
11039     SwitchPeeled = true;
11040   }
11041   if (!SwitchPeeled)
11042     return SwitchMBB;
11043 
11044   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11045                     << TopCaseProb << "\n");
11046 
11047   // Record the MBB for the peeled switch statement.
11048   MachineFunction::iterator BBI(SwitchMBB);
11049   ++BBI;
11050   MachineBasicBlock *PeeledSwitchMBB =
11051       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11052   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11053 
11054   ExportFromCurrentBlock(SI.getCondition());
11055   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11056   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11057                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11058   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11059 
11060   Clusters.erase(PeeledCaseIt);
11061   for (CaseCluster &CC : Clusters) {
11062     LLVM_DEBUG(
11063         dbgs() << "Scale the probablity for one cluster, before scaling: "
11064                << CC.Prob << "\n");
11065     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11066     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11067   }
11068   PeeledCaseProb = TopCaseProb;
11069   return PeeledSwitchMBB;
11070 }
11071 
11072 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11073   // Extract cases from the switch.
11074   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11075   CaseClusterVector Clusters;
11076   Clusters.reserve(SI.getNumCases());
11077   for (auto I : SI.cases()) {
11078     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11079     const ConstantInt *CaseVal = I.getCaseValue();
11080     BranchProbability Prob =
11081         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11082             : BranchProbability(1, SI.getNumCases() + 1);
11083     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11084   }
11085 
11086   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11087 
11088   // Cluster adjacent cases with the same destination. We do this at all
11089   // optimization levels because it's cheap to do and will make codegen faster
11090   // if there are many clusters.
11091   sortAndRangeify(Clusters);
11092 
11093   // The branch probablity of the peeled case.
11094   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11095   MachineBasicBlock *PeeledSwitchMBB =
11096       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11097 
11098   // If there is only the default destination, jump there directly.
11099   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11100   if (Clusters.empty()) {
11101     assert(PeeledSwitchMBB == SwitchMBB);
11102     SwitchMBB->addSuccessor(DefaultMBB);
11103     if (DefaultMBB != NextBlock(SwitchMBB)) {
11104       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11105                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11106     }
11107     return;
11108   }
11109 
11110   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11111   SL->findBitTestClusters(Clusters, &SI);
11112 
11113   LLVM_DEBUG({
11114     dbgs() << "Case clusters: ";
11115     for (const CaseCluster &C : Clusters) {
11116       if (C.Kind == CC_JumpTable)
11117         dbgs() << "JT:";
11118       if (C.Kind == CC_BitTests)
11119         dbgs() << "BT:";
11120 
11121       C.Low->getValue().print(dbgs(), true);
11122       if (C.Low != C.High) {
11123         dbgs() << '-';
11124         C.High->getValue().print(dbgs(), true);
11125       }
11126       dbgs() << ' ';
11127     }
11128     dbgs() << '\n';
11129   });
11130 
11131   assert(!Clusters.empty());
11132   SwitchWorkList WorkList;
11133   CaseClusterIt First = Clusters.begin();
11134   CaseClusterIt Last = Clusters.end() - 1;
11135   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11136   // Scale the branchprobability for DefaultMBB if the peel occurs and
11137   // DefaultMBB is not replaced.
11138   if (PeeledCaseProb != BranchProbability::getZero() &&
11139       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11140     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11141   WorkList.push_back(
11142       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11143 
11144   while (!WorkList.empty()) {
11145     SwitchWorkListItem W = WorkList.pop_back_val();
11146     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11147 
11148     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11149         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11150       // For optimized builds, lower large range as a balanced binary tree.
11151       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11152       continue;
11153     }
11154 
11155     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11156   }
11157 }
11158 
11159 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11160   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11161   auto DL = getCurSDLoc();
11162   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11163   setValue(&I, DAG.getStepVector(DL, ResultVT));
11164 }
11165 
11166 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11168   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11169 
11170   SDLoc DL = getCurSDLoc();
11171   SDValue V = getValue(I.getOperand(0));
11172   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11173 
11174   if (VT.isScalableVector()) {
11175     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11176     return;
11177   }
11178 
11179   // Use VECTOR_SHUFFLE for the fixed-length vector
11180   // to maintain existing behavior.
11181   SmallVector<int, 8> Mask;
11182   unsigned NumElts = VT.getVectorMinNumElements();
11183   for (unsigned i = 0; i != NumElts; ++i)
11184     Mask.push_back(NumElts - 1 - i);
11185 
11186   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11187 }
11188 
11189 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11190   SmallVector<EVT, 4> ValueVTs;
11191   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11192                   ValueVTs);
11193   unsigned NumValues = ValueVTs.size();
11194   if (NumValues == 0) return;
11195 
11196   SmallVector<SDValue, 4> Values(NumValues);
11197   SDValue Op = getValue(I.getOperand(0));
11198 
11199   for (unsigned i = 0; i != NumValues; ++i)
11200     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11201                             SDValue(Op.getNode(), Op.getResNo() + i));
11202 
11203   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11204                            DAG.getVTList(ValueVTs), Values));
11205 }
11206 
11207 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11208   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11209   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11210 
11211   SDLoc DL = getCurSDLoc();
11212   SDValue V1 = getValue(I.getOperand(0));
11213   SDValue V2 = getValue(I.getOperand(1));
11214   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11215 
11216   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11217   if (VT.isScalableVector()) {
11218     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11219     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11220                              DAG.getConstant(Imm, DL, IdxVT)));
11221     return;
11222   }
11223 
11224   unsigned NumElts = VT.getVectorNumElements();
11225 
11226   uint64_t Idx = (NumElts + Imm) % NumElts;
11227 
11228   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11229   SmallVector<int, 8> Mask;
11230   for (unsigned i = 0; i < NumElts; ++i)
11231     Mask.push_back(Idx + i);
11232   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11233 }
11234