1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getIntPtrConstant(RoundBits, DL)); 577 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 578 CallConv); 579 580 if (DAG.getDataLayout().isBigEndian()) 581 // The odd parts were reversed by getCopyToParts - unreverse them. 582 std::reverse(Parts + RoundParts, Parts + NumParts); 583 584 NumParts = RoundParts; 585 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 586 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 587 } 588 589 // The number of parts is a power of 2. Repeatedly bisect the value using 590 // EXTRACT_ELEMENT. 591 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 592 EVT::getIntegerVT(*DAG.getContext(), 593 ValueVT.getSizeInBits()), 594 Val); 595 596 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 597 for (unsigned i = 0; i < NumParts; i += StepSize) { 598 unsigned ThisBits = StepSize * PartBits / 2; 599 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 600 SDValue &Part0 = Parts[i]; 601 SDValue &Part1 = Parts[i+StepSize/2]; 602 603 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 604 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 605 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 606 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 607 608 if (ThisBits == PartBits && ThisVT != PartVT) { 609 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 610 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 611 } 612 } 613 } 614 615 if (DAG.getDataLayout().isBigEndian()) 616 std::reverse(Parts, Parts + OrigNumParts); 617 } 618 619 static SDValue widenVectorToPartType(SelectionDAG &DAG, 620 SDValue Val, const SDLoc &DL, EVT PartVT) { 621 if (!PartVT.isVector()) 622 return SDValue(); 623 624 EVT ValueVT = Val.getValueType(); 625 unsigned PartNumElts = PartVT.getVectorNumElements(); 626 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 627 if (PartNumElts > ValueNumElts && 628 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 DAG.ExtractVectorElements(Val, Ops); 634 SDValue EltUndef = DAG.getUNDEF(ElementVT); 635 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 636 Ops.push_back(EltUndef); 637 638 // FIXME: Use CONCAT for 2x -> 4x. 639 return DAG.getBuildVector(PartVT, DL, Ops); 640 } 641 642 return SDValue(); 643 } 644 645 /// getCopyToPartsVector - Create a series of nodes that contain the specified 646 /// value split into legal parts. 647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 648 SDValue Val, SDValue *Parts, unsigned NumParts, 649 MVT PartVT, const Value *V, 650 Optional<CallingConv::ID> CallConv) { 651 EVT ValueVT = Val.getValueType(); 652 assert(ValueVT.isVector() && "Not a vector"); 653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 654 const bool IsABIRegCopy = CallConv.hasValue(); 655 656 if (NumParts == 1) { 657 EVT PartEVT = PartVT; 658 if (PartEVT == ValueVT) { 659 // Nothing to do. 660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 661 // Bitconvert vector->vector case. 662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 664 Val = Widened; 665 } else if (PartVT.isVector() && 666 PartEVT.getVectorElementType().bitsGE( 667 ValueVT.getVectorElementType()) && 668 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 669 670 // Promoted vector extract 671 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 672 } else { 673 if (ValueVT.getVectorNumElements() == 1) { 674 Val = DAG.getNode( 675 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 676 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 677 } else { 678 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 679 "lossy conversion of vector to scalar type"); 680 EVT IntermediateType = 681 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 682 Val = DAG.getBitcast(IntermediateType, Val); 683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 684 } 685 } 686 687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 688 Parts[0] = Val; 689 return; 690 } 691 692 // Handle a multi-element vector. 693 EVT IntermediateVT; 694 MVT RegisterVT; 695 unsigned NumIntermediates; 696 unsigned NumRegs; 697 if (IsABIRegCopy) { 698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 700 NumIntermediates, RegisterVT); 701 } else { 702 NumRegs = 703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 704 NumIntermediates, RegisterVT); 705 } 706 707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 708 NumParts = NumRegs; // Silence a compiler warning. 709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 710 711 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 712 IntermediateVT.getVectorNumElements() : 1; 713 714 // Convert the vector to the appropiate type if necessary. 715 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 716 717 EVT BuiltVectorTy = EVT::getVectorVT( 718 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 719 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 720 if (ValueVT != BuiltVectorTy) { 721 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 722 Val = Widened; 723 724 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 725 } 726 727 // Split the vector into intermediate operands. 728 SmallVector<SDValue, 8> Ops(NumIntermediates); 729 for (unsigned i = 0; i != NumIntermediates; ++i) { 730 if (IntermediateVT.isVector()) { 731 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 732 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 733 } else { 734 Ops[i] = DAG.getNode( 735 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 736 DAG.getConstant(i, DL, IdxVT)); 737 } 738 } 739 740 // Split the intermediate operands into legal parts. 741 if (NumParts == NumIntermediates) { 742 // If the register was not expanded, promote or copy the value, 743 // as appropriate. 744 for (unsigned i = 0; i != NumParts; ++i) 745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 746 } else if (NumParts > 0) { 747 // If the intermediate type was expanded, split each the value into 748 // legal parts. 749 assert(NumIntermediates != 0 && "division by zero"); 750 assert(NumParts % NumIntermediates == 0 && 751 "Must expand into a divisible number of parts!"); 752 unsigned Factor = NumParts / NumIntermediates; 753 for (unsigned i = 0; i != NumIntermediates; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 755 CallConv); 756 } 757 } 758 759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 760 EVT valuevt, Optional<CallingConv::ID> CC) 761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 762 RegCount(1, regs.size()), CallConv(CC) {} 763 764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 765 const DataLayout &DL, unsigned Reg, Type *Ty, 766 Optional<CallingConv::ID> CC) { 767 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 768 769 CallConv = CC; 770 771 for (EVT ValueVT : ValueVTs) { 772 unsigned NumRegs = 773 isABIMangled() 774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 775 : TLI.getNumRegisters(Context, ValueVT); 776 MVT RegisterVT = 777 isABIMangled() 778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 779 : TLI.getRegisterType(Context, ValueVT); 780 for (unsigned i = 0; i != NumRegs; ++i) 781 Regs.push_back(Reg + i); 782 RegVTs.push_back(RegisterVT); 783 RegCount.push_back(NumRegs); 784 Reg += NumRegs; 785 } 786 } 787 788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 789 FunctionLoweringInfo &FuncInfo, 790 const SDLoc &dl, SDValue &Chain, 791 SDValue *Flag, const Value *V) const { 792 // A Value with type {} or [0 x %t] needs no registers. 793 if (ValueVTs.empty()) 794 return SDValue(); 795 796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 797 798 // Assemble the legal parts into the final values. 799 SmallVector<SDValue, 4> Values(ValueVTs.size()); 800 SmallVector<SDValue, 8> Parts; 801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 802 // Copy the legal parts from the registers. 803 EVT ValueVT = ValueVTs[Value]; 804 unsigned NumRegs = RegCount[Value]; 805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 806 *DAG.getContext(), 807 CallConv.getValue(), RegVTs[Value]) 808 : RegVTs[Value]; 809 810 Parts.resize(NumRegs); 811 for (unsigned i = 0; i != NumRegs; ++i) { 812 SDValue P; 813 if (!Flag) { 814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 815 } else { 816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 817 *Flag = P.getValue(2); 818 } 819 820 Chain = P.getValue(1); 821 Parts[i] = P; 822 823 // If the source register was virtual and if we know something about it, 824 // add an assert node. 825 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 826 !RegisterVT.isInteger()) 827 continue; 828 829 const FunctionLoweringInfo::LiveOutInfo *LOI = 830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 831 if (!LOI) 832 continue; 833 834 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 835 unsigned NumSignBits = LOI->NumSignBits; 836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 837 838 if (NumZeroBits == RegSize) { 839 // The current value is a zero. 840 // Explicitly express that as it would be easier for 841 // optimizations to kick in. 842 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 843 continue; 844 } 845 846 // FIXME: We capture more information than the dag can represent. For 847 // now, just use the tightest assertzext/assertsext possible. 848 bool isSExt; 849 EVT FromVT(MVT::Other); 850 if (NumZeroBits) { 851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 852 isSExt = false; 853 } else if (NumSignBits > 1) { 854 FromVT = 855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 856 isSExt = true; 857 } else { 858 continue; 859 } 860 // Add an assertion node. 861 assert(FromVT != MVT::Other); 862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 863 RegisterVT, P, DAG.getValueType(FromVT)); 864 } 865 866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 867 RegisterVT, ValueVT, V, CallConv); 868 Part += NumRegs; 869 Parts.clear(); 870 } 871 872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 873 } 874 875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 876 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 877 const Value *V, 878 ISD::NodeType PreferredExtendType) const { 879 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 880 ISD::NodeType ExtendKind = PreferredExtendType; 881 882 // Get the list of the values's legal parts. 883 unsigned NumRegs = Regs.size(); 884 SmallVector<SDValue, 8> Parts(NumRegs); 885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 886 unsigned NumParts = RegCount[Value]; 887 888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 889 *DAG.getContext(), 890 CallConv.getValue(), RegVTs[Value]) 891 : RegVTs[Value]; 892 893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 894 ExtendKind = ISD::ZERO_EXTEND; 895 896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 897 NumParts, RegisterVT, V, CallConv, ExtendKind); 898 Part += NumParts; 899 } 900 901 // Copy the parts into the registers. 902 SmallVector<SDValue, 8> Chains(NumRegs); 903 for (unsigned i = 0; i != NumRegs; ++i) { 904 SDValue Part; 905 if (!Flag) { 906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 907 } else { 908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 909 *Flag = Part.getValue(1); 910 } 911 912 Chains[i] = Part.getValue(0); 913 } 914 915 if (NumRegs == 1 || Flag) 916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 917 // flagged to it. That is the CopyToReg nodes and the user are considered 918 // a single scheduling unit. If we create a TokenFactor and return it as 919 // chain, then the TokenFactor is both a predecessor (operand) of the 920 // user as well as a successor (the TF operands are flagged to the user). 921 // c1, f1 = CopyToReg 922 // c2, f2 = CopyToReg 923 // c3 = TokenFactor c1, c2 924 // ... 925 // = op c3, ..., f2 926 Chain = Chains[NumRegs-1]; 927 else 928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 929 } 930 931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 932 unsigned MatchingIdx, const SDLoc &dl, 933 SelectionDAG &DAG, 934 std::vector<SDValue> &Ops) const { 935 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 936 937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 938 if (HasMatching) 939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 940 else if (!Regs.empty() && 941 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 942 // Put the register class of the virtual registers in the flag word. That 943 // way, later passes can recompute register class constraints for inline 944 // assembly as well as normal instructions. 945 // Don't do this for tied operands that can use the regclass information 946 // from the def. 947 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 948 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 949 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 950 } 951 952 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 953 Ops.push_back(Res); 954 955 if (Code == InlineAsm::Kind_Clobber) { 956 // Clobbers should always have a 1:1 mapping with registers, and may 957 // reference registers that have illegal (e.g. vector) types. Hence, we 958 // shouldn't try to apply any sort of splitting logic to them. 959 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 960 "No 1:1 mapping from clobbers to regs?"); 961 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 962 (void)SP; 963 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 964 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 965 assert( 966 (Regs[I] != SP || 967 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 968 "If we clobbered the stack pointer, MFI should know about it."); 969 } 970 return; 971 } 972 973 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 974 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 975 MVT RegisterVT = RegVTs[Value]; 976 for (unsigned i = 0; i != NumRegs; ++i) { 977 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 978 unsigned TheReg = Regs[Reg++]; 979 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 980 } 981 } 982 } 983 984 SmallVector<std::pair<unsigned, unsigned>, 4> 985 RegsForValue::getRegsAndSizes() const { 986 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 987 unsigned I = 0; 988 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 989 unsigned RegCount = std::get<0>(CountAndVT); 990 MVT RegisterVT = std::get<1>(CountAndVT); 991 unsigned RegisterSize = RegisterVT.getSizeInBits(); 992 for (unsigned E = I + RegCount; I != E; ++I) 993 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 994 } 995 return OutVec; 996 } 997 998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 999 const TargetLibraryInfo *li) { 1000 AA = aa; 1001 GFI = gfi; 1002 LibInfo = li; 1003 DL = &DAG.getDataLayout(); 1004 Context = DAG.getContext(); 1005 LPadToCallSiteMap.clear(); 1006 } 1007 1008 void SelectionDAGBuilder::clear() { 1009 NodeMap.clear(); 1010 UnusedArgNodeMap.clear(); 1011 PendingLoads.clear(); 1012 PendingExports.clear(); 1013 CurInst = nullptr; 1014 HasTailCall = false; 1015 SDNodeOrder = LowestSDNodeOrder; 1016 StatepointLowering.clear(); 1017 } 1018 1019 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1020 DanglingDebugInfoMap.clear(); 1021 } 1022 1023 SDValue SelectionDAGBuilder::getRoot() { 1024 if (PendingLoads.empty()) 1025 return DAG.getRoot(); 1026 1027 if (PendingLoads.size() == 1) { 1028 SDValue Root = PendingLoads[0]; 1029 DAG.setRoot(Root); 1030 PendingLoads.clear(); 1031 return Root; 1032 } 1033 1034 // Otherwise, we have to make a token factor node. 1035 // If we have >= 2^16 loads then split across multiple token factors as 1036 // there's a 64k limit on the number of SDNode operands. 1037 SDValue Root; 1038 size_t Limit = (1 << 16) - 1; 1039 while (PendingLoads.size() > Limit) { 1040 unsigned SliceIdx = PendingLoads.size() - Limit; 1041 auto ExtractedTFs = ArrayRef<SDValue>(PendingLoads).slice(SliceIdx, Limit); 1042 SDValue NewTF = 1043 DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, ExtractedTFs); 1044 PendingLoads.erase(PendingLoads.begin() + SliceIdx, PendingLoads.end()); 1045 PendingLoads.emplace_back(NewTF); 1046 } 1047 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, PendingLoads); 1048 PendingLoads.clear(); 1049 DAG.setRoot(Root); 1050 return Root; 1051 } 1052 1053 SDValue SelectionDAGBuilder::getControlRoot() { 1054 SDValue Root = DAG.getRoot(); 1055 1056 if (PendingExports.empty()) 1057 return Root; 1058 1059 // Turn all of the CopyToReg chains into one factored node. 1060 if (Root.getOpcode() != ISD::EntryToken) { 1061 unsigned i = 0, e = PendingExports.size(); 1062 for (; i != e; ++i) { 1063 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1064 if (PendingExports[i].getNode()->getOperand(0) == Root) 1065 break; // Don't add the root if we already indirectly depend on it. 1066 } 1067 1068 if (i == e) 1069 PendingExports.push_back(Root); 1070 } 1071 1072 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1073 PendingExports); 1074 PendingExports.clear(); 1075 DAG.setRoot(Root); 1076 return Root; 1077 } 1078 1079 void SelectionDAGBuilder::visit(const Instruction &I) { 1080 // Set up outgoing PHI node register values before emitting the terminator. 1081 if (I.isTerminator()) { 1082 HandlePHINodesInSuccessorBlocks(I.getParent()); 1083 } 1084 1085 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1086 if (!isa<DbgInfoIntrinsic>(I)) 1087 ++SDNodeOrder; 1088 1089 CurInst = &I; 1090 1091 visit(I.getOpcode(), I); 1092 1093 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1095 // maps to this instruction. 1096 // TODO: We could handle all flags (nsw, etc) here. 1097 // TODO: If an IR instruction maps to >1 node, only the final node will have 1098 // flags set. 1099 if (SDNode *Node = getNodeForIRValue(&I)) { 1100 SDNodeFlags IncomingFlags; 1101 IncomingFlags.copyFMF(*FPMO); 1102 if (!Node->getFlags().isDefined()) 1103 Node->setFlags(IncomingFlags); 1104 else 1105 Node->intersectFlagsWith(IncomingFlags); 1106 } 1107 } 1108 1109 if (!I.isTerminator() && !HasTailCall && 1110 !isStatepoint(&I)) // statepoints handle their exports internally 1111 CopyToExportRegsIfNeeded(&I); 1112 1113 CurInst = nullptr; 1114 } 1115 1116 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1118 } 1119 1120 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1121 // Note: this doesn't use InstVisitor, because it has to work with 1122 // ConstantExpr's in addition to instructions. 1123 switch (Opcode) { 1124 default: llvm_unreachable("Unknown instruction type encountered!"); 1125 // Build the switch statement using the Instruction.def file. 1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1128 #include "llvm/IR/Instruction.def" 1129 } 1130 } 1131 1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1133 const DIExpression *Expr) { 1134 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1135 const DbgValueInst *DI = DDI.getDI(); 1136 DIVariable *DanglingVariable = DI->getVariable(); 1137 DIExpression *DanglingExpr = DI->getExpression(); 1138 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1140 return true; 1141 } 1142 return false; 1143 }; 1144 1145 for (auto &DDIMI : DanglingDebugInfoMap) { 1146 DanglingDebugInfoVector &DDIV = DDIMI.second; 1147 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1148 } 1149 } 1150 1151 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1152 // generate the debug data structures now that we've seen its definition. 1153 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1154 SDValue Val) { 1155 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1156 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1157 return; 1158 1159 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1160 for (auto &DDI : DDIV) { 1161 const DbgValueInst *DI = DDI.getDI(); 1162 assert(DI && "Ill-formed DanglingDebugInfo"); 1163 DebugLoc dl = DDI.getdl(); 1164 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1165 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1166 DILocalVariable *Variable = DI->getVariable(); 1167 DIExpression *Expr = DI->getExpression(); 1168 assert(Variable->isValidLocationForIntrinsic(dl) && 1169 "Expected inlined-at fields to agree"); 1170 SDDbgValue *SDV; 1171 if (Val.getNode()) { 1172 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1173 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1174 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1175 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1176 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1177 // inserted after the definition of Val when emitting the instructions 1178 // after ISel. An alternative could be to teach 1179 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1180 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1181 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1182 << ValSDNodeOrder << "\n"); 1183 SDV = getDbgValue(Val, Variable, Expr, dl, 1184 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1185 DAG.AddDbgValue(SDV, Val.getNode(), false); 1186 } else 1187 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1188 << "in EmitFuncArgumentDbgValue\n"); 1189 } else 1190 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1191 } 1192 DDIV.clear(); 1193 } 1194 1195 /// getCopyFromRegs - If there was virtual register allocated for the value V 1196 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1197 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1198 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1199 SDValue Result; 1200 1201 if (It != FuncInfo.ValueMap.end()) { 1202 unsigned InReg = It->second; 1203 1204 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1205 DAG.getDataLayout(), InReg, Ty, 1206 None); // This is not an ABI copy. 1207 SDValue Chain = DAG.getEntryNode(); 1208 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1209 V); 1210 resolveDanglingDebugInfo(V, Result); 1211 } 1212 1213 return Result; 1214 } 1215 1216 /// getValue - Return an SDValue for the given Value. 1217 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1218 // If we already have an SDValue for this value, use it. It's important 1219 // to do this first, so that we don't create a CopyFromReg if we already 1220 // have a regular SDValue. 1221 SDValue &N = NodeMap[V]; 1222 if (N.getNode()) return N; 1223 1224 // If there's a virtual register allocated and initialized for this 1225 // value, use it. 1226 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1227 return copyFromReg; 1228 1229 // Otherwise create a new SDValue and remember it. 1230 SDValue Val = getValueImpl(V); 1231 NodeMap[V] = Val; 1232 resolveDanglingDebugInfo(V, Val); 1233 return Val; 1234 } 1235 1236 // Return true if SDValue exists for the given Value 1237 bool SelectionDAGBuilder::findValue(const Value *V) const { 1238 return (NodeMap.find(V) != NodeMap.end()) || 1239 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1240 } 1241 1242 /// getNonRegisterValue - Return an SDValue for the given Value, but 1243 /// don't look in FuncInfo.ValueMap for a virtual register. 1244 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1245 // If we already have an SDValue for this value, use it. 1246 SDValue &N = NodeMap[V]; 1247 if (N.getNode()) { 1248 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1249 // Remove the debug location from the node as the node is about to be used 1250 // in a location which may differ from the original debug location. This 1251 // is relevant to Constant and ConstantFP nodes because they can appear 1252 // as constant expressions inside PHI nodes. 1253 N->setDebugLoc(DebugLoc()); 1254 } 1255 return N; 1256 } 1257 1258 // Otherwise create a new SDValue and remember it. 1259 SDValue Val = getValueImpl(V); 1260 NodeMap[V] = Val; 1261 resolveDanglingDebugInfo(V, Val); 1262 return Val; 1263 } 1264 1265 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1266 /// Create an SDValue for the given value. 1267 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1269 1270 if (const Constant *C = dyn_cast<Constant>(V)) { 1271 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1272 1273 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1274 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1275 1276 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1277 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1278 1279 if (isa<ConstantPointerNull>(C)) { 1280 unsigned AS = V->getType()->getPointerAddressSpace(); 1281 return DAG.getConstant(0, getCurSDLoc(), 1282 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1283 } 1284 1285 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1286 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1287 1288 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1289 return DAG.getUNDEF(VT); 1290 1291 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1292 visit(CE->getOpcode(), *CE); 1293 SDValue N1 = NodeMap[V]; 1294 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1295 return N1; 1296 } 1297 1298 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1299 SmallVector<SDValue, 4> Constants; 1300 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1301 OI != OE; ++OI) { 1302 SDNode *Val = getValue(*OI).getNode(); 1303 // If the operand is an empty aggregate, there are no values. 1304 if (!Val) continue; 1305 // Add each leaf value from the operand to the Constants list 1306 // to form a flattened list of all the values. 1307 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1308 Constants.push_back(SDValue(Val, i)); 1309 } 1310 1311 return DAG.getMergeValues(Constants, getCurSDLoc()); 1312 } 1313 1314 if (const ConstantDataSequential *CDS = 1315 dyn_cast<ConstantDataSequential>(C)) { 1316 SmallVector<SDValue, 4> Ops; 1317 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1318 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1319 // Add each leaf value from the operand to the Constants list 1320 // to form a flattened list of all the values. 1321 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1322 Ops.push_back(SDValue(Val, i)); 1323 } 1324 1325 if (isa<ArrayType>(CDS->getType())) 1326 return DAG.getMergeValues(Ops, getCurSDLoc()); 1327 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1328 } 1329 1330 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1331 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1332 "Unknown struct or array constant!"); 1333 1334 SmallVector<EVT, 4> ValueVTs; 1335 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1336 unsigned NumElts = ValueVTs.size(); 1337 if (NumElts == 0) 1338 return SDValue(); // empty struct 1339 SmallVector<SDValue, 4> Constants(NumElts); 1340 for (unsigned i = 0; i != NumElts; ++i) { 1341 EVT EltVT = ValueVTs[i]; 1342 if (isa<UndefValue>(C)) 1343 Constants[i] = DAG.getUNDEF(EltVT); 1344 else if (EltVT.isFloatingPoint()) 1345 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1346 else 1347 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1348 } 1349 1350 return DAG.getMergeValues(Constants, getCurSDLoc()); 1351 } 1352 1353 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1354 return DAG.getBlockAddress(BA, VT); 1355 1356 VectorType *VecTy = cast<VectorType>(V->getType()); 1357 unsigned NumElements = VecTy->getNumElements(); 1358 1359 // Now that we know the number and type of the elements, get that number of 1360 // elements into the Ops array based on what kind of constant it is. 1361 SmallVector<SDValue, 16> Ops; 1362 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1363 for (unsigned i = 0; i != NumElements; ++i) 1364 Ops.push_back(getValue(CV->getOperand(i))); 1365 } else { 1366 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1367 EVT EltVT = 1368 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1369 1370 SDValue Op; 1371 if (EltVT.isFloatingPoint()) 1372 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1373 else 1374 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1375 Ops.assign(NumElements, Op); 1376 } 1377 1378 // Create a BUILD_VECTOR node. 1379 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1380 } 1381 1382 // If this is a static alloca, generate it as the frameindex instead of 1383 // computation. 1384 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1385 DenseMap<const AllocaInst*, int>::iterator SI = 1386 FuncInfo.StaticAllocaMap.find(AI); 1387 if (SI != FuncInfo.StaticAllocaMap.end()) 1388 return DAG.getFrameIndex(SI->second, 1389 TLI.getFrameIndexTy(DAG.getDataLayout())); 1390 } 1391 1392 // If this is an instruction which fast-isel has deferred, select it now. 1393 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1394 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1395 1396 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1397 Inst->getType(), getABIRegCopyCC(V)); 1398 SDValue Chain = DAG.getEntryNode(); 1399 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1400 } 1401 1402 llvm_unreachable("Can't get register for value!"); 1403 } 1404 1405 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1406 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1407 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1408 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1409 bool IsSEH = isAsynchronousEHPersonality(Pers); 1410 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1411 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1412 if (!IsSEH) 1413 CatchPadMBB->setIsEHScopeEntry(); 1414 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1415 if (IsMSVCCXX || IsCoreCLR) 1416 CatchPadMBB->setIsEHFuncletEntry(); 1417 // Wasm does not need catchpads anymore 1418 if (!IsWasmCXX) 1419 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1420 getControlRoot())); 1421 } 1422 1423 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1424 // Update machine-CFG edge. 1425 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1426 FuncInfo.MBB->addSuccessor(TargetMBB); 1427 1428 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1429 bool IsSEH = isAsynchronousEHPersonality(Pers); 1430 if (IsSEH) { 1431 // If this is not a fall-through branch or optimizations are switched off, 1432 // emit the branch. 1433 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1434 TM.getOptLevel() == CodeGenOpt::None) 1435 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1436 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1437 return; 1438 } 1439 1440 // Figure out the funclet membership for the catchret's successor. 1441 // This will be used by the FuncletLayout pass to determine how to order the 1442 // BB's. 1443 // A 'catchret' returns to the outer scope's color. 1444 Value *ParentPad = I.getCatchSwitchParentPad(); 1445 const BasicBlock *SuccessorColor; 1446 if (isa<ConstantTokenNone>(ParentPad)) 1447 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1448 else 1449 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1450 assert(SuccessorColor && "No parent funclet for catchret!"); 1451 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1452 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1453 1454 // Create the terminator node. 1455 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1456 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1457 DAG.getBasicBlock(SuccessorColorMBB)); 1458 DAG.setRoot(Ret); 1459 } 1460 1461 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1462 // Don't emit any special code for the cleanuppad instruction. It just marks 1463 // the start of an EH scope/funclet. 1464 FuncInfo.MBB->setIsEHScopeEntry(); 1465 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1466 if (Pers != EHPersonality::Wasm_CXX) { 1467 FuncInfo.MBB->setIsEHFuncletEntry(); 1468 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1469 } 1470 } 1471 1472 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1473 /// many places it could ultimately go. In the IR, we have a single unwind 1474 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1475 /// This function skips over imaginary basic blocks that hold catchswitch 1476 /// instructions, and finds all the "real" machine 1477 /// basic block destinations. As those destinations may not be successors of 1478 /// EHPadBB, here we also calculate the edge probability to those destinations. 1479 /// The passed-in Prob is the edge probability to EHPadBB. 1480 static void findUnwindDestinations( 1481 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1482 BranchProbability Prob, 1483 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1484 &UnwindDests) { 1485 EHPersonality Personality = 1486 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1487 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1488 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1489 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1490 bool IsSEH = isAsynchronousEHPersonality(Personality); 1491 1492 while (EHPadBB) { 1493 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1494 BasicBlock *NewEHPadBB = nullptr; 1495 if (isa<LandingPadInst>(Pad)) { 1496 // Stop on landingpads. They are not funclets. 1497 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1498 break; 1499 } else if (isa<CleanupPadInst>(Pad)) { 1500 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1501 // personalities. 1502 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1503 UnwindDests.back().first->setIsEHScopeEntry(); 1504 if (!IsWasmCXX) 1505 UnwindDests.back().first->setIsEHFuncletEntry(); 1506 break; 1507 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1508 // Add the catchpad handlers to the possible destinations. 1509 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1510 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1511 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1512 if (IsMSVCCXX || IsCoreCLR) 1513 UnwindDests.back().first->setIsEHFuncletEntry(); 1514 if (!IsSEH) 1515 UnwindDests.back().first->setIsEHScopeEntry(); 1516 } 1517 NewEHPadBB = CatchSwitch->getUnwindDest(); 1518 } else { 1519 continue; 1520 } 1521 1522 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1523 if (BPI && NewEHPadBB) 1524 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1525 EHPadBB = NewEHPadBB; 1526 } 1527 } 1528 1529 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1530 // Update successor info. 1531 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1532 auto UnwindDest = I.getUnwindDest(); 1533 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1534 BranchProbability UnwindDestProb = 1535 (BPI && UnwindDest) 1536 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1537 : BranchProbability::getZero(); 1538 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1539 for (auto &UnwindDest : UnwindDests) { 1540 UnwindDest.first->setIsEHPad(); 1541 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1542 } 1543 FuncInfo.MBB->normalizeSuccProbs(); 1544 1545 // Create the terminator node. 1546 SDValue Ret = 1547 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1548 DAG.setRoot(Ret); 1549 } 1550 1551 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1552 report_fatal_error("visitCatchSwitch not yet implemented!"); 1553 } 1554 1555 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1557 auto &DL = DAG.getDataLayout(); 1558 SDValue Chain = getControlRoot(); 1559 SmallVector<ISD::OutputArg, 8> Outs; 1560 SmallVector<SDValue, 8> OutVals; 1561 1562 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1563 // lower 1564 // 1565 // %val = call <ty> @llvm.experimental.deoptimize() 1566 // ret <ty> %val 1567 // 1568 // differently. 1569 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1570 LowerDeoptimizingReturn(); 1571 return; 1572 } 1573 1574 if (!FuncInfo.CanLowerReturn) { 1575 unsigned DemoteReg = FuncInfo.DemoteRegister; 1576 const Function *F = I.getParent()->getParent(); 1577 1578 // Emit a store of the return value through the virtual register. 1579 // Leave Outs empty so that LowerReturn won't try to load return 1580 // registers the usual way. 1581 SmallVector<EVT, 1> PtrValueVTs; 1582 ComputeValueVTs(TLI, DL, 1583 F->getReturnType()->getPointerTo( 1584 DAG.getDataLayout().getAllocaAddrSpace()), 1585 PtrValueVTs); 1586 1587 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1588 DemoteReg, PtrValueVTs[0]); 1589 SDValue RetOp = getValue(I.getOperand(0)); 1590 1591 SmallVector<EVT, 4> ValueVTs; 1592 SmallVector<uint64_t, 4> Offsets; 1593 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1594 unsigned NumValues = ValueVTs.size(); 1595 1596 SmallVector<SDValue, 4> Chains(NumValues); 1597 for (unsigned i = 0; i != NumValues; ++i) { 1598 // An aggregate return value cannot wrap around the address space, so 1599 // offsets to its parts don't wrap either. 1600 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1601 Chains[i] = DAG.getStore( 1602 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1603 // FIXME: better loc info would be nice. 1604 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1605 } 1606 1607 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1608 MVT::Other, Chains); 1609 } else if (I.getNumOperands() != 0) { 1610 SmallVector<EVT, 4> ValueVTs; 1611 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1612 unsigned NumValues = ValueVTs.size(); 1613 if (NumValues) { 1614 SDValue RetOp = getValue(I.getOperand(0)); 1615 1616 const Function *F = I.getParent()->getParent(); 1617 1618 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1619 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1620 Attribute::SExt)) 1621 ExtendKind = ISD::SIGN_EXTEND; 1622 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1623 Attribute::ZExt)) 1624 ExtendKind = ISD::ZERO_EXTEND; 1625 1626 LLVMContext &Context = F->getContext(); 1627 bool RetInReg = F->getAttributes().hasAttribute( 1628 AttributeList::ReturnIndex, Attribute::InReg); 1629 1630 for (unsigned j = 0; j != NumValues; ++j) { 1631 EVT VT = ValueVTs[j]; 1632 1633 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1634 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1635 1636 CallingConv::ID CC = F->getCallingConv(); 1637 1638 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1639 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1640 SmallVector<SDValue, 4> Parts(NumParts); 1641 getCopyToParts(DAG, getCurSDLoc(), 1642 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1643 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1644 1645 // 'inreg' on function refers to return value 1646 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1647 if (RetInReg) 1648 Flags.setInReg(); 1649 1650 // Propagate extension type if any 1651 if (ExtendKind == ISD::SIGN_EXTEND) 1652 Flags.setSExt(); 1653 else if (ExtendKind == ISD::ZERO_EXTEND) 1654 Flags.setZExt(); 1655 1656 for (unsigned i = 0; i < NumParts; ++i) { 1657 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1658 VT, /*isfixed=*/true, 0, 0)); 1659 OutVals.push_back(Parts[i]); 1660 } 1661 } 1662 } 1663 } 1664 1665 // Push in swifterror virtual register as the last element of Outs. This makes 1666 // sure swifterror virtual register will be returned in the swifterror 1667 // physical register. 1668 const Function *F = I.getParent()->getParent(); 1669 if (TLI.supportSwiftError() && 1670 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1671 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1672 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1673 Flags.setSwiftError(); 1674 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1675 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1676 true /*isfixed*/, 1 /*origidx*/, 1677 0 /*partOffs*/)); 1678 // Create SDNode for the swifterror virtual register. 1679 OutVals.push_back( 1680 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1681 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1682 EVT(TLI.getPointerTy(DL)))); 1683 } 1684 1685 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1686 CallingConv::ID CallConv = 1687 DAG.getMachineFunction().getFunction().getCallingConv(); 1688 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1689 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1690 1691 // Verify that the target's LowerReturn behaved as expected. 1692 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1693 "LowerReturn didn't return a valid chain!"); 1694 1695 // Update the DAG with the new chain value resulting from return lowering. 1696 DAG.setRoot(Chain); 1697 } 1698 1699 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1700 /// created for it, emit nodes to copy the value into the virtual 1701 /// registers. 1702 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1703 // Skip empty types 1704 if (V->getType()->isEmptyTy()) 1705 return; 1706 1707 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1708 if (VMI != FuncInfo.ValueMap.end()) { 1709 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1710 CopyValueToVirtualRegister(V, VMI->second); 1711 } 1712 } 1713 1714 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1715 /// the current basic block, add it to ValueMap now so that we'll get a 1716 /// CopyTo/FromReg. 1717 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1718 // No need to export constants. 1719 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1720 1721 // Already exported? 1722 if (FuncInfo.isExportedInst(V)) return; 1723 1724 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1725 CopyValueToVirtualRegister(V, Reg); 1726 } 1727 1728 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1729 const BasicBlock *FromBB) { 1730 // The operands of the setcc have to be in this block. We don't know 1731 // how to export them from some other block. 1732 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1733 // Can export from current BB. 1734 if (VI->getParent() == FromBB) 1735 return true; 1736 1737 // Is already exported, noop. 1738 return FuncInfo.isExportedInst(V); 1739 } 1740 1741 // If this is an argument, we can export it if the BB is the entry block or 1742 // if it is already exported. 1743 if (isa<Argument>(V)) { 1744 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1745 return true; 1746 1747 // Otherwise, can only export this if it is already exported. 1748 return FuncInfo.isExportedInst(V); 1749 } 1750 1751 // Otherwise, constants can always be exported. 1752 return true; 1753 } 1754 1755 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1756 BranchProbability 1757 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1758 const MachineBasicBlock *Dst) const { 1759 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1760 const BasicBlock *SrcBB = Src->getBasicBlock(); 1761 const BasicBlock *DstBB = Dst->getBasicBlock(); 1762 if (!BPI) { 1763 // If BPI is not available, set the default probability as 1 / N, where N is 1764 // the number of successors. 1765 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1766 return BranchProbability(1, SuccSize); 1767 } 1768 return BPI->getEdgeProbability(SrcBB, DstBB); 1769 } 1770 1771 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1772 MachineBasicBlock *Dst, 1773 BranchProbability Prob) { 1774 if (!FuncInfo.BPI) 1775 Src->addSuccessorWithoutProb(Dst); 1776 else { 1777 if (Prob.isUnknown()) 1778 Prob = getEdgeProbability(Src, Dst); 1779 Src->addSuccessor(Dst, Prob); 1780 } 1781 } 1782 1783 static bool InBlock(const Value *V, const BasicBlock *BB) { 1784 if (const Instruction *I = dyn_cast<Instruction>(V)) 1785 return I->getParent() == BB; 1786 return true; 1787 } 1788 1789 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1790 /// This function emits a branch and is used at the leaves of an OR or an 1791 /// AND operator tree. 1792 void 1793 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1794 MachineBasicBlock *TBB, 1795 MachineBasicBlock *FBB, 1796 MachineBasicBlock *CurBB, 1797 MachineBasicBlock *SwitchBB, 1798 BranchProbability TProb, 1799 BranchProbability FProb, 1800 bool InvertCond) { 1801 const BasicBlock *BB = CurBB->getBasicBlock(); 1802 1803 // If the leaf of the tree is a comparison, merge the condition into 1804 // the caseblock. 1805 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1806 // The operands of the cmp have to be in this block. We don't know 1807 // how to export them from some other block. If this is the first block 1808 // of the sequence, no exporting is needed. 1809 if (CurBB == SwitchBB || 1810 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1811 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1812 ISD::CondCode Condition; 1813 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1814 ICmpInst::Predicate Pred = 1815 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1816 Condition = getICmpCondCode(Pred); 1817 } else { 1818 const FCmpInst *FC = cast<FCmpInst>(Cond); 1819 FCmpInst::Predicate Pred = 1820 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1821 Condition = getFCmpCondCode(Pred); 1822 if (TM.Options.NoNaNsFPMath) 1823 Condition = getFCmpCodeWithoutNaN(Condition); 1824 } 1825 1826 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1827 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1828 SwitchCases.push_back(CB); 1829 return; 1830 } 1831 } 1832 1833 // Create a CaseBlock record representing this branch. 1834 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1835 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1836 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1837 SwitchCases.push_back(CB); 1838 } 1839 1840 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1841 MachineBasicBlock *TBB, 1842 MachineBasicBlock *FBB, 1843 MachineBasicBlock *CurBB, 1844 MachineBasicBlock *SwitchBB, 1845 Instruction::BinaryOps Opc, 1846 BranchProbability TProb, 1847 BranchProbability FProb, 1848 bool InvertCond) { 1849 // Skip over not part of the tree and remember to invert op and operands at 1850 // next level. 1851 Value *NotCond; 1852 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 1853 InBlock(NotCond, CurBB->getBasicBlock())) { 1854 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1855 !InvertCond); 1856 return; 1857 } 1858 1859 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1860 // Compute the effective opcode for Cond, taking into account whether it needs 1861 // to be inverted, e.g. 1862 // and (not (or A, B)), C 1863 // gets lowered as 1864 // and (and (not A, not B), C) 1865 unsigned BOpc = 0; 1866 if (BOp) { 1867 BOpc = BOp->getOpcode(); 1868 if (InvertCond) { 1869 if (BOpc == Instruction::And) 1870 BOpc = Instruction::Or; 1871 else if (BOpc == Instruction::Or) 1872 BOpc = Instruction::And; 1873 } 1874 } 1875 1876 // If this node is not part of the or/and tree, emit it as a branch. 1877 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1878 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1879 BOp->getParent() != CurBB->getBasicBlock() || 1880 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1881 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1882 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1883 TProb, FProb, InvertCond); 1884 return; 1885 } 1886 1887 // Create TmpBB after CurBB. 1888 MachineFunction::iterator BBI(CurBB); 1889 MachineFunction &MF = DAG.getMachineFunction(); 1890 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1891 CurBB->getParent()->insert(++BBI, TmpBB); 1892 1893 if (Opc == Instruction::Or) { 1894 // Codegen X | Y as: 1895 // BB1: 1896 // jmp_if_X TBB 1897 // jmp TmpBB 1898 // TmpBB: 1899 // jmp_if_Y TBB 1900 // jmp FBB 1901 // 1902 1903 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1904 // The requirement is that 1905 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1906 // = TrueProb for original BB. 1907 // Assuming the original probabilities are A and B, one choice is to set 1908 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1909 // A/(1+B) and 2B/(1+B). This choice assumes that 1910 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1911 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1912 // TmpBB, but the math is more complicated. 1913 1914 auto NewTrueProb = TProb / 2; 1915 auto NewFalseProb = TProb / 2 + FProb; 1916 // Emit the LHS condition. 1917 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1918 NewTrueProb, NewFalseProb, InvertCond); 1919 1920 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1921 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1922 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1923 // Emit the RHS condition into TmpBB. 1924 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1925 Probs[0], Probs[1], InvertCond); 1926 } else { 1927 assert(Opc == Instruction::And && "Unknown merge op!"); 1928 // Codegen X & Y as: 1929 // BB1: 1930 // jmp_if_X TmpBB 1931 // jmp FBB 1932 // TmpBB: 1933 // jmp_if_Y TBB 1934 // jmp FBB 1935 // 1936 // This requires creation of TmpBB after CurBB. 1937 1938 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1939 // The requirement is that 1940 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1941 // = FalseProb for original BB. 1942 // Assuming the original probabilities are A and B, one choice is to set 1943 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1944 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1945 // TrueProb for BB1 * FalseProb for TmpBB. 1946 1947 auto NewTrueProb = TProb + FProb / 2; 1948 auto NewFalseProb = FProb / 2; 1949 // Emit the LHS condition. 1950 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1951 NewTrueProb, NewFalseProb, InvertCond); 1952 1953 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1954 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1955 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1956 // Emit the RHS condition into TmpBB. 1957 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1958 Probs[0], Probs[1], InvertCond); 1959 } 1960 } 1961 1962 /// If the set of cases should be emitted as a series of branches, return true. 1963 /// If we should emit this as a bunch of and/or'd together conditions, return 1964 /// false. 1965 bool 1966 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1967 if (Cases.size() != 2) return true; 1968 1969 // If this is two comparisons of the same values or'd or and'd together, they 1970 // will get folded into a single comparison, so don't emit two blocks. 1971 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1972 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1973 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1974 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1975 return false; 1976 } 1977 1978 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1979 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1980 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1981 Cases[0].CC == Cases[1].CC && 1982 isa<Constant>(Cases[0].CmpRHS) && 1983 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1984 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1985 return false; 1986 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1987 return false; 1988 } 1989 1990 return true; 1991 } 1992 1993 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1994 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1995 1996 // Update machine-CFG edges. 1997 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1998 1999 if (I.isUnconditional()) { 2000 // Update machine-CFG edges. 2001 BrMBB->addSuccessor(Succ0MBB); 2002 2003 // If this is not a fall-through branch or optimizations are switched off, 2004 // emit the branch. 2005 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2006 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2007 MVT::Other, getControlRoot(), 2008 DAG.getBasicBlock(Succ0MBB))); 2009 2010 return; 2011 } 2012 2013 // If this condition is one of the special cases we handle, do special stuff 2014 // now. 2015 const Value *CondVal = I.getCondition(); 2016 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2017 2018 // If this is a series of conditions that are or'd or and'd together, emit 2019 // this as a sequence of branches instead of setcc's with and/or operations. 2020 // As long as jumps are not expensive, this should improve performance. 2021 // For example, instead of something like: 2022 // cmp A, B 2023 // C = seteq 2024 // cmp D, E 2025 // F = setle 2026 // or C, F 2027 // jnz foo 2028 // Emit: 2029 // cmp A, B 2030 // je foo 2031 // cmp D, E 2032 // jle foo 2033 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2034 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2035 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2036 !I.getMetadata(LLVMContext::MD_unpredictable) && 2037 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2038 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2039 Opcode, 2040 getEdgeProbability(BrMBB, Succ0MBB), 2041 getEdgeProbability(BrMBB, Succ1MBB), 2042 /*InvertCond=*/false); 2043 // If the compares in later blocks need to use values not currently 2044 // exported from this block, export them now. This block should always 2045 // be the first entry. 2046 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2047 2048 // Allow some cases to be rejected. 2049 if (ShouldEmitAsBranches(SwitchCases)) { 2050 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2051 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2052 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2053 } 2054 2055 // Emit the branch for this block. 2056 visitSwitchCase(SwitchCases[0], BrMBB); 2057 SwitchCases.erase(SwitchCases.begin()); 2058 return; 2059 } 2060 2061 // Okay, we decided not to do this, remove any inserted MBB's and clear 2062 // SwitchCases. 2063 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2064 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2065 2066 SwitchCases.clear(); 2067 } 2068 } 2069 2070 // Create a CaseBlock record representing this branch. 2071 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2072 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2073 2074 // Use visitSwitchCase to actually insert the fast branch sequence for this 2075 // cond branch. 2076 visitSwitchCase(CB, BrMBB); 2077 } 2078 2079 /// visitSwitchCase - Emits the necessary code to represent a single node in 2080 /// the binary search tree resulting from lowering a switch instruction. 2081 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2082 MachineBasicBlock *SwitchBB) { 2083 SDValue Cond; 2084 SDValue CondLHS = getValue(CB.CmpLHS); 2085 SDLoc dl = CB.DL; 2086 2087 // Build the setcc now. 2088 if (!CB.CmpMHS) { 2089 // Fold "(X == true)" to X and "(X == false)" to !X to 2090 // handle common cases produced by branch lowering. 2091 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2092 CB.CC == ISD::SETEQ) 2093 Cond = CondLHS; 2094 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2095 CB.CC == ISD::SETEQ) { 2096 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2097 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2098 } else 2099 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2100 } else { 2101 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2102 2103 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2104 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2105 2106 SDValue CmpOp = getValue(CB.CmpMHS); 2107 EVT VT = CmpOp.getValueType(); 2108 2109 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2110 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2111 ISD::SETLE); 2112 } else { 2113 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2114 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2115 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2116 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2117 } 2118 } 2119 2120 // Update successor info 2121 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2122 // TrueBB and FalseBB are always different unless the incoming IR is 2123 // degenerate. This only happens when running llc on weird IR. 2124 if (CB.TrueBB != CB.FalseBB) 2125 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2126 SwitchBB->normalizeSuccProbs(); 2127 2128 // If the lhs block is the next block, invert the condition so that we can 2129 // fall through to the lhs instead of the rhs block. 2130 if (CB.TrueBB == NextBlock(SwitchBB)) { 2131 std::swap(CB.TrueBB, CB.FalseBB); 2132 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2133 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2134 } 2135 2136 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2137 MVT::Other, getControlRoot(), Cond, 2138 DAG.getBasicBlock(CB.TrueBB)); 2139 2140 // Insert the false branch. Do this even if it's a fall through branch, 2141 // this makes it easier to do DAG optimizations which require inverting 2142 // the branch condition. 2143 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2144 DAG.getBasicBlock(CB.FalseBB)); 2145 2146 DAG.setRoot(BrCond); 2147 } 2148 2149 /// visitJumpTable - Emit JumpTable node in the current MBB 2150 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2151 // Emit the code for the jump table 2152 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2153 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2154 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2155 JT.Reg, PTy); 2156 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2157 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2158 MVT::Other, Index.getValue(1), 2159 Table, Index); 2160 DAG.setRoot(BrJumpTable); 2161 } 2162 2163 /// visitJumpTableHeader - This function emits necessary code to produce index 2164 /// in the JumpTable from switch case. 2165 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2166 JumpTableHeader &JTH, 2167 MachineBasicBlock *SwitchBB) { 2168 SDLoc dl = getCurSDLoc(); 2169 2170 // Subtract the lowest switch case value from the value being switched on and 2171 // conditional branch to default mbb if the result is greater than the 2172 // difference between smallest and largest cases. 2173 SDValue SwitchOp = getValue(JTH.SValue); 2174 EVT VT = SwitchOp.getValueType(); 2175 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2176 DAG.getConstant(JTH.First, dl, VT)); 2177 2178 // The SDNode we just created, which holds the value being switched on minus 2179 // the smallest case value, needs to be copied to a virtual register so it 2180 // can be used as an index into the jump table in a subsequent basic block. 2181 // This value may be smaller or larger than the target's pointer type, and 2182 // therefore require extension or truncating. 2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2184 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2185 2186 unsigned JumpTableReg = 2187 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2188 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2189 JumpTableReg, SwitchOp); 2190 JT.Reg = JumpTableReg; 2191 2192 // Emit the range check for the jump table, and branch to the default block 2193 // for the switch statement if the value being switched on exceeds the largest 2194 // case in the switch. 2195 SDValue CMP = DAG.getSetCC( 2196 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2197 Sub.getValueType()), 2198 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2199 2200 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2201 MVT::Other, CopyTo, CMP, 2202 DAG.getBasicBlock(JT.Default)); 2203 2204 // Avoid emitting unnecessary branches to the next block. 2205 if (JT.MBB != NextBlock(SwitchBB)) 2206 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2207 DAG.getBasicBlock(JT.MBB)); 2208 2209 DAG.setRoot(BrCond); 2210 } 2211 2212 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2213 /// variable if there exists one. 2214 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2215 SDValue &Chain) { 2216 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2217 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2218 MachineFunction &MF = DAG.getMachineFunction(); 2219 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2220 MachineSDNode *Node = 2221 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2222 if (Global) { 2223 MachinePointerInfo MPInfo(Global); 2224 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2225 MachineMemOperand::MODereferenceable; 2226 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2227 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2228 DAG.setNodeMemRefs(Node, {MemRef}); 2229 } 2230 return SDValue(Node, 0); 2231 } 2232 2233 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2234 /// tail spliced into a stack protector check success bb. 2235 /// 2236 /// For a high level explanation of how this fits into the stack protector 2237 /// generation see the comment on the declaration of class 2238 /// StackProtectorDescriptor. 2239 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2240 MachineBasicBlock *ParentBB) { 2241 2242 // First create the loads to the guard/stack slot for the comparison. 2243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2244 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2245 2246 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2247 int FI = MFI.getStackProtectorIndex(); 2248 2249 SDValue Guard; 2250 SDLoc dl = getCurSDLoc(); 2251 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2252 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2253 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2254 2255 // Generate code to load the content of the guard slot. 2256 SDValue GuardVal = DAG.getLoad( 2257 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2258 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2259 MachineMemOperand::MOVolatile); 2260 2261 if (TLI.useStackGuardXorFP()) 2262 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2263 2264 // Retrieve guard check function, nullptr if instrumentation is inlined. 2265 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2266 // The target provides a guard check function to validate the guard value. 2267 // Generate a call to that function with the content of the guard slot as 2268 // argument. 2269 auto *Fn = cast<Function>(GuardCheck); 2270 FunctionType *FnTy = Fn->getFunctionType(); 2271 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2272 2273 TargetLowering::ArgListTy Args; 2274 TargetLowering::ArgListEntry Entry; 2275 Entry.Node = GuardVal; 2276 Entry.Ty = FnTy->getParamType(0); 2277 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2278 Entry.IsInReg = true; 2279 Args.push_back(Entry); 2280 2281 TargetLowering::CallLoweringInfo CLI(DAG); 2282 CLI.setDebugLoc(getCurSDLoc()) 2283 .setChain(DAG.getEntryNode()) 2284 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2285 getValue(GuardCheck), std::move(Args)); 2286 2287 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2288 DAG.setRoot(Result.second); 2289 return; 2290 } 2291 2292 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2293 // Otherwise, emit a volatile load to retrieve the stack guard value. 2294 SDValue Chain = DAG.getEntryNode(); 2295 if (TLI.useLoadStackGuardNode()) { 2296 Guard = getLoadStackGuard(DAG, dl, Chain); 2297 } else { 2298 const Value *IRGuard = TLI.getSDagStackGuard(M); 2299 SDValue GuardPtr = getValue(IRGuard); 2300 2301 Guard = 2302 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2303 Align, MachineMemOperand::MOVolatile); 2304 } 2305 2306 // Perform the comparison via a subtract/getsetcc. 2307 EVT VT = Guard.getValueType(); 2308 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2309 2310 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2311 *DAG.getContext(), 2312 Sub.getValueType()), 2313 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2314 2315 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2316 // branch to failure MBB. 2317 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2318 MVT::Other, GuardVal.getOperand(0), 2319 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2320 // Otherwise branch to success MBB. 2321 SDValue Br = DAG.getNode(ISD::BR, dl, 2322 MVT::Other, BrCond, 2323 DAG.getBasicBlock(SPD.getSuccessMBB())); 2324 2325 DAG.setRoot(Br); 2326 } 2327 2328 /// Codegen the failure basic block for a stack protector check. 2329 /// 2330 /// A failure stack protector machine basic block consists simply of a call to 2331 /// __stack_chk_fail(). 2332 /// 2333 /// For a high level explanation of how this fits into the stack protector 2334 /// generation see the comment on the declaration of class 2335 /// StackProtectorDescriptor. 2336 void 2337 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2339 SDValue Chain = 2340 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2341 None, false, getCurSDLoc(), false, false).second; 2342 DAG.setRoot(Chain); 2343 } 2344 2345 /// visitBitTestHeader - This function emits necessary code to produce value 2346 /// suitable for "bit tests" 2347 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2348 MachineBasicBlock *SwitchBB) { 2349 SDLoc dl = getCurSDLoc(); 2350 2351 // Subtract the minimum value 2352 SDValue SwitchOp = getValue(B.SValue); 2353 EVT VT = SwitchOp.getValueType(); 2354 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2355 DAG.getConstant(B.First, dl, VT)); 2356 2357 // Check range 2358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2359 SDValue RangeCmp = DAG.getSetCC( 2360 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2361 Sub.getValueType()), 2362 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2363 2364 // Determine the type of the test operands. 2365 bool UsePtrType = false; 2366 if (!TLI.isTypeLegal(VT)) 2367 UsePtrType = true; 2368 else { 2369 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2370 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2371 // Switch table case range are encoded into series of masks. 2372 // Just use pointer type, it's guaranteed to fit. 2373 UsePtrType = true; 2374 break; 2375 } 2376 } 2377 if (UsePtrType) { 2378 VT = TLI.getPointerTy(DAG.getDataLayout()); 2379 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2380 } 2381 2382 B.RegVT = VT.getSimpleVT(); 2383 B.Reg = FuncInfo.CreateReg(B.RegVT); 2384 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2385 2386 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2387 2388 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2389 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2390 SwitchBB->normalizeSuccProbs(); 2391 2392 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2393 MVT::Other, CopyTo, RangeCmp, 2394 DAG.getBasicBlock(B.Default)); 2395 2396 // Avoid emitting unnecessary branches to the next block. 2397 if (MBB != NextBlock(SwitchBB)) 2398 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2399 DAG.getBasicBlock(MBB)); 2400 2401 DAG.setRoot(BrRange); 2402 } 2403 2404 /// visitBitTestCase - this function produces one "bit test" 2405 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2406 MachineBasicBlock* NextMBB, 2407 BranchProbability BranchProbToNext, 2408 unsigned Reg, 2409 BitTestCase &B, 2410 MachineBasicBlock *SwitchBB) { 2411 SDLoc dl = getCurSDLoc(); 2412 MVT VT = BB.RegVT; 2413 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2414 SDValue Cmp; 2415 unsigned PopCount = countPopulation(B.Mask); 2416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2417 if (PopCount == 1) { 2418 // Testing for a single bit; just compare the shift count with what it 2419 // would need to be to shift a 1 bit in that position. 2420 Cmp = DAG.getSetCC( 2421 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2422 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2423 ISD::SETEQ); 2424 } else if (PopCount == BB.Range) { 2425 // There is only one zero bit in the range, test for it directly. 2426 Cmp = DAG.getSetCC( 2427 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2428 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2429 ISD::SETNE); 2430 } else { 2431 // Make desired shift 2432 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2433 DAG.getConstant(1, dl, VT), ShiftOp); 2434 2435 // Emit bit tests and jumps 2436 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2437 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2438 Cmp = DAG.getSetCC( 2439 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2440 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2441 } 2442 2443 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2444 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2445 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2446 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2447 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2448 // one as they are relative probabilities (and thus work more like weights), 2449 // and hence we need to normalize them to let the sum of them become one. 2450 SwitchBB->normalizeSuccProbs(); 2451 2452 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, getControlRoot(), 2454 Cmp, DAG.getBasicBlock(B.TargetBB)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (NextMBB != NextBlock(SwitchBB)) 2458 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2459 DAG.getBasicBlock(NextMBB)); 2460 2461 DAG.setRoot(BrAnd); 2462 } 2463 2464 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2465 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2466 2467 // Retrieve successors. Look through artificial IR level blocks like 2468 // catchswitch for successors. 2469 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2470 const BasicBlock *EHPadBB = I.getSuccessor(1); 2471 2472 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2473 // have to do anything here to lower funclet bundles. 2474 assert(!I.hasOperandBundlesOtherThan( 2475 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2476 "Cannot lower invokes with arbitrary operand bundles yet!"); 2477 2478 const Value *Callee(I.getCalledValue()); 2479 const Function *Fn = dyn_cast<Function>(Callee); 2480 if (isa<InlineAsm>(Callee)) 2481 visitInlineAsm(&I); 2482 else if (Fn && Fn->isIntrinsic()) { 2483 switch (Fn->getIntrinsicID()) { 2484 default: 2485 llvm_unreachable("Cannot invoke this intrinsic"); 2486 case Intrinsic::donothing: 2487 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2488 break; 2489 case Intrinsic::experimental_patchpoint_void: 2490 case Intrinsic::experimental_patchpoint_i64: 2491 visitPatchpoint(&I, EHPadBB); 2492 break; 2493 case Intrinsic::experimental_gc_statepoint: 2494 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2495 break; 2496 } 2497 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2498 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2499 // Eventually we will support lowering the @llvm.experimental.deoptimize 2500 // intrinsic, and right now there are no plans to support other intrinsics 2501 // with deopt state. 2502 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2503 } else { 2504 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2505 } 2506 2507 // If the value of the invoke is used outside of its defining block, make it 2508 // available as a virtual register. 2509 // We already took care of the exported value for the statepoint instruction 2510 // during call to the LowerStatepoint. 2511 if (!isStatepoint(I)) { 2512 CopyToExportRegsIfNeeded(&I); 2513 } 2514 2515 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2516 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2517 BranchProbability EHPadBBProb = 2518 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2519 : BranchProbability::getZero(); 2520 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2521 2522 // Update successor info. 2523 addSuccessorWithProb(InvokeMBB, Return); 2524 for (auto &UnwindDest : UnwindDests) { 2525 UnwindDest.first->setIsEHPad(); 2526 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2527 } 2528 InvokeMBB->normalizeSuccProbs(); 2529 2530 // Drop into normal successor. 2531 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2532 MVT::Other, getControlRoot(), 2533 DAG.getBasicBlock(Return))); 2534 } 2535 2536 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2537 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2538 } 2539 2540 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2541 assert(FuncInfo.MBB->isEHPad() && 2542 "Call to landingpad not in landing pad!"); 2543 2544 // If there aren't registers to copy the values into (e.g., during SjLj 2545 // exceptions), then don't bother to create these DAG nodes. 2546 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2547 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2548 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2549 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2550 return; 2551 2552 // If landingpad's return type is token type, we don't create DAG nodes 2553 // for its exception pointer and selector value. The extraction of exception 2554 // pointer or selector value from token type landingpads is not currently 2555 // supported. 2556 if (LP.getType()->isTokenTy()) 2557 return; 2558 2559 SmallVector<EVT, 2> ValueVTs; 2560 SDLoc dl = getCurSDLoc(); 2561 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2562 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2563 2564 // Get the two live-in registers as SDValues. The physregs have already been 2565 // copied into virtual registers. 2566 SDValue Ops[2]; 2567 if (FuncInfo.ExceptionPointerVirtReg) { 2568 Ops[0] = DAG.getZExtOrTrunc( 2569 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2570 FuncInfo.ExceptionPointerVirtReg, 2571 TLI.getPointerTy(DAG.getDataLayout())), 2572 dl, ValueVTs[0]); 2573 } else { 2574 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2575 } 2576 Ops[1] = DAG.getZExtOrTrunc( 2577 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2578 FuncInfo.ExceptionSelectorVirtReg, 2579 TLI.getPointerTy(DAG.getDataLayout())), 2580 dl, ValueVTs[1]); 2581 2582 // Merge into one. 2583 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2584 DAG.getVTList(ValueVTs), Ops); 2585 setValue(&LP, Res); 2586 } 2587 2588 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2589 #ifndef NDEBUG 2590 for (const CaseCluster &CC : Clusters) 2591 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2592 #endif 2593 2594 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2595 return a.Low->getValue().slt(b.Low->getValue()); 2596 }); 2597 2598 // Merge adjacent clusters with the same destination. 2599 const unsigned N = Clusters.size(); 2600 unsigned DstIndex = 0; 2601 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2602 CaseCluster &CC = Clusters[SrcIndex]; 2603 const ConstantInt *CaseVal = CC.Low; 2604 MachineBasicBlock *Succ = CC.MBB; 2605 2606 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2607 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2608 // If this case has the same successor and is a neighbour, merge it into 2609 // the previous cluster. 2610 Clusters[DstIndex - 1].High = CaseVal; 2611 Clusters[DstIndex - 1].Prob += CC.Prob; 2612 } else { 2613 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2614 sizeof(Clusters[SrcIndex])); 2615 } 2616 } 2617 Clusters.resize(DstIndex); 2618 } 2619 2620 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2621 MachineBasicBlock *Last) { 2622 // Update JTCases. 2623 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2624 if (JTCases[i].first.HeaderBB == First) 2625 JTCases[i].first.HeaderBB = Last; 2626 2627 // Update BitTestCases. 2628 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2629 if (BitTestCases[i].Parent == First) 2630 BitTestCases[i].Parent = Last; 2631 } 2632 2633 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2634 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2635 2636 // Update machine-CFG edges with unique successors. 2637 SmallSet<BasicBlock*, 32> Done; 2638 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2639 BasicBlock *BB = I.getSuccessor(i); 2640 bool Inserted = Done.insert(BB).second; 2641 if (!Inserted) 2642 continue; 2643 2644 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2645 addSuccessorWithProb(IndirectBrMBB, Succ); 2646 } 2647 IndirectBrMBB->normalizeSuccProbs(); 2648 2649 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2650 MVT::Other, getControlRoot(), 2651 getValue(I.getAddress()))); 2652 } 2653 2654 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2655 if (!DAG.getTarget().Options.TrapUnreachable) 2656 return; 2657 2658 // We may be able to ignore unreachable behind a noreturn call. 2659 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2660 const BasicBlock &BB = *I.getParent(); 2661 if (&I != &BB.front()) { 2662 BasicBlock::const_iterator PredI = 2663 std::prev(BasicBlock::const_iterator(&I)); 2664 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2665 if (Call->doesNotReturn()) 2666 return; 2667 } 2668 } 2669 } 2670 2671 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2672 } 2673 2674 void SelectionDAGBuilder::visitFSub(const User &I) { 2675 // -0.0 - X --> fneg 2676 Type *Ty = I.getType(); 2677 if (isa<Constant>(I.getOperand(0)) && 2678 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2679 SDValue Op2 = getValue(I.getOperand(1)); 2680 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2681 Op2.getValueType(), Op2)); 2682 return; 2683 } 2684 2685 visitBinary(I, ISD::FSUB); 2686 } 2687 2688 /// Checks if the given instruction performs a vector reduction, in which case 2689 /// we have the freedom to alter the elements in the result as long as the 2690 /// reduction of them stays unchanged. 2691 static bool isVectorReductionOp(const User *I) { 2692 const Instruction *Inst = dyn_cast<Instruction>(I); 2693 if (!Inst || !Inst->getType()->isVectorTy()) 2694 return false; 2695 2696 auto OpCode = Inst->getOpcode(); 2697 switch (OpCode) { 2698 case Instruction::Add: 2699 case Instruction::Mul: 2700 case Instruction::And: 2701 case Instruction::Or: 2702 case Instruction::Xor: 2703 break; 2704 case Instruction::FAdd: 2705 case Instruction::FMul: 2706 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2707 if (FPOp->getFastMathFlags().isFast()) 2708 break; 2709 LLVM_FALLTHROUGH; 2710 default: 2711 return false; 2712 } 2713 2714 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2715 // Ensure the reduction size is a power of 2. 2716 if (!isPowerOf2_32(ElemNum)) 2717 return false; 2718 2719 unsigned ElemNumToReduce = ElemNum; 2720 2721 // Do DFS search on the def-use chain from the given instruction. We only 2722 // allow four kinds of operations during the search until we reach the 2723 // instruction that extracts the first element from the vector: 2724 // 2725 // 1. The reduction operation of the same opcode as the given instruction. 2726 // 2727 // 2. PHI node. 2728 // 2729 // 3. ShuffleVector instruction together with a reduction operation that 2730 // does a partial reduction. 2731 // 2732 // 4. ExtractElement that extracts the first element from the vector, and we 2733 // stop searching the def-use chain here. 2734 // 2735 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2736 // from 1-3 to the stack to continue the DFS. The given instruction is not 2737 // a reduction operation if we meet any other instructions other than those 2738 // listed above. 2739 2740 SmallVector<const User *, 16> UsersToVisit{Inst}; 2741 SmallPtrSet<const User *, 16> Visited; 2742 bool ReduxExtracted = false; 2743 2744 while (!UsersToVisit.empty()) { 2745 auto User = UsersToVisit.back(); 2746 UsersToVisit.pop_back(); 2747 if (!Visited.insert(User).second) 2748 continue; 2749 2750 for (const auto &U : User->users()) { 2751 auto Inst = dyn_cast<Instruction>(U); 2752 if (!Inst) 2753 return false; 2754 2755 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2756 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2757 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2758 return false; 2759 UsersToVisit.push_back(U); 2760 } else if (const ShuffleVectorInst *ShufInst = 2761 dyn_cast<ShuffleVectorInst>(U)) { 2762 // Detect the following pattern: A ShuffleVector instruction together 2763 // with a reduction that do partial reduction on the first and second 2764 // ElemNumToReduce / 2 elements, and store the result in 2765 // ElemNumToReduce / 2 elements in another vector. 2766 2767 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2768 if (ResultElements < ElemNum) 2769 return false; 2770 2771 if (ElemNumToReduce == 1) 2772 return false; 2773 if (!isa<UndefValue>(U->getOperand(1))) 2774 return false; 2775 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2776 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2777 return false; 2778 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2779 if (ShufInst->getMaskValue(i) != -1) 2780 return false; 2781 2782 // There is only one user of this ShuffleVector instruction, which 2783 // must be a reduction operation. 2784 if (!U->hasOneUse()) 2785 return false; 2786 2787 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2788 if (!U2 || U2->getOpcode() != OpCode) 2789 return false; 2790 2791 // Check operands of the reduction operation. 2792 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2793 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2794 UsersToVisit.push_back(U2); 2795 ElemNumToReduce /= 2; 2796 } else 2797 return false; 2798 } else if (isa<ExtractElementInst>(U)) { 2799 // At this moment we should have reduced all elements in the vector. 2800 if (ElemNumToReduce != 1) 2801 return false; 2802 2803 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2804 if (!Val || !Val->isZero()) 2805 return false; 2806 2807 ReduxExtracted = true; 2808 } else 2809 return false; 2810 } 2811 } 2812 return ReduxExtracted; 2813 } 2814 2815 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 2816 SDNodeFlags Flags; 2817 2818 SDValue Op = getValue(I.getOperand(0)); 2819 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 2820 Op, Flags); 2821 setValue(&I, UnNodeValue); 2822 } 2823 2824 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2825 SDNodeFlags Flags; 2826 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2827 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2828 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2829 } 2830 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2831 Flags.setExact(ExactOp->isExact()); 2832 } 2833 if (isVectorReductionOp(&I)) { 2834 Flags.setVectorReduction(true); 2835 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2836 } 2837 2838 SDValue Op1 = getValue(I.getOperand(0)); 2839 SDValue Op2 = getValue(I.getOperand(1)); 2840 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2841 Op1, Op2, Flags); 2842 setValue(&I, BinNodeValue); 2843 } 2844 2845 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2846 SDValue Op1 = getValue(I.getOperand(0)); 2847 SDValue Op2 = getValue(I.getOperand(1)); 2848 2849 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2850 Op1.getValueType(), DAG.getDataLayout()); 2851 2852 // Coerce the shift amount to the right type if we can. 2853 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2854 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2855 unsigned Op2Size = Op2.getValueSizeInBits(); 2856 SDLoc DL = getCurSDLoc(); 2857 2858 // If the operand is smaller than the shift count type, promote it. 2859 if (ShiftSize > Op2Size) 2860 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2861 2862 // If the operand is larger than the shift count type but the shift 2863 // count type has enough bits to represent any shift value, truncate 2864 // it now. This is a common case and it exposes the truncate to 2865 // optimization early. 2866 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2867 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2868 // Otherwise we'll need to temporarily settle for some other convenient 2869 // type. Type legalization will make adjustments once the shiftee is split. 2870 else 2871 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2872 } 2873 2874 bool nuw = false; 2875 bool nsw = false; 2876 bool exact = false; 2877 2878 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2879 2880 if (const OverflowingBinaryOperator *OFBinOp = 2881 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2882 nuw = OFBinOp->hasNoUnsignedWrap(); 2883 nsw = OFBinOp->hasNoSignedWrap(); 2884 } 2885 if (const PossiblyExactOperator *ExactOp = 2886 dyn_cast<const PossiblyExactOperator>(&I)) 2887 exact = ExactOp->isExact(); 2888 } 2889 SDNodeFlags Flags; 2890 Flags.setExact(exact); 2891 Flags.setNoSignedWrap(nsw); 2892 Flags.setNoUnsignedWrap(nuw); 2893 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2894 Flags); 2895 setValue(&I, Res); 2896 } 2897 2898 void SelectionDAGBuilder::visitSDiv(const User &I) { 2899 SDValue Op1 = getValue(I.getOperand(0)); 2900 SDValue Op2 = getValue(I.getOperand(1)); 2901 2902 SDNodeFlags Flags; 2903 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2904 cast<PossiblyExactOperator>(&I)->isExact()); 2905 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2906 Op2, Flags)); 2907 } 2908 2909 void SelectionDAGBuilder::visitICmp(const User &I) { 2910 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2911 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2912 predicate = IC->getPredicate(); 2913 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2914 predicate = ICmpInst::Predicate(IC->getPredicate()); 2915 SDValue Op1 = getValue(I.getOperand(0)); 2916 SDValue Op2 = getValue(I.getOperand(1)); 2917 ISD::CondCode Opcode = getICmpCondCode(predicate); 2918 2919 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2920 I.getType()); 2921 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2922 } 2923 2924 void SelectionDAGBuilder::visitFCmp(const User &I) { 2925 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2926 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2927 predicate = FC->getPredicate(); 2928 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2929 predicate = FCmpInst::Predicate(FC->getPredicate()); 2930 SDValue Op1 = getValue(I.getOperand(0)); 2931 SDValue Op2 = getValue(I.getOperand(1)); 2932 2933 ISD::CondCode Condition = getFCmpCondCode(predicate); 2934 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2935 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2936 Condition = getFCmpCodeWithoutNaN(Condition); 2937 2938 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2939 I.getType()); 2940 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2941 } 2942 2943 // Check if the condition of the select has one use or two users that are both 2944 // selects with the same condition. 2945 static bool hasOnlySelectUsers(const Value *Cond) { 2946 return llvm::all_of(Cond->users(), [](const Value *V) { 2947 return isa<SelectInst>(V); 2948 }); 2949 } 2950 2951 void SelectionDAGBuilder::visitSelect(const User &I) { 2952 SmallVector<EVT, 4> ValueVTs; 2953 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2954 ValueVTs); 2955 unsigned NumValues = ValueVTs.size(); 2956 if (NumValues == 0) return; 2957 2958 SmallVector<SDValue, 4> Values(NumValues); 2959 SDValue Cond = getValue(I.getOperand(0)); 2960 SDValue LHSVal = getValue(I.getOperand(1)); 2961 SDValue RHSVal = getValue(I.getOperand(2)); 2962 auto BaseOps = {Cond}; 2963 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2964 ISD::VSELECT : ISD::SELECT; 2965 2966 // Min/max matching is only viable if all output VTs are the same. 2967 if (is_splat(ValueVTs)) { 2968 EVT VT = ValueVTs[0]; 2969 LLVMContext &Ctx = *DAG.getContext(); 2970 auto &TLI = DAG.getTargetLoweringInfo(); 2971 2972 // We care about the legality of the operation after it has been type 2973 // legalized. 2974 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2975 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2976 VT = TLI.getTypeToTransformTo(Ctx, VT); 2977 2978 // If the vselect is legal, assume we want to leave this as a vector setcc + 2979 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2980 // min/max is legal on the scalar type. 2981 bool UseScalarMinMax = VT.isVector() && 2982 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2983 2984 Value *LHS, *RHS; 2985 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2986 ISD::NodeType Opc = ISD::DELETED_NODE; 2987 switch (SPR.Flavor) { 2988 case SPF_UMAX: Opc = ISD::UMAX; break; 2989 case SPF_UMIN: Opc = ISD::UMIN; break; 2990 case SPF_SMAX: Opc = ISD::SMAX; break; 2991 case SPF_SMIN: Opc = ISD::SMIN; break; 2992 case SPF_FMINNUM: 2993 switch (SPR.NaNBehavior) { 2994 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2995 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 2996 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2997 case SPNB_RETURNS_ANY: { 2998 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2999 Opc = ISD::FMINNUM; 3000 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3001 Opc = ISD::FMINIMUM; 3002 else if (UseScalarMinMax) 3003 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3004 ISD::FMINNUM : ISD::FMINIMUM; 3005 break; 3006 } 3007 } 3008 break; 3009 case SPF_FMAXNUM: 3010 switch (SPR.NaNBehavior) { 3011 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3012 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3013 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3014 case SPNB_RETURNS_ANY: 3015 3016 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3017 Opc = ISD::FMAXNUM; 3018 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3019 Opc = ISD::FMAXIMUM; 3020 else if (UseScalarMinMax) 3021 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3022 ISD::FMAXNUM : ISD::FMAXIMUM; 3023 break; 3024 } 3025 break; 3026 default: break; 3027 } 3028 3029 if (Opc != ISD::DELETED_NODE && 3030 (TLI.isOperationLegalOrCustom(Opc, VT) || 3031 (UseScalarMinMax && 3032 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3033 // If the underlying comparison instruction is used by any other 3034 // instruction, the consumed instructions won't be destroyed, so it is 3035 // not profitable to convert to a min/max. 3036 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3037 OpCode = Opc; 3038 LHSVal = getValue(LHS); 3039 RHSVal = getValue(RHS); 3040 BaseOps = {}; 3041 } 3042 } 3043 3044 for (unsigned i = 0; i != NumValues; ++i) { 3045 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3046 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3047 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3048 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 3049 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 3050 Ops); 3051 } 3052 3053 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3054 DAG.getVTList(ValueVTs), Values)); 3055 } 3056 3057 void SelectionDAGBuilder::visitTrunc(const User &I) { 3058 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3059 SDValue N = getValue(I.getOperand(0)); 3060 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3061 I.getType()); 3062 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3063 } 3064 3065 void SelectionDAGBuilder::visitZExt(const User &I) { 3066 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3067 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3068 SDValue N = getValue(I.getOperand(0)); 3069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3070 I.getType()); 3071 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3072 } 3073 3074 void SelectionDAGBuilder::visitSExt(const User &I) { 3075 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3076 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3077 SDValue N = getValue(I.getOperand(0)); 3078 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3079 I.getType()); 3080 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3081 } 3082 3083 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3084 // FPTrunc is never a no-op cast, no need to check 3085 SDValue N = getValue(I.getOperand(0)); 3086 SDLoc dl = getCurSDLoc(); 3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3088 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3089 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3090 DAG.getTargetConstant( 3091 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3092 } 3093 3094 void SelectionDAGBuilder::visitFPExt(const User &I) { 3095 // FPExt is never a no-op cast, no need to check 3096 SDValue N = getValue(I.getOperand(0)); 3097 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3098 I.getType()); 3099 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3100 } 3101 3102 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3103 // FPToUI is never a no-op cast, no need to check 3104 SDValue N = getValue(I.getOperand(0)); 3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3106 I.getType()); 3107 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3108 } 3109 3110 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3111 // FPToSI is never a no-op cast, no need to check 3112 SDValue N = getValue(I.getOperand(0)); 3113 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3114 I.getType()); 3115 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3116 } 3117 3118 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3119 // UIToFP is never a no-op cast, no need to check 3120 SDValue N = getValue(I.getOperand(0)); 3121 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3122 I.getType()); 3123 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3124 } 3125 3126 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3127 // SIToFP is never a no-op cast, no need to check 3128 SDValue N = getValue(I.getOperand(0)); 3129 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3130 I.getType()); 3131 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3132 } 3133 3134 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3135 // What to do depends on the size of the integer and the size of the pointer. 3136 // We can either truncate, zero extend, or no-op, accordingly. 3137 SDValue N = getValue(I.getOperand(0)); 3138 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3139 I.getType()); 3140 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3141 } 3142 3143 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3144 // What to do depends on the size of the integer and the size of the pointer. 3145 // We can either truncate, zero extend, or no-op, accordingly. 3146 SDValue N = getValue(I.getOperand(0)); 3147 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3148 I.getType()); 3149 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3150 } 3151 3152 void SelectionDAGBuilder::visitBitCast(const User &I) { 3153 SDValue N = getValue(I.getOperand(0)); 3154 SDLoc dl = getCurSDLoc(); 3155 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3156 I.getType()); 3157 3158 // BitCast assures us that source and destination are the same size so this is 3159 // either a BITCAST or a no-op. 3160 if (DestVT != N.getValueType()) 3161 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3162 DestVT, N)); // convert types. 3163 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3164 // might fold any kind of constant expression to an integer constant and that 3165 // is not what we are looking for. Only recognize a bitcast of a genuine 3166 // constant integer as an opaque constant. 3167 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3168 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3169 /*isOpaque*/true)); 3170 else 3171 setValue(&I, N); // noop cast. 3172 } 3173 3174 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3175 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3176 const Value *SV = I.getOperand(0); 3177 SDValue N = getValue(SV); 3178 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3179 3180 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3181 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3182 3183 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3184 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3185 3186 setValue(&I, N); 3187 } 3188 3189 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3190 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3191 SDValue InVec = getValue(I.getOperand(0)); 3192 SDValue InVal = getValue(I.getOperand(1)); 3193 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3194 TLI.getVectorIdxTy(DAG.getDataLayout())); 3195 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3196 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3197 InVec, InVal, InIdx)); 3198 } 3199 3200 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3202 SDValue InVec = getValue(I.getOperand(0)); 3203 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3204 TLI.getVectorIdxTy(DAG.getDataLayout())); 3205 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3206 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3207 InVec, InIdx)); 3208 } 3209 3210 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3211 SDValue Src1 = getValue(I.getOperand(0)); 3212 SDValue Src2 = getValue(I.getOperand(1)); 3213 SDLoc DL = getCurSDLoc(); 3214 3215 SmallVector<int, 8> Mask; 3216 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3217 unsigned MaskNumElts = Mask.size(); 3218 3219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3220 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3221 EVT SrcVT = Src1.getValueType(); 3222 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3223 3224 if (SrcNumElts == MaskNumElts) { 3225 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3226 return; 3227 } 3228 3229 // Normalize the shuffle vector since mask and vector length don't match. 3230 if (SrcNumElts < MaskNumElts) { 3231 // Mask is longer than the source vectors. We can use concatenate vector to 3232 // make the mask and vectors lengths match. 3233 3234 if (MaskNumElts % SrcNumElts == 0) { 3235 // Mask length is a multiple of the source vector length. 3236 // Check if the shuffle is some kind of concatenation of the input 3237 // vectors. 3238 unsigned NumConcat = MaskNumElts / SrcNumElts; 3239 bool IsConcat = true; 3240 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3241 for (unsigned i = 0; i != MaskNumElts; ++i) { 3242 int Idx = Mask[i]; 3243 if (Idx < 0) 3244 continue; 3245 // Ensure the indices in each SrcVT sized piece are sequential and that 3246 // the same source is used for the whole piece. 3247 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3248 (ConcatSrcs[i / SrcNumElts] >= 0 && 3249 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3250 IsConcat = false; 3251 break; 3252 } 3253 // Remember which source this index came from. 3254 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3255 } 3256 3257 // The shuffle is concatenating multiple vectors together. Just emit 3258 // a CONCAT_VECTORS operation. 3259 if (IsConcat) { 3260 SmallVector<SDValue, 8> ConcatOps; 3261 for (auto Src : ConcatSrcs) { 3262 if (Src < 0) 3263 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3264 else if (Src == 0) 3265 ConcatOps.push_back(Src1); 3266 else 3267 ConcatOps.push_back(Src2); 3268 } 3269 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3270 return; 3271 } 3272 } 3273 3274 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3275 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3276 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3277 PaddedMaskNumElts); 3278 3279 // Pad both vectors with undefs to make them the same length as the mask. 3280 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3281 3282 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3283 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3284 MOps1[0] = Src1; 3285 MOps2[0] = Src2; 3286 3287 Src1 = Src1.isUndef() 3288 ? DAG.getUNDEF(PaddedVT) 3289 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3290 Src2 = Src2.isUndef() 3291 ? DAG.getUNDEF(PaddedVT) 3292 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3293 3294 // Readjust mask for new input vector length. 3295 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3296 for (unsigned i = 0; i != MaskNumElts; ++i) { 3297 int Idx = Mask[i]; 3298 if (Idx >= (int)SrcNumElts) 3299 Idx -= SrcNumElts - PaddedMaskNumElts; 3300 MappedOps[i] = Idx; 3301 } 3302 3303 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3304 3305 // If the concatenated vector was padded, extract a subvector with the 3306 // correct number of elements. 3307 if (MaskNumElts != PaddedMaskNumElts) 3308 Result = DAG.getNode( 3309 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3310 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3311 3312 setValue(&I, Result); 3313 return; 3314 } 3315 3316 if (SrcNumElts > MaskNumElts) { 3317 // Analyze the access pattern of the vector to see if we can extract 3318 // two subvectors and do the shuffle. 3319 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3320 bool CanExtract = true; 3321 for (int Idx : Mask) { 3322 unsigned Input = 0; 3323 if (Idx < 0) 3324 continue; 3325 3326 if (Idx >= (int)SrcNumElts) { 3327 Input = 1; 3328 Idx -= SrcNumElts; 3329 } 3330 3331 // If all the indices come from the same MaskNumElts sized portion of 3332 // the sources we can use extract. Also make sure the extract wouldn't 3333 // extract past the end of the source. 3334 int NewStartIdx = alignDown(Idx, MaskNumElts); 3335 if (NewStartIdx + MaskNumElts > SrcNumElts || 3336 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3337 CanExtract = false; 3338 // Make sure we always update StartIdx as we use it to track if all 3339 // elements are undef. 3340 StartIdx[Input] = NewStartIdx; 3341 } 3342 3343 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3344 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3345 return; 3346 } 3347 if (CanExtract) { 3348 // Extract appropriate subvector and generate a vector shuffle 3349 for (unsigned Input = 0; Input < 2; ++Input) { 3350 SDValue &Src = Input == 0 ? Src1 : Src2; 3351 if (StartIdx[Input] < 0) 3352 Src = DAG.getUNDEF(VT); 3353 else { 3354 Src = DAG.getNode( 3355 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3356 DAG.getConstant(StartIdx[Input], DL, 3357 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3358 } 3359 } 3360 3361 // Calculate new mask. 3362 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3363 for (int &Idx : MappedOps) { 3364 if (Idx >= (int)SrcNumElts) 3365 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3366 else if (Idx >= 0) 3367 Idx -= StartIdx[0]; 3368 } 3369 3370 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3371 return; 3372 } 3373 } 3374 3375 // We can't use either concat vectors or extract subvectors so fall back to 3376 // replacing the shuffle with extract and build vector. 3377 // to insert and build vector. 3378 EVT EltVT = VT.getVectorElementType(); 3379 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3380 SmallVector<SDValue,8> Ops; 3381 for (int Idx : Mask) { 3382 SDValue Res; 3383 3384 if (Idx < 0) { 3385 Res = DAG.getUNDEF(EltVT); 3386 } else { 3387 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3388 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3389 3390 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3391 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3392 } 3393 3394 Ops.push_back(Res); 3395 } 3396 3397 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3398 } 3399 3400 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3401 ArrayRef<unsigned> Indices; 3402 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3403 Indices = IV->getIndices(); 3404 else 3405 Indices = cast<ConstantExpr>(&I)->getIndices(); 3406 3407 const Value *Op0 = I.getOperand(0); 3408 const Value *Op1 = I.getOperand(1); 3409 Type *AggTy = I.getType(); 3410 Type *ValTy = Op1->getType(); 3411 bool IntoUndef = isa<UndefValue>(Op0); 3412 bool FromUndef = isa<UndefValue>(Op1); 3413 3414 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3415 3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3417 SmallVector<EVT, 4> AggValueVTs; 3418 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3419 SmallVector<EVT, 4> ValValueVTs; 3420 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3421 3422 unsigned NumAggValues = AggValueVTs.size(); 3423 unsigned NumValValues = ValValueVTs.size(); 3424 SmallVector<SDValue, 4> Values(NumAggValues); 3425 3426 // Ignore an insertvalue that produces an empty object 3427 if (!NumAggValues) { 3428 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3429 return; 3430 } 3431 3432 SDValue Agg = getValue(Op0); 3433 unsigned i = 0; 3434 // Copy the beginning value(s) from the original aggregate. 3435 for (; i != LinearIndex; ++i) 3436 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3437 SDValue(Agg.getNode(), Agg.getResNo() + i); 3438 // Copy values from the inserted value(s). 3439 if (NumValValues) { 3440 SDValue Val = getValue(Op1); 3441 for (; i != LinearIndex + NumValValues; ++i) 3442 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3443 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3444 } 3445 // Copy remaining value(s) from the original aggregate. 3446 for (; i != NumAggValues; ++i) 3447 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3448 SDValue(Agg.getNode(), Agg.getResNo() + i); 3449 3450 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3451 DAG.getVTList(AggValueVTs), Values)); 3452 } 3453 3454 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3455 ArrayRef<unsigned> Indices; 3456 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3457 Indices = EV->getIndices(); 3458 else 3459 Indices = cast<ConstantExpr>(&I)->getIndices(); 3460 3461 const Value *Op0 = I.getOperand(0); 3462 Type *AggTy = Op0->getType(); 3463 Type *ValTy = I.getType(); 3464 bool OutOfUndef = isa<UndefValue>(Op0); 3465 3466 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3467 3468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3469 SmallVector<EVT, 4> ValValueVTs; 3470 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3471 3472 unsigned NumValValues = ValValueVTs.size(); 3473 3474 // Ignore a extractvalue that produces an empty object 3475 if (!NumValValues) { 3476 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3477 return; 3478 } 3479 3480 SmallVector<SDValue, 4> Values(NumValValues); 3481 3482 SDValue Agg = getValue(Op0); 3483 // Copy out the selected value(s). 3484 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3485 Values[i - LinearIndex] = 3486 OutOfUndef ? 3487 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3488 SDValue(Agg.getNode(), Agg.getResNo() + i); 3489 3490 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3491 DAG.getVTList(ValValueVTs), Values)); 3492 } 3493 3494 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3495 Value *Op0 = I.getOperand(0); 3496 // Note that the pointer operand may be a vector of pointers. Take the scalar 3497 // element which holds a pointer. 3498 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3499 SDValue N = getValue(Op0); 3500 SDLoc dl = getCurSDLoc(); 3501 3502 // Normalize Vector GEP - all scalar operands should be converted to the 3503 // splat vector. 3504 unsigned VectorWidth = I.getType()->isVectorTy() ? 3505 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3506 3507 if (VectorWidth && !N.getValueType().isVector()) { 3508 LLVMContext &Context = *DAG.getContext(); 3509 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3510 N = DAG.getSplatBuildVector(VT, dl, N); 3511 } 3512 3513 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3514 GTI != E; ++GTI) { 3515 const Value *Idx = GTI.getOperand(); 3516 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3517 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3518 if (Field) { 3519 // N = N + Offset 3520 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3521 3522 // In an inbounds GEP with an offset that is nonnegative even when 3523 // interpreted as signed, assume there is no unsigned overflow. 3524 SDNodeFlags Flags; 3525 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3526 Flags.setNoUnsignedWrap(true); 3527 3528 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3529 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3530 } 3531 } else { 3532 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3533 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3534 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3535 3536 // If this is a scalar constant or a splat vector of constants, 3537 // handle it quickly. 3538 const auto *CI = dyn_cast<ConstantInt>(Idx); 3539 if (!CI && isa<ConstantDataVector>(Idx) && 3540 cast<ConstantDataVector>(Idx)->getSplatValue()) 3541 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3542 3543 if (CI) { 3544 if (CI->isZero()) 3545 continue; 3546 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3547 LLVMContext &Context = *DAG.getContext(); 3548 SDValue OffsVal = VectorWidth ? 3549 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3550 DAG.getConstant(Offs, dl, IdxTy); 3551 3552 // In an inbouds GEP with an offset that is nonnegative even when 3553 // interpreted as signed, assume there is no unsigned overflow. 3554 SDNodeFlags Flags; 3555 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3556 Flags.setNoUnsignedWrap(true); 3557 3558 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3559 continue; 3560 } 3561 3562 // N = N + Idx * ElementSize; 3563 SDValue IdxN = getValue(Idx); 3564 3565 if (!IdxN.getValueType().isVector() && VectorWidth) { 3566 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3567 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3568 } 3569 3570 // If the index is smaller or larger than intptr_t, truncate or extend 3571 // it. 3572 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3573 3574 // If this is a multiply by a power of two, turn it into a shl 3575 // immediately. This is a very common case. 3576 if (ElementSize != 1) { 3577 if (ElementSize.isPowerOf2()) { 3578 unsigned Amt = ElementSize.logBase2(); 3579 IdxN = DAG.getNode(ISD::SHL, dl, 3580 N.getValueType(), IdxN, 3581 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3582 } else { 3583 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3584 IdxN = DAG.getNode(ISD::MUL, dl, 3585 N.getValueType(), IdxN, Scale); 3586 } 3587 } 3588 3589 N = DAG.getNode(ISD::ADD, dl, 3590 N.getValueType(), N, IdxN); 3591 } 3592 } 3593 3594 setValue(&I, N); 3595 } 3596 3597 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3598 // If this is a fixed sized alloca in the entry block of the function, 3599 // allocate it statically on the stack. 3600 if (FuncInfo.StaticAllocaMap.count(&I)) 3601 return; // getValue will auto-populate this. 3602 3603 SDLoc dl = getCurSDLoc(); 3604 Type *Ty = I.getAllocatedType(); 3605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3606 auto &DL = DAG.getDataLayout(); 3607 uint64_t TySize = DL.getTypeAllocSize(Ty); 3608 unsigned Align = 3609 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3610 3611 SDValue AllocSize = getValue(I.getArraySize()); 3612 3613 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3614 if (AllocSize.getValueType() != IntPtr) 3615 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3616 3617 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3618 AllocSize, 3619 DAG.getConstant(TySize, dl, IntPtr)); 3620 3621 // Handle alignment. If the requested alignment is less than or equal to 3622 // the stack alignment, ignore it. If the size is greater than or equal to 3623 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3624 unsigned StackAlign = 3625 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3626 if (Align <= StackAlign) 3627 Align = 0; 3628 3629 // Round the size of the allocation up to the stack alignment size 3630 // by add SA-1 to the size. This doesn't overflow because we're computing 3631 // an address inside an alloca. 3632 SDNodeFlags Flags; 3633 Flags.setNoUnsignedWrap(true); 3634 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3635 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3636 3637 // Mask out the low bits for alignment purposes. 3638 AllocSize = 3639 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3640 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3641 3642 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3643 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3644 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3645 setValue(&I, DSA); 3646 DAG.setRoot(DSA.getValue(1)); 3647 3648 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3649 } 3650 3651 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3652 if (I.isAtomic()) 3653 return visitAtomicLoad(I); 3654 3655 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3656 const Value *SV = I.getOperand(0); 3657 if (TLI.supportSwiftError()) { 3658 // Swifterror values can come from either a function parameter with 3659 // swifterror attribute or an alloca with swifterror attribute. 3660 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3661 if (Arg->hasSwiftErrorAttr()) 3662 return visitLoadFromSwiftError(I); 3663 } 3664 3665 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3666 if (Alloca->isSwiftError()) 3667 return visitLoadFromSwiftError(I); 3668 } 3669 } 3670 3671 SDValue Ptr = getValue(SV); 3672 3673 Type *Ty = I.getType(); 3674 3675 bool isVolatile = I.isVolatile(); 3676 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3677 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3678 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3679 unsigned Alignment = I.getAlignment(); 3680 3681 AAMDNodes AAInfo; 3682 I.getAAMetadata(AAInfo); 3683 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3684 3685 SmallVector<EVT, 4> ValueVTs; 3686 SmallVector<uint64_t, 4> Offsets; 3687 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3688 unsigned NumValues = ValueVTs.size(); 3689 if (NumValues == 0) 3690 return; 3691 3692 SDValue Root; 3693 bool ConstantMemory = false; 3694 if (isVolatile || NumValues > MaxParallelChains) 3695 // Serialize volatile loads with other side effects. 3696 Root = getRoot(); 3697 else if (AA && 3698 AA->pointsToConstantMemory(MemoryLocation( 3699 SV, 3700 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3701 AAInfo))) { 3702 // Do not serialize (non-volatile) loads of constant memory with anything. 3703 Root = DAG.getEntryNode(); 3704 ConstantMemory = true; 3705 } else { 3706 // Do not serialize non-volatile loads against each other. 3707 Root = DAG.getRoot(); 3708 } 3709 3710 SDLoc dl = getCurSDLoc(); 3711 3712 if (isVolatile) 3713 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3714 3715 // An aggregate load cannot wrap around the address space, so offsets to its 3716 // parts don't wrap either. 3717 SDNodeFlags Flags; 3718 Flags.setNoUnsignedWrap(true); 3719 3720 SmallVector<SDValue, 4> Values(NumValues); 3721 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3722 EVT PtrVT = Ptr.getValueType(); 3723 unsigned ChainI = 0; 3724 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3725 // Serializing loads here may result in excessive register pressure, and 3726 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3727 // could recover a bit by hoisting nodes upward in the chain by recognizing 3728 // they are side-effect free or do not alias. The optimizer should really 3729 // avoid this case by converting large object/array copies to llvm.memcpy 3730 // (MaxParallelChains should always remain as failsafe). 3731 if (ChainI == MaxParallelChains) { 3732 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3733 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3734 makeArrayRef(Chains.data(), ChainI)); 3735 Root = Chain; 3736 ChainI = 0; 3737 } 3738 SDValue A = DAG.getNode(ISD::ADD, dl, 3739 PtrVT, Ptr, 3740 DAG.getConstant(Offsets[i], dl, PtrVT), 3741 Flags); 3742 auto MMOFlags = MachineMemOperand::MONone; 3743 if (isVolatile) 3744 MMOFlags |= MachineMemOperand::MOVolatile; 3745 if (isNonTemporal) 3746 MMOFlags |= MachineMemOperand::MONonTemporal; 3747 if (isInvariant) 3748 MMOFlags |= MachineMemOperand::MOInvariant; 3749 if (isDereferenceable) 3750 MMOFlags |= MachineMemOperand::MODereferenceable; 3751 MMOFlags |= TLI.getMMOFlags(I); 3752 3753 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3754 MachinePointerInfo(SV, Offsets[i]), Alignment, 3755 MMOFlags, AAInfo, Ranges); 3756 3757 Values[i] = L; 3758 Chains[ChainI] = L.getValue(1); 3759 } 3760 3761 if (!ConstantMemory) { 3762 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3763 makeArrayRef(Chains.data(), ChainI)); 3764 if (isVolatile) 3765 DAG.setRoot(Chain); 3766 else 3767 PendingLoads.push_back(Chain); 3768 } 3769 3770 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3771 DAG.getVTList(ValueVTs), Values)); 3772 } 3773 3774 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3775 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3776 "call visitStoreToSwiftError when backend supports swifterror"); 3777 3778 SmallVector<EVT, 4> ValueVTs; 3779 SmallVector<uint64_t, 4> Offsets; 3780 const Value *SrcV = I.getOperand(0); 3781 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3782 SrcV->getType(), ValueVTs, &Offsets); 3783 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3784 "expect a single EVT for swifterror"); 3785 3786 SDValue Src = getValue(SrcV); 3787 // Create a virtual register, then update the virtual register. 3788 unsigned VReg; bool CreatedVReg; 3789 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3790 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3791 // Chain can be getRoot or getControlRoot. 3792 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3793 SDValue(Src.getNode(), Src.getResNo())); 3794 DAG.setRoot(CopyNode); 3795 if (CreatedVReg) 3796 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3797 } 3798 3799 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3800 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3801 "call visitLoadFromSwiftError when backend supports swifterror"); 3802 3803 assert(!I.isVolatile() && 3804 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3805 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3806 "Support volatile, non temporal, invariant for load_from_swift_error"); 3807 3808 const Value *SV = I.getOperand(0); 3809 Type *Ty = I.getType(); 3810 AAMDNodes AAInfo; 3811 I.getAAMetadata(AAInfo); 3812 assert( 3813 (!AA || 3814 !AA->pointsToConstantMemory(MemoryLocation( 3815 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3816 AAInfo))) && 3817 "load_from_swift_error should not be constant memory"); 3818 3819 SmallVector<EVT, 4> ValueVTs; 3820 SmallVector<uint64_t, 4> Offsets; 3821 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3822 ValueVTs, &Offsets); 3823 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3824 "expect a single EVT for swifterror"); 3825 3826 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3827 SDValue L = DAG.getCopyFromReg( 3828 getRoot(), getCurSDLoc(), 3829 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3830 ValueVTs[0]); 3831 3832 setValue(&I, L); 3833 } 3834 3835 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3836 if (I.isAtomic()) 3837 return visitAtomicStore(I); 3838 3839 const Value *SrcV = I.getOperand(0); 3840 const Value *PtrV = I.getOperand(1); 3841 3842 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3843 if (TLI.supportSwiftError()) { 3844 // Swifterror values can come from either a function parameter with 3845 // swifterror attribute or an alloca with swifterror attribute. 3846 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3847 if (Arg->hasSwiftErrorAttr()) 3848 return visitStoreToSwiftError(I); 3849 } 3850 3851 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3852 if (Alloca->isSwiftError()) 3853 return visitStoreToSwiftError(I); 3854 } 3855 } 3856 3857 SmallVector<EVT, 4> ValueVTs; 3858 SmallVector<uint64_t, 4> Offsets; 3859 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3860 SrcV->getType(), ValueVTs, &Offsets); 3861 unsigned NumValues = ValueVTs.size(); 3862 if (NumValues == 0) 3863 return; 3864 3865 // Get the lowered operands. Note that we do this after 3866 // checking if NumResults is zero, because with zero results 3867 // the operands won't have values in the map. 3868 SDValue Src = getValue(SrcV); 3869 SDValue Ptr = getValue(PtrV); 3870 3871 SDValue Root = getRoot(); 3872 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3873 SDLoc dl = getCurSDLoc(); 3874 EVT PtrVT = Ptr.getValueType(); 3875 unsigned Alignment = I.getAlignment(); 3876 AAMDNodes AAInfo; 3877 I.getAAMetadata(AAInfo); 3878 3879 auto MMOFlags = MachineMemOperand::MONone; 3880 if (I.isVolatile()) 3881 MMOFlags |= MachineMemOperand::MOVolatile; 3882 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3883 MMOFlags |= MachineMemOperand::MONonTemporal; 3884 MMOFlags |= TLI.getMMOFlags(I); 3885 3886 // An aggregate load cannot wrap around the address space, so offsets to its 3887 // parts don't wrap either. 3888 SDNodeFlags Flags; 3889 Flags.setNoUnsignedWrap(true); 3890 3891 unsigned ChainI = 0; 3892 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3893 // See visitLoad comments. 3894 if (ChainI == MaxParallelChains) { 3895 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3896 makeArrayRef(Chains.data(), ChainI)); 3897 Root = Chain; 3898 ChainI = 0; 3899 } 3900 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3901 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3902 SDValue St = DAG.getStore( 3903 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3904 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3905 Chains[ChainI] = St; 3906 } 3907 3908 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3909 makeArrayRef(Chains.data(), ChainI)); 3910 DAG.setRoot(StoreNode); 3911 } 3912 3913 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3914 bool IsCompressing) { 3915 SDLoc sdl = getCurSDLoc(); 3916 3917 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3918 unsigned& Alignment) { 3919 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3920 Src0 = I.getArgOperand(0); 3921 Ptr = I.getArgOperand(1); 3922 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3923 Mask = I.getArgOperand(3); 3924 }; 3925 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3926 unsigned& Alignment) { 3927 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3928 Src0 = I.getArgOperand(0); 3929 Ptr = I.getArgOperand(1); 3930 Mask = I.getArgOperand(2); 3931 Alignment = 0; 3932 }; 3933 3934 Value *PtrOperand, *MaskOperand, *Src0Operand; 3935 unsigned Alignment; 3936 if (IsCompressing) 3937 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3938 else 3939 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3940 3941 SDValue Ptr = getValue(PtrOperand); 3942 SDValue Src0 = getValue(Src0Operand); 3943 SDValue Mask = getValue(MaskOperand); 3944 3945 EVT VT = Src0.getValueType(); 3946 if (!Alignment) 3947 Alignment = DAG.getEVTAlignment(VT); 3948 3949 AAMDNodes AAInfo; 3950 I.getAAMetadata(AAInfo); 3951 3952 MachineMemOperand *MMO = 3953 DAG.getMachineFunction(). 3954 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3955 MachineMemOperand::MOStore, VT.getStoreSize(), 3956 Alignment, AAInfo); 3957 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3958 MMO, false /* Truncating */, 3959 IsCompressing); 3960 DAG.setRoot(StoreNode); 3961 setValue(&I, StoreNode); 3962 } 3963 3964 // Get a uniform base for the Gather/Scatter intrinsic. 3965 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3966 // We try to represent it as a base pointer + vector of indices. 3967 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3968 // The first operand of the GEP may be a single pointer or a vector of pointers 3969 // Example: 3970 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3971 // or 3972 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3973 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3974 // 3975 // When the first GEP operand is a single pointer - it is the uniform base we 3976 // are looking for. If first operand of the GEP is a splat vector - we 3977 // extract the splat value and use it as a uniform base. 3978 // In all other cases the function returns 'false'. 3979 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3980 SDValue &Scale, SelectionDAGBuilder* SDB) { 3981 SelectionDAG& DAG = SDB->DAG; 3982 LLVMContext &Context = *DAG.getContext(); 3983 3984 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3985 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3986 if (!GEP) 3987 return false; 3988 3989 const Value *GEPPtr = GEP->getPointerOperand(); 3990 if (!GEPPtr->getType()->isVectorTy()) 3991 Ptr = GEPPtr; 3992 else if (!(Ptr = getSplatValue(GEPPtr))) 3993 return false; 3994 3995 unsigned FinalIndex = GEP->getNumOperands() - 1; 3996 Value *IndexVal = GEP->getOperand(FinalIndex); 3997 3998 // Ensure all the other indices are 0. 3999 for (unsigned i = 1; i < FinalIndex; ++i) { 4000 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4001 if (!C || !C->isZero()) 4002 return false; 4003 } 4004 4005 // The operands of the GEP may be defined in another basic block. 4006 // In this case we'll not find nodes for the operands. 4007 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4008 return false; 4009 4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4011 const DataLayout &DL = DAG.getDataLayout(); 4012 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4013 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4014 Base = SDB->getValue(Ptr); 4015 Index = SDB->getValue(IndexVal); 4016 4017 if (!Index.getValueType().isVector()) { 4018 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4019 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4020 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4021 } 4022 return true; 4023 } 4024 4025 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4026 SDLoc sdl = getCurSDLoc(); 4027 4028 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4029 const Value *Ptr = I.getArgOperand(1); 4030 SDValue Src0 = getValue(I.getArgOperand(0)); 4031 SDValue Mask = getValue(I.getArgOperand(3)); 4032 EVT VT = Src0.getValueType(); 4033 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4034 if (!Alignment) 4035 Alignment = DAG.getEVTAlignment(VT); 4036 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4037 4038 AAMDNodes AAInfo; 4039 I.getAAMetadata(AAInfo); 4040 4041 SDValue Base; 4042 SDValue Index; 4043 SDValue Scale; 4044 const Value *BasePtr = Ptr; 4045 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4046 4047 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4048 MachineMemOperand *MMO = DAG.getMachineFunction(). 4049 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4050 MachineMemOperand::MOStore, VT.getStoreSize(), 4051 Alignment, AAInfo); 4052 if (!UniformBase) { 4053 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4054 Index = getValue(Ptr); 4055 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4056 } 4057 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4058 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4059 Ops, MMO); 4060 DAG.setRoot(Scatter); 4061 setValue(&I, Scatter); 4062 } 4063 4064 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4065 SDLoc sdl = getCurSDLoc(); 4066 4067 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4068 unsigned& Alignment) { 4069 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4070 Ptr = I.getArgOperand(0); 4071 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4072 Mask = I.getArgOperand(2); 4073 Src0 = I.getArgOperand(3); 4074 }; 4075 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4076 unsigned& Alignment) { 4077 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4078 Ptr = I.getArgOperand(0); 4079 Alignment = 0; 4080 Mask = I.getArgOperand(1); 4081 Src0 = I.getArgOperand(2); 4082 }; 4083 4084 Value *PtrOperand, *MaskOperand, *Src0Operand; 4085 unsigned Alignment; 4086 if (IsExpanding) 4087 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4088 else 4089 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4090 4091 SDValue Ptr = getValue(PtrOperand); 4092 SDValue Src0 = getValue(Src0Operand); 4093 SDValue Mask = getValue(MaskOperand); 4094 4095 EVT VT = Src0.getValueType(); 4096 if (!Alignment) 4097 Alignment = DAG.getEVTAlignment(VT); 4098 4099 AAMDNodes AAInfo; 4100 I.getAAMetadata(AAInfo); 4101 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4102 4103 // Do not serialize masked loads of constant memory with anything. 4104 bool AddToChain = 4105 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4106 PtrOperand, 4107 LocationSize::precise( 4108 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4109 AAInfo)); 4110 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4111 4112 MachineMemOperand *MMO = 4113 DAG.getMachineFunction(). 4114 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4115 MachineMemOperand::MOLoad, VT.getStoreSize(), 4116 Alignment, AAInfo, Ranges); 4117 4118 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4119 ISD::NON_EXTLOAD, IsExpanding); 4120 if (AddToChain) 4121 PendingLoads.push_back(Load.getValue(1)); 4122 setValue(&I, Load); 4123 } 4124 4125 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4126 SDLoc sdl = getCurSDLoc(); 4127 4128 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4129 const Value *Ptr = I.getArgOperand(0); 4130 SDValue Src0 = getValue(I.getArgOperand(3)); 4131 SDValue Mask = getValue(I.getArgOperand(2)); 4132 4133 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4134 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4135 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4136 if (!Alignment) 4137 Alignment = DAG.getEVTAlignment(VT); 4138 4139 AAMDNodes AAInfo; 4140 I.getAAMetadata(AAInfo); 4141 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4142 4143 SDValue Root = DAG.getRoot(); 4144 SDValue Base; 4145 SDValue Index; 4146 SDValue Scale; 4147 const Value *BasePtr = Ptr; 4148 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4149 bool ConstantMemory = false; 4150 if (UniformBase && AA && 4151 AA->pointsToConstantMemory( 4152 MemoryLocation(BasePtr, 4153 LocationSize::precise( 4154 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4155 AAInfo))) { 4156 // Do not serialize (non-volatile) loads of constant memory with anything. 4157 Root = DAG.getEntryNode(); 4158 ConstantMemory = true; 4159 } 4160 4161 MachineMemOperand *MMO = 4162 DAG.getMachineFunction(). 4163 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4164 MachineMemOperand::MOLoad, VT.getStoreSize(), 4165 Alignment, AAInfo, Ranges); 4166 4167 if (!UniformBase) { 4168 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4169 Index = getValue(Ptr); 4170 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4171 } 4172 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4173 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4174 Ops, MMO); 4175 4176 SDValue OutChain = Gather.getValue(1); 4177 if (!ConstantMemory) 4178 PendingLoads.push_back(OutChain); 4179 setValue(&I, Gather); 4180 } 4181 4182 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4183 SDLoc dl = getCurSDLoc(); 4184 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4185 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4186 SyncScope::ID SSID = I.getSyncScopeID(); 4187 4188 SDValue InChain = getRoot(); 4189 4190 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4191 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4192 SDValue L = DAG.getAtomicCmpSwap( 4193 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4194 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4195 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4196 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4197 4198 SDValue OutChain = L.getValue(2); 4199 4200 setValue(&I, L); 4201 DAG.setRoot(OutChain); 4202 } 4203 4204 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4205 SDLoc dl = getCurSDLoc(); 4206 ISD::NodeType NT; 4207 switch (I.getOperation()) { 4208 default: llvm_unreachable("Unknown atomicrmw operation"); 4209 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4210 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4211 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4212 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4213 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4214 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4215 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4216 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4217 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4218 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4219 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4220 } 4221 AtomicOrdering Order = I.getOrdering(); 4222 SyncScope::ID SSID = I.getSyncScopeID(); 4223 4224 SDValue InChain = getRoot(); 4225 4226 SDValue L = 4227 DAG.getAtomic(NT, dl, 4228 getValue(I.getValOperand()).getSimpleValueType(), 4229 InChain, 4230 getValue(I.getPointerOperand()), 4231 getValue(I.getValOperand()), 4232 I.getPointerOperand(), 4233 /* Alignment=*/ 0, Order, SSID); 4234 4235 SDValue OutChain = L.getValue(1); 4236 4237 setValue(&I, L); 4238 DAG.setRoot(OutChain); 4239 } 4240 4241 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4242 SDLoc dl = getCurSDLoc(); 4243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4244 SDValue Ops[3]; 4245 Ops[0] = getRoot(); 4246 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4247 TLI.getFenceOperandTy(DAG.getDataLayout())); 4248 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4249 TLI.getFenceOperandTy(DAG.getDataLayout())); 4250 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4251 } 4252 4253 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4254 SDLoc dl = getCurSDLoc(); 4255 AtomicOrdering Order = I.getOrdering(); 4256 SyncScope::ID SSID = I.getSyncScopeID(); 4257 4258 SDValue InChain = getRoot(); 4259 4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4261 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4262 4263 if (!TLI.supportsUnalignedAtomics() && 4264 I.getAlignment() < VT.getStoreSize()) 4265 report_fatal_error("Cannot generate unaligned atomic load"); 4266 4267 MachineMemOperand *MMO = 4268 DAG.getMachineFunction(). 4269 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4270 MachineMemOperand::MOVolatile | 4271 MachineMemOperand::MOLoad, 4272 VT.getStoreSize(), 4273 I.getAlignment() ? I.getAlignment() : 4274 DAG.getEVTAlignment(VT), 4275 AAMDNodes(), nullptr, SSID, Order); 4276 4277 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4278 SDValue L = 4279 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4280 getValue(I.getPointerOperand()), MMO); 4281 4282 SDValue OutChain = L.getValue(1); 4283 4284 setValue(&I, L); 4285 DAG.setRoot(OutChain); 4286 } 4287 4288 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4289 SDLoc dl = getCurSDLoc(); 4290 4291 AtomicOrdering Order = I.getOrdering(); 4292 SyncScope::ID SSID = I.getSyncScopeID(); 4293 4294 SDValue InChain = getRoot(); 4295 4296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4297 EVT VT = 4298 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4299 4300 if (I.getAlignment() < VT.getStoreSize()) 4301 report_fatal_error("Cannot generate unaligned atomic store"); 4302 4303 SDValue OutChain = 4304 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4305 InChain, 4306 getValue(I.getPointerOperand()), 4307 getValue(I.getValueOperand()), 4308 I.getPointerOperand(), I.getAlignment(), 4309 Order, SSID); 4310 4311 DAG.setRoot(OutChain); 4312 } 4313 4314 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4315 /// node. 4316 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4317 unsigned Intrinsic) { 4318 // Ignore the callsite's attributes. A specific call site may be marked with 4319 // readnone, but the lowering code will expect the chain based on the 4320 // definition. 4321 const Function *F = I.getCalledFunction(); 4322 bool HasChain = !F->doesNotAccessMemory(); 4323 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4324 4325 // Build the operand list. 4326 SmallVector<SDValue, 8> Ops; 4327 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4328 if (OnlyLoad) { 4329 // We don't need to serialize loads against other loads. 4330 Ops.push_back(DAG.getRoot()); 4331 } else { 4332 Ops.push_back(getRoot()); 4333 } 4334 } 4335 4336 // Info is set by getTgtMemInstrinsic 4337 TargetLowering::IntrinsicInfo Info; 4338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4339 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4340 DAG.getMachineFunction(), 4341 Intrinsic); 4342 4343 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4344 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4345 Info.opc == ISD::INTRINSIC_W_CHAIN) 4346 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4347 TLI.getPointerTy(DAG.getDataLayout()))); 4348 4349 // Add all operands of the call to the operand list. 4350 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4351 SDValue Op = getValue(I.getArgOperand(i)); 4352 Ops.push_back(Op); 4353 } 4354 4355 SmallVector<EVT, 4> ValueVTs; 4356 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4357 4358 if (HasChain) 4359 ValueVTs.push_back(MVT::Other); 4360 4361 SDVTList VTs = DAG.getVTList(ValueVTs); 4362 4363 // Create the node. 4364 SDValue Result; 4365 if (IsTgtIntrinsic) { 4366 // This is target intrinsic that touches memory 4367 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4368 Ops, Info.memVT, 4369 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4370 Info.flags, Info.size); 4371 } else if (!HasChain) { 4372 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4373 } else if (!I.getType()->isVoidTy()) { 4374 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4375 } else { 4376 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4377 } 4378 4379 if (HasChain) { 4380 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4381 if (OnlyLoad) 4382 PendingLoads.push_back(Chain); 4383 else 4384 DAG.setRoot(Chain); 4385 } 4386 4387 if (!I.getType()->isVoidTy()) { 4388 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4389 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4390 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4391 } else 4392 Result = lowerRangeToAssertZExt(DAG, I, Result); 4393 4394 setValue(&I, Result); 4395 } 4396 } 4397 4398 /// GetSignificand - Get the significand and build it into a floating-point 4399 /// number with exponent of 1: 4400 /// 4401 /// Op = (Op & 0x007fffff) | 0x3f800000; 4402 /// 4403 /// where Op is the hexadecimal representation of floating point value. 4404 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4405 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4406 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4407 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4408 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4409 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4410 } 4411 4412 /// GetExponent - Get the exponent: 4413 /// 4414 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4415 /// 4416 /// where Op is the hexadecimal representation of floating point value. 4417 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4418 const TargetLowering &TLI, const SDLoc &dl) { 4419 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4420 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4421 SDValue t1 = DAG.getNode( 4422 ISD::SRL, dl, MVT::i32, t0, 4423 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4424 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4425 DAG.getConstant(127, dl, MVT::i32)); 4426 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4427 } 4428 4429 /// getF32Constant - Get 32-bit floating point constant. 4430 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4431 const SDLoc &dl) { 4432 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4433 MVT::f32); 4434 } 4435 4436 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4437 SelectionDAG &DAG) { 4438 // TODO: What fast-math-flags should be set on the floating-point nodes? 4439 4440 // IntegerPartOfX = ((int32_t)(t0); 4441 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4442 4443 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4444 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4445 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4446 4447 // IntegerPartOfX <<= 23; 4448 IntegerPartOfX = DAG.getNode( 4449 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4450 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4451 DAG.getDataLayout()))); 4452 4453 SDValue TwoToFractionalPartOfX; 4454 if (LimitFloatPrecision <= 6) { 4455 // For floating-point precision of 6: 4456 // 4457 // TwoToFractionalPartOfX = 4458 // 0.997535578f + 4459 // (0.735607626f + 0.252464424f * x) * x; 4460 // 4461 // error 0.0144103317, which is 6 bits 4462 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4463 getF32Constant(DAG, 0x3e814304, dl)); 4464 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4465 getF32Constant(DAG, 0x3f3c50c8, dl)); 4466 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4467 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4468 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4469 } else if (LimitFloatPrecision <= 12) { 4470 // For floating-point precision of 12: 4471 // 4472 // TwoToFractionalPartOfX = 4473 // 0.999892986f + 4474 // (0.696457318f + 4475 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4476 // 4477 // error 0.000107046256, which is 13 to 14 bits 4478 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4479 getF32Constant(DAG, 0x3da235e3, dl)); 4480 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4481 getF32Constant(DAG, 0x3e65b8f3, dl)); 4482 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4483 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4484 getF32Constant(DAG, 0x3f324b07, dl)); 4485 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4486 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4487 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4488 } else { // LimitFloatPrecision <= 18 4489 // For floating-point precision of 18: 4490 // 4491 // TwoToFractionalPartOfX = 4492 // 0.999999982f + 4493 // (0.693148872f + 4494 // (0.240227044f + 4495 // (0.554906021e-1f + 4496 // (0.961591928e-2f + 4497 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4498 // error 2.47208000*10^(-7), which is better than 18 bits 4499 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4500 getF32Constant(DAG, 0x3924b03e, dl)); 4501 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4502 getF32Constant(DAG, 0x3ab24b87, dl)); 4503 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4504 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4505 getF32Constant(DAG, 0x3c1d8c17, dl)); 4506 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4507 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4508 getF32Constant(DAG, 0x3d634a1d, dl)); 4509 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4510 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4511 getF32Constant(DAG, 0x3e75fe14, dl)); 4512 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4513 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4514 getF32Constant(DAG, 0x3f317234, dl)); 4515 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4516 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4517 getF32Constant(DAG, 0x3f800000, dl)); 4518 } 4519 4520 // Add the exponent into the result in integer domain. 4521 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4522 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4523 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4524 } 4525 4526 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4527 /// limited-precision mode. 4528 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4529 const TargetLowering &TLI) { 4530 if (Op.getValueType() == MVT::f32 && 4531 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4532 4533 // Put the exponent in the right bit position for later addition to the 4534 // final result: 4535 // 4536 // #define LOG2OFe 1.4426950f 4537 // t0 = Op * LOG2OFe 4538 4539 // TODO: What fast-math-flags should be set here? 4540 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4541 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4542 return getLimitedPrecisionExp2(t0, dl, DAG); 4543 } 4544 4545 // No special expansion. 4546 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4547 } 4548 4549 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4550 /// limited-precision mode. 4551 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4552 const TargetLowering &TLI) { 4553 // TODO: What fast-math-flags should be set on the floating-point nodes? 4554 4555 if (Op.getValueType() == MVT::f32 && 4556 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4557 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4558 4559 // Scale the exponent by log(2) [0.69314718f]. 4560 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4561 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4562 getF32Constant(DAG, 0x3f317218, dl)); 4563 4564 // Get the significand and build it into a floating-point number with 4565 // exponent of 1. 4566 SDValue X = GetSignificand(DAG, Op1, dl); 4567 4568 SDValue LogOfMantissa; 4569 if (LimitFloatPrecision <= 6) { 4570 // For floating-point precision of 6: 4571 // 4572 // LogofMantissa = 4573 // -1.1609546f + 4574 // (1.4034025f - 0.23903021f * x) * x; 4575 // 4576 // error 0.0034276066, which is better than 8 bits 4577 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4578 getF32Constant(DAG, 0xbe74c456, dl)); 4579 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4580 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4581 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4582 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4583 getF32Constant(DAG, 0x3f949a29, dl)); 4584 } else if (LimitFloatPrecision <= 12) { 4585 // For floating-point precision of 12: 4586 // 4587 // LogOfMantissa = 4588 // -1.7417939f + 4589 // (2.8212026f + 4590 // (-1.4699568f + 4591 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4592 // 4593 // error 0.000061011436, which is 14 bits 4594 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4595 getF32Constant(DAG, 0xbd67b6d6, dl)); 4596 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4597 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4598 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4599 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4600 getF32Constant(DAG, 0x3fbc278b, dl)); 4601 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4602 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4603 getF32Constant(DAG, 0x40348e95, dl)); 4604 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4605 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4606 getF32Constant(DAG, 0x3fdef31a, dl)); 4607 } else { // LimitFloatPrecision <= 18 4608 // For floating-point precision of 18: 4609 // 4610 // LogOfMantissa = 4611 // -2.1072184f + 4612 // (4.2372794f + 4613 // (-3.7029485f + 4614 // (2.2781945f + 4615 // (-0.87823314f + 4616 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4617 // 4618 // error 0.0000023660568, which is better than 18 bits 4619 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4620 getF32Constant(DAG, 0xbc91e5ac, dl)); 4621 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4622 getF32Constant(DAG, 0x3e4350aa, dl)); 4623 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4624 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4625 getF32Constant(DAG, 0x3f60d3e3, dl)); 4626 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4627 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4628 getF32Constant(DAG, 0x4011cdf0, dl)); 4629 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4630 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4631 getF32Constant(DAG, 0x406cfd1c, dl)); 4632 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4633 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4634 getF32Constant(DAG, 0x408797cb, dl)); 4635 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4636 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4637 getF32Constant(DAG, 0x4006dcab, dl)); 4638 } 4639 4640 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4641 } 4642 4643 // No special expansion. 4644 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4645 } 4646 4647 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4648 /// limited-precision mode. 4649 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4650 const TargetLowering &TLI) { 4651 // TODO: What fast-math-flags should be set on the floating-point nodes? 4652 4653 if (Op.getValueType() == MVT::f32 && 4654 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4655 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4656 4657 // Get the exponent. 4658 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4659 4660 // Get the significand and build it into a floating-point number with 4661 // exponent of 1. 4662 SDValue X = GetSignificand(DAG, Op1, dl); 4663 4664 // Different possible minimax approximations of significand in 4665 // floating-point for various degrees of accuracy over [1,2]. 4666 SDValue Log2ofMantissa; 4667 if (LimitFloatPrecision <= 6) { 4668 // For floating-point precision of 6: 4669 // 4670 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4671 // 4672 // error 0.0049451742, which is more than 7 bits 4673 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4674 getF32Constant(DAG, 0xbeb08fe0, dl)); 4675 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4676 getF32Constant(DAG, 0x40019463, dl)); 4677 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4678 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4679 getF32Constant(DAG, 0x3fd6633d, dl)); 4680 } else if (LimitFloatPrecision <= 12) { 4681 // For floating-point precision of 12: 4682 // 4683 // Log2ofMantissa = 4684 // -2.51285454f + 4685 // (4.07009056f + 4686 // (-2.12067489f + 4687 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4688 // 4689 // error 0.0000876136000, which is better than 13 bits 4690 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4691 getF32Constant(DAG, 0xbda7262e, dl)); 4692 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4693 getF32Constant(DAG, 0x3f25280b, dl)); 4694 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4695 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4696 getF32Constant(DAG, 0x4007b923, dl)); 4697 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4698 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4699 getF32Constant(DAG, 0x40823e2f, dl)); 4700 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4701 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4702 getF32Constant(DAG, 0x4020d29c, dl)); 4703 } else { // LimitFloatPrecision <= 18 4704 // For floating-point precision of 18: 4705 // 4706 // Log2ofMantissa = 4707 // -3.0400495f + 4708 // (6.1129976f + 4709 // (-5.3420409f + 4710 // (3.2865683f + 4711 // (-1.2669343f + 4712 // (0.27515199f - 4713 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4714 // 4715 // error 0.0000018516, which is better than 18 bits 4716 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4717 getF32Constant(DAG, 0xbcd2769e, dl)); 4718 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4719 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4720 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4721 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4722 getF32Constant(DAG, 0x3fa22ae7, dl)); 4723 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4724 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4725 getF32Constant(DAG, 0x40525723, dl)); 4726 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4727 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4728 getF32Constant(DAG, 0x40aaf200, dl)); 4729 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4730 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4731 getF32Constant(DAG, 0x40c39dad, dl)); 4732 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4733 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4734 getF32Constant(DAG, 0x4042902c, dl)); 4735 } 4736 4737 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4738 } 4739 4740 // No special expansion. 4741 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4742 } 4743 4744 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4745 /// limited-precision mode. 4746 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4747 const TargetLowering &TLI) { 4748 // TODO: What fast-math-flags should be set on the floating-point nodes? 4749 4750 if (Op.getValueType() == MVT::f32 && 4751 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4752 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4753 4754 // Scale the exponent by log10(2) [0.30102999f]. 4755 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4756 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4757 getF32Constant(DAG, 0x3e9a209a, dl)); 4758 4759 // Get the significand and build it into a floating-point number with 4760 // exponent of 1. 4761 SDValue X = GetSignificand(DAG, Op1, dl); 4762 4763 SDValue Log10ofMantissa; 4764 if (LimitFloatPrecision <= 6) { 4765 // For floating-point precision of 6: 4766 // 4767 // Log10ofMantissa = 4768 // -0.50419619f + 4769 // (0.60948995f - 0.10380950f * x) * x; 4770 // 4771 // error 0.0014886165, which is 6 bits 4772 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4773 getF32Constant(DAG, 0xbdd49a13, dl)); 4774 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4775 getF32Constant(DAG, 0x3f1c0789, dl)); 4776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4777 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4778 getF32Constant(DAG, 0x3f011300, dl)); 4779 } else if (LimitFloatPrecision <= 12) { 4780 // For floating-point precision of 12: 4781 // 4782 // Log10ofMantissa = 4783 // -0.64831180f + 4784 // (0.91751397f + 4785 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4786 // 4787 // error 0.00019228036, which is better than 12 bits 4788 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4789 getF32Constant(DAG, 0x3d431f31, dl)); 4790 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4791 getF32Constant(DAG, 0x3ea21fb2, dl)); 4792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4793 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4794 getF32Constant(DAG, 0x3f6ae232, dl)); 4795 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4796 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4797 getF32Constant(DAG, 0x3f25f7c3, dl)); 4798 } else { // LimitFloatPrecision <= 18 4799 // For floating-point precision of 18: 4800 // 4801 // Log10ofMantissa = 4802 // -0.84299375f + 4803 // (1.5327582f + 4804 // (-1.0688956f + 4805 // (0.49102474f + 4806 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4807 // 4808 // error 0.0000037995730, which is better than 18 bits 4809 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4810 getF32Constant(DAG, 0x3c5d51ce, dl)); 4811 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4812 getF32Constant(DAG, 0x3e00685a, dl)); 4813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4814 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4815 getF32Constant(DAG, 0x3efb6798, dl)); 4816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4817 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4818 getF32Constant(DAG, 0x3f88d192, dl)); 4819 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4820 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4821 getF32Constant(DAG, 0x3fc4316c, dl)); 4822 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4823 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4824 getF32Constant(DAG, 0x3f57ce70, dl)); 4825 } 4826 4827 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4828 } 4829 4830 // No special expansion. 4831 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4832 } 4833 4834 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4835 /// limited-precision mode. 4836 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4837 const TargetLowering &TLI) { 4838 if (Op.getValueType() == MVT::f32 && 4839 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4840 return getLimitedPrecisionExp2(Op, dl, DAG); 4841 4842 // No special expansion. 4843 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4844 } 4845 4846 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4847 /// limited-precision mode with x == 10.0f. 4848 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4849 SelectionDAG &DAG, const TargetLowering &TLI) { 4850 bool IsExp10 = false; 4851 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4852 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4853 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4854 APFloat Ten(10.0f); 4855 IsExp10 = LHSC->isExactlyValue(Ten); 4856 } 4857 } 4858 4859 // TODO: What fast-math-flags should be set on the FMUL node? 4860 if (IsExp10) { 4861 // Put the exponent in the right bit position for later addition to the 4862 // final result: 4863 // 4864 // #define LOG2OF10 3.3219281f 4865 // t0 = Op * LOG2OF10; 4866 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4867 getF32Constant(DAG, 0x40549a78, dl)); 4868 return getLimitedPrecisionExp2(t0, dl, DAG); 4869 } 4870 4871 // No special expansion. 4872 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4873 } 4874 4875 /// ExpandPowI - Expand a llvm.powi intrinsic. 4876 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4877 SelectionDAG &DAG) { 4878 // If RHS is a constant, we can expand this out to a multiplication tree, 4879 // otherwise we end up lowering to a call to __powidf2 (for example). When 4880 // optimizing for size, we only want to do this if the expansion would produce 4881 // a small number of multiplies, otherwise we do the full expansion. 4882 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4883 // Get the exponent as a positive value. 4884 unsigned Val = RHSC->getSExtValue(); 4885 if ((int)Val < 0) Val = -Val; 4886 4887 // powi(x, 0) -> 1.0 4888 if (Val == 0) 4889 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4890 4891 const Function &F = DAG.getMachineFunction().getFunction(); 4892 if (!F.optForSize() || 4893 // If optimizing for size, don't insert too many multiplies. 4894 // This inserts up to 5 multiplies. 4895 countPopulation(Val) + Log2_32(Val) < 7) { 4896 // We use the simple binary decomposition method to generate the multiply 4897 // sequence. There are more optimal ways to do this (for example, 4898 // powi(x,15) generates one more multiply than it should), but this has 4899 // the benefit of being both really simple and much better than a libcall. 4900 SDValue Res; // Logically starts equal to 1.0 4901 SDValue CurSquare = LHS; 4902 // TODO: Intrinsics should have fast-math-flags that propagate to these 4903 // nodes. 4904 while (Val) { 4905 if (Val & 1) { 4906 if (Res.getNode()) 4907 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4908 else 4909 Res = CurSquare; // 1.0*CurSquare. 4910 } 4911 4912 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4913 CurSquare, CurSquare); 4914 Val >>= 1; 4915 } 4916 4917 // If the original was negative, invert the result, producing 1/(x*x*x). 4918 if (RHSC->getSExtValue() < 0) 4919 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4920 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4921 return Res; 4922 } 4923 } 4924 4925 // Otherwise, expand to a libcall. 4926 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4927 } 4928 4929 // getUnderlyingArgReg - Find underlying register used for a truncated or 4930 // bitcasted argument. 4931 static unsigned getUnderlyingArgReg(const SDValue &N) { 4932 switch (N.getOpcode()) { 4933 case ISD::CopyFromReg: 4934 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4935 case ISD::BITCAST: 4936 case ISD::AssertZext: 4937 case ISD::AssertSext: 4938 case ISD::TRUNCATE: 4939 return getUnderlyingArgReg(N.getOperand(0)); 4940 default: 4941 return 0; 4942 } 4943 } 4944 4945 /// If the DbgValueInst is a dbg_value of a function argument, create the 4946 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4947 /// instruction selection, they will be inserted to the entry BB. 4948 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4949 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4950 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4951 const Argument *Arg = dyn_cast<Argument>(V); 4952 if (!Arg) 4953 return false; 4954 4955 MachineFunction &MF = DAG.getMachineFunction(); 4956 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4957 4958 bool IsIndirect = false; 4959 Optional<MachineOperand> Op; 4960 // Some arguments' frame index is recorded during argument lowering. 4961 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4962 if (FI != std::numeric_limits<int>::max()) 4963 Op = MachineOperand::CreateFI(FI); 4964 4965 if (!Op && N.getNode()) { 4966 unsigned Reg = getUnderlyingArgReg(N); 4967 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4968 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4969 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4970 if (PR) 4971 Reg = PR; 4972 } 4973 if (Reg) { 4974 Op = MachineOperand::CreateReg(Reg, false); 4975 IsIndirect = IsDbgDeclare; 4976 } 4977 } 4978 4979 if (!Op && N.getNode()) 4980 // Check if frame index is available. 4981 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4982 if (FrameIndexSDNode *FINode = 4983 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4984 Op = MachineOperand::CreateFI(FINode->getIndex()); 4985 4986 if (!Op) { 4987 // Check if ValueMap has reg number. 4988 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4989 if (VMI != FuncInfo.ValueMap.end()) { 4990 const auto &TLI = DAG.getTargetLoweringInfo(); 4991 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4992 V->getType(), getABIRegCopyCC(V)); 4993 if (RFV.occupiesMultipleRegs()) { 4994 unsigned Offset = 0; 4995 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4996 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4997 auto FragmentExpr = DIExpression::createFragmentExpression( 4998 Expr, Offset, RegAndSize.second); 4999 if (!FragmentExpr) 5000 continue; 5001 FuncInfo.ArgDbgValues.push_back( 5002 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5003 Op->getReg(), Variable, *FragmentExpr)); 5004 Offset += RegAndSize.second; 5005 } 5006 return true; 5007 } 5008 Op = MachineOperand::CreateReg(VMI->second, false); 5009 IsIndirect = IsDbgDeclare; 5010 } 5011 } 5012 5013 if (!Op) 5014 return false; 5015 5016 assert(Variable->isValidLocationForIntrinsic(DL) && 5017 "Expected inlined-at fields to agree"); 5018 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5019 FuncInfo.ArgDbgValues.push_back( 5020 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5021 *Op, Variable, Expr)); 5022 5023 return true; 5024 } 5025 5026 /// Return the appropriate SDDbgValue based on N. 5027 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5028 DILocalVariable *Variable, 5029 DIExpression *Expr, 5030 const DebugLoc &dl, 5031 unsigned DbgSDNodeOrder) { 5032 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5033 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5034 // stack slot locations. 5035 // 5036 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5037 // debug values here after optimization: 5038 // 5039 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5040 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5041 // 5042 // Both describe the direct values of their associated variables. 5043 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5044 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5045 } 5046 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5047 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5048 } 5049 5050 // VisualStudio defines setjmp as _setjmp 5051 #if defined(_MSC_VER) && defined(setjmp) && \ 5052 !defined(setjmp_undefined_for_msvc) 5053 # pragma push_macro("setjmp") 5054 # undef setjmp 5055 # define setjmp_undefined_for_msvc 5056 #endif 5057 5058 /// Lower the call to the specified intrinsic function. If we want to emit this 5059 /// as a call to a named external function, return the name. Otherwise, lower it 5060 /// and return null. 5061 const char * 5062 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5064 SDLoc sdl = getCurSDLoc(); 5065 DebugLoc dl = getCurDebugLoc(); 5066 SDValue Res; 5067 5068 switch (Intrinsic) { 5069 default: 5070 // By default, turn this into a target intrinsic node. 5071 visitTargetIntrinsic(I, Intrinsic); 5072 return nullptr; 5073 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5074 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5075 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5076 case Intrinsic::returnaddress: 5077 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5078 TLI.getPointerTy(DAG.getDataLayout()), 5079 getValue(I.getArgOperand(0)))); 5080 return nullptr; 5081 case Intrinsic::addressofreturnaddress: 5082 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5083 TLI.getPointerTy(DAG.getDataLayout()))); 5084 return nullptr; 5085 case Intrinsic::sponentry: 5086 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5087 TLI.getPointerTy(DAG.getDataLayout()))); 5088 return nullptr; 5089 case Intrinsic::frameaddress: 5090 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5091 TLI.getPointerTy(DAG.getDataLayout()), 5092 getValue(I.getArgOperand(0)))); 5093 return nullptr; 5094 case Intrinsic::read_register: { 5095 Value *Reg = I.getArgOperand(0); 5096 SDValue Chain = getRoot(); 5097 SDValue RegName = 5098 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5099 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5100 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5101 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5102 setValue(&I, Res); 5103 DAG.setRoot(Res.getValue(1)); 5104 return nullptr; 5105 } 5106 case Intrinsic::write_register: { 5107 Value *Reg = I.getArgOperand(0); 5108 Value *RegValue = I.getArgOperand(1); 5109 SDValue Chain = getRoot(); 5110 SDValue RegName = 5111 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5112 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5113 RegName, getValue(RegValue))); 5114 return nullptr; 5115 } 5116 case Intrinsic::setjmp: 5117 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5118 case Intrinsic::longjmp: 5119 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5120 case Intrinsic::memcpy: { 5121 const auto &MCI = cast<MemCpyInst>(I); 5122 SDValue Op1 = getValue(I.getArgOperand(0)); 5123 SDValue Op2 = getValue(I.getArgOperand(1)); 5124 SDValue Op3 = getValue(I.getArgOperand(2)); 5125 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5126 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5127 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5128 unsigned Align = MinAlign(DstAlign, SrcAlign); 5129 bool isVol = MCI.isVolatile(); 5130 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5131 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5132 // node. 5133 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5134 false, isTC, 5135 MachinePointerInfo(I.getArgOperand(0)), 5136 MachinePointerInfo(I.getArgOperand(1))); 5137 updateDAGForMaybeTailCall(MC); 5138 return nullptr; 5139 } 5140 case Intrinsic::memset: { 5141 const auto &MSI = cast<MemSetInst>(I); 5142 SDValue Op1 = getValue(I.getArgOperand(0)); 5143 SDValue Op2 = getValue(I.getArgOperand(1)); 5144 SDValue Op3 = getValue(I.getArgOperand(2)); 5145 // @llvm.memset defines 0 and 1 to both mean no alignment. 5146 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5147 bool isVol = MSI.isVolatile(); 5148 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5149 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5150 isTC, MachinePointerInfo(I.getArgOperand(0))); 5151 updateDAGForMaybeTailCall(MS); 5152 return nullptr; 5153 } 5154 case Intrinsic::memmove: { 5155 const auto &MMI = cast<MemMoveInst>(I); 5156 SDValue Op1 = getValue(I.getArgOperand(0)); 5157 SDValue Op2 = getValue(I.getArgOperand(1)); 5158 SDValue Op3 = getValue(I.getArgOperand(2)); 5159 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5160 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5161 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5162 unsigned Align = MinAlign(DstAlign, SrcAlign); 5163 bool isVol = MMI.isVolatile(); 5164 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5165 // FIXME: Support passing different dest/src alignments to the memmove DAG 5166 // node. 5167 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5168 isTC, MachinePointerInfo(I.getArgOperand(0)), 5169 MachinePointerInfo(I.getArgOperand(1))); 5170 updateDAGForMaybeTailCall(MM); 5171 return nullptr; 5172 } 5173 case Intrinsic::memcpy_element_unordered_atomic: { 5174 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5175 SDValue Dst = getValue(MI.getRawDest()); 5176 SDValue Src = getValue(MI.getRawSource()); 5177 SDValue Length = getValue(MI.getLength()); 5178 5179 unsigned DstAlign = MI.getDestAlignment(); 5180 unsigned SrcAlign = MI.getSourceAlignment(); 5181 Type *LengthTy = MI.getLength()->getType(); 5182 unsigned ElemSz = MI.getElementSizeInBytes(); 5183 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5184 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5185 SrcAlign, Length, LengthTy, ElemSz, isTC, 5186 MachinePointerInfo(MI.getRawDest()), 5187 MachinePointerInfo(MI.getRawSource())); 5188 updateDAGForMaybeTailCall(MC); 5189 return nullptr; 5190 } 5191 case Intrinsic::memmove_element_unordered_atomic: { 5192 auto &MI = cast<AtomicMemMoveInst>(I); 5193 SDValue Dst = getValue(MI.getRawDest()); 5194 SDValue Src = getValue(MI.getRawSource()); 5195 SDValue Length = getValue(MI.getLength()); 5196 5197 unsigned DstAlign = MI.getDestAlignment(); 5198 unsigned SrcAlign = MI.getSourceAlignment(); 5199 Type *LengthTy = MI.getLength()->getType(); 5200 unsigned ElemSz = MI.getElementSizeInBytes(); 5201 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5202 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5203 SrcAlign, Length, LengthTy, ElemSz, isTC, 5204 MachinePointerInfo(MI.getRawDest()), 5205 MachinePointerInfo(MI.getRawSource())); 5206 updateDAGForMaybeTailCall(MC); 5207 return nullptr; 5208 } 5209 case Intrinsic::memset_element_unordered_atomic: { 5210 auto &MI = cast<AtomicMemSetInst>(I); 5211 SDValue Dst = getValue(MI.getRawDest()); 5212 SDValue Val = getValue(MI.getValue()); 5213 SDValue Length = getValue(MI.getLength()); 5214 5215 unsigned DstAlign = MI.getDestAlignment(); 5216 Type *LengthTy = MI.getLength()->getType(); 5217 unsigned ElemSz = MI.getElementSizeInBytes(); 5218 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5219 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5220 LengthTy, ElemSz, isTC, 5221 MachinePointerInfo(MI.getRawDest())); 5222 updateDAGForMaybeTailCall(MC); 5223 return nullptr; 5224 } 5225 case Intrinsic::dbg_addr: 5226 case Intrinsic::dbg_declare: { 5227 const auto &DI = cast<DbgVariableIntrinsic>(I); 5228 DILocalVariable *Variable = DI.getVariable(); 5229 DIExpression *Expression = DI.getExpression(); 5230 dropDanglingDebugInfo(Variable, Expression); 5231 assert(Variable && "Missing variable"); 5232 5233 // Check if address has undef value. 5234 const Value *Address = DI.getVariableLocation(); 5235 if (!Address || isa<UndefValue>(Address) || 5236 (Address->use_empty() && !isa<Argument>(Address))) { 5237 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5238 return nullptr; 5239 } 5240 5241 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5242 5243 // Check if this variable can be described by a frame index, typically 5244 // either as a static alloca or a byval parameter. 5245 int FI = std::numeric_limits<int>::max(); 5246 if (const auto *AI = 5247 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5248 if (AI->isStaticAlloca()) { 5249 auto I = FuncInfo.StaticAllocaMap.find(AI); 5250 if (I != FuncInfo.StaticAllocaMap.end()) 5251 FI = I->second; 5252 } 5253 } else if (const auto *Arg = dyn_cast<Argument>( 5254 Address->stripInBoundsConstantOffsets())) { 5255 FI = FuncInfo.getArgumentFrameIndex(Arg); 5256 } 5257 5258 // llvm.dbg.addr is control dependent and always generates indirect 5259 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5260 // the MachineFunction variable table. 5261 if (FI != std::numeric_limits<int>::max()) { 5262 if (Intrinsic == Intrinsic::dbg_addr) { 5263 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5264 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5265 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5266 } 5267 return nullptr; 5268 } 5269 5270 SDValue &N = NodeMap[Address]; 5271 if (!N.getNode() && isa<Argument>(Address)) 5272 // Check unused arguments map. 5273 N = UnusedArgNodeMap[Address]; 5274 SDDbgValue *SDV; 5275 if (N.getNode()) { 5276 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5277 Address = BCI->getOperand(0); 5278 // Parameters are handled specially. 5279 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5280 if (isParameter && FINode) { 5281 // Byval parameter. We have a frame index at this point. 5282 SDV = 5283 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5284 /*IsIndirect*/ true, dl, SDNodeOrder); 5285 } else if (isa<Argument>(Address)) { 5286 // Address is an argument, so try to emit its dbg value using 5287 // virtual register info from the FuncInfo.ValueMap. 5288 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5289 return nullptr; 5290 } else { 5291 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5292 true, dl, SDNodeOrder); 5293 } 5294 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5295 } else { 5296 // If Address is an argument then try to emit its dbg value using 5297 // virtual register info from the FuncInfo.ValueMap. 5298 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5299 N)) { 5300 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5301 } 5302 } 5303 return nullptr; 5304 } 5305 case Intrinsic::dbg_label: { 5306 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5307 DILabel *Label = DI.getLabel(); 5308 assert(Label && "Missing label"); 5309 5310 SDDbgLabel *SDV; 5311 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5312 DAG.AddDbgLabel(SDV); 5313 return nullptr; 5314 } 5315 case Intrinsic::dbg_value: { 5316 const DbgValueInst &DI = cast<DbgValueInst>(I); 5317 assert(DI.getVariable() && "Missing variable"); 5318 5319 DILocalVariable *Variable = DI.getVariable(); 5320 DIExpression *Expression = DI.getExpression(); 5321 dropDanglingDebugInfo(Variable, Expression); 5322 const Value *V = DI.getValue(); 5323 if (!V) 5324 return nullptr; 5325 5326 SDDbgValue *SDV; 5327 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 5328 isa<ConstantPointerNull>(V)) { 5329 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5330 DAG.AddDbgValue(SDV, nullptr, false); 5331 return nullptr; 5332 } 5333 5334 // Do not use getValue() in here; we don't want to generate code at 5335 // this point if it hasn't been done yet. 5336 SDValue N = NodeMap[V]; 5337 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5338 N = UnusedArgNodeMap[V]; 5339 if (N.getNode()) { 5340 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5341 return nullptr; 5342 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5343 DAG.AddDbgValue(SDV, N.getNode(), false); 5344 return nullptr; 5345 } 5346 5347 // PHI nodes have already been selected, so we should know which VReg that 5348 // is assigns to already. 5349 if (isa<PHINode>(V)) { 5350 auto VMI = FuncInfo.ValueMap.find(V); 5351 if (VMI != FuncInfo.ValueMap.end()) { 5352 unsigned Reg = VMI->second; 5353 // The PHI node may be split up into several MI PHI nodes (in 5354 // FunctionLoweringInfo::set). 5355 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5356 V->getType(), None); 5357 if (RFV.occupiesMultipleRegs()) { 5358 unsigned Offset = 0; 5359 unsigned BitsToDescribe = 0; 5360 if (auto VarSize = Variable->getSizeInBits()) 5361 BitsToDescribe = *VarSize; 5362 if (auto Fragment = Expression->getFragmentInfo()) 5363 BitsToDescribe = Fragment->SizeInBits; 5364 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5365 unsigned RegisterSize = RegAndSize.second; 5366 // Bail out if all bits are described already. 5367 if (Offset >= BitsToDescribe) 5368 break; 5369 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5370 ? BitsToDescribe - Offset 5371 : RegisterSize; 5372 auto FragmentExpr = DIExpression::createFragmentExpression( 5373 Expression, Offset, FragmentSize); 5374 if (!FragmentExpr) 5375 continue; 5376 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5377 false, dl, SDNodeOrder); 5378 DAG.AddDbgValue(SDV, nullptr, false); 5379 Offset += RegisterSize; 5380 } 5381 } else { 5382 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5383 SDNodeOrder); 5384 DAG.AddDbgValue(SDV, nullptr, false); 5385 } 5386 return nullptr; 5387 } 5388 } 5389 5390 // TODO: When we get here we will either drop the dbg.value completely, or 5391 // we try to move it forward by letting it dangle for awhile. So we should 5392 // probably add an extra DbgValue to the DAG here, with a reference to 5393 // "noreg", to indicate that we have lost the debug location for the 5394 // variable. 5395 5396 if (!V->use_empty() ) { 5397 // Do not call getValue(V) yet, as we don't want to generate code. 5398 // Remember it for later. 5399 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5400 return nullptr; 5401 } 5402 5403 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5404 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5405 return nullptr; 5406 } 5407 5408 case Intrinsic::eh_typeid_for: { 5409 // Find the type id for the given typeinfo. 5410 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5411 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5412 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5413 setValue(&I, Res); 5414 return nullptr; 5415 } 5416 5417 case Intrinsic::eh_return_i32: 5418 case Intrinsic::eh_return_i64: 5419 DAG.getMachineFunction().setCallsEHReturn(true); 5420 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5421 MVT::Other, 5422 getControlRoot(), 5423 getValue(I.getArgOperand(0)), 5424 getValue(I.getArgOperand(1)))); 5425 return nullptr; 5426 case Intrinsic::eh_unwind_init: 5427 DAG.getMachineFunction().setCallsUnwindInit(true); 5428 return nullptr; 5429 case Intrinsic::eh_dwarf_cfa: 5430 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5431 TLI.getPointerTy(DAG.getDataLayout()), 5432 getValue(I.getArgOperand(0)))); 5433 return nullptr; 5434 case Intrinsic::eh_sjlj_callsite: { 5435 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5436 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5437 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5438 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5439 5440 MMI.setCurrentCallSite(CI->getZExtValue()); 5441 return nullptr; 5442 } 5443 case Intrinsic::eh_sjlj_functioncontext: { 5444 // Get and store the index of the function context. 5445 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5446 AllocaInst *FnCtx = 5447 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5448 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5449 MFI.setFunctionContextIndex(FI); 5450 return nullptr; 5451 } 5452 case Intrinsic::eh_sjlj_setjmp: { 5453 SDValue Ops[2]; 5454 Ops[0] = getRoot(); 5455 Ops[1] = getValue(I.getArgOperand(0)); 5456 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5457 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5458 setValue(&I, Op.getValue(0)); 5459 DAG.setRoot(Op.getValue(1)); 5460 return nullptr; 5461 } 5462 case Intrinsic::eh_sjlj_longjmp: 5463 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5464 getRoot(), getValue(I.getArgOperand(0)))); 5465 return nullptr; 5466 case Intrinsic::eh_sjlj_setup_dispatch: 5467 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5468 getRoot())); 5469 return nullptr; 5470 case Intrinsic::masked_gather: 5471 visitMaskedGather(I); 5472 return nullptr; 5473 case Intrinsic::masked_load: 5474 visitMaskedLoad(I); 5475 return nullptr; 5476 case Intrinsic::masked_scatter: 5477 visitMaskedScatter(I); 5478 return nullptr; 5479 case Intrinsic::masked_store: 5480 visitMaskedStore(I); 5481 return nullptr; 5482 case Intrinsic::masked_expandload: 5483 visitMaskedLoad(I, true /* IsExpanding */); 5484 return nullptr; 5485 case Intrinsic::masked_compressstore: 5486 visitMaskedStore(I, true /* IsCompressing */); 5487 return nullptr; 5488 case Intrinsic::x86_mmx_pslli_w: 5489 case Intrinsic::x86_mmx_pslli_d: 5490 case Intrinsic::x86_mmx_pslli_q: 5491 case Intrinsic::x86_mmx_psrli_w: 5492 case Intrinsic::x86_mmx_psrli_d: 5493 case Intrinsic::x86_mmx_psrli_q: 5494 case Intrinsic::x86_mmx_psrai_w: 5495 case Intrinsic::x86_mmx_psrai_d: { 5496 SDValue ShAmt = getValue(I.getArgOperand(1)); 5497 if (isa<ConstantSDNode>(ShAmt)) { 5498 visitTargetIntrinsic(I, Intrinsic); 5499 return nullptr; 5500 } 5501 unsigned NewIntrinsic = 0; 5502 EVT ShAmtVT = MVT::v2i32; 5503 switch (Intrinsic) { 5504 case Intrinsic::x86_mmx_pslli_w: 5505 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5506 break; 5507 case Intrinsic::x86_mmx_pslli_d: 5508 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5509 break; 5510 case Intrinsic::x86_mmx_pslli_q: 5511 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5512 break; 5513 case Intrinsic::x86_mmx_psrli_w: 5514 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5515 break; 5516 case Intrinsic::x86_mmx_psrli_d: 5517 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5518 break; 5519 case Intrinsic::x86_mmx_psrli_q: 5520 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5521 break; 5522 case Intrinsic::x86_mmx_psrai_w: 5523 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5524 break; 5525 case Intrinsic::x86_mmx_psrai_d: 5526 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5527 break; 5528 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5529 } 5530 5531 // The vector shift intrinsics with scalars uses 32b shift amounts but 5532 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5533 // to be zero. 5534 // We must do this early because v2i32 is not a legal type. 5535 SDValue ShOps[2]; 5536 ShOps[0] = ShAmt; 5537 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5538 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5539 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5540 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5541 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5542 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5543 getValue(I.getArgOperand(0)), ShAmt); 5544 setValue(&I, Res); 5545 return nullptr; 5546 } 5547 case Intrinsic::powi: 5548 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5549 getValue(I.getArgOperand(1)), DAG)); 5550 return nullptr; 5551 case Intrinsic::log: 5552 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5553 return nullptr; 5554 case Intrinsic::log2: 5555 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5556 return nullptr; 5557 case Intrinsic::log10: 5558 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5559 return nullptr; 5560 case Intrinsic::exp: 5561 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5562 return nullptr; 5563 case Intrinsic::exp2: 5564 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5565 return nullptr; 5566 case Intrinsic::pow: 5567 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5568 getValue(I.getArgOperand(1)), DAG, TLI)); 5569 return nullptr; 5570 case Intrinsic::sqrt: 5571 case Intrinsic::fabs: 5572 case Intrinsic::sin: 5573 case Intrinsic::cos: 5574 case Intrinsic::floor: 5575 case Intrinsic::ceil: 5576 case Intrinsic::trunc: 5577 case Intrinsic::rint: 5578 case Intrinsic::nearbyint: 5579 case Intrinsic::round: 5580 case Intrinsic::canonicalize: { 5581 unsigned Opcode; 5582 switch (Intrinsic) { 5583 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5584 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5585 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5586 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5587 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5588 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5589 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5590 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5591 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5592 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5593 case Intrinsic::round: Opcode = ISD::FROUND; break; 5594 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5595 } 5596 5597 setValue(&I, DAG.getNode(Opcode, sdl, 5598 getValue(I.getArgOperand(0)).getValueType(), 5599 getValue(I.getArgOperand(0)))); 5600 return nullptr; 5601 } 5602 case Intrinsic::minnum: { 5603 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5604 unsigned Opc = 5605 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5606 ? ISD::FMINIMUM 5607 : ISD::FMINNUM; 5608 setValue(&I, DAG.getNode(Opc, sdl, VT, 5609 getValue(I.getArgOperand(0)), 5610 getValue(I.getArgOperand(1)))); 5611 return nullptr; 5612 } 5613 case Intrinsic::maxnum: { 5614 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5615 unsigned Opc = 5616 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5617 ? ISD::FMAXIMUM 5618 : ISD::FMAXNUM; 5619 setValue(&I, DAG.getNode(Opc, sdl, VT, 5620 getValue(I.getArgOperand(0)), 5621 getValue(I.getArgOperand(1)))); 5622 return nullptr; 5623 } 5624 case Intrinsic::minimum: 5625 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5626 getValue(I.getArgOperand(0)).getValueType(), 5627 getValue(I.getArgOperand(0)), 5628 getValue(I.getArgOperand(1)))); 5629 return nullptr; 5630 case Intrinsic::maximum: 5631 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5632 getValue(I.getArgOperand(0)).getValueType(), 5633 getValue(I.getArgOperand(0)), 5634 getValue(I.getArgOperand(1)))); 5635 return nullptr; 5636 case Intrinsic::copysign: 5637 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5638 getValue(I.getArgOperand(0)).getValueType(), 5639 getValue(I.getArgOperand(0)), 5640 getValue(I.getArgOperand(1)))); 5641 return nullptr; 5642 case Intrinsic::fma: 5643 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5644 getValue(I.getArgOperand(0)).getValueType(), 5645 getValue(I.getArgOperand(0)), 5646 getValue(I.getArgOperand(1)), 5647 getValue(I.getArgOperand(2)))); 5648 return nullptr; 5649 case Intrinsic::experimental_constrained_fadd: 5650 case Intrinsic::experimental_constrained_fsub: 5651 case Intrinsic::experimental_constrained_fmul: 5652 case Intrinsic::experimental_constrained_fdiv: 5653 case Intrinsic::experimental_constrained_frem: 5654 case Intrinsic::experimental_constrained_fma: 5655 case Intrinsic::experimental_constrained_sqrt: 5656 case Intrinsic::experimental_constrained_pow: 5657 case Intrinsic::experimental_constrained_powi: 5658 case Intrinsic::experimental_constrained_sin: 5659 case Intrinsic::experimental_constrained_cos: 5660 case Intrinsic::experimental_constrained_exp: 5661 case Intrinsic::experimental_constrained_exp2: 5662 case Intrinsic::experimental_constrained_log: 5663 case Intrinsic::experimental_constrained_log10: 5664 case Intrinsic::experimental_constrained_log2: 5665 case Intrinsic::experimental_constrained_rint: 5666 case Intrinsic::experimental_constrained_nearbyint: 5667 case Intrinsic::experimental_constrained_maxnum: 5668 case Intrinsic::experimental_constrained_minnum: 5669 case Intrinsic::experimental_constrained_ceil: 5670 case Intrinsic::experimental_constrained_floor: 5671 case Intrinsic::experimental_constrained_round: 5672 case Intrinsic::experimental_constrained_trunc: 5673 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5674 return nullptr; 5675 case Intrinsic::fmuladd: { 5676 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5677 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5678 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5679 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5680 getValue(I.getArgOperand(0)).getValueType(), 5681 getValue(I.getArgOperand(0)), 5682 getValue(I.getArgOperand(1)), 5683 getValue(I.getArgOperand(2)))); 5684 } else { 5685 // TODO: Intrinsic calls should have fast-math-flags. 5686 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5687 getValue(I.getArgOperand(0)).getValueType(), 5688 getValue(I.getArgOperand(0)), 5689 getValue(I.getArgOperand(1))); 5690 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5691 getValue(I.getArgOperand(0)).getValueType(), 5692 Mul, 5693 getValue(I.getArgOperand(2))); 5694 setValue(&I, Add); 5695 } 5696 return nullptr; 5697 } 5698 case Intrinsic::convert_to_fp16: 5699 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5700 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5701 getValue(I.getArgOperand(0)), 5702 DAG.getTargetConstant(0, sdl, 5703 MVT::i32)))); 5704 return nullptr; 5705 case Intrinsic::convert_from_fp16: 5706 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5707 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5708 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5709 getValue(I.getArgOperand(0))))); 5710 return nullptr; 5711 case Intrinsic::pcmarker: { 5712 SDValue Tmp = getValue(I.getArgOperand(0)); 5713 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5714 return nullptr; 5715 } 5716 case Intrinsic::readcyclecounter: { 5717 SDValue Op = getRoot(); 5718 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5719 DAG.getVTList(MVT::i64, MVT::Other), Op); 5720 setValue(&I, Res); 5721 DAG.setRoot(Res.getValue(1)); 5722 return nullptr; 5723 } 5724 case Intrinsic::bitreverse: 5725 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5726 getValue(I.getArgOperand(0)).getValueType(), 5727 getValue(I.getArgOperand(0)))); 5728 return nullptr; 5729 case Intrinsic::bswap: 5730 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5731 getValue(I.getArgOperand(0)).getValueType(), 5732 getValue(I.getArgOperand(0)))); 5733 return nullptr; 5734 case Intrinsic::cttz: { 5735 SDValue Arg = getValue(I.getArgOperand(0)); 5736 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5737 EVT Ty = Arg.getValueType(); 5738 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5739 sdl, Ty, Arg)); 5740 return nullptr; 5741 } 5742 case Intrinsic::ctlz: { 5743 SDValue Arg = getValue(I.getArgOperand(0)); 5744 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5745 EVT Ty = Arg.getValueType(); 5746 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5747 sdl, Ty, Arg)); 5748 return nullptr; 5749 } 5750 case Intrinsic::ctpop: { 5751 SDValue Arg = getValue(I.getArgOperand(0)); 5752 EVT Ty = Arg.getValueType(); 5753 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5754 return nullptr; 5755 } 5756 case Intrinsic::fshl: 5757 case Intrinsic::fshr: { 5758 bool IsFSHL = Intrinsic == Intrinsic::fshl; 5759 SDValue X = getValue(I.getArgOperand(0)); 5760 SDValue Y = getValue(I.getArgOperand(1)); 5761 SDValue Z = getValue(I.getArgOperand(2)); 5762 EVT VT = X.getValueType(); 5763 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 5764 SDValue Zero = DAG.getConstant(0, sdl, VT); 5765 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 5766 5767 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 5768 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 5769 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 5770 return nullptr; 5771 } 5772 5773 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 5774 // avoid the select that is necessary in the general case to filter out 5775 // the 0-shift possibility that leads to UB. 5776 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 5777 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 5778 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 5779 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 5780 return nullptr; 5781 } 5782 5783 // Some targets only rotate one way. Try the opposite direction. 5784 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 5785 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 5786 // Negate the shift amount because it is safe to ignore the high bits. 5787 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5788 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 5789 return nullptr; 5790 } 5791 5792 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 5793 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 5794 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 5795 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 5796 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 5797 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 5798 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 5799 return nullptr; 5800 } 5801 5802 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5803 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5804 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 5805 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 5806 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5807 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 5808 5809 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5810 // and that is undefined. We must compare and select to avoid UB. 5811 EVT CCVT = MVT::i1; 5812 if (VT.isVector()) 5813 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 5814 5815 // For fshl, 0-shift returns the 1st arg (X). 5816 // For fshr, 0-shift returns the 2nd arg (Y). 5817 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 5818 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 5819 return nullptr; 5820 } 5821 case Intrinsic::sadd_sat: { 5822 SDValue Op1 = getValue(I.getArgOperand(0)); 5823 SDValue Op2 = getValue(I.getArgOperand(1)); 5824 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5825 return nullptr; 5826 } 5827 case Intrinsic::uadd_sat: { 5828 SDValue Op1 = getValue(I.getArgOperand(0)); 5829 SDValue Op2 = getValue(I.getArgOperand(1)); 5830 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 5831 return nullptr; 5832 } 5833 case Intrinsic::ssub_sat: { 5834 SDValue Op1 = getValue(I.getArgOperand(0)); 5835 SDValue Op2 = getValue(I.getArgOperand(1)); 5836 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5837 return nullptr; 5838 } 5839 case Intrinsic::usub_sat: { 5840 SDValue Op1 = getValue(I.getArgOperand(0)); 5841 SDValue Op2 = getValue(I.getArgOperand(1)); 5842 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 5843 return nullptr; 5844 } 5845 case Intrinsic::smul_fix: { 5846 SDValue Op1 = getValue(I.getArgOperand(0)); 5847 SDValue Op2 = getValue(I.getArgOperand(1)); 5848 SDValue Op3 = getValue(I.getArgOperand(2)); 5849 setValue(&I, 5850 DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3)); 5851 return nullptr; 5852 } 5853 case Intrinsic::stacksave: { 5854 SDValue Op = getRoot(); 5855 Res = DAG.getNode( 5856 ISD::STACKSAVE, sdl, 5857 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5858 setValue(&I, Res); 5859 DAG.setRoot(Res.getValue(1)); 5860 return nullptr; 5861 } 5862 case Intrinsic::stackrestore: 5863 Res = getValue(I.getArgOperand(0)); 5864 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5865 return nullptr; 5866 case Intrinsic::get_dynamic_area_offset: { 5867 SDValue Op = getRoot(); 5868 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5869 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5870 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5871 // target. 5872 if (PtrTy != ResTy) 5873 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5874 " intrinsic!"); 5875 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5876 Op); 5877 DAG.setRoot(Op); 5878 setValue(&I, Res); 5879 return nullptr; 5880 } 5881 case Intrinsic::stackguard: { 5882 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5883 MachineFunction &MF = DAG.getMachineFunction(); 5884 const Module &M = *MF.getFunction().getParent(); 5885 SDValue Chain = getRoot(); 5886 if (TLI.useLoadStackGuardNode()) { 5887 Res = getLoadStackGuard(DAG, sdl, Chain); 5888 } else { 5889 const Value *Global = TLI.getSDagStackGuard(M); 5890 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5891 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5892 MachinePointerInfo(Global, 0), Align, 5893 MachineMemOperand::MOVolatile); 5894 } 5895 if (TLI.useStackGuardXorFP()) 5896 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5897 DAG.setRoot(Chain); 5898 setValue(&I, Res); 5899 return nullptr; 5900 } 5901 case Intrinsic::stackprotector: { 5902 // Emit code into the DAG to store the stack guard onto the stack. 5903 MachineFunction &MF = DAG.getMachineFunction(); 5904 MachineFrameInfo &MFI = MF.getFrameInfo(); 5905 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5906 SDValue Src, Chain = getRoot(); 5907 5908 if (TLI.useLoadStackGuardNode()) 5909 Src = getLoadStackGuard(DAG, sdl, Chain); 5910 else 5911 Src = getValue(I.getArgOperand(0)); // The guard's value. 5912 5913 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5914 5915 int FI = FuncInfo.StaticAllocaMap[Slot]; 5916 MFI.setStackProtectorIndex(FI); 5917 5918 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5919 5920 // Store the stack protector onto the stack. 5921 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5922 DAG.getMachineFunction(), FI), 5923 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5924 setValue(&I, Res); 5925 DAG.setRoot(Res); 5926 return nullptr; 5927 } 5928 case Intrinsic::objectsize: { 5929 // If we don't know by now, we're never going to know. 5930 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5931 5932 assert(CI && "Non-constant type in __builtin_object_size?"); 5933 5934 SDValue Arg = getValue(I.getCalledValue()); 5935 EVT Ty = Arg.getValueType(); 5936 5937 if (CI->isZero()) 5938 Res = DAG.getConstant(-1ULL, sdl, Ty); 5939 else 5940 Res = DAG.getConstant(0, sdl, Ty); 5941 5942 setValue(&I, Res); 5943 return nullptr; 5944 } 5945 5946 case Intrinsic::is_constant: 5947 // If this wasn't constant-folded away by now, then it's not a 5948 // constant. 5949 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 5950 return nullptr; 5951 5952 case Intrinsic::annotation: 5953 case Intrinsic::ptr_annotation: 5954 case Intrinsic::launder_invariant_group: 5955 case Intrinsic::strip_invariant_group: 5956 // Drop the intrinsic, but forward the value 5957 setValue(&I, getValue(I.getOperand(0))); 5958 return nullptr; 5959 case Intrinsic::assume: 5960 case Intrinsic::var_annotation: 5961 case Intrinsic::sideeffect: 5962 // Discard annotate attributes, assumptions, and artificial side-effects. 5963 return nullptr; 5964 5965 case Intrinsic::codeview_annotation: { 5966 // Emit a label associated with this metadata. 5967 MachineFunction &MF = DAG.getMachineFunction(); 5968 MCSymbol *Label = 5969 MF.getMMI().getContext().createTempSymbol("annotation", true); 5970 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5971 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5972 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5973 DAG.setRoot(Res); 5974 return nullptr; 5975 } 5976 5977 case Intrinsic::init_trampoline: { 5978 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5979 5980 SDValue Ops[6]; 5981 Ops[0] = getRoot(); 5982 Ops[1] = getValue(I.getArgOperand(0)); 5983 Ops[2] = getValue(I.getArgOperand(1)); 5984 Ops[3] = getValue(I.getArgOperand(2)); 5985 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5986 Ops[5] = DAG.getSrcValue(F); 5987 5988 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5989 5990 DAG.setRoot(Res); 5991 return nullptr; 5992 } 5993 case Intrinsic::adjust_trampoline: 5994 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5995 TLI.getPointerTy(DAG.getDataLayout()), 5996 getValue(I.getArgOperand(0)))); 5997 return nullptr; 5998 case Intrinsic::gcroot: { 5999 assert(DAG.getMachineFunction().getFunction().hasGC() && 6000 "only valid in functions with gc specified, enforced by Verifier"); 6001 assert(GFI && "implied by previous"); 6002 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6003 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6004 6005 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6006 GFI->addStackRoot(FI->getIndex(), TypeMap); 6007 return nullptr; 6008 } 6009 case Intrinsic::gcread: 6010 case Intrinsic::gcwrite: 6011 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6012 case Intrinsic::flt_rounds: 6013 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6014 return nullptr; 6015 6016 case Intrinsic::expect: 6017 // Just replace __builtin_expect(exp, c) with EXP. 6018 setValue(&I, getValue(I.getArgOperand(0))); 6019 return nullptr; 6020 6021 case Intrinsic::debugtrap: 6022 case Intrinsic::trap: { 6023 StringRef TrapFuncName = 6024 I.getAttributes() 6025 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6026 .getValueAsString(); 6027 if (TrapFuncName.empty()) { 6028 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6029 ISD::TRAP : ISD::DEBUGTRAP; 6030 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6031 return nullptr; 6032 } 6033 TargetLowering::ArgListTy Args; 6034 6035 TargetLowering::CallLoweringInfo CLI(DAG); 6036 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6037 CallingConv::C, I.getType(), 6038 DAG.getExternalSymbol(TrapFuncName.data(), 6039 TLI.getPointerTy(DAG.getDataLayout())), 6040 std::move(Args)); 6041 6042 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6043 DAG.setRoot(Result.second); 6044 return nullptr; 6045 } 6046 6047 case Intrinsic::uadd_with_overflow: 6048 case Intrinsic::sadd_with_overflow: 6049 case Intrinsic::usub_with_overflow: 6050 case Intrinsic::ssub_with_overflow: 6051 case Intrinsic::umul_with_overflow: 6052 case Intrinsic::smul_with_overflow: { 6053 ISD::NodeType Op; 6054 switch (Intrinsic) { 6055 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6056 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6057 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6058 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6059 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6060 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6061 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6062 } 6063 SDValue Op1 = getValue(I.getArgOperand(0)); 6064 SDValue Op2 = getValue(I.getArgOperand(1)); 6065 6066 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 6067 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6068 return nullptr; 6069 } 6070 case Intrinsic::prefetch: { 6071 SDValue Ops[5]; 6072 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6073 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6074 Ops[0] = DAG.getRoot(); 6075 Ops[1] = getValue(I.getArgOperand(0)); 6076 Ops[2] = getValue(I.getArgOperand(1)); 6077 Ops[3] = getValue(I.getArgOperand(2)); 6078 Ops[4] = getValue(I.getArgOperand(3)); 6079 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6080 DAG.getVTList(MVT::Other), Ops, 6081 EVT::getIntegerVT(*Context, 8), 6082 MachinePointerInfo(I.getArgOperand(0)), 6083 0, /* align */ 6084 Flags); 6085 6086 // Chain the prefetch in parallell with any pending loads, to stay out of 6087 // the way of later optimizations. 6088 PendingLoads.push_back(Result); 6089 Result = getRoot(); 6090 DAG.setRoot(Result); 6091 return nullptr; 6092 } 6093 case Intrinsic::lifetime_start: 6094 case Intrinsic::lifetime_end: { 6095 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6096 // Stack coloring is not enabled in O0, discard region information. 6097 if (TM.getOptLevel() == CodeGenOpt::None) 6098 return nullptr; 6099 6100 SmallVector<Value *, 4> Allocas; 6101 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 6102 6103 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6104 E = Allocas.end(); Object != E; ++Object) { 6105 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6106 6107 // Could not find an Alloca. 6108 if (!LifetimeObject) 6109 continue; 6110 6111 // First check that the Alloca is static, otherwise it won't have a 6112 // valid frame index. 6113 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6114 if (SI == FuncInfo.StaticAllocaMap.end()) 6115 return nullptr; 6116 6117 int FI = SI->second; 6118 6119 SDValue Ops[2]; 6120 Ops[0] = getRoot(); 6121 Ops[1] = 6122 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 6123 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 6124 6125 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 6126 DAG.setRoot(Res); 6127 } 6128 return nullptr; 6129 } 6130 case Intrinsic::invariant_start: 6131 // Discard region information. 6132 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6133 return nullptr; 6134 case Intrinsic::invariant_end: 6135 // Discard region information. 6136 return nullptr; 6137 case Intrinsic::clear_cache: 6138 return TLI.getClearCacheBuiltinName(); 6139 case Intrinsic::donothing: 6140 // ignore 6141 return nullptr; 6142 case Intrinsic::experimental_stackmap: 6143 visitStackmap(I); 6144 return nullptr; 6145 case Intrinsic::experimental_patchpoint_void: 6146 case Intrinsic::experimental_patchpoint_i64: 6147 visitPatchpoint(&I); 6148 return nullptr; 6149 case Intrinsic::experimental_gc_statepoint: 6150 LowerStatepoint(ImmutableStatepoint(&I)); 6151 return nullptr; 6152 case Intrinsic::experimental_gc_result: 6153 visitGCResult(cast<GCResultInst>(I)); 6154 return nullptr; 6155 case Intrinsic::experimental_gc_relocate: 6156 visitGCRelocate(cast<GCRelocateInst>(I)); 6157 return nullptr; 6158 case Intrinsic::instrprof_increment: 6159 llvm_unreachable("instrprof failed to lower an increment"); 6160 case Intrinsic::instrprof_value_profile: 6161 llvm_unreachable("instrprof failed to lower a value profiling call"); 6162 case Intrinsic::localescape: { 6163 MachineFunction &MF = DAG.getMachineFunction(); 6164 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6165 6166 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6167 // is the same on all targets. 6168 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6169 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6170 if (isa<ConstantPointerNull>(Arg)) 6171 continue; // Skip null pointers. They represent a hole in index space. 6172 AllocaInst *Slot = cast<AllocaInst>(Arg); 6173 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6174 "can only escape static allocas"); 6175 int FI = FuncInfo.StaticAllocaMap[Slot]; 6176 MCSymbol *FrameAllocSym = 6177 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6178 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6179 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6180 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6181 .addSym(FrameAllocSym) 6182 .addFrameIndex(FI); 6183 } 6184 6185 return nullptr; 6186 } 6187 6188 case Intrinsic::localrecover: { 6189 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6190 MachineFunction &MF = DAG.getMachineFunction(); 6191 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6192 6193 // Get the symbol that defines the frame offset. 6194 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6195 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6196 unsigned IdxVal = 6197 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6198 MCSymbol *FrameAllocSym = 6199 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6200 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6201 6202 // Create a MCSymbol for the label to avoid any target lowering 6203 // that would make this PC relative. 6204 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6205 SDValue OffsetVal = 6206 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6207 6208 // Add the offset to the FP. 6209 Value *FP = I.getArgOperand(1); 6210 SDValue FPVal = getValue(FP); 6211 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6212 setValue(&I, Add); 6213 6214 return nullptr; 6215 } 6216 6217 case Intrinsic::eh_exceptionpointer: 6218 case Intrinsic::eh_exceptioncode: { 6219 // Get the exception pointer vreg, copy from it, and resize it to fit. 6220 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6221 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6222 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6223 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6224 SDValue N = 6225 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6226 if (Intrinsic == Intrinsic::eh_exceptioncode) 6227 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6228 setValue(&I, N); 6229 return nullptr; 6230 } 6231 case Intrinsic::xray_customevent: { 6232 // Here we want to make sure that the intrinsic behaves as if it has a 6233 // specific calling convention, and only for x86_64. 6234 // FIXME: Support other platforms later. 6235 const auto &Triple = DAG.getTarget().getTargetTriple(); 6236 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6237 return nullptr; 6238 6239 SDLoc DL = getCurSDLoc(); 6240 SmallVector<SDValue, 8> Ops; 6241 6242 // We want to say that we always want the arguments in registers. 6243 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6244 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6245 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6246 SDValue Chain = getRoot(); 6247 Ops.push_back(LogEntryVal); 6248 Ops.push_back(StrSizeVal); 6249 Ops.push_back(Chain); 6250 6251 // We need to enforce the calling convention for the callsite, so that 6252 // argument ordering is enforced correctly, and that register allocation can 6253 // see that some registers may be assumed clobbered and have to preserve 6254 // them across calls to the intrinsic. 6255 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6256 DL, NodeTys, Ops); 6257 SDValue patchableNode = SDValue(MN, 0); 6258 DAG.setRoot(patchableNode); 6259 setValue(&I, patchableNode); 6260 return nullptr; 6261 } 6262 case Intrinsic::xray_typedevent: { 6263 // Here we want to make sure that the intrinsic behaves as if it has a 6264 // specific calling convention, and only for x86_64. 6265 // FIXME: Support other platforms later. 6266 const auto &Triple = DAG.getTarget().getTargetTriple(); 6267 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6268 return nullptr; 6269 6270 SDLoc DL = getCurSDLoc(); 6271 SmallVector<SDValue, 8> Ops; 6272 6273 // We want to say that we always want the arguments in registers. 6274 // It's unclear to me how manipulating the selection DAG here forces callers 6275 // to provide arguments in registers instead of on the stack. 6276 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6277 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6278 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6279 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6280 SDValue Chain = getRoot(); 6281 Ops.push_back(LogTypeId); 6282 Ops.push_back(LogEntryVal); 6283 Ops.push_back(StrSizeVal); 6284 Ops.push_back(Chain); 6285 6286 // We need to enforce the calling convention for the callsite, so that 6287 // argument ordering is enforced correctly, and that register allocation can 6288 // see that some registers may be assumed clobbered and have to preserve 6289 // them across calls to the intrinsic. 6290 MachineSDNode *MN = DAG.getMachineNode( 6291 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6292 SDValue patchableNode = SDValue(MN, 0); 6293 DAG.setRoot(patchableNode); 6294 setValue(&I, patchableNode); 6295 return nullptr; 6296 } 6297 case Intrinsic::experimental_deoptimize: 6298 LowerDeoptimizeCall(&I); 6299 return nullptr; 6300 6301 case Intrinsic::experimental_vector_reduce_fadd: 6302 case Intrinsic::experimental_vector_reduce_fmul: 6303 case Intrinsic::experimental_vector_reduce_add: 6304 case Intrinsic::experimental_vector_reduce_mul: 6305 case Intrinsic::experimental_vector_reduce_and: 6306 case Intrinsic::experimental_vector_reduce_or: 6307 case Intrinsic::experimental_vector_reduce_xor: 6308 case Intrinsic::experimental_vector_reduce_smax: 6309 case Intrinsic::experimental_vector_reduce_smin: 6310 case Intrinsic::experimental_vector_reduce_umax: 6311 case Intrinsic::experimental_vector_reduce_umin: 6312 case Intrinsic::experimental_vector_reduce_fmax: 6313 case Intrinsic::experimental_vector_reduce_fmin: 6314 visitVectorReduce(I, Intrinsic); 6315 return nullptr; 6316 6317 case Intrinsic::icall_branch_funnel: { 6318 SmallVector<SDValue, 16> Ops; 6319 Ops.push_back(DAG.getRoot()); 6320 Ops.push_back(getValue(I.getArgOperand(0))); 6321 6322 int64_t Offset; 6323 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6324 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6325 if (!Base) 6326 report_fatal_error( 6327 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6328 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6329 6330 struct BranchFunnelTarget { 6331 int64_t Offset; 6332 SDValue Target; 6333 }; 6334 SmallVector<BranchFunnelTarget, 8> Targets; 6335 6336 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6337 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6338 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6339 if (ElemBase != Base) 6340 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6341 "to the same GlobalValue"); 6342 6343 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6344 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6345 if (!GA) 6346 report_fatal_error( 6347 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6348 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6349 GA->getGlobal(), getCurSDLoc(), 6350 Val.getValueType(), GA->getOffset())}); 6351 } 6352 llvm::sort(Targets, 6353 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6354 return T1.Offset < T2.Offset; 6355 }); 6356 6357 for (auto &T : Targets) { 6358 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6359 Ops.push_back(T.Target); 6360 } 6361 6362 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6363 getCurSDLoc(), MVT::Other, Ops), 6364 0); 6365 DAG.setRoot(N); 6366 setValue(&I, N); 6367 HasTailCall = true; 6368 return nullptr; 6369 } 6370 6371 case Intrinsic::wasm_landingpad_index: 6372 // Information this intrinsic contained has been transferred to 6373 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6374 // delete it now. 6375 return nullptr; 6376 } 6377 } 6378 6379 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6380 const ConstrainedFPIntrinsic &FPI) { 6381 SDLoc sdl = getCurSDLoc(); 6382 unsigned Opcode; 6383 switch (FPI.getIntrinsicID()) { 6384 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6385 case Intrinsic::experimental_constrained_fadd: 6386 Opcode = ISD::STRICT_FADD; 6387 break; 6388 case Intrinsic::experimental_constrained_fsub: 6389 Opcode = ISD::STRICT_FSUB; 6390 break; 6391 case Intrinsic::experimental_constrained_fmul: 6392 Opcode = ISD::STRICT_FMUL; 6393 break; 6394 case Intrinsic::experimental_constrained_fdiv: 6395 Opcode = ISD::STRICT_FDIV; 6396 break; 6397 case Intrinsic::experimental_constrained_frem: 6398 Opcode = ISD::STRICT_FREM; 6399 break; 6400 case Intrinsic::experimental_constrained_fma: 6401 Opcode = ISD::STRICT_FMA; 6402 break; 6403 case Intrinsic::experimental_constrained_sqrt: 6404 Opcode = ISD::STRICT_FSQRT; 6405 break; 6406 case Intrinsic::experimental_constrained_pow: 6407 Opcode = ISD::STRICT_FPOW; 6408 break; 6409 case Intrinsic::experimental_constrained_powi: 6410 Opcode = ISD::STRICT_FPOWI; 6411 break; 6412 case Intrinsic::experimental_constrained_sin: 6413 Opcode = ISD::STRICT_FSIN; 6414 break; 6415 case Intrinsic::experimental_constrained_cos: 6416 Opcode = ISD::STRICT_FCOS; 6417 break; 6418 case Intrinsic::experimental_constrained_exp: 6419 Opcode = ISD::STRICT_FEXP; 6420 break; 6421 case Intrinsic::experimental_constrained_exp2: 6422 Opcode = ISD::STRICT_FEXP2; 6423 break; 6424 case Intrinsic::experimental_constrained_log: 6425 Opcode = ISD::STRICT_FLOG; 6426 break; 6427 case Intrinsic::experimental_constrained_log10: 6428 Opcode = ISD::STRICT_FLOG10; 6429 break; 6430 case Intrinsic::experimental_constrained_log2: 6431 Opcode = ISD::STRICT_FLOG2; 6432 break; 6433 case Intrinsic::experimental_constrained_rint: 6434 Opcode = ISD::STRICT_FRINT; 6435 break; 6436 case Intrinsic::experimental_constrained_nearbyint: 6437 Opcode = ISD::STRICT_FNEARBYINT; 6438 break; 6439 case Intrinsic::experimental_constrained_maxnum: 6440 Opcode = ISD::STRICT_FMAXNUM; 6441 break; 6442 case Intrinsic::experimental_constrained_minnum: 6443 Opcode = ISD::STRICT_FMINNUM; 6444 break; 6445 case Intrinsic::experimental_constrained_ceil: 6446 Opcode = ISD::STRICT_FCEIL; 6447 break; 6448 case Intrinsic::experimental_constrained_floor: 6449 Opcode = ISD::STRICT_FFLOOR; 6450 break; 6451 case Intrinsic::experimental_constrained_round: 6452 Opcode = ISD::STRICT_FROUND; 6453 break; 6454 case Intrinsic::experimental_constrained_trunc: 6455 Opcode = ISD::STRICT_FTRUNC; 6456 break; 6457 } 6458 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6459 SDValue Chain = getRoot(); 6460 SmallVector<EVT, 4> ValueVTs; 6461 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6462 ValueVTs.push_back(MVT::Other); // Out chain 6463 6464 SDVTList VTs = DAG.getVTList(ValueVTs); 6465 SDValue Result; 6466 if (FPI.isUnaryOp()) 6467 Result = DAG.getNode(Opcode, sdl, VTs, 6468 { Chain, getValue(FPI.getArgOperand(0)) }); 6469 else if (FPI.isTernaryOp()) 6470 Result = DAG.getNode(Opcode, sdl, VTs, 6471 { Chain, getValue(FPI.getArgOperand(0)), 6472 getValue(FPI.getArgOperand(1)), 6473 getValue(FPI.getArgOperand(2)) }); 6474 else 6475 Result = DAG.getNode(Opcode, sdl, VTs, 6476 { Chain, getValue(FPI.getArgOperand(0)), 6477 getValue(FPI.getArgOperand(1)) }); 6478 6479 assert(Result.getNode()->getNumValues() == 2); 6480 SDValue OutChain = Result.getValue(1); 6481 DAG.setRoot(OutChain); 6482 SDValue FPResult = Result.getValue(0); 6483 setValue(&FPI, FPResult); 6484 } 6485 6486 std::pair<SDValue, SDValue> 6487 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6488 const BasicBlock *EHPadBB) { 6489 MachineFunction &MF = DAG.getMachineFunction(); 6490 MachineModuleInfo &MMI = MF.getMMI(); 6491 MCSymbol *BeginLabel = nullptr; 6492 6493 if (EHPadBB) { 6494 // Insert a label before the invoke call to mark the try range. This can be 6495 // used to detect deletion of the invoke via the MachineModuleInfo. 6496 BeginLabel = MMI.getContext().createTempSymbol(); 6497 6498 // For SjLj, keep track of which landing pads go with which invokes 6499 // so as to maintain the ordering of pads in the LSDA. 6500 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6501 if (CallSiteIndex) { 6502 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6503 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6504 6505 // Now that the call site is handled, stop tracking it. 6506 MMI.setCurrentCallSite(0); 6507 } 6508 6509 // Both PendingLoads and PendingExports must be flushed here; 6510 // this call might not return. 6511 (void)getRoot(); 6512 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6513 6514 CLI.setChain(getRoot()); 6515 } 6516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6517 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6518 6519 assert((CLI.IsTailCall || Result.second.getNode()) && 6520 "Non-null chain expected with non-tail call!"); 6521 assert((Result.second.getNode() || !Result.first.getNode()) && 6522 "Null value expected with tail call!"); 6523 6524 if (!Result.second.getNode()) { 6525 // As a special case, a null chain means that a tail call has been emitted 6526 // and the DAG root is already updated. 6527 HasTailCall = true; 6528 6529 // Since there's no actual continuation from this block, nothing can be 6530 // relying on us setting vregs for them. 6531 PendingExports.clear(); 6532 } else { 6533 DAG.setRoot(Result.second); 6534 } 6535 6536 if (EHPadBB) { 6537 // Insert a label at the end of the invoke call to mark the try range. This 6538 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6539 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6540 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6541 6542 // Inform MachineModuleInfo of range. 6543 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6544 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6545 // actually use outlined funclets and their LSDA info style. 6546 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6547 assert(CLI.CS); 6548 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6549 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6550 BeginLabel, EndLabel); 6551 } else if (!isScopedEHPersonality(Pers)) { 6552 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6553 } 6554 } 6555 6556 return Result; 6557 } 6558 6559 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6560 bool isTailCall, 6561 const BasicBlock *EHPadBB) { 6562 auto &DL = DAG.getDataLayout(); 6563 FunctionType *FTy = CS.getFunctionType(); 6564 Type *RetTy = CS.getType(); 6565 6566 TargetLowering::ArgListTy Args; 6567 Args.reserve(CS.arg_size()); 6568 6569 const Value *SwiftErrorVal = nullptr; 6570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6571 6572 // We can't tail call inside a function with a swifterror argument. Lowering 6573 // does not support this yet. It would have to move into the swifterror 6574 // register before the call. 6575 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6576 if (TLI.supportSwiftError() && 6577 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6578 isTailCall = false; 6579 6580 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6581 i != e; ++i) { 6582 TargetLowering::ArgListEntry Entry; 6583 const Value *V = *i; 6584 6585 // Skip empty types 6586 if (V->getType()->isEmptyTy()) 6587 continue; 6588 6589 SDValue ArgNode = getValue(V); 6590 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6591 6592 Entry.setAttributes(&CS, i - CS.arg_begin()); 6593 6594 // Use swifterror virtual register as input to the call. 6595 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6596 SwiftErrorVal = V; 6597 // We find the virtual register for the actual swifterror argument. 6598 // Instead of using the Value, we use the virtual register instead. 6599 Entry.Node = DAG.getRegister(FuncInfo 6600 .getOrCreateSwiftErrorVRegUseAt( 6601 CS.getInstruction(), FuncInfo.MBB, V) 6602 .first, 6603 EVT(TLI.getPointerTy(DL))); 6604 } 6605 6606 Args.push_back(Entry); 6607 6608 // If we have an explicit sret argument that is an Instruction, (i.e., it 6609 // might point to function-local memory), we can't meaningfully tail-call. 6610 if (Entry.IsSRet && isa<Instruction>(V)) 6611 isTailCall = false; 6612 } 6613 6614 // Check if target-independent constraints permit a tail call here. 6615 // Target-dependent constraints are checked within TLI->LowerCallTo. 6616 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6617 isTailCall = false; 6618 6619 // Disable tail calls if there is an swifterror argument. Targets have not 6620 // been updated to support tail calls. 6621 if (TLI.supportSwiftError() && SwiftErrorVal) 6622 isTailCall = false; 6623 6624 TargetLowering::CallLoweringInfo CLI(DAG); 6625 CLI.setDebugLoc(getCurSDLoc()) 6626 .setChain(getRoot()) 6627 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6628 .setTailCall(isTailCall) 6629 .setConvergent(CS.isConvergent()); 6630 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6631 6632 if (Result.first.getNode()) { 6633 const Instruction *Inst = CS.getInstruction(); 6634 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6635 setValue(Inst, Result.first); 6636 } 6637 6638 // The last element of CLI.InVals has the SDValue for swifterror return. 6639 // Here we copy it to a virtual register and update SwiftErrorMap for 6640 // book-keeping. 6641 if (SwiftErrorVal && TLI.supportSwiftError()) { 6642 // Get the last element of InVals. 6643 SDValue Src = CLI.InVals.back(); 6644 unsigned VReg; bool CreatedVReg; 6645 std::tie(VReg, CreatedVReg) = 6646 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6647 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6648 // We update the virtual register for the actual swifterror argument. 6649 if (CreatedVReg) 6650 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6651 DAG.setRoot(CopyNode); 6652 } 6653 } 6654 6655 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6656 SelectionDAGBuilder &Builder) { 6657 // Check to see if this load can be trivially constant folded, e.g. if the 6658 // input is from a string literal. 6659 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6660 // Cast pointer to the type we really want to load. 6661 Type *LoadTy = 6662 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6663 if (LoadVT.isVector()) 6664 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6665 6666 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6667 PointerType::getUnqual(LoadTy)); 6668 6669 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6670 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6671 return Builder.getValue(LoadCst); 6672 } 6673 6674 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6675 // still constant memory, the input chain can be the entry node. 6676 SDValue Root; 6677 bool ConstantMemory = false; 6678 6679 // Do not serialize (non-volatile) loads of constant memory with anything. 6680 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6681 Root = Builder.DAG.getEntryNode(); 6682 ConstantMemory = true; 6683 } else { 6684 // Do not serialize non-volatile loads against each other. 6685 Root = Builder.DAG.getRoot(); 6686 } 6687 6688 SDValue Ptr = Builder.getValue(PtrVal); 6689 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6690 Ptr, MachinePointerInfo(PtrVal), 6691 /* Alignment = */ 1); 6692 6693 if (!ConstantMemory) 6694 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6695 return LoadVal; 6696 } 6697 6698 /// Record the value for an instruction that produces an integer result, 6699 /// converting the type where necessary. 6700 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6701 SDValue Value, 6702 bool IsSigned) { 6703 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6704 I.getType(), true); 6705 if (IsSigned) 6706 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6707 else 6708 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6709 setValue(&I, Value); 6710 } 6711 6712 /// See if we can lower a memcmp call into an optimized form. If so, return 6713 /// true and lower it. Otherwise return false, and it will be lowered like a 6714 /// normal call. 6715 /// The caller already checked that \p I calls the appropriate LibFunc with a 6716 /// correct prototype. 6717 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6718 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6719 const Value *Size = I.getArgOperand(2); 6720 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6721 if (CSize && CSize->getZExtValue() == 0) { 6722 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6723 I.getType(), true); 6724 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6725 return true; 6726 } 6727 6728 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6729 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6730 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6731 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6732 if (Res.first.getNode()) { 6733 processIntegerCallValue(I, Res.first, true); 6734 PendingLoads.push_back(Res.second); 6735 return true; 6736 } 6737 6738 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6739 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6740 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6741 return false; 6742 6743 // If the target has a fast compare for the given size, it will return a 6744 // preferred load type for that size. Require that the load VT is legal and 6745 // that the target supports unaligned loads of that type. Otherwise, return 6746 // INVALID. 6747 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6748 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6749 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6750 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6751 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6752 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6753 // TODO: Check alignment of src and dest ptrs. 6754 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6755 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6756 if (!TLI.isTypeLegal(LVT) || 6757 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6758 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6759 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6760 } 6761 6762 return LVT; 6763 }; 6764 6765 // This turns into unaligned loads. We only do this if the target natively 6766 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6767 // we'll only produce a small number of byte loads. 6768 MVT LoadVT; 6769 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6770 switch (NumBitsToCompare) { 6771 default: 6772 return false; 6773 case 16: 6774 LoadVT = MVT::i16; 6775 break; 6776 case 32: 6777 LoadVT = MVT::i32; 6778 break; 6779 case 64: 6780 case 128: 6781 case 256: 6782 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6783 break; 6784 } 6785 6786 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6787 return false; 6788 6789 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6790 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6791 6792 // Bitcast to a wide integer type if the loads are vectors. 6793 if (LoadVT.isVector()) { 6794 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6795 LoadL = DAG.getBitcast(CmpVT, LoadL); 6796 LoadR = DAG.getBitcast(CmpVT, LoadR); 6797 } 6798 6799 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6800 processIntegerCallValue(I, Cmp, false); 6801 return true; 6802 } 6803 6804 /// See if we can lower a memchr call into an optimized form. If so, return 6805 /// true and lower it. Otherwise return false, and it will be lowered like a 6806 /// normal call. 6807 /// The caller already checked that \p I calls the appropriate LibFunc with a 6808 /// correct prototype. 6809 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6810 const Value *Src = I.getArgOperand(0); 6811 const Value *Char = I.getArgOperand(1); 6812 const Value *Length = I.getArgOperand(2); 6813 6814 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6815 std::pair<SDValue, SDValue> Res = 6816 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6817 getValue(Src), getValue(Char), getValue(Length), 6818 MachinePointerInfo(Src)); 6819 if (Res.first.getNode()) { 6820 setValue(&I, Res.first); 6821 PendingLoads.push_back(Res.second); 6822 return true; 6823 } 6824 6825 return false; 6826 } 6827 6828 /// See if we can lower a mempcpy call into an optimized form. If so, return 6829 /// true and lower it. Otherwise return false, and it will be lowered like a 6830 /// normal call. 6831 /// The caller already checked that \p I calls the appropriate LibFunc with a 6832 /// correct prototype. 6833 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6834 SDValue Dst = getValue(I.getArgOperand(0)); 6835 SDValue Src = getValue(I.getArgOperand(1)); 6836 SDValue Size = getValue(I.getArgOperand(2)); 6837 6838 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6839 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6840 unsigned Align = std::min(DstAlign, SrcAlign); 6841 if (Align == 0) // Alignment of one or both could not be inferred. 6842 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6843 6844 bool isVol = false; 6845 SDLoc sdl = getCurSDLoc(); 6846 6847 // In the mempcpy context we need to pass in a false value for isTailCall 6848 // because the return pointer needs to be adjusted by the size of 6849 // the copied memory. 6850 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6851 false, /*isTailCall=*/false, 6852 MachinePointerInfo(I.getArgOperand(0)), 6853 MachinePointerInfo(I.getArgOperand(1))); 6854 assert(MC.getNode() != nullptr && 6855 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6856 DAG.setRoot(MC); 6857 6858 // Check if Size needs to be truncated or extended. 6859 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6860 6861 // Adjust return pointer to point just past the last dst byte. 6862 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6863 Dst, Size); 6864 setValue(&I, DstPlusSize); 6865 return true; 6866 } 6867 6868 /// See if we can lower a strcpy call into an optimized form. If so, return 6869 /// true and lower it, otherwise return false and it will be lowered like a 6870 /// normal call. 6871 /// The caller already checked that \p I calls the appropriate LibFunc with a 6872 /// correct prototype. 6873 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6874 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6875 6876 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6877 std::pair<SDValue, SDValue> Res = 6878 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6879 getValue(Arg0), getValue(Arg1), 6880 MachinePointerInfo(Arg0), 6881 MachinePointerInfo(Arg1), isStpcpy); 6882 if (Res.first.getNode()) { 6883 setValue(&I, Res.first); 6884 DAG.setRoot(Res.second); 6885 return true; 6886 } 6887 6888 return false; 6889 } 6890 6891 /// See if we can lower a strcmp call into an optimized form. If so, return 6892 /// true and lower it, otherwise return false and it will be lowered like a 6893 /// normal call. 6894 /// The caller already checked that \p I calls the appropriate LibFunc with a 6895 /// correct prototype. 6896 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6897 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6898 6899 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6900 std::pair<SDValue, SDValue> Res = 6901 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6902 getValue(Arg0), getValue(Arg1), 6903 MachinePointerInfo(Arg0), 6904 MachinePointerInfo(Arg1)); 6905 if (Res.first.getNode()) { 6906 processIntegerCallValue(I, Res.first, true); 6907 PendingLoads.push_back(Res.second); 6908 return true; 6909 } 6910 6911 return false; 6912 } 6913 6914 /// See if we can lower a strlen call into an optimized form. If so, return 6915 /// true and lower it, otherwise return false and it will be lowered like a 6916 /// normal call. 6917 /// The caller already checked that \p I calls the appropriate LibFunc with a 6918 /// correct prototype. 6919 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6920 const Value *Arg0 = I.getArgOperand(0); 6921 6922 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6923 std::pair<SDValue, SDValue> Res = 6924 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6925 getValue(Arg0), MachinePointerInfo(Arg0)); 6926 if (Res.first.getNode()) { 6927 processIntegerCallValue(I, Res.first, false); 6928 PendingLoads.push_back(Res.second); 6929 return true; 6930 } 6931 6932 return false; 6933 } 6934 6935 /// See if we can lower a strnlen call into an optimized form. If so, return 6936 /// true and lower it, otherwise return false and it will be lowered like a 6937 /// normal call. 6938 /// The caller already checked that \p I calls the appropriate LibFunc with a 6939 /// correct prototype. 6940 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6941 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6942 6943 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6944 std::pair<SDValue, SDValue> Res = 6945 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6946 getValue(Arg0), getValue(Arg1), 6947 MachinePointerInfo(Arg0)); 6948 if (Res.first.getNode()) { 6949 processIntegerCallValue(I, Res.first, false); 6950 PendingLoads.push_back(Res.second); 6951 return true; 6952 } 6953 6954 return false; 6955 } 6956 6957 /// See if we can lower a unary floating-point operation into an SDNode with 6958 /// the specified Opcode. If so, return true and lower it, otherwise return 6959 /// false and it will be lowered like a normal call. 6960 /// The caller already checked that \p I calls the appropriate LibFunc with a 6961 /// correct prototype. 6962 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6963 unsigned Opcode) { 6964 // We already checked this call's prototype; verify it doesn't modify errno. 6965 if (!I.onlyReadsMemory()) 6966 return false; 6967 6968 SDValue Tmp = getValue(I.getArgOperand(0)); 6969 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6970 return true; 6971 } 6972 6973 /// See if we can lower a binary floating-point operation into an SDNode with 6974 /// the specified Opcode. If so, return true and lower it. Otherwise return 6975 /// false, and it will be lowered like a normal call. 6976 /// The caller already checked that \p I calls the appropriate LibFunc with a 6977 /// correct prototype. 6978 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6979 unsigned Opcode) { 6980 // We already checked this call's prototype; verify it doesn't modify errno. 6981 if (!I.onlyReadsMemory()) 6982 return false; 6983 6984 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6985 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6986 EVT VT = Tmp0.getValueType(); 6987 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6988 return true; 6989 } 6990 6991 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6992 // Handle inline assembly differently. 6993 if (isa<InlineAsm>(I.getCalledValue())) { 6994 visitInlineAsm(&I); 6995 return; 6996 } 6997 6998 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6999 computeUsesVAFloatArgument(I, MMI); 7000 7001 const char *RenameFn = nullptr; 7002 if (Function *F = I.getCalledFunction()) { 7003 if (F->isDeclaration()) { 7004 // Is this an LLVM intrinsic or a target-specific intrinsic? 7005 unsigned IID = F->getIntrinsicID(); 7006 if (!IID) 7007 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7008 IID = II->getIntrinsicID(F); 7009 7010 if (IID) { 7011 RenameFn = visitIntrinsicCall(I, IID); 7012 if (!RenameFn) 7013 return; 7014 } 7015 } 7016 7017 // Check for well-known libc/libm calls. If the function is internal, it 7018 // can't be a library call. Don't do the check if marked as nobuiltin for 7019 // some reason or the call site requires strict floating point semantics. 7020 LibFunc Func; 7021 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7022 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7023 LibInfo->hasOptimizedCodeGen(Func)) { 7024 switch (Func) { 7025 default: break; 7026 case LibFunc_copysign: 7027 case LibFunc_copysignf: 7028 case LibFunc_copysignl: 7029 // We already checked this call's prototype; verify it doesn't modify 7030 // errno. 7031 if (I.onlyReadsMemory()) { 7032 SDValue LHS = getValue(I.getArgOperand(0)); 7033 SDValue RHS = getValue(I.getArgOperand(1)); 7034 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7035 LHS.getValueType(), LHS, RHS)); 7036 return; 7037 } 7038 break; 7039 case LibFunc_fabs: 7040 case LibFunc_fabsf: 7041 case LibFunc_fabsl: 7042 if (visitUnaryFloatCall(I, ISD::FABS)) 7043 return; 7044 break; 7045 case LibFunc_fmin: 7046 case LibFunc_fminf: 7047 case LibFunc_fminl: 7048 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7049 return; 7050 break; 7051 case LibFunc_fmax: 7052 case LibFunc_fmaxf: 7053 case LibFunc_fmaxl: 7054 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7055 return; 7056 break; 7057 case LibFunc_sin: 7058 case LibFunc_sinf: 7059 case LibFunc_sinl: 7060 if (visitUnaryFloatCall(I, ISD::FSIN)) 7061 return; 7062 break; 7063 case LibFunc_cos: 7064 case LibFunc_cosf: 7065 case LibFunc_cosl: 7066 if (visitUnaryFloatCall(I, ISD::FCOS)) 7067 return; 7068 break; 7069 case LibFunc_sqrt: 7070 case LibFunc_sqrtf: 7071 case LibFunc_sqrtl: 7072 case LibFunc_sqrt_finite: 7073 case LibFunc_sqrtf_finite: 7074 case LibFunc_sqrtl_finite: 7075 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7076 return; 7077 break; 7078 case LibFunc_floor: 7079 case LibFunc_floorf: 7080 case LibFunc_floorl: 7081 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7082 return; 7083 break; 7084 case LibFunc_nearbyint: 7085 case LibFunc_nearbyintf: 7086 case LibFunc_nearbyintl: 7087 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7088 return; 7089 break; 7090 case LibFunc_ceil: 7091 case LibFunc_ceilf: 7092 case LibFunc_ceill: 7093 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7094 return; 7095 break; 7096 case LibFunc_rint: 7097 case LibFunc_rintf: 7098 case LibFunc_rintl: 7099 if (visitUnaryFloatCall(I, ISD::FRINT)) 7100 return; 7101 break; 7102 case LibFunc_round: 7103 case LibFunc_roundf: 7104 case LibFunc_roundl: 7105 if (visitUnaryFloatCall(I, ISD::FROUND)) 7106 return; 7107 break; 7108 case LibFunc_trunc: 7109 case LibFunc_truncf: 7110 case LibFunc_truncl: 7111 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7112 return; 7113 break; 7114 case LibFunc_log2: 7115 case LibFunc_log2f: 7116 case LibFunc_log2l: 7117 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7118 return; 7119 break; 7120 case LibFunc_exp2: 7121 case LibFunc_exp2f: 7122 case LibFunc_exp2l: 7123 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7124 return; 7125 break; 7126 case LibFunc_memcmp: 7127 if (visitMemCmpCall(I)) 7128 return; 7129 break; 7130 case LibFunc_mempcpy: 7131 if (visitMemPCpyCall(I)) 7132 return; 7133 break; 7134 case LibFunc_memchr: 7135 if (visitMemChrCall(I)) 7136 return; 7137 break; 7138 case LibFunc_strcpy: 7139 if (visitStrCpyCall(I, false)) 7140 return; 7141 break; 7142 case LibFunc_stpcpy: 7143 if (visitStrCpyCall(I, true)) 7144 return; 7145 break; 7146 case LibFunc_strcmp: 7147 if (visitStrCmpCall(I)) 7148 return; 7149 break; 7150 case LibFunc_strlen: 7151 if (visitStrLenCall(I)) 7152 return; 7153 break; 7154 case LibFunc_strnlen: 7155 if (visitStrNLenCall(I)) 7156 return; 7157 break; 7158 } 7159 } 7160 } 7161 7162 SDValue Callee; 7163 if (!RenameFn) 7164 Callee = getValue(I.getCalledValue()); 7165 else 7166 Callee = DAG.getExternalSymbol( 7167 RenameFn, 7168 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7169 7170 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7171 // have to do anything here to lower funclet bundles. 7172 assert(!I.hasOperandBundlesOtherThan( 7173 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7174 "Cannot lower calls with arbitrary operand bundles!"); 7175 7176 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7177 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7178 else 7179 // Check if we can potentially perform a tail call. More detailed checking 7180 // is be done within LowerCallTo, after more information about the call is 7181 // known. 7182 LowerCallTo(&I, Callee, I.isTailCall()); 7183 } 7184 7185 namespace { 7186 7187 /// AsmOperandInfo - This contains information for each constraint that we are 7188 /// lowering. 7189 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7190 public: 7191 /// CallOperand - If this is the result output operand or a clobber 7192 /// this is null, otherwise it is the incoming operand to the CallInst. 7193 /// This gets modified as the asm is processed. 7194 SDValue CallOperand; 7195 7196 /// AssignedRegs - If this is a register or register class operand, this 7197 /// contains the set of register corresponding to the operand. 7198 RegsForValue AssignedRegs; 7199 7200 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7201 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7202 } 7203 7204 /// Whether or not this operand accesses memory 7205 bool hasMemory(const TargetLowering &TLI) const { 7206 // Indirect operand accesses access memory. 7207 if (isIndirect) 7208 return true; 7209 7210 for (const auto &Code : Codes) 7211 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7212 return true; 7213 7214 return false; 7215 } 7216 7217 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7218 /// corresponds to. If there is no Value* for this operand, it returns 7219 /// MVT::Other. 7220 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7221 const DataLayout &DL) const { 7222 if (!CallOperandVal) return MVT::Other; 7223 7224 if (isa<BasicBlock>(CallOperandVal)) 7225 return TLI.getPointerTy(DL); 7226 7227 llvm::Type *OpTy = CallOperandVal->getType(); 7228 7229 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7230 // If this is an indirect operand, the operand is a pointer to the 7231 // accessed type. 7232 if (isIndirect) { 7233 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7234 if (!PtrTy) 7235 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7236 OpTy = PtrTy->getElementType(); 7237 } 7238 7239 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7240 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7241 if (STy->getNumElements() == 1) 7242 OpTy = STy->getElementType(0); 7243 7244 // If OpTy is not a single value, it may be a struct/union that we 7245 // can tile with integers. 7246 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7247 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7248 switch (BitSize) { 7249 default: break; 7250 case 1: 7251 case 8: 7252 case 16: 7253 case 32: 7254 case 64: 7255 case 128: 7256 OpTy = IntegerType::get(Context, BitSize); 7257 break; 7258 } 7259 } 7260 7261 return TLI.getValueType(DL, OpTy, true); 7262 } 7263 }; 7264 7265 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7266 7267 } // end anonymous namespace 7268 7269 /// Make sure that the output operand \p OpInfo and its corresponding input 7270 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7271 /// out). 7272 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7273 SDISelAsmOperandInfo &MatchingOpInfo, 7274 SelectionDAG &DAG) { 7275 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7276 return; 7277 7278 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7279 const auto &TLI = DAG.getTargetLoweringInfo(); 7280 7281 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7282 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7283 OpInfo.ConstraintVT); 7284 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7285 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7286 MatchingOpInfo.ConstraintVT); 7287 if ((OpInfo.ConstraintVT.isInteger() != 7288 MatchingOpInfo.ConstraintVT.isInteger()) || 7289 (MatchRC.second != InputRC.second)) { 7290 // FIXME: error out in a more elegant fashion 7291 report_fatal_error("Unsupported asm: input constraint" 7292 " with a matching output constraint of" 7293 " incompatible type!"); 7294 } 7295 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7296 } 7297 7298 /// Get a direct memory input to behave well as an indirect operand. 7299 /// This may introduce stores, hence the need for a \p Chain. 7300 /// \return The (possibly updated) chain. 7301 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7302 SDISelAsmOperandInfo &OpInfo, 7303 SelectionDAG &DAG) { 7304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7305 7306 // If we don't have an indirect input, put it in the constpool if we can, 7307 // otherwise spill it to a stack slot. 7308 // TODO: This isn't quite right. We need to handle these according to 7309 // the addressing mode that the constraint wants. Also, this may take 7310 // an additional register for the computation and we don't want that 7311 // either. 7312 7313 // If the operand is a float, integer, or vector constant, spill to a 7314 // constant pool entry to get its address. 7315 const Value *OpVal = OpInfo.CallOperandVal; 7316 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7317 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7318 OpInfo.CallOperand = DAG.getConstantPool( 7319 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7320 return Chain; 7321 } 7322 7323 // Otherwise, create a stack slot and emit a store to it before the asm. 7324 Type *Ty = OpVal->getType(); 7325 auto &DL = DAG.getDataLayout(); 7326 uint64_t TySize = DL.getTypeAllocSize(Ty); 7327 unsigned Align = DL.getPrefTypeAlignment(Ty); 7328 MachineFunction &MF = DAG.getMachineFunction(); 7329 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7330 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7331 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7332 MachinePointerInfo::getFixedStack(MF, SSFI)); 7333 OpInfo.CallOperand = StackSlot; 7334 7335 return Chain; 7336 } 7337 7338 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7339 /// specified operand. We prefer to assign virtual registers, to allow the 7340 /// register allocator to handle the assignment process. However, if the asm 7341 /// uses features that we can't model on machineinstrs, we have SDISel do the 7342 /// allocation. This produces generally horrible, but correct, code. 7343 /// 7344 /// OpInfo describes the operand 7345 /// RefOpInfo describes the matching operand if any, the operand otherwise 7346 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7347 const SDLoc &DL, SDISelAsmOperandInfo &OpInfo, 7348 SDISelAsmOperandInfo &RefOpInfo) { 7349 LLVMContext &Context = *DAG.getContext(); 7350 7351 MachineFunction &MF = DAG.getMachineFunction(); 7352 SmallVector<unsigned, 4> Regs; 7353 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7354 7355 // If this is a constraint for a single physreg, or a constraint for a 7356 // register class, find it. 7357 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7358 TLI.getRegForInlineAsmConstraint(&TRI, RefOpInfo.ConstraintCode, 7359 RefOpInfo.ConstraintVT); 7360 7361 unsigned NumRegs = 1; 7362 if (OpInfo.ConstraintVT != MVT::Other) { 7363 // If this is an FP operand in an integer register (or visa versa), or more 7364 // generally if the operand value disagrees with the register class we plan 7365 // to stick it in, fix the operand type. 7366 // 7367 // If this is an input value, the bitcast to the new type is done now. 7368 // Bitcast for output value is done at the end of visitInlineAsm(). 7369 if ((OpInfo.Type == InlineAsm::isOutput || 7370 OpInfo.Type == InlineAsm::isInput) && 7371 PhysReg.second && 7372 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7373 // Try to convert to the first EVT that the reg class contains. If the 7374 // types are identical size, use a bitcast to convert (e.g. two differing 7375 // vector types). Note: output bitcast is done at the end of 7376 // visitInlineAsm(). 7377 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7378 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7379 // Exclude indirect inputs while they are unsupported because the code 7380 // to perform the load is missing and thus OpInfo.CallOperand still 7381 // refers to the input address rather than the pointed-to value. 7382 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7383 OpInfo.CallOperand = 7384 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7385 OpInfo.ConstraintVT = RegVT; 7386 // If the operand is an FP value and we want it in integer registers, 7387 // use the corresponding integer type. This turns an f64 value into 7388 // i64, which can be passed with two i32 values on a 32-bit machine. 7389 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7390 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7391 if (OpInfo.Type == InlineAsm::isInput) 7392 OpInfo.CallOperand = 7393 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7394 OpInfo.ConstraintVT = RegVT; 7395 } 7396 } 7397 7398 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7399 } 7400 7401 // No need to allocate a matching input constraint since the constraint it's 7402 // matching to has already been allocated. 7403 if (OpInfo.isMatchingInputConstraint()) 7404 return; 7405 7406 MVT RegVT; 7407 EVT ValueVT = OpInfo.ConstraintVT; 7408 7409 // If this is a constraint for a specific physical register, like {r17}, 7410 // assign it now. 7411 if (unsigned AssignedReg = PhysReg.first) { 7412 const TargetRegisterClass *RC = PhysReg.second; 7413 if (OpInfo.ConstraintVT == MVT::Other) 7414 ValueVT = *TRI.legalclasstypes_begin(*RC); 7415 7416 // Get the actual register value type. This is important, because the user 7417 // may have asked for (e.g.) the AX register in i32 type. We need to 7418 // remember that AX is actually i16 to get the right extension. 7419 RegVT = *TRI.legalclasstypes_begin(*RC); 7420 7421 // This is an explicit reference to a physical register. 7422 Regs.push_back(AssignedReg); 7423 7424 // If this is an expanded reference, add the rest of the regs to Regs. 7425 if (NumRegs != 1) { 7426 TargetRegisterClass::iterator I = RC->begin(); 7427 for (; *I != AssignedReg; ++I) 7428 assert(I != RC->end() && "Didn't find reg!"); 7429 7430 // Already added the first reg. 7431 --NumRegs; ++I; 7432 for (; NumRegs; --NumRegs, ++I) { 7433 assert(I != RC->end() && "Ran out of registers to allocate!"); 7434 Regs.push_back(*I); 7435 } 7436 } 7437 7438 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7439 return; 7440 } 7441 7442 // Otherwise, if this was a reference to an LLVM register class, create vregs 7443 // for this reference. 7444 if (const TargetRegisterClass *RC = PhysReg.second) { 7445 RegVT = *TRI.legalclasstypes_begin(*RC); 7446 if (OpInfo.ConstraintVT == MVT::Other) 7447 ValueVT = RegVT; 7448 7449 // Create the appropriate number of virtual registers. 7450 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7451 for (; NumRegs; --NumRegs) 7452 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7453 7454 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7455 return; 7456 } 7457 7458 // Otherwise, we couldn't allocate enough registers for this. 7459 } 7460 7461 static unsigned 7462 findMatchingInlineAsmOperand(unsigned OperandNo, 7463 const std::vector<SDValue> &AsmNodeOperands) { 7464 // Scan until we find the definition we already emitted of this operand. 7465 unsigned CurOp = InlineAsm::Op_FirstOperand; 7466 for (; OperandNo; --OperandNo) { 7467 // Advance to the next operand. 7468 unsigned OpFlag = 7469 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7470 assert((InlineAsm::isRegDefKind(OpFlag) || 7471 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7472 InlineAsm::isMemKind(OpFlag)) && 7473 "Skipped past definitions?"); 7474 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7475 } 7476 return CurOp; 7477 } 7478 7479 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7480 /// \return true if it has succeeded, false otherwise 7481 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7482 MVT RegVT, SelectionDAG &DAG) { 7483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7484 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7485 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7486 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7487 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7488 else 7489 return false; 7490 } 7491 return true; 7492 } 7493 7494 namespace { 7495 7496 class ExtraFlags { 7497 unsigned Flags = 0; 7498 7499 public: 7500 explicit ExtraFlags(ImmutableCallSite CS) { 7501 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7502 if (IA->hasSideEffects()) 7503 Flags |= InlineAsm::Extra_HasSideEffects; 7504 if (IA->isAlignStack()) 7505 Flags |= InlineAsm::Extra_IsAlignStack; 7506 if (CS.isConvergent()) 7507 Flags |= InlineAsm::Extra_IsConvergent; 7508 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7509 } 7510 7511 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7512 // Ideally, we would only check against memory constraints. However, the 7513 // meaning of an Other constraint can be target-specific and we can't easily 7514 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7515 // for Other constraints as well. 7516 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7517 OpInfo.ConstraintType == TargetLowering::C_Other) { 7518 if (OpInfo.Type == InlineAsm::isInput) 7519 Flags |= InlineAsm::Extra_MayLoad; 7520 else if (OpInfo.Type == InlineAsm::isOutput) 7521 Flags |= InlineAsm::Extra_MayStore; 7522 else if (OpInfo.Type == InlineAsm::isClobber) 7523 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7524 } 7525 } 7526 7527 unsigned get() const { return Flags; } 7528 }; 7529 7530 } // end anonymous namespace 7531 7532 /// visitInlineAsm - Handle a call to an InlineAsm object. 7533 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7534 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7535 7536 /// ConstraintOperands - Information about all of the constraints. 7537 SDISelAsmOperandInfoVector ConstraintOperands; 7538 7539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7540 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7541 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7542 7543 bool hasMemory = false; 7544 7545 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7546 ExtraFlags ExtraInfo(CS); 7547 7548 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7549 unsigned ResNo = 0; // ResNo - The result number of the next output. 7550 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7551 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7552 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7553 7554 MVT OpVT = MVT::Other; 7555 7556 // Compute the value type for each operand. 7557 if (OpInfo.Type == InlineAsm::isInput || 7558 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7559 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7560 7561 // Process the call argument. BasicBlocks are labels, currently appearing 7562 // only in asm's. 7563 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7564 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7565 } else { 7566 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7567 } 7568 7569 OpVT = 7570 OpInfo 7571 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7572 .getSimpleVT(); 7573 } 7574 7575 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7576 // The return value of the call is this value. As such, there is no 7577 // corresponding argument. 7578 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7579 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7580 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7581 STy->getElementType(ResNo)); 7582 } else { 7583 assert(ResNo == 0 && "Asm only has one result!"); 7584 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7585 } 7586 ++ResNo; 7587 } 7588 7589 OpInfo.ConstraintVT = OpVT; 7590 7591 if (!hasMemory) 7592 hasMemory = OpInfo.hasMemory(TLI); 7593 7594 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7595 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7596 auto TargetConstraint = TargetConstraints[i]; 7597 7598 // Compute the constraint code and ConstraintType to use. 7599 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7600 7601 ExtraInfo.update(TargetConstraint); 7602 } 7603 7604 SDValue Chain, Flag; 7605 7606 // We won't need to flush pending loads if this asm doesn't touch 7607 // memory and is nonvolatile. 7608 if (hasMemory || IA->hasSideEffects()) 7609 Chain = getRoot(); 7610 else 7611 Chain = DAG.getRoot(); 7612 7613 // Second pass over the constraints: compute which constraint option to use 7614 // and assign registers to constraints that want a specific physreg. 7615 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7616 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7617 7618 // If this is an output operand with a matching input operand, look up the 7619 // matching input. If their types mismatch, e.g. one is an integer, the 7620 // other is floating point, or their sizes are different, flag it as an 7621 // error. 7622 if (OpInfo.hasMatchingInput()) { 7623 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7624 patchMatchingInput(OpInfo, Input, DAG); 7625 } 7626 7627 // Compute the constraint code and ConstraintType to use. 7628 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7629 7630 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7631 OpInfo.Type == InlineAsm::isClobber) 7632 continue; 7633 7634 // If this is a memory input, and if the operand is not indirect, do what we 7635 // need to provide an address for the memory input. 7636 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7637 !OpInfo.isIndirect) { 7638 assert((OpInfo.isMultipleAlternative || 7639 (OpInfo.Type == InlineAsm::isInput)) && 7640 "Can only indirectify direct input operands!"); 7641 7642 // Memory operands really want the address of the value. 7643 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7644 7645 // There is no longer a Value* corresponding to this operand. 7646 OpInfo.CallOperandVal = nullptr; 7647 7648 // It is now an indirect operand. 7649 OpInfo.isIndirect = true; 7650 } 7651 7652 // If this constraint is for a specific register, allocate it before 7653 // anything else. 7654 SDISelAsmOperandInfo &RefOpInfo = 7655 OpInfo.isMatchingInputConstraint() 7656 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7657 : ConstraintOperands[i]; 7658 if (RefOpInfo.ConstraintType == TargetLowering::C_Register) 7659 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7660 } 7661 7662 // Third pass - Loop over all of the operands, assigning virtual or physregs 7663 // to register class operands. 7664 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7665 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7666 SDISelAsmOperandInfo &RefOpInfo = 7667 OpInfo.isMatchingInputConstraint() 7668 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7669 : ConstraintOperands[i]; 7670 7671 // C_Register operands have already been allocated, Other/Memory don't need 7672 // to be. 7673 if (RefOpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7674 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo, RefOpInfo); 7675 } 7676 7677 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7678 std::vector<SDValue> AsmNodeOperands; 7679 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7680 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7681 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7682 7683 // If we have a !srcloc metadata node associated with it, we want to attach 7684 // this to the ultimately generated inline asm machineinstr. To do this, we 7685 // pass in the third operand as this (potentially null) inline asm MDNode. 7686 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7687 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7688 7689 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7690 // bits as operand 3. 7691 AsmNodeOperands.push_back(DAG.getTargetConstant( 7692 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7693 7694 // Loop over all of the inputs, copying the operand values into the 7695 // appropriate registers and processing the output regs. 7696 RegsForValue RetValRegs; 7697 7698 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7699 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7700 7701 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7702 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7703 7704 switch (OpInfo.Type) { 7705 case InlineAsm::isOutput: 7706 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7707 OpInfo.ConstraintType != TargetLowering::C_Register) { 7708 // Memory output, or 'other' output (e.g. 'X' constraint). 7709 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7710 7711 unsigned ConstraintID = 7712 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7713 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7714 "Failed to convert memory constraint code to constraint id."); 7715 7716 // Add information to the INLINEASM node to know about this output. 7717 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7718 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7719 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7720 MVT::i32)); 7721 AsmNodeOperands.push_back(OpInfo.CallOperand); 7722 break; 7723 } 7724 7725 // Otherwise, this is a register or register class output. 7726 7727 // Copy the output from the appropriate register. Find a register that 7728 // we can use. 7729 if (OpInfo.AssignedRegs.Regs.empty()) { 7730 emitInlineAsmError( 7731 CS, "couldn't allocate output register for constraint '" + 7732 Twine(OpInfo.ConstraintCode) + "'"); 7733 return; 7734 } 7735 7736 // If this is an indirect operand, store through the pointer after the 7737 // asm. 7738 if (OpInfo.isIndirect) { 7739 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7740 OpInfo.CallOperandVal)); 7741 } else { 7742 // This is the result value of the call. 7743 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7744 // Concatenate this output onto the outputs list. 7745 RetValRegs.append(OpInfo.AssignedRegs); 7746 } 7747 7748 // Add information to the INLINEASM node to know that this register is 7749 // set. 7750 OpInfo.AssignedRegs 7751 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7752 ? InlineAsm::Kind_RegDefEarlyClobber 7753 : InlineAsm::Kind_RegDef, 7754 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7755 break; 7756 7757 case InlineAsm::isInput: { 7758 SDValue InOperandVal = OpInfo.CallOperand; 7759 7760 if (OpInfo.isMatchingInputConstraint()) { 7761 // If this is required to match an output register we have already set, 7762 // just use its register. 7763 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7764 AsmNodeOperands); 7765 unsigned OpFlag = 7766 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7767 if (InlineAsm::isRegDefKind(OpFlag) || 7768 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7769 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7770 if (OpInfo.isIndirect) { 7771 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7772 emitInlineAsmError(CS, "inline asm not supported yet:" 7773 " don't know how to handle tied " 7774 "indirect register inputs"); 7775 return; 7776 } 7777 7778 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7779 SmallVector<unsigned, 4> Regs; 7780 7781 if (!createVirtualRegs(Regs, 7782 InlineAsm::getNumOperandRegisters(OpFlag), 7783 RegVT, DAG)) { 7784 emitInlineAsmError(CS, "inline asm error: This value type register " 7785 "class is not natively supported!"); 7786 return; 7787 } 7788 7789 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7790 7791 SDLoc dl = getCurSDLoc(); 7792 // Use the produced MatchedRegs object to 7793 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7794 CS.getInstruction()); 7795 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7796 true, OpInfo.getMatchedOperand(), dl, 7797 DAG, AsmNodeOperands); 7798 break; 7799 } 7800 7801 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7802 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7803 "Unexpected number of operands"); 7804 // Add information to the INLINEASM node to know about this input. 7805 // See InlineAsm.h isUseOperandTiedToDef. 7806 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7807 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7808 OpInfo.getMatchedOperand()); 7809 AsmNodeOperands.push_back(DAG.getTargetConstant( 7810 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7811 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7812 break; 7813 } 7814 7815 // Treat indirect 'X' constraint as memory. 7816 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7817 OpInfo.isIndirect) 7818 OpInfo.ConstraintType = TargetLowering::C_Memory; 7819 7820 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7821 std::vector<SDValue> Ops; 7822 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7823 Ops, DAG); 7824 if (Ops.empty()) { 7825 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7826 Twine(OpInfo.ConstraintCode) + "'"); 7827 return; 7828 } 7829 7830 // Add information to the INLINEASM node to know about this input. 7831 unsigned ResOpType = 7832 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7833 AsmNodeOperands.push_back(DAG.getTargetConstant( 7834 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7835 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7836 break; 7837 } 7838 7839 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7840 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7841 assert(InOperandVal.getValueType() == 7842 TLI.getPointerTy(DAG.getDataLayout()) && 7843 "Memory operands expect pointer values"); 7844 7845 unsigned ConstraintID = 7846 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7847 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7848 "Failed to convert memory constraint code to constraint id."); 7849 7850 // Add information to the INLINEASM node to know about this input. 7851 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7852 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7853 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7854 getCurSDLoc(), 7855 MVT::i32)); 7856 AsmNodeOperands.push_back(InOperandVal); 7857 break; 7858 } 7859 7860 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7861 OpInfo.ConstraintType == TargetLowering::C_Register) && 7862 "Unknown constraint type!"); 7863 7864 // TODO: Support this. 7865 if (OpInfo.isIndirect) { 7866 emitInlineAsmError( 7867 CS, "Don't know how to handle indirect register inputs yet " 7868 "for constraint '" + 7869 Twine(OpInfo.ConstraintCode) + "'"); 7870 return; 7871 } 7872 7873 // Copy the input into the appropriate registers. 7874 if (OpInfo.AssignedRegs.Regs.empty()) { 7875 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7876 Twine(OpInfo.ConstraintCode) + "'"); 7877 return; 7878 } 7879 7880 SDLoc dl = getCurSDLoc(); 7881 7882 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7883 Chain, &Flag, CS.getInstruction()); 7884 7885 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7886 dl, DAG, AsmNodeOperands); 7887 break; 7888 } 7889 case InlineAsm::isClobber: 7890 // Add the clobbered value to the operand list, so that the register 7891 // allocator is aware that the physreg got clobbered. 7892 if (!OpInfo.AssignedRegs.Regs.empty()) 7893 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7894 false, 0, getCurSDLoc(), DAG, 7895 AsmNodeOperands); 7896 break; 7897 } 7898 } 7899 7900 // Finish up input operands. Set the input chain and add the flag last. 7901 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7902 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7903 7904 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7905 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7906 Flag = Chain.getValue(1); 7907 7908 // If this asm returns a register value, copy the result from that register 7909 // and set it as the value of the call. 7910 if (!RetValRegs.Regs.empty()) { 7911 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7912 Chain, &Flag, CS.getInstruction()); 7913 7914 llvm::Type *CSResultType = CS.getType(); 7915 unsigned numRet; 7916 ArrayRef<Type *> ResultTypes; 7917 SmallVector<SDValue, 1> ResultValues(1); 7918 if (CSResultType->isSingleValueType()) { 7919 numRet = 1; 7920 ResultValues[0] = Val; 7921 ResultTypes = makeArrayRef(CSResultType); 7922 } else { 7923 numRet = CSResultType->getNumContainedTypes(); 7924 assert(Val->getNumOperands() == numRet && 7925 "Mismatch in number of output operands in asm result"); 7926 ResultTypes = CSResultType->subtypes(); 7927 ArrayRef<SDUse> ValueUses = Val->ops(); 7928 ResultValues.resize(numRet); 7929 std::transform(ValueUses.begin(), ValueUses.end(), ResultValues.begin(), 7930 [](const SDUse &u) -> SDValue { return u.get(); }); 7931 } 7932 SmallVector<EVT, 1> ResultVTs(numRet); 7933 for (unsigned i = 0; i < numRet; i++) { 7934 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), ResultTypes[i]); 7935 SDValue Val = ResultValues[i]; 7936 assert(ResultTypes[i]->isSized() && "Unexpected unsized type"); 7937 // If the type of the inline asm call site return value is different but 7938 // has same size as the type of the asm output bitcast it. One example 7939 // of this is for vectors with different width / number of elements. 7940 // This can happen for register classes that can contain multiple 7941 // different value types. The preg or vreg allocated may not have the 7942 // same VT as was expected. 7943 // 7944 // This can also happen for a return value that disagrees with the 7945 // register class it is put in, eg. a double in a general-purpose 7946 // register on a 32-bit machine. 7947 if (ResultVT != Val.getValueType() && 7948 ResultVT.getSizeInBits() == Val.getValueSizeInBits()) 7949 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, Val); 7950 else if (ResultVT != Val.getValueType() && ResultVT.isInteger() && 7951 Val.getValueType().isInteger()) { 7952 // If a result value was tied to an input value, the computed result 7953 // may have a wider width than the expected result. Extract the 7954 // relevant portion. 7955 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, Val); 7956 } 7957 7958 assert(ResultVT == Val.getValueType() && "Asm result value mismatch!"); 7959 ResultVTs[i] = ResultVT; 7960 ResultValues[i] = Val; 7961 } 7962 7963 Val = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 7964 DAG.getVTList(ResultVTs), ResultValues); 7965 setValue(CS.getInstruction(), Val); 7966 // Don't need to use this as a chain in this case. 7967 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7968 return; 7969 } 7970 7971 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7972 7973 // Process indirect outputs, first output all of the flagged copies out of 7974 // physregs. 7975 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7976 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7977 const Value *Ptr = IndirectStoresToEmit[i].second; 7978 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7979 Chain, &Flag, IA); 7980 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7981 } 7982 7983 // Emit the non-flagged stores from the physregs. 7984 SmallVector<SDValue, 8> OutChains; 7985 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7986 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7987 getValue(StoresToEmit[i].second), 7988 MachinePointerInfo(StoresToEmit[i].second)); 7989 OutChains.push_back(Val); 7990 } 7991 7992 if (!OutChains.empty()) 7993 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7994 7995 DAG.setRoot(Chain); 7996 } 7997 7998 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7999 const Twine &Message) { 8000 LLVMContext &Ctx = *DAG.getContext(); 8001 Ctx.emitError(CS.getInstruction(), Message); 8002 8003 // Make sure we leave the DAG in a valid state 8004 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8005 SmallVector<EVT, 1> ValueVTs; 8006 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8007 8008 if (ValueVTs.empty()) 8009 return; 8010 8011 SmallVector<SDValue, 1> Ops; 8012 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8013 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8014 8015 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8016 } 8017 8018 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8019 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8020 MVT::Other, getRoot(), 8021 getValue(I.getArgOperand(0)), 8022 DAG.getSrcValue(I.getArgOperand(0)))); 8023 } 8024 8025 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8027 const DataLayout &DL = DAG.getDataLayout(); 8028 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8029 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8030 DAG.getSrcValue(I.getOperand(0)), 8031 DL.getABITypeAlignment(I.getType())); 8032 setValue(&I, V); 8033 DAG.setRoot(V.getValue(1)); 8034 } 8035 8036 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8037 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8038 MVT::Other, getRoot(), 8039 getValue(I.getArgOperand(0)), 8040 DAG.getSrcValue(I.getArgOperand(0)))); 8041 } 8042 8043 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8044 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8045 MVT::Other, getRoot(), 8046 getValue(I.getArgOperand(0)), 8047 getValue(I.getArgOperand(1)), 8048 DAG.getSrcValue(I.getArgOperand(0)), 8049 DAG.getSrcValue(I.getArgOperand(1)))); 8050 } 8051 8052 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8053 const Instruction &I, 8054 SDValue Op) { 8055 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8056 if (!Range) 8057 return Op; 8058 8059 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8060 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 8061 return Op; 8062 8063 APInt Lo = CR.getUnsignedMin(); 8064 if (!Lo.isMinValue()) 8065 return Op; 8066 8067 APInt Hi = CR.getUnsignedMax(); 8068 unsigned Bits = std::max(Hi.getActiveBits(), 8069 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8070 8071 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8072 8073 SDLoc SL = getCurSDLoc(); 8074 8075 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8076 DAG.getValueType(SmallVT)); 8077 unsigned NumVals = Op.getNode()->getNumValues(); 8078 if (NumVals == 1) 8079 return ZExt; 8080 8081 SmallVector<SDValue, 4> Ops; 8082 8083 Ops.push_back(ZExt); 8084 for (unsigned I = 1; I != NumVals; ++I) 8085 Ops.push_back(Op.getValue(I)); 8086 8087 return DAG.getMergeValues(Ops, SL); 8088 } 8089 8090 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8091 /// the call being lowered. 8092 /// 8093 /// This is a helper for lowering intrinsics that follow a target calling 8094 /// convention or require stack pointer adjustment. Only a subset of the 8095 /// intrinsic's operands need to participate in the calling convention. 8096 void SelectionDAGBuilder::populateCallLoweringInfo( 8097 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 8098 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8099 bool IsPatchPoint) { 8100 TargetLowering::ArgListTy Args; 8101 Args.reserve(NumArgs); 8102 8103 // Populate the argument list. 8104 // Attributes for args start at offset 1, after the return attribute. 8105 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8106 ArgI != ArgE; ++ArgI) { 8107 const Value *V = CS->getOperand(ArgI); 8108 8109 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8110 8111 TargetLowering::ArgListEntry Entry; 8112 Entry.Node = getValue(V); 8113 Entry.Ty = V->getType(); 8114 Entry.setAttributes(&CS, ArgI); 8115 Args.push_back(Entry); 8116 } 8117 8118 CLI.setDebugLoc(getCurSDLoc()) 8119 .setChain(getRoot()) 8120 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 8121 .setDiscardResult(CS->use_empty()) 8122 .setIsPatchPoint(IsPatchPoint); 8123 } 8124 8125 /// Add a stack map intrinsic call's live variable operands to a stackmap 8126 /// or patchpoint target node's operand list. 8127 /// 8128 /// Constants are converted to TargetConstants purely as an optimization to 8129 /// avoid constant materialization and register allocation. 8130 /// 8131 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8132 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8133 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8134 /// address materialization and register allocation, but may also be required 8135 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8136 /// alloca in the entry block, then the runtime may assume that the alloca's 8137 /// StackMap location can be read immediately after compilation and that the 8138 /// location is valid at any point during execution (this is similar to the 8139 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8140 /// only available in a register, then the runtime would need to trap when 8141 /// execution reaches the StackMap in order to read the alloca's location. 8142 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8143 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8144 SelectionDAGBuilder &Builder) { 8145 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8146 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8147 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8148 Ops.push_back( 8149 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8150 Ops.push_back( 8151 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8152 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8153 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8154 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8155 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8156 } else 8157 Ops.push_back(OpVal); 8158 } 8159 } 8160 8161 /// Lower llvm.experimental.stackmap directly to its target opcode. 8162 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8163 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8164 // [live variables...]) 8165 8166 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8167 8168 SDValue Chain, InFlag, Callee, NullPtr; 8169 SmallVector<SDValue, 32> Ops; 8170 8171 SDLoc DL = getCurSDLoc(); 8172 Callee = getValue(CI.getCalledValue()); 8173 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8174 8175 // The stackmap intrinsic only records the live variables (the arguemnts 8176 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8177 // intrinsic, this won't be lowered to a function call. This means we don't 8178 // have to worry about calling conventions and target specific lowering code. 8179 // Instead we perform the call lowering right here. 8180 // 8181 // chain, flag = CALLSEQ_START(chain, 0, 0) 8182 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8183 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8184 // 8185 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8186 InFlag = Chain.getValue(1); 8187 8188 // Add the <id> and <numBytes> constants. 8189 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8190 Ops.push_back(DAG.getTargetConstant( 8191 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8192 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8193 Ops.push_back(DAG.getTargetConstant( 8194 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8195 MVT::i32)); 8196 8197 // Push live variables for the stack map. 8198 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8199 8200 // We are not pushing any register mask info here on the operands list, 8201 // because the stackmap doesn't clobber anything. 8202 8203 // Push the chain and the glue flag. 8204 Ops.push_back(Chain); 8205 Ops.push_back(InFlag); 8206 8207 // Create the STACKMAP node. 8208 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8209 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8210 Chain = SDValue(SM, 0); 8211 InFlag = Chain.getValue(1); 8212 8213 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8214 8215 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8216 8217 // Set the root to the target-lowered call chain. 8218 DAG.setRoot(Chain); 8219 8220 // Inform the Frame Information that we have a stackmap in this function. 8221 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8222 } 8223 8224 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8225 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8226 const BasicBlock *EHPadBB) { 8227 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8228 // i32 <numBytes>, 8229 // i8* <target>, 8230 // i32 <numArgs>, 8231 // [Args...], 8232 // [live variables...]) 8233 8234 CallingConv::ID CC = CS.getCallingConv(); 8235 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8236 bool HasDef = !CS->getType()->isVoidTy(); 8237 SDLoc dl = getCurSDLoc(); 8238 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8239 8240 // Handle immediate and symbolic callees. 8241 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8242 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8243 /*isTarget=*/true); 8244 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8245 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8246 SDLoc(SymbolicCallee), 8247 SymbolicCallee->getValueType(0)); 8248 8249 // Get the real number of arguments participating in the call <numArgs> 8250 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8251 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8252 8253 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8254 // Intrinsics include all meta-operands up to but not including CC. 8255 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8256 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8257 "Not enough arguments provided to the patchpoint intrinsic"); 8258 8259 // For AnyRegCC the arguments are lowered later on manually. 8260 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8261 Type *ReturnTy = 8262 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8263 8264 TargetLowering::CallLoweringInfo CLI(DAG); 8265 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 8266 true); 8267 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8268 8269 SDNode *CallEnd = Result.second.getNode(); 8270 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8271 CallEnd = CallEnd->getOperand(0).getNode(); 8272 8273 /// Get a call instruction from the call sequence chain. 8274 /// Tail calls are not allowed. 8275 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8276 "Expected a callseq node."); 8277 SDNode *Call = CallEnd->getOperand(0).getNode(); 8278 bool HasGlue = Call->getGluedNode(); 8279 8280 // Replace the target specific call node with the patchable intrinsic. 8281 SmallVector<SDValue, 8> Ops; 8282 8283 // Add the <id> and <numBytes> constants. 8284 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8285 Ops.push_back(DAG.getTargetConstant( 8286 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8287 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8288 Ops.push_back(DAG.getTargetConstant( 8289 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8290 MVT::i32)); 8291 8292 // Add the callee. 8293 Ops.push_back(Callee); 8294 8295 // Adjust <numArgs> to account for any arguments that have been passed on the 8296 // stack instead. 8297 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8298 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8299 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8300 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8301 8302 // Add the calling convention 8303 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8304 8305 // Add the arguments we omitted previously. The register allocator should 8306 // place these in any free register. 8307 if (IsAnyRegCC) 8308 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8309 Ops.push_back(getValue(CS.getArgument(i))); 8310 8311 // Push the arguments from the call instruction up to the register mask. 8312 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8313 Ops.append(Call->op_begin() + 2, e); 8314 8315 // Push live variables for the stack map. 8316 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8317 8318 // Push the register mask info. 8319 if (HasGlue) 8320 Ops.push_back(*(Call->op_end()-2)); 8321 else 8322 Ops.push_back(*(Call->op_end()-1)); 8323 8324 // Push the chain (this is originally the first operand of the call, but 8325 // becomes now the last or second to last operand). 8326 Ops.push_back(*(Call->op_begin())); 8327 8328 // Push the glue flag (last operand). 8329 if (HasGlue) 8330 Ops.push_back(*(Call->op_end()-1)); 8331 8332 SDVTList NodeTys; 8333 if (IsAnyRegCC && HasDef) { 8334 // Create the return types based on the intrinsic definition 8335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8336 SmallVector<EVT, 3> ValueVTs; 8337 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8338 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8339 8340 // There is always a chain and a glue type at the end 8341 ValueVTs.push_back(MVT::Other); 8342 ValueVTs.push_back(MVT::Glue); 8343 NodeTys = DAG.getVTList(ValueVTs); 8344 } else 8345 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8346 8347 // Replace the target specific call node with a PATCHPOINT node. 8348 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8349 dl, NodeTys, Ops); 8350 8351 // Update the NodeMap. 8352 if (HasDef) { 8353 if (IsAnyRegCC) 8354 setValue(CS.getInstruction(), SDValue(MN, 0)); 8355 else 8356 setValue(CS.getInstruction(), Result.first); 8357 } 8358 8359 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8360 // call sequence. Furthermore the location of the chain and glue can change 8361 // when the AnyReg calling convention is used and the intrinsic returns a 8362 // value. 8363 if (IsAnyRegCC && HasDef) { 8364 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8365 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8366 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8367 } else 8368 DAG.ReplaceAllUsesWith(Call, MN); 8369 DAG.DeleteNode(Call); 8370 8371 // Inform the Frame Information that we have a patchpoint in this function. 8372 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8373 } 8374 8375 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8376 unsigned Intrinsic) { 8377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8378 SDValue Op1 = getValue(I.getArgOperand(0)); 8379 SDValue Op2; 8380 if (I.getNumArgOperands() > 1) 8381 Op2 = getValue(I.getArgOperand(1)); 8382 SDLoc dl = getCurSDLoc(); 8383 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8384 SDValue Res; 8385 FastMathFlags FMF; 8386 if (isa<FPMathOperator>(I)) 8387 FMF = I.getFastMathFlags(); 8388 8389 switch (Intrinsic) { 8390 case Intrinsic::experimental_vector_reduce_fadd: 8391 if (FMF.isFast()) 8392 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8393 else 8394 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8395 break; 8396 case Intrinsic::experimental_vector_reduce_fmul: 8397 if (FMF.isFast()) 8398 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8399 else 8400 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8401 break; 8402 case Intrinsic::experimental_vector_reduce_add: 8403 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8404 break; 8405 case Intrinsic::experimental_vector_reduce_mul: 8406 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8407 break; 8408 case Intrinsic::experimental_vector_reduce_and: 8409 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8410 break; 8411 case Intrinsic::experimental_vector_reduce_or: 8412 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8413 break; 8414 case Intrinsic::experimental_vector_reduce_xor: 8415 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8416 break; 8417 case Intrinsic::experimental_vector_reduce_smax: 8418 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8419 break; 8420 case Intrinsic::experimental_vector_reduce_smin: 8421 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8422 break; 8423 case Intrinsic::experimental_vector_reduce_umax: 8424 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8425 break; 8426 case Intrinsic::experimental_vector_reduce_umin: 8427 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8428 break; 8429 case Intrinsic::experimental_vector_reduce_fmax: 8430 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8431 break; 8432 case Intrinsic::experimental_vector_reduce_fmin: 8433 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8434 break; 8435 default: 8436 llvm_unreachable("Unhandled vector reduce intrinsic"); 8437 } 8438 setValue(&I, Res); 8439 } 8440 8441 /// Returns an AttributeList representing the attributes applied to the return 8442 /// value of the given call. 8443 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8444 SmallVector<Attribute::AttrKind, 2> Attrs; 8445 if (CLI.RetSExt) 8446 Attrs.push_back(Attribute::SExt); 8447 if (CLI.RetZExt) 8448 Attrs.push_back(Attribute::ZExt); 8449 if (CLI.IsInReg) 8450 Attrs.push_back(Attribute::InReg); 8451 8452 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8453 Attrs); 8454 } 8455 8456 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8457 /// implementation, which just calls LowerCall. 8458 /// FIXME: When all targets are 8459 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8460 std::pair<SDValue, SDValue> 8461 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8462 // Handle the incoming return values from the call. 8463 CLI.Ins.clear(); 8464 Type *OrigRetTy = CLI.RetTy; 8465 SmallVector<EVT, 4> RetTys; 8466 SmallVector<uint64_t, 4> Offsets; 8467 auto &DL = CLI.DAG.getDataLayout(); 8468 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8469 8470 if (CLI.IsPostTypeLegalization) { 8471 // If we are lowering a libcall after legalization, split the return type. 8472 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8473 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8474 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8475 EVT RetVT = OldRetTys[i]; 8476 uint64_t Offset = OldOffsets[i]; 8477 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8478 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8479 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8480 RetTys.append(NumRegs, RegisterVT); 8481 for (unsigned j = 0; j != NumRegs; ++j) 8482 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8483 } 8484 } 8485 8486 SmallVector<ISD::OutputArg, 4> Outs; 8487 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8488 8489 bool CanLowerReturn = 8490 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8491 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8492 8493 SDValue DemoteStackSlot; 8494 int DemoteStackIdx = -100; 8495 if (!CanLowerReturn) { 8496 // FIXME: equivalent assert? 8497 // assert(!CS.hasInAllocaArgument() && 8498 // "sret demotion is incompatible with inalloca"); 8499 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8500 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8501 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8502 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8503 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8504 DL.getAllocaAddrSpace()); 8505 8506 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8507 ArgListEntry Entry; 8508 Entry.Node = DemoteStackSlot; 8509 Entry.Ty = StackSlotPtrType; 8510 Entry.IsSExt = false; 8511 Entry.IsZExt = false; 8512 Entry.IsInReg = false; 8513 Entry.IsSRet = true; 8514 Entry.IsNest = false; 8515 Entry.IsByVal = false; 8516 Entry.IsReturned = false; 8517 Entry.IsSwiftSelf = false; 8518 Entry.IsSwiftError = false; 8519 Entry.Alignment = Align; 8520 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8521 CLI.NumFixedArgs += 1; 8522 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8523 8524 // sret demotion isn't compatible with tail-calls, since the sret argument 8525 // points into the callers stack frame. 8526 CLI.IsTailCall = false; 8527 } else { 8528 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8529 EVT VT = RetTys[I]; 8530 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8531 CLI.CallConv, VT); 8532 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8533 CLI.CallConv, VT); 8534 for (unsigned i = 0; i != NumRegs; ++i) { 8535 ISD::InputArg MyFlags; 8536 MyFlags.VT = RegisterVT; 8537 MyFlags.ArgVT = VT; 8538 MyFlags.Used = CLI.IsReturnValueUsed; 8539 if (CLI.RetSExt) 8540 MyFlags.Flags.setSExt(); 8541 if (CLI.RetZExt) 8542 MyFlags.Flags.setZExt(); 8543 if (CLI.IsInReg) 8544 MyFlags.Flags.setInReg(); 8545 CLI.Ins.push_back(MyFlags); 8546 } 8547 } 8548 } 8549 8550 // We push in swifterror return as the last element of CLI.Ins. 8551 ArgListTy &Args = CLI.getArgs(); 8552 if (supportSwiftError()) { 8553 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8554 if (Args[i].IsSwiftError) { 8555 ISD::InputArg MyFlags; 8556 MyFlags.VT = getPointerTy(DL); 8557 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8558 MyFlags.Flags.setSwiftError(); 8559 CLI.Ins.push_back(MyFlags); 8560 } 8561 } 8562 } 8563 8564 // Handle all of the outgoing arguments. 8565 CLI.Outs.clear(); 8566 CLI.OutVals.clear(); 8567 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8568 SmallVector<EVT, 4> ValueVTs; 8569 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8570 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8571 Type *FinalType = Args[i].Ty; 8572 if (Args[i].IsByVal) 8573 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8574 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8575 FinalType, CLI.CallConv, CLI.IsVarArg); 8576 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8577 ++Value) { 8578 EVT VT = ValueVTs[Value]; 8579 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8580 SDValue Op = SDValue(Args[i].Node.getNode(), 8581 Args[i].Node.getResNo() + Value); 8582 ISD::ArgFlagsTy Flags; 8583 8584 // Certain targets (such as MIPS), may have a different ABI alignment 8585 // for a type depending on the context. Give the target a chance to 8586 // specify the alignment it wants. 8587 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8588 8589 if (Args[i].IsZExt) 8590 Flags.setZExt(); 8591 if (Args[i].IsSExt) 8592 Flags.setSExt(); 8593 if (Args[i].IsInReg) { 8594 // If we are using vectorcall calling convention, a structure that is 8595 // passed InReg - is surely an HVA 8596 if (CLI.CallConv == CallingConv::X86_VectorCall && 8597 isa<StructType>(FinalType)) { 8598 // The first value of a structure is marked 8599 if (0 == Value) 8600 Flags.setHvaStart(); 8601 Flags.setHva(); 8602 } 8603 // Set InReg Flag 8604 Flags.setInReg(); 8605 } 8606 if (Args[i].IsSRet) 8607 Flags.setSRet(); 8608 if (Args[i].IsSwiftSelf) 8609 Flags.setSwiftSelf(); 8610 if (Args[i].IsSwiftError) 8611 Flags.setSwiftError(); 8612 if (Args[i].IsByVal) 8613 Flags.setByVal(); 8614 if (Args[i].IsInAlloca) { 8615 Flags.setInAlloca(); 8616 // Set the byval flag for CCAssignFn callbacks that don't know about 8617 // inalloca. This way we can know how many bytes we should've allocated 8618 // and how many bytes a callee cleanup function will pop. If we port 8619 // inalloca to more targets, we'll have to add custom inalloca handling 8620 // in the various CC lowering callbacks. 8621 Flags.setByVal(); 8622 } 8623 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8624 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8625 Type *ElementTy = Ty->getElementType(); 8626 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8627 // For ByVal, alignment should come from FE. BE will guess if this 8628 // info is not there but there are cases it cannot get right. 8629 unsigned FrameAlign; 8630 if (Args[i].Alignment) 8631 FrameAlign = Args[i].Alignment; 8632 else 8633 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8634 Flags.setByValAlign(FrameAlign); 8635 } 8636 if (Args[i].IsNest) 8637 Flags.setNest(); 8638 if (NeedsRegBlock) 8639 Flags.setInConsecutiveRegs(); 8640 Flags.setOrigAlign(OriginalAlignment); 8641 8642 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8643 CLI.CallConv, VT); 8644 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8645 CLI.CallConv, VT); 8646 SmallVector<SDValue, 4> Parts(NumParts); 8647 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8648 8649 if (Args[i].IsSExt) 8650 ExtendKind = ISD::SIGN_EXTEND; 8651 else if (Args[i].IsZExt) 8652 ExtendKind = ISD::ZERO_EXTEND; 8653 8654 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8655 // for now. 8656 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8657 CanLowerReturn) { 8658 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8659 "unexpected use of 'returned'"); 8660 // Before passing 'returned' to the target lowering code, ensure that 8661 // either the register MVT and the actual EVT are the same size or that 8662 // the return value and argument are extended in the same way; in these 8663 // cases it's safe to pass the argument register value unchanged as the 8664 // return register value (although it's at the target's option whether 8665 // to do so) 8666 // TODO: allow code generation to take advantage of partially preserved 8667 // registers rather than clobbering the entire register when the 8668 // parameter extension method is not compatible with the return 8669 // extension method 8670 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8671 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8672 CLI.RetZExt == Args[i].IsZExt)) 8673 Flags.setReturned(); 8674 } 8675 8676 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8677 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8678 8679 for (unsigned j = 0; j != NumParts; ++j) { 8680 // if it isn't first piece, alignment must be 1 8681 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8682 i < CLI.NumFixedArgs, 8683 i, j*Parts[j].getValueType().getStoreSize()); 8684 if (NumParts > 1 && j == 0) 8685 MyFlags.Flags.setSplit(); 8686 else if (j != 0) { 8687 MyFlags.Flags.setOrigAlign(1); 8688 if (j == NumParts - 1) 8689 MyFlags.Flags.setSplitEnd(); 8690 } 8691 8692 CLI.Outs.push_back(MyFlags); 8693 CLI.OutVals.push_back(Parts[j]); 8694 } 8695 8696 if (NeedsRegBlock && Value == NumValues - 1) 8697 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8698 } 8699 } 8700 8701 SmallVector<SDValue, 4> InVals; 8702 CLI.Chain = LowerCall(CLI, InVals); 8703 8704 // Update CLI.InVals to use outside of this function. 8705 CLI.InVals = InVals; 8706 8707 // Verify that the target's LowerCall behaved as expected. 8708 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8709 "LowerCall didn't return a valid chain!"); 8710 assert((!CLI.IsTailCall || InVals.empty()) && 8711 "LowerCall emitted a return value for a tail call!"); 8712 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8713 "LowerCall didn't emit the correct number of values!"); 8714 8715 // For a tail call, the return value is merely live-out and there aren't 8716 // any nodes in the DAG representing it. Return a special value to 8717 // indicate that a tail call has been emitted and no more Instructions 8718 // should be processed in the current block. 8719 if (CLI.IsTailCall) { 8720 CLI.DAG.setRoot(CLI.Chain); 8721 return std::make_pair(SDValue(), SDValue()); 8722 } 8723 8724 #ifndef NDEBUG 8725 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8726 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8727 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8728 "LowerCall emitted a value with the wrong type!"); 8729 } 8730 #endif 8731 8732 SmallVector<SDValue, 4> ReturnValues; 8733 if (!CanLowerReturn) { 8734 // The instruction result is the result of loading from the 8735 // hidden sret parameter. 8736 SmallVector<EVT, 1> PVTs; 8737 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8738 8739 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8740 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8741 EVT PtrVT = PVTs[0]; 8742 8743 unsigned NumValues = RetTys.size(); 8744 ReturnValues.resize(NumValues); 8745 SmallVector<SDValue, 4> Chains(NumValues); 8746 8747 // An aggregate return value cannot wrap around the address space, so 8748 // offsets to its parts don't wrap either. 8749 SDNodeFlags Flags; 8750 Flags.setNoUnsignedWrap(true); 8751 8752 for (unsigned i = 0; i < NumValues; ++i) { 8753 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8754 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8755 PtrVT), Flags); 8756 SDValue L = CLI.DAG.getLoad( 8757 RetTys[i], CLI.DL, CLI.Chain, Add, 8758 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8759 DemoteStackIdx, Offsets[i]), 8760 /* Alignment = */ 1); 8761 ReturnValues[i] = L; 8762 Chains[i] = L.getValue(1); 8763 } 8764 8765 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8766 } else { 8767 // Collect the legal value parts into potentially illegal values 8768 // that correspond to the original function's return values. 8769 Optional<ISD::NodeType> AssertOp; 8770 if (CLI.RetSExt) 8771 AssertOp = ISD::AssertSext; 8772 else if (CLI.RetZExt) 8773 AssertOp = ISD::AssertZext; 8774 unsigned CurReg = 0; 8775 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8776 EVT VT = RetTys[I]; 8777 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8778 CLI.CallConv, VT); 8779 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8780 CLI.CallConv, VT); 8781 8782 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8783 NumRegs, RegisterVT, VT, nullptr, 8784 CLI.CallConv, AssertOp)); 8785 CurReg += NumRegs; 8786 } 8787 8788 // For a function returning void, there is no return value. We can't create 8789 // such a node, so we just return a null return value in that case. In 8790 // that case, nothing will actually look at the value. 8791 if (ReturnValues.empty()) 8792 return std::make_pair(SDValue(), CLI.Chain); 8793 } 8794 8795 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8796 CLI.DAG.getVTList(RetTys), ReturnValues); 8797 return std::make_pair(Res, CLI.Chain); 8798 } 8799 8800 void TargetLowering::LowerOperationWrapper(SDNode *N, 8801 SmallVectorImpl<SDValue> &Results, 8802 SelectionDAG &DAG) const { 8803 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8804 Results.push_back(Res); 8805 } 8806 8807 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8808 llvm_unreachable("LowerOperation not implemented for this target!"); 8809 } 8810 8811 void 8812 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8813 SDValue Op = getNonRegisterValue(V); 8814 assert((Op.getOpcode() != ISD::CopyFromReg || 8815 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8816 "Copy from a reg to the same reg!"); 8817 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8818 8819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8820 // If this is an InlineAsm we have to match the registers required, not the 8821 // notional registers required by the type. 8822 8823 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 8824 None); // This is not an ABI copy. 8825 SDValue Chain = DAG.getEntryNode(); 8826 8827 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8828 FuncInfo.PreferredExtendType.end()) 8829 ? ISD::ANY_EXTEND 8830 : FuncInfo.PreferredExtendType[V]; 8831 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8832 PendingExports.push_back(Chain); 8833 } 8834 8835 #include "llvm/CodeGen/SelectionDAGISel.h" 8836 8837 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8838 /// entry block, return true. This includes arguments used by switches, since 8839 /// the switch may expand into multiple basic blocks. 8840 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8841 // With FastISel active, we may be splitting blocks, so force creation 8842 // of virtual registers for all non-dead arguments. 8843 if (FastISel) 8844 return A->use_empty(); 8845 8846 const BasicBlock &Entry = A->getParent()->front(); 8847 for (const User *U : A->users()) 8848 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8849 return false; // Use not in entry block. 8850 8851 return true; 8852 } 8853 8854 using ArgCopyElisionMapTy = 8855 DenseMap<const Argument *, 8856 std::pair<const AllocaInst *, const StoreInst *>>; 8857 8858 /// Scan the entry block of the function in FuncInfo for arguments that look 8859 /// like copies into a local alloca. Record any copied arguments in 8860 /// ArgCopyElisionCandidates. 8861 static void 8862 findArgumentCopyElisionCandidates(const DataLayout &DL, 8863 FunctionLoweringInfo *FuncInfo, 8864 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8865 // Record the state of every static alloca used in the entry block. Argument 8866 // allocas are all used in the entry block, so we need approximately as many 8867 // entries as we have arguments. 8868 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8869 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8870 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8871 StaticAllocas.reserve(NumArgs * 2); 8872 8873 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8874 if (!V) 8875 return nullptr; 8876 V = V->stripPointerCasts(); 8877 const auto *AI = dyn_cast<AllocaInst>(V); 8878 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8879 return nullptr; 8880 auto Iter = StaticAllocas.insert({AI, Unknown}); 8881 return &Iter.first->second; 8882 }; 8883 8884 // Look for stores of arguments to static allocas. Look through bitcasts and 8885 // GEPs to handle type coercions, as long as the alloca is fully initialized 8886 // by the store. Any non-store use of an alloca escapes it and any subsequent 8887 // unanalyzed store might write it. 8888 // FIXME: Handle structs initialized with multiple stores. 8889 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8890 // Look for stores, and handle non-store uses conservatively. 8891 const auto *SI = dyn_cast<StoreInst>(&I); 8892 if (!SI) { 8893 // We will look through cast uses, so ignore them completely. 8894 if (I.isCast()) 8895 continue; 8896 // Ignore debug info intrinsics, they don't escape or store to allocas. 8897 if (isa<DbgInfoIntrinsic>(I)) 8898 continue; 8899 // This is an unknown instruction. Assume it escapes or writes to all 8900 // static alloca operands. 8901 for (const Use &U : I.operands()) { 8902 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8903 *Info = StaticAllocaInfo::Clobbered; 8904 } 8905 continue; 8906 } 8907 8908 // If the stored value is a static alloca, mark it as escaped. 8909 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8910 *Info = StaticAllocaInfo::Clobbered; 8911 8912 // Check if the destination is a static alloca. 8913 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8914 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8915 if (!Info) 8916 continue; 8917 const AllocaInst *AI = cast<AllocaInst>(Dst); 8918 8919 // Skip allocas that have been initialized or clobbered. 8920 if (*Info != StaticAllocaInfo::Unknown) 8921 continue; 8922 8923 // Check if the stored value is an argument, and that this store fully 8924 // initializes the alloca. Don't elide copies from the same argument twice. 8925 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8926 const auto *Arg = dyn_cast<Argument>(Val); 8927 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8928 Arg->getType()->isEmptyTy() || 8929 DL.getTypeStoreSize(Arg->getType()) != 8930 DL.getTypeAllocSize(AI->getAllocatedType()) || 8931 ArgCopyElisionCandidates.count(Arg)) { 8932 *Info = StaticAllocaInfo::Clobbered; 8933 continue; 8934 } 8935 8936 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8937 << '\n'); 8938 8939 // Mark this alloca and store for argument copy elision. 8940 *Info = StaticAllocaInfo::Elidable; 8941 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8942 8943 // Stop scanning if we've seen all arguments. This will happen early in -O0 8944 // builds, which is useful, because -O0 builds have large entry blocks and 8945 // many allocas. 8946 if (ArgCopyElisionCandidates.size() == NumArgs) 8947 break; 8948 } 8949 } 8950 8951 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8952 /// ArgVal is a load from a suitable fixed stack object. 8953 static void tryToElideArgumentCopy( 8954 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8955 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8956 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8957 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8958 SDValue ArgVal, bool &ArgHasUses) { 8959 // Check if this is a load from a fixed stack object. 8960 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8961 if (!LNode) 8962 return; 8963 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8964 if (!FINode) 8965 return; 8966 8967 // Check that the fixed stack object is the right size and alignment. 8968 // Look at the alignment that the user wrote on the alloca instead of looking 8969 // at the stack object. 8970 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8971 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8972 const AllocaInst *AI = ArgCopyIter->second.first; 8973 int FixedIndex = FINode->getIndex(); 8974 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8975 int OldIndex = AllocaIndex; 8976 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8977 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8978 LLVM_DEBUG( 8979 dbgs() << " argument copy elision failed due to bad fixed stack " 8980 "object size\n"); 8981 return; 8982 } 8983 unsigned RequiredAlignment = AI->getAlignment(); 8984 if (!RequiredAlignment) { 8985 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8986 AI->getAllocatedType()); 8987 } 8988 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8989 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8990 "greater than stack argument alignment (" 8991 << RequiredAlignment << " vs " 8992 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8993 return; 8994 } 8995 8996 // Perform the elision. Delete the old stack object and replace its only use 8997 // in the variable info map. Mark the stack object as mutable. 8998 LLVM_DEBUG({ 8999 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9000 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9001 << '\n'; 9002 }); 9003 MFI.RemoveStackObject(OldIndex); 9004 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9005 AllocaIndex = FixedIndex; 9006 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9007 Chains.push_back(ArgVal.getValue(1)); 9008 9009 // Avoid emitting code for the store implementing the copy. 9010 const StoreInst *SI = ArgCopyIter->second.second; 9011 ElidedArgCopyInstrs.insert(SI); 9012 9013 // Check for uses of the argument again so that we can avoid exporting ArgVal 9014 // if it is't used by anything other than the store. 9015 for (const Value *U : Arg.users()) { 9016 if (U != SI) { 9017 ArgHasUses = true; 9018 break; 9019 } 9020 } 9021 } 9022 9023 void SelectionDAGISel::LowerArguments(const Function &F) { 9024 SelectionDAG &DAG = SDB->DAG; 9025 SDLoc dl = SDB->getCurSDLoc(); 9026 const DataLayout &DL = DAG.getDataLayout(); 9027 SmallVector<ISD::InputArg, 16> Ins; 9028 9029 if (!FuncInfo->CanLowerReturn) { 9030 // Put in an sret pointer parameter before all the other parameters. 9031 SmallVector<EVT, 1> ValueVTs; 9032 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9033 F.getReturnType()->getPointerTo( 9034 DAG.getDataLayout().getAllocaAddrSpace()), 9035 ValueVTs); 9036 9037 // NOTE: Assuming that a pointer will never break down to more than one VT 9038 // or one register. 9039 ISD::ArgFlagsTy Flags; 9040 Flags.setSRet(); 9041 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9042 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9043 ISD::InputArg::NoArgIndex, 0); 9044 Ins.push_back(RetArg); 9045 } 9046 9047 // Look for stores of arguments to static allocas. Mark such arguments with a 9048 // flag to ask the target to give us the memory location of that argument if 9049 // available. 9050 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9051 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9052 9053 // Set up the incoming argument description vector. 9054 for (const Argument &Arg : F.args()) { 9055 unsigned ArgNo = Arg.getArgNo(); 9056 SmallVector<EVT, 4> ValueVTs; 9057 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9058 bool isArgValueUsed = !Arg.use_empty(); 9059 unsigned PartBase = 0; 9060 Type *FinalType = Arg.getType(); 9061 if (Arg.hasAttribute(Attribute::ByVal)) 9062 FinalType = cast<PointerType>(FinalType)->getElementType(); 9063 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9064 FinalType, F.getCallingConv(), F.isVarArg()); 9065 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9066 Value != NumValues; ++Value) { 9067 EVT VT = ValueVTs[Value]; 9068 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9069 ISD::ArgFlagsTy Flags; 9070 9071 // Certain targets (such as MIPS), may have a different ABI alignment 9072 // for a type depending on the context. Give the target a chance to 9073 // specify the alignment it wants. 9074 unsigned OriginalAlignment = 9075 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9076 9077 if (Arg.hasAttribute(Attribute::ZExt)) 9078 Flags.setZExt(); 9079 if (Arg.hasAttribute(Attribute::SExt)) 9080 Flags.setSExt(); 9081 if (Arg.hasAttribute(Attribute::InReg)) { 9082 // If we are using vectorcall calling convention, a structure that is 9083 // passed InReg - is surely an HVA 9084 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9085 isa<StructType>(Arg.getType())) { 9086 // The first value of a structure is marked 9087 if (0 == Value) 9088 Flags.setHvaStart(); 9089 Flags.setHva(); 9090 } 9091 // Set InReg Flag 9092 Flags.setInReg(); 9093 } 9094 if (Arg.hasAttribute(Attribute::StructRet)) 9095 Flags.setSRet(); 9096 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9097 Flags.setSwiftSelf(); 9098 if (Arg.hasAttribute(Attribute::SwiftError)) 9099 Flags.setSwiftError(); 9100 if (Arg.hasAttribute(Attribute::ByVal)) 9101 Flags.setByVal(); 9102 if (Arg.hasAttribute(Attribute::InAlloca)) { 9103 Flags.setInAlloca(); 9104 // Set the byval flag for CCAssignFn callbacks that don't know about 9105 // inalloca. This way we can know how many bytes we should've allocated 9106 // and how many bytes a callee cleanup function will pop. If we port 9107 // inalloca to more targets, we'll have to add custom inalloca handling 9108 // in the various CC lowering callbacks. 9109 Flags.setByVal(); 9110 } 9111 if (F.getCallingConv() == CallingConv::X86_INTR) { 9112 // IA Interrupt passes frame (1st parameter) by value in the stack. 9113 if (ArgNo == 0) 9114 Flags.setByVal(); 9115 } 9116 if (Flags.isByVal() || Flags.isInAlloca()) { 9117 PointerType *Ty = cast<PointerType>(Arg.getType()); 9118 Type *ElementTy = Ty->getElementType(); 9119 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9120 // For ByVal, alignment should be passed from FE. BE will guess if 9121 // this info is not there but there are cases it cannot get right. 9122 unsigned FrameAlign; 9123 if (Arg.getParamAlignment()) 9124 FrameAlign = Arg.getParamAlignment(); 9125 else 9126 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9127 Flags.setByValAlign(FrameAlign); 9128 } 9129 if (Arg.hasAttribute(Attribute::Nest)) 9130 Flags.setNest(); 9131 if (NeedsRegBlock) 9132 Flags.setInConsecutiveRegs(); 9133 Flags.setOrigAlign(OriginalAlignment); 9134 if (ArgCopyElisionCandidates.count(&Arg)) 9135 Flags.setCopyElisionCandidate(); 9136 9137 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9138 *CurDAG->getContext(), F.getCallingConv(), VT); 9139 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9140 *CurDAG->getContext(), F.getCallingConv(), VT); 9141 for (unsigned i = 0; i != NumRegs; ++i) { 9142 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9143 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9144 if (NumRegs > 1 && i == 0) 9145 MyFlags.Flags.setSplit(); 9146 // if it isn't first piece, alignment must be 1 9147 else if (i > 0) { 9148 MyFlags.Flags.setOrigAlign(1); 9149 if (i == NumRegs - 1) 9150 MyFlags.Flags.setSplitEnd(); 9151 } 9152 Ins.push_back(MyFlags); 9153 } 9154 if (NeedsRegBlock && Value == NumValues - 1) 9155 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9156 PartBase += VT.getStoreSize(); 9157 } 9158 } 9159 9160 // Call the target to set up the argument values. 9161 SmallVector<SDValue, 8> InVals; 9162 SDValue NewRoot = TLI->LowerFormalArguments( 9163 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9164 9165 // Verify that the target's LowerFormalArguments behaved as expected. 9166 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9167 "LowerFormalArguments didn't return a valid chain!"); 9168 assert(InVals.size() == Ins.size() && 9169 "LowerFormalArguments didn't emit the correct number of values!"); 9170 LLVM_DEBUG({ 9171 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9172 assert(InVals[i].getNode() && 9173 "LowerFormalArguments emitted a null value!"); 9174 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9175 "LowerFormalArguments emitted a value with the wrong type!"); 9176 } 9177 }); 9178 9179 // Update the DAG with the new chain value resulting from argument lowering. 9180 DAG.setRoot(NewRoot); 9181 9182 // Set up the argument values. 9183 unsigned i = 0; 9184 if (!FuncInfo->CanLowerReturn) { 9185 // Create a virtual register for the sret pointer, and put in a copy 9186 // from the sret argument into it. 9187 SmallVector<EVT, 1> ValueVTs; 9188 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9189 F.getReturnType()->getPointerTo( 9190 DAG.getDataLayout().getAllocaAddrSpace()), 9191 ValueVTs); 9192 MVT VT = ValueVTs[0].getSimpleVT(); 9193 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9194 Optional<ISD::NodeType> AssertOp = None; 9195 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9196 nullptr, F.getCallingConv(), AssertOp); 9197 9198 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9199 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9200 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9201 FuncInfo->DemoteRegister = SRetReg; 9202 NewRoot = 9203 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9204 DAG.setRoot(NewRoot); 9205 9206 // i indexes lowered arguments. Bump it past the hidden sret argument. 9207 ++i; 9208 } 9209 9210 SmallVector<SDValue, 4> Chains; 9211 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9212 for (const Argument &Arg : F.args()) { 9213 SmallVector<SDValue, 4> ArgValues; 9214 SmallVector<EVT, 4> ValueVTs; 9215 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9216 unsigned NumValues = ValueVTs.size(); 9217 if (NumValues == 0) 9218 continue; 9219 9220 bool ArgHasUses = !Arg.use_empty(); 9221 9222 // Elide the copying store if the target loaded this argument from a 9223 // suitable fixed stack object. 9224 if (Ins[i].Flags.isCopyElisionCandidate()) { 9225 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9226 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9227 InVals[i], ArgHasUses); 9228 } 9229 9230 // If this argument is unused then remember its value. It is used to generate 9231 // debugging information. 9232 bool isSwiftErrorArg = 9233 TLI->supportSwiftError() && 9234 Arg.hasAttribute(Attribute::SwiftError); 9235 if (!ArgHasUses && !isSwiftErrorArg) { 9236 SDB->setUnusedArgValue(&Arg, InVals[i]); 9237 9238 // Also remember any frame index for use in FastISel. 9239 if (FrameIndexSDNode *FI = 9240 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9241 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9242 } 9243 9244 for (unsigned Val = 0; Val != NumValues; ++Val) { 9245 EVT VT = ValueVTs[Val]; 9246 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9247 F.getCallingConv(), VT); 9248 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9249 *CurDAG->getContext(), F.getCallingConv(), VT); 9250 9251 // Even an apparant 'unused' swifterror argument needs to be returned. So 9252 // we do generate a copy for it that can be used on return from the 9253 // function. 9254 if (ArgHasUses || isSwiftErrorArg) { 9255 Optional<ISD::NodeType> AssertOp; 9256 if (Arg.hasAttribute(Attribute::SExt)) 9257 AssertOp = ISD::AssertSext; 9258 else if (Arg.hasAttribute(Attribute::ZExt)) 9259 AssertOp = ISD::AssertZext; 9260 9261 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9262 PartVT, VT, nullptr, 9263 F.getCallingConv(), AssertOp)); 9264 } 9265 9266 i += NumParts; 9267 } 9268 9269 // We don't need to do anything else for unused arguments. 9270 if (ArgValues.empty()) 9271 continue; 9272 9273 // Note down frame index. 9274 if (FrameIndexSDNode *FI = 9275 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9276 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9277 9278 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9279 SDB->getCurSDLoc()); 9280 9281 SDB->setValue(&Arg, Res); 9282 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9283 // We want to associate the argument with the frame index, among 9284 // involved operands, that correspond to the lowest address. The 9285 // getCopyFromParts function, called earlier, is swapping the order of 9286 // the operands to BUILD_PAIR depending on endianness. The result of 9287 // that swapping is that the least significant bits of the argument will 9288 // be in the first operand of the BUILD_PAIR node, and the most 9289 // significant bits will be in the second operand. 9290 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9291 if (LoadSDNode *LNode = 9292 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9293 if (FrameIndexSDNode *FI = 9294 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9295 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9296 } 9297 9298 // Update the SwiftErrorVRegDefMap. 9299 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9300 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9301 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9302 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9303 FuncInfo->SwiftErrorArg, Reg); 9304 } 9305 9306 // If this argument is live outside of the entry block, insert a copy from 9307 // wherever we got it to the vreg that other BB's will reference it as. 9308 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9309 // If we can, though, try to skip creating an unnecessary vreg. 9310 // FIXME: This isn't very clean... it would be nice to make this more 9311 // general. It's also subtly incompatible with the hacks FastISel 9312 // uses with vregs. 9313 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9314 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9315 FuncInfo->ValueMap[&Arg] = Reg; 9316 continue; 9317 } 9318 } 9319 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9320 FuncInfo->InitializeRegForValue(&Arg); 9321 SDB->CopyToExportRegsIfNeeded(&Arg); 9322 } 9323 } 9324 9325 if (!Chains.empty()) { 9326 Chains.push_back(NewRoot); 9327 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9328 } 9329 9330 DAG.setRoot(NewRoot); 9331 9332 assert(i == InVals.size() && "Argument register count mismatch!"); 9333 9334 // If any argument copy elisions occurred and we have debug info, update the 9335 // stale frame indices used in the dbg.declare variable info table. 9336 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9337 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9338 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9339 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9340 if (I != ArgCopyElisionFrameIndexMap.end()) 9341 VI.Slot = I->second; 9342 } 9343 } 9344 9345 // Finally, if the target has anything special to do, allow it to do so. 9346 EmitFunctionEntryCode(); 9347 } 9348 9349 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9350 /// ensure constants are generated when needed. Remember the virtual registers 9351 /// that need to be added to the Machine PHI nodes as input. We cannot just 9352 /// directly add them, because expansion might result in multiple MBB's for one 9353 /// BB. As such, the start of the BB might correspond to a different MBB than 9354 /// the end. 9355 void 9356 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9357 const Instruction *TI = LLVMBB->getTerminator(); 9358 9359 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9360 9361 // Check PHI nodes in successors that expect a value to be available from this 9362 // block. 9363 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9364 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9365 if (!isa<PHINode>(SuccBB->begin())) continue; 9366 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9367 9368 // If this terminator has multiple identical successors (common for 9369 // switches), only handle each succ once. 9370 if (!SuccsHandled.insert(SuccMBB).second) 9371 continue; 9372 9373 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9374 9375 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9376 // nodes and Machine PHI nodes, but the incoming operands have not been 9377 // emitted yet. 9378 for (const PHINode &PN : SuccBB->phis()) { 9379 // Ignore dead phi's. 9380 if (PN.use_empty()) 9381 continue; 9382 9383 // Skip empty types 9384 if (PN.getType()->isEmptyTy()) 9385 continue; 9386 9387 unsigned Reg; 9388 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9389 9390 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9391 unsigned &RegOut = ConstantsOut[C]; 9392 if (RegOut == 0) { 9393 RegOut = FuncInfo.CreateRegs(C->getType()); 9394 CopyValueToVirtualRegister(C, RegOut); 9395 } 9396 Reg = RegOut; 9397 } else { 9398 DenseMap<const Value *, unsigned>::iterator I = 9399 FuncInfo.ValueMap.find(PHIOp); 9400 if (I != FuncInfo.ValueMap.end()) 9401 Reg = I->second; 9402 else { 9403 assert(isa<AllocaInst>(PHIOp) && 9404 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9405 "Didn't codegen value into a register!??"); 9406 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9407 CopyValueToVirtualRegister(PHIOp, Reg); 9408 } 9409 } 9410 9411 // Remember that this register needs to added to the machine PHI node as 9412 // the input for this MBB. 9413 SmallVector<EVT, 4> ValueVTs; 9414 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9415 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9416 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9417 EVT VT = ValueVTs[vti]; 9418 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9419 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9420 FuncInfo.PHINodesToUpdate.push_back( 9421 std::make_pair(&*MBBI++, Reg + i)); 9422 Reg += NumRegisters; 9423 } 9424 } 9425 } 9426 9427 ConstantsOut.clear(); 9428 } 9429 9430 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9431 /// is 0. 9432 MachineBasicBlock * 9433 SelectionDAGBuilder::StackProtectorDescriptor:: 9434 AddSuccessorMBB(const BasicBlock *BB, 9435 MachineBasicBlock *ParentMBB, 9436 bool IsLikely, 9437 MachineBasicBlock *SuccMBB) { 9438 // If SuccBB has not been created yet, create it. 9439 if (!SuccMBB) { 9440 MachineFunction *MF = ParentMBB->getParent(); 9441 MachineFunction::iterator BBI(ParentMBB); 9442 SuccMBB = MF->CreateMachineBasicBlock(BB); 9443 MF->insert(++BBI, SuccMBB); 9444 } 9445 // Add it as a successor of ParentMBB. 9446 ParentMBB->addSuccessor( 9447 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9448 return SuccMBB; 9449 } 9450 9451 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9452 MachineFunction::iterator I(MBB); 9453 if (++I == FuncInfo.MF->end()) 9454 return nullptr; 9455 return &*I; 9456 } 9457 9458 /// During lowering new call nodes can be created (such as memset, etc.). 9459 /// Those will become new roots of the current DAG, but complications arise 9460 /// when they are tail calls. In such cases, the call lowering will update 9461 /// the root, but the builder still needs to know that a tail call has been 9462 /// lowered in order to avoid generating an additional return. 9463 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9464 // If the node is null, we do have a tail call. 9465 if (MaybeTC.getNode() != nullptr) 9466 DAG.setRoot(MaybeTC); 9467 else 9468 HasTailCall = true; 9469 } 9470 9471 uint64_t 9472 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9473 unsigned First, unsigned Last) const { 9474 assert(Last >= First); 9475 const APInt &LowCase = Clusters[First].Low->getValue(); 9476 const APInt &HighCase = Clusters[Last].High->getValue(); 9477 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9478 9479 // FIXME: A range of consecutive cases has 100% density, but only requires one 9480 // comparison to lower. We should discriminate against such consecutive ranges 9481 // in jump tables. 9482 9483 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9484 } 9485 9486 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9487 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9488 unsigned Last) const { 9489 assert(Last >= First); 9490 assert(TotalCases[Last] >= TotalCases[First]); 9491 uint64_t NumCases = 9492 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9493 return NumCases; 9494 } 9495 9496 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9497 unsigned First, unsigned Last, 9498 const SwitchInst *SI, 9499 MachineBasicBlock *DefaultMBB, 9500 CaseCluster &JTCluster) { 9501 assert(First <= Last); 9502 9503 auto Prob = BranchProbability::getZero(); 9504 unsigned NumCmps = 0; 9505 std::vector<MachineBasicBlock*> Table; 9506 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9507 9508 // Initialize probabilities in JTProbs. 9509 for (unsigned I = First; I <= Last; ++I) 9510 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9511 9512 for (unsigned I = First; I <= Last; ++I) { 9513 assert(Clusters[I].Kind == CC_Range); 9514 Prob += Clusters[I].Prob; 9515 const APInt &Low = Clusters[I].Low->getValue(); 9516 const APInt &High = Clusters[I].High->getValue(); 9517 NumCmps += (Low == High) ? 1 : 2; 9518 if (I != First) { 9519 // Fill the gap between this and the previous cluster. 9520 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9521 assert(PreviousHigh.slt(Low)); 9522 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9523 for (uint64_t J = 0; J < Gap; J++) 9524 Table.push_back(DefaultMBB); 9525 } 9526 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9527 for (uint64_t J = 0; J < ClusterSize; ++J) 9528 Table.push_back(Clusters[I].MBB); 9529 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9530 } 9531 9532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9533 unsigned NumDests = JTProbs.size(); 9534 if (TLI.isSuitableForBitTests( 9535 NumDests, NumCmps, Clusters[First].Low->getValue(), 9536 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9537 // Clusters[First..Last] should be lowered as bit tests instead. 9538 return false; 9539 } 9540 9541 // Create the MBB that will load from and jump through the table. 9542 // Note: We create it here, but it's not inserted into the function yet. 9543 MachineFunction *CurMF = FuncInfo.MF; 9544 MachineBasicBlock *JumpTableMBB = 9545 CurMF->CreateMachineBasicBlock(SI->getParent()); 9546 9547 // Add successors. Note: use table order for determinism. 9548 SmallPtrSet<MachineBasicBlock *, 8> Done; 9549 for (MachineBasicBlock *Succ : Table) { 9550 if (Done.count(Succ)) 9551 continue; 9552 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9553 Done.insert(Succ); 9554 } 9555 JumpTableMBB->normalizeSuccProbs(); 9556 9557 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9558 ->createJumpTableIndex(Table); 9559 9560 // Set up the jump table info. 9561 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9562 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9563 Clusters[Last].High->getValue(), SI->getCondition(), 9564 nullptr, false); 9565 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9566 9567 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9568 JTCases.size() - 1, Prob); 9569 return true; 9570 } 9571 9572 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9573 const SwitchInst *SI, 9574 MachineBasicBlock *DefaultMBB) { 9575 #ifndef NDEBUG 9576 // Clusters must be non-empty, sorted, and only contain Range clusters. 9577 assert(!Clusters.empty()); 9578 for (CaseCluster &C : Clusters) 9579 assert(C.Kind == CC_Range); 9580 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9581 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9582 #endif 9583 9584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9585 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9586 return; 9587 9588 const int64_t N = Clusters.size(); 9589 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9590 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9591 9592 if (N < 2 || N < MinJumpTableEntries) 9593 return; 9594 9595 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9596 SmallVector<unsigned, 8> TotalCases(N); 9597 for (unsigned i = 0; i < N; ++i) { 9598 const APInt &Hi = Clusters[i].High->getValue(); 9599 const APInt &Lo = Clusters[i].Low->getValue(); 9600 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9601 if (i != 0) 9602 TotalCases[i] += TotalCases[i - 1]; 9603 } 9604 9605 // Cheap case: the whole range may be suitable for jump table. 9606 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9607 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9608 assert(NumCases < UINT64_MAX / 100); 9609 assert(Range >= NumCases); 9610 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9611 CaseCluster JTCluster; 9612 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9613 Clusters[0] = JTCluster; 9614 Clusters.resize(1); 9615 return; 9616 } 9617 } 9618 9619 // The algorithm below is not suitable for -O0. 9620 if (TM.getOptLevel() == CodeGenOpt::None) 9621 return; 9622 9623 // Split Clusters into minimum number of dense partitions. The algorithm uses 9624 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9625 // for the Case Statement'" (1994), but builds the MinPartitions array in 9626 // reverse order to make it easier to reconstruct the partitions in ascending 9627 // order. In the choice between two optimal partitionings, it picks the one 9628 // which yields more jump tables. 9629 9630 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9631 SmallVector<unsigned, 8> MinPartitions(N); 9632 // LastElement[i] is the last element of the partition starting at i. 9633 SmallVector<unsigned, 8> LastElement(N); 9634 // PartitionsScore[i] is used to break ties when choosing between two 9635 // partitionings resulting in the same number of partitions. 9636 SmallVector<unsigned, 8> PartitionsScore(N); 9637 // For PartitionsScore, a small number of comparisons is considered as good as 9638 // a jump table and a single comparison is considered better than a jump 9639 // table. 9640 enum PartitionScores : unsigned { 9641 NoTable = 0, 9642 Table = 1, 9643 FewCases = 1, 9644 SingleCase = 2 9645 }; 9646 9647 // Base case: There is only one way to partition Clusters[N-1]. 9648 MinPartitions[N - 1] = 1; 9649 LastElement[N - 1] = N - 1; 9650 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9651 9652 // Note: loop indexes are signed to avoid underflow. 9653 for (int64_t i = N - 2; i >= 0; i--) { 9654 // Find optimal partitioning of Clusters[i..N-1]. 9655 // Baseline: Put Clusters[i] into a partition on its own. 9656 MinPartitions[i] = MinPartitions[i + 1] + 1; 9657 LastElement[i] = i; 9658 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9659 9660 // Search for a solution that results in fewer partitions. 9661 for (int64_t j = N - 1; j > i; j--) { 9662 // Try building a partition from Clusters[i..j]. 9663 uint64_t Range = getJumpTableRange(Clusters, i, j); 9664 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9665 assert(NumCases < UINT64_MAX / 100); 9666 assert(Range >= NumCases); 9667 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9668 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9669 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9670 int64_t NumEntries = j - i + 1; 9671 9672 if (NumEntries == 1) 9673 Score += PartitionScores::SingleCase; 9674 else if (NumEntries <= SmallNumberOfEntries) 9675 Score += PartitionScores::FewCases; 9676 else if (NumEntries >= MinJumpTableEntries) 9677 Score += PartitionScores::Table; 9678 9679 // If this leads to fewer partitions, or to the same number of 9680 // partitions with better score, it is a better partitioning. 9681 if (NumPartitions < MinPartitions[i] || 9682 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9683 MinPartitions[i] = NumPartitions; 9684 LastElement[i] = j; 9685 PartitionsScore[i] = Score; 9686 } 9687 } 9688 } 9689 } 9690 9691 // Iterate over the partitions, replacing some with jump tables in-place. 9692 unsigned DstIndex = 0; 9693 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9694 Last = LastElement[First]; 9695 assert(Last >= First); 9696 assert(DstIndex <= First); 9697 unsigned NumClusters = Last - First + 1; 9698 9699 CaseCluster JTCluster; 9700 if (NumClusters >= MinJumpTableEntries && 9701 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9702 Clusters[DstIndex++] = JTCluster; 9703 } else { 9704 for (unsigned I = First; I <= Last; ++I) 9705 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9706 } 9707 } 9708 Clusters.resize(DstIndex); 9709 } 9710 9711 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9712 unsigned First, unsigned Last, 9713 const SwitchInst *SI, 9714 CaseCluster &BTCluster) { 9715 assert(First <= Last); 9716 if (First == Last) 9717 return false; 9718 9719 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9720 unsigned NumCmps = 0; 9721 for (int64_t I = First; I <= Last; ++I) { 9722 assert(Clusters[I].Kind == CC_Range); 9723 Dests.set(Clusters[I].MBB->getNumber()); 9724 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9725 } 9726 unsigned NumDests = Dests.count(); 9727 9728 APInt Low = Clusters[First].Low->getValue(); 9729 APInt High = Clusters[Last].High->getValue(); 9730 assert(Low.slt(High)); 9731 9732 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9733 const DataLayout &DL = DAG.getDataLayout(); 9734 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9735 return false; 9736 9737 APInt LowBound; 9738 APInt CmpRange; 9739 9740 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9741 assert(TLI.rangeFitsInWord(Low, High, DL) && 9742 "Case range must fit in bit mask!"); 9743 9744 // Check if the clusters cover a contiguous range such that no value in the 9745 // range will jump to the default statement. 9746 bool ContiguousRange = true; 9747 for (int64_t I = First + 1; I <= Last; ++I) { 9748 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9749 ContiguousRange = false; 9750 break; 9751 } 9752 } 9753 9754 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9755 // Optimize the case where all the case values fit in a word without having 9756 // to subtract minValue. In this case, we can optimize away the subtraction. 9757 LowBound = APInt::getNullValue(Low.getBitWidth()); 9758 CmpRange = High; 9759 ContiguousRange = false; 9760 } else { 9761 LowBound = Low; 9762 CmpRange = High - Low; 9763 } 9764 9765 CaseBitsVector CBV; 9766 auto TotalProb = BranchProbability::getZero(); 9767 for (unsigned i = First; i <= Last; ++i) { 9768 // Find the CaseBits for this destination. 9769 unsigned j; 9770 for (j = 0; j < CBV.size(); ++j) 9771 if (CBV[j].BB == Clusters[i].MBB) 9772 break; 9773 if (j == CBV.size()) 9774 CBV.push_back( 9775 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9776 CaseBits *CB = &CBV[j]; 9777 9778 // Update Mask, Bits and ExtraProb. 9779 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9780 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9781 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9782 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9783 CB->Bits += Hi - Lo + 1; 9784 CB->ExtraProb += Clusters[i].Prob; 9785 TotalProb += Clusters[i].Prob; 9786 } 9787 9788 BitTestInfo BTI; 9789 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 9790 // Sort by probability first, number of bits second, bit mask third. 9791 if (a.ExtraProb != b.ExtraProb) 9792 return a.ExtraProb > b.ExtraProb; 9793 if (a.Bits != b.Bits) 9794 return a.Bits > b.Bits; 9795 return a.Mask < b.Mask; 9796 }); 9797 9798 for (auto &CB : CBV) { 9799 MachineBasicBlock *BitTestBB = 9800 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9801 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9802 } 9803 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9804 SI->getCondition(), -1U, MVT::Other, false, 9805 ContiguousRange, nullptr, nullptr, std::move(BTI), 9806 TotalProb); 9807 9808 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9809 BitTestCases.size() - 1, TotalProb); 9810 return true; 9811 } 9812 9813 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9814 const SwitchInst *SI) { 9815 // Partition Clusters into as few subsets as possible, where each subset has a 9816 // range that fits in a machine word and has <= 3 unique destinations. 9817 9818 #ifndef NDEBUG 9819 // Clusters must be sorted and contain Range or JumpTable clusters. 9820 assert(!Clusters.empty()); 9821 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9822 for (const CaseCluster &C : Clusters) 9823 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9824 for (unsigned i = 1; i < Clusters.size(); ++i) 9825 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9826 #endif 9827 9828 // The algorithm below is not suitable for -O0. 9829 if (TM.getOptLevel() == CodeGenOpt::None) 9830 return; 9831 9832 // If target does not have legal shift left, do not emit bit tests at all. 9833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9834 const DataLayout &DL = DAG.getDataLayout(); 9835 9836 EVT PTy = TLI.getPointerTy(DL); 9837 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9838 return; 9839 9840 int BitWidth = PTy.getSizeInBits(); 9841 const int64_t N = Clusters.size(); 9842 9843 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9844 SmallVector<unsigned, 8> MinPartitions(N); 9845 // LastElement[i] is the last element of the partition starting at i. 9846 SmallVector<unsigned, 8> LastElement(N); 9847 9848 // FIXME: This might not be the best algorithm for finding bit test clusters. 9849 9850 // Base case: There is only one way to partition Clusters[N-1]. 9851 MinPartitions[N - 1] = 1; 9852 LastElement[N - 1] = N - 1; 9853 9854 // Note: loop indexes are signed to avoid underflow. 9855 for (int64_t i = N - 2; i >= 0; --i) { 9856 // Find optimal partitioning of Clusters[i..N-1]. 9857 // Baseline: Put Clusters[i] into a partition on its own. 9858 MinPartitions[i] = MinPartitions[i + 1] + 1; 9859 LastElement[i] = i; 9860 9861 // Search for a solution that results in fewer partitions. 9862 // Note: the search is limited by BitWidth, reducing time complexity. 9863 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9864 // Try building a partition from Clusters[i..j]. 9865 9866 // Check the range. 9867 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9868 Clusters[j].High->getValue(), DL)) 9869 continue; 9870 9871 // Check nbr of destinations and cluster types. 9872 // FIXME: This works, but doesn't seem very efficient. 9873 bool RangesOnly = true; 9874 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9875 for (int64_t k = i; k <= j; k++) { 9876 if (Clusters[k].Kind != CC_Range) { 9877 RangesOnly = false; 9878 break; 9879 } 9880 Dests.set(Clusters[k].MBB->getNumber()); 9881 } 9882 if (!RangesOnly || Dests.count() > 3) 9883 break; 9884 9885 // Check if it's a better partition. 9886 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9887 if (NumPartitions < MinPartitions[i]) { 9888 // Found a better partition. 9889 MinPartitions[i] = NumPartitions; 9890 LastElement[i] = j; 9891 } 9892 } 9893 } 9894 9895 // Iterate over the partitions, replacing with bit-test clusters in-place. 9896 unsigned DstIndex = 0; 9897 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9898 Last = LastElement[First]; 9899 assert(First <= Last); 9900 assert(DstIndex <= First); 9901 9902 CaseCluster BitTestCluster; 9903 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9904 Clusters[DstIndex++] = BitTestCluster; 9905 } else { 9906 size_t NumClusters = Last - First + 1; 9907 std::memmove(&Clusters[DstIndex], &Clusters[First], 9908 sizeof(Clusters[0]) * NumClusters); 9909 DstIndex += NumClusters; 9910 } 9911 } 9912 Clusters.resize(DstIndex); 9913 } 9914 9915 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9916 MachineBasicBlock *SwitchMBB, 9917 MachineBasicBlock *DefaultMBB) { 9918 MachineFunction *CurMF = FuncInfo.MF; 9919 MachineBasicBlock *NextMBB = nullptr; 9920 MachineFunction::iterator BBI(W.MBB); 9921 if (++BBI != FuncInfo.MF->end()) 9922 NextMBB = &*BBI; 9923 9924 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9925 9926 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9927 9928 if (Size == 2 && W.MBB == SwitchMBB) { 9929 // If any two of the cases has the same destination, and if one value 9930 // is the same as the other, but has one bit unset that the other has set, 9931 // use bit manipulation to do two compares at once. For example: 9932 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9933 // TODO: This could be extended to merge any 2 cases in switches with 3 9934 // cases. 9935 // TODO: Handle cases where W.CaseBB != SwitchBB. 9936 CaseCluster &Small = *W.FirstCluster; 9937 CaseCluster &Big = *W.LastCluster; 9938 9939 if (Small.Low == Small.High && Big.Low == Big.High && 9940 Small.MBB == Big.MBB) { 9941 const APInt &SmallValue = Small.Low->getValue(); 9942 const APInt &BigValue = Big.Low->getValue(); 9943 9944 // Check that there is only one bit different. 9945 APInt CommonBit = BigValue ^ SmallValue; 9946 if (CommonBit.isPowerOf2()) { 9947 SDValue CondLHS = getValue(Cond); 9948 EVT VT = CondLHS.getValueType(); 9949 SDLoc DL = getCurSDLoc(); 9950 9951 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9952 DAG.getConstant(CommonBit, DL, VT)); 9953 SDValue Cond = DAG.getSetCC( 9954 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9955 ISD::SETEQ); 9956 9957 // Update successor info. 9958 // Both Small and Big will jump to Small.BB, so we sum up the 9959 // probabilities. 9960 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9961 if (BPI) 9962 addSuccessorWithProb( 9963 SwitchMBB, DefaultMBB, 9964 // The default destination is the first successor in IR. 9965 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9966 else 9967 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9968 9969 // Insert the true branch. 9970 SDValue BrCond = 9971 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9972 DAG.getBasicBlock(Small.MBB)); 9973 // Insert the false branch. 9974 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9975 DAG.getBasicBlock(DefaultMBB)); 9976 9977 DAG.setRoot(BrCond); 9978 return; 9979 } 9980 } 9981 } 9982 9983 if (TM.getOptLevel() != CodeGenOpt::None) { 9984 // Here, we order cases by probability so the most likely case will be 9985 // checked first. However, two clusters can have the same probability in 9986 // which case their relative ordering is non-deterministic. So we use Low 9987 // as a tie-breaker as clusters are guaranteed to never overlap. 9988 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9989 [](const CaseCluster &a, const CaseCluster &b) { 9990 return a.Prob != b.Prob ? 9991 a.Prob > b.Prob : 9992 a.Low->getValue().slt(b.Low->getValue()); 9993 }); 9994 9995 // Rearrange the case blocks so that the last one falls through if possible 9996 // without changing the order of probabilities. 9997 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9998 --I; 9999 if (I->Prob > W.LastCluster->Prob) 10000 break; 10001 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10002 std::swap(*I, *W.LastCluster); 10003 break; 10004 } 10005 } 10006 } 10007 10008 // Compute total probability. 10009 BranchProbability DefaultProb = W.DefaultProb; 10010 BranchProbability UnhandledProbs = DefaultProb; 10011 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10012 UnhandledProbs += I->Prob; 10013 10014 MachineBasicBlock *CurMBB = W.MBB; 10015 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10016 MachineBasicBlock *Fallthrough; 10017 if (I == W.LastCluster) { 10018 // For the last cluster, fall through to the default destination. 10019 Fallthrough = DefaultMBB; 10020 } else { 10021 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10022 CurMF->insert(BBI, Fallthrough); 10023 // Put Cond in a virtual register to make it available from the new blocks. 10024 ExportFromCurrentBlock(Cond); 10025 } 10026 UnhandledProbs -= I->Prob; 10027 10028 switch (I->Kind) { 10029 case CC_JumpTable: { 10030 // FIXME: Optimize away range check based on pivot comparisons. 10031 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10032 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10033 10034 // The jump block hasn't been inserted yet; insert it here. 10035 MachineBasicBlock *JumpMBB = JT->MBB; 10036 CurMF->insert(BBI, JumpMBB); 10037 10038 auto JumpProb = I->Prob; 10039 auto FallthroughProb = UnhandledProbs; 10040 10041 // If the default statement is a target of the jump table, we evenly 10042 // distribute the default probability to successors of CurMBB. Also 10043 // update the probability on the edge from JumpMBB to Fallthrough. 10044 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10045 SE = JumpMBB->succ_end(); 10046 SI != SE; ++SI) { 10047 if (*SI == DefaultMBB) { 10048 JumpProb += DefaultProb / 2; 10049 FallthroughProb -= DefaultProb / 2; 10050 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10051 JumpMBB->normalizeSuccProbs(); 10052 break; 10053 } 10054 } 10055 10056 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10057 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10058 CurMBB->normalizeSuccProbs(); 10059 10060 // The jump table header will be inserted in our current block, do the 10061 // range check, and fall through to our fallthrough block. 10062 JTH->HeaderBB = CurMBB; 10063 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10064 10065 // If we're in the right place, emit the jump table header right now. 10066 if (CurMBB == SwitchMBB) { 10067 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10068 JTH->Emitted = true; 10069 } 10070 break; 10071 } 10072 case CC_BitTests: { 10073 // FIXME: Optimize away range check based on pivot comparisons. 10074 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10075 10076 // The bit test blocks haven't been inserted yet; insert them here. 10077 for (BitTestCase &BTC : BTB->Cases) 10078 CurMF->insert(BBI, BTC.ThisBB); 10079 10080 // Fill in fields of the BitTestBlock. 10081 BTB->Parent = CurMBB; 10082 BTB->Default = Fallthrough; 10083 10084 BTB->DefaultProb = UnhandledProbs; 10085 // If the cases in bit test don't form a contiguous range, we evenly 10086 // distribute the probability on the edge to Fallthrough to two 10087 // successors of CurMBB. 10088 if (!BTB->ContiguousRange) { 10089 BTB->Prob += DefaultProb / 2; 10090 BTB->DefaultProb -= DefaultProb / 2; 10091 } 10092 10093 // If we're in the right place, emit the bit test header right now. 10094 if (CurMBB == SwitchMBB) { 10095 visitBitTestHeader(*BTB, SwitchMBB); 10096 BTB->Emitted = true; 10097 } 10098 break; 10099 } 10100 case CC_Range: { 10101 const Value *RHS, *LHS, *MHS; 10102 ISD::CondCode CC; 10103 if (I->Low == I->High) { 10104 // Check Cond == I->Low. 10105 CC = ISD::SETEQ; 10106 LHS = Cond; 10107 RHS=I->Low; 10108 MHS = nullptr; 10109 } else { 10110 // Check I->Low <= Cond <= I->High. 10111 CC = ISD::SETLE; 10112 LHS = I->Low; 10113 MHS = Cond; 10114 RHS = I->High; 10115 } 10116 10117 // The false probability is the sum of all unhandled cases. 10118 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10119 getCurSDLoc(), I->Prob, UnhandledProbs); 10120 10121 if (CurMBB == SwitchMBB) 10122 visitSwitchCase(CB, SwitchMBB); 10123 else 10124 SwitchCases.push_back(CB); 10125 10126 break; 10127 } 10128 } 10129 CurMBB = Fallthrough; 10130 } 10131 } 10132 10133 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10134 CaseClusterIt First, 10135 CaseClusterIt Last) { 10136 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10137 if (X.Prob != CC.Prob) 10138 return X.Prob > CC.Prob; 10139 10140 // Ties are broken by comparing the case value. 10141 return X.Low->getValue().slt(CC.Low->getValue()); 10142 }); 10143 } 10144 10145 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10146 const SwitchWorkListItem &W, 10147 Value *Cond, 10148 MachineBasicBlock *SwitchMBB) { 10149 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10150 "Clusters not sorted?"); 10151 10152 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10153 10154 // Balance the tree based on branch probabilities to create a near-optimal (in 10155 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10156 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10157 CaseClusterIt LastLeft = W.FirstCluster; 10158 CaseClusterIt FirstRight = W.LastCluster; 10159 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10160 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10161 10162 // Move LastLeft and FirstRight towards each other from opposite directions to 10163 // find a partitioning of the clusters which balances the probability on both 10164 // sides. If LeftProb and RightProb are equal, alternate which side is 10165 // taken to ensure 0-probability nodes are distributed evenly. 10166 unsigned I = 0; 10167 while (LastLeft + 1 < FirstRight) { 10168 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10169 LeftProb += (++LastLeft)->Prob; 10170 else 10171 RightProb += (--FirstRight)->Prob; 10172 I++; 10173 } 10174 10175 while (true) { 10176 // Our binary search tree differs from a typical BST in that ours can have up 10177 // to three values in each leaf. The pivot selection above doesn't take that 10178 // into account, which means the tree might require more nodes and be less 10179 // efficient. We compensate for this here. 10180 10181 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10182 unsigned NumRight = W.LastCluster - FirstRight + 1; 10183 10184 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10185 // If one side has less than 3 clusters, and the other has more than 3, 10186 // consider taking a cluster from the other side. 10187 10188 if (NumLeft < NumRight) { 10189 // Consider moving the first cluster on the right to the left side. 10190 CaseCluster &CC = *FirstRight; 10191 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10192 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10193 if (LeftSideRank <= RightSideRank) { 10194 // Moving the cluster to the left does not demote it. 10195 ++LastLeft; 10196 ++FirstRight; 10197 continue; 10198 } 10199 } else { 10200 assert(NumRight < NumLeft); 10201 // Consider moving the last element on the left to the right side. 10202 CaseCluster &CC = *LastLeft; 10203 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10204 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10205 if (RightSideRank <= LeftSideRank) { 10206 // Moving the cluster to the right does not demot it. 10207 --LastLeft; 10208 --FirstRight; 10209 continue; 10210 } 10211 } 10212 } 10213 break; 10214 } 10215 10216 assert(LastLeft + 1 == FirstRight); 10217 assert(LastLeft >= W.FirstCluster); 10218 assert(FirstRight <= W.LastCluster); 10219 10220 // Use the first element on the right as pivot since we will make less-than 10221 // comparisons against it. 10222 CaseClusterIt PivotCluster = FirstRight; 10223 assert(PivotCluster > W.FirstCluster); 10224 assert(PivotCluster <= W.LastCluster); 10225 10226 CaseClusterIt FirstLeft = W.FirstCluster; 10227 CaseClusterIt LastRight = W.LastCluster; 10228 10229 const ConstantInt *Pivot = PivotCluster->Low; 10230 10231 // New blocks will be inserted immediately after the current one. 10232 MachineFunction::iterator BBI(W.MBB); 10233 ++BBI; 10234 10235 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10236 // we can branch to its destination directly if it's squeezed exactly in 10237 // between the known lower bound and Pivot - 1. 10238 MachineBasicBlock *LeftMBB; 10239 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10240 FirstLeft->Low == W.GE && 10241 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10242 LeftMBB = FirstLeft->MBB; 10243 } else { 10244 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10245 FuncInfo.MF->insert(BBI, LeftMBB); 10246 WorkList.push_back( 10247 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10248 // Put Cond in a virtual register to make it available from the new blocks. 10249 ExportFromCurrentBlock(Cond); 10250 } 10251 10252 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10253 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10254 // directly if RHS.High equals the current upper bound. 10255 MachineBasicBlock *RightMBB; 10256 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10257 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10258 RightMBB = FirstRight->MBB; 10259 } else { 10260 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10261 FuncInfo.MF->insert(BBI, RightMBB); 10262 WorkList.push_back( 10263 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10264 // Put Cond in a virtual register to make it available from the new blocks. 10265 ExportFromCurrentBlock(Cond); 10266 } 10267 10268 // Create the CaseBlock record that will be used to lower the branch. 10269 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10270 getCurSDLoc(), LeftProb, RightProb); 10271 10272 if (W.MBB == SwitchMBB) 10273 visitSwitchCase(CB, SwitchMBB); 10274 else 10275 SwitchCases.push_back(CB); 10276 } 10277 10278 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10279 // from the swith statement. 10280 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10281 BranchProbability PeeledCaseProb) { 10282 if (PeeledCaseProb == BranchProbability::getOne()) 10283 return BranchProbability::getZero(); 10284 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10285 10286 uint32_t Numerator = CaseProb.getNumerator(); 10287 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10288 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10289 } 10290 10291 // Try to peel the top probability case if it exceeds the threshold. 10292 // Return current MachineBasicBlock for the switch statement if the peeling 10293 // does not occur. 10294 // If the peeling is performed, return the newly created MachineBasicBlock 10295 // for the peeled switch statement. Also update Clusters to remove the peeled 10296 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10297 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10298 const SwitchInst &SI, CaseClusterVector &Clusters, 10299 BranchProbability &PeeledCaseProb) { 10300 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10301 // Don't perform if there is only one cluster or optimizing for size. 10302 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10303 TM.getOptLevel() == CodeGenOpt::None || 10304 SwitchMBB->getParent()->getFunction().optForMinSize()) 10305 return SwitchMBB; 10306 10307 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10308 unsigned PeeledCaseIndex = 0; 10309 bool SwitchPeeled = false; 10310 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10311 CaseCluster &CC = Clusters[Index]; 10312 if (CC.Prob < TopCaseProb) 10313 continue; 10314 TopCaseProb = CC.Prob; 10315 PeeledCaseIndex = Index; 10316 SwitchPeeled = true; 10317 } 10318 if (!SwitchPeeled) 10319 return SwitchMBB; 10320 10321 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10322 << TopCaseProb << "\n"); 10323 10324 // Record the MBB for the peeled switch statement. 10325 MachineFunction::iterator BBI(SwitchMBB); 10326 ++BBI; 10327 MachineBasicBlock *PeeledSwitchMBB = 10328 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10329 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10330 10331 ExportFromCurrentBlock(SI.getCondition()); 10332 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10333 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10334 nullptr, nullptr, TopCaseProb.getCompl()}; 10335 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10336 10337 Clusters.erase(PeeledCaseIt); 10338 for (CaseCluster &CC : Clusters) { 10339 LLVM_DEBUG( 10340 dbgs() << "Scale the probablity for one cluster, before scaling: " 10341 << CC.Prob << "\n"); 10342 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10343 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10344 } 10345 PeeledCaseProb = TopCaseProb; 10346 return PeeledSwitchMBB; 10347 } 10348 10349 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10350 // Extract cases from the switch. 10351 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10352 CaseClusterVector Clusters; 10353 Clusters.reserve(SI.getNumCases()); 10354 for (auto I : SI.cases()) { 10355 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10356 const ConstantInt *CaseVal = I.getCaseValue(); 10357 BranchProbability Prob = 10358 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10359 : BranchProbability(1, SI.getNumCases() + 1); 10360 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10361 } 10362 10363 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10364 10365 // Cluster adjacent cases with the same destination. We do this at all 10366 // optimization levels because it's cheap to do and will make codegen faster 10367 // if there are many clusters. 10368 sortAndRangeify(Clusters); 10369 10370 if (TM.getOptLevel() != CodeGenOpt::None) { 10371 // Replace an unreachable default with the most popular destination. 10372 // FIXME: Exploit unreachable default more aggressively. 10373 bool UnreachableDefault = 10374 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10375 if (UnreachableDefault && !Clusters.empty()) { 10376 DenseMap<const BasicBlock *, unsigned> Popularity; 10377 unsigned MaxPop = 0; 10378 const BasicBlock *MaxBB = nullptr; 10379 for (auto I : SI.cases()) { 10380 const BasicBlock *BB = I.getCaseSuccessor(); 10381 if (++Popularity[BB] > MaxPop) { 10382 MaxPop = Popularity[BB]; 10383 MaxBB = BB; 10384 } 10385 } 10386 // Set new default. 10387 assert(MaxPop > 0 && MaxBB); 10388 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10389 10390 // Remove cases that were pointing to the destination that is now the 10391 // default. 10392 CaseClusterVector New; 10393 New.reserve(Clusters.size()); 10394 for (CaseCluster &CC : Clusters) { 10395 if (CC.MBB != DefaultMBB) 10396 New.push_back(CC); 10397 } 10398 Clusters = std::move(New); 10399 } 10400 } 10401 10402 // The branch probablity of the peeled case. 10403 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10404 MachineBasicBlock *PeeledSwitchMBB = 10405 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10406 10407 // If there is only the default destination, jump there directly. 10408 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10409 if (Clusters.empty()) { 10410 assert(PeeledSwitchMBB == SwitchMBB); 10411 SwitchMBB->addSuccessor(DefaultMBB); 10412 if (DefaultMBB != NextBlock(SwitchMBB)) { 10413 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10414 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10415 } 10416 return; 10417 } 10418 10419 findJumpTables(Clusters, &SI, DefaultMBB); 10420 findBitTestClusters(Clusters, &SI); 10421 10422 LLVM_DEBUG({ 10423 dbgs() << "Case clusters: "; 10424 for (const CaseCluster &C : Clusters) { 10425 if (C.Kind == CC_JumpTable) 10426 dbgs() << "JT:"; 10427 if (C.Kind == CC_BitTests) 10428 dbgs() << "BT:"; 10429 10430 C.Low->getValue().print(dbgs(), true); 10431 if (C.Low != C.High) { 10432 dbgs() << '-'; 10433 C.High->getValue().print(dbgs(), true); 10434 } 10435 dbgs() << ' '; 10436 } 10437 dbgs() << '\n'; 10438 }); 10439 10440 assert(!Clusters.empty()); 10441 SwitchWorkList WorkList; 10442 CaseClusterIt First = Clusters.begin(); 10443 CaseClusterIt Last = Clusters.end() - 1; 10444 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10445 // Scale the branchprobability for DefaultMBB if the peel occurs and 10446 // DefaultMBB is not replaced. 10447 if (PeeledCaseProb != BranchProbability::getZero() && 10448 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10449 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10450 WorkList.push_back( 10451 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10452 10453 while (!WorkList.empty()) { 10454 SwitchWorkListItem W = WorkList.back(); 10455 WorkList.pop_back(); 10456 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10457 10458 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10459 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10460 // For optimized builds, lower large range as a balanced binary tree. 10461 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10462 continue; 10463 } 10464 10465 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10466 } 10467 } 10468