1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/FastISel.h" 28 #include "llvm/CodeGen/FunctionLoweringInfo.h" 29 #include "llvm/CodeGen/GCMetadata.h" 30 #include "llvm/CodeGen/GCStrategy.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/SelectionDAG.h" 38 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/CodeGen/WinEHFuncInfo.h" 41 #include "llvm/IR/CallingConv.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfo.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/IntrinsicInst.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Statepoint.h" 56 #include "llvm/MC/MCSymbol.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/MathExtras.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetFrameLowering.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetIntrinsicInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetOptions.h" 67 #include "llvm/Target/TargetSubtargetInfo.h" 68 #include <algorithm> 69 #include <utility> 70 using namespace llvm; 71 72 #define DEBUG_TYPE "isel" 73 74 /// LimitFloatPrecision - Generate low-precision inline sequences for 75 /// some float libcalls (6, 8 or 12 bits). 76 static unsigned LimitFloatPrecision; 77 78 static cl::opt<unsigned, true> 79 LimitFPPrecision("limit-float-precision", 80 cl::desc("Generate low-precision inline sequences " 81 "for some float libcalls"), 82 cl::location(LimitFloatPrecision), 83 cl::init(0)); 84 85 static cl::opt<bool> 86 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 87 cl::desc("Enable fast-math-flags for DAG nodes")); 88 89 // Limit the width of DAG chains. This is important in general to prevent 90 // DAG-based analysis from blowing up. For example, alias analysis and 91 // load clustering may not complete in reasonable time. It is difficult to 92 // recognize and avoid this situation within each individual analysis, and 93 // future analyses are likely to have the same behavior. Limiting DAG width is 94 // the safe approach and will be especially important with global DAGs. 95 // 96 // MaxParallelChains default is arbitrarily high to avoid affecting 97 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 98 // sequence over this should have been converted to llvm.memcpy by the 99 // frontend. It easy to induce this behavior with .ll code such as: 100 // %buffer = alloca [4096 x i8] 101 // %data = load [4096 x i8]* %argPtr 102 // store [4096 x i8] %data, [4096 x i8]* %buffer 103 static const unsigned MaxParallelChains = 64; 104 105 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 106 const SDValue *Parts, unsigned NumParts, 107 MVT PartVT, EVT ValueVT, const Value *V); 108 109 /// getCopyFromParts - Create a value that contains the specified legal parts 110 /// combined into the value they represent. If the parts combine to a type 111 /// larger then ValueVT then AssertOp can be used to specify whether the extra 112 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 113 /// (ISD::AssertSext). 114 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 115 const SDValue *Parts, 116 unsigned NumParts, MVT PartVT, EVT ValueVT, 117 const Value *V, 118 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 119 if (ValueVT.isVector()) 120 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 121 PartVT, ValueVT, V); 122 123 assert(NumParts > 0 && "No parts to assemble!"); 124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 125 SDValue Val = Parts[0]; 126 127 if (NumParts > 1) { 128 // Assemble the value from multiple parts. 129 if (ValueVT.isInteger()) { 130 unsigned PartBits = PartVT.getSizeInBits(); 131 unsigned ValueBits = ValueVT.getSizeInBits(); 132 133 // Assemble the power of 2 part. 134 unsigned RoundParts = NumParts & (NumParts - 1) ? 135 1 << Log2_32(NumParts) : NumParts; 136 unsigned RoundBits = PartBits * RoundParts; 137 EVT RoundVT = RoundBits == ValueBits ? 138 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 139 SDValue Lo, Hi; 140 141 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 142 143 if (RoundParts > 2) { 144 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 145 PartVT, HalfVT, V); 146 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 147 RoundParts / 2, PartVT, HalfVT, V); 148 } else { 149 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 150 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 151 } 152 153 if (DAG.getDataLayout().isBigEndian()) 154 std::swap(Lo, Hi); 155 156 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 157 158 if (RoundParts < NumParts) { 159 // Assemble the trailing non-power-of-2 part. 160 unsigned OddParts = NumParts - RoundParts; 161 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 162 Hi = getCopyFromParts(DAG, DL, 163 Parts + RoundParts, OddParts, PartVT, OddVT, V); 164 165 // Combine the round and odd parts. 166 Lo = Val; 167 if (DAG.getDataLayout().isBigEndian()) 168 std::swap(Lo, Hi); 169 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 170 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 171 Hi = 172 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 173 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 174 TLI.getPointerTy(DAG.getDataLayout()))); 175 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 176 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 177 } 178 } else if (PartVT.isFloatingPoint()) { 179 // FP split into multiple FP parts (for ppcf128) 180 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 181 "Unexpected split"); 182 SDValue Lo, Hi; 183 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 184 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 185 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 186 std::swap(Lo, Hi); 187 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 188 } else { 189 // FP split into integer parts (soft fp) 190 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 191 !PartVT.isVector() && "Unexpected split"); 192 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 193 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 194 } 195 } 196 197 // There is now one part, held in Val. Correct it to match ValueVT. 198 // PartEVT is the type of the register class that holds the value. 199 // ValueVT is the type of the inline asm operation. 200 EVT PartEVT = Val.getValueType(); 201 202 if (PartEVT == ValueVT) 203 return Val; 204 205 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 206 ValueVT.bitsLT(PartEVT)) { 207 // For an FP value in an integer part, we need to truncate to the right 208 // width first. 209 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 210 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 211 } 212 213 // Handle types that have the same size. 214 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 215 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 216 217 // Handle types with different sizes. 218 if (PartEVT.isInteger() && ValueVT.isInteger()) { 219 if (ValueVT.bitsLT(PartEVT)) { 220 // For a truncate, see if we have any information to 221 // indicate whether the truncated bits will always be 222 // zero or sign-extension. 223 if (AssertOp != ISD::DELETED_NODE) 224 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 225 DAG.getValueType(ValueVT)); 226 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 227 } 228 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 229 } 230 231 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 232 // FP_ROUND's are always exact here. 233 if (ValueVT.bitsLT(Val.getValueType())) 234 return DAG.getNode( 235 ISD::FP_ROUND, DL, ValueVT, Val, 236 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 237 238 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 239 } 240 241 llvm_unreachable("Unknown mismatch!"); 242 } 243 244 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 245 const Twine &ErrMsg) { 246 const Instruction *I = dyn_cast_or_null<Instruction>(V); 247 if (!V) 248 return Ctx.emitError(ErrMsg); 249 250 const char *AsmError = ", possible invalid constraint for vector type"; 251 if (const CallInst *CI = dyn_cast<CallInst>(I)) 252 if (isa<InlineAsm>(CI->getCalledValue())) 253 return Ctx.emitError(I, ErrMsg + AsmError); 254 255 return Ctx.emitError(I, ErrMsg); 256 } 257 258 /// getCopyFromPartsVector - Create a value that contains the specified legal 259 /// parts combined into the value they represent. If the parts combine to a 260 /// type larger then ValueVT then AssertOp can be used to specify whether the 261 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 262 /// ValueVT (ISD::AssertSext). 263 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 264 const SDValue *Parts, unsigned NumParts, 265 MVT PartVT, EVT ValueVT, const Value *V) { 266 assert(ValueVT.isVector() && "Not a vector value"); 267 assert(NumParts > 0 && "No parts to assemble!"); 268 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 269 SDValue Val = Parts[0]; 270 271 // Handle a multi-element vector. 272 if (NumParts > 1) { 273 EVT IntermediateVT; 274 MVT RegisterVT; 275 unsigned NumIntermediates; 276 unsigned NumRegs = 277 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 278 NumIntermediates, RegisterVT); 279 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 280 NumParts = NumRegs; // Silence a compiler warning. 281 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 282 assert(RegisterVT.getSizeInBits() == 283 Parts[0].getSimpleValueType().getSizeInBits() && 284 "Part type sizes don't match!"); 285 286 // Assemble the parts into intermediate operands. 287 SmallVector<SDValue, 8> Ops(NumIntermediates); 288 if (NumIntermediates == NumParts) { 289 // If the register was not expanded, truncate or copy the value, 290 // as appropriate. 291 for (unsigned i = 0; i != NumParts; ++i) 292 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 293 PartVT, IntermediateVT, V); 294 } else if (NumParts > 0) { 295 // If the intermediate type was expanded, build the intermediate 296 // operands from the parts. 297 assert(NumParts % NumIntermediates == 0 && 298 "Must expand into a divisible number of parts!"); 299 unsigned Factor = NumParts / NumIntermediates; 300 for (unsigned i = 0; i != NumIntermediates; ++i) 301 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 302 PartVT, IntermediateVT, V); 303 } 304 305 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 306 // intermediate operands. 307 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 308 : ISD::BUILD_VECTOR, 309 DL, ValueVT, Ops); 310 } 311 312 // There is now one part, held in Val. Correct it to match ValueVT. 313 EVT PartEVT = Val.getValueType(); 314 315 if (PartEVT == ValueVT) 316 return Val; 317 318 if (PartEVT.isVector()) { 319 // If the element type of the source/dest vectors are the same, but the 320 // parts vector has more elements than the value vector, then we have a 321 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 322 // elements we want. 323 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 324 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 325 "Cannot narrow, it would be a lossy transformation"); 326 return DAG.getNode( 327 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 328 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 329 } 330 331 // Vector/Vector bitcast. 332 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 333 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 334 335 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 336 "Cannot handle this kind of promotion"); 337 // Promoted vector extract 338 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 339 340 } 341 342 // Trivial bitcast if the types are the same size and the destination 343 // vector type is legal. 344 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 345 TLI.isTypeLegal(ValueVT)) 346 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 347 348 // Handle cases such as i8 -> <1 x i1> 349 if (ValueVT.getVectorNumElements() != 1) { 350 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 351 "non-trivial scalar-to-vector conversion"); 352 return DAG.getUNDEF(ValueVT); 353 } 354 355 if (ValueVT.getVectorNumElements() == 1 && 356 ValueVT.getVectorElementType() != PartEVT) 357 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 358 359 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 360 } 361 362 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 363 SDValue Val, SDValue *Parts, unsigned NumParts, 364 MVT PartVT, const Value *V); 365 366 /// getCopyToParts - Create a series of nodes that contain the specified value 367 /// split into legal parts. If the parts contain more bits than Val, then, for 368 /// integers, ExtendKind can be used to specify how to generate the extra bits. 369 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 370 SDValue Val, SDValue *Parts, unsigned NumParts, 371 MVT PartVT, const Value *V, 372 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 373 EVT ValueVT = Val.getValueType(); 374 375 // Handle the vector case separately. 376 if (ValueVT.isVector()) 377 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 378 379 unsigned PartBits = PartVT.getSizeInBits(); 380 unsigned OrigNumParts = NumParts; 381 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 382 "Copying to an illegal type!"); 383 384 if (NumParts == 0) 385 return; 386 387 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 388 EVT PartEVT = PartVT; 389 if (PartEVT == ValueVT) { 390 assert(NumParts == 1 && "No-op copy with multiple parts!"); 391 Parts[0] = Val; 392 return; 393 } 394 395 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 396 // If the parts cover more bits than the value has, promote the value. 397 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 398 assert(NumParts == 1 && "Do not know what to promote to!"); 399 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 400 } else { 401 if (ValueVT.isFloatingPoint()) { 402 // FP values need to be bitcast, then extended if they are being put 403 // into a larger container. 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 405 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 406 } 407 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 408 ValueVT.isInteger() && 409 "Unknown mismatch!"); 410 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 411 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 412 if (PartVT == MVT::x86mmx) 413 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 414 } 415 } else if (PartBits == ValueVT.getSizeInBits()) { 416 // Different types of the same size. 417 assert(NumParts == 1 && PartEVT != ValueVT); 418 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 419 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 420 // If the parts cover less bits than value has, truncate the value. 421 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 422 ValueVT.isInteger() && 423 "Unknown mismatch!"); 424 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 425 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 426 if (PartVT == MVT::x86mmx) 427 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 428 } 429 430 // The value may have changed - recompute ValueVT. 431 ValueVT = Val.getValueType(); 432 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 433 "Failed to tile the value with PartVT!"); 434 435 if (NumParts == 1) { 436 if (PartEVT != ValueVT) 437 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 438 "scalar-to-vector conversion failed"); 439 440 Parts[0] = Val; 441 return; 442 } 443 444 // Expand the value into multiple parts. 445 if (NumParts & (NumParts - 1)) { 446 // The number of parts is not a power of 2. Split off and copy the tail. 447 assert(PartVT.isInteger() && ValueVT.isInteger() && 448 "Do not know what to expand to!"); 449 unsigned RoundParts = 1 << Log2_32(NumParts); 450 unsigned RoundBits = RoundParts * PartBits; 451 unsigned OddParts = NumParts - RoundParts; 452 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 453 DAG.getIntPtrConstant(RoundBits, DL)); 454 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 455 456 if (DAG.getDataLayout().isBigEndian()) 457 // The odd parts were reversed by getCopyToParts - unreverse them. 458 std::reverse(Parts + RoundParts, Parts + NumParts); 459 460 NumParts = RoundParts; 461 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 462 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 463 } 464 465 // The number of parts is a power of 2. Repeatedly bisect the value using 466 // EXTRACT_ELEMENT. 467 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 468 EVT::getIntegerVT(*DAG.getContext(), 469 ValueVT.getSizeInBits()), 470 Val); 471 472 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 473 for (unsigned i = 0; i < NumParts; i += StepSize) { 474 unsigned ThisBits = StepSize * PartBits / 2; 475 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 476 SDValue &Part0 = Parts[i]; 477 SDValue &Part1 = Parts[i+StepSize/2]; 478 479 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 480 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 481 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 482 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 483 484 if (ThisBits == PartBits && ThisVT != PartVT) { 485 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 486 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 487 } 488 } 489 } 490 491 if (DAG.getDataLayout().isBigEndian()) 492 std::reverse(Parts, Parts + OrigNumParts); 493 } 494 495 496 /// getCopyToPartsVector - Create a series of nodes that contain the specified 497 /// value split into legal parts. 498 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 499 SDValue Val, SDValue *Parts, unsigned NumParts, 500 MVT PartVT, const Value *V) { 501 EVT ValueVT = Val.getValueType(); 502 assert(ValueVT.isVector() && "Not a vector"); 503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 504 505 if (NumParts == 1) { 506 EVT PartEVT = PartVT; 507 if (PartEVT == ValueVT) { 508 // Nothing to do. 509 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 510 // Bitconvert vector->vector case. 511 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 514 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 515 EVT ElementVT = PartVT.getVectorElementType(); 516 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 517 // undef elements. 518 SmallVector<SDValue, 16> Ops; 519 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getNode( 521 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 522 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 523 524 for (unsigned i = ValueVT.getVectorNumElements(), 525 e = PartVT.getVectorNumElements(); i != e; ++i) 526 Ops.push_back(DAG.getUNDEF(ElementVT)); 527 528 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 529 530 // FIXME: Use CONCAT for 2x -> 4x. 531 532 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 533 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 534 } else if (PartVT.isVector() && 535 PartEVT.getVectorElementType().bitsGE( 536 ValueVT.getVectorElementType()) && 537 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 538 539 // Promoted vector extract 540 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 541 } else{ 542 // Vector -> scalar conversion. 543 assert(ValueVT.getVectorNumElements() == 1 && 544 "Only trivial vector-to-scalar conversions should get here!"); 545 Val = DAG.getNode( 546 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 547 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 548 549 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 550 } 551 552 Parts[0] = Val; 553 return; 554 } 555 556 // Handle a multi-element vector. 557 EVT IntermediateVT; 558 MVT RegisterVT; 559 unsigned NumIntermediates; 560 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 561 IntermediateVT, 562 NumIntermediates, RegisterVT); 563 unsigned NumElements = ValueVT.getVectorNumElements(); 564 565 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 566 NumParts = NumRegs; // Silence a compiler warning. 567 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 568 569 // Split the vector into intermediate operands. 570 SmallVector<SDValue, 8> Ops(NumIntermediates); 571 for (unsigned i = 0; i != NumIntermediates; ++i) { 572 if (IntermediateVT.isVector()) 573 Ops[i] = 574 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 575 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 576 TLI.getVectorIdxTy(DAG.getDataLayout()))); 577 else 578 Ops[i] = DAG.getNode( 579 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 580 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 581 } 582 583 // Split the intermediate operands into legal parts. 584 if (NumParts == NumIntermediates) { 585 // If the register was not expanded, promote or copy the value, 586 // as appropriate. 587 for (unsigned i = 0; i != NumParts; ++i) 588 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 589 } else if (NumParts > 0) { 590 // If the intermediate type was expanded, split each the value into 591 // legal parts. 592 assert(NumIntermediates != 0 && "division by zero"); 593 assert(NumParts % NumIntermediates == 0 && 594 "Must expand into a divisible number of parts!"); 595 unsigned Factor = NumParts / NumIntermediates; 596 for (unsigned i = 0; i != NumIntermediates; ++i) 597 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 598 } 599 } 600 601 RegsForValue::RegsForValue() {} 602 603 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 604 EVT valuevt) 605 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 606 607 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 608 const DataLayout &DL, unsigned Reg, Type *Ty) { 609 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 610 611 for (EVT ValueVT : ValueVTs) { 612 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 613 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 614 for (unsigned i = 0; i != NumRegs; ++i) 615 Regs.push_back(Reg + i); 616 RegVTs.push_back(RegisterVT); 617 Reg += NumRegs; 618 } 619 } 620 621 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 622 /// this value and returns the result as a ValueVT value. This uses 623 /// Chain/Flag as the input and updates them for the output Chain/Flag. 624 /// If the Flag pointer is NULL, no flag is used. 625 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 626 FunctionLoweringInfo &FuncInfo, 627 SDLoc dl, 628 SDValue &Chain, SDValue *Flag, 629 const Value *V) const { 630 // A Value with type {} or [0 x %t] needs no registers. 631 if (ValueVTs.empty()) 632 return SDValue(); 633 634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 635 636 // Assemble the legal parts into the final values. 637 SmallVector<SDValue, 4> Values(ValueVTs.size()); 638 SmallVector<SDValue, 8> Parts; 639 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 640 // Copy the legal parts from the registers. 641 EVT ValueVT = ValueVTs[Value]; 642 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 643 MVT RegisterVT = RegVTs[Value]; 644 645 Parts.resize(NumRegs); 646 for (unsigned i = 0; i != NumRegs; ++i) { 647 SDValue P; 648 if (!Flag) { 649 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 650 } else { 651 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 652 *Flag = P.getValue(2); 653 } 654 655 Chain = P.getValue(1); 656 Parts[i] = P; 657 658 // If the source register was virtual and if we know something about it, 659 // add an assert node. 660 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 661 !RegisterVT.isInteger() || RegisterVT.isVector()) 662 continue; 663 664 const FunctionLoweringInfo::LiveOutInfo *LOI = 665 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 666 if (!LOI) 667 continue; 668 669 unsigned RegSize = RegisterVT.getSizeInBits(); 670 unsigned NumSignBits = LOI->NumSignBits; 671 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 672 673 if (NumZeroBits == RegSize) { 674 // The current value is a zero. 675 // Explicitly express that as it would be easier for 676 // optimizations to kick in. 677 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 678 continue; 679 } 680 681 // FIXME: We capture more information than the dag can represent. For 682 // now, just use the tightest assertzext/assertsext possible. 683 bool isSExt = true; 684 EVT FromVT(MVT::Other); 685 if (NumSignBits == RegSize) { 686 isSExt = true; // ASSERT SEXT 1 687 FromVT = MVT::i1; 688 } else if (NumZeroBits >= RegSize - 1) { 689 isSExt = false; // ASSERT ZEXT 1 690 FromVT = MVT::i1; 691 } else if (NumSignBits > RegSize - 8) { 692 isSExt = true; // ASSERT SEXT 8 693 FromVT = MVT::i8; 694 } else if (NumZeroBits >= RegSize - 8) { 695 isSExt = false; // ASSERT ZEXT 8 696 FromVT = MVT::i8; 697 } else if (NumSignBits > RegSize - 16) { 698 isSExt = true; // ASSERT SEXT 16 699 FromVT = MVT::i16; 700 } else if (NumZeroBits >= RegSize - 16) { 701 isSExt = false; // ASSERT ZEXT 16 702 FromVT = MVT::i16; 703 } else if (NumSignBits > RegSize - 32) { 704 isSExt = true; // ASSERT SEXT 32 705 FromVT = MVT::i32; 706 } else if (NumZeroBits >= RegSize - 32) { 707 isSExt = false; // ASSERT ZEXT 32 708 FromVT = MVT::i32; 709 } else { 710 continue; 711 } 712 // Add an assertion node. 713 assert(FromVT != MVT::Other); 714 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 715 RegisterVT, P, DAG.getValueType(FromVT)); 716 } 717 718 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 719 NumRegs, RegisterVT, ValueVT, V); 720 Part += NumRegs; 721 Parts.clear(); 722 } 723 724 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 725 } 726 727 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 728 /// specified value into the registers specified by this object. This uses 729 /// Chain/Flag as the input and updates them for the output Chain/Flag. 730 /// If the Flag pointer is NULL, no flag is used. 731 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 732 SDValue &Chain, SDValue *Flag, const Value *V, 733 ISD::NodeType PreferredExtendType) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 ISD::NodeType ExtendKind = PreferredExtendType; 736 737 // Get the list of the values's legal parts. 738 unsigned NumRegs = Regs.size(); 739 SmallVector<SDValue, 8> Parts(NumRegs); 740 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 741 EVT ValueVT = ValueVTs[Value]; 742 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 743 MVT RegisterVT = RegVTs[Value]; 744 745 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 746 ExtendKind = ISD::ZERO_EXTEND; 747 748 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 749 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 750 Part += NumParts; 751 } 752 753 // Copy the parts into the registers. 754 SmallVector<SDValue, 8> Chains(NumRegs); 755 for (unsigned i = 0; i != NumRegs; ++i) { 756 SDValue Part; 757 if (!Flag) { 758 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 759 } else { 760 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 761 *Flag = Part.getValue(1); 762 } 763 764 Chains[i] = Part.getValue(0); 765 } 766 767 if (NumRegs == 1 || Flag) 768 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 769 // flagged to it. That is the CopyToReg nodes and the user are considered 770 // a single scheduling unit. If we create a TokenFactor and return it as 771 // chain, then the TokenFactor is both a predecessor (operand) of the 772 // user as well as a successor (the TF operands are flagged to the user). 773 // c1, f1 = CopyToReg 774 // c2, f2 = CopyToReg 775 // c3 = TokenFactor c1, c2 776 // ... 777 // = op c3, ..., f2 778 Chain = Chains[NumRegs-1]; 779 else 780 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 781 } 782 783 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 784 /// operand list. This adds the code marker and includes the number of 785 /// values added into it. 786 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 787 unsigned MatchingIdx, SDLoc dl, 788 SelectionDAG &DAG, 789 std::vector<SDValue> &Ops) const { 790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 791 792 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 793 if (HasMatching) 794 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 795 else if (!Regs.empty() && 796 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 797 // Put the register class of the virtual registers in the flag word. That 798 // way, later passes can recompute register class constraints for inline 799 // assembly as well as normal instructions. 800 // Don't do this for tied operands that can use the regclass information 801 // from the def. 802 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 803 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 804 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 805 } 806 807 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 808 Ops.push_back(Res); 809 810 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 811 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 812 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 813 MVT RegisterVT = RegVTs[Value]; 814 for (unsigned i = 0; i != NumRegs; ++i) { 815 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 816 unsigned TheReg = Regs[Reg++]; 817 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 818 819 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 820 // If we clobbered the stack pointer, MFI should know about it. 821 assert(DAG.getMachineFunction().getFrameInfo()-> 822 hasOpaqueSPAdjustment()); 823 } 824 } 825 } 826 } 827 828 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 829 const TargetLibraryInfo *li) { 830 AA = &aa; 831 GFI = gfi; 832 LibInfo = li; 833 DL = &DAG.getDataLayout(); 834 Context = DAG.getContext(); 835 LPadToCallSiteMap.clear(); 836 } 837 838 /// clear - Clear out the current SelectionDAG and the associated 839 /// state and prepare this SelectionDAGBuilder object to be used 840 /// for a new block. This doesn't clear out information about 841 /// additional blocks that are needed to complete switch lowering 842 /// or PHI node updating; that information is cleared out as it is 843 /// consumed. 844 void SelectionDAGBuilder::clear() { 845 NodeMap.clear(); 846 UnusedArgNodeMap.clear(); 847 PendingLoads.clear(); 848 PendingExports.clear(); 849 CurInst = nullptr; 850 HasTailCall = false; 851 SDNodeOrder = LowestSDNodeOrder; 852 StatepointLowering.clear(); 853 } 854 855 /// clearDanglingDebugInfo - Clear the dangling debug information 856 /// map. This function is separated from the clear so that debug 857 /// information that is dangling in a basic block can be properly 858 /// resolved in a different basic block. This allows the 859 /// SelectionDAG to resolve dangling debug information attached 860 /// to PHI nodes. 861 void SelectionDAGBuilder::clearDanglingDebugInfo() { 862 DanglingDebugInfoMap.clear(); 863 } 864 865 /// getRoot - Return the current virtual root of the Selection DAG, 866 /// flushing any PendingLoad items. This must be done before emitting 867 /// a store or any other node that may need to be ordered after any 868 /// prior load instructions. 869 /// 870 SDValue SelectionDAGBuilder::getRoot() { 871 if (PendingLoads.empty()) 872 return DAG.getRoot(); 873 874 if (PendingLoads.size() == 1) { 875 SDValue Root = PendingLoads[0]; 876 DAG.setRoot(Root); 877 PendingLoads.clear(); 878 return Root; 879 } 880 881 // Otherwise, we have to make a token factor node. 882 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingLoads); 884 PendingLoads.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 /// getControlRoot - Similar to getRoot, but instead of flushing all the 890 /// PendingLoad items, flush all the PendingExports items. It is necessary 891 /// to do this before emitting a terminator instruction. 892 /// 893 SDValue SelectionDAGBuilder::getControlRoot() { 894 SDValue Root = DAG.getRoot(); 895 896 if (PendingExports.empty()) 897 return Root; 898 899 // Turn all of the CopyToReg chains into one factored node. 900 if (Root.getOpcode() != ISD::EntryToken) { 901 unsigned i = 0, e = PendingExports.size(); 902 for (; i != e; ++i) { 903 assert(PendingExports[i].getNode()->getNumOperands() > 1); 904 if (PendingExports[i].getNode()->getOperand(0) == Root) 905 break; // Don't add the root if we already indirectly depend on it. 906 } 907 908 if (i == e) 909 PendingExports.push_back(Root); 910 } 911 912 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 913 PendingExports); 914 PendingExports.clear(); 915 DAG.setRoot(Root); 916 return Root; 917 } 918 919 void SelectionDAGBuilder::visit(const Instruction &I) { 920 // Set up outgoing PHI node register values before emitting the terminator. 921 if (isa<TerminatorInst>(&I)) 922 HandlePHINodesInSuccessorBlocks(I.getParent()); 923 924 ++SDNodeOrder; 925 926 CurInst = &I; 927 928 visit(I.getOpcode(), I); 929 930 if (!isa<TerminatorInst>(&I) && !HasTailCall && 931 !isStatepoint(&I)) // statepoints handle their exports internally 932 CopyToExportRegsIfNeeded(&I); 933 934 CurInst = nullptr; 935 } 936 937 void SelectionDAGBuilder::visitPHI(const PHINode &) { 938 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 939 } 940 941 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 942 // Note: this doesn't use InstVisitor, because it has to work with 943 // ConstantExpr's in addition to instructions. 944 switch (Opcode) { 945 default: llvm_unreachable("Unknown instruction type encountered!"); 946 // Build the switch statement using the Instruction.def file. 947 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 948 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 949 #include "llvm/IR/Instruction.def" 950 } 951 } 952 953 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 954 // generate the debug data structures now that we've seen its definition. 955 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 956 SDValue Val) { 957 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 958 if (DDI.getDI()) { 959 const DbgValueInst *DI = DDI.getDI(); 960 DebugLoc dl = DDI.getdl(); 961 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 962 DILocalVariable *Variable = DI->getVariable(); 963 DIExpression *Expr = DI->getExpression(); 964 assert(Variable->isValidLocationForIntrinsic(dl) && 965 "Expected inlined-at fields to agree"); 966 uint64_t Offset = DI->getOffset(); 967 SDDbgValue *SDV; 968 if (Val.getNode()) { 969 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 970 Val)) { 971 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 972 false, Offset, dl, DbgSDNodeOrder); 973 DAG.AddDbgValue(SDV, Val.getNode(), false); 974 } 975 } else 976 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 977 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 978 } 979 } 980 981 /// getCopyFromRegs - If there was virtual register allocated for the value V 982 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 983 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 984 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 985 SDValue Result; 986 987 if (It != FuncInfo.ValueMap.end()) { 988 unsigned InReg = It->second; 989 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 990 DAG.getDataLayout(), InReg, Ty); 991 SDValue Chain = DAG.getEntryNode(); 992 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 993 resolveDanglingDebugInfo(V, Result); 994 } 995 996 return Result; 997 } 998 999 /// getValue - Return an SDValue for the given Value. 1000 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. It's important 1002 // to do this first, so that we don't create a CopyFromReg if we already 1003 // have a regular SDValue. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) return N; 1006 1007 // If there's a virtual register allocated and initialized for this 1008 // value, use it. 1009 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1010 return copyFromReg; 1011 1012 // Otherwise create a new SDValue and remember it. 1013 SDValue Val = getValueImpl(V); 1014 NodeMap[V] = Val; 1015 resolveDanglingDebugInfo(V, Val); 1016 return Val; 1017 } 1018 1019 // Return true if SDValue exists for the given Value 1020 bool SelectionDAGBuilder::findValue(const Value *V) const { 1021 return (NodeMap.find(V) != NodeMap.end()) || 1022 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1023 } 1024 1025 /// getNonRegisterValue - Return an SDValue for the given Value, but 1026 /// don't look in FuncInfo.ValueMap for a virtual register. 1027 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1028 // If we already have an SDValue for this value, use it. 1029 SDValue &N = NodeMap[V]; 1030 if (N.getNode()) { 1031 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1032 // Remove the debug location from the node as the node is about to be used 1033 // in a location which may differ from the original debug location. This 1034 // is relevant to Constant and ConstantFP nodes because they can appear 1035 // as constant expressions inside PHI nodes. 1036 N->setDebugLoc(DebugLoc()); 1037 } 1038 return N; 1039 } 1040 1041 // Otherwise create a new SDValue and remember it. 1042 SDValue Val = getValueImpl(V); 1043 NodeMap[V] = Val; 1044 resolveDanglingDebugInfo(V, Val); 1045 return Val; 1046 } 1047 1048 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1049 /// Create an SDValue for the given value. 1050 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1052 1053 if (const Constant *C = dyn_cast<Constant>(V)) { 1054 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1055 1056 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1057 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1058 1059 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1060 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1061 1062 if (isa<ConstantPointerNull>(C)) { 1063 unsigned AS = V->getType()->getPointerAddressSpace(); 1064 return DAG.getConstant(0, getCurSDLoc(), 1065 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1066 } 1067 1068 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1069 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1070 1071 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1072 return DAG.getUNDEF(VT); 1073 1074 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1075 visit(CE->getOpcode(), *CE); 1076 SDValue N1 = NodeMap[V]; 1077 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1078 return N1; 1079 } 1080 1081 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1082 SmallVector<SDValue, 4> Constants; 1083 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1084 OI != OE; ++OI) { 1085 SDNode *Val = getValue(*OI).getNode(); 1086 // If the operand is an empty aggregate, there are no values. 1087 if (!Val) continue; 1088 // Add each leaf value from the operand to the Constants list 1089 // to form a flattened list of all the values. 1090 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1091 Constants.push_back(SDValue(Val, i)); 1092 } 1093 1094 return DAG.getMergeValues(Constants, getCurSDLoc()); 1095 } 1096 1097 if (const ConstantDataSequential *CDS = 1098 dyn_cast<ConstantDataSequential>(C)) { 1099 SmallVector<SDValue, 4> Ops; 1100 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1101 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1102 // Add each leaf value from the operand to the Constants list 1103 // to form a flattened list of all the values. 1104 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1105 Ops.push_back(SDValue(Val, i)); 1106 } 1107 1108 if (isa<ArrayType>(CDS->getType())) 1109 return DAG.getMergeValues(Ops, getCurSDLoc()); 1110 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1111 VT, Ops); 1112 } 1113 1114 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1115 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1116 "Unknown struct or array constant!"); 1117 1118 SmallVector<EVT, 4> ValueVTs; 1119 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1120 unsigned NumElts = ValueVTs.size(); 1121 if (NumElts == 0) 1122 return SDValue(); // empty struct 1123 SmallVector<SDValue, 4> Constants(NumElts); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 EVT EltVT = ValueVTs[i]; 1126 if (isa<UndefValue>(C)) 1127 Constants[i] = DAG.getUNDEF(EltVT); 1128 else if (EltVT.isFloatingPoint()) 1129 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 } 1133 1134 return DAG.getMergeValues(Constants, getCurSDLoc()); 1135 } 1136 1137 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1138 return DAG.getBlockAddress(BA, VT); 1139 1140 VectorType *VecTy = cast<VectorType>(V->getType()); 1141 unsigned NumElements = VecTy->getNumElements(); 1142 1143 // Now that we know the number and type of the elements, get that number of 1144 // elements into the Ops array based on what kind of constant it is. 1145 SmallVector<SDValue, 16> Ops; 1146 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1147 for (unsigned i = 0; i != NumElements; ++i) 1148 Ops.push_back(getValue(CV->getOperand(i))); 1149 } else { 1150 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1151 EVT EltVT = 1152 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1153 1154 SDValue Op; 1155 if (EltVT.isFloatingPoint()) 1156 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1157 else 1158 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1159 Ops.assign(NumElements, Op); 1160 } 1161 1162 // Create a BUILD_VECTOR node. 1163 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1164 } 1165 1166 // If this is a static alloca, generate it as the frameindex instead of 1167 // computation. 1168 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1169 DenseMap<const AllocaInst*, int>::iterator SI = 1170 FuncInfo.StaticAllocaMap.find(AI); 1171 if (SI != FuncInfo.StaticAllocaMap.end()) 1172 return DAG.getFrameIndex(SI->second, 1173 TLI.getPointerTy(DAG.getDataLayout())); 1174 } 1175 1176 // If this is an instruction which fast-isel has deferred, select it now. 1177 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1178 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1179 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1180 Inst->getType()); 1181 SDValue Chain = DAG.getEntryNode(); 1182 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1183 } 1184 1185 llvm_unreachable("Can't get register for value!"); 1186 } 1187 1188 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1189 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1190 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1191 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1192 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1193 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1194 if (IsMSVCCXX || IsCoreCLR) 1195 CatchPadMBB->setIsEHFuncletEntry(); 1196 1197 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1198 } 1199 1200 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1201 // Update machine-CFG edge. 1202 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1203 FuncInfo.MBB->addSuccessor(TargetMBB); 1204 1205 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1206 bool IsSEH = isAsynchronousEHPersonality(Pers); 1207 if (IsSEH) { 1208 // If this is not a fall-through branch or optimizations are switched off, 1209 // emit the branch. 1210 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1211 TM.getOptLevel() == CodeGenOpt::None) 1212 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1213 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1214 return; 1215 } 1216 1217 // Figure out the funclet membership for the catchret's successor. 1218 // This will be used by the FuncletLayout pass to determine how to order the 1219 // BB's. 1220 // A 'catchret' returns to the outer scope's color. 1221 Value *ParentPad = I.getCatchSwitchParentPad(); 1222 const BasicBlock *SuccessorColor; 1223 if (isa<ConstantTokenNone>(ParentPad)) 1224 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1225 else 1226 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1227 assert(SuccessorColor && "No parent funclet for catchret!"); 1228 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1229 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1230 1231 // Create the terminator node. 1232 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1233 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1234 DAG.getBasicBlock(SuccessorColorMBB)); 1235 DAG.setRoot(Ret); 1236 } 1237 1238 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1239 // Don't emit any special code for the cleanuppad instruction. It just marks 1240 // the start of a funclet. 1241 FuncInfo.MBB->setIsEHFuncletEntry(); 1242 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1243 } 1244 1245 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1246 /// many places it could ultimately go. In the IR, we have a single unwind 1247 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1248 /// This function skips over imaginary basic blocks that hold catchswitch 1249 /// instructions, and finds all the "real" machine 1250 /// basic block destinations. As those destinations may not be successors of 1251 /// EHPadBB, here we also calculate the edge probability to those destinations. 1252 /// The passed-in Prob is the edge probability to EHPadBB. 1253 static void findUnwindDestinations( 1254 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1255 BranchProbability Prob, 1256 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1257 &UnwindDests) { 1258 EHPersonality Personality = 1259 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1260 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1261 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1262 1263 while (EHPadBB) { 1264 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1265 BasicBlock *NewEHPadBB = nullptr; 1266 if (isa<LandingPadInst>(Pad)) { 1267 // Stop on landingpads. They are not funclets. 1268 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1269 break; 1270 } else if (isa<CleanupPadInst>(Pad)) { 1271 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1272 // personalities. 1273 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1274 UnwindDests.back().first->setIsEHFuncletEntry(); 1275 break; 1276 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1277 // Add the catchpad handlers to the possible destinations. 1278 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1279 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1280 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1281 if (IsMSVCCXX || IsCoreCLR) 1282 UnwindDests.back().first->setIsEHFuncletEntry(); 1283 } 1284 NewEHPadBB = CatchSwitch->getUnwindDest(); 1285 } else { 1286 continue; 1287 } 1288 1289 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1290 if (BPI && NewEHPadBB) 1291 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1292 EHPadBB = NewEHPadBB; 1293 } 1294 } 1295 1296 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1297 // Update successor info. 1298 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1299 auto UnwindDest = I.getUnwindDest(); 1300 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1301 BranchProbability UnwindDestProb = 1302 (BPI && UnwindDest) 1303 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1304 : BranchProbability::getZero(); 1305 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1306 for (auto &UnwindDest : UnwindDests) { 1307 UnwindDest.first->setIsEHPad(); 1308 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1309 } 1310 FuncInfo.MBB->normalizeSuccProbs(); 1311 1312 // Create the terminator node. 1313 SDValue Ret = 1314 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1315 DAG.setRoot(Ret); 1316 } 1317 1318 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1319 report_fatal_error("visitCatchSwitch not yet implemented!"); 1320 } 1321 1322 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1324 auto &DL = DAG.getDataLayout(); 1325 SDValue Chain = getControlRoot(); 1326 SmallVector<ISD::OutputArg, 8> Outs; 1327 SmallVector<SDValue, 8> OutVals; 1328 1329 if (!FuncInfo.CanLowerReturn) { 1330 unsigned DemoteReg = FuncInfo.DemoteRegister; 1331 const Function *F = I.getParent()->getParent(); 1332 1333 // Emit a store of the return value through the virtual register. 1334 // Leave Outs empty so that LowerReturn won't try to load return 1335 // registers the usual way. 1336 SmallVector<EVT, 1> PtrValueVTs; 1337 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1338 PtrValueVTs); 1339 1340 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1341 DemoteReg, PtrValueVTs[0]); 1342 SDValue RetOp = getValue(I.getOperand(0)); 1343 1344 SmallVector<EVT, 4> ValueVTs; 1345 SmallVector<uint64_t, 4> Offsets; 1346 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1347 unsigned NumValues = ValueVTs.size(); 1348 1349 // An aggregate return value cannot wrap around the address space, so 1350 // offsets to its parts don't wrap either. 1351 SDNodeFlags Flags; 1352 Flags.setNoUnsignedWrap(true); 1353 1354 SmallVector<SDValue, 4> Chains(NumValues); 1355 for (unsigned i = 0; i != NumValues; ++i) { 1356 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1357 RetPtr.getValueType(), RetPtr, 1358 DAG.getIntPtrConstant(Offsets[i], 1359 getCurSDLoc()), 1360 &Flags); 1361 Chains[i] = 1362 DAG.getStore(Chain, getCurSDLoc(), 1363 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1364 // FIXME: better loc info would be nice. 1365 Add, MachinePointerInfo(), false, false, 0); 1366 } 1367 1368 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1369 MVT::Other, Chains); 1370 } else if (I.getNumOperands() != 0) { 1371 SmallVector<EVT, 4> ValueVTs; 1372 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1373 unsigned NumValues = ValueVTs.size(); 1374 if (NumValues) { 1375 SDValue RetOp = getValue(I.getOperand(0)); 1376 1377 const Function *F = I.getParent()->getParent(); 1378 1379 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1380 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1381 Attribute::SExt)) 1382 ExtendKind = ISD::SIGN_EXTEND; 1383 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1384 Attribute::ZExt)) 1385 ExtendKind = ISD::ZERO_EXTEND; 1386 1387 LLVMContext &Context = F->getContext(); 1388 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1389 Attribute::InReg); 1390 1391 for (unsigned j = 0; j != NumValues; ++j) { 1392 EVT VT = ValueVTs[j]; 1393 1394 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1395 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1396 1397 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1398 MVT PartVT = TLI.getRegisterType(Context, VT); 1399 SmallVector<SDValue, 4> Parts(NumParts); 1400 getCopyToParts(DAG, getCurSDLoc(), 1401 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1402 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1403 1404 // 'inreg' on function refers to return value 1405 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1406 if (RetInReg) 1407 Flags.setInReg(); 1408 1409 // Propagate extension type if any 1410 if (ExtendKind == ISD::SIGN_EXTEND) 1411 Flags.setSExt(); 1412 else if (ExtendKind == ISD::ZERO_EXTEND) 1413 Flags.setZExt(); 1414 1415 for (unsigned i = 0; i < NumParts; ++i) { 1416 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1417 VT, /*isfixed=*/true, 0, 0)); 1418 OutVals.push_back(Parts[i]); 1419 } 1420 } 1421 } 1422 } 1423 1424 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1425 CallingConv::ID CallConv = 1426 DAG.getMachineFunction().getFunction()->getCallingConv(); 1427 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1428 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1429 1430 // Verify that the target's LowerReturn behaved as expected. 1431 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1432 "LowerReturn didn't return a valid chain!"); 1433 1434 // Update the DAG with the new chain value resulting from return lowering. 1435 DAG.setRoot(Chain); 1436 } 1437 1438 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1439 /// created for it, emit nodes to copy the value into the virtual 1440 /// registers. 1441 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1442 // Skip empty types 1443 if (V->getType()->isEmptyTy()) 1444 return; 1445 1446 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1447 if (VMI != FuncInfo.ValueMap.end()) { 1448 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1449 CopyValueToVirtualRegister(V, VMI->second); 1450 } 1451 } 1452 1453 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1454 /// the current basic block, add it to ValueMap now so that we'll get a 1455 /// CopyTo/FromReg. 1456 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1457 // No need to export constants. 1458 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1459 1460 // Already exported? 1461 if (FuncInfo.isExportedInst(V)) return; 1462 1463 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1464 CopyValueToVirtualRegister(V, Reg); 1465 } 1466 1467 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1468 const BasicBlock *FromBB) { 1469 // The operands of the setcc have to be in this block. We don't know 1470 // how to export them from some other block. 1471 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1472 // Can export from current BB. 1473 if (VI->getParent() == FromBB) 1474 return true; 1475 1476 // Is already exported, noop. 1477 return FuncInfo.isExportedInst(V); 1478 } 1479 1480 // If this is an argument, we can export it if the BB is the entry block or 1481 // if it is already exported. 1482 if (isa<Argument>(V)) { 1483 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1484 return true; 1485 1486 // Otherwise, can only export this if it is already exported. 1487 return FuncInfo.isExportedInst(V); 1488 } 1489 1490 // Otherwise, constants can always be exported. 1491 return true; 1492 } 1493 1494 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1495 BranchProbability 1496 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1497 const MachineBasicBlock *Dst) const { 1498 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1499 const BasicBlock *SrcBB = Src->getBasicBlock(); 1500 const BasicBlock *DstBB = Dst->getBasicBlock(); 1501 if (!BPI) { 1502 // If BPI is not available, set the default probability as 1 / N, where N is 1503 // the number of successors. 1504 auto SuccSize = std::max<uint32_t>( 1505 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1506 return BranchProbability(1, SuccSize); 1507 } 1508 return BPI->getEdgeProbability(SrcBB, DstBB); 1509 } 1510 1511 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1512 MachineBasicBlock *Dst, 1513 BranchProbability Prob) { 1514 if (!FuncInfo.BPI) 1515 Src->addSuccessorWithoutProb(Dst); 1516 else { 1517 if (Prob.isUnknown()) 1518 Prob = getEdgeProbability(Src, Dst); 1519 Src->addSuccessor(Dst, Prob); 1520 } 1521 } 1522 1523 static bool InBlock(const Value *V, const BasicBlock *BB) { 1524 if (const Instruction *I = dyn_cast<Instruction>(V)) 1525 return I->getParent() == BB; 1526 return true; 1527 } 1528 1529 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1530 /// This function emits a branch and is used at the leaves of an OR or an 1531 /// AND operator tree. 1532 /// 1533 void 1534 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1535 MachineBasicBlock *TBB, 1536 MachineBasicBlock *FBB, 1537 MachineBasicBlock *CurBB, 1538 MachineBasicBlock *SwitchBB, 1539 BranchProbability TProb, 1540 BranchProbability FProb) { 1541 const BasicBlock *BB = CurBB->getBasicBlock(); 1542 1543 // If the leaf of the tree is a comparison, merge the condition into 1544 // the caseblock. 1545 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1546 // The operands of the cmp have to be in this block. We don't know 1547 // how to export them from some other block. If this is the first block 1548 // of the sequence, no exporting is needed. 1549 if (CurBB == SwitchBB || 1550 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1551 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1552 ISD::CondCode Condition; 1553 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1554 Condition = getICmpCondCode(IC->getPredicate()); 1555 } else { 1556 const FCmpInst *FC = cast<FCmpInst>(Cond); 1557 Condition = getFCmpCondCode(FC->getPredicate()); 1558 if (TM.Options.NoNaNsFPMath) 1559 Condition = getFCmpCodeWithoutNaN(Condition); 1560 } 1561 1562 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1563 TBB, FBB, CurBB, TProb, FProb); 1564 SwitchCases.push_back(CB); 1565 return; 1566 } 1567 } 1568 1569 // Create a CaseBlock record representing this branch. 1570 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1571 nullptr, TBB, FBB, CurBB, TProb, FProb); 1572 SwitchCases.push_back(CB); 1573 } 1574 1575 /// FindMergedConditions - If Cond is an expression like 1576 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1577 MachineBasicBlock *TBB, 1578 MachineBasicBlock *FBB, 1579 MachineBasicBlock *CurBB, 1580 MachineBasicBlock *SwitchBB, 1581 Instruction::BinaryOps Opc, 1582 BranchProbability TProb, 1583 BranchProbability FProb) { 1584 // If this node is not part of the or/and tree, emit it as a branch. 1585 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1586 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1587 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1588 BOp->getParent() != CurBB->getBasicBlock() || 1589 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1590 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1591 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1592 TProb, FProb); 1593 return; 1594 } 1595 1596 // Create TmpBB after CurBB. 1597 MachineFunction::iterator BBI(CurBB); 1598 MachineFunction &MF = DAG.getMachineFunction(); 1599 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1600 CurBB->getParent()->insert(++BBI, TmpBB); 1601 1602 if (Opc == Instruction::Or) { 1603 // Codegen X | Y as: 1604 // BB1: 1605 // jmp_if_X TBB 1606 // jmp TmpBB 1607 // TmpBB: 1608 // jmp_if_Y TBB 1609 // jmp FBB 1610 // 1611 1612 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1613 // The requirement is that 1614 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1615 // = TrueProb for original BB. 1616 // Assuming the original probabilities are A and B, one choice is to set 1617 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1618 // A/(1+B) and 2B/(1+B). This choice assumes that 1619 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1620 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1621 // TmpBB, but the math is more complicated. 1622 1623 auto NewTrueProb = TProb / 2; 1624 auto NewFalseProb = TProb / 2 + FProb; 1625 // Emit the LHS condition. 1626 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1627 NewTrueProb, NewFalseProb); 1628 1629 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1630 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1631 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1632 // Emit the RHS condition into TmpBB. 1633 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1634 Probs[0], Probs[1]); 1635 } else { 1636 assert(Opc == Instruction::And && "Unknown merge op!"); 1637 // Codegen X & Y as: 1638 // BB1: 1639 // jmp_if_X TmpBB 1640 // jmp FBB 1641 // TmpBB: 1642 // jmp_if_Y TBB 1643 // jmp FBB 1644 // 1645 // This requires creation of TmpBB after CurBB. 1646 1647 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1648 // The requirement is that 1649 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1650 // = FalseProb for original BB. 1651 // Assuming the original probabilities are A and B, one choice is to set 1652 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1653 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1654 // TrueProb for BB1 * FalseProb for TmpBB. 1655 1656 auto NewTrueProb = TProb + FProb / 2; 1657 auto NewFalseProb = FProb / 2; 1658 // Emit the LHS condition. 1659 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1660 NewTrueProb, NewFalseProb); 1661 1662 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1663 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1664 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1665 // Emit the RHS condition into TmpBB. 1666 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1667 Probs[0], Probs[1]); 1668 } 1669 } 1670 1671 /// If the set of cases should be emitted as a series of branches, return true. 1672 /// If we should emit this as a bunch of and/or'd together conditions, return 1673 /// false. 1674 bool 1675 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1676 if (Cases.size() != 2) return true; 1677 1678 // If this is two comparisons of the same values or'd or and'd together, they 1679 // will get folded into a single comparison, so don't emit two blocks. 1680 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1681 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1682 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1683 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1684 return false; 1685 } 1686 1687 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1688 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1689 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1690 Cases[0].CC == Cases[1].CC && 1691 isa<Constant>(Cases[0].CmpRHS) && 1692 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1693 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1694 return false; 1695 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1696 return false; 1697 } 1698 1699 return true; 1700 } 1701 1702 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1703 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1704 1705 // Update machine-CFG edges. 1706 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1707 1708 if (I.isUnconditional()) { 1709 // Update machine-CFG edges. 1710 BrMBB->addSuccessor(Succ0MBB); 1711 1712 // If this is not a fall-through branch or optimizations are switched off, 1713 // emit the branch. 1714 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1715 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1716 MVT::Other, getControlRoot(), 1717 DAG.getBasicBlock(Succ0MBB))); 1718 1719 return; 1720 } 1721 1722 // If this condition is one of the special cases we handle, do special stuff 1723 // now. 1724 const Value *CondVal = I.getCondition(); 1725 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1726 1727 // If this is a series of conditions that are or'd or and'd together, emit 1728 // this as a sequence of branches instead of setcc's with and/or operations. 1729 // As long as jumps are not expensive, this should improve performance. 1730 // For example, instead of something like: 1731 // cmp A, B 1732 // C = seteq 1733 // cmp D, E 1734 // F = setle 1735 // or C, F 1736 // jnz foo 1737 // Emit: 1738 // cmp A, B 1739 // je foo 1740 // cmp D, E 1741 // jle foo 1742 // 1743 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1744 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1745 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1746 !I.getMetadata(LLVMContext::MD_unpredictable) && 1747 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1748 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1749 Opcode, 1750 getEdgeProbability(BrMBB, Succ0MBB), 1751 getEdgeProbability(BrMBB, Succ1MBB)); 1752 // If the compares in later blocks need to use values not currently 1753 // exported from this block, export them now. This block should always 1754 // be the first entry. 1755 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1756 1757 // Allow some cases to be rejected. 1758 if (ShouldEmitAsBranches(SwitchCases)) { 1759 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1760 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1761 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1762 } 1763 1764 // Emit the branch for this block. 1765 visitSwitchCase(SwitchCases[0], BrMBB); 1766 SwitchCases.erase(SwitchCases.begin()); 1767 return; 1768 } 1769 1770 // Okay, we decided not to do this, remove any inserted MBB's and clear 1771 // SwitchCases. 1772 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1773 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1774 1775 SwitchCases.clear(); 1776 } 1777 } 1778 1779 // Create a CaseBlock record representing this branch. 1780 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1781 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1782 1783 // Use visitSwitchCase to actually insert the fast branch sequence for this 1784 // cond branch. 1785 visitSwitchCase(CB, BrMBB); 1786 } 1787 1788 /// visitSwitchCase - Emits the necessary code to represent a single node in 1789 /// the binary search tree resulting from lowering a switch instruction. 1790 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1791 MachineBasicBlock *SwitchBB) { 1792 SDValue Cond; 1793 SDValue CondLHS = getValue(CB.CmpLHS); 1794 SDLoc dl = getCurSDLoc(); 1795 1796 // Build the setcc now. 1797 if (!CB.CmpMHS) { 1798 // Fold "(X == true)" to X and "(X == false)" to !X to 1799 // handle common cases produced by branch lowering. 1800 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1801 CB.CC == ISD::SETEQ) 1802 Cond = CondLHS; 1803 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1804 CB.CC == ISD::SETEQ) { 1805 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1806 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1807 } else 1808 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1809 } else { 1810 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1811 1812 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1813 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1814 1815 SDValue CmpOp = getValue(CB.CmpMHS); 1816 EVT VT = CmpOp.getValueType(); 1817 1818 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1819 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1820 ISD::SETLE); 1821 } else { 1822 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1823 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1824 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1825 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1826 } 1827 } 1828 1829 // Update successor info 1830 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1831 // TrueBB and FalseBB are always different unless the incoming IR is 1832 // degenerate. This only happens when running llc on weird IR. 1833 if (CB.TrueBB != CB.FalseBB) 1834 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1835 SwitchBB->normalizeSuccProbs(); 1836 1837 // If the lhs block is the next block, invert the condition so that we can 1838 // fall through to the lhs instead of the rhs block. 1839 if (CB.TrueBB == NextBlock(SwitchBB)) { 1840 std::swap(CB.TrueBB, CB.FalseBB); 1841 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1842 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1843 } 1844 1845 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1846 MVT::Other, getControlRoot(), Cond, 1847 DAG.getBasicBlock(CB.TrueBB)); 1848 1849 // Insert the false branch. Do this even if it's a fall through branch, 1850 // this makes it easier to do DAG optimizations which require inverting 1851 // the branch condition. 1852 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1853 DAG.getBasicBlock(CB.FalseBB)); 1854 1855 DAG.setRoot(BrCond); 1856 } 1857 1858 /// visitJumpTable - Emit JumpTable node in the current MBB 1859 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1860 // Emit the code for the jump table 1861 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1862 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1863 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1864 JT.Reg, PTy); 1865 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1866 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1867 MVT::Other, Index.getValue(1), 1868 Table, Index); 1869 DAG.setRoot(BrJumpTable); 1870 } 1871 1872 /// visitJumpTableHeader - This function emits necessary code to produce index 1873 /// in the JumpTable from switch case. 1874 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1875 JumpTableHeader &JTH, 1876 MachineBasicBlock *SwitchBB) { 1877 SDLoc dl = getCurSDLoc(); 1878 1879 // Subtract the lowest switch case value from the value being switched on and 1880 // conditional branch to default mbb if the result is greater than the 1881 // difference between smallest and largest cases. 1882 SDValue SwitchOp = getValue(JTH.SValue); 1883 EVT VT = SwitchOp.getValueType(); 1884 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1885 DAG.getConstant(JTH.First, dl, VT)); 1886 1887 // The SDNode we just created, which holds the value being switched on minus 1888 // the smallest case value, needs to be copied to a virtual register so it 1889 // can be used as an index into the jump table in a subsequent basic block. 1890 // This value may be smaller or larger than the target's pointer type, and 1891 // therefore require extension or truncating. 1892 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1893 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1894 1895 unsigned JumpTableReg = 1896 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1897 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1898 JumpTableReg, SwitchOp); 1899 JT.Reg = JumpTableReg; 1900 1901 // Emit the range check for the jump table, and branch to the default block 1902 // for the switch statement if the value being switched on exceeds the largest 1903 // case in the switch. 1904 SDValue CMP = DAG.getSetCC( 1905 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1906 Sub.getValueType()), 1907 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1908 1909 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1910 MVT::Other, CopyTo, CMP, 1911 DAG.getBasicBlock(JT.Default)); 1912 1913 // Avoid emitting unnecessary branches to the next block. 1914 if (JT.MBB != NextBlock(SwitchBB)) 1915 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1916 DAG.getBasicBlock(JT.MBB)); 1917 1918 DAG.setRoot(BrCond); 1919 } 1920 1921 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1922 /// tail spliced into a stack protector check success bb. 1923 /// 1924 /// For a high level explanation of how this fits into the stack protector 1925 /// generation see the comment on the declaration of class 1926 /// StackProtectorDescriptor. 1927 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1928 MachineBasicBlock *ParentBB) { 1929 1930 // First create the loads to the guard/stack slot for the comparison. 1931 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1932 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1933 1934 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1935 int FI = MFI->getStackProtectorIndex(); 1936 1937 const Value *IRGuard = SPD.getGuard(); 1938 SDValue GuardPtr = getValue(IRGuard); 1939 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1940 1941 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1942 1943 SDValue Guard; 1944 SDLoc dl = getCurSDLoc(); 1945 1946 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1947 // guard value from the virtual register holding the value. Otherwise, emit a 1948 // volatile load to retrieve the stack guard value. 1949 unsigned GuardReg = SPD.getGuardReg(); 1950 1951 if (GuardReg && TLI.useLoadStackGuardNode()) 1952 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1953 PtrTy); 1954 else 1955 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1956 GuardPtr, MachinePointerInfo(IRGuard, 0), 1957 true, false, false, Align); 1958 1959 SDValue StackSlot = DAG.getLoad( 1960 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1961 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1962 false, false, Align); 1963 1964 // Perform the comparison via a subtract/getsetcc. 1965 EVT VT = Guard.getValueType(); 1966 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1967 1968 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1969 *DAG.getContext(), 1970 Sub.getValueType()), 1971 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1972 1973 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1974 // branch to failure MBB. 1975 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1976 MVT::Other, StackSlot.getOperand(0), 1977 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1978 // Otherwise branch to success MBB. 1979 SDValue Br = DAG.getNode(ISD::BR, dl, 1980 MVT::Other, BrCond, 1981 DAG.getBasicBlock(SPD.getSuccessMBB())); 1982 1983 DAG.setRoot(Br); 1984 } 1985 1986 /// Codegen the failure basic block for a stack protector check. 1987 /// 1988 /// A failure stack protector machine basic block consists simply of a call to 1989 /// __stack_chk_fail(). 1990 /// 1991 /// For a high level explanation of how this fits into the stack protector 1992 /// generation see the comment on the declaration of class 1993 /// StackProtectorDescriptor. 1994 void 1995 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1997 SDValue Chain = 1998 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1999 None, false, getCurSDLoc(), false, false).second; 2000 DAG.setRoot(Chain); 2001 } 2002 2003 /// visitBitTestHeader - This function emits necessary code to produce value 2004 /// suitable for "bit tests" 2005 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2006 MachineBasicBlock *SwitchBB) { 2007 SDLoc dl = getCurSDLoc(); 2008 2009 // Subtract the minimum value 2010 SDValue SwitchOp = getValue(B.SValue); 2011 EVT VT = SwitchOp.getValueType(); 2012 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2013 DAG.getConstant(B.First, dl, VT)); 2014 2015 // Check range 2016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2017 SDValue RangeCmp = DAG.getSetCC( 2018 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2019 Sub.getValueType()), 2020 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2021 2022 // Determine the type of the test operands. 2023 bool UsePtrType = false; 2024 if (!TLI.isTypeLegal(VT)) 2025 UsePtrType = true; 2026 else { 2027 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2028 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2029 // Switch table case range are encoded into series of masks. 2030 // Just use pointer type, it's guaranteed to fit. 2031 UsePtrType = true; 2032 break; 2033 } 2034 } 2035 if (UsePtrType) { 2036 VT = TLI.getPointerTy(DAG.getDataLayout()); 2037 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2038 } 2039 2040 B.RegVT = VT.getSimpleVT(); 2041 B.Reg = FuncInfo.CreateReg(B.RegVT); 2042 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2043 2044 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2045 2046 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2047 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2048 SwitchBB->normalizeSuccProbs(); 2049 2050 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2051 MVT::Other, CopyTo, RangeCmp, 2052 DAG.getBasicBlock(B.Default)); 2053 2054 // Avoid emitting unnecessary branches to the next block. 2055 if (MBB != NextBlock(SwitchBB)) 2056 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2057 DAG.getBasicBlock(MBB)); 2058 2059 DAG.setRoot(BrRange); 2060 } 2061 2062 /// visitBitTestCase - this function produces one "bit test" 2063 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2064 MachineBasicBlock* NextMBB, 2065 BranchProbability BranchProbToNext, 2066 unsigned Reg, 2067 BitTestCase &B, 2068 MachineBasicBlock *SwitchBB) { 2069 SDLoc dl = getCurSDLoc(); 2070 MVT VT = BB.RegVT; 2071 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2072 SDValue Cmp; 2073 unsigned PopCount = countPopulation(B.Mask); 2074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2075 if (PopCount == 1) { 2076 // Testing for a single bit; just compare the shift count with what it 2077 // would need to be to shift a 1 bit in that position. 2078 Cmp = DAG.getSetCC( 2079 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2080 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2081 ISD::SETEQ); 2082 } else if (PopCount == BB.Range) { 2083 // There is only one zero bit in the range, test for it directly. 2084 Cmp = DAG.getSetCC( 2085 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2086 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2087 ISD::SETNE); 2088 } else { 2089 // Make desired shift 2090 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2091 DAG.getConstant(1, dl, VT), ShiftOp); 2092 2093 // Emit bit tests and jumps 2094 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2095 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2096 Cmp = DAG.getSetCC( 2097 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2098 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2099 } 2100 2101 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2102 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2103 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2104 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2105 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2106 // one as they are relative probabilities (and thus work more like weights), 2107 // and hence we need to normalize them to let the sum of them become one. 2108 SwitchBB->normalizeSuccProbs(); 2109 2110 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2111 MVT::Other, getControlRoot(), 2112 Cmp, DAG.getBasicBlock(B.TargetBB)); 2113 2114 // Avoid emitting unnecessary branches to the next block. 2115 if (NextMBB != NextBlock(SwitchBB)) 2116 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2117 DAG.getBasicBlock(NextMBB)); 2118 2119 DAG.setRoot(BrAnd); 2120 } 2121 2122 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2123 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2124 2125 // Retrieve successors. Look through artificial IR level blocks like 2126 // catchswitch for successors. 2127 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2128 const BasicBlock *EHPadBB = I.getSuccessor(1); 2129 2130 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2131 // have to do anything here to lower funclet bundles. 2132 assert(!I.hasOperandBundlesOtherThan( 2133 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2134 "Cannot lower invokes with arbitrary operand bundles yet!"); 2135 2136 const Value *Callee(I.getCalledValue()); 2137 const Function *Fn = dyn_cast<Function>(Callee); 2138 if (isa<InlineAsm>(Callee)) 2139 visitInlineAsm(&I); 2140 else if (Fn && Fn->isIntrinsic()) { 2141 switch (Fn->getIntrinsicID()) { 2142 default: 2143 llvm_unreachable("Cannot invoke this intrinsic"); 2144 case Intrinsic::donothing: 2145 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2146 break; 2147 case Intrinsic::experimental_patchpoint_void: 2148 case Intrinsic::experimental_patchpoint_i64: 2149 visitPatchpoint(&I, EHPadBB); 2150 break; 2151 case Intrinsic::experimental_gc_statepoint: 2152 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2153 break; 2154 } 2155 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2156 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2157 // Eventually we will support lowering the @llvm.experimental.deoptimize 2158 // intrinsic, and right now there are no plans to support other intrinsics 2159 // with deopt state. 2160 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2161 } else { 2162 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2163 } 2164 2165 // If the value of the invoke is used outside of its defining block, make it 2166 // available as a virtual register. 2167 // We already took care of the exported value for the statepoint instruction 2168 // during call to the LowerStatepoint. 2169 if (!isStatepoint(I)) { 2170 CopyToExportRegsIfNeeded(&I); 2171 } 2172 2173 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2174 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2175 BranchProbability EHPadBBProb = 2176 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2177 : BranchProbability::getZero(); 2178 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2179 2180 // Update successor info. 2181 addSuccessorWithProb(InvokeMBB, Return); 2182 for (auto &UnwindDest : UnwindDests) { 2183 UnwindDest.first->setIsEHPad(); 2184 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2185 } 2186 InvokeMBB->normalizeSuccProbs(); 2187 2188 // Drop into normal successor. 2189 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2190 MVT::Other, getControlRoot(), 2191 DAG.getBasicBlock(Return))); 2192 } 2193 2194 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2195 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2196 } 2197 2198 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2199 assert(FuncInfo.MBB->isEHPad() && 2200 "Call to landingpad not in landing pad!"); 2201 2202 MachineBasicBlock *MBB = FuncInfo.MBB; 2203 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2204 AddLandingPadInfo(LP, MMI, MBB); 2205 2206 // If there aren't registers to copy the values into (e.g., during SjLj 2207 // exceptions), then don't bother to create these DAG nodes. 2208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2209 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2210 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2211 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2212 return; 2213 2214 // If landingpad's return type is token type, we don't create DAG nodes 2215 // for its exception pointer and selector value. The extraction of exception 2216 // pointer or selector value from token type landingpads is not currently 2217 // supported. 2218 if (LP.getType()->isTokenTy()) 2219 return; 2220 2221 SmallVector<EVT, 2> ValueVTs; 2222 SDLoc dl = getCurSDLoc(); 2223 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2224 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2225 2226 // Get the two live-in registers as SDValues. The physregs have already been 2227 // copied into virtual registers. 2228 SDValue Ops[2]; 2229 if (FuncInfo.ExceptionPointerVirtReg) { 2230 Ops[0] = DAG.getZExtOrTrunc( 2231 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2232 FuncInfo.ExceptionPointerVirtReg, 2233 TLI.getPointerTy(DAG.getDataLayout())), 2234 dl, ValueVTs[0]); 2235 } else { 2236 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2237 } 2238 Ops[1] = DAG.getZExtOrTrunc( 2239 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2240 FuncInfo.ExceptionSelectorVirtReg, 2241 TLI.getPointerTy(DAG.getDataLayout())), 2242 dl, ValueVTs[1]); 2243 2244 // Merge into one. 2245 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2246 DAG.getVTList(ValueVTs), Ops); 2247 setValue(&LP, Res); 2248 } 2249 2250 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2251 #ifndef NDEBUG 2252 for (const CaseCluster &CC : Clusters) 2253 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2254 #endif 2255 2256 std::sort(Clusters.begin(), Clusters.end(), 2257 [](const CaseCluster &a, const CaseCluster &b) { 2258 return a.Low->getValue().slt(b.Low->getValue()); 2259 }); 2260 2261 // Merge adjacent clusters with the same destination. 2262 const unsigned N = Clusters.size(); 2263 unsigned DstIndex = 0; 2264 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2265 CaseCluster &CC = Clusters[SrcIndex]; 2266 const ConstantInt *CaseVal = CC.Low; 2267 MachineBasicBlock *Succ = CC.MBB; 2268 2269 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2270 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2271 // If this case has the same successor and is a neighbour, merge it into 2272 // the previous cluster. 2273 Clusters[DstIndex - 1].High = CaseVal; 2274 Clusters[DstIndex - 1].Prob += CC.Prob; 2275 } else { 2276 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2277 sizeof(Clusters[SrcIndex])); 2278 } 2279 } 2280 Clusters.resize(DstIndex); 2281 } 2282 2283 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2284 MachineBasicBlock *Last) { 2285 // Update JTCases. 2286 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2287 if (JTCases[i].first.HeaderBB == First) 2288 JTCases[i].first.HeaderBB = Last; 2289 2290 // Update BitTestCases. 2291 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2292 if (BitTestCases[i].Parent == First) 2293 BitTestCases[i].Parent = Last; 2294 } 2295 2296 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2297 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2298 2299 // Update machine-CFG edges with unique successors. 2300 SmallSet<BasicBlock*, 32> Done; 2301 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2302 BasicBlock *BB = I.getSuccessor(i); 2303 bool Inserted = Done.insert(BB).second; 2304 if (!Inserted) 2305 continue; 2306 2307 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2308 addSuccessorWithProb(IndirectBrMBB, Succ); 2309 } 2310 IndirectBrMBB->normalizeSuccProbs(); 2311 2312 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2313 MVT::Other, getControlRoot(), 2314 getValue(I.getAddress()))); 2315 } 2316 2317 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2318 if (DAG.getTarget().Options.TrapUnreachable) 2319 DAG.setRoot( 2320 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2321 } 2322 2323 void SelectionDAGBuilder::visitFSub(const User &I) { 2324 // -0.0 - X --> fneg 2325 Type *Ty = I.getType(); 2326 if (isa<Constant>(I.getOperand(0)) && 2327 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2328 SDValue Op2 = getValue(I.getOperand(1)); 2329 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2330 Op2.getValueType(), Op2)); 2331 return; 2332 } 2333 2334 visitBinary(I, ISD::FSUB); 2335 } 2336 2337 /// Checks if the given instruction performs a vector reduction, in which case 2338 /// we have the freedom to alter the elements in the result as long as the 2339 /// reduction of them stays unchanged. 2340 static bool isVectorReductionOp(const User *I) { 2341 const Instruction *Inst = dyn_cast<Instruction>(I); 2342 if (!Inst || !Inst->getType()->isVectorTy()) 2343 return false; 2344 2345 auto OpCode = Inst->getOpcode(); 2346 switch (OpCode) { 2347 case Instruction::Add: 2348 case Instruction::Mul: 2349 case Instruction::And: 2350 case Instruction::Or: 2351 case Instruction::Xor: 2352 break; 2353 case Instruction::FAdd: 2354 case Instruction::FMul: 2355 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2356 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2357 break; 2358 // Fall through. 2359 default: 2360 return false; 2361 } 2362 2363 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2364 unsigned ElemNumToReduce = ElemNum; 2365 2366 // Do DFS search on the def-use chain from the given instruction. We only 2367 // allow four kinds of operations during the search until we reach the 2368 // instruction that extracts the first element from the vector: 2369 // 2370 // 1. The reduction operation of the same opcode as the given instruction. 2371 // 2372 // 2. PHI node. 2373 // 2374 // 3. ShuffleVector instruction together with a reduction operation that 2375 // does a partial reduction. 2376 // 2377 // 4. ExtractElement that extracts the first element from the vector, and we 2378 // stop searching the def-use chain here. 2379 // 2380 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2381 // from 1-3 to the stack to continue the DFS. The given instruction is not 2382 // a reduction operation if we meet any other instructions other than those 2383 // listed above. 2384 2385 SmallVector<const User *, 16> UsersToVisit{Inst}; 2386 SmallPtrSet<const User *, 16> Visited; 2387 bool ReduxExtracted = false; 2388 2389 while (!UsersToVisit.empty()) { 2390 auto User = UsersToVisit.back(); 2391 UsersToVisit.pop_back(); 2392 if (!Visited.insert(User).second) 2393 continue; 2394 2395 for (const auto &U : User->users()) { 2396 auto Inst = dyn_cast<Instruction>(U); 2397 if (!Inst) 2398 return false; 2399 2400 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2401 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2402 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2403 return false; 2404 UsersToVisit.push_back(U); 2405 } else if (const ShuffleVectorInst *ShufInst = 2406 dyn_cast<ShuffleVectorInst>(U)) { 2407 // Detect the following pattern: A ShuffleVector instruction together 2408 // with a reduction that do partial reduction on the first and second 2409 // ElemNumToReduce / 2 elements, and store the result in 2410 // ElemNumToReduce / 2 elements in another vector. 2411 2412 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2413 if (ResultElements < ElemNum) 2414 return false; 2415 2416 if (ElemNumToReduce == 1) 2417 return false; 2418 if (!isa<UndefValue>(U->getOperand(1))) 2419 return false; 2420 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2421 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2422 return false; 2423 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2424 if (ShufInst->getMaskValue(i) != -1) 2425 return false; 2426 2427 // There is only one user of this ShuffleVector instruction, which 2428 // must be a reduction operation. 2429 if (!U->hasOneUse()) 2430 return false; 2431 2432 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2433 if (!U2 || U2->getOpcode() != OpCode) 2434 return false; 2435 2436 // Check operands of the reduction operation. 2437 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2438 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2439 UsersToVisit.push_back(U2); 2440 ElemNumToReduce /= 2; 2441 } else 2442 return false; 2443 } else if (isa<ExtractElementInst>(U)) { 2444 // At this moment we should have reduced all elements in the vector. 2445 if (ElemNumToReduce != 1) 2446 return false; 2447 2448 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2449 if (!Val || Val->getZExtValue() != 0) 2450 return false; 2451 2452 ReduxExtracted = true; 2453 } else 2454 return false; 2455 } 2456 } 2457 return ReduxExtracted; 2458 } 2459 2460 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2461 SDValue Op1 = getValue(I.getOperand(0)); 2462 SDValue Op2 = getValue(I.getOperand(1)); 2463 2464 bool nuw = false; 2465 bool nsw = false; 2466 bool exact = false; 2467 bool vec_redux = false; 2468 FastMathFlags FMF; 2469 2470 if (const OverflowingBinaryOperator *OFBinOp = 2471 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2472 nuw = OFBinOp->hasNoUnsignedWrap(); 2473 nsw = OFBinOp->hasNoSignedWrap(); 2474 } 2475 if (const PossiblyExactOperator *ExactOp = 2476 dyn_cast<const PossiblyExactOperator>(&I)) 2477 exact = ExactOp->isExact(); 2478 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2479 FMF = FPOp->getFastMathFlags(); 2480 2481 if (isVectorReductionOp(&I)) { 2482 vec_redux = true; 2483 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2484 } 2485 2486 SDNodeFlags Flags; 2487 Flags.setExact(exact); 2488 Flags.setNoSignedWrap(nsw); 2489 Flags.setNoUnsignedWrap(nuw); 2490 Flags.setVectorReduction(vec_redux); 2491 if (EnableFMFInDAG) { 2492 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2493 Flags.setNoInfs(FMF.noInfs()); 2494 Flags.setNoNaNs(FMF.noNaNs()); 2495 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2496 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2497 } 2498 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2499 Op1, Op2, &Flags); 2500 setValue(&I, BinNodeValue); 2501 } 2502 2503 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2504 SDValue Op1 = getValue(I.getOperand(0)); 2505 SDValue Op2 = getValue(I.getOperand(1)); 2506 2507 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2508 Op2.getValueType(), DAG.getDataLayout()); 2509 2510 // Coerce the shift amount to the right type if we can. 2511 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2512 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2513 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2514 SDLoc DL = getCurSDLoc(); 2515 2516 // If the operand is smaller than the shift count type, promote it. 2517 if (ShiftSize > Op2Size) 2518 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2519 2520 // If the operand is larger than the shift count type but the shift 2521 // count type has enough bits to represent any shift value, truncate 2522 // it now. This is a common case and it exposes the truncate to 2523 // optimization early. 2524 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2525 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2526 // Otherwise we'll need to temporarily settle for some other convenient 2527 // type. Type legalization will make adjustments once the shiftee is split. 2528 else 2529 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2530 } 2531 2532 bool nuw = false; 2533 bool nsw = false; 2534 bool exact = false; 2535 2536 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2537 2538 if (const OverflowingBinaryOperator *OFBinOp = 2539 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2540 nuw = OFBinOp->hasNoUnsignedWrap(); 2541 nsw = OFBinOp->hasNoSignedWrap(); 2542 } 2543 if (const PossiblyExactOperator *ExactOp = 2544 dyn_cast<const PossiblyExactOperator>(&I)) 2545 exact = ExactOp->isExact(); 2546 } 2547 SDNodeFlags Flags; 2548 Flags.setExact(exact); 2549 Flags.setNoSignedWrap(nsw); 2550 Flags.setNoUnsignedWrap(nuw); 2551 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2552 &Flags); 2553 setValue(&I, Res); 2554 } 2555 2556 void SelectionDAGBuilder::visitSDiv(const User &I) { 2557 SDValue Op1 = getValue(I.getOperand(0)); 2558 SDValue Op2 = getValue(I.getOperand(1)); 2559 2560 SDNodeFlags Flags; 2561 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2562 cast<PossiblyExactOperator>(&I)->isExact()); 2563 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2564 Op2, &Flags)); 2565 } 2566 2567 void SelectionDAGBuilder::visitICmp(const User &I) { 2568 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2569 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2570 predicate = IC->getPredicate(); 2571 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2572 predicate = ICmpInst::Predicate(IC->getPredicate()); 2573 SDValue Op1 = getValue(I.getOperand(0)); 2574 SDValue Op2 = getValue(I.getOperand(1)); 2575 ISD::CondCode Opcode = getICmpCondCode(predicate); 2576 2577 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2578 I.getType()); 2579 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2580 } 2581 2582 void SelectionDAGBuilder::visitFCmp(const User &I) { 2583 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2584 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2585 predicate = FC->getPredicate(); 2586 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2587 predicate = FCmpInst::Predicate(FC->getPredicate()); 2588 SDValue Op1 = getValue(I.getOperand(0)); 2589 SDValue Op2 = getValue(I.getOperand(1)); 2590 ISD::CondCode Condition = getFCmpCondCode(predicate); 2591 2592 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2593 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2594 // further optimization, but currently FMF is only applicable to binary nodes. 2595 if (TM.Options.NoNaNsFPMath) 2596 Condition = getFCmpCodeWithoutNaN(Condition); 2597 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2598 I.getType()); 2599 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2600 } 2601 2602 void SelectionDAGBuilder::visitSelect(const User &I) { 2603 SmallVector<EVT, 4> ValueVTs; 2604 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2605 ValueVTs); 2606 unsigned NumValues = ValueVTs.size(); 2607 if (NumValues == 0) return; 2608 2609 SmallVector<SDValue, 4> Values(NumValues); 2610 SDValue Cond = getValue(I.getOperand(0)); 2611 SDValue LHSVal = getValue(I.getOperand(1)); 2612 SDValue RHSVal = getValue(I.getOperand(2)); 2613 auto BaseOps = {Cond}; 2614 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2615 ISD::VSELECT : ISD::SELECT; 2616 2617 // Min/max matching is only viable if all output VTs are the same. 2618 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2619 EVT VT = ValueVTs[0]; 2620 LLVMContext &Ctx = *DAG.getContext(); 2621 auto &TLI = DAG.getTargetLoweringInfo(); 2622 2623 // We care about the legality of the operation after it has been type 2624 // legalized. 2625 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2626 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2627 VT = TLI.getTypeToTransformTo(Ctx, VT); 2628 2629 // If the vselect is legal, assume we want to leave this as a vector setcc + 2630 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2631 // min/max is legal on the scalar type. 2632 bool UseScalarMinMax = VT.isVector() && 2633 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2634 2635 Value *LHS, *RHS; 2636 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2637 ISD::NodeType Opc = ISD::DELETED_NODE; 2638 switch (SPR.Flavor) { 2639 case SPF_UMAX: Opc = ISD::UMAX; break; 2640 case SPF_UMIN: Opc = ISD::UMIN; break; 2641 case SPF_SMAX: Opc = ISD::SMAX; break; 2642 case SPF_SMIN: Opc = ISD::SMIN; break; 2643 case SPF_FMINNUM: 2644 switch (SPR.NaNBehavior) { 2645 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2646 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2647 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2648 case SPNB_RETURNS_ANY: { 2649 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2650 Opc = ISD::FMINNUM; 2651 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2652 Opc = ISD::FMINNAN; 2653 else if (UseScalarMinMax) 2654 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2655 ISD::FMINNUM : ISD::FMINNAN; 2656 break; 2657 } 2658 } 2659 break; 2660 case SPF_FMAXNUM: 2661 switch (SPR.NaNBehavior) { 2662 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2663 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2664 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2665 case SPNB_RETURNS_ANY: 2666 2667 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2668 Opc = ISD::FMAXNUM; 2669 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2670 Opc = ISD::FMAXNAN; 2671 else if (UseScalarMinMax) 2672 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2673 ISD::FMAXNUM : ISD::FMAXNAN; 2674 break; 2675 } 2676 break; 2677 default: break; 2678 } 2679 2680 if (Opc != ISD::DELETED_NODE && 2681 (TLI.isOperationLegalOrCustom(Opc, VT) || 2682 (UseScalarMinMax && 2683 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2684 // If the underlying comparison instruction is used by any other 2685 // instruction, the consumed instructions won't be destroyed, so it is 2686 // not profitable to convert to a min/max. 2687 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2688 OpCode = Opc; 2689 LHSVal = getValue(LHS); 2690 RHSVal = getValue(RHS); 2691 BaseOps = {}; 2692 } 2693 } 2694 2695 for (unsigned i = 0; i != NumValues; ++i) { 2696 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2697 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2698 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2699 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2700 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2701 Ops); 2702 } 2703 2704 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2705 DAG.getVTList(ValueVTs), Values)); 2706 } 2707 2708 void SelectionDAGBuilder::visitTrunc(const User &I) { 2709 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2710 SDValue N = getValue(I.getOperand(0)); 2711 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2712 I.getType()); 2713 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2714 } 2715 2716 void SelectionDAGBuilder::visitZExt(const User &I) { 2717 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2718 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2719 SDValue N = getValue(I.getOperand(0)); 2720 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2721 I.getType()); 2722 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2723 } 2724 2725 void SelectionDAGBuilder::visitSExt(const User &I) { 2726 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2727 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2728 SDValue N = getValue(I.getOperand(0)); 2729 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2730 I.getType()); 2731 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2732 } 2733 2734 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2735 // FPTrunc is never a no-op cast, no need to check 2736 SDValue N = getValue(I.getOperand(0)); 2737 SDLoc dl = getCurSDLoc(); 2738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2739 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2740 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2741 DAG.getTargetConstant( 2742 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2743 } 2744 2745 void SelectionDAGBuilder::visitFPExt(const User &I) { 2746 // FPExt is never a no-op cast, no need to check 2747 SDValue N = getValue(I.getOperand(0)); 2748 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2749 I.getType()); 2750 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2751 } 2752 2753 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2754 // FPToUI is never a no-op cast, no need to check 2755 SDValue N = getValue(I.getOperand(0)); 2756 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2757 I.getType()); 2758 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2759 } 2760 2761 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2762 // FPToSI is never a no-op cast, no need to check 2763 SDValue N = getValue(I.getOperand(0)); 2764 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2765 I.getType()); 2766 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2767 } 2768 2769 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2770 // UIToFP is never a no-op cast, no need to check 2771 SDValue N = getValue(I.getOperand(0)); 2772 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2773 I.getType()); 2774 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2775 } 2776 2777 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2778 // SIToFP is never a no-op cast, no need to check 2779 SDValue N = getValue(I.getOperand(0)); 2780 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2781 I.getType()); 2782 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2783 } 2784 2785 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2786 // What to do depends on the size of the integer and the size of the pointer. 2787 // We can either truncate, zero extend, or no-op, accordingly. 2788 SDValue N = getValue(I.getOperand(0)); 2789 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2790 I.getType()); 2791 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2792 } 2793 2794 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2795 // What to do depends on the size of the integer and the size of the pointer. 2796 // We can either truncate, zero extend, or no-op, accordingly. 2797 SDValue N = getValue(I.getOperand(0)); 2798 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2799 I.getType()); 2800 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2801 } 2802 2803 void SelectionDAGBuilder::visitBitCast(const User &I) { 2804 SDValue N = getValue(I.getOperand(0)); 2805 SDLoc dl = getCurSDLoc(); 2806 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2807 I.getType()); 2808 2809 // BitCast assures us that source and destination are the same size so this is 2810 // either a BITCAST or a no-op. 2811 if (DestVT != N.getValueType()) 2812 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2813 DestVT, N)); // convert types. 2814 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2815 // might fold any kind of constant expression to an integer constant and that 2816 // is not what we are looking for. Only regcognize a bitcast of a genuine 2817 // constant integer as an opaque constant. 2818 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2819 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2820 /*isOpaque*/true)); 2821 else 2822 setValue(&I, N); // noop cast. 2823 } 2824 2825 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2827 const Value *SV = I.getOperand(0); 2828 SDValue N = getValue(SV); 2829 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2830 2831 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2832 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2833 2834 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2835 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2836 2837 setValue(&I, N); 2838 } 2839 2840 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2842 SDValue InVec = getValue(I.getOperand(0)); 2843 SDValue InVal = getValue(I.getOperand(1)); 2844 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2845 TLI.getVectorIdxTy(DAG.getDataLayout())); 2846 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2847 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2848 InVec, InVal, InIdx)); 2849 } 2850 2851 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2852 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2853 SDValue InVec = getValue(I.getOperand(0)); 2854 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2855 TLI.getVectorIdxTy(DAG.getDataLayout())); 2856 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2857 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2858 InVec, InIdx)); 2859 } 2860 2861 // Utility for visitShuffleVector - Return true if every element in Mask, 2862 // beginning from position Pos and ending in Pos+Size, falls within the 2863 // specified sequential range [L, L+Pos). or is undef. 2864 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2865 unsigned Pos, unsigned Size, int Low) { 2866 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2867 if (Mask[i] >= 0 && Mask[i] != Low) 2868 return false; 2869 return true; 2870 } 2871 2872 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2873 SDValue Src1 = getValue(I.getOperand(0)); 2874 SDValue Src2 = getValue(I.getOperand(1)); 2875 2876 SmallVector<int, 8> Mask; 2877 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2878 unsigned MaskNumElts = Mask.size(); 2879 2880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2881 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2882 EVT SrcVT = Src1.getValueType(); 2883 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2884 2885 if (SrcNumElts == MaskNumElts) { 2886 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2887 &Mask[0])); 2888 return; 2889 } 2890 2891 // Normalize the shuffle vector since mask and vector length don't match. 2892 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2893 // Mask is longer than the source vectors and is a multiple of the source 2894 // vectors. We can use concatenate vector to make the mask and vectors 2895 // lengths match. 2896 if (SrcNumElts*2 == MaskNumElts) { 2897 // First check for Src1 in low and Src2 in high 2898 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2899 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2900 // The shuffle is concatenating two vectors together. 2901 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2902 VT, Src1, Src2)); 2903 return; 2904 } 2905 // Then check for Src2 in low and Src1 in high 2906 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2907 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2908 // The shuffle is concatenating two vectors together. 2909 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2910 VT, Src2, Src1)); 2911 return; 2912 } 2913 } 2914 2915 // Pad both vectors with undefs to make them the same length as the mask. 2916 unsigned NumConcat = MaskNumElts / SrcNumElts; 2917 bool Src1U = Src1.isUndef(); 2918 bool Src2U = Src2.isUndef(); 2919 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2920 2921 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2922 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2923 MOps1[0] = Src1; 2924 MOps2[0] = Src2; 2925 2926 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2927 getCurSDLoc(), VT, MOps1); 2928 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2929 getCurSDLoc(), VT, MOps2); 2930 2931 // Readjust mask for new input vector length. 2932 SmallVector<int, 8> MappedOps; 2933 for (unsigned i = 0; i != MaskNumElts; ++i) { 2934 int Idx = Mask[i]; 2935 if (Idx >= (int)SrcNumElts) 2936 Idx -= SrcNumElts - MaskNumElts; 2937 MappedOps.push_back(Idx); 2938 } 2939 2940 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2941 &MappedOps[0])); 2942 return; 2943 } 2944 2945 if (SrcNumElts > MaskNumElts) { 2946 // Analyze the access pattern of the vector to see if we can extract 2947 // two subvectors and do the shuffle. The analysis is done by calculating 2948 // the range of elements the mask access on both vectors. 2949 int MinRange[2] = { static_cast<int>(SrcNumElts), 2950 static_cast<int>(SrcNumElts)}; 2951 int MaxRange[2] = {-1, -1}; 2952 2953 for (unsigned i = 0; i != MaskNumElts; ++i) { 2954 int Idx = Mask[i]; 2955 unsigned Input = 0; 2956 if (Idx < 0) 2957 continue; 2958 2959 if (Idx >= (int)SrcNumElts) { 2960 Input = 1; 2961 Idx -= SrcNumElts; 2962 } 2963 if (Idx > MaxRange[Input]) 2964 MaxRange[Input] = Idx; 2965 if (Idx < MinRange[Input]) 2966 MinRange[Input] = Idx; 2967 } 2968 2969 // Check if the access is smaller than the vector size and can we find 2970 // a reasonable extract index. 2971 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2972 // Extract. 2973 int StartIdx[2]; // StartIdx to extract from 2974 for (unsigned Input = 0; Input < 2; ++Input) { 2975 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2976 RangeUse[Input] = 0; // Unused 2977 StartIdx[Input] = 0; 2978 continue; 2979 } 2980 2981 // Find a good start index that is a multiple of the mask length. Then 2982 // see if the rest of the elements are in range. 2983 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2984 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2985 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2986 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2987 } 2988 2989 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2990 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2991 return; 2992 } 2993 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2994 // Extract appropriate subvector and generate a vector shuffle 2995 for (unsigned Input = 0; Input < 2; ++Input) { 2996 SDValue &Src = Input == 0 ? Src1 : Src2; 2997 if (RangeUse[Input] == 0) 2998 Src = DAG.getUNDEF(VT); 2999 else { 3000 SDLoc dl = getCurSDLoc(); 3001 Src = DAG.getNode( 3002 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 3003 DAG.getConstant(StartIdx[Input], dl, 3004 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3005 } 3006 } 3007 3008 // Calculate new mask. 3009 SmallVector<int, 8> MappedOps; 3010 for (unsigned i = 0; i != MaskNumElts; ++i) { 3011 int Idx = Mask[i]; 3012 if (Idx >= 0) { 3013 if (Idx < (int)SrcNumElts) 3014 Idx -= StartIdx[0]; 3015 else 3016 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3017 } 3018 MappedOps.push_back(Idx); 3019 } 3020 3021 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3022 &MappedOps[0])); 3023 return; 3024 } 3025 } 3026 3027 // We can't use either concat vectors or extract subvectors so fall back to 3028 // replacing the shuffle with extract and build vector. 3029 // to insert and build vector. 3030 EVT EltVT = VT.getVectorElementType(); 3031 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3032 SDLoc dl = getCurSDLoc(); 3033 SmallVector<SDValue,8> Ops; 3034 for (unsigned i = 0; i != MaskNumElts; ++i) { 3035 int Idx = Mask[i]; 3036 SDValue Res; 3037 3038 if (Idx < 0) { 3039 Res = DAG.getUNDEF(EltVT); 3040 } else { 3041 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3042 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3043 3044 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 3045 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 3046 } 3047 3048 Ops.push_back(Res); 3049 } 3050 3051 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 3052 } 3053 3054 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3055 const Value *Op0 = I.getOperand(0); 3056 const Value *Op1 = I.getOperand(1); 3057 Type *AggTy = I.getType(); 3058 Type *ValTy = Op1->getType(); 3059 bool IntoUndef = isa<UndefValue>(Op0); 3060 bool FromUndef = isa<UndefValue>(Op1); 3061 3062 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3063 3064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3065 SmallVector<EVT, 4> AggValueVTs; 3066 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3067 SmallVector<EVT, 4> ValValueVTs; 3068 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3069 3070 unsigned NumAggValues = AggValueVTs.size(); 3071 unsigned NumValValues = ValValueVTs.size(); 3072 SmallVector<SDValue, 4> Values(NumAggValues); 3073 3074 // Ignore an insertvalue that produces an empty object 3075 if (!NumAggValues) { 3076 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3077 return; 3078 } 3079 3080 SDValue Agg = getValue(Op0); 3081 unsigned i = 0; 3082 // Copy the beginning value(s) from the original aggregate. 3083 for (; i != LinearIndex; ++i) 3084 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3085 SDValue(Agg.getNode(), Agg.getResNo() + i); 3086 // Copy values from the inserted value(s). 3087 if (NumValValues) { 3088 SDValue Val = getValue(Op1); 3089 for (; i != LinearIndex + NumValValues; ++i) 3090 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3091 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3092 } 3093 // Copy remaining value(s) from the original aggregate. 3094 for (; i != NumAggValues; ++i) 3095 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3096 SDValue(Agg.getNode(), Agg.getResNo() + i); 3097 3098 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3099 DAG.getVTList(AggValueVTs), Values)); 3100 } 3101 3102 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3103 const Value *Op0 = I.getOperand(0); 3104 Type *AggTy = Op0->getType(); 3105 Type *ValTy = I.getType(); 3106 bool OutOfUndef = isa<UndefValue>(Op0); 3107 3108 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3109 3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3111 SmallVector<EVT, 4> ValValueVTs; 3112 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3113 3114 unsigned NumValValues = ValValueVTs.size(); 3115 3116 // Ignore a extractvalue that produces an empty object 3117 if (!NumValValues) { 3118 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3119 return; 3120 } 3121 3122 SmallVector<SDValue, 4> Values(NumValValues); 3123 3124 SDValue Agg = getValue(Op0); 3125 // Copy out the selected value(s). 3126 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3127 Values[i - LinearIndex] = 3128 OutOfUndef ? 3129 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3130 SDValue(Agg.getNode(), Agg.getResNo() + i); 3131 3132 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3133 DAG.getVTList(ValValueVTs), Values)); 3134 } 3135 3136 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3137 Value *Op0 = I.getOperand(0); 3138 // Note that the pointer operand may be a vector of pointers. Take the scalar 3139 // element which holds a pointer. 3140 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3141 SDValue N = getValue(Op0); 3142 SDLoc dl = getCurSDLoc(); 3143 3144 // Normalize Vector GEP - all scalar operands should be converted to the 3145 // splat vector. 3146 unsigned VectorWidth = I.getType()->isVectorTy() ? 3147 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3148 3149 if (VectorWidth && !N.getValueType().isVector()) { 3150 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 3151 SmallVector<SDValue, 16> Ops(VectorWidth, N); 3152 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3153 } 3154 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3155 GTI != E; ++GTI) { 3156 const Value *Idx = GTI.getOperand(); 3157 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3158 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3159 if (Field) { 3160 // N = N + Offset 3161 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3162 3163 // In an inbouds GEP with an offset that is nonnegative even when 3164 // interpreted as signed, assume there is no unsigned overflow. 3165 SDNodeFlags Flags; 3166 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3167 Flags.setNoUnsignedWrap(true); 3168 3169 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3170 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3171 } 3172 } else { 3173 MVT PtrTy = 3174 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3175 unsigned PtrSize = PtrTy.getSizeInBits(); 3176 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3177 3178 // If this is a scalar constant or a splat vector of constants, 3179 // handle it quickly. 3180 const auto *CI = dyn_cast<ConstantInt>(Idx); 3181 if (!CI && isa<ConstantDataVector>(Idx) && 3182 cast<ConstantDataVector>(Idx)->getSplatValue()) 3183 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3184 3185 if (CI) { 3186 if (CI->isZero()) 3187 continue; 3188 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3189 SDValue OffsVal = VectorWidth ? 3190 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3191 DAG.getConstant(Offs, dl, PtrTy); 3192 3193 // In an inbouds GEP with an offset that is nonnegative even when 3194 // interpreted as signed, assume there is no unsigned overflow. 3195 SDNodeFlags Flags; 3196 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3197 Flags.setNoUnsignedWrap(true); 3198 3199 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3200 continue; 3201 } 3202 3203 // N = N + Idx * ElementSize; 3204 SDValue IdxN = getValue(Idx); 3205 3206 if (!IdxN.getValueType().isVector() && VectorWidth) { 3207 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3208 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3209 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3210 } 3211 // If the index is smaller or larger than intptr_t, truncate or extend 3212 // it. 3213 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3214 3215 // If this is a multiply by a power of two, turn it into a shl 3216 // immediately. This is a very common case. 3217 if (ElementSize != 1) { 3218 if (ElementSize.isPowerOf2()) { 3219 unsigned Amt = ElementSize.logBase2(); 3220 IdxN = DAG.getNode(ISD::SHL, dl, 3221 N.getValueType(), IdxN, 3222 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3223 } else { 3224 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3225 IdxN = DAG.getNode(ISD::MUL, dl, 3226 N.getValueType(), IdxN, Scale); 3227 } 3228 } 3229 3230 N = DAG.getNode(ISD::ADD, dl, 3231 N.getValueType(), N, IdxN); 3232 } 3233 } 3234 3235 setValue(&I, N); 3236 } 3237 3238 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3239 // If this is a fixed sized alloca in the entry block of the function, 3240 // allocate it statically on the stack. 3241 if (FuncInfo.StaticAllocaMap.count(&I)) 3242 return; // getValue will auto-populate this. 3243 3244 SDLoc dl = getCurSDLoc(); 3245 Type *Ty = I.getAllocatedType(); 3246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3247 auto &DL = DAG.getDataLayout(); 3248 uint64_t TySize = DL.getTypeAllocSize(Ty); 3249 unsigned Align = 3250 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3251 3252 SDValue AllocSize = getValue(I.getArraySize()); 3253 3254 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3255 if (AllocSize.getValueType() != IntPtr) 3256 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3257 3258 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3259 AllocSize, 3260 DAG.getConstant(TySize, dl, IntPtr)); 3261 3262 // Handle alignment. If the requested alignment is less than or equal to 3263 // the stack alignment, ignore it. If the size is greater than or equal to 3264 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3265 unsigned StackAlign = 3266 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3267 if (Align <= StackAlign) 3268 Align = 0; 3269 3270 // Round the size of the allocation up to the stack alignment size 3271 // by add SA-1 to the size. This doesn't overflow because we're computing 3272 // an address inside an alloca. 3273 SDNodeFlags Flags; 3274 Flags.setNoUnsignedWrap(true); 3275 AllocSize = DAG.getNode(ISD::ADD, dl, 3276 AllocSize.getValueType(), AllocSize, 3277 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3278 3279 // Mask out the low bits for alignment purposes. 3280 AllocSize = DAG.getNode(ISD::AND, dl, 3281 AllocSize.getValueType(), AllocSize, 3282 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3283 dl)); 3284 3285 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3286 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3287 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3288 setValue(&I, DSA); 3289 DAG.setRoot(DSA.getValue(1)); 3290 3291 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3292 } 3293 3294 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3295 if (I.isAtomic()) 3296 return visitAtomicLoad(I); 3297 3298 const Value *SV = I.getOperand(0); 3299 SDValue Ptr = getValue(SV); 3300 3301 Type *Ty = I.getType(); 3302 3303 bool isVolatile = I.isVolatile(); 3304 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3305 3306 // The IR notion of invariant_load only guarantees that all *non-faulting* 3307 // invariant loads result in the same value. The MI notion of invariant load 3308 // guarantees that the load can be legally moved to any location within its 3309 // containing function. The MI notion of invariant_load is stronger than the 3310 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3311 // with a guarantee that the location being loaded from is dereferenceable 3312 // throughout the function's lifetime. 3313 3314 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3315 isDereferenceablePointer(SV, DAG.getDataLayout()); 3316 unsigned Alignment = I.getAlignment(); 3317 3318 AAMDNodes AAInfo; 3319 I.getAAMetadata(AAInfo); 3320 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3321 3322 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3323 SmallVector<EVT, 4> ValueVTs; 3324 SmallVector<uint64_t, 4> Offsets; 3325 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3326 unsigned NumValues = ValueVTs.size(); 3327 if (NumValues == 0) 3328 return; 3329 3330 SDValue Root; 3331 bool ConstantMemory = false; 3332 if (isVolatile || NumValues > MaxParallelChains) 3333 // Serialize volatile loads with other side effects. 3334 Root = getRoot(); 3335 else if (AA->pointsToConstantMemory(MemoryLocation( 3336 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3337 // Do not serialize (non-volatile) loads of constant memory with anything. 3338 Root = DAG.getEntryNode(); 3339 ConstantMemory = true; 3340 } else { 3341 // Do not serialize non-volatile loads against each other. 3342 Root = DAG.getRoot(); 3343 } 3344 3345 SDLoc dl = getCurSDLoc(); 3346 3347 if (isVolatile) 3348 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3349 3350 // An aggregate load cannot wrap around the address space, so offsets to its 3351 // parts don't wrap either. 3352 SDNodeFlags Flags; 3353 Flags.setNoUnsignedWrap(true); 3354 3355 SmallVector<SDValue, 4> Values(NumValues); 3356 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3357 EVT PtrVT = Ptr.getValueType(); 3358 unsigned ChainI = 0; 3359 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3360 // Serializing loads here may result in excessive register pressure, and 3361 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3362 // could recover a bit by hoisting nodes upward in the chain by recognizing 3363 // they are side-effect free or do not alias. The optimizer should really 3364 // avoid this case by converting large object/array copies to llvm.memcpy 3365 // (MaxParallelChains should always remain as failsafe). 3366 if (ChainI == MaxParallelChains) { 3367 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3368 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3369 makeArrayRef(Chains.data(), ChainI)); 3370 Root = Chain; 3371 ChainI = 0; 3372 } 3373 SDValue A = DAG.getNode(ISD::ADD, dl, 3374 PtrVT, Ptr, 3375 DAG.getConstant(Offsets[i], dl, PtrVT), 3376 &Flags); 3377 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3378 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3379 isNonTemporal, isInvariant, Alignment, AAInfo, 3380 Ranges); 3381 3382 Values[i] = L; 3383 Chains[ChainI] = L.getValue(1); 3384 } 3385 3386 if (!ConstantMemory) { 3387 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3388 makeArrayRef(Chains.data(), ChainI)); 3389 if (isVolatile) 3390 DAG.setRoot(Chain); 3391 else 3392 PendingLoads.push_back(Chain); 3393 } 3394 3395 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3396 DAG.getVTList(ValueVTs), Values)); 3397 } 3398 3399 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3400 if (I.isAtomic()) 3401 return visitAtomicStore(I); 3402 3403 const Value *SrcV = I.getOperand(0); 3404 const Value *PtrV = I.getOperand(1); 3405 3406 SmallVector<EVT, 4> ValueVTs; 3407 SmallVector<uint64_t, 4> Offsets; 3408 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3409 SrcV->getType(), ValueVTs, &Offsets); 3410 unsigned NumValues = ValueVTs.size(); 3411 if (NumValues == 0) 3412 return; 3413 3414 // Get the lowered operands. Note that we do this after 3415 // checking if NumResults is zero, because with zero results 3416 // the operands won't have values in the map. 3417 SDValue Src = getValue(SrcV); 3418 SDValue Ptr = getValue(PtrV); 3419 3420 SDValue Root = getRoot(); 3421 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3422 EVT PtrVT = Ptr.getValueType(); 3423 bool isVolatile = I.isVolatile(); 3424 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3425 unsigned Alignment = I.getAlignment(); 3426 SDLoc dl = getCurSDLoc(); 3427 3428 AAMDNodes AAInfo; 3429 I.getAAMetadata(AAInfo); 3430 3431 // An aggregate load cannot wrap around the address space, so offsets to its 3432 // parts don't wrap either. 3433 SDNodeFlags Flags; 3434 Flags.setNoUnsignedWrap(true); 3435 3436 unsigned ChainI = 0; 3437 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3438 // See visitLoad comments. 3439 if (ChainI == MaxParallelChains) { 3440 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3441 makeArrayRef(Chains.data(), ChainI)); 3442 Root = Chain; 3443 ChainI = 0; 3444 } 3445 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3446 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3447 SDValue St = DAG.getStore(Root, dl, 3448 SDValue(Src.getNode(), Src.getResNo() + i), 3449 Add, MachinePointerInfo(PtrV, Offsets[i]), 3450 isVolatile, isNonTemporal, Alignment, AAInfo); 3451 Chains[ChainI] = St; 3452 } 3453 3454 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3455 makeArrayRef(Chains.data(), ChainI)); 3456 DAG.setRoot(StoreNode); 3457 } 3458 3459 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3460 SDLoc sdl = getCurSDLoc(); 3461 3462 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3463 Value *PtrOperand = I.getArgOperand(1); 3464 SDValue Ptr = getValue(PtrOperand); 3465 SDValue Src0 = getValue(I.getArgOperand(0)); 3466 SDValue Mask = getValue(I.getArgOperand(3)); 3467 EVT VT = Src0.getValueType(); 3468 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3469 if (!Alignment) 3470 Alignment = DAG.getEVTAlignment(VT); 3471 3472 AAMDNodes AAInfo; 3473 I.getAAMetadata(AAInfo); 3474 3475 MachineMemOperand *MMO = 3476 DAG.getMachineFunction(). 3477 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3478 MachineMemOperand::MOStore, VT.getStoreSize(), 3479 Alignment, AAInfo); 3480 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3481 MMO, false); 3482 DAG.setRoot(StoreNode); 3483 setValue(&I, StoreNode); 3484 } 3485 3486 // Get a uniform base for the Gather/Scatter intrinsic. 3487 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3488 // We try to represent it as a base pointer + vector of indices. 3489 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3490 // The first operand of the GEP may be a single pointer or a vector of pointers 3491 // Example: 3492 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3493 // or 3494 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3495 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3496 // 3497 // When the first GEP operand is a single pointer - it is the uniform base we 3498 // are looking for. If first operand of the GEP is a splat vector - we 3499 // extract the spalt value and use it as a uniform base. 3500 // In all other cases the function returns 'false'. 3501 // 3502 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3503 SelectionDAGBuilder* SDB) { 3504 3505 SelectionDAG& DAG = SDB->DAG; 3506 LLVMContext &Context = *DAG.getContext(); 3507 3508 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3509 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3510 if (!GEP || GEP->getNumOperands() > 2) 3511 return false; 3512 3513 const Value *GEPPtr = GEP->getPointerOperand(); 3514 if (!GEPPtr->getType()->isVectorTy()) 3515 Ptr = GEPPtr; 3516 else if (!(Ptr = getSplatValue(GEPPtr))) 3517 return false; 3518 3519 Value *IndexVal = GEP->getOperand(1); 3520 3521 // The operands of the GEP may be defined in another basic block. 3522 // In this case we'll not find nodes for the operands. 3523 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3524 return false; 3525 3526 Base = SDB->getValue(Ptr); 3527 Index = SDB->getValue(IndexVal); 3528 3529 // Suppress sign extension. 3530 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3531 if (SDB->findValue(Sext->getOperand(0))) { 3532 IndexVal = Sext->getOperand(0); 3533 Index = SDB->getValue(IndexVal); 3534 } 3535 } 3536 if (!Index.getValueType().isVector()) { 3537 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3538 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3539 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3540 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3541 } 3542 return true; 3543 } 3544 3545 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3546 SDLoc sdl = getCurSDLoc(); 3547 3548 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3549 const Value *Ptr = I.getArgOperand(1); 3550 SDValue Src0 = getValue(I.getArgOperand(0)); 3551 SDValue Mask = getValue(I.getArgOperand(3)); 3552 EVT VT = Src0.getValueType(); 3553 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3554 if (!Alignment) 3555 Alignment = DAG.getEVTAlignment(VT); 3556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3557 3558 AAMDNodes AAInfo; 3559 I.getAAMetadata(AAInfo); 3560 3561 SDValue Base; 3562 SDValue Index; 3563 const Value *BasePtr = Ptr; 3564 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3565 3566 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3567 MachineMemOperand *MMO = DAG.getMachineFunction(). 3568 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3569 MachineMemOperand::MOStore, VT.getStoreSize(), 3570 Alignment, AAInfo); 3571 if (!UniformBase) { 3572 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3573 Index = getValue(Ptr); 3574 } 3575 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3576 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3577 Ops, MMO); 3578 DAG.setRoot(Scatter); 3579 setValue(&I, Scatter); 3580 } 3581 3582 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3583 SDLoc sdl = getCurSDLoc(); 3584 3585 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3586 Value *PtrOperand = I.getArgOperand(0); 3587 SDValue Ptr = getValue(PtrOperand); 3588 SDValue Src0 = getValue(I.getArgOperand(3)); 3589 SDValue Mask = getValue(I.getArgOperand(2)); 3590 3591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3592 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3593 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3594 if (!Alignment) 3595 Alignment = DAG.getEVTAlignment(VT); 3596 3597 AAMDNodes AAInfo; 3598 I.getAAMetadata(AAInfo); 3599 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3600 3601 SDValue InChain = DAG.getRoot(); 3602 if (AA->pointsToConstantMemory(MemoryLocation( 3603 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3604 AAInfo))) { 3605 // Do not serialize (non-volatile) loads of constant memory with anything. 3606 InChain = DAG.getEntryNode(); 3607 } 3608 3609 MachineMemOperand *MMO = 3610 DAG.getMachineFunction(). 3611 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3612 MachineMemOperand::MOLoad, VT.getStoreSize(), 3613 Alignment, AAInfo, Ranges); 3614 3615 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3616 ISD::NON_EXTLOAD); 3617 SDValue OutChain = Load.getValue(1); 3618 DAG.setRoot(OutChain); 3619 setValue(&I, Load); 3620 } 3621 3622 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3623 SDLoc sdl = getCurSDLoc(); 3624 3625 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3626 const Value *Ptr = I.getArgOperand(0); 3627 SDValue Src0 = getValue(I.getArgOperand(3)); 3628 SDValue Mask = getValue(I.getArgOperand(2)); 3629 3630 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3631 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3632 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3633 if (!Alignment) 3634 Alignment = DAG.getEVTAlignment(VT); 3635 3636 AAMDNodes AAInfo; 3637 I.getAAMetadata(AAInfo); 3638 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3639 3640 SDValue Root = DAG.getRoot(); 3641 SDValue Base; 3642 SDValue Index; 3643 const Value *BasePtr = Ptr; 3644 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3645 bool ConstantMemory = false; 3646 if (UniformBase && 3647 AA->pointsToConstantMemory(MemoryLocation( 3648 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3649 AAInfo))) { 3650 // Do not serialize (non-volatile) loads of constant memory with anything. 3651 Root = DAG.getEntryNode(); 3652 ConstantMemory = true; 3653 } 3654 3655 MachineMemOperand *MMO = 3656 DAG.getMachineFunction(). 3657 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3658 MachineMemOperand::MOLoad, VT.getStoreSize(), 3659 Alignment, AAInfo, Ranges); 3660 3661 if (!UniformBase) { 3662 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3663 Index = getValue(Ptr); 3664 } 3665 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3666 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3667 Ops, MMO); 3668 3669 SDValue OutChain = Gather.getValue(1); 3670 if (!ConstantMemory) 3671 PendingLoads.push_back(OutChain); 3672 setValue(&I, Gather); 3673 } 3674 3675 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3676 SDLoc dl = getCurSDLoc(); 3677 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3678 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3679 SynchronizationScope Scope = I.getSynchScope(); 3680 3681 SDValue InChain = getRoot(); 3682 3683 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3684 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3685 SDValue L = DAG.getAtomicCmpSwap( 3686 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3687 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3688 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3689 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3690 3691 SDValue OutChain = L.getValue(2); 3692 3693 setValue(&I, L); 3694 DAG.setRoot(OutChain); 3695 } 3696 3697 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3698 SDLoc dl = getCurSDLoc(); 3699 ISD::NodeType NT; 3700 switch (I.getOperation()) { 3701 default: llvm_unreachable("Unknown atomicrmw operation"); 3702 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3703 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3704 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3705 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3706 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3707 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3708 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3709 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3710 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3711 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3712 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3713 } 3714 AtomicOrdering Order = I.getOrdering(); 3715 SynchronizationScope Scope = I.getSynchScope(); 3716 3717 SDValue InChain = getRoot(); 3718 3719 SDValue L = 3720 DAG.getAtomic(NT, dl, 3721 getValue(I.getValOperand()).getSimpleValueType(), 3722 InChain, 3723 getValue(I.getPointerOperand()), 3724 getValue(I.getValOperand()), 3725 I.getPointerOperand(), 3726 /* Alignment=*/ 0, Order, Scope); 3727 3728 SDValue OutChain = L.getValue(1); 3729 3730 setValue(&I, L); 3731 DAG.setRoot(OutChain); 3732 } 3733 3734 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3735 SDLoc dl = getCurSDLoc(); 3736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3737 SDValue Ops[3]; 3738 Ops[0] = getRoot(); 3739 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3740 TLI.getPointerTy(DAG.getDataLayout())); 3741 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3742 TLI.getPointerTy(DAG.getDataLayout())); 3743 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3744 } 3745 3746 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3747 SDLoc dl = getCurSDLoc(); 3748 AtomicOrdering Order = I.getOrdering(); 3749 SynchronizationScope Scope = I.getSynchScope(); 3750 3751 SDValue InChain = getRoot(); 3752 3753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3754 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3755 3756 if (I.getAlignment() < VT.getSizeInBits() / 8) 3757 report_fatal_error("Cannot generate unaligned atomic load"); 3758 3759 MachineMemOperand *MMO = 3760 DAG.getMachineFunction(). 3761 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3762 MachineMemOperand::MOVolatile | 3763 MachineMemOperand::MOLoad, 3764 VT.getStoreSize(), 3765 I.getAlignment() ? I.getAlignment() : 3766 DAG.getEVTAlignment(VT)); 3767 3768 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3769 SDValue L = 3770 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3771 getValue(I.getPointerOperand()), MMO, 3772 Order, Scope); 3773 3774 SDValue OutChain = L.getValue(1); 3775 3776 setValue(&I, L); 3777 DAG.setRoot(OutChain); 3778 } 3779 3780 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3781 SDLoc dl = getCurSDLoc(); 3782 3783 AtomicOrdering Order = I.getOrdering(); 3784 SynchronizationScope Scope = I.getSynchScope(); 3785 3786 SDValue InChain = getRoot(); 3787 3788 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3789 EVT VT = 3790 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3791 3792 if (I.getAlignment() < VT.getSizeInBits() / 8) 3793 report_fatal_error("Cannot generate unaligned atomic store"); 3794 3795 SDValue OutChain = 3796 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3797 InChain, 3798 getValue(I.getPointerOperand()), 3799 getValue(I.getValueOperand()), 3800 I.getPointerOperand(), I.getAlignment(), 3801 Order, Scope); 3802 3803 DAG.setRoot(OutChain); 3804 } 3805 3806 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3807 /// node. 3808 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3809 unsigned Intrinsic) { 3810 bool HasChain = !I.doesNotAccessMemory(); 3811 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3812 3813 // Build the operand list. 3814 SmallVector<SDValue, 8> Ops; 3815 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3816 if (OnlyLoad) { 3817 // We don't need to serialize loads against other loads. 3818 Ops.push_back(DAG.getRoot()); 3819 } else { 3820 Ops.push_back(getRoot()); 3821 } 3822 } 3823 3824 // Info is set by getTgtMemInstrinsic 3825 TargetLowering::IntrinsicInfo Info; 3826 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3827 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3828 3829 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3830 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3831 Info.opc == ISD::INTRINSIC_W_CHAIN) 3832 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3833 TLI.getPointerTy(DAG.getDataLayout()))); 3834 3835 // Add all operands of the call to the operand list. 3836 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3837 SDValue Op = getValue(I.getArgOperand(i)); 3838 Ops.push_back(Op); 3839 } 3840 3841 SmallVector<EVT, 4> ValueVTs; 3842 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3843 3844 if (HasChain) 3845 ValueVTs.push_back(MVT::Other); 3846 3847 SDVTList VTs = DAG.getVTList(ValueVTs); 3848 3849 // Create the node. 3850 SDValue Result; 3851 if (IsTgtIntrinsic) { 3852 // This is target intrinsic that touches memory 3853 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3854 VTs, Ops, Info.memVT, 3855 MachinePointerInfo(Info.ptrVal, Info.offset), 3856 Info.align, Info.vol, 3857 Info.readMem, Info.writeMem, Info.size); 3858 } else if (!HasChain) { 3859 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3860 } else if (!I.getType()->isVoidTy()) { 3861 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3862 } else { 3863 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3864 } 3865 3866 if (HasChain) { 3867 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3868 if (OnlyLoad) 3869 PendingLoads.push_back(Chain); 3870 else 3871 DAG.setRoot(Chain); 3872 } 3873 3874 if (!I.getType()->isVoidTy()) { 3875 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3876 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3877 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3878 } else 3879 Result = lowerRangeToAssertZExt(DAG, I, Result); 3880 3881 setValue(&I, Result); 3882 } 3883 } 3884 3885 /// GetSignificand - Get the significand and build it into a floating-point 3886 /// number with exponent of 1: 3887 /// 3888 /// Op = (Op & 0x007fffff) | 0x3f800000; 3889 /// 3890 /// where Op is the hexadecimal representation of floating point value. 3891 static SDValue 3892 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3893 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3894 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3895 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3896 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3897 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3898 } 3899 3900 /// GetExponent - Get the exponent: 3901 /// 3902 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3903 /// 3904 /// where Op is the hexadecimal representation of floating point value. 3905 static SDValue 3906 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3907 SDLoc dl) { 3908 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3909 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3910 SDValue t1 = DAG.getNode( 3911 ISD::SRL, dl, MVT::i32, t0, 3912 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3913 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3914 DAG.getConstant(127, dl, MVT::i32)); 3915 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3916 } 3917 3918 /// getF32Constant - Get 32-bit floating point constant. 3919 static SDValue 3920 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3921 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3922 MVT::f32); 3923 } 3924 3925 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3926 SelectionDAG &DAG) { 3927 // TODO: What fast-math-flags should be set on the floating-point nodes? 3928 3929 // IntegerPartOfX = ((int32_t)(t0); 3930 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3931 3932 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3933 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3934 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3935 3936 // IntegerPartOfX <<= 23; 3937 IntegerPartOfX = DAG.getNode( 3938 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3939 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3940 DAG.getDataLayout()))); 3941 3942 SDValue TwoToFractionalPartOfX; 3943 if (LimitFloatPrecision <= 6) { 3944 // For floating-point precision of 6: 3945 // 3946 // TwoToFractionalPartOfX = 3947 // 0.997535578f + 3948 // (0.735607626f + 0.252464424f * x) * x; 3949 // 3950 // error 0.0144103317, which is 6 bits 3951 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3952 getF32Constant(DAG, 0x3e814304, dl)); 3953 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3954 getF32Constant(DAG, 0x3f3c50c8, dl)); 3955 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3956 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3957 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3958 } else if (LimitFloatPrecision <= 12) { 3959 // For floating-point precision of 12: 3960 // 3961 // TwoToFractionalPartOfX = 3962 // 0.999892986f + 3963 // (0.696457318f + 3964 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3965 // 3966 // error 0.000107046256, which is 13 to 14 bits 3967 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3968 getF32Constant(DAG, 0x3da235e3, dl)); 3969 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3970 getF32Constant(DAG, 0x3e65b8f3, dl)); 3971 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3972 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3973 getF32Constant(DAG, 0x3f324b07, dl)); 3974 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3975 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3976 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3977 } else { // LimitFloatPrecision <= 18 3978 // For floating-point precision of 18: 3979 // 3980 // TwoToFractionalPartOfX = 3981 // 0.999999982f + 3982 // (0.693148872f + 3983 // (0.240227044f + 3984 // (0.554906021e-1f + 3985 // (0.961591928e-2f + 3986 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3987 // error 2.47208000*10^(-7), which is better than 18 bits 3988 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3989 getF32Constant(DAG, 0x3924b03e, dl)); 3990 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3991 getF32Constant(DAG, 0x3ab24b87, dl)); 3992 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3993 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3994 getF32Constant(DAG, 0x3c1d8c17, dl)); 3995 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3996 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3997 getF32Constant(DAG, 0x3d634a1d, dl)); 3998 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3999 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4000 getF32Constant(DAG, 0x3e75fe14, dl)); 4001 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4002 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4003 getF32Constant(DAG, 0x3f317234, dl)); 4004 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4005 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4006 getF32Constant(DAG, 0x3f800000, dl)); 4007 } 4008 4009 // Add the exponent into the result in integer domain. 4010 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4011 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4012 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4013 } 4014 4015 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4016 /// limited-precision mode. 4017 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4018 const TargetLowering &TLI) { 4019 if (Op.getValueType() == MVT::f32 && 4020 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4021 4022 // Put the exponent in the right bit position for later addition to the 4023 // final result: 4024 // 4025 // #define LOG2OFe 1.4426950f 4026 // t0 = Op * LOG2OFe 4027 4028 // TODO: What fast-math-flags should be set here? 4029 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4030 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4031 return getLimitedPrecisionExp2(t0, dl, DAG); 4032 } 4033 4034 // No special expansion. 4035 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4036 } 4037 4038 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4039 /// limited-precision mode. 4040 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4041 const TargetLowering &TLI) { 4042 4043 // TODO: What fast-math-flags should be set on the floating-point nodes? 4044 4045 if (Op.getValueType() == MVT::f32 && 4046 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4047 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4048 4049 // Scale the exponent by log(2) [0.69314718f]. 4050 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4051 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4052 getF32Constant(DAG, 0x3f317218, dl)); 4053 4054 // Get the significand and build it into a floating-point number with 4055 // exponent of 1. 4056 SDValue X = GetSignificand(DAG, Op1, dl); 4057 4058 SDValue LogOfMantissa; 4059 if (LimitFloatPrecision <= 6) { 4060 // For floating-point precision of 6: 4061 // 4062 // LogofMantissa = 4063 // -1.1609546f + 4064 // (1.4034025f - 0.23903021f * x) * x; 4065 // 4066 // error 0.0034276066, which is better than 8 bits 4067 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4068 getF32Constant(DAG, 0xbe74c456, dl)); 4069 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4070 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4071 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4072 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4073 getF32Constant(DAG, 0x3f949a29, dl)); 4074 } else if (LimitFloatPrecision <= 12) { 4075 // For floating-point precision of 12: 4076 // 4077 // LogOfMantissa = 4078 // -1.7417939f + 4079 // (2.8212026f + 4080 // (-1.4699568f + 4081 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4082 // 4083 // error 0.000061011436, which is 14 bits 4084 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4085 getF32Constant(DAG, 0xbd67b6d6, dl)); 4086 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4087 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4089 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4090 getF32Constant(DAG, 0x3fbc278b, dl)); 4091 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4092 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4093 getF32Constant(DAG, 0x40348e95, dl)); 4094 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4095 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4096 getF32Constant(DAG, 0x3fdef31a, dl)); 4097 } else { // LimitFloatPrecision <= 18 4098 // For floating-point precision of 18: 4099 // 4100 // LogOfMantissa = 4101 // -2.1072184f + 4102 // (4.2372794f + 4103 // (-3.7029485f + 4104 // (2.2781945f + 4105 // (-0.87823314f + 4106 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4107 // 4108 // error 0.0000023660568, which is better than 18 bits 4109 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4110 getF32Constant(DAG, 0xbc91e5ac, dl)); 4111 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4112 getF32Constant(DAG, 0x3e4350aa, dl)); 4113 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4114 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4115 getF32Constant(DAG, 0x3f60d3e3, dl)); 4116 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4117 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4118 getF32Constant(DAG, 0x4011cdf0, dl)); 4119 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4120 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4121 getF32Constant(DAG, 0x406cfd1c, dl)); 4122 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4123 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4124 getF32Constant(DAG, 0x408797cb, dl)); 4125 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4126 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4127 getF32Constant(DAG, 0x4006dcab, dl)); 4128 } 4129 4130 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4131 } 4132 4133 // No special expansion. 4134 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4135 } 4136 4137 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4138 /// limited-precision mode. 4139 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4140 const TargetLowering &TLI) { 4141 4142 // TODO: What fast-math-flags should be set on the floating-point nodes? 4143 4144 if (Op.getValueType() == MVT::f32 && 4145 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4146 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4147 4148 // Get the exponent. 4149 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4150 4151 // Get the significand and build it into a floating-point number with 4152 // exponent of 1. 4153 SDValue X = GetSignificand(DAG, Op1, dl); 4154 4155 // Different possible minimax approximations of significand in 4156 // floating-point for various degrees of accuracy over [1,2]. 4157 SDValue Log2ofMantissa; 4158 if (LimitFloatPrecision <= 6) { 4159 // For floating-point precision of 6: 4160 // 4161 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4162 // 4163 // error 0.0049451742, which is more than 7 bits 4164 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4165 getF32Constant(DAG, 0xbeb08fe0, dl)); 4166 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4167 getF32Constant(DAG, 0x40019463, dl)); 4168 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4169 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4170 getF32Constant(DAG, 0x3fd6633d, dl)); 4171 } else if (LimitFloatPrecision <= 12) { 4172 // For floating-point precision of 12: 4173 // 4174 // Log2ofMantissa = 4175 // -2.51285454f + 4176 // (4.07009056f + 4177 // (-2.12067489f + 4178 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4179 // 4180 // error 0.0000876136000, which is better than 13 bits 4181 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4182 getF32Constant(DAG, 0xbda7262e, dl)); 4183 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4184 getF32Constant(DAG, 0x3f25280b, dl)); 4185 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4186 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4187 getF32Constant(DAG, 0x4007b923, dl)); 4188 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4189 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4190 getF32Constant(DAG, 0x40823e2f, dl)); 4191 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4192 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4193 getF32Constant(DAG, 0x4020d29c, dl)); 4194 } else { // LimitFloatPrecision <= 18 4195 // For floating-point precision of 18: 4196 // 4197 // Log2ofMantissa = 4198 // -3.0400495f + 4199 // (6.1129976f + 4200 // (-5.3420409f + 4201 // (3.2865683f + 4202 // (-1.2669343f + 4203 // (0.27515199f - 4204 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4205 // 4206 // error 0.0000018516, which is better than 18 bits 4207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4208 getF32Constant(DAG, 0xbcd2769e, dl)); 4209 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4210 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4212 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4213 getF32Constant(DAG, 0x3fa22ae7, dl)); 4214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4215 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4216 getF32Constant(DAG, 0x40525723, dl)); 4217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4218 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4219 getF32Constant(DAG, 0x40aaf200, dl)); 4220 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4221 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4222 getF32Constant(DAG, 0x40c39dad, dl)); 4223 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4224 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4225 getF32Constant(DAG, 0x4042902c, dl)); 4226 } 4227 4228 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4229 } 4230 4231 // No special expansion. 4232 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4233 } 4234 4235 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4236 /// limited-precision mode. 4237 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4238 const TargetLowering &TLI) { 4239 4240 // TODO: What fast-math-flags should be set on the floating-point nodes? 4241 4242 if (Op.getValueType() == MVT::f32 && 4243 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4244 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4245 4246 // Scale the exponent by log10(2) [0.30102999f]. 4247 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4248 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4249 getF32Constant(DAG, 0x3e9a209a, dl)); 4250 4251 // Get the significand and build it into a floating-point number with 4252 // exponent of 1. 4253 SDValue X = GetSignificand(DAG, Op1, dl); 4254 4255 SDValue Log10ofMantissa; 4256 if (LimitFloatPrecision <= 6) { 4257 // For floating-point precision of 6: 4258 // 4259 // Log10ofMantissa = 4260 // -0.50419619f + 4261 // (0.60948995f - 0.10380950f * x) * x; 4262 // 4263 // error 0.0014886165, which is 6 bits 4264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4265 getF32Constant(DAG, 0xbdd49a13, dl)); 4266 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4267 getF32Constant(DAG, 0x3f1c0789, dl)); 4268 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4269 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4270 getF32Constant(DAG, 0x3f011300, dl)); 4271 } else if (LimitFloatPrecision <= 12) { 4272 // For floating-point precision of 12: 4273 // 4274 // Log10ofMantissa = 4275 // -0.64831180f + 4276 // (0.91751397f + 4277 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4278 // 4279 // error 0.00019228036, which is better than 12 bits 4280 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4281 getF32Constant(DAG, 0x3d431f31, dl)); 4282 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4283 getF32Constant(DAG, 0x3ea21fb2, dl)); 4284 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4285 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4286 getF32Constant(DAG, 0x3f6ae232, dl)); 4287 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4288 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4289 getF32Constant(DAG, 0x3f25f7c3, dl)); 4290 } else { // LimitFloatPrecision <= 18 4291 // For floating-point precision of 18: 4292 // 4293 // Log10ofMantissa = 4294 // -0.84299375f + 4295 // (1.5327582f + 4296 // (-1.0688956f + 4297 // (0.49102474f + 4298 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4299 // 4300 // error 0.0000037995730, which is better than 18 bits 4301 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4302 getF32Constant(DAG, 0x3c5d51ce, dl)); 4303 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4304 getF32Constant(DAG, 0x3e00685a, dl)); 4305 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4306 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4307 getF32Constant(DAG, 0x3efb6798, dl)); 4308 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4309 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4310 getF32Constant(DAG, 0x3f88d192, dl)); 4311 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4312 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4313 getF32Constant(DAG, 0x3fc4316c, dl)); 4314 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4315 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4316 getF32Constant(DAG, 0x3f57ce70, dl)); 4317 } 4318 4319 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4320 } 4321 4322 // No special expansion. 4323 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4324 } 4325 4326 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4327 /// limited-precision mode. 4328 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4329 const TargetLowering &TLI) { 4330 if (Op.getValueType() == MVT::f32 && 4331 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4332 return getLimitedPrecisionExp2(Op, dl, DAG); 4333 4334 // No special expansion. 4335 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4336 } 4337 4338 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4339 /// limited-precision mode with x == 10.0f. 4340 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4341 SelectionDAG &DAG, const TargetLowering &TLI) { 4342 bool IsExp10 = false; 4343 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4344 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4345 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4346 APFloat Ten(10.0f); 4347 IsExp10 = LHSC->isExactlyValue(Ten); 4348 } 4349 } 4350 4351 // TODO: What fast-math-flags should be set on the FMUL node? 4352 if (IsExp10) { 4353 // Put the exponent in the right bit position for later addition to the 4354 // final result: 4355 // 4356 // #define LOG2OF10 3.3219281f 4357 // t0 = Op * LOG2OF10; 4358 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4359 getF32Constant(DAG, 0x40549a78, dl)); 4360 return getLimitedPrecisionExp2(t0, dl, DAG); 4361 } 4362 4363 // No special expansion. 4364 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4365 } 4366 4367 4368 /// ExpandPowI - Expand a llvm.powi intrinsic. 4369 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4370 SelectionDAG &DAG) { 4371 // If RHS is a constant, we can expand this out to a multiplication tree, 4372 // otherwise we end up lowering to a call to __powidf2 (for example). When 4373 // optimizing for size, we only want to do this if the expansion would produce 4374 // a small number of multiplies, otherwise we do the full expansion. 4375 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4376 // Get the exponent as a positive value. 4377 unsigned Val = RHSC->getSExtValue(); 4378 if ((int)Val < 0) Val = -Val; 4379 4380 // powi(x, 0) -> 1.0 4381 if (Val == 0) 4382 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4383 4384 const Function *F = DAG.getMachineFunction().getFunction(); 4385 if (!F->optForSize() || 4386 // If optimizing for size, don't insert too many multiplies. 4387 // This inserts up to 5 multiplies. 4388 countPopulation(Val) + Log2_32(Val) < 7) { 4389 // We use the simple binary decomposition method to generate the multiply 4390 // sequence. There are more optimal ways to do this (for example, 4391 // powi(x,15) generates one more multiply than it should), but this has 4392 // the benefit of being both really simple and much better than a libcall. 4393 SDValue Res; // Logically starts equal to 1.0 4394 SDValue CurSquare = LHS; 4395 // TODO: Intrinsics should have fast-math-flags that propagate to these 4396 // nodes. 4397 while (Val) { 4398 if (Val & 1) { 4399 if (Res.getNode()) 4400 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4401 else 4402 Res = CurSquare; // 1.0*CurSquare. 4403 } 4404 4405 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4406 CurSquare, CurSquare); 4407 Val >>= 1; 4408 } 4409 4410 // If the original was negative, invert the result, producing 1/(x*x*x). 4411 if (RHSC->getSExtValue() < 0) 4412 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4413 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4414 return Res; 4415 } 4416 } 4417 4418 // Otherwise, expand to a libcall. 4419 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4420 } 4421 4422 // getUnderlyingArgReg - Find underlying register used for a truncated or 4423 // bitcasted argument. 4424 static unsigned getUnderlyingArgReg(const SDValue &N) { 4425 switch (N.getOpcode()) { 4426 case ISD::CopyFromReg: 4427 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4428 case ISD::BITCAST: 4429 case ISD::AssertZext: 4430 case ISD::AssertSext: 4431 case ISD::TRUNCATE: 4432 return getUnderlyingArgReg(N.getOperand(0)); 4433 default: 4434 return 0; 4435 } 4436 } 4437 4438 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4439 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4440 /// At the end of instruction selection, they will be inserted to the entry BB. 4441 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4442 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4443 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4444 const Argument *Arg = dyn_cast<Argument>(V); 4445 if (!Arg) 4446 return false; 4447 4448 MachineFunction &MF = DAG.getMachineFunction(); 4449 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4450 4451 // Ignore inlined function arguments here. 4452 // 4453 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4454 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4455 return false; 4456 4457 Optional<MachineOperand> Op; 4458 // Some arguments' frame index is recorded during argument lowering. 4459 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4460 Op = MachineOperand::CreateFI(FI); 4461 4462 if (!Op && N.getNode()) { 4463 unsigned Reg = getUnderlyingArgReg(N); 4464 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4465 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4466 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4467 if (PR) 4468 Reg = PR; 4469 } 4470 if (Reg) 4471 Op = MachineOperand::CreateReg(Reg, false); 4472 } 4473 4474 if (!Op) { 4475 // Check if ValueMap has reg number. 4476 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4477 if (VMI != FuncInfo.ValueMap.end()) 4478 Op = MachineOperand::CreateReg(VMI->second, false); 4479 } 4480 4481 if (!Op && N.getNode()) 4482 // Check if frame index is available. 4483 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4484 if (FrameIndexSDNode *FINode = 4485 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4486 Op = MachineOperand::CreateFI(FINode->getIndex()); 4487 4488 if (!Op) 4489 return false; 4490 4491 assert(Variable->isValidLocationForIntrinsic(DL) && 4492 "Expected inlined-at fields to agree"); 4493 if (Op->isReg()) 4494 FuncInfo.ArgDbgValues.push_back( 4495 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4496 Op->getReg(), Offset, Variable, Expr)); 4497 else 4498 FuncInfo.ArgDbgValues.push_back( 4499 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4500 .addOperand(*Op) 4501 .addImm(Offset) 4502 .addMetadata(Variable) 4503 .addMetadata(Expr)); 4504 4505 return true; 4506 } 4507 4508 // VisualStudio defines setjmp as _setjmp 4509 #if defined(_MSC_VER) && defined(setjmp) && \ 4510 !defined(setjmp_undefined_for_msvc) 4511 # pragma push_macro("setjmp") 4512 # undef setjmp 4513 # define setjmp_undefined_for_msvc 4514 #endif 4515 4516 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4517 /// we want to emit this as a call to a named external function, return the name 4518 /// otherwise lower it and return null. 4519 const char * 4520 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4521 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4522 SDLoc sdl = getCurSDLoc(); 4523 DebugLoc dl = getCurDebugLoc(); 4524 SDValue Res; 4525 4526 switch (Intrinsic) { 4527 default: 4528 // By default, turn this into a target intrinsic node. 4529 visitTargetIntrinsic(I, Intrinsic); 4530 return nullptr; 4531 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4532 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4533 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4534 case Intrinsic::returnaddress: 4535 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4536 TLI.getPointerTy(DAG.getDataLayout()), 4537 getValue(I.getArgOperand(0)))); 4538 return nullptr; 4539 case Intrinsic::frameaddress: 4540 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4541 TLI.getPointerTy(DAG.getDataLayout()), 4542 getValue(I.getArgOperand(0)))); 4543 return nullptr; 4544 case Intrinsic::read_register: { 4545 Value *Reg = I.getArgOperand(0); 4546 SDValue Chain = getRoot(); 4547 SDValue RegName = 4548 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4549 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4550 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4551 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4552 setValue(&I, Res); 4553 DAG.setRoot(Res.getValue(1)); 4554 return nullptr; 4555 } 4556 case Intrinsic::write_register: { 4557 Value *Reg = I.getArgOperand(0); 4558 Value *RegValue = I.getArgOperand(1); 4559 SDValue Chain = getRoot(); 4560 SDValue RegName = 4561 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4562 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4563 RegName, getValue(RegValue))); 4564 return nullptr; 4565 } 4566 case Intrinsic::setjmp: 4567 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4568 case Intrinsic::longjmp: 4569 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4570 case Intrinsic::memcpy: { 4571 SDValue Op1 = getValue(I.getArgOperand(0)); 4572 SDValue Op2 = getValue(I.getArgOperand(1)); 4573 SDValue Op3 = getValue(I.getArgOperand(2)); 4574 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4575 if (!Align) 4576 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4577 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4578 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4579 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4580 false, isTC, 4581 MachinePointerInfo(I.getArgOperand(0)), 4582 MachinePointerInfo(I.getArgOperand(1))); 4583 updateDAGForMaybeTailCall(MC); 4584 return nullptr; 4585 } 4586 case Intrinsic::memset: { 4587 SDValue Op1 = getValue(I.getArgOperand(0)); 4588 SDValue Op2 = getValue(I.getArgOperand(1)); 4589 SDValue Op3 = getValue(I.getArgOperand(2)); 4590 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4591 if (!Align) 4592 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4593 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4594 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4595 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4596 isTC, MachinePointerInfo(I.getArgOperand(0))); 4597 updateDAGForMaybeTailCall(MS); 4598 return nullptr; 4599 } 4600 case Intrinsic::memmove: { 4601 SDValue Op1 = getValue(I.getArgOperand(0)); 4602 SDValue Op2 = getValue(I.getArgOperand(1)); 4603 SDValue Op3 = getValue(I.getArgOperand(2)); 4604 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4605 if (!Align) 4606 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4607 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4608 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4609 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4610 isTC, MachinePointerInfo(I.getArgOperand(0)), 4611 MachinePointerInfo(I.getArgOperand(1))); 4612 updateDAGForMaybeTailCall(MM); 4613 return nullptr; 4614 } 4615 case Intrinsic::dbg_declare: { 4616 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4617 DILocalVariable *Variable = DI.getVariable(); 4618 DIExpression *Expression = DI.getExpression(); 4619 const Value *Address = DI.getAddress(); 4620 assert(Variable && "Missing variable"); 4621 if (!Address) { 4622 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4623 return nullptr; 4624 } 4625 4626 // Check if address has undef value. 4627 if (isa<UndefValue>(Address) || 4628 (Address->use_empty() && !isa<Argument>(Address))) { 4629 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4630 return nullptr; 4631 } 4632 4633 SDValue &N = NodeMap[Address]; 4634 if (!N.getNode() && isa<Argument>(Address)) 4635 // Check unused arguments map. 4636 N = UnusedArgNodeMap[Address]; 4637 SDDbgValue *SDV; 4638 if (N.getNode()) { 4639 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4640 Address = BCI->getOperand(0); 4641 // Parameters are handled specially. 4642 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4643 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4644 if (isParameter && FINode) { 4645 // Byval parameter. We have a frame index at this point. 4646 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4647 FINode->getIndex(), 0, dl, SDNodeOrder); 4648 } else if (isa<Argument>(Address)) { 4649 // Address is an argument, so try to emit its dbg value using 4650 // virtual register info from the FuncInfo.ValueMap. 4651 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4652 N); 4653 return nullptr; 4654 } else { 4655 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4656 true, 0, dl, SDNodeOrder); 4657 } 4658 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4659 } else { 4660 // If Address is an argument then try to emit its dbg value using 4661 // virtual register info from the FuncInfo.ValueMap. 4662 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4663 N)) { 4664 // If variable is pinned by a alloca in dominating bb then 4665 // use StaticAllocaMap. 4666 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4667 if (AI->getParent() != DI.getParent()) { 4668 DenseMap<const AllocaInst*, int>::iterator SI = 4669 FuncInfo.StaticAllocaMap.find(AI); 4670 if (SI != FuncInfo.StaticAllocaMap.end()) { 4671 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4672 0, dl, SDNodeOrder); 4673 DAG.AddDbgValue(SDV, nullptr, false); 4674 return nullptr; 4675 } 4676 } 4677 } 4678 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4679 } 4680 } 4681 return nullptr; 4682 } 4683 case Intrinsic::dbg_value: { 4684 const DbgValueInst &DI = cast<DbgValueInst>(I); 4685 assert(DI.getVariable() && "Missing variable"); 4686 4687 DILocalVariable *Variable = DI.getVariable(); 4688 DIExpression *Expression = DI.getExpression(); 4689 uint64_t Offset = DI.getOffset(); 4690 const Value *V = DI.getValue(); 4691 if (!V) 4692 return nullptr; 4693 4694 SDDbgValue *SDV; 4695 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4696 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4697 SDNodeOrder); 4698 DAG.AddDbgValue(SDV, nullptr, false); 4699 } else { 4700 // Do not use getValue() in here; we don't want to generate code at 4701 // this point if it hasn't been done yet. 4702 SDValue N = NodeMap[V]; 4703 if (!N.getNode() && isa<Argument>(V)) 4704 // Check unused arguments map. 4705 N = UnusedArgNodeMap[V]; 4706 if (N.getNode()) { 4707 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4708 false, N)) { 4709 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4710 false, Offset, dl, SDNodeOrder); 4711 DAG.AddDbgValue(SDV, N.getNode(), false); 4712 } 4713 } else if (!V->use_empty() ) { 4714 // Do not call getValue(V) yet, as we don't want to generate code. 4715 // Remember it for later. 4716 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4717 DanglingDebugInfoMap[V] = DDI; 4718 } else { 4719 // We may expand this to cover more cases. One case where we have no 4720 // data available is an unreferenced parameter. 4721 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4722 } 4723 } 4724 4725 // Build a debug info table entry. 4726 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4727 V = BCI->getOperand(0); 4728 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4729 // Don't handle byval struct arguments or VLAs, for example. 4730 if (!AI) { 4731 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4732 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4733 return nullptr; 4734 } 4735 DenseMap<const AllocaInst*, int>::iterator SI = 4736 FuncInfo.StaticAllocaMap.find(AI); 4737 if (SI == FuncInfo.StaticAllocaMap.end()) 4738 return nullptr; // VLAs. 4739 return nullptr; 4740 } 4741 4742 case Intrinsic::eh_typeid_for: { 4743 // Find the type id for the given typeinfo. 4744 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4745 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4746 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4747 setValue(&I, Res); 4748 return nullptr; 4749 } 4750 4751 case Intrinsic::eh_return_i32: 4752 case Intrinsic::eh_return_i64: 4753 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4754 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4755 MVT::Other, 4756 getControlRoot(), 4757 getValue(I.getArgOperand(0)), 4758 getValue(I.getArgOperand(1)))); 4759 return nullptr; 4760 case Intrinsic::eh_unwind_init: 4761 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4762 return nullptr; 4763 case Intrinsic::eh_dwarf_cfa: { 4764 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4765 TLI.getPointerTy(DAG.getDataLayout())); 4766 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4767 CfaArg.getValueType(), 4768 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4769 CfaArg.getValueType()), 4770 CfaArg); 4771 SDValue FA = DAG.getNode( 4772 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4773 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4774 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4775 FA, Offset)); 4776 return nullptr; 4777 } 4778 case Intrinsic::eh_sjlj_callsite: { 4779 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4780 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4781 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4782 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4783 4784 MMI.setCurrentCallSite(CI->getZExtValue()); 4785 return nullptr; 4786 } 4787 case Intrinsic::eh_sjlj_functioncontext: { 4788 // Get and store the index of the function context. 4789 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4790 AllocaInst *FnCtx = 4791 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4792 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4793 MFI->setFunctionContextIndex(FI); 4794 return nullptr; 4795 } 4796 case Intrinsic::eh_sjlj_setjmp: { 4797 SDValue Ops[2]; 4798 Ops[0] = getRoot(); 4799 Ops[1] = getValue(I.getArgOperand(0)); 4800 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4801 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4802 setValue(&I, Op.getValue(0)); 4803 DAG.setRoot(Op.getValue(1)); 4804 return nullptr; 4805 } 4806 case Intrinsic::eh_sjlj_longjmp: { 4807 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4808 getRoot(), getValue(I.getArgOperand(0)))); 4809 return nullptr; 4810 } 4811 case Intrinsic::eh_sjlj_setup_dispatch: { 4812 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4813 getRoot())); 4814 return nullptr; 4815 } 4816 4817 case Intrinsic::masked_gather: 4818 visitMaskedGather(I); 4819 return nullptr; 4820 case Intrinsic::masked_load: 4821 visitMaskedLoad(I); 4822 return nullptr; 4823 case Intrinsic::masked_scatter: 4824 visitMaskedScatter(I); 4825 return nullptr; 4826 case Intrinsic::masked_store: 4827 visitMaskedStore(I); 4828 return nullptr; 4829 case Intrinsic::x86_mmx_pslli_w: 4830 case Intrinsic::x86_mmx_pslli_d: 4831 case Intrinsic::x86_mmx_pslli_q: 4832 case Intrinsic::x86_mmx_psrli_w: 4833 case Intrinsic::x86_mmx_psrli_d: 4834 case Intrinsic::x86_mmx_psrli_q: 4835 case Intrinsic::x86_mmx_psrai_w: 4836 case Intrinsic::x86_mmx_psrai_d: { 4837 SDValue ShAmt = getValue(I.getArgOperand(1)); 4838 if (isa<ConstantSDNode>(ShAmt)) { 4839 visitTargetIntrinsic(I, Intrinsic); 4840 return nullptr; 4841 } 4842 unsigned NewIntrinsic = 0; 4843 EVT ShAmtVT = MVT::v2i32; 4844 switch (Intrinsic) { 4845 case Intrinsic::x86_mmx_pslli_w: 4846 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4847 break; 4848 case Intrinsic::x86_mmx_pslli_d: 4849 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4850 break; 4851 case Intrinsic::x86_mmx_pslli_q: 4852 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4853 break; 4854 case Intrinsic::x86_mmx_psrli_w: 4855 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4856 break; 4857 case Intrinsic::x86_mmx_psrli_d: 4858 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4859 break; 4860 case Intrinsic::x86_mmx_psrli_q: 4861 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4862 break; 4863 case Intrinsic::x86_mmx_psrai_w: 4864 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4865 break; 4866 case Intrinsic::x86_mmx_psrai_d: 4867 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4868 break; 4869 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4870 } 4871 4872 // The vector shift intrinsics with scalars uses 32b shift amounts but 4873 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4874 // to be zero. 4875 // We must do this early because v2i32 is not a legal type. 4876 SDValue ShOps[2]; 4877 ShOps[0] = ShAmt; 4878 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4879 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4880 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4881 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4882 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4883 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4884 getValue(I.getArgOperand(0)), ShAmt); 4885 setValue(&I, Res); 4886 return nullptr; 4887 } 4888 case Intrinsic::convertff: 4889 case Intrinsic::convertfsi: 4890 case Intrinsic::convertfui: 4891 case Intrinsic::convertsif: 4892 case Intrinsic::convertuif: 4893 case Intrinsic::convertss: 4894 case Intrinsic::convertsu: 4895 case Intrinsic::convertus: 4896 case Intrinsic::convertuu: { 4897 ISD::CvtCode Code = ISD::CVT_INVALID; 4898 switch (Intrinsic) { 4899 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4900 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4901 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4902 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4903 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4904 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4905 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4906 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4907 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4908 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4909 } 4910 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4911 const Value *Op1 = I.getArgOperand(0); 4912 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4913 DAG.getValueType(DestVT), 4914 DAG.getValueType(getValue(Op1).getValueType()), 4915 getValue(I.getArgOperand(1)), 4916 getValue(I.getArgOperand(2)), 4917 Code); 4918 setValue(&I, Res); 4919 return nullptr; 4920 } 4921 case Intrinsic::powi: 4922 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4923 getValue(I.getArgOperand(1)), DAG)); 4924 return nullptr; 4925 case Intrinsic::log: 4926 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4927 return nullptr; 4928 case Intrinsic::log2: 4929 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4930 return nullptr; 4931 case Intrinsic::log10: 4932 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4933 return nullptr; 4934 case Intrinsic::exp: 4935 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4936 return nullptr; 4937 case Intrinsic::exp2: 4938 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4939 return nullptr; 4940 case Intrinsic::pow: 4941 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4942 getValue(I.getArgOperand(1)), DAG, TLI)); 4943 return nullptr; 4944 case Intrinsic::sqrt: 4945 case Intrinsic::fabs: 4946 case Intrinsic::sin: 4947 case Intrinsic::cos: 4948 case Intrinsic::floor: 4949 case Intrinsic::ceil: 4950 case Intrinsic::trunc: 4951 case Intrinsic::rint: 4952 case Intrinsic::nearbyint: 4953 case Intrinsic::round: { 4954 unsigned Opcode; 4955 switch (Intrinsic) { 4956 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4957 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4958 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4959 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4960 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4961 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4962 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4963 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4964 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4965 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4966 case Intrinsic::round: Opcode = ISD::FROUND; break; 4967 } 4968 4969 setValue(&I, DAG.getNode(Opcode, sdl, 4970 getValue(I.getArgOperand(0)).getValueType(), 4971 getValue(I.getArgOperand(0)))); 4972 return nullptr; 4973 } 4974 case Intrinsic::minnum: 4975 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4976 getValue(I.getArgOperand(0)).getValueType(), 4977 getValue(I.getArgOperand(0)), 4978 getValue(I.getArgOperand(1)))); 4979 return nullptr; 4980 case Intrinsic::maxnum: 4981 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4982 getValue(I.getArgOperand(0)).getValueType(), 4983 getValue(I.getArgOperand(0)), 4984 getValue(I.getArgOperand(1)))); 4985 return nullptr; 4986 case Intrinsic::copysign: 4987 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4988 getValue(I.getArgOperand(0)).getValueType(), 4989 getValue(I.getArgOperand(0)), 4990 getValue(I.getArgOperand(1)))); 4991 return nullptr; 4992 case Intrinsic::fma: 4993 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4994 getValue(I.getArgOperand(0)).getValueType(), 4995 getValue(I.getArgOperand(0)), 4996 getValue(I.getArgOperand(1)), 4997 getValue(I.getArgOperand(2)))); 4998 return nullptr; 4999 case Intrinsic::fmuladd: { 5000 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5001 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5002 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5003 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5004 getValue(I.getArgOperand(0)).getValueType(), 5005 getValue(I.getArgOperand(0)), 5006 getValue(I.getArgOperand(1)), 5007 getValue(I.getArgOperand(2)))); 5008 } else { 5009 // TODO: Intrinsic calls should have fast-math-flags. 5010 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5011 getValue(I.getArgOperand(0)).getValueType(), 5012 getValue(I.getArgOperand(0)), 5013 getValue(I.getArgOperand(1))); 5014 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5015 getValue(I.getArgOperand(0)).getValueType(), 5016 Mul, 5017 getValue(I.getArgOperand(2))); 5018 setValue(&I, Add); 5019 } 5020 return nullptr; 5021 } 5022 case Intrinsic::convert_to_fp16: 5023 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5024 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5025 getValue(I.getArgOperand(0)), 5026 DAG.getTargetConstant(0, sdl, 5027 MVT::i32)))); 5028 return nullptr; 5029 case Intrinsic::convert_from_fp16: 5030 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5031 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5032 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5033 getValue(I.getArgOperand(0))))); 5034 return nullptr; 5035 case Intrinsic::pcmarker: { 5036 SDValue Tmp = getValue(I.getArgOperand(0)); 5037 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5038 return nullptr; 5039 } 5040 case Intrinsic::readcyclecounter: { 5041 SDValue Op = getRoot(); 5042 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5043 DAG.getVTList(MVT::i64, MVT::Other), Op); 5044 setValue(&I, Res); 5045 DAG.setRoot(Res.getValue(1)); 5046 return nullptr; 5047 } 5048 case Intrinsic::bitreverse: 5049 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5050 getValue(I.getArgOperand(0)).getValueType(), 5051 getValue(I.getArgOperand(0)))); 5052 return nullptr; 5053 case Intrinsic::bswap: 5054 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5055 getValue(I.getArgOperand(0)).getValueType(), 5056 getValue(I.getArgOperand(0)))); 5057 return nullptr; 5058 case Intrinsic::cttz: { 5059 SDValue Arg = getValue(I.getArgOperand(0)); 5060 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5061 EVT Ty = Arg.getValueType(); 5062 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5063 sdl, Ty, Arg)); 5064 return nullptr; 5065 } 5066 case Intrinsic::ctlz: { 5067 SDValue Arg = getValue(I.getArgOperand(0)); 5068 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5069 EVT Ty = Arg.getValueType(); 5070 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5071 sdl, Ty, Arg)); 5072 return nullptr; 5073 } 5074 case Intrinsic::ctpop: { 5075 SDValue Arg = getValue(I.getArgOperand(0)); 5076 EVT Ty = Arg.getValueType(); 5077 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5078 return nullptr; 5079 } 5080 case Intrinsic::stacksave: { 5081 SDValue Op = getRoot(); 5082 Res = DAG.getNode( 5083 ISD::STACKSAVE, sdl, 5084 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5085 setValue(&I, Res); 5086 DAG.setRoot(Res.getValue(1)); 5087 return nullptr; 5088 } 5089 case Intrinsic::stackrestore: { 5090 Res = getValue(I.getArgOperand(0)); 5091 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5092 return nullptr; 5093 } 5094 case Intrinsic::get_dynamic_area_offset: { 5095 SDValue Op = getRoot(); 5096 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5097 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5098 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5099 // target. 5100 if (PtrTy != ResTy) 5101 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5102 " intrinsic!"); 5103 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5104 Op); 5105 DAG.setRoot(Op); 5106 setValue(&I, Res); 5107 return nullptr; 5108 } 5109 case Intrinsic::stackprotector: { 5110 // Emit code into the DAG to store the stack guard onto the stack. 5111 MachineFunction &MF = DAG.getMachineFunction(); 5112 MachineFrameInfo *MFI = MF.getFrameInfo(); 5113 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5114 SDValue Src, Chain = getRoot(); 5115 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5116 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5117 5118 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5119 // global variable __stack_chk_guard. 5120 if (!GV) 5121 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5122 if (BC->getOpcode() == Instruction::BitCast) 5123 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5124 5125 if (GV && TLI.useLoadStackGuardNode()) { 5126 // Emit a LOAD_STACK_GUARD node. 5127 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5128 sdl, PtrTy, Chain); 5129 MachinePointerInfo MPInfo(GV); 5130 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5131 unsigned Flags = MachineMemOperand::MOLoad | 5132 MachineMemOperand::MOInvariant; 5133 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5134 PtrTy.getSizeInBits() / 8, 5135 DAG.getEVTAlignment(PtrTy)); 5136 Node->setMemRefs(MemRefs, MemRefs + 1); 5137 5138 // Copy the guard value to a virtual register so that it can be 5139 // retrieved in the epilogue. 5140 Src = SDValue(Node, 0); 5141 const TargetRegisterClass *RC = 5142 TLI.getRegClassFor(Src.getSimpleValueType()); 5143 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5144 5145 SPDescriptor.setGuardReg(Reg); 5146 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5147 } else { 5148 Src = getValue(I.getArgOperand(0)); // The guard's value. 5149 } 5150 5151 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5152 5153 int FI = FuncInfo.StaticAllocaMap[Slot]; 5154 MFI->setStackProtectorIndex(FI); 5155 5156 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5157 5158 // Store the stack protector onto the stack. 5159 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5160 DAG.getMachineFunction(), FI), 5161 true, false, 0); 5162 setValue(&I, Res); 5163 DAG.setRoot(Res); 5164 return nullptr; 5165 } 5166 case Intrinsic::objectsize: { 5167 // If we don't know by now, we're never going to know. 5168 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5169 5170 assert(CI && "Non-constant type in __builtin_object_size?"); 5171 5172 SDValue Arg = getValue(I.getCalledValue()); 5173 EVT Ty = Arg.getValueType(); 5174 5175 if (CI->isZero()) 5176 Res = DAG.getConstant(-1ULL, sdl, Ty); 5177 else 5178 Res = DAG.getConstant(0, sdl, Ty); 5179 5180 setValue(&I, Res); 5181 return nullptr; 5182 } 5183 case Intrinsic::annotation: 5184 case Intrinsic::ptr_annotation: 5185 // Drop the intrinsic, but forward the value 5186 setValue(&I, getValue(I.getOperand(0))); 5187 return nullptr; 5188 case Intrinsic::assume: 5189 case Intrinsic::var_annotation: 5190 // Discard annotate attributes and assumptions 5191 return nullptr; 5192 5193 case Intrinsic::init_trampoline: { 5194 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5195 5196 SDValue Ops[6]; 5197 Ops[0] = getRoot(); 5198 Ops[1] = getValue(I.getArgOperand(0)); 5199 Ops[2] = getValue(I.getArgOperand(1)); 5200 Ops[3] = getValue(I.getArgOperand(2)); 5201 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5202 Ops[5] = DAG.getSrcValue(F); 5203 5204 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5205 5206 DAG.setRoot(Res); 5207 return nullptr; 5208 } 5209 case Intrinsic::adjust_trampoline: { 5210 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5211 TLI.getPointerTy(DAG.getDataLayout()), 5212 getValue(I.getArgOperand(0)))); 5213 return nullptr; 5214 } 5215 case Intrinsic::gcroot: { 5216 MachineFunction &MF = DAG.getMachineFunction(); 5217 const Function *F = MF.getFunction(); 5218 (void)F; 5219 assert(F->hasGC() && 5220 "only valid in functions with gc specified, enforced by Verifier"); 5221 assert(GFI && "implied by previous"); 5222 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5223 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5224 5225 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5226 GFI->addStackRoot(FI->getIndex(), TypeMap); 5227 return nullptr; 5228 } 5229 case Intrinsic::gcread: 5230 case Intrinsic::gcwrite: 5231 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5232 case Intrinsic::flt_rounds: 5233 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5234 return nullptr; 5235 5236 case Intrinsic::expect: { 5237 // Just replace __builtin_expect(exp, c) with EXP. 5238 setValue(&I, getValue(I.getArgOperand(0))); 5239 return nullptr; 5240 } 5241 5242 case Intrinsic::debugtrap: 5243 case Intrinsic::trap: { 5244 StringRef TrapFuncName = 5245 I.getAttributes() 5246 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5247 .getValueAsString(); 5248 if (TrapFuncName.empty()) { 5249 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5250 ISD::TRAP : ISD::DEBUGTRAP; 5251 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5252 return nullptr; 5253 } 5254 TargetLowering::ArgListTy Args; 5255 5256 TargetLowering::CallLoweringInfo CLI(DAG); 5257 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5258 CallingConv::C, I.getType(), 5259 DAG.getExternalSymbol(TrapFuncName.data(), 5260 TLI.getPointerTy(DAG.getDataLayout())), 5261 std::move(Args), 0); 5262 5263 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5264 DAG.setRoot(Result.second); 5265 return nullptr; 5266 } 5267 5268 case Intrinsic::uadd_with_overflow: 5269 case Intrinsic::sadd_with_overflow: 5270 case Intrinsic::usub_with_overflow: 5271 case Intrinsic::ssub_with_overflow: 5272 case Intrinsic::umul_with_overflow: 5273 case Intrinsic::smul_with_overflow: { 5274 ISD::NodeType Op; 5275 switch (Intrinsic) { 5276 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5277 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5278 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5279 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5280 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5281 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5282 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5283 } 5284 SDValue Op1 = getValue(I.getArgOperand(0)); 5285 SDValue Op2 = getValue(I.getArgOperand(1)); 5286 5287 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5288 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5289 return nullptr; 5290 } 5291 case Intrinsic::prefetch: { 5292 SDValue Ops[5]; 5293 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5294 Ops[0] = getRoot(); 5295 Ops[1] = getValue(I.getArgOperand(0)); 5296 Ops[2] = getValue(I.getArgOperand(1)); 5297 Ops[3] = getValue(I.getArgOperand(2)); 5298 Ops[4] = getValue(I.getArgOperand(3)); 5299 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5300 DAG.getVTList(MVT::Other), Ops, 5301 EVT::getIntegerVT(*Context, 8), 5302 MachinePointerInfo(I.getArgOperand(0)), 5303 0, /* align */ 5304 false, /* volatile */ 5305 rw==0, /* read */ 5306 rw==1)); /* write */ 5307 return nullptr; 5308 } 5309 case Intrinsic::lifetime_start: 5310 case Intrinsic::lifetime_end: { 5311 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5312 // Stack coloring is not enabled in O0, discard region information. 5313 if (TM.getOptLevel() == CodeGenOpt::None) 5314 return nullptr; 5315 5316 SmallVector<Value *, 4> Allocas; 5317 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5318 5319 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5320 E = Allocas.end(); Object != E; ++Object) { 5321 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5322 5323 // Could not find an Alloca. 5324 if (!LifetimeObject) 5325 continue; 5326 5327 // First check that the Alloca is static, otherwise it won't have a 5328 // valid frame index. 5329 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5330 if (SI == FuncInfo.StaticAllocaMap.end()) 5331 return nullptr; 5332 5333 int FI = SI->second; 5334 5335 SDValue Ops[2]; 5336 Ops[0] = getRoot(); 5337 Ops[1] = 5338 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5339 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5340 5341 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5342 DAG.setRoot(Res); 5343 } 5344 return nullptr; 5345 } 5346 case Intrinsic::invariant_start: 5347 // Discard region information. 5348 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5349 return nullptr; 5350 case Intrinsic::invariant_end: 5351 // Discard region information. 5352 return nullptr; 5353 case Intrinsic::stackprotectorcheck: { 5354 // Do not actually emit anything for this basic block. Instead we initialize 5355 // the stack protector descriptor and export the guard variable so we can 5356 // access it in FinishBasicBlock. 5357 const BasicBlock *BB = I.getParent(); 5358 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5359 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5360 5361 // Flush our exports since we are going to process a terminator. 5362 (void)getControlRoot(); 5363 return nullptr; 5364 } 5365 case Intrinsic::clear_cache: 5366 return TLI.getClearCacheBuiltinName(); 5367 case Intrinsic::donothing: 5368 // ignore 5369 return nullptr; 5370 case Intrinsic::experimental_stackmap: { 5371 visitStackmap(I); 5372 return nullptr; 5373 } 5374 case Intrinsic::experimental_patchpoint_void: 5375 case Intrinsic::experimental_patchpoint_i64: { 5376 visitPatchpoint(&I); 5377 return nullptr; 5378 } 5379 case Intrinsic::experimental_gc_statepoint: { 5380 LowerStatepoint(ImmutableStatepoint(&I)); 5381 return nullptr; 5382 } 5383 case Intrinsic::experimental_gc_result: { 5384 visitGCResult(I); 5385 return nullptr; 5386 } 5387 case Intrinsic::experimental_gc_relocate: { 5388 visitGCRelocate(cast<GCRelocateInst>(I)); 5389 return nullptr; 5390 } 5391 case Intrinsic::instrprof_increment: 5392 llvm_unreachable("instrprof failed to lower an increment"); 5393 case Intrinsic::instrprof_value_profile: 5394 llvm_unreachable("instrprof failed to lower a value profiling call"); 5395 case Intrinsic::localescape: { 5396 MachineFunction &MF = DAG.getMachineFunction(); 5397 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5398 5399 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5400 // is the same on all targets. 5401 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5402 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5403 if (isa<ConstantPointerNull>(Arg)) 5404 continue; // Skip null pointers. They represent a hole in index space. 5405 AllocaInst *Slot = cast<AllocaInst>(Arg); 5406 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5407 "can only escape static allocas"); 5408 int FI = FuncInfo.StaticAllocaMap[Slot]; 5409 MCSymbol *FrameAllocSym = 5410 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5411 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5412 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5413 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5414 .addSym(FrameAllocSym) 5415 .addFrameIndex(FI); 5416 } 5417 5418 return nullptr; 5419 } 5420 5421 case Intrinsic::localrecover: { 5422 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5423 MachineFunction &MF = DAG.getMachineFunction(); 5424 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5425 5426 // Get the symbol that defines the frame offset. 5427 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5428 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5429 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5430 MCSymbol *FrameAllocSym = 5431 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5432 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5433 5434 // Create a MCSymbol for the label to avoid any target lowering 5435 // that would make this PC relative. 5436 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5437 SDValue OffsetVal = 5438 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5439 5440 // Add the offset to the FP. 5441 Value *FP = I.getArgOperand(1); 5442 SDValue FPVal = getValue(FP); 5443 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5444 setValue(&I, Add); 5445 5446 return nullptr; 5447 } 5448 5449 case Intrinsic::eh_exceptionpointer: 5450 case Intrinsic::eh_exceptioncode: { 5451 // Get the exception pointer vreg, copy from it, and resize it to fit. 5452 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5453 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5454 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5455 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5456 SDValue N = 5457 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5458 if (Intrinsic == Intrinsic::eh_exceptioncode) 5459 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5460 setValue(&I, N); 5461 return nullptr; 5462 } 5463 5464 case Intrinsic::experimental_deoptimize: 5465 LowerDeoptimizeCall(&I); 5466 return nullptr; 5467 } 5468 } 5469 5470 std::pair<SDValue, SDValue> 5471 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5472 const BasicBlock *EHPadBB) { 5473 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5474 MCSymbol *BeginLabel = nullptr; 5475 5476 if (EHPadBB) { 5477 // Insert a label before the invoke call to mark the try range. This can be 5478 // used to detect deletion of the invoke via the MachineModuleInfo. 5479 BeginLabel = MMI.getContext().createTempSymbol(); 5480 5481 // For SjLj, keep track of which landing pads go with which invokes 5482 // so as to maintain the ordering of pads in the LSDA. 5483 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5484 if (CallSiteIndex) { 5485 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5486 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5487 5488 // Now that the call site is handled, stop tracking it. 5489 MMI.setCurrentCallSite(0); 5490 } 5491 5492 // Both PendingLoads and PendingExports must be flushed here; 5493 // this call might not return. 5494 (void)getRoot(); 5495 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5496 5497 CLI.setChain(getRoot()); 5498 } 5499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5500 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5501 5502 assert((CLI.IsTailCall || Result.second.getNode()) && 5503 "Non-null chain expected with non-tail call!"); 5504 assert((Result.second.getNode() || !Result.first.getNode()) && 5505 "Null value expected with tail call!"); 5506 5507 if (!Result.second.getNode()) { 5508 // As a special case, a null chain means that a tail call has been emitted 5509 // and the DAG root is already updated. 5510 HasTailCall = true; 5511 5512 // Since there's no actual continuation from this block, nothing can be 5513 // relying on us setting vregs for them. 5514 PendingExports.clear(); 5515 } else { 5516 DAG.setRoot(Result.second); 5517 } 5518 5519 if (EHPadBB) { 5520 // Insert a label at the end of the invoke call to mark the try range. This 5521 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5522 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5523 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5524 5525 // Inform MachineModuleInfo of range. 5526 if (MMI.hasEHFunclets()) { 5527 assert(CLI.CS); 5528 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5529 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5530 BeginLabel, EndLabel); 5531 } else { 5532 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5533 } 5534 } 5535 5536 return Result; 5537 } 5538 5539 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5540 bool isTailCall, 5541 const BasicBlock *EHPadBB) { 5542 FunctionType *FTy = CS.getFunctionType(); 5543 Type *RetTy = CS.getType(); 5544 5545 TargetLowering::ArgListTy Args; 5546 TargetLowering::ArgListEntry Entry; 5547 Args.reserve(CS.arg_size()); 5548 5549 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5550 i != e; ++i) { 5551 const Value *V = *i; 5552 5553 // Skip empty types 5554 if (V->getType()->isEmptyTy()) 5555 continue; 5556 5557 SDValue ArgNode = getValue(V); 5558 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5559 5560 // Skip the first return-type Attribute to get to params. 5561 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5562 Args.push_back(Entry); 5563 5564 // If we have an explicit sret argument that is an Instruction, (i.e., it 5565 // might point to function-local memory), we can't meaningfully tail-call. 5566 if (Entry.isSRet && isa<Instruction>(V)) 5567 isTailCall = false; 5568 } 5569 5570 // Check if target-independent constraints permit a tail call here. 5571 // Target-dependent constraints are checked within TLI->LowerCallTo. 5572 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5573 isTailCall = false; 5574 5575 TargetLowering::CallLoweringInfo CLI(DAG); 5576 CLI.setDebugLoc(getCurSDLoc()) 5577 .setChain(getRoot()) 5578 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5579 .setTailCall(isTailCall) 5580 .setConvergent(CS.isConvergent()); 5581 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5582 5583 if (Result.first.getNode()) { 5584 const Instruction *Inst = CS.getInstruction(); 5585 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5586 setValue(Inst, Result.first); 5587 } 5588 } 5589 5590 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5591 /// value is equal or not-equal to zero. 5592 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5593 for (const User *U : V->users()) { 5594 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5595 if (IC->isEquality()) 5596 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5597 if (C->isNullValue()) 5598 continue; 5599 // Unknown instruction. 5600 return false; 5601 } 5602 return true; 5603 } 5604 5605 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5606 Type *LoadTy, 5607 SelectionDAGBuilder &Builder) { 5608 5609 // Check to see if this load can be trivially constant folded, e.g. if the 5610 // input is from a string literal. 5611 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5612 // Cast pointer to the type we really want to load. 5613 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5614 PointerType::getUnqual(LoadTy)); 5615 5616 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5617 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5618 return Builder.getValue(LoadCst); 5619 } 5620 5621 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5622 // still constant memory, the input chain can be the entry node. 5623 SDValue Root; 5624 bool ConstantMemory = false; 5625 5626 // Do not serialize (non-volatile) loads of constant memory with anything. 5627 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5628 Root = Builder.DAG.getEntryNode(); 5629 ConstantMemory = true; 5630 } else { 5631 // Do not serialize non-volatile loads against each other. 5632 Root = Builder.DAG.getRoot(); 5633 } 5634 5635 SDValue Ptr = Builder.getValue(PtrVal); 5636 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5637 Ptr, MachinePointerInfo(PtrVal), 5638 false /*volatile*/, 5639 false /*nontemporal*/, 5640 false /*isinvariant*/, 1 /* align=1 */); 5641 5642 if (!ConstantMemory) 5643 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5644 return LoadVal; 5645 } 5646 5647 /// processIntegerCallValue - Record the value for an instruction that 5648 /// produces an integer result, converting the type where necessary. 5649 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5650 SDValue Value, 5651 bool IsSigned) { 5652 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5653 I.getType(), true); 5654 if (IsSigned) 5655 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5656 else 5657 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5658 setValue(&I, Value); 5659 } 5660 5661 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5662 /// If so, return true and lower it, otherwise return false and it will be 5663 /// lowered like a normal call. 5664 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5665 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5666 if (I.getNumArgOperands() != 3) 5667 return false; 5668 5669 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5670 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5671 !I.getArgOperand(2)->getType()->isIntegerTy() || 5672 !I.getType()->isIntegerTy()) 5673 return false; 5674 5675 const Value *Size = I.getArgOperand(2); 5676 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5677 if (CSize && CSize->getZExtValue() == 0) { 5678 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5679 I.getType(), true); 5680 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5681 return true; 5682 } 5683 5684 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5685 std::pair<SDValue, SDValue> Res = 5686 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5687 getValue(LHS), getValue(RHS), getValue(Size), 5688 MachinePointerInfo(LHS), 5689 MachinePointerInfo(RHS)); 5690 if (Res.first.getNode()) { 5691 processIntegerCallValue(I, Res.first, true); 5692 PendingLoads.push_back(Res.second); 5693 return true; 5694 } 5695 5696 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5697 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5698 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5699 bool ActuallyDoIt = true; 5700 MVT LoadVT; 5701 Type *LoadTy; 5702 switch (CSize->getZExtValue()) { 5703 default: 5704 LoadVT = MVT::Other; 5705 LoadTy = nullptr; 5706 ActuallyDoIt = false; 5707 break; 5708 case 2: 5709 LoadVT = MVT::i16; 5710 LoadTy = Type::getInt16Ty(CSize->getContext()); 5711 break; 5712 case 4: 5713 LoadVT = MVT::i32; 5714 LoadTy = Type::getInt32Ty(CSize->getContext()); 5715 break; 5716 case 8: 5717 LoadVT = MVT::i64; 5718 LoadTy = Type::getInt64Ty(CSize->getContext()); 5719 break; 5720 /* 5721 case 16: 5722 LoadVT = MVT::v4i32; 5723 LoadTy = Type::getInt32Ty(CSize->getContext()); 5724 LoadTy = VectorType::get(LoadTy, 4); 5725 break; 5726 */ 5727 } 5728 5729 // This turns into unaligned loads. We only do this if the target natively 5730 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5731 // we'll only produce a small number of byte loads. 5732 5733 // Require that we can find a legal MVT, and only do this if the target 5734 // supports unaligned loads of that type. Expanding into byte loads would 5735 // bloat the code. 5736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5737 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5738 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5739 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5740 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5741 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5742 // TODO: Check alignment of src and dest ptrs. 5743 if (!TLI.isTypeLegal(LoadVT) || 5744 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5745 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5746 ActuallyDoIt = false; 5747 } 5748 5749 if (ActuallyDoIt) { 5750 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5751 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5752 5753 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5754 ISD::SETNE); 5755 processIntegerCallValue(I, Res, false); 5756 return true; 5757 } 5758 } 5759 5760 5761 return false; 5762 } 5763 5764 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5765 /// form. If so, return true and lower it, otherwise return false and it 5766 /// will be lowered like a normal call. 5767 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5768 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5769 if (I.getNumArgOperands() != 3) 5770 return false; 5771 5772 const Value *Src = I.getArgOperand(0); 5773 const Value *Char = I.getArgOperand(1); 5774 const Value *Length = I.getArgOperand(2); 5775 if (!Src->getType()->isPointerTy() || 5776 !Char->getType()->isIntegerTy() || 5777 !Length->getType()->isIntegerTy() || 5778 !I.getType()->isPointerTy()) 5779 return false; 5780 5781 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5782 std::pair<SDValue, SDValue> Res = 5783 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5784 getValue(Src), getValue(Char), getValue(Length), 5785 MachinePointerInfo(Src)); 5786 if (Res.first.getNode()) { 5787 setValue(&I, Res.first); 5788 PendingLoads.push_back(Res.second); 5789 return true; 5790 } 5791 5792 return false; 5793 } 5794 5795 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5796 /// optimized form. If so, return true and lower it, otherwise return false 5797 /// and it will be lowered like a normal call. 5798 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5799 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5800 if (I.getNumArgOperands() != 2) 5801 return false; 5802 5803 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5804 if (!Arg0->getType()->isPointerTy() || 5805 !Arg1->getType()->isPointerTy() || 5806 !I.getType()->isPointerTy()) 5807 return false; 5808 5809 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5810 std::pair<SDValue, SDValue> Res = 5811 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5812 getValue(Arg0), getValue(Arg1), 5813 MachinePointerInfo(Arg0), 5814 MachinePointerInfo(Arg1), isStpcpy); 5815 if (Res.first.getNode()) { 5816 setValue(&I, Res.first); 5817 DAG.setRoot(Res.second); 5818 return true; 5819 } 5820 5821 return false; 5822 } 5823 5824 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5825 /// If so, return true and lower it, otherwise return false and it will be 5826 /// lowered like a normal call. 5827 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5828 // Verify that the prototype makes sense. int strcmp(void*,void*) 5829 if (I.getNumArgOperands() != 2) 5830 return false; 5831 5832 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5833 if (!Arg0->getType()->isPointerTy() || 5834 !Arg1->getType()->isPointerTy() || 5835 !I.getType()->isIntegerTy()) 5836 return false; 5837 5838 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5839 std::pair<SDValue, SDValue> Res = 5840 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5841 getValue(Arg0), getValue(Arg1), 5842 MachinePointerInfo(Arg0), 5843 MachinePointerInfo(Arg1)); 5844 if (Res.first.getNode()) { 5845 processIntegerCallValue(I, Res.first, true); 5846 PendingLoads.push_back(Res.second); 5847 return true; 5848 } 5849 5850 return false; 5851 } 5852 5853 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5854 /// form. If so, return true and lower it, otherwise return false and it 5855 /// will be lowered like a normal call. 5856 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5857 // Verify that the prototype makes sense. size_t strlen(char *) 5858 if (I.getNumArgOperands() != 1) 5859 return false; 5860 5861 const Value *Arg0 = I.getArgOperand(0); 5862 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5863 return false; 5864 5865 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5866 std::pair<SDValue, SDValue> Res = 5867 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5868 getValue(Arg0), MachinePointerInfo(Arg0)); 5869 if (Res.first.getNode()) { 5870 processIntegerCallValue(I, Res.first, false); 5871 PendingLoads.push_back(Res.second); 5872 return true; 5873 } 5874 5875 return false; 5876 } 5877 5878 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5879 /// form. If so, return true and lower it, otherwise return false and it 5880 /// will be lowered like a normal call. 5881 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5882 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5883 if (I.getNumArgOperands() != 2) 5884 return false; 5885 5886 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5887 if (!Arg0->getType()->isPointerTy() || 5888 !Arg1->getType()->isIntegerTy() || 5889 !I.getType()->isIntegerTy()) 5890 return false; 5891 5892 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5893 std::pair<SDValue, SDValue> Res = 5894 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5895 getValue(Arg0), getValue(Arg1), 5896 MachinePointerInfo(Arg0)); 5897 if (Res.first.getNode()) { 5898 processIntegerCallValue(I, Res.first, false); 5899 PendingLoads.push_back(Res.second); 5900 return true; 5901 } 5902 5903 return false; 5904 } 5905 5906 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5907 /// operation (as expected), translate it to an SDNode with the specified opcode 5908 /// and return true. 5909 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5910 unsigned Opcode) { 5911 // Sanity check that it really is a unary floating-point call. 5912 if (I.getNumArgOperands() != 1 || 5913 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5914 I.getType() != I.getArgOperand(0)->getType() || 5915 !I.onlyReadsMemory()) 5916 return false; 5917 5918 SDValue Tmp = getValue(I.getArgOperand(0)); 5919 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5920 return true; 5921 } 5922 5923 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5924 /// operation (as expected), translate it to an SDNode with the specified opcode 5925 /// and return true. 5926 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5927 unsigned Opcode) { 5928 // Sanity check that it really is a binary floating-point call. 5929 if (I.getNumArgOperands() != 2 || 5930 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5931 I.getType() != I.getArgOperand(0)->getType() || 5932 I.getType() != I.getArgOperand(1)->getType() || 5933 !I.onlyReadsMemory()) 5934 return false; 5935 5936 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5937 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5938 EVT VT = Tmp0.getValueType(); 5939 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5940 return true; 5941 } 5942 5943 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5944 // Handle inline assembly differently. 5945 if (isa<InlineAsm>(I.getCalledValue())) { 5946 visitInlineAsm(&I); 5947 return; 5948 } 5949 5950 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5951 ComputeUsesVAFloatArgument(I, &MMI); 5952 5953 const char *RenameFn = nullptr; 5954 if (Function *F = I.getCalledFunction()) { 5955 if (F->isDeclaration()) { 5956 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5957 if (unsigned IID = II->getIntrinsicID(F)) { 5958 RenameFn = visitIntrinsicCall(I, IID); 5959 if (!RenameFn) 5960 return; 5961 } 5962 } 5963 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5964 RenameFn = visitIntrinsicCall(I, IID); 5965 if (!RenameFn) 5966 return; 5967 } 5968 } 5969 5970 // Check for well-known libc/libm calls. If the function is internal, it 5971 // can't be a library call. 5972 LibFunc::Func Func; 5973 if (!F->hasLocalLinkage() && F->hasName() && 5974 LibInfo->getLibFunc(F->getName(), Func) && 5975 LibInfo->hasOptimizedCodeGen(Func)) { 5976 switch (Func) { 5977 default: break; 5978 case LibFunc::copysign: 5979 case LibFunc::copysignf: 5980 case LibFunc::copysignl: 5981 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5982 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5983 I.getType() == I.getArgOperand(0)->getType() && 5984 I.getType() == I.getArgOperand(1)->getType() && 5985 I.onlyReadsMemory()) { 5986 SDValue LHS = getValue(I.getArgOperand(0)); 5987 SDValue RHS = getValue(I.getArgOperand(1)); 5988 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5989 LHS.getValueType(), LHS, RHS)); 5990 return; 5991 } 5992 break; 5993 case LibFunc::fabs: 5994 case LibFunc::fabsf: 5995 case LibFunc::fabsl: 5996 if (visitUnaryFloatCall(I, ISD::FABS)) 5997 return; 5998 break; 5999 case LibFunc::fmin: 6000 case LibFunc::fminf: 6001 case LibFunc::fminl: 6002 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6003 return; 6004 break; 6005 case LibFunc::fmax: 6006 case LibFunc::fmaxf: 6007 case LibFunc::fmaxl: 6008 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6009 return; 6010 break; 6011 case LibFunc::sin: 6012 case LibFunc::sinf: 6013 case LibFunc::sinl: 6014 if (visitUnaryFloatCall(I, ISD::FSIN)) 6015 return; 6016 break; 6017 case LibFunc::cos: 6018 case LibFunc::cosf: 6019 case LibFunc::cosl: 6020 if (visitUnaryFloatCall(I, ISD::FCOS)) 6021 return; 6022 break; 6023 case LibFunc::sqrt: 6024 case LibFunc::sqrtf: 6025 case LibFunc::sqrtl: 6026 case LibFunc::sqrt_finite: 6027 case LibFunc::sqrtf_finite: 6028 case LibFunc::sqrtl_finite: 6029 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6030 return; 6031 break; 6032 case LibFunc::floor: 6033 case LibFunc::floorf: 6034 case LibFunc::floorl: 6035 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6036 return; 6037 break; 6038 case LibFunc::nearbyint: 6039 case LibFunc::nearbyintf: 6040 case LibFunc::nearbyintl: 6041 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6042 return; 6043 break; 6044 case LibFunc::ceil: 6045 case LibFunc::ceilf: 6046 case LibFunc::ceill: 6047 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6048 return; 6049 break; 6050 case LibFunc::rint: 6051 case LibFunc::rintf: 6052 case LibFunc::rintl: 6053 if (visitUnaryFloatCall(I, ISD::FRINT)) 6054 return; 6055 break; 6056 case LibFunc::round: 6057 case LibFunc::roundf: 6058 case LibFunc::roundl: 6059 if (visitUnaryFloatCall(I, ISD::FROUND)) 6060 return; 6061 break; 6062 case LibFunc::trunc: 6063 case LibFunc::truncf: 6064 case LibFunc::truncl: 6065 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6066 return; 6067 break; 6068 case LibFunc::log2: 6069 case LibFunc::log2f: 6070 case LibFunc::log2l: 6071 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6072 return; 6073 break; 6074 case LibFunc::exp2: 6075 case LibFunc::exp2f: 6076 case LibFunc::exp2l: 6077 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6078 return; 6079 break; 6080 case LibFunc::memcmp: 6081 if (visitMemCmpCall(I)) 6082 return; 6083 break; 6084 case LibFunc::memchr: 6085 if (visitMemChrCall(I)) 6086 return; 6087 break; 6088 case LibFunc::strcpy: 6089 if (visitStrCpyCall(I, false)) 6090 return; 6091 break; 6092 case LibFunc::stpcpy: 6093 if (visitStrCpyCall(I, true)) 6094 return; 6095 break; 6096 case LibFunc::strcmp: 6097 if (visitStrCmpCall(I)) 6098 return; 6099 break; 6100 case LibFunc::strlen: 6101 if (visitStrLenCall(I)) 6102 return; 6103 break; 6104 case LibFunc::strnlen: 6105 if (visitStrNLenCall(I)) 6106 return; 6107 break; 6108 } 6109 } 6110 } 6111 6112 SDValue Callee; 6113 if (!RenameFn) 6114 Callee = getValue(I.getCalledValue()); 6115 else 6116 Callee = DAG.getExternalSymbol( 6117 RenameFn, 6118 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6119 6120 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6121 // have to do anything here to lower funclet bundles. 6122 assert(!I.hasOperandBundlesOtherThan( 6123 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6124 "Cannot lower calls with arbitrary operand bundles!"); 6125 6126 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6127 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6128 else 6129 // Check if we can potentially perform a tail call. More detailed checking 6130 // is be done within LowerCallTo, after more information about the call is 6131 // known. 6132 LowerCallTo(&I, Callee, I.isTailCall()); 6133 } 6134 6135 namespace { 6136 6137 /// AsmOperandInfo - This contains information for each constraint that we are 6138 /// lowering. 6139 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6140 public: 6141 /// CallOperand - If this is the result output operand or a clobber 6142 /// this is null, otherwise it is the incoming operand to the CallInst. 6143 /// This gets modified as the asm is processed. 6144 SDValue CallOperand; 6145 6146 /// AssignedRegs - If this is a register or register class operand, this 6147 /// contains the set of register corresponding to the operand. 6148 RegsForValue AssignedRegs; 6149 6150 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6151 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6152 } 6153 6154 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6155 /// corresponds to. If there is no Value* for this operand, it returns 6156 /// MVT::Other. 6157 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6158 const DataLayout &DL) const { 6159 if (!CallOperandVal) return MVT::Other; 6160 6161 if (isa<BasicBlock>(CallOperandVal)) 6162 return TLI.getPointerTy(DL); 6163 6164 llvm::Type *OpTy = CallOperandVal->getType(); 6165 6166 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6167 // If this is an indirect operand, the operand is a pointer to the 6168 // accessed type. 6169 if (isIndirect) { 6170 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6171 if (!PtrTy) 6172 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6173 OpTy = PtrTy->getElementType(); 6174 } 6175 6176 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6177 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6178 if (STy->getNumElements() == 1) 6179 OpTy = STy->getElementType(0); 6180 6181 // If OpTy is not a single value, it may be a struct/union that we 6182 // can tile with integers. 6183 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6184 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6185 switch (BitSize) { 6186 default: break; 6187 case 1: 6188 case 8: 6189 case 16: 6190 case 32: 6191 case 64: 6192 case 128: 6193 OpTy = IntegerType::get(Context, BitSize); 6194 break; 6195 } 6196 } 6197 6198 return TLI.getValueType(DL, OpTy, true); 6199 } 6200 }; 6201 6202 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6203 6204 } // end anonymous namespace 6205 6206 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6207 /// specified operand. We prefer to assign virtual registers, to allow the 6208 /// register allocator to handle the assignment process. However, if the asm 6209 /// uses features that we can't model on machineinstrs, we have SDISel do the 6210 /// allocation. This produces generally horrible, but correct, code. 6211 /// 6212 /// OpInfo describes the operand. 6213 /// 6214 static void GetRegistersForValue(SelectionDAG &DAG, 6215 const TargetLowering &TLI, 6216 SDLoc DL, 6217 SDISelAsmOperandInfo &OpInfo) { 6218 LLVMContext &Context = *DAG.getContext(); 6219 6220 MachineFunction &MF = DAG.getMachineFunction(); 6221 SmallVector<unsigned, 4> Regs; 6222 6223 // If this is a constraint for a single physreg, or a constraint for a 6224 // register class, find it. 6225 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6226 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6227 OpInfo.ConstraintCode, 6228 OpInfo.ConstraintVT); 6229 6230 unsigned NumRegs = 1; 6231 if (OpInfo.ConstraintVT != MVT::Other) { 6232 // If this is a FP input in an integer register (or visa versa) insert a bit 6233 // cast of the input value. More generally, handle any case where the input 6234 // value disagrees with the register class we plan to stick this in. 6235 if (OpInfo.Type == InlineAsm::isInput && 6236 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6237 // Try to convert to the first EVT that the reg class contains. If the 6238 // types are identical size, use a bitcast to convert (e.g. two differing 6239 // vector types). 6240 MVT RegVT = *PhysReg.second->vt_begin(); 6241 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6242 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6243 RegVT, OpInfo.CallOperand); 6244 OpInfo.ConstraintVT = RegVT; 6245 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6246 // If the input is a FP value and we want it in FP registers, do a 6247 // bitcast to the corresponding integer type. This turns an f64 value 6248 // into i64, which can be passed with two i32 values on a 32-bit 6249 // machine. 6250 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6251 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6252 RegVT, OpInfo.CallOperand); 6253 OpInfo.ConstraintVT = RegVT; 6254 } 6255 } 6256 6257 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6258 } 6259 6260 MVT RegVT; 6261 EVT ValueVT = OpInfo.ConstraintVT; 6262 6263 // If this is a constraint for a specific physical register, like {r17}, 6264 // assign it now. 6265 if (unsigned AssignedReg = PhysReg.first) { 6266 const TargetRegisterClass *RC = PhysReg.second; 6267 if (OpInfo.ConstraintVT == MVT::Other) 6268 ValueVT = *RC->vt_begin(); 6269 6270 // Get the actual register value type. This is important, because the user 6271 // may have asked for (e.g.) the AX register in i32 type. We need to 6272 // remember that AX is actually i16 to get the right extension. 6273 RegVT = *RC->vt_begin(); 6274 6275 // This is a explicit reference to a physical register. 6276 Regs.push_back(AssignedReg); 6277 6278 // If this is an expanded reference, add the rest of the regs to Regs. 6279 if (NumRegs != 1) { 6280 TargetRegisterClass::iterator I = RC->begin(); 6281 for (; *I != AssignedReg; ++I) 6282 assert(I != RC->end() && "Didn't find reg!"); 6283 6284 // Already added the first reg. 6285 --NumRegs; ++I; 6286 for (; NumRegs; --NumRegs, ++I) { 6287 assert(I != RC->end() && "Ran out of registers to allocate!"); 6288 Regs.push_back(*I); 6289 } 6290 } 6291 6292 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6293 return; 6294 } 6295 6296 // Otherwise, if this was a reference to an LLVM register class, create vregs 6297 // for this reference. 6298 if (const TargetRegisterClass *RC = PhysReg.second) { 6299 RegVT = *RC->vt_begin(); 6300 if (OpInfo.ConstraintVT == MVT::Other) 6301 ValueVT = RegVT; 6302 6303 // Create the appropriate number of virtual registers. 6304 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6305 for (; NumRegs; --NumRegs) 6306 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6307 6308 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6309 return; 6310 } 6311 6312 // Otherwise, we couldn't allocate enough registers for this. 6313 } 6314 6315 /// visitInlineAsm - Handle a call to an InlineAsm object. 6316 /// 6317 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6318 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6319 6320 /// ConstraintOperands - Information about all of the constraints. 6321 SDISelAsmOperandInfoVector ConstraintOperands; 6322 6323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6324 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6325 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6326 6327 bool hasMemory = false; 6328 6329 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6330 unsigned ResNo = 0; // ResNo - The result number of the next output. 6331 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6332 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6333 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6334 6335 MVT OpVT = MVT::Other; 6336 6337 // Compute the value type for each operand. 6338 switch (OpInfo.Type) { 6339 case InlineAsm::isOutput: 6340 // Indirect outputs just consume an argument. 6341 if (OpInfo.isIndirect) { 6342 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6343 break; 6344 } 6345 6346 // The return value of the call is this value. As such, there is no 6347 // corresponding argument. 6348 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6349 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6350 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6351 STy->getElementType(ResNo)); 6352 } else { 6353 assert(ResNo == 0 && "Asm only has one result!"); 6354 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6355 } 6356 ++ResNo; 6357 break; 6358 case InlineAsm::isInput: 6359 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6360 break; 6361 case InlineAsm::isClobber: 6362 // Nothing to do. 6363 break; 6364 } 6365 6366 // If this is an input or an indirect output, process the call argument. 6367 // BasicBlocks are labels, currently appearing only in asm's. 6368 if (OpInfo.CallOperandVal) { 6369 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6370 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6371 } else { 6372 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6373 } 6374 6375 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6376 DAG.getDataLayout()).getSimpleVT(); 6377 } 6378 6379 OpInfo.ConstraintVT = OpVT; 6380 6381 // Indirect operand accesses access memory. 6382 if (OpInfo.isIndirect) 6383 hasMemory = true; 6384 else { 6385 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6386 TargetLowering::ConstraintType 6387 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6388 if (CType == TargetLowering::C_Memory) { 6389 hasMemory = true; 6390 break; 6391 } 6392 } 6393 } 6394 } 6395 6396 SDValue Chain, Flag; 6397 6398 // We won't need to flush pending loads if this asm doesn't touch 6399 // memory and is nonvolatile. 6400 if (hasMemory || IA->hasSideEffects()) 6401 Chain = getRoot(); 6402 else 6403 Chain = DAG.getRoot(); 6404 6405 // Second pass over the constraints: compute which constraint option to use 6406 // and assign registers to constraints that want a specific physreg. 6407 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6408 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6409 6410 // If this is an output operand with a matching input operand, look up the 6411 // matching input. If their types mismatch, e.g. one is an integer, the 6412 // other is floating point, or their sizes are different, flag it as an 6413 // error. 6414 if (OpInfo.hasMatchingInput()) { 6415 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6416 6417 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6418 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6419 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6420 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6421 OpInfo.ConstraintVT); 6422 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6423 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6424 Input.ConstraintVT); 6425 if ((OpInfo.ConstraintVT.isInteger() != 6426 Input.ConstraintVT.isInteger()) || 6427 (MatchRC.second != InputRC.second)) { 6428 report_fatal_error("Unsupported asm: input constraint" 6429 " with a matching output constraint of" 6430 " incompatible type!"); 6431 } 6432 Input.ConstraintVT = OpInfo.ConstraintVT; 6433 } 6434 } 6435 6436 // Compute the constraint code and ConstraintType to use. 6437 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6438 6439 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6440 OpInfo.Type == InlineAsm::isClobber) 6441 continue; 6442 6443 // If this is a memory input, and if the operand is not indirect, do what we 6444 // need to to provide an address for the memory input. 6445 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6446 !OpInfo.isIndirect) { 6447 assert((OpInfo.isMultipleAlternative || 6448 (OpInfo.Type == InlineAsm::isInput)) && 6449 "Can only indirectify direct input operands!"); 6450 6451 // Memory operands really want the address of the value. If we don't have 6452 // an indirect input, put it in the constpool if we can, otherwise spill 6453 // it to a stack slot. 6454 // TODO: This isn't quite right. We need to handle these according to 6455 // the addressing mode that the constraint wants. Also, this may take 6456 // an additional register for the computation and we don't want that 6457 // either. 6458 6459 // If the operand is a float, integer, or vector constant, spill to a 6460 // constant pool entry to get its address. 6461 const Value *OpVal = OpInfo.CallOperandVal; 6462 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6463 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6464 OpInfo.CallOperand = DAG.getConstantPool( 6465 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6466 } else { 6467 // Otherwise, create a stack slot and emit a store to it before the 6468 // asm. 6469 Type *Ty = OpVal->getType(); 6470 auto &DL = DAG.getDataLayout(); 6471 uint64_t TySize = DL.getTypeAllocSize(Ty); 6472 unsigned Align = DL.getPrefTypeAlignment(Ty); 6473 MachineFunction &MF = DAG.getMachineFunction(); 6474 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6475 SDValue StackSlot = 6476 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6477 Chain = DAG.getStore( 6478 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6479 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6480 false, false, 0); 6481 OpInfo.CallOperand = StackSlot; 6482 } 6483 6484 // There is no longer a Value* corresponding to this operand. 6485 OpInfo.CallOperandVal = nullptr; 6486 6487 // It is now an indirect operand. 6488 OpInfo.isIndirect = true; 6489 } 6490 6491 // If this constraint is for a specific register, allocate it before 6492 // anything else. 6493 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6494 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6495 } 6496 6497 // Second pass - Loop over all of the operands, assigning virtual or physregs 6498 // to register class operands. 6499 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6500 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6501 6502 // C_Register operands have already been allocated, Other/Memory don't need 6503 // to be. 6504 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6505 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6506 } 6507 6508 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6509 std::vector<SDValue> AsmNodeOperands; 6510 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6511 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6512 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6513 6514 // If we have a !srcloc metadata node associated with it, we want to attach 6515 // this to the ultimately generated inline asm machineinstr. To do this, we 6516 // pass in the third operand as this (potentially null) inline asm MDNode. 6517 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6518 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6519 6520 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6521 // bits as operand 3. 6522 unsigned ExtraInfo = 0; 6523 if (IA->hasSideEffects()) 6524 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6525 if (IA->isAlignStack()) 6526 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6527 // Set the asm dialect. 6528 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6529 6530 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6531 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6532 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6533 6534 // Compute the constraint code and ConstraintType to use. 6535 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6536 6537 // Ideally, we would only check against memory constraints. However, the 6538 // meaning of an other constraint can be target-specific and we can't easily 6539 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6540 // for other constriants as well. 6541 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6542 OpInfo.ConstraintType == TargetLowering::C_Other) { 6543 if (OpInfo.Type == InlineAsm::isInput) 6544 ExtraInfo |= InlineAsm::Extra_MayLoad; 6545 else if (OpInfo.Type == InlineAsm::isOutput) 6546 ExtraInfo |= InlineAsm::Extra_MayStore; 6547 else if (OpInfo.Type == InlineAsm::isClobber) 6548 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6549 } 6550 } 6551 6552 AsmNodeOperands.push_back(DAG.getTargetConstant( 6553 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6554 6555 // Loop over all of the inputs, copying the operand values into the 6556 // appropriate registers and processing the output regs. 6557 RegsForValue RetValRegs; 6558 6559 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6560 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6561 6562 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6563 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6564 6565 switch (OpInfo.Type) { 6566 case InlineAsm::isOutput: { 6567 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6568 OpInfo.ConstraintType != TargetLowering::C_Register) { 6569 // Memory output, or 'other' output (e.g. 'X' constraint). 6570 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6571 6572 unsigned ConstraintID = 6573 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6574 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6575 "Failed to convert memory constraint code to constraint id."); 6576 6577 // Add information to the INLINEASM node to know about this output. 6578 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6579 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6580 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6581 MVT::i32)); 6582 AsmNodeOperands.push_back(OpInfo.CallOperand); 6583 break; 6584 } 6585 6586 // Otherwise, this is a register or register class output. 6587 6588 // Copy the output from the appropriate register. Find a register that 6589 // we can use. 6590 if (OpInfo.AssignedRegs.Regs.empty()) { 6591 LLVMContext &Ctx = *DAG.getContext(); 6592 Ctx.emitError(CS.getInstruction(), 6593 "couldn't allocate output register for constraint '" + 6594 Twine(OpInfo.ConstraintCode) + "'"); 6595 return; 6596 } 6597 6598 // If this is an indirect operand, store through the pointer after the 6599 // asm. 6600 if (OpInfo.isIndirect) { 6601 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6602 OpInfo.CallOperandVal)); 6603 } else { 6604 // This is the result value of the call. 6605 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6606 // Concatenate this output onto the outputs list. 6607 RetValRegs.append(OpInfo.AssignedRegs); 6608 } 6609 6610 // Add information to the INLINEASM node to know that this register is 6611 // set. 6612 OpInfo.AssignedRegs 6613 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6614 ? InlineAsm::Kind_RegDefEarlyClobber 6615 : InlineAsm::Kind_RegDef, 6616 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6617 break; 6618 } 6619 case InlineAsm::isInput: { 6620 SDValue InOperandVal = OpInfo.CallOperand; 6621 6622 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6623 // If this is required to match an output register we have already set, 6624 // just use its register. 6625 unsigned OperandNo = OpInfo.getMatchedOperand(); 6626 6627 // Scan until we find the definition we already emitted of this operand. 6628 // When we find it, create a RegsForValue operand. 6629 unsigned CurOp = InlineAsm::Op_FirstOperand; 6630 for (; OperandNo; --OperandNo) { 6631 // Advance to the next operand. 6632 unsigned OpFlag = 6633 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6634 assert((InlineAsm::isRegDefKind(OpFlag) || 6635 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6636 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6637 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6638 } 6639 6640 unsigned OpFlag = 6641 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6642 if (InlineAsm::isRegDefKind(OpFlag) || 6643 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6644 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6645 if (OpInfo.isIndirect) { 6646 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6647 LLVMContext &Ctx = *DAG.getContext(); 6648 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6649 " don't know how to handle tied " 6650 "indirect register inputs"); 6651 return; 6652 } 6653 6654 RegsForValue MatchedRegs; 6655 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6656 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6657 MatchedRegs.RegVTs.push_back(RegVT); 6658 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6659 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6660 i != e; ++i) { 6661 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6662 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6663 else { 6664 LLVMContext &Ctx = *DAG.getContext(); 6665 Ctx.emitError(CS.getInstruction(), 6666 "inline asm error: This value" 6667 " type register class is not natively supported!"); 6668 return; 6669 } 6670 } 6671 SDLoc dl = getCurSDLoc(); 6672 // Use the produced MatchedRegs object to 6673 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6674 Chain, &Flag, CS.getInstruction()); 6675 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6676 true, OpInfo.getMatchedOperand(), dl, 6677 DAG, AsmNodeOperands); 6678 break; 6679 } 6680 6681 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6682 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6683 "Unexpected number of operands"); 6684 // Add information to the INLINEASM node to know about this input. 6685 // See InlineAsm.h isUseOperandTiedToDef. 6686 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6687 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6688 OpInfo.getMatchedOperand()); 6689 AsmNodeOperands.push_back(DAG.getTargetConstant( 6690 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6691 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6692 break; 6693 } 6694 6695 // Treat indirect 'X' constraint as memory. 6696 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6697 OpInfo.isIndirect) 6698 OpInfo.ConstraintType = TargetLowering::C_Memory; 6699 6700 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6701 std::vector<SDValue> Ops; 6702 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6703 Ops, DAG); 6704 if (Ops.empty()) { 6705 LLVMContext &Ctx = *DAG.getContext(); 6706 Ctx.emitError(CS.getInstruction(), 6707 "invalid operand for inline asm constraint '" + 6708 Twine(OpInfo.ConstraintCode) + "'"); 6709 return; 6710 } 6711 6712 // Add information to the INLINEASM node to know about this input. 6713 unsigned ResOpType = 6714 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6715 AsmNodeOperands.push_back(DAG.getTargetConstant( 6716 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6717 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6718 break; 6719 } 6720 6721 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6722 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6723 assert(InOperandVal.getValueType() == 6724 TLI.getPointerTy(DAG.getDataLayout()) && 6725 "Memory operands expect pointer values"); 6726 6727 unsigned ConstraintID = 6728 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6729 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6730 "Failed to convert memory constraint code to constraint id."); 6731 6732 // Add information to the INLINEASM node to know about this input. 6733 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6734 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6735 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6736 getCurSDLoc(), 6737 MVT::i32)); 6738 AsmNodeOperands.push_back(InOperandVal); 6739 break; 6740 } 6741 6742 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6743 OpInfo.ConstraintType == TargetLowering::C_Register) && 6744 "Unknown constraint type!"); 6745 6746 // TODO: Support this. 6747 if (OpInfo.isIndirect) { 6748 LLVMContext &Ctx = *DAG.getContext(); 6749 Ctx.emitError(CS.getInstruction(), 6750 "Don't know how to handle indirect register inputs yet " 6751 "for constraint '" + 6752 Twine(OpInfo.ConstraintCode) + "'"); 6753 return; 6754 } 6755 6756 // Copy the input into the appropriate registers. 6757 if (OpInfo.AssignedRegs.Regs.empty()) { 6758 LLVMContext &Ctx = *DAG.getContext(); 6759 Ctx.emitError(CS.getInstruction(), 6760 "couldn't allocate input reg for constraint '" + 6761 Twine(OpInfo.ConstraintCode) + "'"); 6762 return; 6763 } 6764 6765 SDLoc dl = getCurSDLoc(); 6766 6767 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6768 Chain, &Flag, CS.getInstruction()); 6769 6770 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6771 dl, DAG, AsmNodeOperands); 6772 break; 6773 } 6774 case InlineAsm::isClobber: { 6775 // Add the clobbered value to the operand list, so that the register 6776 // allocator is aware that the physreg got clobbered. 6777 if (!OpInfo.AssignedRegs.Regs.empty()) 6778 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6779 false, 0, getCurSDLoc(), DAG, 6780 AsmNodeOperands); 6781 break; 6782 } 6783 } 6784 } 6785 6786 // Finish up input operands. Set the input chain and add the flag last. 6787 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6788 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6789 6790 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6791 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6792 Flag = Chain.getValue(1); 6793 6794 // If this asm returns a register value, copy the result from that register 6795 // and set it as the value of the call. 6796 if (!RetValRegs.Regs.empty()) { 6797 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6798 Chain, &Flag, CS.getInstruction()); 6799 6800 // FIXME: Why don't we do this for inline asms with MRVs? 6801 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6802 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6803 6804 // If any of the results of the inline asm is a vector, it may have the 6805 // wrong width/num elts. This can happen for register classes that can 6806 // contain multiple different value types. The preg or vreg allocated may 6807 // not have the same VT as was expected. Convert it to the right type 6808 // with bit_convert. 6809 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6810 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6811 ResultType, Val); 6812 6813 } else if (ResultType != Val.getValueType() && 6814 ResultType.isInteger() && Val.getValueType().isInteger()) { 6815 // If a result value was tied to an input value, the computed result may 6816 // have a wider width than the expected result. Extract the relevant 6817 // portion. 6818 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6819 } 6820 6821 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6822 } 6823 6824 setValue(CS.getInstruction(), Val); 6825 // Don't need to use this as a chain in this case. 6826 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6827 return; 6828 } 6829 6830 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6831 6832 // Process indirect outputs, first output all of the flagged copies out of 6833 // physregs. 6834 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6835 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6836 const Value *Ptr = IndirectStoresToEmit[i].second; 6837 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6838 Chain, &Flag, IA); 6839 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6840 } 6841 6842 // Emit the non-flagged stores from the physregs. 6843 SmallVector<SDValue, 8> OutChains; 6844 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6845 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6846 StoresToEmit[i].first, 6847 getValue(StoresToEmit[i].second), 6848 MachinePointerInfo(StoresToEmit[i].second), 6849 false, false, 0); 6850 OutChains.push_back(Val); 6851 } 6852 6853 if (!OutChains.empty()) 6854 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6855 6856 DAG.setRoot(Chain); 6857 } 6858 6859 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6860 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6861 MVT::Other, getRoot(), 6862 getValue(I.getArgOperand(0)), 6863 DAG.getSrcValue(I.getArgOperand(0)))); 6864 } 6865 6866 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6867 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6868 const DataLayout &DL = DAG.getDataLayout(); 6869 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6870 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6871 DAG.getSrcValue(I.getOperand(0)), 6872 DL.getABITypeAlignment(I.getType())); 6873 setValue(&I, V); 6874 DAG.setRoot(V.getValue(1)); 6875 } 6876 6877 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6878 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6879 MVT::Other, getRoot(), 6880 getValue(I.getArgOperand(0)), 6881 DAG.getSrcValue(I.getArgOperand(0)))); 6882 } 6883 6884 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6885 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6886 MVT::Other, getRoot(), 6887 getValue(I.getArgOperand(0)), 6888 getValue(I.getArgOperand(1)), 6889 DAG.getSrcValue(I.getArgOperand(0)), 6890 DAG.getSrcValue(I.getArgOperand(1)))); 6891 } 6892 6893 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 6894 const Instruction &I, 6895 SDValue Op) { 6896 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 6897 if (!Range) 6898 return Op; 6899 6900 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 6901 if (!Lo->isNullValue()) 6902 return Op; 6903 6904 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 6905 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 6906 6907 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 6908 6909 SDLoc SL = getCurSDLoc(); 6910 6911 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 6912 Op, DAG.getValueType(SmallVT)); 6913 unsigned NumVals = Op.getNode()->getNumValues(); 6914 if (NumVals == 1) 6915 return ZExt; 6916 6917 SmallVector<SDValue, 4> Ops; 6918 6919 Ops.push_back(ZExt); 6920 for (unsigned I = 1; I != NumVals; ++I) 6921 Ops.push_back(Op.getValue(I)); 6922 6923 return DAG.getMergeValues(Ops, SL); 6924 } 6925 6926 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 6927 /// the call being lowered. 6928 /// 6929 /// This is a helper for lowering intrinsics that follow a target calling 6930 /// convention or require stack pointer adjustment. Only a subset of the 6931 /// intrinsic's operands need to participate in the calling convention. 6932 void SelectionDAGBuilder::populateCallLoweringInfo( 6933 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 6934 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 6935 bool IsPatchPoint) { 6936 TargetLowering::ArgListTy Args; 6937 Args.reserve(NumArgs); 6938 6939 // Populate the argument list. 6940 // Attributes for args start at offset 1, after the return attribute. 6941 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6942 ArgI != ArgE; ++ArgI) { 6943 const Value *V = CS->getOperand(ArgI); 6944 6945 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6946 6947 TargetLowering::ArgListEntry Entry; 6948 Entry.Node = getValue(V); 6949 Entry.Ty = V->getType(); 6950 Entry.setAttributes(&CS, AttrI); 6951 Args.push_back(Entry); 6952 } 6953 6954 CLI.setDebugLoc(getCurSDLoc()) 6955 .setChain(getRoot()) 6956 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), 6957 NumArgs) 6958 .setDiscardResult(CS->use_empty()) 6959 .setIsPatchPoint(IsPatchPoint); 6960 } 6961 6962 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6963 /// or patchpoint target node's operand list. 6964 /// 6965 /// Constants are converted to TargetConstants purely as an optimization to 6966 /// avoid constant materialization and register allocation. 6967 /// 6968 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6969 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6970 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6971 /// address materialization and register allocation, but may also be required 6972 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6973 /// alloca in the entry block, then the runtime may assume that the alloca's 6974 /// StackMap location can be read immediately after compilation and that the 6975 /// location is valid at any point during execution (this is similar to the 6976 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6977 /// only available in a register, then the runtime would need to trap when 6978 /// execution reaches the StackMap in order to read the alloca's location. 6979 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6980 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6981 SelectionDAGBuilder &Builder) { 6982 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6983 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6984 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6985 Ops.push_back( 6986 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6987 Ops.push_back( 6988 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6989 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6990 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6991 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6992 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6993 } else 6994 Ops.push_back(OpVal); 6995 } 6996 } 6997 6998 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6999 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7000 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7001 // [live variables...]) 7002 7003 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7004 7005 SDValue Chain, InFlag, Callee, NullPtr; 7006 SmallVector<SDValue, 32> Ops; 7007 7008 SDLoc DL = getCurSDLoc(); 7009 Callee = getValue(CI.getCalledValue()); 7010 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7011 7012 // The stackmap intrinsic only records the live variables (the arguemnts 7013 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7014 // intrinsic, this won't be lowered to a function call. This means we don't 7015 // have to worry about calling conventions and target specific lowering code. 7016 // Instead we perform the call lowering right here. 7017 // 7018 // chain, flag = CALLSEQ_START(chain, 0) 7019 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7020 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7021 // 7022 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7023 InFlag = Chain.getValue(1); 7024 7025 // Add the <id> and <numBytes> constants. 7026 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7027 Ops.push_back(DAG.getTargetConstant( 7028 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7029 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7030 Ops.push_back(DAG.getTargetConstant( 7031 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7032 MVT::i32)); 7033 7034 // Push live variables for the stack map. 7035 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7036 7037 // We are not pushing any register mask info here on the operands list, 7038 // because the stackmap doesn't clobber anything. 7039 7040 // Push the chain and the glue flag. 7041 Ops.push_back(Chain); 7042 Ops.push_back(InFlag); 7043 7044 // Create the STACKMAP node. 7045 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7046 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7047 Chain = SDValue(SM, 0); 7048 InFlag = Chain.getValue(1); 7049 7050 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7051 7052 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7053 7054 // Set the root to the target-lowered call chain. 7055 DAG.setRoot(Chain); 7056 7057 // Inform the Frame Information that we have a stackmap in this function. 7058 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7059 } 7060 7061 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7062 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7063 const BasicBlock *EHPadBB) { 7064 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7065 // i32 <numBytes>, 7066 // i8* <target>, 7067 // i32 <numArgs>, 7068 // [Args...], 7069 // [live variables...]) 7070 7071 CallingConv::ID CC = CS.getCallingConv(); 7072 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7073 bool HasDef = !CS->getType()->isVoidTy(); 7074 SDLoc dl = getCurSDLoc(); 7075 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7076 7077 // Handle immediate and symbolic callees. 7078 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7079 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7080 /*isTarget=*/true); 7081 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7082 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7083 SDLoc(SymbolicCallee), 7084 SymbolicCallee->getValueType(0)); 7085 7086 // Get the real number of arguments participating in the call <numArgs> 7087 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7088 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7089 7090 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7091 // Intrinsics include all meta-operands up to but not including CC. 7092 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7093 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7094 "Not enough arguments provided to the patchpoint intrinsic"); 7095 7096 // For AnyRegCC the arguments are lowered later on manually. 7097 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7098 Type *ReturnTy = 7099 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7100 7101 TargetLowering::CallLoweringInfo CLI(DAG); 7102 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7103 true); 7104 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7105 7106 SDNode *CallEnd = Result.second.getNode(); 7107 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7108 CallEnd = CallEnd->getOperand(0).getNode(); 7109 7110 /// Get a call instruction from the call sequence chain. 7111 /// Tail calls are not allowed. 7112 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7113 "Expected a callseq node."); 7114 SDNode *Call = CallEnd->getOperand(0).getNode(); 7115 bool HasGlue = Call->getGluedNode(); 7116 7117 // Replace the target specific call node with the patchable intrinsic. 7118 SmallVector<SDValue, 8> Ops; 7119 7120 // Add the <id> and <numBytes> constants. 7121 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7122 Ops.push_back(DAG.getTargetConstant( 7123 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7124 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7125 Ops.push_back(DAG.getTargetConstant( 7126 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7127 MVT::i32)); 7128 7129 // Add the callee. 7130 Ops.push_back(Callee); 7131 7132 // Adjust <numArgs> to account for any arguments that have been passed on the 7133 // stack instead. 7134 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7135 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7136 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7137 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7138 7139 // Add the calling convention 7140 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7141 7142 // Add the arguments we omitted previously. The register allocator should 7143 // place these in any free register. 7144 if (IsAnyRegCC) 7145 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7146 Ops.push_back(getValue(CS.getArgument(i))); 7147 7148 // Push the arguments from the call instruction up to the register mask. 7149 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7150 Ops.append(Call->op_begin() + 2, e); 7151 7152 // Push live variables for the stack map. 7153 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7154 7155 // Push the register mask info. 7156 if (HasGlue) 7157 Ops.push_back(*(Call->op_end()-2)); 7158 else 7159 Ops.push_back(*(Call->op_end()-1)); 7160 7161 // Push the chain (this is originally the first operand of the call, but 7162 // becomes now the last or second to last operand). 7163 Ops.push_back(*(Call->op_begin())); 7164 7165 // Push the glue flag (last operand). 7166 if (HasGlue) 7167 Ops.push_back(*(Call->op_end()-1)); 7168 7169 SDVTList NodeTys; 7170 if (IsAnyRegCC && HasDef) { 7171 // Create the return types based on the intrinsic definition 7172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7173 SmallVector<EVT, 3> ValueVTs; 7174 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7175 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7176 7177 // There is always a chain and a glue type at the end 7178 ValueVTs.push_back(MVT::Other); 7179 ValueVTs.push_back(MVT::Glue); 7180 NodeTys = DAG.getVTList(ValueVTs); 7181 } else 7182 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7183 7184 // Replace the target specific call node with a PATCHPOINT node. 7185 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7186 dl, NodeTys, Ops); 7187 7188 // Update the NodeMap. 7189 if (HasDef) { 7190 if (IsAnyRegCC) 7191 setValue(CS.getInstruction(), SDValue(MN, 0)); 7192 else 7193 setValue(CS.getInstruction(), Result.first); 7194 } 7195 7196 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7197 // call sequence. Furthermore the location of the chain and glue can change 7198 // when the AnyReg calling convention is used and the intrinsic returns a 7199 // value. 7200 if (IsAnyRegCC && HasDef) { 7201 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7202 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7203 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7204 } else 7205 DAG.ReplaceAllUsesWith(Call, MN); 7206 DAG.DeleteNode(Call); 7207 7208 // Inform the Frame Information that we have a patchpoint in this function. 7209 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7210 } 7211 7212 /// Returns an AttributeSet representing the attributes applied to the return 7213 /// value of the given call. 7214 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7215 SmallVector<Attribute::AttrKind, 2> Attrs; 7216 if (CLI.RetSExt) 7217 Attrs.push_back(Attribute::SExt); 7218 if (CLI.RetZExt) 7219 Attrs.push_back(Attribute::ZExt); 7220 if (CLI.IsInReg) 7221 Attrs.push_back(Attribute::InReg); 7222 7223 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7224 Attrs); 7225 } 7226 7227 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7228 /// implementation, which just calls LowerCall. 7229 /// FIXME: When all targets are 7230 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7231 std::pair<SDValue, SDValue> 7232 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7233 // Handle the incoming return values from the call. 7234 CLI.Ins.clear(); 7235 Type *OrigRetTy = CLI.RetTy; 7236 SmallVector<EVT, 4> RetTys; 7237 SmallVector<uint64_t, 4> Offsets; 7238 auto &DL = CLI.DAG.getDataLayout(); 7239 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7240 7241 SmallVector<ISD::OutputArg, 4> Outs; 7242 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7243 7244 bool CanLowerReturn = 7245 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7246 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7247 7248 SDValue DemoteStackSlot; 7249 int DemoteStackIdx = -100; 7250 if (!CanLowerReturn) { 7251 // FIXME: equivalent assert? 7252 // assert(!CS.hasInAllocaArgument() && 7253 // "sret demotion is incompatible with inalloca"); 7254 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7255 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7256 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7257 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7258 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7259 7260 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7261 ArgListEntry Entry; 7262 Entry.Node = DemoteStackSlot; 7263 Entry.Ty = StackSlotPtrType; 7264 Entry.isSExt = false; 7265 Entry.isZExt = false; 7266 Entry.isInReg = false; 7267 Entry.isSRet = true; 7268 Entry.isNest = false; 7269 Entry.isByVal = false; 7270 Entry.isReturned = false; 7271 Entry.Alignment = Align; 7272 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7273 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7274 7275 // sret demotion isn't compatible with tail-calls, since the sret argument 7276 // points into the callers stack frame. 7277 CLI.IsTailCall = false; 7278 } else { 7279 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7280 EVT VT = RetTys[I]; 7281 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7282 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7283 for (unsigned i = 0; i != NumRegs; ++i) { 7284 ISD::InputArg MyFlags; 7285 MyFlags.VT = RegisterVT; 7286 MyFlags.ArgVT = VT; 7287 MyFlags.Used = CLI.IsReturnValueUsed; 7288 if (CLI.RetSExt) 7289 MyFlags.Flags.setSExt(); 7290 if (CLI.RetZExt) 7291 MyFlags.Flags.setZExt(); 7292 if (CLI.IsInReg) 7293 MyFlags.Flags.setInReg(); 7294 CLI.Ins.push_back(MyFlags); 7295 } 7296 } 7297 } 7298 7299 // Handle all of the outgoing arguments. 7300 CLI.Outs.clear(); 7301 CLI.OutVals.clear(); 7302 ArgListTy &Args = CLI.getArgs(); 7303 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7304 SmallVector<EVT, 4> ValueVTs; 7305 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7306 Type *FinalType = Args[i].Ty; 7307 if (Args[i].isByVal) 7308 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7309 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7310 FinalType, CLI.CallConv, CLI.IsVarArg); 7311 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7312 ++Value) { 7313 EVT VT = ValueVTs[Value]; 7314 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7315 SDValue Op = SDValue(Args[i].Node.getNode(), 7316 Args[i].Node.getResNo() + Value); 7317 ISD::ArgFlagsTy Flags; 7318 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7319 7320 if (Args[i].isZExt) 7321 Flags.setZExt(); 7322 if (Args[i].isSExt) 7323 Flags.setSExt(); 7324 if (Args[i].isInReg) 7325 Flags.setInReg(); 7326 if (Args[i].isSRet) 7327 Flags.setSRet(); 7328 if (Args[i].isByVal) 7329 Flags.setByVal(); 7330 if (Args[i].isInAlloca) { 7331 Flags.setInAlloca(); 7332 // Set the byval flag for CCAssignFn callbacks that don't know about 7333 // inalloca. This way we can know how many bytes we should've allocated 7334 // and how many bytes a callee cleanup function will pop. If we port 7335 // inalloca to more targets, we'll have to add custom inalloca handling 7336 // in the various CC lowering callbacks. 7337 Flags.setByVal(); 7338 } 7339 if (Args[i].isByVal || Args[i].isInAlloca) { 7340 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7341 Type *ElementTy = Ty->getElementType(); 7342 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7343 // For ByVal, alignment should come from FE. BE will guess if this 7344 // info is not there but there are cases it cannot get right. 7345 unsigned FrameAlign; 7346 if (Args[i].Alignment) 7347 FrameAlign = Args[i].Alignment; 7348 else 7349 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7350 Flags.setByValAlign(FrameAlign); 7351 } 7352 if (Args[i].isNest) 7353 Flags.setNest(); 7354 if (NeedsRegBlock) 7355 Flags.setInConsecutiveRegs(); 7356 Flags.setOrigAlign(OriginalAlignment); 7357 7358 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7359 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7360 SmallVector<SDValue, 4> Parts(NumParts); 7361 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7362 7363 if (Args[i].isSExt) 7364 ExtendKind = ISD::SIGN_EXTEND; 7365 else if (Args[i].isZExt) 7366 ExtendKind = ISD::ZERO_EXTEND; 7367 7368 // Conservatively only handle 'returned' on non-vectors for now 7369 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7370 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7371 "unexpected use of 'returned'"); 7372 // Before passing 'returned' to the target lowering code, ensure that 7373 // either the register MVT and the actual EVT are the same size or that 7374 // the return value and argument are extended in the same way; in these 7375 // cases it's safe to pass the argument register value unchanged as the 7376 // return register value (although it's at the target's option whether 7377 // to do so) 7378 // TODO: allow code generation to take advantage of partially preserved 7379 // registers rather than clobbering the entire register when the 7380 // parameter extension method is not compatible with the return 7381 // extension method 7382 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7383 (ExtendKind != ISD::ANY_EXTEND && 7384 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7385 Flags.setReturned(); 7386 } 7387 7388 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7389 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7390 7391 for (unsigned j = 0; j != NumParts; ++j) { 7392 // if it isn't first piece, alignment must be 1 7393 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7394 i < CLI.NumFixedArgs, 7395 i, j*Parts[j].getValueType().getStoreSize()); 7396 if (NumParts > 1 && j == 0) 7397 MyFlags.Flags.setSplit(); 7398 else if (j != 0) { 7399 MyFlags.Flags.setOrigAlign(1); 7400 if (j == NumParts - 1) 7401 MyFlags.Flags.setSplitEnd(); 7402 } 7403 7404 CLI.Outs.push_back(MyFlags); 7405 CLI.OutVals.push_back(Parts[j]); 7406 } 7407 7408 if (NeedsRegBlock && Value == NumValues - 1) 7409 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7410 } 7411 } 7412 7413 SmallVector<SDValue, 4> InVals; 7414 CLI.Chain = LowerCall(CLI, InVals); 7415 7416 // Verify that the target's LowerCall behaved as expected. 7417 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7418 "LowerCall didn't return a valid chain!"); 7419 assert((!CLI.IsTailCall || InVals.empty()) && 7420 "LowerCall emitted a return value for a tail call!"); 7421 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7422 "LowerCall didn't emit the correct number of values!"); 7423 7424 // For a tail call, the return value is merely live-out and there aren't 7425 // any nodes in the DAG representing it. Return a special value to 7426 // indicate that a tail call has been emitted and no more Instructions 7427 // should be processed in the current block. 7428 if (CLI.IsTailCall) { 7429 CLI.DAG.setRoot(CLI.Chain); 7430 return std::make_pair(SDValue(), SDValue()); 7431 } 7432 7433 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7434 assert(InVals[i].getNode() && 7435 "LowerCall emitted a null value!"); 7436 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7437 "LowerCall emitted a value with the wrong type!"); 7438 }); 7439 7440 SmallVector<SDValue, 4> ReturnValues; 7441 if (!CanLowerReturn) { 7442 // The instruction result is the result of loading from the 7443 // hidden sret parameter. 7444 SmallVector<EVT, 1> PVTs; 7445 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7446 7447 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7448 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7449 EVT PtrVT = PVTs[0]; 7450 7451 unsigned NumValues = RetTys.size(); 7452 ReturnValues.resize(NumValues); 7453 SmallVector<SDValue, 4> Chains(NumValues); 7454 7455 // An aggregate return value cannot wrap around the address space, so 7456 // offsets to its parts don't wrap either. 7457 SDNodeFlags Flags; 7458 Flags.setNoUnsignedWrap(true); 7459 7460 for (unsigned i = 0; i < NumValues; ++i) { 7461 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7462 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7463 PtrVT), &Flags); 7464 SDValue L = CLI.DAG.getLoad( 7465 RetTys[i], CLI.DL, CLI.Chain, Add, 7466 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7467 DemoteStackIdx, Offsets[i]), 7468 false, false, false, 1); 7469 ReturnValues[i] = L; 7470 Chains[i] = L.getValue(1); 7471 } 7472 7473 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7474 } else { 7475 // Collect the legal value parts into potentially illegal values 7476 // that correspond to the original function's return values. 7477 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7478 if (CLI.RetSExt) 7479 AssertOp = ISD::AssertSext; 7480 else if (CLI.RetZExt) 7481 AssertOp = ISD::AssertZext; 7482 unsigned CurReg = 0; 7483 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7484 EVT VT = RetTys[I]; 7485 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7486 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7487 7488 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7489 NumRegs, RegisterVT, VT, nullptr, 7490 AssertOp)); 7491 CurReg += NumRegs; 7492 } 7493 7494 // For a function returning void, there is no return value. We can't create 7495 // such a node, so we just return a null return value in that case. In 7496 // that case, nothing will actually look at the value. 7497 if (ReturnValues.empty()) 7498 return std::make_pair(SDValue(), CLI.Chain); 7499 } 7500 7501 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7502 CLI.DAG.getVTList(RetTys), ReturnValues); 7503 return std::make_pair(Res, CLI.Chain); 7504 } 7505 7506 void TargetLowering::LowerOperationWrapper(SDNode *N, 7507 SmallVectorImpl<SDValue> &Results, 7508 SelectionDAG &DAG) const { 7509 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 7510 Results.push_back(Res); 7511 } 7512 7513 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7514 llvm_unreachable("LowerOperation not implemented for this target!"); 7515 } 7516 7517 void 7518 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7519 SDValue Op = getNonRegisterValue(V); 7520 assert((Op.getOpcode() != ISD::CopyFromReg || 7521 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7522 "Copy from a reg to the same reg!"); 7523 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7524 7525 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7526 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7527 V->getType()); 7528 SDValue Chain = DAG.getEntryNode(); 7529 7530 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7531 FuncInfo.PreferredExtendType.end()) 7532 ? ISD::ANY_EXTEND 7533 : FuncInfo.PreferredExtendType[V]; 7534 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7535 PendingExports.push_back(Chain); 7536 } 7537 7538 #include "llvm/CodeGen/SelectionDAGISel.h" 7539 7540 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7541 /// entry block, return true. This includes arguments used by switches, since 7542 /// the switch may expand into multiple basic blocks. 7543 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7544 // With FastISel active, we may be splitting blocks, so force creation 7545 // of virtual registers for all non-dead arguments. 7546 if (FastISel) 7547 return A->use_empty(); 7548 7549 const BasicBlock &Entry = A->getParent()->front(); 7550 for (const User *U : A->users()) 7551 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7552 return false; // Use not in entry block. 7553 7554 return true; 7555 } 7556 7557 void SelectionDAGISel::LowerArguments(const Function &F) { 7558 SelectionDAG &DAG = SDB->DAG; 7559 SDLoc dl = SDB->getCurSDLoc(); 7560 const DataLayout &DL = DAG.getDataLayout(); 7561 SmallVector<ISD::InputArg, 16> Ins; 7562 7563 if (!FuncInfo->CanLowerReturn) { 7564 // Put in an sret pointer parameter before all the other parameters. 7565 SmallVector<EVT, 1> ValueVTs; 7566 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7567 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7568 7569 // NOTE: Assuming that a pointer will never break down to more than one VT 7570 // or one register. 7571 ISD::ArgFlagsTy Flags; 7572 Flags.setSRet(); 7573 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7574 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7575 ISD::InputArg::NoArgIndex, 0); 7576 Ins.push_back(RetArg); 7577 } 7578 7579 // Set up the incoming argument description vector. 7580 unsigned Idx = 1; 7581 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7582 I != E; ++I, ++Idx) { 7583 SmallVector<EVT, 4> ValueVTs; 7584 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7585 bool isArgValueUsed = !I->use_empty(); 7586 unsigned PartBase = 0; 7587 Type *FinalType = I->getType(); 7588 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7589 FinalType = cast<PointerType>(FinalType)->getElementType(); 7590 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7591 FinalType, F.getCallingConv(), F.isVarArg()); 7592 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7593 Value != NumValues; ++Value) { 7594 EVT VT = ValueVTs[Value]; 7595 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7596 ISD::ArgFlagsTy Flags; 7597 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7598 7599 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7600 Flags.setZExt(); 7601 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7602 Flags.setSExt(); 7603 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7604 Flags.setInReg(); 7605 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7606 Flags.setSRet(); 7607 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7608 Flags.setByVal(); 7609 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7610 Flags.setInAlloca(); 7611 // Set the byval flag for CCAssignFn callbacks that don't know about 7612 // inalloca. This way we can know how many bytes we should've allocated 7613 // and how many bytes a callee cleanup function will pop. If we port 7614 // inalloca to more targets, we'll have to add custom inalloca handling 7615 // in the various CC lowering callbacks. 7616 Flags.setByVal(); 7617 } 7618 if (F.getCallingConv() == CallingConv::X86_INTR) { 7619 // IA Interrupt passes frame (1st parameter) by value in the stack. 7620 if (Idx == 1) 7621 Flags.setByVal(); 7622 } 7623 if (Flags.isByVal() || Flags.isInAlloca()) { 7624 PointerType *Ty = cast<PointerType>(I->getType()); 7625 Type *ElementTy = Ty->getElementType(); 7626 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7627 // For ByVal, alignment should be passed from FE. BE will guess if 7628 // this info is not there but there are cases it cannot get right. 7629 unsigned FrameAlign; 7630 if (F.getParamAlignment(Idx)) 7631 FrameAlign = F.getParamAlignment(Idx); 7632 else 7633 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7634 Flags.setByValAlign(FrameAlign); 7635 } 7636 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7637 Flags.setNest(); 7638 if (NeedsRegBlock) 7639 Flags.setInConsecutiveRegs(); 7640 Flags.setOrigAlign(OriginalAlignment); 7641 7642 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7643 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7644 for (unsigned i = 0; i != NumRegs; ++i) { 7645 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7646 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7647 if (NumRegs > 1 && i == 0) 7648 MyFlags.Flags.setSplit(); 7649 // if it isn't first piece, alignment must be 1 7650 else if (i > 0) { 7651 MyFlags.Flags.setOrigAlign(1); 7652 if (i == NumRegs - 1) 7653 MyFlags.Flags.setSplitEnd(); 7654 } 7655 Ins.push_back(MyFlags); 7656 } 7657 if (NeedsRegBlock && Value == NumValues - 1) 7658 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7659 PartBase += VT.getStoreSize(); 7660 } 7661 } 7662 7663 // Call the target to set up the argument values. 7664 SmallVector<SDValue, 8> InVals; 7665 SDValue NewRoot = TLI->LowerFormalArguments( 7666 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7667 7668 // Verify that the target's LowerFormalArguments behaved as expected. 7669 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7670 "LowerFormalArguments didn't return a valid chain!"); 7671 assert(InVals.size() == Ins.size() && 7672 "LowerFormalArguments didn't emit the correct number of values!"); 7673 DEBUG({ 7674 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7675 assert(InVals[i].getNode() && 7676 "LowerFormalArguments emitted a null value!"); 7677 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7678 "LowerFormalArguments emitted a value with the wrong type!"); 7679 } 7680 }); 7681 7682 // Update the DAG with the new chain value resulting from argument lowering. 7683 DAG.setRoot(NewRoot); 7684 7685 // Set up the argument values. 7686 unsigned i = 0; 7687 Idx = 1; 7688 if (!FuncInfo->CanLowerReturn) { 7689 // Create a virtual register for the sret pointer, and put in a copy 7690 // from the sret argument into it. 7691 SmallVector<EVT, 1> ValueVTs; 7692 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7693 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7694 MVT VT = ValueVTs[0].getSimpleVT(); 7695 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7696 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7697 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7698 RegVT, VT, nullptr, AssertOp); 7699 7700 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7701 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7702 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7703 FuncInfo->DemoteRegister = SRetReg; 7704 NewRoot = 7705 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7706 DAG.setRoot(NewRoot); 7707 7708 // i indexes lowered arguments. Bump it past the hidden sret argument. 7709 // Idx indexes LLVM arguments. Don't touch it. 7710 ++i; 7711 } 7712 7713 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7714 ++I, ++Idx) { 7715 SmallVector<SDValue, 4> ArgValues; 7716 SmallVector<EVT, 4> ValueVTs; 7717 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7718 unsigned NumValues = ValueVTs.size(); 7719 7720 // If this argument is unused then remember its value. It is used to generate 7721 // debugging information. 7722 if (I->use_empty() && NumValues) { 7723 SDB->setUnusedArgValue(&*I, InVals[i]); 7724 7725 // Also remember any frame index for use in FastISel. 7726 if (FrameIndexSDNode *FI = 7727 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7728 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7729 } 7730 7731 for (unsigned Val = 0; Val != NumValues; ++Val) { 7732 EVT VT = ValueVTs[Val]; 7733 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7734 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7735 7736 if (!I->use_empty()) { 7737 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7738 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7739 AssertOp = ISD::AssertSext; 7740 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7741 AssertOp = ISD::AssertZext; 7742 7743 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7744 NumParts, PartVT, VT, 7745 nullptr, AssertOp)); 7746 } 7747 7748 i += NumParts; 7749 } 7750 7751 // We don't need to do anything else for unused arguments. 7752 if (ArgValues.empty()) 7753 continue; 7754 7755 // Note down frame index. 7756 if (FrameIndexSDNode *FI = 7757 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7758 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7759 7760 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7761 SDB->getCurSDLoc()); 7762 7763 SDB->setValue(&*I, Res); 7764 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7765 if (LoadSDNode *LNode = 7766 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7767 if (FrameIndexSDNode *FI = 7768 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7769 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7770 } 7771 7772 // If this argument is live outside of the entry block, insert a copy from 7773 // wherever we got it to the vreg that other BB's will reference it as. 7774 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7775 // If we can, though, try to skip creating an unnecessary vreg. 7776 // FIXME: This isn't very clean... it would be nice to make this more 7777 // general. It's also subtly incompatible with the hacks FastISel 7778 // uses with vregs. 7779 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7780 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7781 FuncInfo->ValueMap[&*I] = Reg; 7782 continue; 7783 } 7784 } 7785 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7786 FuncInfo->InitializeRegForValue(&*I); 7787 SDB->CopyToExportRegsIfNeeded(&*I); 7788 } 7789 } 7790 7791 assert(i == InVals.size() && "Argument register count mismatch!"); 7792 7793 // Finally, if the target has anything special to do, allow it to do so. 7794 EmitFunctionEntryCode(); 7795 } 7796 7797 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7798 /// ensure constants are generated when needed. Remember the virtual registers 7799 /// that need to be added to the Machine PHI nodes as input. We cannot just 7800 /// directly add them, because expansion might result in multiple MBB's for one 7801 /// BB. As such, the start of the BB might correspond to a different MBB than 7802 /// the end. 7803 /// 7804 void 7805 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7806 const TerminatorInst *TI = LLVMBB->getTerminator(); 7807 7808 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7809 7810 // Check PHI nodes in successors that expect a value to be available from this 7811 // block. 7812 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7813 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7814 if (!isa<PHINode>(SuccBB->begin())) continue; 7815 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7816 7817 // If this terminator has multiple identical successors (common for 7818 // switches), only handle each succ once. 7819 if (!SuccsHandled.insert(SuccMBB).second) 7820 continue; 7821 7822 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7823 7824 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7825 // nodes and Machine PHI nodes, but the incoming operands have not been 7826 // emitted yet. 7827 for (BasicBlock::const_iterator I = SuccBB->begin(); 7828 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7829 // Ignore dead phi's. 7830 if (PN->use_empty()) continue; 7831 7832 // Skip empty types 7833 if (PN->getType()->isEmptyTy()) 7834 continue; 7835 7836 unsigned Reg; 7837 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7838 7839 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7840 unsigned &RegOut = ConstantsOut[C]; 7841 if (RegOut == 0) { 7842 RegOut = FuncInfo.CreateRegs(C->getType()); 7843 CopyValueToVirtualRegister(C, RegOut); 7844 } 7845 Reg = RegOut; 7846 } else { 7847 DenseMap<const Value *, unsigned>::iterator I = 7848 FuncInfo.ValueMap.find(PHIOp); 7849 if (I != FuncInfo.ValueMap.end()) 7850 Reg = I->second; 7851 else { 7852 assert(isa<AllocaInst>(PHIOp) && 7853 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7854 "Didn't codegen value into a register!??"); 7855 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7856 CopyValueToVirtualRegister(PHIOp, Reg); 7857 } 7858 } 7859 7860 // Remember that this register needs to added to the machine PHI node as 7861 // the input for this MBB. 7862 SmallVector<EVT, 4> ValueVTs; 7863 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7864 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7865 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7866 EVT VT = ValueVTs[vti]; 7867 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7868 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7869 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7870 Reg += NumRegisters; 7871 } 7872 } 7873 } 7874 7875 ConstantsOut.clear(); 7876 } 7877 7878 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7879 /// is 0. 7880 MachineBasicBlock * 7881 SelectionDAGBuilder::StackProtectorDescriptor:: 7882 AddSuccessorMBB(const BasicBlock *BB, 7883 MachineBasicBlock *ParentMBB, 7884 bool IsLikely, 7885 MachineBasicBlock *SuccMBB) { 7886 // If SuccBB has not been created yet, create it. 7887 if (!SuccMBB) { 7888 MachineFunction *MF = ParentMBB->getParent(); 7889 MachineFunction::iterator BBI(ParentMBB); 7890 SuccMBB = MF->CreateMachineBasicBlock(BB); 7891 MF->insert(++BBI, SuccMBB); 7892 } 7893 // Add it as a successor of ParentMBB. 7894 ParentMBB->addSuccessor( 7895 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7896 return SuccMBB; 7897 } 7898 7899 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7900 MachineFunction::iterator I(MBB); 7901 if (++I == FuncInfo.MF->end()) 7902 return nullptr; 7903 return &*I; 7904 } 7905 7906 /// During lowering new call nodes can be created (such as memset, etc.). 7907 /// Those will become new roots of the current DAG, but complications arise 7908 /// when they are tail calls. In such cases, the call lowering will update 7909 /// the root, but the builder still needs to know that a tail call has been 7910 /// lowered in order to avoid generating an additional return. 7911 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7912 // If the node is null, we do have a tail call. 7913 if (MaybeTC.getNode() != nullptr) 7914 DAG.setRoot(MaybeTC); 7915 else 7916 HasTailCall = true; 7917 } 7918 7919 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7920 unsigned *TotalCases, unsigned First, 7921 unsigned Last) { 7922 assert(Last >= First); 7923 assert(TotalCases[Last] >= TotalCases[First]); 7924 7925 APInt LowCase = Clusters[First].Low->getValue(); 7926 APInt HighCase = Clusters[Last].High->getValue(); 7927 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7928 7929 // FIXME: A range of consecutive cases has 100% density, but only requires one 7930 // comparison to lower. We should discriminate against such consecutive ranges 7931 // in jump tables. 7932 7933 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7934 uint64_t Range = Diff + 1; 7935 7936 uint64_t NumCases = 7937 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7938 7939 assert(NumCases < UINT64_MAX / 100); 7940 assert(Range >= NumCases); 7941 7942 return NumCases * 100 >= Range * MinJumpTableDensity; 7943 } 7944 7945 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7946 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7947 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7948 } 7949 7950 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7951 unsigned First, unsigned Last, 7952 const SwitchInst *SI, 7953 MachineBasicBlock *DefaultMBB, 7954 CaseCluster &JTCluster) { 7955 assert(First <= Last); 7956 7957 auto Prob = BranchProbability::getZero(); 7958 unsigned NumCmps = 0; 7959 std::vector<MachineBasicBlock*> Table; 7960 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7961 7962 // Initialize probabilities in JTProbs. 7963 for (unsigned I = First; I <= Last; ++I) 7964 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7965 7966 for (unsigned I = First; I <= Last; ++I) { 7967 assert(Clusters[I].Kind == CC_Range); 7968 Prob += Clusters[I].Prob; 7969 APInt Low = Clusters[I].Low->getValue(); 7970 APInt High = Clusters[I].High->getValue(); 7971 NumCmps += (Low == High) ? 1 : 2; 7972 if (I != First) { 7973 // Fill the gap between this and the previous cluster. 7974 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7975 assert(PreviousHigh.slt(Low)); 7976 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7977 for (uint64_t J = 0; J < Gap; J++) 7978 Table.push_back(DefaultMBB); 7979 } 7980 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7981 for (uint64_t J = 0; J < ClusterSize; ++J) 7982 Table.push_back(Clusters[I].MBB); 7983 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7984 } 7985 7986 unsigned NumDests = JTProbs.size(); 7987 if (isSuitableForBitTests(NumDests, NumCmps, 7988 Clusters[First].Low->getValue(), 7989 Clusters[Last].High->getValue())) { 7990 // Clusters[First..Last] should be lowered as bit tests instead. 7991 return false; 7992 } 7993 7994 // Create the MBB that will load from and jump through the table. 7995 // Note: We create it here, but it's not inserted into the function yet. 7996 MachineFunction *CurMF = FuncInfo.MF; 7997 MachineBasicBlock *JumpTableMBB = 7998 CurMF->CreateMachineBasicBlock(SI->getParent()); 7999 8000 // Add successors. Note: use table order for determinism. 8001 SmallPtrSet<MachineBasicBlock *, 8> Done; 8002 for (MachineBasicBlock *Succ : Table) { 8003 if (Done.count(Succ)) 8004 continue; 8005 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 8006 Done.insert(Succ); 8007 } 8008 JumpTableMBB->normalizeSuccProbs(); 8009 8010 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8011 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 8012 ->createJumpTableIndex(Table); 8013 8014 // Set up the jump table info. 8015 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 8016 JumpTableHeader JTH(Clusters[First].Low->getValue(), 8017 Clusters[Last].High->getValue(), SI->getCondition(), 8018 nullptr, false); 8019 JTCases.emplace_back(std::move(JTH), std::move(JT)); 8020 8021 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 8022 JTCases.size() - 1, Prob); 8023 return true; 8024 } 8025 8026 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 8027 const SwitchInst *SI, 8028 MachineBasicBlock *DefaultMBB) { 8029 #ifndef NDEBUG 8030 // Clusters must be non-empty, sorted, and only contain Range clusters. 8031 assert(!Clusters.empty()); 8032 for (CaseCluster &C : Clusters) 8033 assert(C.Kind == CC_Range); 8034 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 8035 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 8036 #endif 8037 8038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8039 if (!areJTsAllowed(TLI)) 8040 return; 8041 8042 const int64_t N = Clusters.size(); 8043 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 8044 8045 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 8046 SmallVector<unsigned, 8> TotalCases(N); 8047 8048 for (unsigned i = 0; i < N; ++i) { 8049 APInt Hi = Clusters[i].High->getValue(); 8050 APInt Lo = Clusters[i].Low->getValue(); 8051 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 8052 if (i != 0) 8053 TotalCases[i] += TotalCases[i - 1]; 8054 } 8055 8056 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 8057 // Cheap case: the whole range might be suitable for jump table. 8058 CaseCluster JTCluster; 8059 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 8060 Clusters[0] = JTCluster; 8061 Clusters.resize(1); 8062 return; 8063 } 8064 } 8065 8066 // The algorithm below is not suitable for -O0. 8067 if (TM.getOptLevel() == CodeGenOpt::None) 8068 return; 8069 8070 // Split Clusters into minimum number of dense partitions. The algorithm uses 8071 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 8072 // for the Case Statement'" (1994), but builds the MinPartitions array in 8073 // reverse order to make it easier to reconstruct the partitions in ascending 8074 // order. In the choice between two optimal partitionings, it picks the one 8075 // which yields more jump tables. 8076 8077 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8078 SmallVector<unsigned, 8> MinPartitions(N); 8079 // LastElement[i] is the last element of the partition starting at i. 8080 SmallVector<unsigned, 8> LastElement(N); 8081 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 8082 SmallVector<unsigned, 8> NumTables(N); 8083 8084 // Base case: There is only one way to partition Clusters[N-1]. 8085 MinPartitions[N - 1] = 1; 8086 LastElement[N - 1] = N - 1; 8087 assert(MinJumpTableSize > 1); 8088 NumTables[N - 1] = 0; 8089 8090 // Note: loop indexes are signed to avoid underflow. 8091 for (int64_t i = N - 2; i >= 0; i--) { 8092 // Find optimal partitioning of Clusters[i..N-1]. 8093 // Baseline: Put Clusters[i] into a partition on its own. 8094 MinPartitions[i] = MinPartitions[i + 1] + 1; 8095 LastElement[i] = i; 8096 NumTables[i] = NumTables[i + 1]; 8097 8098 // Search for a solution that results in fewer partitions. 8099 for (int64_t j = N - 1; j > i; j--) { 8100 // Try building a partition from Clusters[i..j]. 8101 if (isDense(Clusters, &TotalCases[0], i, j)) { 8102 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8103 bool IsTable = j - i + 1 >= MinJumpTableSize; 8104 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 8105 8106 // If this j leads to fewer partitions, or same number of partitions 8107 // with more lookup tables, it is a better partitioning. 8108 if (NumPartitions < MinPartitions[i] || 8109 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 8110 MinPartitions[i] = NumPartitions; 8111 LastElement[i] = j; 8112 NumTables[i] = Tables; 8113 } 8114 } 8115 } 8116 } 8117 8118 // Iterate over the partitions, replacing some with jump tables in-place. 8119 unsigned DstIndex = 0; 8120 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8121 Last = LastElement[First]; 8122 assert(Last >= First); 8123 assert(DstIndex <= First); 8124 unsigned NumClusters = Last - First + 1; 8125 8126 CaseCluster JTCluster; 8127 if (NumClusters >= MinJumpTableSize && 8128 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 8129 Clusters[DstIndex++] = JTCluster; 8130 } else { 8131 for (unsigned I = First; I <= Last; ++I) 8132 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 8133 } 8134 } 8135 Clusters.resize(DstIndex); 8136 } 8137 8138 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 8139 // FIXME: Using the pointer type doesn't seem ideal. 8140 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 8141 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 8142 return Range <= BW; 8143 } 8144 8145 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 8146 unsigned NumCmps, 8147 const APInt &Low, 8148 const APInt &High) { 8149 // FIXME: I don't think NumCmps is the correct metric: a single case and a 8150 // range of cases both require only one branch to lower. Just looking at the 8151 // number of clusters and destinations should be enough to decide whether to 8152 // build bit tests. 8153 8154 // To lower a range with bit tests, the range must fit the bitwidth of a 8155 // machine word. 8156 if (!rangeFitsInWord(Low, High)) 8157 return false; 8158 8159 // Decide whether it's profitable to lower this range with bit tests. Each 8160 // destination requires a bit test and branch, and there is an overall range 8161 // check branch. For a small number of clusters, separate comparisons might be 8162 // cheaper, and for many destinations, splitting the range might be better. 8163 return (NumDests == 1 && NumCmps >= 3) || 8164 (NumDests == 2 && NumCmps >= 5) || 8165 (NumDests == 3 && NumCmps >= 6); 8166 } 8167 8168 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 8169 unsigned First, unsigned Last, 8170 const SwitchInst *SI, 8171 CaseCluster &BTCluster) { 8172 assert(First <= Last); 8173 if (First == Last) 8174 return false; 8175 8176 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8177 unsigned NumCmps = 0; 8178 for (int64_t I = First; I <= Last; ++I) { 8179 assert(Clusters[I].Kind == CC_Range); 8180 Dests.set(Clusters[I].MBB->getNumber()); 8181 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8182 } 8183 unsigned NumDests = Dests.count(); 8184 8185 APInt Low = Clusters[First].Low->getValue(); 8186 APInt High = Clusters[Last].High->getValue(); 8187 assert(Low.slt(High)); 8188 8189 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8190 return false; 8191 8192 APInt LowBound; 8193 APInt CmpRange; 8194 8195 const int BitWidth = DAG.getTargetLoweringInfo() 8196 .getPointerTy(DAG.getDataLayout()) 8197 .getSizeInBits(); 8198 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8199 8200 // Check if the clusters cover a contiguous range such that no value in the 8201 // range will jump to the default statement. 8202 bool ContiguousRange = true; 8203 for (int64_t I = First + 1; I <= Last; ++I) { 8204 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8205 ContiguousRange = false; 8206 break; 8207 } 8208 } 8209 8210 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8211 // Optimize the case where all the case values fit in a word without having 8212 // to subtract minValue. In this case, we can optimize away the subtraction. 8213 LowBound = APInt::getNullValue(Low.getBitWidth()); 8214 CmpRange = High; 8215 ContiguousRange = false; 8216 } else { 8217 LowBound = Low; 8218 CmpRange = High - Low; 8219 } 8220 8221 CaseBitsVector CBV; 8222 auto TotalProb = BranchProbability::getZero(); 8223 for (unsigned i = First; i <= Last; ++i) { 8224 // Find the CaseBits for this destination. 8225 unsigned j; 8226 for (j = 0; j < CBV.size(); ++j) 8227 if (CBV[j].BB == Clusters[i].MBB) 8228 break; 8229 if (j == CBV.size()) 8230 CBV.push_back( 8231 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8232 CaseBits *CB = &CBV[j]; 8233 8234 // Update Mask, Bits and ExtraProb. 8235 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8236 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8237 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8238 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8239 CB->Bits += Hi - Lo + 1; 8240 CB->ExtraProb += Clusters[i].Prob; 8241 TotalProb += Clusters[i].Prob; 8242 } 8243 8244 BitTestInfo BTI; 8245 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8246 // Sort by probability first, number of bits second. 8247 if (a.ExtraProb != b.ExtraProb) 8248 return a.ExtraProb > b.ExtraProb; 8249 return a.Bits > b.Bits; 8250 }); 8251 8252 for (auto &CB : CBV) { 8253 MachineBasicBlock *BitTestBB = 8254 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8255 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8256 } 8257 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8258 SI->getCondition(), -1U, MVT::Other, false, 8259 ContiguousRange, nullptr, nullptr, std::move(BTI), 8260 TotalProb); 8261 8262 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8263 BitTestCases.size() - 1, TotalProb); 8264 return true; 8265 } 8266 8267 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8268 const SwitchInst *SI) { 8269 // Partition Clusters into as few subsets as possible, where each subset has a 8270 // range that fits in a machine word and has <= 3 unique destinations. 8271 8272 #ifndef NDEBUG 8273 // Clusters must be sorted and contain Range or JumpTable clusters. 8274 assert(!Clusters.empty()); 8275 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8276 for (const CaseCluster &C : Clusters) 8277 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8278 for (unsigned i = 1; i < Clusters.size(); ++i) 8279 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8280 #endif 8281 8282 // The algorithm below is not suitable for -O0. 8283 if (TM.getOptLevel() == CodeGenOpt::None) 8284 return; 8285 8286 // If target does not have legal shift left, do not emit bit tests at all. 8287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8288 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8289 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8290 return; 8291 8292 int BitWidth = PTy.getSizeInBits(); 8293 const int64_t N = Clusters.size(); 8294 8295 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8296 SmallVector<unsigned, 8> MinPartitions(N); 8297 // LastElement[i] is the last element of the partition starting at i. 8298 SmallVector<unsigned, 8> LastElement(N); 8299 8300 // FIXME: This might not be the best algorithm for finding bit test clusters. 8301 8302 // Base case: There is only one way to partition Clusters[N-1]. 8303 MinPartitions[N - 1] = 1; 8304 LastElement[N - 1] = N - 1; 8305 8306 // Note: loop indexes are signed to avoid underflow. 8307 for (int64_t i = N - 2; i >= 0; --i) { 8308 // Find optimal partitioning of Clusters[i..N-1]. 8309 // Baseline: Put Clusters[i] into a partition on its own. 8310 MinPartitions[i] = MinPartitions[i + 1] + 1; 8311 LastElement[i] = i; 8312 8313 // Search for a solution that results in fewer partitions. 8314 // Note: the search is limited by BitWidth, reducing time complexity. 8315 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8316 // Try building a partition from Clusters[i..j]. 8317 8318 // Check the range. 8319 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8320 Clusters[j].High->getValue())) 8321 continue; 8322 8323 // Check nbr of destinations and cluster types. 8324 // FIXME: This works, but doesn't seem very efficient. 8325 bool RangesOnly = true; 8326 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8327 for (int64_t k = i; k <= j; k++) { 8328 if (Clusters[k].Kind != CC_Range) { 8329 RangesOnly = false; 8330 break; 8331 } 8332 Dests.set(Clusters[k].MBB->getNumber()); 8333 } 8334 if (!RangesOnly || Dests.count() > 3) 8335 break; 8336 8337 // Check if it's a better partition. 8338 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8339 if (NumPartitions < MinPartitions[i]) { 8340 // Found a better partition. 8341 MinPartitions[i] = NumPartitions; 8342 LastElement[i] = j; 8343 } 8344 } 8345 } 8346 8347 // Iterate over the partitions, replacing with bit-test clusters in-place. 8348 unsigned DstIndex = 0; 8349 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8350 Last = LastElement[First]; 8351 assert(First <= Last); 8352 assert(DstIndex <= First); 8353 8354 CaseCluster BitTestCluster; 8355 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8356 Clusters[DstIndex++] = BitTestCluster; 8357 } else { 8358 size_t NumClusters = Last - First + 1; 8359 std::memmove(&Clusters[DstIndex], &Clusters[First], 8360 sizeof(Clusters[0]) * NumClusters); 8361 DstIndex += NumClusters; 8362 } 8363 } 8364 Clusters.resize(DstIndex); 8365 } 8366 8367 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8368 MachineBasicBlock *SwitchMBB, 8369 MachineBasicBlock *DefaultMBB) { 8370 MachineFunction *CurMF = FuncInfo.MF; 8371 MachineBasicBlock *NextMBB = nullptr; 8372 MachineFunction::iterator BBI(W.MBB); 8373 if (++BBI != FuncInfo.MF->end()) 8374 NextMBB = &*BBI; 8375 8376 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8377 8378 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8379 8380 if (Size == 2 && W.MBB == SwitchMBB) { 8381 // If any two of the cases has the same destination, and if one value 8382 // is the same as the other, but has one bit unset that the other has set, 8383 // use bit manipulation to do two compares at once. For example: 8384 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8385 // TODO: This could be extended to merge any 2 cases in switches with 3 8386 // cases. 8387 // TODO: Handle cases where W.CaseBB != SwitchBB. 8388 CaseCluster &Small = *W.FirstCluster; 8389 CaseCluster &Big = *W.LastCluster; 8390 8391 if (Small.Low == Small.High && Big.Low == Big.High && 8392 Small.MBB == Big.MBB) { 8393 const APInt &SmallValue = Small.Low->getValue(); 8394 const APInt &BigValue = Big.Low->getValue(); 8395 8396 // Check that there is only one bit different. 8397 APInt CommonBit = BigValue ^ SmallValue; 8398 if (CommonBit.isPowerOf2()) { 8399 SDValue CondLHS = getValue(Cond); 8400 EVT VT = CondLHS.getValueType(); 8401 SDLoc DL = getCurSDLoc(); 8402 8403 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8404 DAG.getConstant(CommonBit, DL, VT)); 8405 SDValue Cond = DAG.getSetCC( 8406 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8407 ISD::SETEQ); 8408 8409 // Update successor info. 8410 // Both Small and Big will jump to Small.BB, so we sum up the 8411 // probabilities. 8412 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8413 if (BPI) 8414 addSuccessorWithProb( 8415 SwitchMBB, DefaultMBB, 8416 // The default destination is the first successor in IR. 8417 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8418 else 8419 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8420 8421 // Insert the true branch. 8422 SDValue BrCond = 8423 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8424 DAG.getBasicBlock(Small.MBB)); 8425 // Insert the false branch. 8426 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8427 DAG.getBasicBlock(DefaultMBB)); 8428 8429 DAG.setRoot(BrCond); 8430 return; 8431 } 8432 } 8433 } 8434 8435 if (TM.getOptLevel() != CodeGenOpt::None) { 8436 // Order cases by probability so the most likely case will be checked first. 8437 std::sort(W.FirstCluster, W.LastCluster + 1, 8438 [](const CaseCluster &a, const CaseCluster &b) { 8439 return a.Prob > b.Prob; 8440 }); 8441 8442 // Rearrange the case blocks so that the last one falls through if possible 8443 // without without changing the order of probabilities. 8444 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8445 --I; 8446 if (I->Prob > W.LastCluster->Prob) 8447 break; 8448 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8449 std::swap(*I, *W.LastCluster); 8450 break; 8451 } 8452 } 8453 } 8454 8455 // Compute total probability. 8456 BranchProbability DefaultProb = W.DefaultProb; 8457 BranchProbability UnhandledProbs = DefaultProb; 8458 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8459 UnhandledProbs += I->Prob; 8460 8461 MachineBasicBlock *CurMBB = W.MBB; 8462 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8463 MachineBasicBlock *Fallthrough; 8464 if (I == W.LastCluster) { 8465 // For the last cluster, fall through to the default destination. 8466 Fallthrough = DefaultMBB; 8467 } else { 8468 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8469 CurMF->insert(BBI, Fallthrough); 8470 // Put Cond in a virtual register to make it available from the new blocks. 8471 ExportFromCurrentBlock(Cond); 8472 } 8473 UnhandledProbs -= I->Prob; 8474 8475 switch (I->Kind) { 8476 case CC_JumpTable: { 8477 // FIXME: Optimize away range check based on pivot comparisons. 8478 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8479 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8480 8481 // The jump block hasn't been inserted yet; insert it here. 8482 MachineBasicBlock *JumpMBB = JT->MBB; 8483 CurMF->insert(BBI, JumpMBB); 8484 8485 auto JumpProb = I->Prob; 8486 auto FallthroughProb = UnhandledProbs; 8487 8488 // If the default statement is a target of the jump table, we evenly 8489 // distribute the default probability to successors of CurMBB. Also 8490 // update the probability on the edge from JumpMBB to Fallthrough. 8491 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8492 SE = JumpMBB->succ_end(); 8493 SI != SE; ++SI) { 8494 if (*SI == DefaultMBB) { 8495 JumpProb += DefaultProb / 2; 8496 FallthroughProb -= DefaultProb / 2; 8497 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8498 JumpMBB->normalizeSuccProbs(); 8499 break; 8500 } 8501 } 8502 8503 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8504 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8505 CurMBB->normalizeSuccProbs(); 8506 8507 // The jump table header will be inserted in our current block, do the 8508 // range check, and fall through to our fallthrough block. 8509 JTH->HeaderBB = CurMBB; 8510 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8511 8512 // If we're in the right place, emit the jump table header right now. 8513 if (CurMBB == SwitchMBB) { 8514 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8515 JTH->Emitted = true; 8516 } 8517 break; 8518 } 8519 case CC_BitTests: { 8520 // FIXME: Optimize away range check based on pivot comparisons. 8521 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8522 8523 // The bit test blocks haven't been inserted yet; insert them here. 8524 for (BitTestCase &BTC : BTB->Cases) 8525 CurMF->insert(BBI, BTC.ThisBB); 8526 8527 // Fill in fields of the BitTestBlock. 8528 BTB->Parent = CurMBB; 8529 BTB->Default = Fallthrough; 8530 8531 BTB->DefaultProb = UnhandledProbs; 8532 // If the cases in bit test don't form a contiguous range, we evenly 8533 // distribute the probability on the edge to Fallthrough to two 8534 // successors of CurMBB. 8535 if (!BTB->ContiguousRange) { 8536 BTB->Prob += DefaultProb / 2; 8537 BTB->DefaultProb -= DefaultProb / 2; 8538 } 8539 8540 // If we're in the right place, emit the bit test header right now. 8541 if (CurMBB == SwitchMBB) { 8542 visitBitTestHeader(*BTB, SwitchMBB); 8543 BTB->Emitted = true; 8544 } 8545 break; 8546 } 8547 case CC_Range: { 8548 const Value *RHS, *LHS, *MHS; 8549 ISD::CondCode CC; 8550 if (I->Low == I->High) { 8551 // Check Cond == I->Low. 8552 CC = ISD::SETEQ; 8553 LHS = Cond; 8554 RHS=I->Low; 8555 MHS = nullptr; 8556 } else { 8557 // Check I->Low <= Cond <= I->High. 8558 CC = ISD::SETLE; 8559 LHS = I->Low; 8560 MHS = Cond; 8561 RHS = I->High; 8562 } 8563 8564 // The false probability is the sum of all unhandled cases. 8565 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8566 UnhandledProbs); 8567 8568 if (CurMBB == SwitchMBB) 8569 visitSwitchCase(CB, SwitchMBB); 8570 else 8571 SwitchCases.push_back(CB); 8572 8573 break; 8574 } 8575 } 8576 CurMBB = Fallthrough; 8577 } 8578 } 8579 8580 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8581 CaseClusterIt First, 8582 CaseClusterIt Last) { 8583 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8584 if (X.Prob != CC.Prob) 8585 return X.Prob > CC.Prob; 8586 8587 // Ties are broken by comparing the case value. 8588 return X.Low->getValue().slt(CC.Low->getValue()); 8589 }); 8590 } 8591 8592 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8593 const SwitchWorkListItem &W, 8594 Value *Cond, 8595 MachineBasicBlock *SwitchMBB) { 8596 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8597 "Clusters not sorted?"); 8598 8599 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8600 8601 // Balance the tree based on branch probabilities to create a near-optimal (in 8602 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8603 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8604 CaseClusterIt LastLeft = W.FirstCluster; 8605 CaseClusterIt FirstRight = W.LastCluster; 8606 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8607 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8608 8609 // Move LastLeft and FirstRight towards each other from opposite directions to 8610 // find a partitioning of the clusters which balances the probability on both 8611 // sides. If LeftProb and RightProb are equal, alternate which side is 8612 // taken to ensure 0-probability nodes are distributed evenly. 8613 unsigned I = 0; 8614 while (LastLeft + 1 < FirstRight) { 8615 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8616 LeftProb += (++LastLeft)->Prob; 8617 else 8618 RightProb += (--FirstRight)->Prob; 8619 I++; 8620 } 8621 8622 for (;;) { 8623 // Our binary search tree differs from a typical BST in that ours can have up 8624 // to three values in each leaf. The pivot selection above doesn't take that 8625 // into account, which means the tree might require more nodes and be less 8626 // efficient. We compensate for this here. 8627 8628 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8629 unsigned NumRight = W.LastCluster - FirstRight + 1; 8630 8631 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8632 // If one side has less than 3 clusters, and the other has more than 3, 8633 // consider taking a cluster from the other side. 8634 8635 if (NumLeft < NumRight) { 8636 // Consider moving the first cluster on the right to the left side. 8637 CaseCluster &CC = *FirstRight; 8638 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8639 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8640 if (LeftSideRank <= RightSideRank) { 8641 // Moving the cluster to the left does not demote it. 8642 ++LastLeft; 8643 ++FirstRight; 8644 continue; 8645 } 8646 } else { 8647 assert(NumRight < NumLeft); 8648 // Consider moving the last element on the left to the right side. 8649 CaseCluster &CC = *LastLeft; 8650 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8651 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8652 if (RightSideRank <= LeftSideRank) { 8653 // Moving the cluster to the right does not demot it. 8654 --LastLeft; 8655 --FirstRight; 8656 continue; 8657 } 8658 } 8659 } 8660 break; 8661 } 8662 8663 assert(LastLeft + 1 == FirstRight); 8664 assert(LastLeft >= W.FirstCluster); 8665 assert(FirstRight <= W.LastCluster); 8666 8667 // Use the first element on the right as pivot since we will make less-than 8668 // comparisons against it. 8669 CaseClusterIt PivotCluster = FirstRight; 8670 assert(PivotCluster > W.FirstCluster); 8671 assert(PivotCluster <= W.LastCluster); 8672 8673 CaseClusterIt FirstLeft = W.FirstCluster; 8674 CaseClusterIt LastRight = W.LastCluster; 8675 8676 const ConstantInt *Pivot = PivotCluster->Low; 8677 8678 // New blocks will be inserted immediately after the current one. 8679 MachineFunction::iterator BBI(W.MBB); 8680 ++BBI; 8681 8682 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8683 // we can branch to its destination directly if it's squeezed exactly in 8684 // between the known lower bound and Pivot - 1. 8685 MachineBasicBlock *LeftMBB; 8686 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8687 FirstLeft->Low == W.GE && 8688 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8689 LeftMBB = FirstLeft->MBB; 8690 } else { 8691 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8692 FuncInfo.MF->insert(BBI, LeftMBB); 8693 WorkList.push_back( 8694 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8695 // Put Cond in a virtual register to make it available from the new blocks. 8696 ExportFromCurrentBlock(Cond); 8697 } 8698 8699 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8700 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8701 // directly if RHS.High equals the current upper bound. 8702 MachineBasicBlock *RightMBB; 8703 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8704 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8705 RightMBB = FirstRight->MBB; 8706 } else { 8707 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8708 FuncInfo.MF->insert(BBI, RightMBB); 8709 WorkList.push_back( 8710 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8711 // Put Cond in a virtual register to make it available from the new blocks. 8712 ExportFromCurrentBlock(Cond); 8713 } 8714 8715 // Create the CaseBlock record that will be used to lower the branch. 8716 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8717 LeftProb, RightProb); 8718 8719 if (W.MBB == SwitchMBB) 8720 visitSwitchCase(CB, SwitchMBB); 8721 else 8722 SwitchCases.push_back(CB); 8723 } 8724 8725 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8726 // Extract cases from the switch. 8727 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8728 CaseClusterVector Clusters; 8729 Clusters.reserve(SI.getNumCases()); 8730 for (auto I : SI.cases()) { 8731 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8732 const ConstantInt *CaseVal = I.getCaseValue(); 8733 BranchProbability Prob = 8734 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8735 : BranchProbability(1, SI.getNumCases() + 1); 8736 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8737 } 8738 8739 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8740 8741 // Cluster adjacent cases with the same destination. We do this at all 8742 // optimization levels because it's cheap to do and will make codegen faster 8743 // if there are many clusters. 8744 sortAndRangeify(Clusters); 8745 8746 if (TM.getOptLevel() != CodeGenOpt::None) { 8747 // Replace an unreachable default with the most popular destination. 8748 // FIXME: Exploit unreachable default more aggressively. 8749 bool UnreachableDefault = 8750 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8751 if (UnreachableDefault && !Clusters.empty()) { 8752 DenseMap<const BasicBlock *, unsigned> Popularity; 8753 unsigned MaxPop = 0; 8754 const BasicBlock *MaxBB = nullptr; 8755 for (auto I : SI.cases()) { 8756 const BasicBlock *BB = I.getCaseSuccessor(); 8757 if (++Popularity[BB] > MaxPop) { 8758 MaxPop = Popularity[BB]; 8759 MaxBB = BB; 8760 } 8761 } 8762 // Set new default. 8763 assert(MaxPop > 0 && MaxBB); 8764 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8765 8766 // Remove cases that were pointing to the destination that is now the 8767 // default. 8768 CaseClusterVector New; 8769 New.reserve(Clusters.size()); 8770 for (CaseCluster &CC : Clusters) { 8771 if (CC.MBB != DefaultMBB) 8772 New.push_back(CC); 8773 } 8774 Clusters = std::move(New); 8775 } 8776 } 8777 8778 // If there is only the default destination, jump there directly. 8779 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8780 if (Clusters.empty()) { 8781 SwitchMBB->addSuccessor(DefaultMBB); 8782 if (DefaultMBB != NextBlock(SwitchMBB)) { 8783 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8784 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8785 } 8786 return; 8787 } 8788 8789 findJumpTables(Clusters, &SI, DefaultMBB); 8790 findBitTestClusters(Clusters, &SI); 8791 8792 DEBUG({ 8793 dbgs() << "Case clusters: "; 8794 for (const CaseCluster &C : Clusters) { 8795 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8796 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8797 8798 C.Low->getValue().print(dbgs(), true); 8799 if (C.Low != C.High) { 8800 dbgs() << '-'; 8801 C.High->getValue().print(dbgs(), true); 8802 } 8803 dbgs() << ' '; 8804 } 8805 dbgs() << '\n'; 8806 }); 8807 8808 assert(!Clusters.empty()); 8809 SwitchWorkList WorkList; 8810 CaseClusterIt First = Clusters.begin(); 8811 CaseClusterIt Last = Clusters.end() - 1; 8812 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8813 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8814 8815 while (!WorkList.empty()) { 8816 SwitchWorkListItem W = WorkList.back(); 8817 WorkList.pop_back(); 8818 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8819 8820 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8821 // For optimized builds, lower large range as a balanced binary tree. 8822 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8823 continue; 8824 } 8825 8826 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8827 } 8828 } 8829