1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/FastISel.h" 26 #include "llvm/CodeGen/FunctionLoweringInfo.h" 27 #include "llvm/CodeGen/GCMetadata.h" 28 #include "llvm/CodeGen/GCStrategy.h" 29 #include "llvm/CodeGen/MachineFrameInfo.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/SelectionDAG.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/WinEHFuncInfo.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 static cl::opt<bool> 82 EnableFMFInDAG("enable-fmf-dag", cl::init(false), cl::Hidden, 83 cl::desc("Enable fast-math-flags for DAG nodes")); 84 85 // Limit the width of DAG chains. This is important in general to prevent 86 // DAG-based analysis from blowing up. For example, alias analysis and 87 // load clustering may not complete in reasonable time. It is difficult to 88 // recognize and avoid this situation within each individual analysis, and 89 // future analyses are likely to have the same behavior. Limiting DAG width is 90 // the safe approach and will be especially important with global DAGs. 91 // 92 // MaxParallelChains default is arbitrarily high to avoid affecting 93 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 94 // sequence over this should have been converted to llvm.memcpy by the 95 // frontend. It easy to induce this behavior with .ll code such as: 96 // %buffer = alloca [4096 x i8] 97 // %data = load [4096 x i8]* %argPtr 98 // store [4096 x i8] %data, [4096 x i8]* %buffer 99 static const unsigned MaxParallelChains = 64; 100 101 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 102 const SDValue *Parts, unsigned NumParts, 103 MVT PartVT, EVT ValueVT, const Value *V); 104 105 /// getCopyFromParts - Create a value that contains the specified legal parts 106 /// combined into the value they represent. If the parts combine to a type 107 /// larger then ValueVT then AssertOp can be used to specify whether the extra 108 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 109 /// (ISD::AssertSext). 110 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 111 const SDValue *Parts, 112 unsigned NumParts, MVT PartVT, EVT ValueVT, 113 const Value *V, 114 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 115 if (ValueVT.isVector()) 116 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 117 PartVT, ValueVT, V); 118 119 assert(NumParts > 0 && "No parts to assemble!"); 120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 121 SDValue Val = Parts[0]; 122 123 if (NumParts > 1) { 124 // Assemble the value from multiple parts. 125 if (ValueVT.isInteger()) { 126 unsigned PartBits = PartVT.getSizeInBits(); 127 unsigned ValueBits = ValueVT.getSizeInBits(); 128 129 // Assemble the power of 2 part. 130 unsigned RoundParts = NumParts & (NumParts - 1) ? 131 1 << Log2_32(NumParts) : NumParts; 132 unsigned RoundBits = PartBits * RoundParts; 133 EVT RoundVT = RoundBits == ValueBits ? 134 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 135 SDValue Lo, Hi; 136 137 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 138 139 if (RoundParts > 2) { 140 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 141 PartVT, HalfVT, V); 142 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 143 RoundParts / 2, PartVT, HalfVT, V); 144 } else { 145 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 146 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 147 } 148 149 if (DAG.getDataLayout().isBigEndian()) 150 std::swap(Lo, Hi); 151 152 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 153 154 if (RoundParts < NumParts) { 155 // Assemble the trailing non-power-of-2 part. 156 unsigned OddParts = NumParts - RoundParts; 157 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 158 Hi = getCopyFromParts(DAG, DL, 159 Parts + RoundParts, OddParts, PartVT, OddVT, V); 160 161 // Combine the round and odd parts. 162 Lo = Val; 163 if (DAG.getDataLayout().isBigEndian()) 164 std::swap(Lo, Hi); 165 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 166 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 167 Hi = 168 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 169 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 170 TLI.getPointerTy(DAG.getDataLayout()))); 171 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 172 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 173 } 174 } else if (PartVT.isFloatingPoint()) { 175 // FP split into multiple FP parts (for ppcf128) 176 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 177 "Unexpected split"); 178 SDValue Lo, Hi; 179 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 180 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 181 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 182 std::swap(Lo, Hi); 183 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 184 } else { 185 // FP split into integer parts (soft fp) 186 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 187 !PartVT.isVector() && "Unexpected split"); 188 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 189 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 190 } 191 } 192 193 // There is now one part, held in Val. Correct it to match ValueVT. 194 EVT PartEVT = Val.getValueType(); 195 196 if (PartEVT == ValueVT) 197 return Val; 198 199 if (PartEVT.isInteger() && ValueVT.isInteger()) { 200 if (ValueVT.bitsLT(PartEVT)) { 201 // For a truncate, see if we have any information to 202 // indicate whether the truncated bits will always be 203 // zero or sign-extension. 204 if (AssertOp != ISD::DELETED_NODE) 205 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 206 DAG.getValueType(ValueVT)); 207 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 208 } 209 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 210 } 211 212 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 213 // FP_ROUND's are always exact here. 214 if (ValueVT.bitsLT(Val.getValueType())) 215 return DAG.getNode( 216 ISD::FP_ROUND, DL, ValueVT, Val, 217 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 218 219 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 223 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 224 225 llvm_unreachable("Unknown mismatch!"); 226 } 227 228 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 229 const Twine &ErrMsg) { 230 const Instruction *I = dyn_cast_or_null<Instruction>(V); 231 if (!V) 232 return Ctx.emitError(ErrMsg); 233 234 const char *AsmError = ", possible invalid constraint for vector type"; 235 if (const CallInst *CI = dyn_cast<CallInst>(I)) 236 if (isa<InlineAsm>(CI->getCalledValue())) 237 return Ctx.emitError(I, ErrMsg + AsmError); 238 239 return Ctx.emitError(I, ErrMsg); 240 } 241 242 /// getCopyFromPartsVector - Create a value that contains the specified legal 243 /// parts combined into the value they represent. If the parts combine to a 244 /// type larger then ValueVT then AssertOp can be used to specify whether the 245 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 246 /// ValueVT (ISD::AssertSext). 247 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 248 const SDValue *Parts, unsigned NumParts, 249 MVT PartVT, EVT ValueVT, const Value *V) { 250 assert(ValueVT.isVector() && "Not a vector value"); 251 assert(NumParts > 0 && "No parts to assemble!"); 252 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 253 SDValue Val = Parts[0]; 254 255 // Handle a multi-element vector. 256 if (NumParts > 1) { 257 EVT IntermediateVT; 258 MVT RegisterVT; 259 unsigned NumIntermediates; 260 unsigned NumRegs = 261 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 262 NumIntermediates, RegisterVT); 263 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 264 NumParts = NumRegs; // Silence a compiler warning. 265 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 266 assert(RegisterVT.getSizeInBits() == 267 Parts[0].getSimpleValueType().getSizeInBits() && 268 "Part type sizes don't match!"); 269 270 // Assemble the parts into intermediate operands. 271 SmallVector<SDValue, 8> Ops(NumIntermediates); 272 if (NumIntermediates == NumParts) { 273 // If the register was not expanded, truncate or copy the value, 274 // as appropriate. 275 for (unsigned i = 0; i != NumParts; ++i) 276 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 277 PartVT, IntermediateVT, V); 278 } else if (NumParts > 0) { 279 // If the intermediate type was expanded, build the intermediate 280 // operands from the parts. 281 assert(NumParts % NumIntermediates == 0 && 282 "Must expand into a divisible number of parts!"); 283 unsigned Factor = NumParts / NumIntermediates; 284 for (unsigned i = 0; i != NumIntermediates; ++i) 285 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 286 PartVT, IntermediateVT, V); 287 } 288 289 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 290 // intermediate operands. 291 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 292 : ISD::BUILD_VECTOR, 293 DL, ValueVT, Ops); 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 EVT PartEVT = Val.getValueType(); 298 299 if (PartEVT == ValueVT) 300 return Val; 301 302 if (PartEVT.isVector()) { 303 // If the element type of the source/dest vectors are the same, but the 304 // parts vector has more elements than the value vector, then we have a 305 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 306 // elements we want. 307 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 308 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 309 "Cannot narrow, it would be a lossy transformation"); 310 return DAG.getNode( 311 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 312 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 313 } 314 315 // Vector/Vector bitcast. 316 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 317 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 318 319 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 320 "Cannot handle this kind of promotion"); 321 // Promoted vector extract 322 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 323 324 } 325 326 // Trivial bitcast if the types are the same size and the destination 327 // vector type is legal. 328 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 329 TLI.isTypeLegal(ValueVT)) 330 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 331 332 // Handle cases such as i8 -> <1 x i1> 333 if (ValueVT.getVectorNumElements() != 1) { 334 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 335 "non-trivial scalar-to-vector conversion"); 336 return DAG.getUNDEF(ValueVT); 337 } 338 339 if (ValueVT.getVectorNumElements() == 1 && 340 ValueVT.getVectorElementType() != PartEVT) 341 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 342 343 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 344 } 345 346 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 347 SDValue Val, SDValue *Parts, unsigned NumParts, 348 MVT PartVT, const Value *V); 349 350 /// getCopyToParts - Create a series of nodes that contain the specified value 351 /// split into legal parts. If the parts contain more bits than Val, then, for 352 /// integers, ExtendKind can be used to specify how to generate the extra bits. 353 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 354 SDValue Val, SDValue *Parts, unsigned NumParts, 355 MVT PartVT, const Value *V, 356 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 357 EVT ValueVT = Val.getValueType(); 358 359 // Handle the vector case separately. 360 if (ValueVT.isVector()) 361 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 362 363 unsigned PartBits = PartVT.getSizeInBits(); 364 unsigned OrigNumParts = NumParts; 365 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 366 "Copying to an illegal type!"); 367 368 if (NumParts == 0) 369 return; 370 371 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 372 EVT PartEVT = PartVT; 373 if (PartEVT == ValueVT) { 374 assert(NumParts == 1 && "No-op copy with multiple parts!"); 375 Parts[0] = Val; 376 return; 377 } 378 379 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 380 // If the parts cover more bits than the value has, promote the value. 381 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 382 assert(NumParts == 1 && "Do not know what to promote to!"); 383 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 384 } else { 385 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 386 ValueVT.isInteger() && 387 "Unknown mismatch!"); 388 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 389 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 390 if (PartVT == MVT::x86mmx) 391 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 392 } 393 } else if (PartBits == ValueVT.getSizeInBits()) { 394 // Different types of the same size. 395 assert(NumParts == 1 && PartEVT != ValueVT); 396 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 397 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 398 // If the parts cover less bits than value has, truncate the value. 399 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 400 ValueVT.isInteger() && 401 "Unknown mismatch!"); 402 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 403 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 404 if (PartVT == MVT::x86mmx) 405 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 406 } 407 408 // The value may have changed - recompute ValueVT. 409 ValueVT = Val.getValueType(); 410 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 411 "Failed to tile the value with PartVT!"); 412 413 if (NumParts == 1) { 414 if (PartEVT != ValueVT) 415 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 416 "scalar-to-vector conversion failed"); 417 418 Parts[0] = Val; 419 return; 420 } 421 422 // Expand the value into multiple parts. 423 if (NumParts & (NumParts - 1)) { 424 // The number of parts is not a power of 2. Split off and copy the tail. 425 assert(PartVT.isInteger() && ValueVT.isInteger() && 426 "Do not know what to expand to!"); 427 unsigned RoundParts = 1 << Log2_32(NumParts); 428 unsigned RoundBits = RoundParts * PartBits; 429 unsigned OddParts = NumParts - RoundParts; 430 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 431 DAG.getIntPtrConstant(RoundBits, DL)); 432 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 433 434 if (DAG.getDataLayout().isBigEndian()) 435 // The odd parts were reversed by getCopyToParts - unreverse them. 436 std::reverse(Parts + RoundParts, Parts + NumParts); 437 438 NumParts = RoundParts; 439 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 440 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 441 } 442 443 // The number of parts is a power of 2. Repeatedly bisect the value using 444 // EXTRACT_ELEMENT. 445 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 446 EVT::getIntegerVT(*DAG.getContext(), 447 ValueVT.getSizeInBits()), 448 Val); 449 450 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 451 for (unsigned i = 0; i < NumParts; i += StepSize) { 452 unsigned ThisBits = StepSize * PartBits / 2; 453 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 454 SDValue &Part0 = Parts[i]; 455 SDValue &Part1 = Parts[i+StepSize/2]; 456 457 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 459 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 461 462 if (ThisBits == PartBits && ThisVT != PartVT) { 463 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 464 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 465 } 466 } 467 } 468 469 if (DAG.getDataLayout().isBigEndian()) 470 std::reverse(Parts, Parts + OrigNumParts); 471 } 472 473 474 /// getCopyToPartsVector - Create a series of nodes that contain the specified 475 /// value split into legal parts. 476 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 477 SDValue Val, SDValue *Parts, unsigned NumParts, 478 MVT PartVT, const Value *V) { 479 EVT ValueVT = Val.getValueType(); 480 assert(ValueVT.isVector() && "Not a vector"); 481 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 482 483 if (NumParts == 1) { 484 EVT PartEVT = PartVT; 485 if (PartEVT == ValueVT) { 486 // Nothing to do. 487 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 488 // Bitconvert vector->vector case. 489 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 490 } else if (PartVT.isVector() && 491 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 492 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 493 EVT ElementVT = PartVT.getVectorElementType(); 494 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 495 // undef elements. 496 SmallVector<SDValue, 16> Ops; 497 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getNode( 499 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 500 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 501 502 for (unsigned i = ValueVT.getVectorNumElements(), 503 e = PartVT.getVectorNumElements(); i != e; ++i) 504 Ops.push_back(DAG.getUNDEF(ElementVT)); 505 506 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 507 508 // FIXME: Use CONCAT for 2x -> 4x. 509 510 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 511 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 512 } else if (PartVT.isVector() && 513 PartEVT.getVectorElementType().bitsGE( 514 ValueVT.getVectorElementType()) && 515 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 516 517 // Promoted vector extract 518 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode( 524 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 526 527 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = 552 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 554 TLI.getVectorIdxTy(DAG.getDataLayout()))); 555 else 556 Ops[i] = DAG.getNode( 557 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 558 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 RegsForValue::RegsForValue() {} 580 581 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 582 EVT valuevt) 583 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 584 585 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 586 const DataLayout &DL, unsigned Reg, Type *Ty) { 587 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 588 589 for (EVT ValueVT : ValueVTs) { 590 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 591 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 592 for (unsigned i = 0; i != NumRegs; ++i) 593 Regs.push_back(Reg + i); 594 RegVTs.push_back(RegisterVT); 595 Reg += NumRegs; 596 } 597 } 598 599 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 600 /// this value and returns the result as a ValueVT value. This uses 601 /// Chain/Flag as the input and updates them for the output Chain/Flag. 602 /// If the Flag pointer is NULL, no flag is used. 603 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 604 FunctionLoweringInfo &FuncInfo, 605 SDLoc dl, 606 SDValue &Chain, SDValue *Flag, 607 const Value *V) const { 608 // A Value with type {} or [0 x %t] needs no registers. 609 if (ValueVTs.empty()) 610 return SDValue(); 611 612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 613 614 // Assemble the legal parts into the final values. 615 SmallVector<SDValue, 4> Values(ValueVTs.size()); 616 SmallVector<SDValue, 8> Parts; 617 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 618 // Copy the legal parts from the registers. 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 621 MVT RegisterVT = RegVTs[Value]; 622 623 Parts.resize(NumRegs); 624 for (unsigned i = 0; i != NumRegs; ++i) { 625 SDValue P; 626 if (!Flag) { 627 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 628 } else { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 630 *Flag = P.getValue(2); 631 } 632 633 Chain = P.getValue(1); 634 Parts[i] = P; 635 636 // If the source register was virtual and if we know something about it, 637 // add an assert node. 638 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 639 !RegisterVT.isInteger() || RegisterVT.isVector()) 640 continue; 641 642 const FunctionLoweringInfo::LiveOutInfo *LOI = 643 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 644 if (!LOI) 645 continue; 646 647 unsigned RegSize = RegisterVT.getSizeInBits(); 648 unsigned NumSignBits = LOI->NumSignBits; 649 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 650 651 if (NumZeroBits == RegSize) { 652 // The current value is a zero. 653 // Explicitly express that as it would be easier for 654 // optimizations to kick in. 655 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 656 continue; 657 } 658 659 // FIXME: We capture more information than the dag can represent. For 660 // now, just use the tightest assertzext/assertsext possible. 661 bool isSExt = true; 662 EVT FromVT(MVT::Other); 663 if (NumSignBits == RegSize) 664 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 665 else if (NumZeroBits >= RegSize-1) 666 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 667 else if (NumSignBits > RegSize-8) 668 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 669 else if (NumZeroBits >= RegSize-8) 670 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 671 else if (NumSignBits > RegSize-16) 672 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 673 else if (NumZeroBits >= RegSize-16) 674 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 675 else if (NumSignBits > RegSize-32) 676 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 677 else if (NumZeroBits >= RegSize-32) 678 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 679 else 680 continue; 681 682 // Add an assertion node. 683 assert(FromVT != MVT::Other); 684 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 685 RegisterVT, P, DAG.getValueType(FromVT)); 686 } 687 688 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 689 NumRegs, RegisterVT, ValueVT, V); 690 Part += NumRegs; 691 Parts.clear(); 692 } 693 694 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 695 } 696 697 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 698 /// specified value into the registers specified by this object. This uses 699 /// Chain/Flag as the input and updates them for the output Chain/Flag. 700 /// If the Flag pointer is NULL, no flag is used. 701 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 702 SDValue &Chain, SDValue *Flag, const Value *V, 703 ISD::NodeType PreferredExtendType) const { 704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 705 ISD::NodeType ExtendKind = PreferredExtendType; 706 707 // Get the list of the values's legal parts. 708 unsigned NumRegs = Regs.size(); 709 SmallVector<SDValue, 8> Parts(NumRegs); 710 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 711 EVT ValueVT = ValueVTs[Value]; 712 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 713 MVT RegisterVT = RegVTs[Value]; 714 715 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 716 ExtendKind = ISD::ZERO_EXTEND; 717 718 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 719 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 720 Part += NumParts; 721 } 722 723 // Copy the parts into the registers. 724 SmallVector<SDValue, 8> Chains(NumRegs); 725 for (unsigned i = 0; i != NumRegs; ++i) { 726 SDValue Part; 727 if (!Flag) { 728 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 729 } else { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 731 *Flag = Part.getValue(1); 732 } 733 734 Chains[i] = Part.getValue(0); 735 } 736 737 if (NumRegs == 1 || Flag) 738 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 739 // flagged to it. That is the CopyToReg nodes and the user are considered 740 // a single scheduling unit. If we create a TokenFactor and return it as 741 // chain, then the TokenFactor is both a predecessor (operand) of the 742 // user as well as a successor (the TF operands are flagged to the user). 743 // c1, f1 = CopyToReg 744 // c2, f2 = CopyToReg 745 // c3 = TokenFactor c1, c2 746 // ... 747 // = op c3, ..., f2 748 Chain = Chains[NumRegs-1]; 749 else 750 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 751 } 752 753 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 754 /// operand list. This adds the code marker and includes the number of 755 /// values added into it. 756 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 757 unsigned MatchingIdx, SDLoc dl, 758 SelectionDAG &DAG, 759 std::vector<SDValue> &Ops) const { 760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 761 762 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 763 if (HasMatching) 764 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 765 else if (!Regs.empty() && 766 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 767 // Put the register class of the virtual registers in the flag word. That 768 // way, later passes can recompute register class constraints for inline 769 // assembly as well as normal instructions. 770 // Don't do this for tied operands that can use the regclass information 771 // from the def. 772 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 773 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 774 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 775 } 776 777 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 778 Ops.push_back(Res); 779 780 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 781 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 783 MVT RegisterVT = RegVTs[Value]; 784 for (unsigned i = 0; i != NumRegs; ++i) { 785 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 786 unsigned TheReg = Regs[Reg++]; 787 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 788 789 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 790 // If we clobbered the stack pointer, MFI should know about it. 791 assert(DAG.getMachineFunction().getFrameInfo()-> 792 hasOpaqueSPAdjustment()); 793 } 794 } 795 } 796 } 797 798 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 799 const TargetLibraryInfo *li) { 800 AA = &aa; 801 GFI = gfi; 802 LibInfo = li; 803 DL = &DAG.getDataLayout(); 804 Context = DAG.getContext(); 805 LPadToCallSiteMap.clear(); 806 } 807 808 /// clear - Clear out the current SelectionDAG and the associated 809 /// state and prepare this SelectionDAGBuilder object to be used 810 /// for a new block. This doesn't clear out information about 811 /// additional blocks that are needed to complete switch lowering 812 /// or PHI node updating; that information is cleared out as it is 813 /// consumed. 814 void SelectionDAGBuilder::clear() { 815 NodeMap.clear(); 816 UnusedArgNodeMap.clear(); 817 PendingLoads.clear(); 818 PendingExports.clear(); 819 CurInst = nullptr; 820 HasTailCall = false; 821 SDNodeOrder = LowestSDNodeOrder; 822 StatepointLowering.clear(); 823 } 824 825 /// clearDanglingDebugInfo - Clear the dangling debug information 826 /// map. This function is separated from the clear so that debug 827 /// information that is dangling in a basic block can be properly 828 /// resolved in a different basic block. This allows the 829 /// SelectionDAG to resolve dangling debug information attached 830 /// to PHI nodes. 831 void SelectionDAGBuilder::clearDanglingDebugInfo() { 832 DanglingDebugInfoMap.clear(); 833 } 834 835 /// getRoot - Return the current virtual root of the Selection DAG, 836 /// flushing any PendingLoad items. This must be done before emitting 837 /// a store or any other node that may need to be ordered after any 838 /// prior load instructions. 839 /// 840 SDValue SelectionDAGBuilder::getRoot() { 841 if (PendingLoads.empty()) 842 return DAG.getRoot(); 843 844 if (PendingLoads.size() == 1) { 845 SDValue Root = PendingLoads[0]; 846 DAG.setRoot(Root); 847 PendingLoads.clear(); 848 return Root; 849 } 850 851 // Otherwise, we have to make a token factor node. 852 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 853 PendingLoads); 854 PendingLoads.clear(); 855 DAG.setRoot(Root); 856 return Root; 857 } 858 859 /// getControlRoot - Similar to getRoot, but instead of flushing all the 860 /// PendingLoad items, flush all the PendingExports items. It is necessary 861 /// to do this before emitting a terminator instruction. 862 /// 863 SDValue SelectionDAGBuilder::getControlRoot() { 864 SDValue Root = DAG.getRoot(); 865 866 if (PendingExports.empty()) 867 return Root; 868 869 // Turn all of the CopyToReg chains into one factored node. 870 if (Root.getOpcode() != ISD::EntryToken) { 871 unsigned i = 0, e = PendingExports.size(); 872 for (; i != e; ++i) { 873 assert(PendingExports[i].getNode()->getNumOperands() > 1); 874 if (PendingExports[i].getNode()->getOperand(0) == Root) 875 break; // Don't add the root if we already indirectly depend on it. 876 } 877 878 if (i == e) 879 PendingExports.push_back(Root); 880 } 881 882 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 883 PendingExports); 884 PendingExports.clear(); 885 DAG.setRoot(Root); 886 return Root; 887 } 888 889 void SelectionDAGBuilder::visit(const Instruction &I) { 890 // Set up outgoing PHI node register values before emitting the terminator. 891 if (isa<TerminatorInst>(&I)) 892 HandlePHINodesInSuccessorBlocks(I.getParent()); 893 894 ++SDNodeOrder; 895 896 CurInst = &I; 897 898 visit(I.getOpcode(), I); 899 900 if (!isa<TerminatorInst>(&I) && !HasTailCall) 901 CopyToExportRegsIfNeeded(&I); 902 903 CurInst = nullptr; 904 } 905 906 void SelectionDAGBuilder::visitPHI(const PHINode &) { 907 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 908 } 909 910 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 911 // Note: this doesn't use InstVisitor, because it has to work with 912 // ConstantExpr's in addition to instructions. 913 switch (Opcode) { 914 default: llvm_unreachable("Unknown instruction type encountered!"); 915 // Build the switch statement using the Instruction.def file. 916 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 917 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 918 #include "llvm/IR/Instruction.def" 919 } 920 } 921 922 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 923 // generate the debug data structures now that we've seen its definition. 924 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 925 SDValue Val) { 926 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 927 if (DDI.getDI()) { 928 const DbgValueInst *DI = DDI.getDI(); 929 DebugLoc dl = DDI.getdl(); 930 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 931 DILocalVariable *Variable = DI->getVariable(); 932 DIExpression *Expr = DI->getExpression(); 933 assert(Variable->isValidLocationForIntrinsic(dl) && 934 "Expected inlined-at fields to agree"); 935 uint64_t Offset = DI->getOffset(); 936 // A dbg.value for an alloca is always indirect. 937 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 938 SDDbgValue *SDV; 939 if (Val.getNode()) { 940 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 941 Val)) { 942 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 943 IsIndirect, Offset, dl, DbgSDNodeOrder); 944 DAG.AddDbgValue(SDV, Val.getNode(), false); 945 } 946 } else 947 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 948 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 949 } 950 } 951 952 /// getCopyFromRegs - If there was virtual register allocated for the value V 953 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 954 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 955 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 956 SDValue Result; 957 958 if (It != FuncInfo.ValueMap.end()) { 959 unsigned InReg = It->second; 960 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 961 DAG.getDataLayout(), InReg, Ty); 962 SDValue Chain = DAG.getEntryNode(); 963 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 964 resolveDanglingDebugInfo(V, Result); 965 } 966 967 return Result; 968 } 969 970 /// getValue - Return an SDValue for the given Value. 971 SDValue SelectionDAGBuilder::getValue(const Value *V) { 972 // If we already have an SDValue for this value, use it. It's important 973 // to do this first, so that we don't create a CopyFromReg if we already 974 // have a regular SDValue. 975 SDValue &N = NodeMap[V]; 976 if (N.getNode()) return N; 977 978 // If there's a virtual register allocated and initialized for this 979 // value, use it. 980 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 981 if (copyFromReg.getNode()) { 982 return copyFromReg; 983 } 984 985 // Otherwise create a new SDValue and remember it. 986 SDValue Val = getValueImpl(V); 987 NodeMap[V] = Val; 988 resolveDanglingDebugInfo(V, Val); 989 return Val; 990 } 991 992 // Return true if SDValue exists for the given Value 993 bool SelectionDAGBuilder::findValue(const Value *V) const { 994 return (NodeMap.find(V) != NodeMap.end()) || 995 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 996 } 997 998 /// getNonRegisterValue - Return an SDValue for the given Value, but 999 /// don't look in FuncInfo.ValueMap for a virtual register. 1000 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1001 // If we already have an SDValue for this value, use it. 1002 SDValue &N = NodeMap[V]; 1003 if (N.getNode()) { 1004 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1005 // Remove the debug location from the node as the node is about to be used 1006 // in a location which may differ from the original debug location. This 1007 // is relevant to Constant and ConstantFP nodes because they can appear 1008 // as constant expressions inside PHI nodes. 1009 N->setDebugLoc(DebugLoc()); 1010 } 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1022 /// Create an SDValue for the given value. 1023 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1025 1026 if (const Constant *C = dyn_cast<Constant>(V)) { 1027 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1028 1029 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1030 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1031 1032 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1033 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1034 1035 if (isa<ConstantPointerNull>(C)) { 1036 unsigned AS = V->getType()->getPointerAddressSpace(); 1037 return DAG.getConstant(0, getCurSDLoc(), 1038 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1039 } 1040 1041 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1042 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1043 1044 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1045 return DAG.getUNDEF(VT); 1046 1047 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1048 visit(CE->getOpcode(), *CE); 1049 SDValue N1 = NodeMap[V]; 1050 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1051 return N1; 1052 } 1053 1054 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1055 SmallVector<SDValue, 4> Constants; 1056 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1057 OI != OE; ++OI) { 1058 SDNode *Val = getValue(*OI).getNode(); 1059 // If the operand is an empty aggregate, there are no values. 1060 if (!Val) continue; 1061 // Add each leaf value from the operand to the Constants list 1062 // to form a flattened list of all the values. 1063 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1064 Constants.push_back(SDValue(Val, i)); 1065 } 1066 1067 return DAG.getMergeValues(Constants, getCurSDLoc()); 1068 } 1069 1070 if (const ConstantDataSequential *CDS = 1071 dyn_cast<ConstantDataSequential>(C)) { 1072 SmallVector<SDValue, 4> Ops; 1073 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1074 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1075 // Add each leaf value from the operand to the Constants list 1076 // to form a flattened list of all the values. 1077 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1078 Ops.push_back(SDValue(Val, i)); 1079 } 1080 1081 if (isa<ArrayType>(CDS->getType())) 1082 return DAG.getMergeValues(Ops, getCurSDLoc()); 1083 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1084 VT, Ops); 1085 } 1086 1087 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1088 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1089 "Unknown struct or array constant!"); 1090 1091 SmallVector<EVT, 4> ValueVTs; 1092 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1093 unsigned NumElts = ValueVTs.size(); 1094 if (NumElts == 0) 1095 return SDValue(); // empty struct 1096 SmallVector<SDValue, 4> Constants(NumElts); 1097 for (unsigned i = 0; i != NumElts; ++i) { 1098 EVT EltVT = ValueVTs[i]; 1099 if (isa<UndefValue>(C)) 1100 Constants[i] = DAG.getUNDEF(EltVT); 1101 else if (EltVT.isFloatingPoint()) 1102 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1103 else 1104 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1105 } 1106 1107 return DAG.getMergeValues(Constants, getCurSDLoc()); 1108 } 1109 1110 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1111 return DAG.getBlockAddress(BA, VT); 1112 1113 VectorType *VecTy = cast<VectorType>(V->getType()); 1114 unsigned NumElements = VecTy->getNumElements(); 1115 1116 // Now that we know the number and type of the elements, get that number of 1117 // elements into the Ops array based on what kind of constant it is. 1118 SmallVector<SDValue, 16> Ops; 1119 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1120 for (unsigned i = 0; i != NumElements; ++i) 1121 Ops.push_back(getValue(CV->getOperand(i))); 1122 } else { 1123 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1124 EVT EltVT = 1125 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1126 1127 SDValue Op; 1128 if (EltVT.isFloatingPoint()) 1129 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1130 else 1131 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1132 Ops.assign(NumElements, Op); 1133 } 1134 1135 // Create a BUILD_VECTOR node. 1136 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1137 } 1138 1139 // If this is a static alloca, generate it as the frameindex instead of 1140 // computation. 1141 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1142 DenseMap<const AllocaInst*, int>::iterator SI = 1143 FuncInfo.StaticAllocaMap.find(AI); 1144 if (SI != FuncInfo.StaticAllocaMap.end()) 1145 return DAG.getFrameIndex(SI->second, 1146 TLI.getPointerTy(DAG.getDataLayout())); 1147 } 1148 1149 // If this is an instruction which fast-isel has deferred, select it now. 1150 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1151 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1152 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1153 Inst->getType()); 1154 SDValue Chain = DAG.getEntryNode(); 1155 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1156 } 1157 1158 llvm_unreachable("Can't get register for value!"); 1159 } 1160 1161 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1162 report_fatal_error("visitCleanupRet not yet implemented!"); 1163 } 1164 1165 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1166 report_fatal_error("visitCatchEndPad not yet implemented!"); 1167 } 1168 1169 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1170 report_fatal_error("visitCatchRet not yet implemented!"); 1171 } 1172 1173 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1174 report_fatal_error("visitCatchPad not yet implemented!"); 1175 } 1176 1177 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1178 report_fatal_error("visitTerminatePad not yet implemented!"); 1179 } 1180 1181 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1182 report_fatal_error("visitCleanupPad not yet implemented!"); 1183 } 1184 1185 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1186 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1187 auto &DL = DAG.getDataLayout(); 1188 SDValue Chain = getControlRoot(); 1189 SmallVector<ISD::OutputArg, 8> Outs; 1190 SmallVector<SDValue, 8> OutVals; 1191 1192 if (!FuncInfo.CanLowerReturn) { 1193 unsigned DemoteReg = FuncInfo.DemoteRegister; 1194 const Function *F = I.getParent()->getParent(); 1195 1196 // Emit a store of the return value through the virtual register. 1197 // Leave Outs empty so that LowerReturn won't try to load return 1198 // registers the usual way. 1199 SmallVector<EVT, 1> PtrValueVTs; 1200 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1201 PtrValueVTs); 1202 1203 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1204 SDValue RetOp = getValue(I.getOperand(0)); 1205 1206 SmallVector<EVT, 4> ValueVTs; 1207 SmallVector<uint64_t, 4> Offsets; 1208 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1209 unsigned NumValues = ValueVTs.size(); 1210 1211 SmallVector<SDValue, 4> Chains(NumValues); 1212 for (unsigned i = 0; i != NumValues; ++i) { 1213 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1214 RetPtr.getValueType(), RetPtr, 1215 DAG.getIntPtrConstant(Offsets[i], 1216 getCurSDLoc())); 1217 Chains[i] = 1218 DAG.getStore(Chain, getCurSDLoc(), 1219 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1220 // FIXME: better loc info would be nice. 1221 Add, MachinePointerInfo(), false, false, 0); 1222 } 1223 1224 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1225 MVT::Other, Chains); 1226 } else if (I.getNumOperands() != 0) { 1227 SmallVector<EVT, 4> ValueVTs; 1228 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1229 unsigned NumValues = ValueVTs.size(); 1230 if (NumValues) { 1231 SDValue RetOp = getValue(I.getOperand(0)); 1232 1233 const Function *F = I.getParent()->getParent(); 1234 1235 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1236 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1237 Attribute::SExt)) 1238 ExtendKind = ISD::SIGN_EXTEND; 1239 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1240 Attribute::ZExt)) 1241 ExtendKind = ISD::ZERO_EXTEND; 1242 1243 LLVMContext &Context = F->getContext(); 1244 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1245 Attribute::InReg); 1246 1247 for (unsigned j = 0; j != NumValues; ++j) { 1248 EVT VT = ValueVTs[j]; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1254 MVT PartVT = TLI.getRegisterType(Context, VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (RetInReg) 1263 Flags.setInReg(); 1264 1265 // Propagate extension type if any 1266 if (ExtendKind == ISD::SIGN_EXTEND) 1267 Flags.setSExt(); 1268 else if (ExtendKind == ISD::ZERO_EXTEND) 1269 Flags.setZExt(); 1270 1271 for (unsigned i = 0; i < NumParts; ++i) { 1272 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1273 VT, /*isfixed=*/true, 0, 0)); 1274 OutVals.push_back(Parts[i]); 1275 } 1276 } 1277 } 1278 } 1279 1280 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1281 CallingConv::ID CallConv = 1282 DAG.getMachineFunction().getFunction()->getCallingConv(); 1283 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1284 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1285 1286 // Verify that the target's LowerReturn behaved as expected. 1287 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1288 "LowerReturn didn't return a valid chain!"); 1289 1290 // Update the DAG with the new chain value resulting from return lowering. 1291 DAG.setRoot(Chain); 1292 } 1293 1294 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1295 /// created for it, emit nodes to copy the value into the virtual 1296 /// registers. 1297 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1298 // Skip empty types 1299 if (V->getType()->isEmptyTy()) 1300 return; 1301 1302 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1303 if (VMI != FuncInfo.ValueMap.end()) { 1304 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1305 CopyValueToVirtualRegister(V, VMI->second); 1306 } 1307 } 1308 1309 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1310 /// the current basic block, add it to ValueMap now so that we'll get a 1311 /// CopyTo/FromReg. 1312 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1313 // No need to export constants. 1314 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1315 1316 // Already exported? 1317 if (FuncInfo.isExportedInst(V)) return; 1318 1319 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1320 CopyValueToVirtualRegister(V, Reg); 1321 } 1322 1323 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1324 const BasicBlock *FromBB) { 1325 // The operands of the setcc have to be in this block. We don't know 1326 // how to export them from some other block. 1327 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1328 // Can export from current BB. 1329 if (VI->getParent() == FromBB) 1330 return true; 1331 1332 // Is already exported, noop. 1333 return FuncInfo.isExportedInst(V); 1334 } 1335 1336 // If this is an argument, we can export it if the BB is the entry block or 1337 // if it is already exported. 1338 if (isa<Argument>(V)) { 1339 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1340 return true; 1341 1342 // Otherwise, can only export this if it is already exported. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // Otherwise, constants can always be exported. 1347 return true; 1348 } 1349 1350 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1351 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1352 const MachineBasicBlock *Dst) const { 1353 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1354 if (!BPI) 1355 return 0; 1356 const BasicBlock *SrcBB = Src->getBasicBlock(); 1357 const BasicBlock *DstBB = Dst->getBasicBlock(); 1358 return BPI->getEdgeWeight(SrcBB, DstBB); 1359 } 1360 1361 void SelectionDAGBuilder:: 1362 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1363 uint32_t Weight /* = 0 */) { 1364 if (!Weight) 1365 Weight = getEdgeWeight(Src, Dst); 1366 Src->addSuccessor(Dst, Weight); 1367 } 1368 1369 1370 static bool InBlock(const Value *V, const BasicBlock *BB) { 1371 if (const Instruction *I = dyn_cast<Instruction>(V)) 1372 return I->getParent() == BB; 1373 return true; 1374 } 1375 1376 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1377 /// This function emits a branch and is used at the leaves of an OR or an 1378 /// AND operator tree. 1379 /// 1380 void 1381 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1382 MachineBasicBlock *TBB, 1383 MachineBasicBlock *FBB, 1384 MachineBasicBlock *CurBB, 1385 MachineBasicBlock *SwitchBB, 1386 uint32_t TWeight, 1387 uint32_t FWeight) { 1388 const BasicBlock *BB = CurBB->getBasicBlock(); 1389 1390 // If the leaf of the tree is a comparison, merge the condition into 1391 // the caseblock. 1392 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1393 // The operands of the cmp have to be in this block. We don't know 1394 // how to export them from some other block. If this is the first block 1395 // of the sequence, no exporting is needed. 1396 if (CurBB == SwitchBB || 1397 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1398 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1399 ISD::CondCode Condition; 1400 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1401 Condition = getICmpCondCode(IC->getPredicate()); 1402 } else { 1403 const FCmpInst *FC = cast<FCmpInst>(Cond); 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } 1408 1409 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1410 TBB, FBB, CurBB, TWeight, FWeight); 1411 SwitchCases.push_back(CB); 1412 return; 1413 } 1414 } 1415 1416 // Create a CaseBlock record representing this branch. 1417 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1418 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1419 SwitchCases.push_back(CB); 1420 } 1421 1422 /// Scale down both weights to fit into uint32_t. 1423 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1424 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1425 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1426 NewTrue = NewTrue / Scale; 1427 NewFalse = NewFalse / Scale; 1428 } 1429 1430 /// FindMergedConditions - If Cond is an expression like 1431 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1432 MachineBasicBlock *TBB, 1433 MachineBasicBlock *FBB, 1434 MachineBasicBlock *CurBB, 1435 MachineBasicBlock *SwitchBB, 1436 Instruction::BinaryOps Opc, 1437 uint32_t TWeight, 1438 uint32_t FWeight) { 1439 // If this node is not part of the or/and tree, emit it as a branch. 1440 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1441 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1442 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1443 BOp->getParent() != CurBB->getBasicBlock() || 1444 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1445 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1446 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1447 TWeight, FWeight); 1448 return; 1449 } 1450 1451 // Create TmpBB after CurBB. 1452 MachineFunction::iterator BBI = CurBB; 1453 MachineFunction &MF = DAG.getMachineFunction(); 1454 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1455 CurBB->getParent()->insert(++BBI, TmpBB); 1456 1457 if (Opc == Instruction::Or) { 1458 // Codegen X | Y as: 1459 // BB1: 1460 // jmp_if_X TBB 1461 // jmp TmpBB 1462 // TmpBB: 1463 // jmp_if_Y TBB 1464 // jmp FBB 1465 // 1466 1467 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1468 // The requirement is that 1469 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1470 // = TrueProb for original BB. 1471 // Assuming the original weights are A and B, one choice is to set BB1's 1472 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1473 // assumes that 1474 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1475 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1476 // TmpBB, but the math is more complicated. 1477 1478 uint64_t NewTrueWeight = TWeight; 1479 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1480 ScaleWeights(NewTrueWeight, NewFalseWeight); 1481 // Emit the LHS condition. 1482 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1483 NewTrueWeight, NewFalseWeight); 1484 1485 NewTrueWeight = TWeight; 1486 NewFalseWeight = 2 * (uint64_t)FWeight; 1487 ScaleWeights(NewTrueWeight, NewFalseWeight); 1488 // Emit the RHS condition into TmpBB. 1489 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1490 NewTrueWeight, NewFalseWeight); 1491 } else { 1492 assert(Opc == Instruction::And && "Unknown merge op!"); 1493 // Codegen X & Y as: 1494 // BB1: 1495 // jmp_if_X TmpBB 1496 // jmp FBB 1497 // TmpBB: 1498 // jmp_if_Y TBB 1499 // jmp FBB 1500 // 1501 // This requires creation of TmpBB after CurBB. 1502 1503 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1504 // The requirement is that 1505 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1506 // = FalseProb for original BB. 1507 // Assuming the original weights are A and B, one choice is to set BB1's 1508 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1509 // assumes that 1510 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1511 1512 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1513 uint64_t NewFalseWeight = FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = 2 * (uint64_t)TWeight; 1520 NewFalseWeight = FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } 1526 } 1527 1528 /// If the set of cases should be emitted as a series of branches, return true. 1529 /// If we should emit this as a bunch of and/or'd together conditions, return 1530 /// false. 1531 bool 1532 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1533 if (Cases.size() != 2) return true; 1534 1535 // If this is two comparisons of the same values or'd or and'd together, they 1536 // will get folded into a single comparison, so don't emit two blocks. 1537 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1538 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1539 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1540 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1541 return false; 1542 } 1543 1544 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1545 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1546 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1547 Cases[0].CC == Cases[1].CC && 1548 isa<Constant>(Cases[0].CmpRHS) && 1549 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1550 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1551 return false; 1552 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1553 return false; 1554 } 1555 1556 return true; 1557 } 1558 1559 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1560 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1561 1562 // Update machine-CFG edges. 1563 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1564 1565 if (I.isUnconditional()) { 1566 // Update machine-CFG edges. 1567 BrMBB->addSuccessor(Succ0MBB); 1568 1569 // If this is not a fall-through branch or optimizations are switched off, 1570 // emit the branch. 1571 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1572 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1573 MVT::Other, getControlRoot(), 1574 DAG.getBasicBlock(Succ0MBB))); 1575 1576 return; 1577 } 1578 1579 // If this condition is one of the special cases we handle, do special stuff 1580 // now. 1581 const Value *CondVal = I.getCondition(); 1582 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1583 1584 // If this is a series of conditions that are or'd or and'd together, emit 1585 // this as a sequence of branches instead of setcc's with and/or operations. 1586 // As long as jumps are not expensive, this should improve performance. 1587 // For example, instead of something like: 1588 // cmp A, B 1589 // C = seteq 1590 // cmp D, E 1591 // F = setle 1592 // or C, F 1593 // jnz foo 1594 // Emit: 1595 // cmp A, B 1596 // je foo 1597 // cmp D, E 1598 // jle foo 1599 // 1600 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1601 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1602 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1603 BOp->getOpcode() == Instruction::Or)) { 1604 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1605 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1606 getEdgeWeight(BrMBB, Succ1MBB)); 1607 // If the compares in later blocks need to use values not currently 1608 // exported from this block, export them now. This block should always 1609 // be the first entry. 1610 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1611 1612 // Allow some cases to be rejected. 1613 if (ShouldEmitAsBranches(SwitchCases)) { 1614 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1615 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1616 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1617 } 1618 1619 // Emit the branch for this block. 1620 visitSwitchCase(SwitchCases[0], BrMBB); 1621 SwitchCases.erase(SwitchCases.begin()); 1622 return; 1623 } 1624 1625 // Okay, we decided not to do this, remove any inserted MBB's and clear 1626 // SwitchCases. 1627 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1628 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1629 1630 SwitchCases.clear(); 1631 } 1632 } 1633 1634 // Create a CaseBlock record representing this branch. 1635 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1636 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1637 1638 // Use visitSwitchCase to actually insert the fast branch sequence for this 1639 // cond branch. 1640 visitSwitchCase(CB, BrMBB); 1641 } 1642 1643 /// visitSwitchCase - Emits the necessary code to represent a single node in 1644 /// the binary search tree resulting from lowering a switch instruction. 1645 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1646 MachineBasicBlock *SwitchBB) { 1647 SDValue Cond; 1648 SDValue CondLHS = getValue(CB.CmpLHS); 1649 SDLoc dl = getCurSDLoc(); 1650 1651 // Build the setcc now. 1652 if (!CB.CmpMHS) { 1653 // Fold "(X == true)" to X and "(X == false)" to !X to 1654 // handle common cases produced by branch lowering. 1655 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1656 CB.CC == ISD::SETEQ) 1657 Cond = CondLHS; 1658 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1659 CB.CC == ISD::SETEQ) { 1660 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1661 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1662 } else 1663 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1664 } else { 1665 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1666 1667 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1668 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1669 1670 SDValue CmpOp = getValue(CB.CmpMHS); 1671 EVT VT = CmpOp.getValueType(); 1672 1673 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1674 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1675 ISD::SETLE); 1676 } else { 1677 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1678 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1679 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1680 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1681 } 1682 } 1683 1684 // Update successor info 1685 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1686 // TrueBB and FalseBB are always different unless the incoming IR is 1687 // degenerate. This only happens when running llc on weird IR. 1688 if (CB.TrueBB != CB.FalseBB) 1689 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1690 1691 // If the lhs block is the next block, invert the condition so that we can 1692 // fall through to the lhs instead of the rhs block. 1693 if (CB.TrueBB == NextBlock(SwitchBB)) { 1694 std::swap(CB.TrueBB, CB.FalseBB); 1695 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1696 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1697 } 1698 1699 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1700 MVT::Other, getControlRoot(), Cond, 1701 DAG.getBasicBlock(CB.TrueBB)); 1702 1703 // Insert the false branch. Do this even if it's a fall through branch, 1704 // this makes it easier to do DAG optimizations which require inverting 1705 // the branch condition. 1706 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1707 DAG.getBasicBlock(CB.FalseBB)); 1708 1709 DAG.setRoot(BrCond); 1710 } 1711 1712 /// visitJumpTable - Emit JumpTable node in the current MBB 1713 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1714 // Emit the code for the jump table 1715 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1716 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1717 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1718 JT.Reg, PTy); 1719 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1720 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1721 MVT::Other, Index.getValue(1), 1722 Table, Index); 1723 DAG.setRoot(BrJumpTable); 1724 } 1725 1726 /// visitJumpTableHeader - This function emits necessary code to produce index 1727 /// in the JumpTable from switch case. 1728 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1729 JumpTableHeader &JTH, 1730 MachineBasicBlock *SwitchBB) { 1731 SDLoc dl = getCurSDLoc(); 1732 1733 // Subtract the lowest switch case value from the value being switched on and 1734 // conditional branch to default mbb if the result is greater than the 1735 // difference between smallest and largest cases. 1736 SDValue SwitchOp = getValue(JTH.SValue); 1737 EVT VT = SwitchOp.getValueType(); 1738 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1739 DAG.getConstant(JTH.First, dl, VT)); 1740 1741 // The SDNode we just created, which holds the value being switched on minus 1742 // the smallest case value, needs to be copied to a virtual register so it 1743 // can be used as an index into the jump table in a subsequent basic block. 1744 // This value may be smaller or larger than the target's pointer type, and 1745 // therefore require extension or truncating. 1746 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1747 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1748 1749 unsigned JumpTableReg = 1750 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1751 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1752 JumpTableReg, SwitchOp); 1753 JT.Reg = JumpTableReg; 1754 1755 // Emit the range check for the jump table, and branch to the default block 1756 // for the switch statement if the value being switched on exceeds the largest 1757 // case in the switch. 1758 SDValue CMP = DAG.getSetCC( 1759 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1760 Sub.getValueType()), 1761 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1762 1763 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1764 MVT::Other, CopyTo, CMP, 1765 DAG.getBasicBlock(JT.Default)); 1766 1767 // Avoid emitting unnecessary branches to the next block. 1768 if (JT.MBB != NextBlock(SwitchBB)) 1769 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1770 DAG.getBasicBlock(JT.MBB)); 1771 1772 DAG.setRoot(BrCond); 1773 } 1774 1775 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1776 /// tail spliced into a stack protector check success bb. 1777 /// 1778 /// For a high level explanation of how this fits into the stack protector 1779 /// generation see the comment on the declaration of class 1780 /// StackProtectorDescriptor. 1781 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1782 MachineBasicBlock *ParentBB) { 1783 1784 // First create the loads to the guard/stack slot for the comparison. 1785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1786 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1787 1788 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1789 int FI = MFI->getStackProtectorIndex(); 1790 1791 const Value *IRGuard = SPD.getGuard(); 1792 SDValue GuardPtr = getValue(IRGuard); 1793 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1794 1795 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1796 1797 SDValue Guard; 1798 SDLoc dl = getCurSDLoc(); 1799 1800 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1801 // guard value from the virtual register holding the value. Otherwise, emit a 1802 // volatile load to retrieve the stack guard value. 1803 unsigned GuardReg = SPD.getGuardReg(); 1804 1805 if (GuardReg && TLI.useLoadStackGuardNode()) 1806 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1807 PtrTy); 1808 else 1809 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1810 GuardPtr, MachinePointerInfo(IRGuard, 0), 1811 true, false, false, Align); 1812 1813 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1814 StackSlotPtr, 1815 MachinePointerInfo::getFixedStack(FI), 1816 true, false, false, Align); 1817 1818 // Perform the comparison via a subtract/getsetcc. 1819 EVT VT = Guard.getValueType(); 1820 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1821 1822 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1823 *DAG.getContext(), 1824 Sub.getValueType()), 1825 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1826 1827 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1828 // branch to failure MBB. 1829 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1830 MVT::Other, StackSlot.getOperand(0), 1831 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1832 // Otherwise branch to success MBB. 1833 SDValue Br = DAG.getNode(ISD::BR, dl, 1834 MVT::Other, BrCond, 1835 DAG.getBasicBlock(SPD.getSuccessMBB())); 1836 1837 DAG.setRoot(Br); 1838 } 1839 1840 /// Codegen the failure basic block for a stack protector check. 1841 /// 1842 /// A failure stack protector machine basic block consists simply of a call to 1843 /// __stack_chk_fail(). 1844 /// 1845 /// For a high level explanation of how this fits into the stack protector 1846 /// generation see the comment on the declaration of class 1847 /// StackProtectorDescriptor. 1848 void 1849 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1850 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1851 SDValue Chain = 1852 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1853 nullptr, 0, false, getCurSDLoc(), false, false).second; 1854 DAG.setRoot(Chain); 1855 } 1856 1857 /// visitBitTestHeader - This function emits necessary code to produce value 1858 /// suitable for "bit tests" 1859 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1860 MachineBasicBlock *SwitchBB) { 1861 SDLoc dl = getCurSDLoc(); 1862 1863 // Subtract the minimum value 1864 SDValue SwitchOp = getValue(B.SValue); 1865 EVT VT = SwitchOp.getValueType(); 1866 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1867 DAG.getConstant(B.First, dl, VT)); 1868 1869 // Check range 1870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1871 SDValue RangeCmp = DAG.getSetCC( 1872 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1873 Sub.getValueType()), 1874 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1875 1876 // Determine the type of the test operands. 1877 bool UsePtrType = false; 1878 if (!TLI.isTypeLegal(VT)) 1879 UsePtrType = true; 1880 else { 1881 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1882 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1883 // Switch table case range are encoded into series of masks. 1884 // Just use pointer type, it's guaranteed to fit. 1885 UsePtrType = true; 1886 break; 1887 } 1888 } 1889 if (UsePtrType) { 1890 VT = TLI.getPointerTy(DAG.getDataLayout()); 1891 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1892 } 1893 1894 B.RegVT = VT.getSimpleVT(); 1895 B.Reg = FuncInfo.CreateReg(B.RegVT); 1896 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1897 1898 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1899 1900 addSuccessorWithWeight(SwitchBB, B.Default); 1901 addSuccessorWithWeight(SwitchBB, MBB); 1902 1903 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1904 MVT::Other, CopyTo, RangeCmp, 1905 DAG.getBasicBlock(B.Default)); 1906 1907 // Avoid emitting unnecessary branches to the next block. 1908 if (MBB != NextBlock(SwitchBB)) 1909 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1910 DAG.getBasicBlock(MBB)); 1911 1912 DAG.setRoot(BrRange); 1913 } 1914 1915 /// visitBitTestCase - this function produces one "bit test" 1916 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1917 MachineBasicBlock* NextMBB, 1918 uint32_t BranchWeightToNext, 1919 unsigned Reg, 1920 BitTestCase &B, 1921 MachineBasicBlock *SwitchBB) { 1922 SDLoc dl = getCurSDLoc(); 1923 MVT VT = BB.RegVT; 1924 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1925 SDValue Cmp; 1926 unsigned PopCount = countPopulation(B.Mask); 1927 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1928 if (PopCount == 1) { 1929 // Testing for a single bit; just compare the shift count with what it 1930 // would need to be to shift a 1 bit in that position. 1931 Cmp = DAG.getSetCC( 1932 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1933 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 1934 ISD::SETEQ); 1935 } else if (PopCount == BB.Range) { 1936 // There is only one zero bit in the range, test for it directly. 1937 Cmp = DAG.getSetCC( 1938 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1939 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 1940 ISD::SETNE); 1941 } else { 1942 // Make desired shift 1943 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1944 DAG.getConstant(1, dl, VT), ShiftOp); 1945 1946 // Emit bit tests and jumps 1947 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1948 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1949 Cmp = DAG.getSetCC( 1950 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 1951 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 1952 } 1953 1954 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1955 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1956 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1957 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1958 1959 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1960 MVT::Other, getControlRoot(), 1961 Cmp, DAG.getBasicBlock(B.TargetBB)); 1962 1963 // Avoid emitting unnecessary branches to the next block. 1964 if (NextMBB != NextBlock(SwitchBB)) 1965 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1966 DAG.getBasicBlock(NextMBB)); 1967 1968 DAG.setRoot(BrAnd); 1969 } 1970 1971 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1972 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1973 1974 // Retrieve successors. 1975 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1976 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1977 1978 const Value *Callee(I.getCalledValue()); 1979 const Function *Fn = dyn_cast<Function>(Callee); 1980 if (isa<InlineAsm>(Callee)) 1981 visitInlineAsm(&I); 1982 else if (Fn && Fn->isIntrinsic()) { 1983 switch (Fn->getIntrinsicID()) { 1984 default: 1985 llvm_unreachable("Cannot invoke this intrinsic"); 1986 case Intrinsic::donothing: 1987 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1988 break; 1989 case Intrinsic::experimental_patchpoint_void: 1990 case Intrinsic::experimental_patchpoint_i64: 1991 visitPatchpoint(&I, LandingPad); 1992 break; 1993 case Intrinsic::experimental_gc_statepoint: 1994 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 1995 break; 1996 } 1997 } else 1998 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1999 2000 // If the value of the invoke is used outside of its defining block, make it 2001 // available as a virtual register. 2002 // We already took care of the exported value for the statepoint instruction 2003 // during call to the LowerStatepoint. 2004 if (!isStatepoint(I)) { 2005 CopyToExportRegsIfNeeded(&I); 2006 } 2007 2008 // Update successor info 2009 addSuccessorWithWeight(InvokeMBB, Return); 2010 addSuccessorWithWeight(InvokeMBB, LandingPad); 2011 2012 // Drop into normal successor. 2013 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2014 MVT::Other, getControlRoot(), 2015 DAG.getBasicBlock(Return))); 2016 } 2017 2018 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2019 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2020 } 2021 2022 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2023 assert(FuncInfo.MBB->isLandingPad() && 2024 "Call to landingpad not in landing pad!"); 2025 2026 MachineBasicBlock *MBB = FuncInfo.MBB; 2027 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2028 AddLandingPadInfo(LP, MMI, MBB); 2029 2030 // If there aren't registers to copy the values into (e.g., during SjLj 2031 // exceptions), then don't bother to create these DAG nodes. 2032 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2033 if (TLI.getExceptionPointerRegister() == 0 && 2034 TLI.getExceptionSelectorRegister() == 0) 2035 return; 2036 2037 SmallVector<EVT, 2> ValueVTs; 2038 SDLoc dl = getCurSDLoc(); 2039 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2040 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2041 2042 // Get the two live-in registers as SDValues. The physregs have already been 2043 // copied into virtual registers. 2044 SDValue Ops[2]; 2045 if (FuncInfo.ExceptionPointerVirtReg) { 2046 Ops[0] = DAG.getZExtOrTrunc( 2047 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2048 FuncInfo.ExceptionPointerVirtReg, 2049 TLI.getPointerTy(DAG.getDataLayout())), 2050 dl, ValueVTs[0]); 2051 } else { 2052 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2053 } 2054 Ops[1] = DAG.getZExtOrTrunc( 2055 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2056 FuncInfo.ExceptionSelectorVirtReg, 2057 TLI.getPointerTy(DAG.getDataLayout())), 2058 dl, ValueVTs[1]); 2059 2060 // Merge into one. 2061 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2062 DAG.getVTList(ValueVTs), Ops); 2063 setValue(&LP, Res); 2064 } 2065 2066 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2067 #ifndef NDEBUG 2068 for (const CaseCluster &CC : Clusters) 2069 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2070 #endif 2071 2072 std::sort(Clusters.begin(), Clusters.end(), 2073 [](const CaseCluster &a, const CaseCluster &b) { 2074 return a.Low->getValue().slt(b.Low->getValue()); 2075 }); 2076 2077 // Merge adjacent clusters with the same destination. 2078 const unsigned N = Clusters.size(); 2079 unsigned DstIndex = 0; 2080 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2081 CaseCluster &CC = Clusters[SrcIndex]; 2082 const ConstantInt *CaseVal = CC.Low; 2083 MachineBasicBlock *Succ = CC.MBB; 2084 2085 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2086 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2087 // If this case has the same successor and is a neighbour, merge it into 2088 // the previous cluster. 2089 Clusters[DstIndex - 1].High = CaseVal; 2090 Clusters[DstIndex - 1].Weight += CC.Weight; 2091 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2092 } else { 2093 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2094 sizeof(Clusters[SrcIndex])); 2095 } 2096 } 2097 Clusters.resize(DstIndex); 2098 } 2099 2100 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2101 MachineBasicBlock *Last) { 2102 // Update JTCases. 2103 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2104 if (JTCases[i].first.HeaderBB == First) 2105 JTCases[i].first.HeaderBB = Last; 2106 2107 // Update BitTestCases. 2108 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2109 if (BitTestCases[i].Parent == First) 2110 BitTestCases[i].Parent = Last; 2111 } 2112 2113 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2114 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2115 2116 // Update machine-CFG edges with unique successors. 2117 SmallSet<BasicBlock*, 32> Done; 2118 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2119 BasicBlock *BB = I.getSuccessor(i); 2120 bool Inserted = Done.insert(BB).second; 2121 if (!Inserted) 2122 continue; 2123 2124 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2125 addSuccessorWithWeight(IndirectBrMBB, Succ); 2126 } 2127 2128 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2129 MVT::Other, getControlRoot(), 2130 getValue(I.getAddress()))); 2131 } 2132 2133 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2134 if (DAG.getTarget().Options.TrapUnreachable) 2135 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2136 } 2137 2138 void SelectionDAGBuilder::visitFSub(const User &I) { 2139 // -0.0 - X --> fneg 2140 Type *Ty = I.getType(); 2141 if (isa<Constant>(I.getOperand(0)) && 2142 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2143 SDValue Op2 = getValue(I.getOperand(1)); 2144 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2145 Op2.getValueType(), Op2)); 2146 return; 2147 } 2148 2149 visitBinary(I, ISD::FSUB); 2150 } 2151 2152 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2153 SDValue Op1 = getValue(I.getOperand(0)); 2154 SDValue Op2 = getValue(I.getOperand(1)); 2155 2156 bool nuw = false; 2157 bool nsw = false; 2158 bool exact = false; 2159 FastMathFlags FMF; 2160 2161 if (const OverflowingBinaryOperator *OFBinOp = 2162 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2163 nuw = OFBinOp->hasNoUnsignedWrap(); 2164 nsw = OFBinOp->hasNoSignedWrap(); 2165 } 2166 if (const PossiblyExactOperator *ExactOp = 2167 dyn_cast<const PossiblyExactOperator>(&I)) 2168 exact = ExactOp->isExact(); 2169 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2170 FMF = FPOp->getFastMathFlags(); 2171 2172 SDNodeFlags Flags; 2173 Flags.setExact(exact); 2174 Flags.setNoSignedWrap(nsw); 2175 Flags.setNoUnsignedWrap(nuw); 2176 if (EnableFMFInDAG) { 2177 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2178 Flags.setNoInfs(FMF.noInfs()); 2179 Flags.setNoNaNs(FMF.noNaNs()); 2180 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2181 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2182 } 2183 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2184 Op1, Op2, &Flags); 2185 setValue(&I, BinNodeValue); 2186 } 2187 2188 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2189 SDValue Op1 = getValue(I.getOperand(0)); 2190 SDValue Op2 = getValue(I.getOperand(1)); 2191 2192 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2193 Op2.getValueType(), DAG.getDataLayout()); 2194 2195 // Coerce the shift amount to the right type if we can. 2196 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2197 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2198 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2199 SDLoc DL = getCurSDLoc(); 2200 2201 // If the operand is smaller than the shift count type, promote it. 2202 if (ShiftSize > Op2Size) 2203 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2204 2205 // If the operand is larger than the shift count type but the shift 2206 // count type has enough bits to represent any shift value, truncate 2207 // it now. This is a common case and it exposes the truncate to 2208 // optimization early. 2209 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2210 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2211 // Otherwise we'll need to temporarily settle for some other convenient 2212 // type. Type legalization will make adjustments once the shiftee is split. 2213 else 2214 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2215 } 2216 2217 bool nuw = false; 2218 bool nsw = false; 2219 bool exact = false; 2220 2221 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2222 2223 if (const OverflowingBinaryOperator *OFBinOp = 2224 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2225 nuw = OFBinOp->hasNoUnsignedWrap(); 2226 nsw = OFBinOp->hasNoSignedWrap(); 2227 } 2228 if (const PossiblyExactOperator *ExactOp = 2229 dyn_cast<const PossiblyExactOperator>(&I)) 2230 exact = ExactOp->isExact(); 2231 } 2232 SDNodeFlags Flags; 2233 Flags.setExact(exact); 2234 Flags.setNoSignedWrap(nsw); 2235 Flags.setNoUnsignedWrap(nuw); 2236 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2237 &Flags); 2238 setValue(&I, Res); 2239 } 2240 2241 void SelectionDAGBuilder::visitSDiv(const User &I) { 2242 SDValue Op1 = getValue(I.getOperand(0)); 2243 SDValue Op2 = getValue(I.getOperand(1)); 2244 2245 SDNodeFlags Flags; 2246 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2247 cast<PossiblyExactOperator>(&I)->isExact()); 2248 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2249 Op2, &Flags)); 2250 } 2251 2252 void SelectionDAGBuilder::visitICmp(const User &I) { 2253 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2254 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2255 predicate = IC->getPredicate(); 2256 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2257 predicate = ICmpInst::Predicate(IC->getPredicate()); 2258 SDValue Op1 = getValue(I.getOperand(0)); 2259 SDValue Op2 = getValue(I.getOperand(1)); 2260 ISD::CondCode Opcode = getICmpCondCode(predicate); 2261 2262 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2263 I.getType()); 2264 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2265 } 2266 2267 void SelectionDAGBuilder::visitFCmp(const User &I) { 2268 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2269 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2270 predicate = FC->getPredicate(); 2271 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2272 predicate = FCmpInst::Predicate(FC->getPredicate()); 2273 SDValue Op1 = getValue(I.getOperand(0)); 2274 SDValue Op2 = getValue(I.getOperand(1)); 2275 ISD::CondCode Condition = getFCmpCondCode(predicate); 2276 if (TM.Options.NoNaNsFPMath) 2277 Condition = getFCmpCodeWithoutNaN(Condition); 2278 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2279 I.getType()); 2280 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2281 } 2282 2283 void SelectionDAGBuilder::visitSelect(const User &I) { 2284 SmallVector<EVT, 4> ValueVTs; 2285 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2286 ValueVTs); 2287 unsigned NumValues = ValueVTs.size(); 2288 if (NumValues == 0) return; 2289 2290 SmallVector<SDValue, 4> Values(NumValues); 2291 SDValue Cond = getValue(I.getOperand(0)); 2292 SDValue LHSVal = getValue(I.getOperand(1)); 2293 SDValue RHSVal = getValue(I.getOperand(2)); 2294 auto BaseOps = {Cond}; 2295 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2296 ISD::VSELECT : ISD::SELECT; 2297 2298 // Min/max matching is only viable if all output VTs are the same. 2299 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2300 Value *LHS, *RHS; 2301 SelectPatternFlavor SPF = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2302 ISD::NodeType Opc = ISD::DELETED_NODE; 2303 switch (SPF) { 2304 case SPF_UMAX: Opc = ISD::UMAX; break; 2305 case SPF_UMIN: Opc = ISD::UMIN; break; 2306 case SPF_SMAX: Opc = ISD::SMAX; break; 2307 case SPF_SMIN: Opc = ISD::SMIN; break; 2308 default: break; 2309 } 2310 2311 EVT VT = ValueVTs[0]; 2312 LLVMContext &Ctx = *DAG.getContext(); 2313 auto &TLI = DAG.getTargetLoweringInfo(); 2314 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2315 VT = TLI.getTypeToTransformTo(Ctx, VT); 2316 2317 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2318 // If the underlying comparison instruction is used by any other instruction, 2319 // the consumed instructions won't be destroyed, so it is not profitable 2320 // to convert to a min/max. 2321 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2322 OpCode = Opc; 2323 LHSVal = getValue(LHS); 2324 RHSVal = getValue(RHS); 2325 BaseOps = {}; 2326 } 2327 } 2328 2329 for (unsigned i = 0; i != NumValues; ++i) { 2330 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2331 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2332 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2333 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2334 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2335 Ops); 2336 } 2337 2338 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2339 DAG.getVTList(ValueVTs), Values)); 2340 } 2341 2342 void SelectionDAGBuilder::visitTrunc(const User &I) { 2343 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2344 SDValue N = getValue(I.getOperand(0)); 2345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2346 I.getType()); 2347 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2348 } 2349 2350 void SelectionDAGBuilder::visitZExt(const User &I) { 2351 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2352 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2353 SDValue N = getValue(I.getOperand(0)); 2354 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2355 I.getType()); 2356 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2357 } 2358 2359 void SelectionDAGBuilder::visitSExt(const User &I) { 2360 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2361 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2362 SDValue N = getValue(I.getOperand(0)); 2363 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2364 I.getType()); 2365 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2366 } 2367 2368 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2369 // FPTrunc is never a no-op cast, no need to check 2370 SDValue N = getValue(I.getOperand(0)); 2371 SDLoc dl = getCurSDLoc(); 2372 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2373 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2374 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2375 DAG.getTargetConstant( 2376 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2377 } 2378 2379 void SelectionDAGBuilder::visitFPExt(const User &I) { 2380 // FPExt is never a no-op cast, no need to check 2381 SDValue N = getValue(I.getOperand(0)); 2382 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2383 I.getType()); 2384 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2385 } 2386 2387 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2388 // FPToUI is never a no-op cast, no need to check 2389 SDValue N = getValue(I.getOperand(0)); 2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2391 I.getType()); 2392 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2393 } 2394 2395 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2396 // FPToSI is never a no-op cast, no need to check 2397 SDValue N = getValue(I.getOperand(0)); 2398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2399 I.getType()); 2400 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2401 } 2402 2403 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2404 // UIToFP is never a no-op cast, no need to check 2405 SDValue N = getValue(I.getOperand(0)); 2406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2407 I.getType()); 2408 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2409 } 2410 2411 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2412 // SIToFP is never a no-op cast, no need to check 2413 SDValue N = getValue(I.getOperand(0)); 2414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2415 I.getType()); 2416 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2417 } 2418 2419 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2420 // What to do depends on the size of the integer and the size of the pointer. 2421 // We can either truncate, zero extend, or no-op, accordingly. 2422 SDValue N = getValue(I.getOperand(0)); 2423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2424 I.getType()); 2425 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2426 } 2427 2428 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2429 // What to do depends on the size of the integer and the size of the pointer. 2430 // We can either truncate, zero extend, or no-op, accordingly. 2431 SDValue N = getValue(I.getOperand(0)); 2432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2433 I.getType()); 2434 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2435 } 2436 2437 void SelectionDAGBuilder::visitBitCast(const User &I) { 2438 SDValue N = getValue(I.getOperand(0)); 2439 SDLoc dl = getCurSDLoc(); 2440 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2441 I.getType()); 2442 2443 // BitCast assures us that source and destination are the same size so this is 2444 // either a BITCAST or a no-op. 2445 if (DestVT != N.getValueType()) 2446 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2447 DestVT, N)); // convert types. 2448 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2449 // might fold any kind of constant expression to an integer constant and that 2450 // is not what we are looking for. Only regcognize a bitcast of a genuine 2451 // constant integer as an opaque constant. 2452 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2453 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2454 /*isOpaque*/true)); 2455 else 2456 setValue(&I, N); // noop cast. 2457 } 2458 2459 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2461 const Value *SV = I.getOperand(0); 2462 SDValue N = getValue(SV); 2463 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2464 2465 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2466 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2467 2468 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2469 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2470 2471 setValue(&I, N); 2472 } 2473 2474 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2476 SDValue InVec = getValue(I.getOperand(0)); 2477 SDValue InVal = getValue(I.getOperand(1)); 2478 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2479 TLI.getVectorIdxTy(DAG.getDataLayout())); 2480 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2481 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2482 InVec, InVal, InIdx)); 2483 } 2484 2485 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2487 SDValue InVec = getValue(I.getOperand(0)); 2488 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2489 TLI.getVectorIdxTy(DAG.getDataLayout())); 2490 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2491 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2492 InVec, InIdx)); 2493 } 2494 2495 // Utility for visitShuffleVector - Return true if every element in Mask, 2496 // beginning from position Pos and ending in Pos+Size, falls within the 2497 // specified sequential range [L, L+Pos). or is undef. 2498 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2499 unsigned Pos, unsigned Size, int Low) { 2500 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2501 if (Mask[i] >= 0 && Mask[i] != Low) 2502 return false; 2503 return true; 2504 } 2505 2506 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2507 SDValue Src1 = getValue(I.getOperand(0)); 2508 SDValue Src2 = getValue(I.getOperand(1)); 2509 2510 SmallVector<int, 8> Mask; 2511 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2512 unsigned MaskNumElts = Mask.size(); 2513 2514 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2515 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2516 EVT SrcVT = Src1.getValueType(); 2517 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2518 2519 if (SrcNumElts == MaskNumElts) { 2520 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2521 &Mask[0])); 2522 return; 2523 } 2524 2525 // Normalize the shuffle vector since mask and vector length don't match. 2526 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2527 // Mask is longer than the source vectors and is a multiple of the source 2528 // vectors. We can use concatenate vector to make the mask and vectors 2529 // lengths match. 2530 if (SrcNumElts*2 == MaskNumElts) { 2531 // First check for Src1 in low and Src2 in high 2532 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2533 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2534 // The shuffle is concatenating two vectors together. 2535 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2536 VT, Src1, Src2)); 2537 return; 2538 } 2539 // Then check for Src2 in low and Src1 in high 2540 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2541 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2542 // The shuffle is concatenating two vectors together. 2543 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2544 VT, Src2, Src1)); 2545 return; 2546 } 2547 } 2548 2549 // Pad both vectors with undefs to make them the same length as the mask. 2550 unsigned NumConcat = MaskNumElts / SrcNumElts; 2551 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2552 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2553 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2554 2555 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2556 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2557 MOps1[0] = Src1; 2558 MOps2[0] = Src2; 2559 2560 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2561 getCurSDLoc(), VT, MOps1); 2562 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2563 getCurSDLoc(), VT, MOps2); 2564 2565 // Readjust mask for new input vector length. 2566 SmallVector<int, 8> MappedOps; 2567 for (unsigned i = 0; i != MaskNumElts; ++i) { 2568 int Idx = Mask[i]; 2569 if (Idx >= (int)SrcNumElts) 2570 Idx -= SrcNumElts - MaskNumElts; 2571 MappedOps.push_back(Idx); 2572 } 2573 2574 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2575 &MappedOps[0])); 2576 return; 2577 } 2578 2579 if (SrcNumElts > MaskNumElts) { 2580 // Analyze the access pattern of the vector to see if we can extract 2581 // two subvectors and do the shuffle. The analysis is done by calculating 2582 // the range of elements the mask access on both vectors. 2583 int MinRange[2] = { static_cast<int>(SrcNumElts), 2584 static_cast<int>(SrcNumElts)}; 2585 int MaxRange[2] = {-1, -1}; 2586 2587 for (unsigned i = 0; i != MaskNumElts; ++i) { 2588 int Idx = Mask[i]; 2589 unsigned Input = 0; 2590 if (Idx < 0) 2591 continue; 2592 2593 if (Idx >= (int)SrcNumElts) { 2594 Input = 1; 2595 Idx -= SrcNumElts; 2596 } 2597 if (Idx > MaxRange[Input]) 2598 MaxRange[Input] = Idx; 2599 if (Idx < MinRange[Input]) 2600 MinRange[Input] = Idx; 2601 } 2602 2603 // Check if the access is smaller than the vector size and can we find 2604 // a reasonable extract index. 2605 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2606 // Extract. 2607 int StartIdx[2]; // StartIdx to extract from 2608 for (unsigned Input = 0; Input < 2; ++Input) { 2609 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2610 RangeUse[Input] = 0; // Unused 2611 StartIdx[Input] = 0; 2612 continue; 2613 } 2614 2615 // Find a good start index that is a multiple of the mask length. Then 2616 // see if the rest of the elements are in range. 2617 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2618 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2619 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2620 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2621 } 2622 2623 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2624 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2625 return; 2626 } 2627 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2628 // Extract appropriate subvector and generate a vector shuffle 2629 for (unsigned Input = 0; Input < 2; ++Input) { 2630 SDValue &Src = Input == 0 ? Src1 : Src2; 2631 if (RangeUse[Input] == 0) 2632 Src = DAG.getUNDEF(VT); 2633 else { 2634 SDLoc dl = getCurSDLoc(); 2635 Src = DAG.getNode( 2636 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2637 DAG.getConstant(StartIdx[Input], dl, 2638 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2639 } 2640 } 2641 2642 // Calculate new mask. 2643 SmallVector<int, 8> MappedOps; 2644 for (unsigned i = 0; i != MaskNumElts; ++i) { 2645 int Idx = Mask[i]; 2646 if (Idx >= 0) { 2647 if (Idx < (int)SrcNumElts) 2648 Idx -= StartIdx[0]; 2649 else 2650 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2651 } 2652 MappedOps.push_back(Idx); 2653 } 2654 2655 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2656 &MappedOps[0])); 2657 return; 2658 } 2659 } 2660 2661 // We can't use either concat vectors or extract subvectors so fall back to 2662 // replacing the shuffle with extract and build vector. 2663 // to insert and build vector. 2664 EVT EltVT = VT.getVectorElementType(); 2665 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2666 SDLoc dl = getCurSDLoc(); 2667 SmallVector<SDValue,8> Ops; 2668 for (unsigned i = 0; i != MaskNumElts; ++i) { 2669 int Idx = Mask[i]; 2670 SDValue Res; 2671 2672 if (Idx < 0) { 2673 Res = DAG.getUNDEF(EltVT); 2674 } else { 2675 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2676 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2677 2678 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2679 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2680 } 2681 2682 Ops.push_back(Res); 2683 } 2684 2685 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2686 } 2687 2688 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2689 const Value *Op0 = I.getOperand(0); 2690 const Value *Op1 = I.getOperand(1); 2691 Type *AggTy = I.getType(); 2692 Type *ValTy = Op1->getType(); 2693 bool IntoUndef = isa<UndefValue>(Op0); 2694 bool FromUndef = isa<UndefValue>(Op1); 2695 2696 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2697 2698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2699 SmallVector<EVT, 4> AggValueVTs; 2700 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2701 SmallVector<EVT, 4> ValValueVTs; 2702 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2703 2704 unsigned NumAggValues = AggValueVTs.size(); 2705 unsigned NumValValues = ValValueVTs.size(); 2706 SmallVector<SDValue, 4> Values(NumAggValues); 2707 2708 // Ignore an insertvalue that produces an empty object 2709 if (!NumAggValues) { 2710 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2711 return; 2712 } 2713 2714 SDValue Agg = getValue(Op0); 2715 unsigned i = 0; 2716 // Copy the beginning value(s) from the original aggregate. 2717 for (; i != LinearIndex; ++i) 2718 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2719 SDValue(Agg.getNode(), Agg.getResNo() + i); 2720 // Copy values from the inserted value(s). 2721 if (NumValValues) { 2722 SDValue Val = getValue(Op1); 2723 for (; i != LinearIndex + NumValValues; ++i) 2724 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2725 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2726 } 2727 // Copy remaining value(s) from the original aggregate. 2728 for (; i != NumAggValues; ++i) 2729 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2730 SDValue(Agg.getNode(), Agg.getResNo() + i); 2731 2732 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2733 DAG.getVTList(AggValueVTs), Values)); 2734 } 2735 2736 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2737 const Value *Op0 = I.getOperand(0); 2738 Type *AggTy = Op0->getType(); 2739 Type *ValTy = I.getType(); 2740 bool OutOfUndef = isa<UndefValue>(Op0); 2741 2742 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2743 2744 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2745 SmallVector<EVT, 4> ValValueVTs; 2746 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2747 2748 unsigned NumValValues = ValValueVTs.size(); 2749 2750 // Ignore a extractvalue that produces an empty object 2751 if (!NumValValues) { 2752 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2753 return; 2754 } 2755 2756 SmallVector<SDValue, 4> Values(NumValValues); 2757 2758 SDValue Agg = getValue(Op0); 2759 // Copy out the selected value(s). 2760 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2761 Values[i - LinearIndex] = 2762 OutOfUndef ? 2763 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2764 SDValue(Agg.getNode(), Agg.getResNo() + i); 2765 2766 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2767 DAG.getVTList(ValValueVTs), Values)); 2768 } 2769 2770 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2771 Value *Op0 = I.getOperand(0); 2772 // Note that the pointer operand may be a vector of pointers. Take the scalar 2773 // element which holds a pointer. 2774 Type *Ty = Op0->getType()->getScalarType(); 2775 unsigned AS = Ty->getPointerAddressSpace(); 2776 SDValue N = getValue(Op0); 2777 SDLoc dl = getCurSDLoc(); 2778 2779 // Normalize Vector GEP - all scalar operands should be converted to the 2780 // splat vector. 2781 unsigned VectorWidth = I.getType()->isVectorTy() ? 2782 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2783 2784 if (VectorWidth && !N.getValueType().isVector()) { 2785 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2786 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2787 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2788 } 2789 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2790 OI != E; ++OI) { 2791 const Value *Idx = *OI; 2792 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2793 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2794 if (Field) { 2795 // N = N + Offset 2796 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2797 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2798 DAG.getConstant(Offset, dl, N.getValueType())); 2799 } 2800 2801 Ty = StTy->getElementType(Field); 2802 } else { 2803 Ty = cast<SequentialType>(Ty)->getElementType(); 2804 MVT PtrTy = 2805 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2806 unsigned PtrSize = PtrTy.getSizeInBits(); 2807 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2808 2809 // If this is a scalar constant or a splat vector of constants, 2810 // handle it quickly. 2811 const auto *CI = dyn_cast<ConstantInt>(Idx); 2812 if (!CI && isa<ConstantDataVector>(Idx) && 2813 cast<ConstantDataVector>(Idx)->getSplatValue()) 2814 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2815 2816 if (CI) { 2817 if (CI->isZero()) 2818 continue; 2819 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2820 SDValue OffsVal = VectorWidth ? 2821 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2822 DAG.getConstant(Offs, dl, PtrTy); 2823 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2824 continue; 2825 } 2826 2827 // N = N + Idx * ElementSize; 2828 SDValue IdxN = getValue(Idx); 2829 2830 if (!IdxN.getValueType().isVector() && VectorWidth) { 2831 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 2832 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 2833 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2834 } 2835 // If the index is smaller or larger than intptr_t, truncate or extend 2836 // it. 2837 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2838 2839 // If this is a multiply by a power of two, turn it into a shl 2840 // immediately. This is a very common case. 2841 if (ElementSize != 1) { 2842 if (ElementSize.isPowerOf2()) { 2843 unsigned Amt = ElementSize.logBase2(); 2844 IdxN = DAG.getNode(ISD::SHL, dl, 2845 N.getValueType(), IdxN, 2846 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2847 } else { 2848 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2849 IdxN = DAG.getNode(ISD::MUL, dl, 2850 N.getValueType(), IdxN, Scale); 2851 } 2852 } 2853 2854 N = DAG.getNode(ISD::ADD, dl, 2855 N.getValueType(), N, IdxN); 2856 } 2857 } 2858 2859 setValue(&I, N); 2860 } 2861 2862 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2863 // If this is a fixed sized alloca in the entry block of the function, 2864 // allocate it statically on the stack. 2865 if (FuncInfo.StaticAllocaMap.count(&I)) 2866 return; // getValue will auto-populate this. 2867 2868 SDLoc dl = getCurSDLoc(); 2869 Type *Ty = I.getAllocatedType(); 2870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2871 auto &DL = DAG.getDataLayout(); 2872 uint64_t TySize = DL.getTypeAllocSize(Ty); 2873 unsigned Align = 2874 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 2875 2876 SDValue AllocSize = getValue(I.getArraySize()); 2877 2878 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 2879 if (AllocSize.getValueType() != IntPtr) 2880 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2881 2882 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2883 AllocSize, 2884 DAG.getConstant(TySize, dl, IntPtr)); 2885 2886 // Handle alignment. If the requested alignment is less than or equal to 2887 // the stack alignment, ignore it. If the size is greater than or equal to 2888 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2889 unsigned StackAlign = 2890 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2891 if (Align <= StackAlign) 2892 Align = 0; 2893 2894 // Round the size of the allocation up to the stack alignment size 2895 // by add SA-1 to the size. 2896 AllocSize = DAG.getNode(ISD::ADD, dl, 2897 AllocSize.getValueType(), AllocSize, 2898 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2899 2900 // Mask out the low bits for alignment purposes. 2901 AllocSize = DAG.getNode(ISD::AND, dl, 2902 AllocSize.getValueType(), AllocSize, 2903 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2904 dl)); 2905 2906 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2907 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2908 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2909 setValue(&I, DSA); 2910 DAG.setRoot(DSA.getValue(1)); 2911 2912 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2913 } 2914 2915 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2916 if (I.isAtomic()) 2917 return visitAtomicLoad(I); 2918 2919 const Value *SV = I.getOperand(0); 2920 SDValue Ptr = getValue(SV); 2921 2922 Type *Ty = I.getType(); 2923 2924 bool isVolatile = I.isVolatile(); 2925 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2926 2927 // The IR notion of invariant_load only guarantees that all *non-faulting* 2928 // invariant loads result in the same value. The MI notion of invariant load 2929 // guarantees that the load can be legally moved to any location within its 2930 // containing function. The MI notion of invariant_load is stronger than the 2931 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 2932 // with a guarantee that the location being loaded from is dereferenceable 2933 // throughout the function's lifetime. 2934 2935 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 2936 isDereferenceablePointer(SV, DAG.getDataLayout()); 2937 unsigned Alignment = I.getAlignment(); 2938 2939 AAMDNodes AAInfo; 2940 I.getAAMetadata(AAInfo); 2941 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2942 2943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2944 SmallVector<EVT, 4> ValueVTs; 2945 SmallVector<uint64_t, 4> Offsets; 2946 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 2947 unsigned NumValues = ValueVTs.size(); 2948 if (NumValues == 0) 2949 return; 2950 2951 SDValue Root; 2952 bool ConstantMemory = false; 2953 if (isVolatile || NumValues > MaxParallelChains) 2954 // Serialize volatile loads with other side effects. 2955 Root = getRoot(); 2956 else if (AA->pointsToConstantMemory(MemoryLocation( 2957 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 2958 // Do not serialize (non-volatile) loads of constant memory with anything. 2959 Root = DAG.getEntryNode(); 2960 ConstantMemory = true; 2961 } else { 2962 // Do not serialize non-volatile loads against each other. 2963 Root = DAG.getRoot(); 2964 } 2965 2966 SDLoc dl = getCurSDLoc(); 2967 2968 if (isVolatile) 2969 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2970 2971 SmallVector<SDValue, 4> Values(NumValues); 2972 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 2973 EVT PtrVT = Ptr.getValueType(); 2974 unsigned ChainI = 0; 2975 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2976 // Serializing loads here may result in excessive register pressure, and 2977 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2978 // could recover a bit by hoisting nodes upward in the chain by recognizing 2979 // they are side-effect free or do not alias. The optimizer should really 2980 // avoid this case by converting large object/array copies to llvm.memcpy 2981 // (MaxParallelChains should always remain as failsafe). 2982 if (ChainI == MaxParallelChains) { 2983 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2984 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2985 makeArrayRef(Chains.data(), ChainI)); 2986 Root = Chain; 2987 ChainI = 0; 2988 } 2989 SDValue A = DAG.getNode(ISD::ADD, dl, 2990 PtrVT, Ptr, 2991 DAG.getConstant(Offsets[i], dl, PtrVT)); 2992 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2993 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2994 isNonTemporal, isInvariant, Alignment, AAInfo, 2995 Ranges); 2996 2997 Values[i] = L; 2998 Chains[ChainI] = L.getValue(1); 2999 } 3000 3001 if (!ConstantMemory) { 3002 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3003 makeArrayRef(Chains.data(), ChainI)); 3004 if (isVolatile) 3005 DAG.setRoot(Chain); 3006 else 3007 PendingLoads.push_back(Chain); 3008 } 3009 3010 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3011 DAG.getVTList(ValueVTs), Values)); 3012 } 3013 3014 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3015 if (I.isAtomic()) 3016 return visitAtomicStore(I); 3017 3018 const Value *SrcV = I.getOperand(0); 3019 const Value *PtrV = I.getOperand(1); 3020 3021 SmallVector<EVT, 4> ValueVTs; 3022 SmallVector<uint64_t, 4> Offsets; 3023 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3024 SrcV->getType(), ValueVTs, &Offsets); 3025 unsigned NumValues = ValueVTs.size(); 3026 if (NumValues == 0) 3027 return; 3028 3029 // Get the lowered operands. Note that we do this after 3030 // checking if NumResults is zero, because with zero results 3031 // the operands won't have values in the map. 3032 SDValue Src = getValue(SrcV); 3033 SDValue Ptr = getValue(PtrV); 3034 3035 SDValue Root = getRoot(); 3036 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3037 EVT PtrVT = Ptr.getValueType(); 3038 bool isVolatile = I.isVolatile(); 3039 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3040 unsigned Alignment = I.getAlignment(); 3041 SDLoc dl = getCurSDLoc(); 3042 3043 AAMDNodes AAInfo; 3044 I.getAAMetadata(AAInfo); 3045 3046 unsigned ChainI = 0; 3047 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3048 // See visitLoad comments. 3049 if (ChainI == MaxParallelChains) { 3050 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3051 makeArrayRef(Chains.data(), ChainI)); 3052 Root = Chain; 3053 ChainI = 0; 3054 } 3055 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3056 DAG.getConstant(Offsets[i], dl, PtrVT)); 3057 SDValue St = DAG.getStore(Root, dl, 3058 SDValue(Src.getNode(), Src.getResNo() + i), 3059 Add, MachinePointerInfo(PtrV, Offsets[i]), 3060 isVolatile, isNonTemporal, Alignment, AAInfo); 3061 Chains[ChainI] = St; 3062 } 3063 3064 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3065 makeArrayRef(Chains.data(), ChainI)); 3066 DAG.setRoot(StoreNode); 3067 } 3068 3069 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3070 SDLoc sdl = getCurSDLoc(); 3071 3072 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3073 Value *PtrOperand = I.getArgOperand(1); 3074 SDValue Ptr = getValue(PtrOperand); 3075 SDValue Src0 = getValue(I.getArgOperand(0)); 3076 SDValue Mask = getValue(I.getArgOperand(3)); 3077 EVT VT = Src0.getValueType(); 3078 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3079 if (!Alignment) 3080 Alignment = DAG.getEVTAlignment(VT); 3081 3082 AAMDNodes AAInfo; 3083 I.getAAMetadata(AAInfo); 3084 3085 MachineMemOperand *MMO = 3086 DAG.getMachineFunction(). 3087 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3088 MachineMemOperand::MOStore, VT.getStoreSize(), 3089 Alignment, AAInfo); 3090 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3091 MMO, false); 3092 DAG.setRoot(StoreNode); 3093 setValue(&I, StoreNode); 3094 } 3095 3096 // Gather/scatter receive a vector of pointers. 3097 // This vector of pointers may be represented as a base pointer + vector of 3098 // indices, it depends on GEP and instruction preceding GEP 3099 // that calculates indices 3100 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3101 SelectionDAGBuilder* SDB) { 3102 3103 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 3104 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3105 if (!Gep || Gep->getNumOperands() > 2) 3106 return false; 3107 ShuffleVectorInst *ShuffleInst = 3108 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3109 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3110 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3111 Instruction::InsertElement) 3112 return false; 3113 3114 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3115 3116 SelectionDAG& DAG = SDB->DAG; 3117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3118 // Check is the Ptr is inside current basic block 3119 // If not, look for the shuffle instruction 3120 if (SDB->findValue(Ptr)) 3121 Base = SDB->getValue(Ptr); 3122 else if (SDB->findValue(ShuffleInst)) { 3123 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3124 SDLoc sdl = ShuffleNode; 3125 Base = DAG.getNode( 3126 ISD::EXTRACT_VECTOR_ELT, sdl, 3127 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3128 DAG.getConstant(0, sdl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3129 SDB->setValue(Ptr, Base); 3130 } 3131 else 3132 return false; 3133 3134 Value *IndexVal = Gep->getOperand(1); 3135 if (SDB->findValue(IndexVal)) { 3136 Index = SDB->getValue(IndexVal); 3137 3138 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3139 IndexVal = Sext->getOperand(0); 3140 if (SDB->findValue(IndexVal)) 3141 Index = SDB->getValue(IndexVal); 3142 } 3143 return true; 3144 } 3145 return false; 3146 } 3147 3148 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3149 SDLoc sdl = getCurSDLoc(); 3150 3151 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3152 Value *Ptr = I.getArgOperand(1); 3153 SDValue Src0 = getValue(I.getArgOperand(0)); 3154 SDValue Mask = getValue(I.getArgOperand(3)); 3155 EVT VT = Src0.getValueType(); 3156 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3157 if (!Alignment) 3158 Alignment = DAG.getEVTAlignment(VT); 3159 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3160 3161 AAMDNodes AAInfo; 3162 I.getAAMetadata(AAInfo); 3163 3164 SDValue Base; 3165 SDValue Index; 3166 Value *BasePtr = Ptr; 3167 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3168 3169 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3170 MachineMemOperand *MMO = DAG.getMachineFunction(). 3171 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3172 MachineMemOperand::MOStore, VT.getStoreSize(), 3173 Alignment, AAInfo); 3174 if (!UniformBase) { 3175 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3176 Index = getValue(Ptr); 3177 } 3178 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3179 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3180 Ops, MMO); 3181 DAG.setRoot(Scatter); 3182 setValue(&I, Scatter); 3183 } 3184 3185 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3186 SDLoc sdl = getCurSDLoc(); 3187 3188 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3189 Value *PtrOperand = I.getArgOperand(0); 3190 SDValue Ptr = getValue(PtrOperand); 3191 SDValue Src0 = getValue(I.getArgOperand(3)); 3192 SDValue Mask = getValue(I.getArgOperand(2)); 3193 3194 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3195 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3196 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3197 if (!Alignment) 3198 Alignment = DAG.getEVTAlignment(VT); 3199 3200 AAMDNodes AAInfo; 3201 I.getAAMetadata(AAInfo); 3202 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3203 3204 SDValue InChain = DAG.getRoot(); 3205 if (AA->pointsToConstantMemory(MemoryLocation( 3206 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3207 AAInfo))) { 3208 // Do not serialize (non-volatile) loads of constant memory with anything. 3209 InChain = DAG.getEntryNode(); 3210 } 3211 3212 MachineMemOperand *MMO = 3213 DAG.getMachineFunction(). 3214 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3215 MachineMemOperand::MOLoad, VT.getStoreSize(), 3216 Alignment, AAInfo, Ranges); 3217 3218 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3219 ISD::NON_EXTLOAD); 3220 SDValue OutChain = Load.getValue(1); 3221 DAG.setRoot(OutChain); 3222 setValue(&I, Load); 3223 } 3224 3225 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3226 SDLoc sdl = getCurSDLoc(); 3227 3228 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3229 Value *Ptr = I.getArgOperand(0); 3230 SDValue Src0 = getValue(I.getArgOperand(3)); 3231 SDValue Mask = getValue(I.getArgOperand(2)); 3232 3233 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3234 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3235 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3236 if (!Alignment) 3237 Alignment = DAG.getEVTAlignment(VT); 3238 3239 AAMDNodes AAInfo; 3240 I.getAAMetadata(AAInfo); 3241 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3242 3243 SDValue Root = DAG.getRoot(); 3244 SDValue Base; 3245 SDValue Index; 3246 Value *BasePtr = Ptr; 3247 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3248 bool ConstantMemory = false; 3249 if (UniformBase && 3250 AA->pointsToConstantMemory(MemoryLocation( 3251 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3252 AAInfo))) { 3253 // Do not serialize (non-volatile) loads of constant memory with anything. 3254 Root = DAG.getEntryNode(); 3255 ConstantMemory = true; 3256 } 3257 3258 MachineMemOperand *MMO = 3259 DAG.getMachineFunction(). 3260 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3261 MachineMemOperand::MOLoad, VT.getStoreSize(), 3262 Alignment, AAInfo, Ranges); 3263 3264 if (!UniformBase) { 3265 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3266 Index = getValue(Ptr); 3267 } 3268 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3269 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3270 Ops, MMO); 3271 3272 SDValue OutChain = Gather.getValue(1); 3273 if (!ConstantMemory) 3274 PendingLoads.push_back(OutChain); 3275 setValue(&I, Gather); 3276 } 3277 3278 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3279 SDLoc dl = getCurSDLoc(); 3280 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3281 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3282 SynchronizationScope Scope = I.getSynchScope(); 3283 3284 SDValue InChain = getRoot(); 3285 3286 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3287 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3288 SDValue L = DAG.getAtomicCmpSwap( 3289 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3290 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3291 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3292 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3293 3294 SDValue OutChain = L.getValue(2); 3295 3296 setValue(&I, L); 3297 DAG.setRoot(OutChain); 3298 } 3299 3300 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3301 SDLoc dl = getCurSDLoc(); 3302 ISD::NodeType NT; 3303 switch (I.getOperation()) { 3304 default: llvm_unreachable("Unknown atomicrmw operation"); 3305 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3306 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3307 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3308 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3309 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3310 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3311 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3312 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3313 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3314 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3315 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3316 } 3317 AtomicOrdering Order = I.getOrdering(); 3318 SynchronizationScope Scope = I.getSynchScope(); 3319 3320 SDValue InChain = getRoot(); 3321 3322 SDValue L = 3323 DAG.getAtomic(NT, dl, 3324 getValue(I.getValOperand()).getSimpleValueType(), 3325 InChain, 3326 getValue(I.getPointerOperand()), 3327 getValue(I.getValOperand()), 3328 I.getPointerOperand(), 3329 /* Alignment=*/ 0, Order, Scope); 3330 3331 SDValue OutChain = L.getValue(1); 3332 3333 setValue(&I, L); 3334 DAG.setRoot(OutChain); 3335 } 3336 3337 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3338 SDLoc dl = getCurSDLoc(); 3339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3340 SDValue Ops[3]; 3341 Ops[0] = getRoot(); 3342 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3343 TLI.getPointerTy(DAG.getDataLayout())); 3344 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3345 TLI.getPointerTy(DAG.getDataLayout())); 3346 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3347 } 3348 3349 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3350 SDLoc dl = getCurSDLoc(); 3351 AtomicOrdering Order = I.getOrdering(); 3352 SynchronizationScope Scope = I.getSynchScope(); 3353 3354 SDValue InChain = getRoot(); 3355 3356 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3357 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3358 3359 if (I.getAlignment() < VT.getSizeInBits() / 8) 3360 report_fatal_error("Cannot generate unaligned atomic load"); 3361 3362 MachineMemOperand *MMO = 3363 DAG.getMachineFunction(). 3364 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3365 MachineMemOperand::MOVolatile | 3366 MachineMemOperand::MOLoad, 3367 VT.getStoreSize(), 3368 I.getAlignment() ? I.getAlignment() : 3369 DAG.getEVTAlignment(VT)); 3370 3371 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3372 SDValue L = 3373 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3374 getValue(I.getPointerOperand()), MMO, 3375 Order, Scope); 3376 3377 SDValue OutChain = L.getValue(1); 3378 3379 setValue(&I, L); 3380 DAG.setRoot(OutChain); 3381 } 3382 3383 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3384 SDLoc dl = getCurSDLoc(); 3385 3386 AtomicOrdering Order = I.getOrdering(); 3387 SynchronizationScope Scope = I.getSynchScope(); 3388 3389 SDValue InChain = getRoot(); 3390 3391 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3392 EVT VT = 3393 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3394 3395 if (I.getAlignment() < VT.getSizeInBits() / 8) 3396 report_fatal_error("Cannot generate unaligned atomic store"); 3397 3398 SDValue OutChain = 3399 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3400 InChain, 3401 getValue(I.getPointerOperand()), 3402 getValue(I.getValueOperand()), 3403 I.getPointerOperand(), I.getAlignment(), 3404 Order, Scope); 3405 3406 DAG.setRoot(OutChain); 3407 } 3408 3409 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3410 /// node. 3411 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3412 unsigned Intrinsic) { 3413 bool HasChain = !I.doesNotAccessMemory(); 3414 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3415 3416 // Build the operand list. 3417 SmallVector<SDValue, 8> Ops; 3418 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3419 if (OnlyLoad) { 3420 // We don't need to serialize loads against other loads. 3421 Ops.push_back(DAG.getRoot()); 3422 } else { 3423 Ops.push_back(getRoot()); 3424 } 3425 } 3426 3427 // Info is set by getTgtMemInstrinsic 3428 TargetLowering::IntrinsicInfo Info; 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3431 3432 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3433 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3434 Info.opc == ISD::INTRINSIC_W_CHAIN) 3435 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3436 TLI.getPointerTy(DAG.getDataLayout()))); 3437 3438 // Add all operands of the call to the operand list. 3439 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3440 SDValue Op = getValue(I.getArgOperand(i)); 3441 Ops.push_back(Op); 3442 } 3443 3444 SmallVector<EVT, 4> ValueVTs; 3445 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3446 3447 if (HasChain) 3448 ValueVTs.push_back(MVT::Other); 3449 3450 SDVTList VTs = DAG.getVTList(ValueVTs); 3451 3452 // Create the node. 3453 SDValue Result; 3454 if (IsTgtIntrinsic) { 3455 // This is target intrinsic that touches memory 3456 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3457 VTs, Ops, Info.memVT, 3458 MachinePointerInfo(Info.ptrVal, Info.offset), 3459 Info.align, Info.vol, 3460 Info.readMem, Info.writeMem, Info.size); 3461 } else if (!HasChain) { 3462 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3463 } else if (!I.getType()->isVoidTy()) { 3464 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3465 } else { 3466 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3467 } 3468 3469 if (HasChain) { 3470 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3471 if (OnlyLoad) 3472 PendingLoads.push_back(Chain); 3473 else 3474 DAG.setRoot(Chain); 3475 } 3476 3477 if (!I.getType()->isVoidTy()) { 3478 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3479 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3480 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3481 } 3482 3483 setValue(&I, Result); 3484 } 3485 } 3486 3487 /// GetSignificand - Get the significand and build it into a floating-point 3488 /// number with exponent of 1: 3489 /// 3490 /// Op = (Op & 0x007fffff) | 0x3f800000; 3491 /// 3492 /// where Op is the hexadecimal representation of floating point value. 3493 static SDValue 3494 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3495 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3496 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3497 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3498 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3499 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3500 } 3501 3502 /// GetExponent - Get the exponent: 3503 /// 3504 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3505 /// 3506 /// where Op is the hexadecimal representation of floating point value. 3507 static SDValue 3508 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3509 SDLoc dl) { 3510 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3511 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3512 SDValue t1 = DAG.getNode( 3513 ISD::SRL, dl, MVT::i32, t0, 3514 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3515 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3516 DAG.getConstant(127, dl, MVT::i32)); 3517 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3518 } 3519 3520 /// getF32Constant - Get 32-bit floating point constant. 3521 static SDValue 3522 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3523 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3524 MVT::f32); 3525 } 3526 3527 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3528 SelectionDAG &DAG) { 3529 // IntegerPartOfX = ((int32_t)(t0); 3530 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3531 3532 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3533 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3534 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3535 3536 // IntegerPartOfX <<= 23; 3537 IntegerPartOfX = DAG.getNode( 3538 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3539 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3540 DAG.getDataLayout()))); 3541 3542 SDValue TwoToFractionalPartOfX; 3543 if (LimitFloatPrecision <= 6) { 3544 // For floating-point precision of 6: 3545 // 3546 // TwoToFractionalPartOfX = 3547 // 0.997535578f + 3548 // (0.735607626f + 0.252464424f * x) * x; 3549 // 3550 // error 0.0144103317, which is 6 bits 3551 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3552 getF32Constant(DAG, 0x3e814304, dl)); 3553 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3554 getF32Constant(DAG, 0x3f3c50c8, dl)); 3555 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3556 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3557 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3558 } else if (LimitFloatPrecision <= 12) { 3559 // For floating-point precision of 12: 3560 // 3561 // TwoToFractionalPartOfX = 3562 // 0.999892986f + 3563 // (0.696457318f + 3564 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3565 // 3566 // error 0.000107046256, which is 13 to 14 bits 3567 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3568 getF32Constant(DAG, 0x3da235e3, dl)); 3569 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3570 getF32Constant(DAG, 0x3e65b8f3, dl)); 3571 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3572 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3573 getF32Constant(DAG, 0x3f324b07, dl)); 3574 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3575 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3576 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3577 } else { // LimitFloatPrecision <= 18 3578 // For floating-point precision of 18: 3579 // 3580 // TwoToFractionalPartOfX = 3581 // 0.999999982f + 3582 // (0.693148872f + 3583 // (0.240227044f + 3584 // (0.554906021e-1f + 3585 // (0.961591928e-2f + 3586 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3587 // error 2.47208000*10^(-7), which is better than 18 bits 3588 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3589 getF32Constant(DAG, 0x3924b03e, dl)); 3590 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3591 getF32Constant(DAG, 0x3ab24b87, dl)); 3592 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3593 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3594 getF32Constant(DAG, 0x3c1d8c17, dl)); 3595 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3596 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3597 getF32Constant(DAG, 0x3d634a1d, dl)); 3598 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3599 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3600 getF32Constant(DAG, 0x3e75fe14, dl)); 3601 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3602 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3603 getF32Constant(DAG, 0x3f317234, dl)); 3604 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3605 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3606 getF32Constant(DAG, 0x3f800000, dl)); 3607 } 3608 3609 // Add the exponent into the result in integer domain. 3610 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3611 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3612 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3613 } 3614 3615 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3616 /// limited-precision mode. 3617 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3618 const TargetLowering &TLI) { 3619 if (Op.getValueType() == MVT::f32 && 3620 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3621 3622 // Put the exponent in the right bit position for later addition to the 3623 // final result: 3624 // 3625 // #define LOG2OFe 1.4426950f 3626 // t0 = Op * LOG2OFe 3627 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3628 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3629 return getLimitedPrecisionExp2(t0, dl, DAG); 3630 } 3631 3632 // No special expansion. 3633 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3634 } 3635 3636 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3637 /// limited-precision mode. 3638 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3639 const TargetLowering &TLI) { 3640 if (Op.getValueType() == MVT::f32 && 3641 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3642 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3643 3644 // Scale the exponent by log(2) [0.69314718f]. 3645 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3646 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3647 getF32Constant(DAG, 0x3f317218, dl)); 3648 3649 // Get the significand and build it into a floating-point number with 3650 // exponent of 1. 3651 SDValue X = GetSignificand(DAG, Op1, dl); 3652 3653 SDValue LogOfMantissa; 3654 if (LimitFloatPrecision <= 6) { 3655 // For floating-point precision of 6: 3656 // 3657 // LogofMantissa = 3658 // -1.1609546f + 3659 // (1.4034025f - 0.23903021f * x) * x; 3660 // 3661 // error 0.0034276066, which is better than 8 bits 3662 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3663 getF32Constant(DAG, 0xbe74c456, dl)); 3664 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3665 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3666 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3667 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3668 getF32Constant(DAG, 0x3f949a29, dl)); 3669 } else if (LimitFloatPrecision <= 12) { 3670 // For floating-point precision of 12: 3671 // 3672 // LogOfMantissa = 3673 // -1.7417939f + 3674 // (2.8212026f + 3675 // (-1.4699568f + 3676 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3677 // 3678 // error 0.000061011436, which is 14 bits 3679 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3680 getF32Constant(DAG, 0xbd67b6d6, dl)); 3681 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3682 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3683 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3684 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3685 getF32Constant(DAG, 0x3fbc278b, dl)); 3686 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3687 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3688 getF32Constant(DAG, 0x40348e95, dl)); 3689 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3690 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3691 getF32Constant(DAG, 0x3fdef31a, dl)); 3692 } else { // LimitFloatPrecision <= 18 3693 // For floating-point precision of 18: 3694 // 3695 // LogOfMantissa = 3696 // -2.1072184f + 3697 // (4.2372794f + 3698 // (-3.7029485f + 3699 // (2.2781945f + 3700 // (-0.87823314f + 3701 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3702 // 3703 // error 0.0000023660568, which is better than 18 bits 3704 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3705 getF32Constant(DAG, 0xbc91e5ac, dl)); 3706 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3707 getF32Constant(DAG, 0x3e4350aa, dl)); 3708 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3709 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3710 getF32Constant(DAG, 0x3f60d3e3, dl)); 3711 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3712 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3713 getF32Constant(DAG, 0x4011cdf0, dl)); 3714 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3715 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3716 getF32Constant(DAG, 0x406cfd1c, dl)); 3717 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3718 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3719 getF32Constant(DAG, 0x408797cb, dl)); 3720 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3721 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3722 getF32Constant(DAG, 0x4006dcab, dl)); 3723 } 3724 3725 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3726 } 3727 3728 // No special expansion. 3729 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3730 } 3731 3732 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3733 /// limited-precision mode. 3734 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3735 const TargetLowering &TLI) { 3736 if (Op.getValueType() == MVT::f32 && 3737 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3738 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3739 3740 // Get the exponent. 3741 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3742 3743 // Get the significand and build it into a floating-point number with 3744 // exponent of 1. 3745 SDValue X = GetSignificand(DAG, Op1, dl); 3746 3747 // Different possible minimax approximations of significand in 3748 // floating-point for various degrees of accuracy over [1,2]. 3749 SDValue Log2ofMantissa; 3750 if (LimitFloatPrecision <= 6) { 3751 // For floating-point precision of 6: 3752 // 3753 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3754 // 3755 // error 0.0049451742, which is more than 7 bits 3756 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3757 getF32Constant(DAG, 0xbeb08fe0, dl)); 3758 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3759 getF32Constant(DAG, 0x40019463, dl)); 3760 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3761 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3762 getF32Constant(DAG, 0x3fd6633d, dl)); 3763 } else if (LimitFloatPrecision <= 12) { 3764 // For floating-point precision of 12: 3765 // 3766 // Log2ofMantissa = 3767 // -2.51285454f + 3768 // (4.07009056f + 3769 // (-2.12067489f + 3770 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3771 // 3772 // error 0.0000876136000, which is better than 13 bits 3773 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3774 getF32Constant(DAG, 0xbda7262e, dl)); 3775 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3776 getF32Constant(DAG, 0x3f25280b, dl)); 3777 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3778 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3779 getF32Constant(DAG, 0x4007b923, dl)); 3780 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3781 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3782 getF32Constant(DAG, 0x40823e2f, dl)); 3783 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3784 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3785 getF32Constant(DAG, 0x4020d29c, dl)); 3786 } else { // LimitFloatPrecision <= 18 3787 // For floating-point precision of 18: 3788 // 3789 // Log2ofMantissa = 3790 // -3.0400495f + 3791 // (6.1129976f + 3792 // (-5.3420409f + 3793 // (3.2865683f + 3794 // (-1.2669343f + 3795 // (0.27515199f - 3796 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3797 // 3798 // error 0.0000018516, which is better than 18 bits 3799 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3800 getF32Constant(DAG, 0xbcd2769e, dl)); 3801 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3802 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3803 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3804 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3805 getF32Constant(DAG, 0x3fa22ae7, dl)); 3806 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3807 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3808 getF32Constant(DAG, 0x40525723, dl)); 3809 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3810 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3811 getF32Constant(DAG, 0x40aaf200, dl)); 3812 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3813 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3814 getF32Constant(DAG, 0x40c39dad, dl)); 3815 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3816 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3817 getF32Constant(DAG, 0x4042902c, dl)); 3818 } 3819 3820 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3821 } 3822 3823 // No special expansion. 3824 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3825 } 3826 3827 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3828 /// limited-precision mode. 3829 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3830 const TargetLowering &TLI) { 3831 if (Op.getValueType() == MVT::f32 && 3832 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3833 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3834 3835 // Scale the exponent by log10(2) [0.30102999f]. 3836 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3837 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3838 getF32Constant(DAG, 0x3e9a209a, dl)); 3839 3840 // Get the significand and build it into a floating-point number with 3841 // exponent of 1. 3842 SDValue X = GetSignificand(DAG, Op1, dl); 3843 3844 SDValue Log10ofMantissa; 3845 if (LimitFloatPrecision <= 6) { 3846 // For floating-point precision of 6: 3847 // 3848 // Log10ofMantissa = 3849 // -0.50419619f + 3850 // (0.60948995f - 0.10380950f * x) * x; 3851 // 3852 // error 0.0014886165, which is 6 bits 3853 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3854 getF32Constant(DAG, 0xbdd49a13, dl)); 3855 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3856 getF32Constant(DAG, 0x3f1c0789, dl)); 3857 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3858 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3859 getF32Constant(DAG, 0x3f011300, dl)); 3860 } else if (LimitFloatPrecision <= 12) { 3861 // For floating-point precision of 12: 3862 // 3863 // Log10ofMantissa = 3864 // -0.64831180f + 3865 // (0.91751397f + 3866 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3867 // 3868 // error 0.00019228036, which is better than 12 bits 3869 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3870 getF32Constant(DAG, 0x3d431f31, dl)); 3871 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3872 getF32Constant(DAG, 0x3ea21fb2, dl)); 3873 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3874 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3875 getF32Constant(DAG, 0x3f6ae232, dl)); 3876 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3877 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3878 getF32Constant(DAG, 0x3f25f7c3, dl)); 3879 } else { // LimitFloatPrecision <= 18 3880 // For floating-point precision of 18: 3881 // 3882 // Log10ofMantissa = 3883 // -0.84299375f + 3884 // (1.5327582f + 3885 // (-1.0688956f + 3886 // (0.49102474f + 3887 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3888 // 3889 // error 0.0000037995730, which is better than 18 bits 3890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0x3c5d51ce, dl)); 3892 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3893 getF32Constant(DAG, 0x3e00685a, dl)); 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3895 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x3efb6798, dl)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x3f88d192, dl)); 3900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3901 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3902 getF32Constant(DAG, 0x3fc4316c, dl)); 3903 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3904 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3905 getF32Constant(DAG, 0x3f57ce70, dl)); 3906 } 3907 3908 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3909 } 3910 3911 // No special expansion. 3912 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3913 } 3914 3915 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3916 /// limited-precision mode. 3917 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3918 const TargetLowering &TLI) { 3919 if (Op.getValueType() == MVT::f32 && 3920 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3921 return getLimitedPrecisionExp2(Op, dl, DAG); 3922 3923 // No special expansion. 3924 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3925 } 3926 3927 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3928 /// limited-precision mode with x == 10.0f. 3929 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3930 SelectionDAG &DAG, const TargetLowering &TLI) { 3931 bool IsExp10 = false; 3932 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3933 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3934 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3935 APFloat Ten(10.0f); 3936 IsExp10 = LHSC->isExactlyValue(Ten); 3937 } 3938 } 3939 3940 if (IsExp10) { 3941 // Put the exponent in the right bit position for later addition to the 3942 // final result: 3943 // 3944 // #define LOG2OF10 3.3219281f 3945 // t0 = Op * LOG2OF10; 3946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3947 getF32Constant(DAG, 0x40549a78, dl)); 3948 return getLimitedPrecisionExp2(t0, dl, DAG); 3949 } 3950 3951 // No special expansion. 3952 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3953 } 3954 3955 3956 /// ExpandPowI - Expand a llvm.powi intrinsic. 3957 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3958 SelectionDAG &DAG) { 3959 // If RHS is a constant, we can expand this out to a multiplication tree, 3960 // otherwise we end up lowering to a call to __powidf2 (for example). When 3961 // optimizing for size, we only want to do this if the expansion would produce 3962 // a small number of multiplies, otherwise we do the full expansion. 3963 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3964 // Get the exponent as a positive value. 3965 unsigned Val = RHSC->getSExtValue(); 3966 if ((int)Val < 0) Val = -Val; 3967 3968 // powi(x, 0) -> 1.0 3969 if (Val == 0) 3970 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3971 3972 const Function *F = DAG.getMachineFunction().getFunction(); 3973 // FIXME: Use Function::optForSize(). 3974 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3975 // If optimizing for size, don't insert too many multiplies. This 3976 // inserts up to 5 multiplies. 3977 countPopulation(Val) + Log2_32(Val) < 7) { 3978 // We use the simple binary decomposition method to generate the multiply 3979 // sequence. There are more optimal ways to do this (for example, 3980 // powi(x,15) generates one more multiply than it should), but this has 3981 // the benefit of being both really simple and much better than a libcall. 3982 SDValue Res; // Logically starts equal to 1.0 3983 SDValue CurSquare = LHS; 3984 while (Val) { 3985 if (Val & 1) { 3986 if (Res.getNode()) 3987 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3988 else 3989 Res = CurSquare; // 1.0*CurSquare. 3990 } 3991 3992 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3993 CurSquare, CurSquare); 3994 Val >>= 1; 3995 } 3996 3997 // If the original was negative, invert the result, producing 1/(x*x*x). 3998 if (RHSC->getSExtValue() < 0) 3999 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4000 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4001 return Res; 4002 } 4003 } 4004 4005 // Otherwise, expand to a libcall. 4006 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4007 } 4008 4009 // getTruncatedArgReg - Find underlying register used for an truncated 4010 // argument. 4011 static unsigned getTruncatedArgReg(const SDValue &N) { 4012 if (N.getOpcode() != ISD::TRUNCATE) 4013 return 0; 4014 4015 const SDValue &Ext = N.getOperand(0); 4016 if (Ext.getOpcode() == ISD::AssertZext || 4017 Ext.getOpcode() == ISD::AssertSext) { 4018 const SDValue &CFR = Ext.getOperand(0); 4019 if (CFR.getOpcode() == ISD::CopyFromReg) 4020 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4021 if (CFR.getOpcode() == ISD::TRUNCATE) 4022 return getTruncatedArgReg(CFR); 4023 } 4024 return 0; 4025 } 4026 4027 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4028 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4029 /// At the end of instruction selection, they will be inserted to the entry BB. 4030 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4031 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4032 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4033 const Argument *Arg = dyn_cast<Argument>(V); 4034 if (!Arg) 4035 return false; 4036 4037 MachineFunction &MF = DAG.getMachineFunction(); 4038 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4039 4040 // Ignore inlined function arguments here. 4041 // 4042 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4043 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4044 return false; 4045 4046 Optional<MachineOperand> Op; 4047 // Some arguments' frame index is recorded during argument lowering. 4048 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4049 Op = MachineOperand::CreateFI(FI); 4050 4051 if (!Op && N.getNode()) { 4052 unsigned Reg; 4053 if (N.getOpcode() == ISD::CopyFromReg) 4054 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4055 else 4056 Reg = getTruncatedArgReg(N); 4057 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4058 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4059 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4060 if (PR) 4061 Reg = PR; 4062 } 4063 if (Reg) 4064 Op = MachineOperand::CreateReg(Reg, false); 4065 } 4066 4067 if (!Op) { 4068 // Check if ValueMap has reg number. 4069 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4070 if (VMI != FuncInfo.ValueMap.end()) 4071 Op = MachineOperand::CreateReg(VMI->second, false); 4072 } 4073 4074 if (!Op && N.getNode()) 4075 // Check if frame index is available. 4076 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4077 if (FrameIndexSDNode *FINode = 4078 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4079 Op = MachineOperand::CreateFI(FINode->getIndex()); 4080 4081 if (!Op) 4082 return false; 4083 4084 assert(Variable->isValidLocationForIntrinsic(DL) && 4085 "Expected inlined-at fields to agree"); 4086 if (Op->isReg()) 4087 FuncInfo.ArgDbgValues.push_back( 4088 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4089 Op->getReg(), Offset, Variable, Expr)); 4090 else 4091 FuncInfo.ArgDbgValues.push_back( 4092 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4093 .addOperand(*Op) 4094 .addImm(Offset) 4095 .addMetadata(Variable) 4096 .addMetadata(Expr)); 4097 4098 return true; 4099 } 4100 4101 // VisualStudio defines setjmp as _setjmp 4102 #if defined(_MSC_VER) && defined(setjmp) && \ 4103 !defined(setjmp_undefined_for_msvc) 4104 # pragma push_macro("setjmp") 4105 # undef setjmp 4106 # define setjmp_undefined_for_msvc 4107 #endif 4108 4109 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4110 /// we want to emit this as a call to a named external function, return the name 4111 /// otherwise lower it and return null. 4112 const char * 4113 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4114 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4115 SDLoc sdl = getCurSDLoc(); 4116 DebugLoc dl = getCurDebugLoc(); 4117 SDValue Res; 4118 4119 switch (Intrinsic) { 4120 default: 4121 // By default, turn this into a target intrinsic node. 4122 visitTargetIntrinsic(I, Intrinsic); 4123 return nullptr; 4124 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4125 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4126 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4127 case Intrinsic::returnaddress: 4128 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4129 TLI.getPointerTy(DAG.getDataLayout()), 4130 getValue(I.getArgOperand(0)))); 4131 return nullptr; 4132 case Intrinsic::frameaddress: 4133 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4134 TLI.getPointerTy(DAG.getDataLayout()), 4135 getValue(I.getArgOperand(0)))); 4136 return nullptr; 4137 case Intrinsic::read_register: { 4138 Value *Reg = I.getArgOperand(0); 4139 SDValue Chain = getRoot(); 4140 SDValue RegName = 4141 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4142 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4143 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4144 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4145 setValue(&I, Res); 4146 DAG.setRoot(Res.getValue(1)); 4147 return nullptr; 4148 } 4149 case Intrinsic::write_register: { 4150 Value *Reg = I.getArgOperand(0); 4151 Value *RegValue = I.getArgOperand(1); 4152 SDValue Chain = getRoot(); 4153 SDValue RegName = 4154 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4155 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4156 RegName, getValue(RegValue))); 4157 return nullptr; 4158 } 4159 case Intrinsic::setjmp: 4160 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4161 case Intrinsic::longjmp: 4162 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4163 case Intrinsic::memcpy: { 4164 // FIXME: this definition of "user defined address space" is x86-specific 4165 // Assert for address < 256 since we support only user defined address 4166 // spaces. 4167 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4168 < 256 && 4169 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4170 < 256 && 4171 "Unknown address space"); 4172 SDValue Op1 = getValue(I.getArgOperand(0)); 4173 SDValue Op2 = getValue(I.getArgOperand(1)); 4174 SDValue Op3 = getValue(I.getArgOperand(2)); 4175 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4176 if (!Align) 4177 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4178 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4179 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4180 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4181 false, isTC, 4182 MachinePointerInfo(I.getArgOperand(0)), 4183 MachinePointerInfo(I.getArgOperand(1))); 4184 updateDAGForMaybeTailCall(MC); 4185 return nullptr; 4186 } 4187 case Intrinsic::memset: { 4188 // FIXME: this definition of "user defined address space" is x86-specific 4189 // Assert for address < 256 since we support only user defined address 4190 // spaces. 4191 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4192 < 256 && 4193 "Unknown address space"); 4194 SDValue Op1 = getValue(I.getArgOperand(0)); 4195 SDValue Op2 = getValue(I.getArgOperand(1)); 4196 SDValue Op3 = getValue(I.getArgOperand(2)); 4197 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4198 if (!Align) 4199 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4200 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4201 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4202 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4203 isTC, MachinePointerInfo(I.getArgOperand(0))); 4204 updateDAGForMaybeTailCall(MS); 4205 return nullptr; 4206 } 4207 case Intrinsic::memmove: { 4208 // FIXME: this definition of "user defined address space" is x86-specific 4209 // Assert for address < 256 since we support only user defined address 4210 // spaces. 4211 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4212 < 256 && 4213 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4214 < 256 && 4215 "Unknown address space"); 4216 SDValue Op1 = getValue(I.getArgOperand(0)); 4217 SDValue Op2 = getValue(I.getArgOperand(1)); 4218 SDValue Op3 = getValue(I.getArgOperand(2)); 4219 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4220 if (!Align) 4221 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4222 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4223 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4224 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4225 isTC, MachinePointerInfo(I.getArgOperand(0)), 4226 MachinePointerInfo(I.getArgOperand(1))); 4227 updateDAGForMaybeTailCall(MM); 4228 return nullptr; 4229 } 4230 case Intrinsic::dbg_declare: { 4231 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4232 DILocalVariable *Variable = DI.getVariable(); 4233 DIExpression *Expression = DI.getExpression(); 4234 const Value *Address = DI.getAddress(); 4235 assert(Variable && "Missing variable"); 4236 if (!Address) { 4237 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4238 return nullptr; 4239 } 4240 4241 // Check if address has undef value. 4242 if (isa<UndefValue>(Address) || 4243 (Address->use_empty() && !isa<Argument>(Address))) { 4244 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4245 return nullptr; 4246 } 4247 4248 SDValue &N = NodeMap[Address]; 4249 if (!N.getNode() && isa<Argument>(Address)) 4250 // Check unused arguments map. 4251 N = UnusedArgNodeMap[Address]; 4252 SDDbgValue *SDV; 4253 if (N.getNode()) { 4254 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4255 Address = BCI->getOperand(0); 4256 // Parameters are handled specially. 4257 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4258 4259 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4260 4261 if (isParameter && !AI) { 4262 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4263 if (FINode) 4264 // Byval parameter. We have a frame index at this point. 4265 SDV = DAG.getFrameIndexDbgValue( 4266 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4267 else { 4268 // Address is an argument, so try to emit its dbg value using 4269 // virtual register info from the FuncInfo.ValueMap. 4270 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4271 N); 4272 return nullptr; 4273 } 4274 } else if (AI) 4275 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4276 true, 0, dl, SDNodeOrder); 4277 else { 4278 // Can't do anything with other non-AI cases yet. 4279 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4280 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4281 DEBUG(Address->dump()); 4282 return nullptr; 4283 } 4284 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4285 } else { 4286 // If Address is an argument then try to emit its dbg value using 4287 // virtual register info from the FuncInfo.ValueMap. 4288 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4289 N)) { 4290 // If variable is pinned by a alloca in dominating bb then 4291 // use StaticAllocaMap. 4292 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4293 if (AI->getParent() != DI.getParent()) { 4294 DenseMap<const AllocaInst*, int>::iterator SI = 4295 FuncInfo.StaticAllocaMap.find(AI); 4296 if (SI != FuncInfo.StaticAllocaMap.end()) { 4297 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4298 0, dl, SDNodeOrder); 4299 DAG.AddDbgValue(SDV, nullptr, false); 4300 return nullptr; 4301 } 4302 } 4303 } 4304 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4305 } 4306 } 4307 return nullptr; 4308 } 4309 case Intrinsic::dbg_value: { 4310 const DbgValueInst &DI = cast<DbgValueInst>(I); 4311 assert(DI.getVariable() && "Missing variable"); 4312 4313 DILocalVariable *Variable = DI.getVariable(); 4314 DIExpression *Expression = DI.getExpression(); 4315 uint64_t Offset = DI.getOffset(); 4316 const Value *V = DI.getValue(); 4317 if (!V) 4318 return nullptr; 4319 4320 SDDbgValue *SDV; 4321 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4322 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4323 SDNodeOrder); 4324 DAG.AddDbgValue(SDV, nullptr, false); 4325 } else { 4326 // Do not use getValue() in here; we don't want to generate code at 4327 // this point if it hasn't been done yet. 4328 SDValue N = NodeMap[V]; 4329 if (!N.getNode() && isa<Argument>(V)) 4330 // Check unused arguments map. 4331 N = UnusedArgNodeMap[V]; 4332 if (N.getNode()) { 4333 // A dbg.value for an alloca is always indirect. 4334 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4335 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4336 IsIndirect, N)) { 4337 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4338 IsIndirect, Offset, dl, SDNodeOrder); 4339 DAG.AddDbgValue(SDV, N.getNode(), false); 4340 } 4341 } else if (!V->use_empty() ) { 4342 // Do not call getValue(V) yet, as we don't want to generate code. 4343 // Remember it for later. 4344 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4345 DanglingDebugInfoMap[V] = DDI; 4346 } else { 4347 // We may expand this to cover more cases. One case where we have no 4348 // data available is an unreferenced parameter. 4349 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4350 } 4351 } 4352 4353 // Build a debug info table entry. 4354 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4355 V = BCI->getOperand(0); 4356 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4357 // Don't handle byval struct arguments or VLAs, for example. 4358 if (!AI) { 4359 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4360 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4361 return nullptr; 4362 } 4363 DenseMap<const AllocaInst*, int>::iterator SI = 4364 FuncInfo.StaticAllocaMap.find(AI); 4365 if (SI == FuncInfo.StaticAllocaMap.end()) 4366 return nullptr; // VLAs. 4367 return nullptr; 4368 } 4369 4370 case Intrinsic::eh_typeid_for: { 4371 // Find the type id for the given typeinfo. 4372 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4373 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4374 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4375 setValue(&I, Res); 4376 return nullptr; 4377 } 4378 4379 case Intrinsic::eh_return_i32: 4380 case Intrinsic::eh_return_i64: 4381 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4382 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4383 MVT::Other, 4384 getControlRoot(), 4385 getValue(I.getArgOperand(0)), 4386 getValue(I.getArgOperand(1)))); 4387 return nullptr; 4388 case Intrinsic::eh_unwind_init: 4389 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4390 return nullptr; 4391 case Intrinsic::eh_dwarf_cfa: { 4392 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4393 TLI.getPointerTy(DAG.getDataLayout())); 4394 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4395 CfaArg.getValueType(), 4396 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4397 CfaArg.getValueType()), 4398 CfaArg); 4399 SDValue FA = DAG.getNode( 4400 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4401 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4402 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4403 FA, Offset)); 4404 return nullptr; 4405 } 4406 case Intrinsic::eh_sjlj_callsite: { 4407 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4408 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4409 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4410 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4411 4412 MMI.setCurrentCallSite(CI->getZExtValue()); 4413 return nullptr; 4414 } 4415 case Intrinsic::eh_sjlj_functioncontext: { 4416 // Get and store the index of the function context. 4417 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4418 AllocaInst *FnCtx = 4419 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4420 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4421 MFI->setFunctionContextIndex(FI); 4422 return nullptr; 4423 } 4424 case Intrinsic::eh_sjlj_setjmp: { 4425 SDValue Ops[2]; 4426 Ops[0] = getRoot(); 4427 Ops[1] = getValue(I.getArgOperand(0)); 4428 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4429 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4430 setValue(&I, Op.getValue(0)); 4431 DAG.setRoot(Op.getValue(1)); 4432 return nullptr; 4433 } 4434 case Intrinsic::eh_sjlj_longjmp: { 4435 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4436 getRoot(), getValue(I.getArgOperand(0)))); 4437 return nullptr; 4438 } 4439 case Intrinsic::eh_sjlj_setup_dispatch: { 4440 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4441 getRoot())); 4442 return nullptr; 4443 } 4444 4445 case Intrinsic::masked_gather: 4446 visitMaskedGather(I); 4447 return nullptr; 4448 case Intrinsic::masked_load: 4449 visitMaskedLoad(I); 4450 return nullptr; 4451 case Intrinsic::masked_scatter: 4452 visitMaskedScatter(I); 4453 return nullptr; 4454 case Intrinsic::masked_store: 4455 visitMaskedStore(I); 4456 return nullptr; 4457 case Intrinsic::x86_mmx_pslli_w: 4458 case Intrinsic::x86_mmx_pslli_d: 4459 case Intrinsic::x86_mmx_pslli_q: 4460 case Intrinsic::x86_mmx_psrli_w: 4461 case Intrinsic::x86_mmx_psrli_d: 4462 case Intrinsic::x86_mmx_psrli_q: 4463 case Intrinsic::x86_mmx_psrai_w: 4464 case Intrinsic::x86_mmx_psrai_d: { 4465 SDValue ShAmt = getValue(I.getArgOperand(1)); 4466 if (isa<ConstantSDNode>(ShAmt)) { 4467 visitTargetIntrinsic(I, Intrinsic); 4468 return nullptr; 4469 } 4470 unsigned NewIntrinsic = 0; 4471 EVT ShAmtVT = MVT::v2i32; 4472 switch (Intrinsic) { 4473 case Intrinsic::x86_mmx_pslli_w: 4474 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4475 break; 4476 case Intrinsic::x86_mmx_pslli_d: 4477 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4478 break; 4479 case Intrinsic::x86_mmx_pslli_q: 4480 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4481 break; 4482 case Intrinsic::x86_mmx_psrli_w: 4483 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4484 break; 4485 case Intrinsic::x86_mmx_psrli_d: 4486 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4487 break; 4488 case Intrinsic::x86_mmx_psrli_q: 4489 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4490 break; 4491 case Intrinsic::x86_mmx_psrai_w: 4492 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4493 break; 4494 case Intrinsic::x86_mmx_psrai_d: 4495 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4496 break; 4497 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4498 } 4499 4500 // The vector shift intrinsics with scalars uses 32b shift amounts but 4501 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4502 // to be zero. 4503 // We must do this early because v2i32 is not a legal type. 4504 SDValue ShOps[2]; 4505 ShOps[0] = ShAmt; 4506 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4507 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4508 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4509 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4510 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4511 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4512 getValue(I.getArgOperand(0)), ShAmt); 4513 setValue(&I, Res); 4514 return nullptr; 4515 } 4516 case Intrinsic::convertff: 4517 case Intrinsic::convertfsi: 4518 case Intrinsic::convertfui: 4519 case Intrinsic::convertsif: 4520 case Intrinsic::convertuif: 4521 case Intrinsic::convertss: 4522 case Intrinsic::convertsu: 4523 case Intrinsic::convertus: 4524 case Intrinsic::convertuu: { 4525 ISD::CvtCode Code = ISD::CVT_INVALID; 4526 switch (Intrinsic) { 4527 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4528 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4529 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4530 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4531 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4532 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4533 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4534 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4535 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4536 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4537 } 4538 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4539 const Value *Op1 = I.getArgOperand(0); 4540 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4541 DAG.getValueType(DestVT), 4542 DAG.getValueType(getValue(Op1).getValueType()), 4543 getValue(I.getArgOperand(1)), 4544 getValue(I.getArgOperand(2)), 4545 Code); 4546 setValue(&I, Res); 4547 return nullptr; 4548 } 4549 case Intrinsic::powi: 4550 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4551 getValue(I.getArgOperand(1)), DAG)); 4552 return nullptr; 4553 case Intrinsic::log: 4554 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4555 return nullptr; 4556 case Intrinsic::log2: 4557 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4558 return nullptr; 4559 case Intrinsic::log10: 4560 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4561 return nullptr; 4562 case Intrinsic::exp: 4563 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4564 return nullptr; 4565 case Intrinsic::exp2: 4566 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4567 return nullptr; 4568 case Intrinsic::pow: 4569 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4570 getValue(I.getArgOperand(1)), DAG, TLI)); 4571 return nullptr; 4572 case Intrinsic::sqrt: 4573 case Intrinsic::fabs: 4574 case Intrinsic::sin: 4575 case Intrinsic::cos: 4576 case Intrinsic::floor: 4577 case Intrinsic::ceil: 4578 case Intrinsic::trunc: 4579 case Intrinsic::rint: 4580 case Intrinsic::nearbyint: 4581 case Intrinsic::round: { 4582 unsigned Opcode; 4583 switch (Intrinsic) { 4584 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4585 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4586 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4587 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4588 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4589 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4590 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4591 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4592 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4593 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4594 case Intrinsic::round: Opcode = ISD::FROUND; break; 4595 } 4596 4597 setValue(&I, DAG.getNode(Opcode, sdl, 4598 getValue(I.getArgOperand(0)).getValueType(), 4599 getValue(I.getArgOperand(0)))); 4600 return nullptr; 4601 } 4602 case Intrinsic::minnum: 4603 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4604 getValue(I.getArgOperand(0)).getValueType(), 4605 getValue(I.getArgOperand(0)), 4606 getValue(I.getArgOperand(1)))); 4607 return nullptr; 4608 case Intrinsic::maxnum: 4609 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4610 getValue(I.getArgOperand(0)).getValueType(), 4611 getValue(I.getArgOperand(0)), 4612 getValue(I.getArgOperand(1)))); 4613 return nullptr; 4614 case Intrinsic::copysign: 4615 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4616 getValue(I.getArgOperand(0)).getValueType(), 4617 getValue(I.getArgOperand(0)), 4618 getValue(I.getArgOperand(1)))); 4619 return nullptr; 4620 case Intrinsic::fma: 4621 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4622 getValue(I.getArgOperand(0)).getValueType(), 4623 getValue(I.getArgOperand(0)), 4624 getValue(I.getArgOperand(1)), 4625 getValue(I.getArgOperand(2)))); 4626 return nullptr; 4627 case Intrinsic::fmuladd: { 4628 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4629 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4630 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4631 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4632 getValue(I.getArgOperand(0)).getValueType(), 4633 getValue(I.getArgOperand(0)), 4634 getValue(I.getArgOperand(1)), 4635 getValue(I.getArgOperand(2)))); 4636 } else { 4637 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4638 getValue(I.getArgOperand(0)).getValueType(), 4639 getValue(I.getArgOperand(0)), 4640 getValue(I.getArgOperand(1))); 4641 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4642 getValue(I.getArgOperand(0)).getValueType(), 4643 Mul, 4644 getValue(I.getArgOperand(2))); 4645 setValue(&I, Add); 4646 } 4647 return nullptr; 4648 } 4649 case Intrinsic::convert_to_fp16: 4650 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4651 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4652 getValue(I.getArgOperand(0)), 4653 DAG.getTargetConstant(0, sdl, 4654 MVT::i32)))); 4655 return nullptr; 4656 case Intrinsic::convert_from_fp16: 4657 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4658 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4659 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4660 getValue(I.getArgOperand(0))))); 4661 return nullptr; 4662 case Intrinsic::pcmarker: { 4663 SDValue Tmp = getValue(I.getArgOperand(0)); 4664 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4665 return nullptr; 4666 } 4667 case Intrinsic::readcyclecounter: { 4668 SDValue Op = getRoot(); 4669 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4670 DAG.getVTList(MVT::i64, MVT::Other), Op); 4671 setValue(&I, Res); 4672 DAG.setRoot(Res.getValue(1)); 4673 return nullptr; 4674 } 4675 case Intrinsic::bswap: 4676 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4677 getValue(I.getArgOperand(0)).getValueType(), 4678 getValue(I.getArgOperand(0)))); 4679 return nullptr; 4680 case Intrinsic::uabsdiff: 4681 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4682 getValue(I.getArgOperand(0)).getValueType(), 4683 getValue(I.getArgOperand(0)), 4684 getValue(I.getArgOperand(1)))); 4685 return nullptr; 4686 case Intrinsic::sabsdiff: 4687 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4688 getValue(I.getArgOperand(0)).getValueType(), 4689 getValue(I.getArgOperand(0)), 4690 getValue(I.getArgOperand(1)))); 4691 return nullptr; 4692 case Intrinsic::cttz: { 4693 SDValue Arg = getValue(I.getArgOperand(0)); 4694 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4695 EVT Ty = Arg.getValueType(); 4696 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4697 sdl, Ty, Arg)); 4698 return nullptr; 4699 } 4700 case Intrinsic::ctlz: { 4701 SDValue Arg = getValue(I.getArgOperand(0)); 4702 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4703 EVT Ty = Arg.getValueType(); 4704 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4705 sdl, Ty, Arg)); 4706 return nullptr; 4707 } 4708 case Intrinsic::ctpop: { 4709 SDValue Arg = getValue(I.getArgOperand(0)); 4710 EVT Ty = Arg.getValueType(); 4711 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4712 return nullptr; 4713 } 4714 case Intrinsic::stacksave: { 4715 SDValue Op = getRoot(); 4716 Res = DAG.getNode( 4717 ISD::STACKSAVE, sdl, 4718 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4719 setValue(&I, Res); 4720 DAG.setRoot(Res.getValue(1)); 4721 return nullptr; 4722 } 4723 case Intrinsic::stackrestore: { 4724 Res = getValue(I.getArgOperand(0)); 4725 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4726 return nullptr; 4727 } 4728 case Intrinsic::stackprotector: { 4729 // Emit code into the DAG to store the stack guard onto the stack. 4730 MachineFunction &MF = DAG.getMachineFunction(); 4731 MachineFrameInfo *MFI = MF.getFrameInfo(); 4732 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4733 SDValue Src, Chain = getRoot(); 4734 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4735 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4736 4737 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4738 // global variable __stack_chk_guard. 4739 if (!GV) 4740 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4741 if (BC->getOpcode() == Instruction::BitCast) 4742 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4743 4744 if (GV && TLI.useLoadStackGuardNode()) { 4745 // Emit a LOAD_STACK_GUARD node. 4746 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4747 sdl, PtrTy, Chain); 4748 MachinePointerInfo MPInfo(GV); 4749 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4750 unsigned Flags = MachineMemOperand::MOLoad | 4751 MachineMemOperand::MOInvariant; 4752 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4753 PtrTy.getSizeInBits() / 8, 4754 DAG.getEVTAlignment(PtrTy)); 4755 Node->setMemRefs(MemRefs, MemRefs + 1); 4756 4757 // Copy the guard value to a virtual register so that it can be 4758 // retrieved in the epilogue. 4759 Src = SDValue(Node, 0); 4760 const TargetRegisterClass *RC = 4761 TLI.getRegClassFor(Src.getSimpleValueType()); 4762 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4763 4764 SPDescriptor.setGuardReg(Reg); 4765 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4766 } else { 4767 Src = getValue(I.getArgOperand(0)); // The guard's value. 4768 } 4769 4770 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4771 4772 int FI = FuncInfo.StaticAllocaMap[Slot]; 4773 MFI->setStackProtectorIndex(FI); 4774 4775 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4776 4777 // Store the stack protector onto the stack. 4778 Res = DAG.getStore(Chain, sdl, Src, FIN, 4779 MachinePointerInfo::getFixedStack(FI), 4780 true, false, 0); 4781 setValue(&I, Res); 4782 DAG.setRoot(Res); 4783 return nullptr; 4784 } 4785 case Intrinsic::objectsize: { 4786 // If we don't know by now, we're never going to know. 4787 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4788 4789 assert(CI && "Non-constant type in __builtin_object_size?"); 4790 4791 SDValue Arg = getValue(I.getCalledValue()); 4792 EVT Ty = Arg.getValueType(); 4793 4794 if (CI->isZero()) 4795 Res = DAG.getConstant(-1ULL, sdl, Ty); 4796 else 4797 Res = DAG.getConstant(0, sdl, Ty); 4798 4799 setValue(&I, Res); 4800 return nullptr; 4801 } 4802 case Intrinsic::annotation: 4803 case Intrinsic::ptr_annotation: 4804 // Drop the intrinsic, but forward the value 4805 setValue(&I, getValue(I.getOperand(0))); 4806 return nullptr; 4807 case Intrinsic::assume: 4808 case Intrinsic::var_annotation: 4809 // Discard annotate attributes and assumptions 4810 return nullptr; 4811 4812 case Intrinsic::init_trampoline: { 4813 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4814 4815 SDValue Ops[6]; 4816 Ops[0] = getRoot(); 4817 Ops[1] = getValue(I.getArgOperand(0)); 4818 Ops[2] = getValue(I.getArgOperand(1)); 4819 Ops[3] = getValue(I.getArgOperand(2)); 4820 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4821 Ops[5] = DAG.getSrcValue(F); 4822 4823 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4824 4825 DAG.setRoot(Res); 4826 return nullptr; 4827 } 4828 case Intrinsic::adjust_trampoline: { 4829 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4830 TLI.getPointerTy(DAG.getDataLayout()), 4831 getValue(I.getArgOperand(0)))); 4832 return nullptr; 4833 } 4834 case Intrinsic::gcroot: 4835 if (GFI) { 4836 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4837 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4838 4839 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4840 GFI->addStackRoot(FI->getIndex(), TypeMap); 4841 } 4842 return nullptr; 4843 case Intrinsic::gcread: 4844 case Intrinsic::gcwrite: 4845 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4846 case Intrinsic::flt_rounds: 4847 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4848 return nullptr; 4849 4850 case Intrinsic::expect: { 4851 // Just replace __builtin_expect(exp, c) with EXP. 4852 setValue(&I, getValue(I.getArgOperand(0))); 4853 return nullptr; 4854 } 4855 4856 case Intrinsic::debugtrap: 4857 case Intrinsic::trap: { 4858 StringRef TrapFuncName = 4859 I.getAttributes() 4860 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 4861 .getValueAsString(); 4862 if (TrapFuncName.empty()) { 4863 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4864 ISD::TRAP : ISD::DEBUGTRAP; 4865 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4866 return nullptr; 4867 } 4868 TargetLowering::ArgListTy Args; 4869 4870 TargetLowering::CallLoweringInfo CLI(DAG); 4871 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 4872 CallingConv::C, I.getType(), 4873 DAG.getExternalSymbol(TrapFuncName.data(), 4874 TLI.getPointerTy(DAG.getDataLayout())), 4875 std::move(Args), 0); 4876 4877 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4878 DAG.setRoot(Result.second); 4879 return nullptr; 4880 } 4881 4882 case Intrinsic::uadd_with_overflow: 4883 case Intrinsic::sadd_with_overflow: 4884 case Intrinsic::usub_with_overflow: 4885 case Intrinsic::ssub_with_overflow: 4886 case Intrinsic::umul_with_overflow: 4887 case Intrinsic::smul_with_overflow: { 4888 ISD::NodeType Op; 4889 switch (Intrinsic) { 4890 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4891 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4892 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4893 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4894 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4895 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4896 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4897 } 4898 SDValue Op1 = getValue(I.getArgOperand(0)); 4899 SDValue Op2 = getValue(I.getArgOperand(1)); 4900 4901 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4902 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4903 return nullptr; 4904 } 4905 case Intrinsic::prefetch: { 4906 SDValue Ops[5]; 4907 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4908 Ops[0] = getRoot(); 4909 Ops[1] = getValue(I.getArgOperand(0)); 4910 Ops[2] = getValue(I.getArgOperand(1)); 4911 Ops[3] = getValue(I.getArgOperand(2)); 4912 Ops[4] = getValue(I.getArgOperand(3)); 4913 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4914 DAG.getVTList(MVT::Other), Ops, 4915 EVT::getIntegerVT(*Context, 8), 4916 MachinePointerInfo(I.getArgOperand(0)), 4917 0, /* align */ 4918 false, /* volatile */ 4919 rw==0, /* read */ 4920 rw==1)); /* write */ 4921 return nullptr; 4922 } 4923 case Intrinsic::lifetime_start: 4924 case Intrinsic::lifetime_end: { 4925 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4926 // Stack coloring is not enabled in O0, discard region information. 4927 if (TM.getOptLevel() == CodeGenOpt::None) 4928 return nullptr; 4929 4930 SmallVector<Value *, 4> Allocas; 4931 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4932 4933 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4934 E = Allocas.end(); Object != E; ++Object) { 4935 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4936 4937 // Could not find an Alloca. 4938 if (!LifetimeObject) 4939 continue; 4940 4941 // First check that the Alloca is static, otherwise it won't have a 4942 // valid frame index. 4943 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4944 if (SI == FuncInfo.StaticAllocaMap.end()) 4945 return nullptr; 4946 4947 int FI = SI->second; 4948 4949 SDValue Ops[2]; 4950 Ops[0] = getRoot(); 4951 Ops[1] = 4952 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 4953 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4954 4955 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4956 DAG.setRoot(Res); 4957 } 4958 return nullptr; 4959 } 4960 case Intrinsic::invariant_start: 4961 // Discard region information. 4962 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4963 return nullptr; 4964 case Intrinsic::invariant_end: 4965 // Discard region information. 4966 return nullptr; 4967 case Intrinsic::stackprotectorcheck: { 4968 // Do not actually emit anything for this basic block. Instead we initialize 4969 // the stack protector descriptor and export the guard variable so we can 4970 // access it in FinishBasicBlock. 4971 const BasicBlock *BB = I.getParent(); 4972 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4973 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4974 4975 // Flush our exports since we are going to process a terminator. 4976 (void)getControlRoot(); 4977 return nullptr; 4978 } 4979 case Intrinsic::clear_cache: 4980 return TLI.getClearCacheBuiltinName(); 4981 case Intrinsic::eh_actions: 4982 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 4983 return nullptr; 4984 case Intrinsic::donothing: 4985 // ignore 4986 return nullptr; 4987 case Intrinsic::experimental_stackmap: { 4988 visitStackmap(I); 4989 return nullptr; 4990 } 4991 case Intrinsic::experimental_patchpoint_void: 4992 case Intrinsic::experimental_patchpoint_i64: { 4993 visitPatchpoint(&I); 4994 return nullptr; 4995 } 4996 case Intrinsic::experimental_gc_statepoint: { 4997 visitStatepoint(I); 4998 return nullptr; 4999 } 5000 case Intrinsic::experimental_gc_result_int: 5001 case Intrinsic::experimental_gc_result_float: 5002 case Intrinsic::experimental_gc_result_ptr: 5003 case Intrinsic::experimental_gc_result: { 5004 visitGCResult(I); 5005 return nullptr; 5006 } 5007 case Intrinsic::experimental_gc_relocate: { 5008 visitGCRelocate(I); 5009 return nullptr; 5010 } 5011 case Intrinsic::instrprof_increment: 5012 llvm_unreachable("instrprof failed to lower an increment"); 5013 5014 case Intrinsic::localescape: { 5015 MachineFunction &MF = DAG.getMachineFunction(); 5016 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5017 5018 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5019 // is the same on all targets. 5020 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5021 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5022 if (isa<ConstantPointerNull>(Arg)) 5023 continue; // Skip null pointers. They represent a hole in index space. 5024 AllocaInst *Slot = cast<AllocaInst>(Arg); 5025 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5026 "can only escape static allocas"); 5027 int FI = FuncInfo.StaticAllocaMap[Slot]; 5028 MCSymbol *FrameAllocSym = 5029 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5030 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5031 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5032 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5033 .addSym(FrameAllocSym) 5034 .addFrameIndex(FI); 5035 } 5036 5037 return nullptr; 5038 } 5039 5040 case Intrinsic::localrecover: { 5041 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5042 MachineFunction &MF = DAG.getMachineFunction(); 5043 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5044 5045 // Get the symbol that defines the frame offset. 5046 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5047 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5048 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5049 MCSymbol *FrameAllocSym = 5050 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5051 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5052 5053 // Create a MCSymbol for the label to avoid any target lowering 5054 // that would make this PC relative. 5055 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5056 SDValue OffsetVal = 5057 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5058 5059 // Add the offset to the FP. 5060 Value *FP = I.getArgOperand(1); 5061 SDValue FPVal = getValue(FP); 5062 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5063 setValue(&I, Add); 5064 5065 return nullptr; 5066 } 5067 case Intrinsic::eh_begincatch: 5068 case Intrinsic::eh_endcatch: 5069 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 5070 case Intrinsic::eh_exceptioncode: { 5071 unsigned Reg = TLI.getExceptionPointerRegister(); 5072 assert(Reg && "cannot get exception code on this platform"); 5073 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5074 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5075 assert(FuncInfo.MBB->isLandingPad() && "eh.exceptioncode in non-lpad"); 5076 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5077 SDValue N = 5078 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5079 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5080 setValue(&I, N); 5081 return nullptr; 5082 } 5083 } 5084 } 5085 5086 std::pair<SDValue, SDValue> 5087 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5088 MachineBasicBlock *LandingPad) { 5089 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5090 MCSymbol *BeginLabel = nullptr; 5091 5092 if (LandingPad) { 5093 // Insert a label before the invoke call to mark the try range. This can be 5094 // used to detect deletion of the invoke via the MachineModuleInfo. 5095 BeginLabel = MMI.getContext().createTempSymbol(); 5096 5097 // For SjLj, keep track of which landing pads go with which invokes 5098 // so as to maintain the ordering of pads in the LSDA. 5099 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5100 if (CallSiteIndex) { 5101 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5102 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5103 5104 // Now that the call site is handled, stop tracking it. 5105 MMI.setCurrentCallSite(0); 5106 } 5107 5108 // Both PendingLoads and PendingExports must be flushed here; 5109 // this call might not return. 5110 (void)getRoot(); 5111 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5112 5113 CLI.setChain(getRoot()); 5114 } 5115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5116 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5117 5118 assert((CLI.IsTailCall || Result.second.getNode()) && 5119 "Non-null chain expected with non-tail call!"); 5120 assert((Result.second.getNode() || !Result.first.getNode()) && 5121 "Null value expected with tail call!"); 5122 5123 if (!Result.second.getNode()) { 5124 // As a special case, a null chain means that a tail call has been emitted 5125 // and the DAG root is already updated. 5126 HasTailCall = true; 5127 5128 // Since there's no actual continuation from this block, nothing can be 5129 // relying on us setting vregs for them. 5130 PendingExports.clear(); 5131 } else { 5132 DAG.setRoot(Result.second); 5133 } 5134 5135 if (LandingPad) { 5136 // Insert a label at the end of the invoke call to mark the try range. This 5137 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5138 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5139 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5140 5141 // Inform MachineModuleInfo of range. 5142 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5143 } 5144 5145 return Result; 5146 } 5147 5148 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5149 bool isTailCall, 5150 MachineBasicBlock *LandingPad) { 5151 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5152 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5153 Type *RetTy = FTy->getReturnType(); 5154 5155 TargetLowering::ArgListTy Args; 5156 TargetLowering::ArgListEntry Entry; 5157 Args.reserve(CS.arg_size()); 5158 5159 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5160 i != e; ++i) { 5161 const Value *V = *i; 5162 5163 // Skip empty types 5164 if (V->getType()->isEmptyTy()) 5165 continue; 5166 5167 SDValue ArgNode = getValue(V); 5168 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5169 5170 // Skip the first return-type Attribute to get to params. 5171 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5172 Args.push_back(Entry); 5173 5174 // If we have an explicit sret argument that is an Instruction, (i.e., it 5175 // might point to function-local memory), we can't meaningfully tail-call. 5176 if (Entry.isSRet && isa<Instruction>(V)) 5177 isTailCall = false; 5178 } 5179 5180 // Check if target-independent constraints permit a tail call here. 5181 // Target-dependent constraints are checked within TLI->LowerCallTo. 5182 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5183 isTailCall = false; 5184 5185 TargetLowering::CallLoweringInfo CLI(DAG); 5186 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5187 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5188 .setTailCall(isTailCall); 5189 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5190 5191 if (Result.first.getNode()) 5192 setValue(CS.getInstruction(), Result.first); 5193 } 5194 5195 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5196 /// value is equal or not-equal to zero. 5197 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5198 for (const User *U : V->users()) { 5199 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5200 if (IC->isEquality()) 5201 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5202 if (C->isNullValue()) 5203 continue; 5204 // Unknown instruction. 5205 return false; 5206 } 5207 return true; 5208 } 5209 5210 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5211 Type *LoadTy, 5212 SelectionDAGBuilder &Builder) { 5213 5214 // Check to see if this load can be trivially constant folded, e.g. if the 5215 // input is from a string literal. 5216 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5217 // Cast pointer to the type we really want to load. 5218 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5219 PointerType::getUnqual(LoadTy)); 5220 5221 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5222 const_cast<Constant *>(LoadInput), *Builder.DL)) 5223 return Builder.getValue(LoadCst); 5224 } 5225 5226 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5227 // still constant memory, the input chain can be the entry node. 5228 SDValue Root; 5229 bool ConstantMemory = false; 5230 5231 // Do not serialize (non-volatile) loads of constant memory with anything. 5232 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5233 Root = Builder.DAG.getEntryNode(); 5234 ConstantMemory = true; 5235 } else { 5236 // Do not serialize non-volatile loads against each other. 5237 Root = Builder.DAG.getRoot(); 5238 } 5239 5240 SDValue Ptr = Builder.getValue(PtrVal); 5241 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5242 Ptr, MachinePointerInfo(PtrVal), 5243 false /*volatile*/, 5244 false /*nontemporal*/, 5245 false /*isinvariant*/, 1 /* align=1 */); 5246 5247 if (!ConstantMemory) 5248 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5249 return LoadVal; 5250 } 5251 5252 /// processIntegerCallValue - Record the value for an instruction that 5253 /// produces an integer result, converting the type where necessary. 5254 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5255 SDValue Value, 5256 bool IsSigned) { 5257 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5258 I.getType(), true); 5259 if (IsSigned) 5260 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5261 else 5262 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5263 setValue(&I, Value); 5264 } 5265 5266 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5267 /// If so, return true and lower it, otherwise return false and it will be 5268 /// lowered like a normal call. 5269 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5270 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5271 if (I.getNumArgOperands() != 3) 5272 return false; 5273 5274 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5275 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5276 !I.getArgOperand(2)->getType()->isIntegerTy() || 5277 !I.getType()->isIntegerTy()) 5278 return false; 5279 5280 const Value *Size = I.getArgOperand(2); 5281 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5282 if (CSize && CSize->getZExtValue() == 0) { 5283 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5284 I.getType(), true); 5285 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5286 return true; 5287 } 5288 5289 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5290 std::pair<SDValue, SDValue> Res = 5291 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5292 getValue(LHS), getValue(RHS), getValue(Size), 5293 MachinePointerInfo(LHS), 5294 MachinePointerInfo(RHS)); 5295 if (Res.first.getNode()) { 5296 processIntegerCallValue(I, Res.first, true); 5297 PendingLoads.push_back(Res.second); 5298 return true; 5299 } 5300 5301 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5302 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5303 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5304 bool ActuallyDoIt = true; 5305 MVT LoadVT; 5306 Type *LoadTy; 5307 switch (CSize->getZExtValue()) { 5308 default: 5309 LoadVT = MVT::Other; 5310 LoadTy = nullptr; 5311 ActuallyDoIt = false; 5312 break; 5313 case 2: 5314 LoadVT = MVT::i16; 5315 LoadTy = Type::getInt16Ty(CSize->getContext()); 5316 break; 5317 case 4: 5318 LoadVT = MVT::i32; 5319 LoadTy = Type::getInt32Ty(CSize->getContext()); 5320 break; 5321 case 8: 5322 LoadVT = MVT::i64; 5323 LoadTy = Type::getInt64Ty(CSize->getContext()); 5324 break; 5325 /* 5326 case 16: 5327 LoadVT = MVT::v4i32; 5328 LoadTy = Type::getInt32Ty(CSize->getContext()); 5329 LoadTy = VectorType::get(LoadTy, 4); 5330 break; 5331 */ 5332 } 5333 5334 // This turns into unaligned loads. We only do this if the target natively 5335 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5336 // we'll only produce a small number of byte loads. 5337 5338 // Require that we can find a legal MVT, and only do this if the target 5339 // supports unaligned loads of that type. Expanding into byte loads would 5340 // bloat the code. 5341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5342 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5343 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5344 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5345 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5346 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5347 // TODO: Check alignment of src and dest ptrs. 5348 if (!TLI.isTypeLegal(LoadVT) || 5349 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5350 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5351 ActuallyDoIt = false; 5352 } 5353 5354 if (ActuallyDoIt) { 5355 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5356 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5357 5358 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5359 ISD::SETNE); 5360 processIntegerCallValue(I, Res, false); 5361 return true; 5362 } 5363 } 5364 5365 5366 return false; 5367 } 5368 5369 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5370 /// form. If so, return true and lower it, otherwise return false and it 5371 /// will be lowered like a normal call. 5372 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5373 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5374 if (I.getNumArgOperands() != 3) 5375 return false; 5376 5377 const Value *Src = I.getArgOperand(0); 5378 const Value *Char = I.getArgOperand(1); 5379 const Value *Length = I.getArgOperand(2); 5380 if (!Src->getType()->isPointerTy() || 5381 !Char->getType()->isIntegerTy() || 5382 !Length->getType()->isIntegerTy() || 5383 !I.getType()->isPointerTy()) 5384 return false; 5385 5386 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5387 std::pair<SDValue, SDValue> Res = 5388 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5389 getValue(Src), getValue(Char), getValue(Length), 5390 MachinePointerInfo(Src)); 5391 if (Res.first.getNode()) { 5392 setValue(&I, Res.first); 5393 PendingLoads.push_back(Res.second); 5394 return true; 5395 } 5396 5397 return false; 5398 } 5399 5400 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5401 /// optimized form. If so, return true and lower it, otherwise return false 5402 /// and it will be lowered like a normal call. 5403 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5404 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5405 if (I.getNumArgOperands() != 2) 5406 return false; 5407 5408 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5409 if (!Arg0->getType()->isPointerTy() || 5410 !Arg1->getType()->isPointerTy() || 5411 !I.getType()->isPointerTy()) 5412 return false; 5413 5414 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5415 std::pair<SDValue, SDValue> Res = 5416 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5417 getValue(Arg0), getValue(Arg1), 5418 MachinePointerInfo(Arg0), 5419 MachinePointerInfo(Arg1), isStpcpy); 5420 if (Res.first.getNode()) { 5421 setValue(&I, Res.first); 5422 DAG.setRoot(Res.second); 5423 return true; 5424 } 5425 5426 return false; 5427 } 5428 5429 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5430 /// If so, return true and lower it, otherwise return false and it will be 5431 /// lowered like a normal call. 5432 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5433 // Verify that the prototype makes sense. int strcmp(void*,void*) 5434 if (I.getNumArgOperands() != 2) 5435 return false; 5436 5437 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5438 if (!Arg0->getType()->isPointerTy() || 5439 !Arg1->getType()->isPointerTy() || 5440 !I.getType()->isIntegerTy()) 5441 return false; 5442 5443 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5444 std::pair<SDValue, SDValue> Res = 5445 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5446 getValue(Arg0), getValue(Arg1), 5447 MachinePointerInfo(Arg0), 5448 MachinePointerInfo(Arg1)); 5449 if (Res.first.getNode()) { 5450 processIntegerCallValue(I, Res.first, true); 5451 PendingLoads.push_back(Res.second); 5452 return true; 5453 } 5454 5455 return false; 5456 } 5457 5458 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5459 /// form. If so, return true and lower it, otherwise return false and it 5460 /// will be lowered like a normal call. 5461 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5462 // Verify that the prototype makes sense. size_t strlen(char *) 5463 if (I.getNumArgOperands() != 1) 5464 return false; 5465 5466 const Value *Arg0 = I.getArgOperand(0); 5467 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5468 return false; 5469 5470 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5471 std::pair<SDValue, SDValue> Res = 5472 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5473 getValue(Arg0), MachinePointerInfo(Arg0)); 5474 if (Res.first.getNode()) { 5475 processIntegerCallValue(I, Res.first, false); 5476 PendingLoads.push_back(Res.second); 5477 return true; 5478 } 5479 5480 return false; 5481 } 5482 5483 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5484 /// form. If so, return true and lower it, otherwise return false and it 5485 /// will be lowered like a normal call. 5486 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5487 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5488 if (I.getNumArgOperands() != 2) 5489 return false; 5490 5491 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5492 if (!Arg0->getType()->isPointerTy() || 5493 !Arg1->getType()->isIntegerTy() || 5494 !I.getType()->isIntegerTy()) 5495 return false; 5496 5497 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5498 std::pair<SDValue, SDValue> Res = 5499 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5500 getValue(Arg0), getValue(Arg1), 5501 MachinePointerInfo(Arg0)); 5502 if (Res.first.getNode()) { 5503 processIntegerCallValue(I, Res.first, false); 5504 PendingLoads.push_back(Res.second); 5505 return true; 5506 } 5507 5508 return false; 5509 } 5510 5511 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5512 /// operation (as expected), translate it to an SDNode with the specified opcode 5513 /// and return true. 5514 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5515 unsigned Opcode) { 5516 // Sanity check that it really is a unary floating-point call. 5517 if (I.getNumArgOperands() != 1 || 5518 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5519 I.getType() != I.getArgOperand(0)->getType() || 5520 !I.onlyReadsMemory()) 5521 return false; 5522 5523 SDValue Tmp = getValue(I.getArgOperand(0)); 5524 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5525 return true; 5526 } 5527 5528 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5529 /// operation (as expected), translate it to an SDNode with the specified opcode 5530 /// and return true. 5531 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5532 unsigned Opcode) { 5533 // Sanity check that it really is a binary floating-point call. 5534 if (I.getNumArgOperands() != 2 || 5535 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5536 I.getType() != I.getArgOperand(0)->getType() || 5537 I.getType() != I.getArgOperand(1)->getType() || 5538 !I.onlyReadsMemory()) 5539 return false; 5540 5541 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5542 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5543 EVT VT = Tmp0.getValueType(); 5544 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5545 return true; 5546 } 5547 5548 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5549 // Handle inline assembly differently. 5550 if (isa<InlineAsm>(I.getCalledValue())) { 5551 visitInlineAsm(&I); 5552 return; 5553 } 5554 5555 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5556 ComputeUsesVAFloatArgument(I, &MMI); 5557 5558 const char *RenameFn = nullptr; 5559 if (Function *F = I.getCalledFunction()) { 5560 if (F->isDeclaration()) { 5561 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5562 if (unsigned IID = II->getIntrinsicID(F)) { 5563 RenameFn = visitIntrinsicCall(I, IID); 5564 if (!RenameFn) 5565 return; 5566 } 5567 } 5568 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5569 RenameFn = visitIntrinsicCall(I, IID); 5570 if (!RenameFn) 5571 return; 5572 } 5573 } 5574 5575 // Check for well-known libc/libm calls. If the function is internal, it 5576 // can't be a library call. 5577 LibFunc::Func Func; 5578 if (!F->hasLocalLinkage() && F->hasName() && 5579 LibInfo->getLibFunc(F->getName(), Func) && 5580 LibInfo->hasOptimizedCodeGen(Func)) { 5581 switch (Func) { 5582 default: break; 5583 case LibFunc::copysign: 5584 case LibFunc::copysignf: 5585 case LibFunc::copysignl: 5586 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5587 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5588 I.getType() == I.getArgOperand(0)->getType() && 5589 I.getType() == I.getArgOperand(1)->getType() && 5590 I.onlyReadsMemory()) { 5591 SDValue LHS = getValue(I.getArgOperand(0)); 5592 SDValue RHS = getValue(I.getArgOperand(1)); 5593 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5594 LHS.getValueType(), LHS, RHS)); 5595 return; 5596 } 5597 break; 5598 case LibFunc::fabs: 5599 case LibFunc::fabsf: 5600 case LibFunc::fabsl: 5601 if (visitUnaryFloatCall(I, ISD::FABS)) 5602 return; 5603 break; 5604 case LibFunc::fmin: 5605 case LibFunc::fminf: 5606 case LibFunc::fminl: 5607 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5608 return; 5609 break; 5610 case LibFunc::fmax: 5611 case LibFunc::fmaxf: 5612 case LibFunc::fmaxl: 5613 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5614 return; 5615 break; 5616 case LibFunc::sin: 5617 case LibFunc::sinf: 5618 case LibFunc::sinl: 5619 if (visitUnaryFloatCall(I, ISD::FSIN)) 5620 return; 5621 break; 5622 case LibFunc::cos: 5623 case LibFunc::cosf: 5624 case LibFunc::cosl: 5625 if (visitUnaryFloatCall(I, ISD::FCOS)) 5626 return; 5627 break; 5628 case LibFunc::sqrt: 5629 case LibFunc::sqrtf: 5630 case LibFunc::sqrtl: 5631 case LibFunc::sqrt_finite: 5632 case LibFunc::sqrtf_finite: 5633 case LibFunc::sqrtl_finite: 5634 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5635 return; 5636 break; 5637 case LibFunc::floor: 5638 case LibFunc::floorf: 5639 case LibFunc::floorl: 5640 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5641 return; 5642 break; 5643 case LibFunc::nearbyint: 5644 case LibFunc::nearbyintf: 5645 case LibFunc::nearbyintl: 5646 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5647 return; 5648 break; 5649 case LibFunc::ceil: 5650 case LibFunc::ceilf: 5651 case LibFunc::ceill: 5652 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5653 return; 5654 break; 5655 case LibFunc::rint: 5656 case LibFunc::rintf: 5657 case LibFunc::rintl: 5658 if (visitUnaryFloatCall(I, ISD::FRINT)) 5659 return; 5660 break; 5661 case LibFunc::round: 5662 case LibFunc::roundf: 5663 case LibFunc::roundl: 5664 if (visitUnaryFloatCall(I, ISD::FROUND)) 5665 return; 5666 break; 5667 case LibFunc::trunc: 5668 case LibFunc::truncf: 5669 case LibFunc::truncl: 5670 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5671 return; 5672 break; 5673 case LibFunc::log2: 5674 case LibFunc::log2f: 5675 case LibFunc::log2l: 5676 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5677 return; 5678 break; 5679 case LibFunc::exp2: 5680 case LibFunc::exp2f: 5681 case LibFunc::exp2l: 5682 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5683 return; 5684 break; 5685 case LibFunc::memcmp: 5686 if (visitMemCmpCall(I)) 5687 return; 5688 break; 5689 case LibFunc::memchr: 5690 if (visitMemChrCall(I)) 5691 return; 5692 break; 5693 case LibFunc::strcpy: 5694 if (visitStrCpyCall(I, false)) 5695 return; 5696 break; 5697 case LibFunc::stpcpy: 5698 if (visitStrCpyCall(I, true)) 5699 return; 5700 break; 5701 case LibFunc::strcmp: 5702 if (visitStrCmpCall(I)) 5703 return; 5704 break; 5705 case LibFunc::strlen: 5706 if (visitStrLenCall(I)) 5707 return; 5708 break; 5709 case LibFunc::strnlen: 5710 if (visitStrNLenCall(I)) 5711 return; 5712 break; 5713 } 5714 } 5715 } 5716 5717 SDValue Callee; 5718 if (!RenameFn) 5719 Callee = getValue(I.getCalledValue()); 5720 else 5721 Callee = DAG.getExternalSymbol( 5722 RenameFn, 5723 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5724 5725 // Check if we can potentially perform a tail call. More detailed checking is 5726 // be done within LowerCallTo, after more information about the call is known. 5727 LowerCallTo(&I, Callee, I.isTailCall()); 5728 } 5729 5730 namespace { 5731 5732 /// AsmOperandInfo - This contains information for each constraint that we are 5733 /// lowering. 5734 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5735 public: 5736 /// CallOperand - If this is the result output operand or a clobber 5737 /// this is null, otherwise it is the incoming operand to the CallInst. 5738 /// This gets modified as the asm is processed. 5739 SDValue CallOperand; 5740 5741 /// AssignedRegs - If this is a register or register class operand, this 5742 /// contains the set of register corresponding to the operand. 5743 RegsForValue AssignedRegs; 5744 5745 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5746 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5747 } 5748 5749 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5750 /// corresponds to. If there is no Value* for this operand, it returns 5751 /// MVT::Other. 5752 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5753 const DataLayout &DL) const { 5754 if (!CallOperandVal) return MVT::Other; 5755 5756 if (isa<BasicBlock>(CallOperandVal)) 5757 return TLI.getPointerTy(DL); 5758 5759 llvm::Type *OpTy = CallOperandVal->getType(); 5760 5761 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5762 // If this is an indirect operand, the operand is a pointer to the 5763 // accessed type. 5764 if (isIndirect) { 5765 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5766 if (!PtrTy) 5767 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5768 OpTy = PtrTy->getElementType(); 5769 } 5770 5771 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5772 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5773 if (STy->getNumElements() == 1) 5774 OpTy = STy->getElementType(0); 5775 5776 // If OpTy is not a single value, it may be a struct/union that we 5777 // can tile with integers. 5778 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5779 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5780 switch (BitSize) { 5781 default: break; 5782 case 1: 5783 case 8: 5784 case 16: 5785 case 32: 5786 case 64: 5787 case 128: 5788 OpTy = IntegerType::get(Context, BitSize); 5789 break; 5790 } 5791 } 5792 5793 return TLI.getValueType(DL, OpTy, true); 5794 } 5795 }; 5796 5797 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5798 5799 } // end anonymous namespace 5800 5801 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5802 /// specified operand. We prefer to assign virtual registers, to allow the 5803 /// register allocator to handle the assignment process. However, if the asm 5804 /// uses features that we can't model on machineinstrs, we have SDISel do the 5805 /// allocation. This produces generally horrible, but correct, code. 5806 /// 5807 /// OpInfo describes the operand. 5808 /// 5809 static void GetRegistersForValue(SelectionDAG &DAG, 5810 const TargetLowering &TLI, 5811 SDLoc DL, 5812 SDISelAsmOperandInfo &OpInfo) { 5813 LLVMContext &Context = *DAG.getContext(); 5814 5815 MachineFunction &MF = DAG.getMachineFunction(); 5816 SmallVector<unsigned, 4> Regs; 5817 5818 // If this is a constraint for a single physreg, or a constraint for a 5819 // register class, find it. 5820 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5821 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5822 OpInfo.ConstraintCode, 5823 OpInfo.ConstraintVT); 5824 5825 unsigned NumRegs = 1; 5826 if (OpInfo.ConstraintVT != MVT::Other) { 5827 // If this is a FP input in an integer register (or visa versa) insert a bit 5828 // cast of the input value. More generally, handle any case where the input 5829 // value disagrees with the register class we plan to stick this in. 5830 if (OpInfo.Type == InlineAsm::isInput && 5831 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5832 // Try to convert to the first EVT that the reg class contains. If the 5833 // types are identical size, use a bitcast to convert (e.g. two differing 5834 // vector types). 5835 MVT RegVT = *PhysReg.second->vt_begin(); 5836 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5837 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5838 RegVT, OpInfo.CallOperand); 5839 OpInfo.ConstraintVT = RegVT; 5840 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5841 // If the input is a FP value and we want it in FP registers, do a 5842 // bitcast to the corresponding integer type. This turns an f64 value 5843 // into i64, which can be passed with two i32 values on a 32-bit 5844 // machine. 5845 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5846 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5847 RegVT, OpInfo.CallOperand); 5848 OpInfo.ConstraintVT = RegVT; 5849 } 5850 } 5851 5852 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5853 } 5854 5855 MVT RegVT; 5856 EVT ValueVT = OpInfo.ConstraintVT; 5857 5858 // If this is a constraint for a specific physical register, like {r17}, 5859 // assign it now. 5860 if (unsigned AssignedReg = PhysReg.first) { 5861 const TargetRegisterClass *RC = PhysReg.second; 5862 if (OpInfo.ConstraintVT == MVT::Other) 5863 ValueVT = *RC->vt_begin(); 5864 5865 // Get the actual register value type. This is important, because the user 5866 // may have asked for (e.g.) the AX register in i32 type. We need to 5867 // remember that AX is actually i16 to get the right extension. 5868 RegVT = *RC->vt_begin(); 5869 5870 // This is a explicit reference to a physical register. 5871 Regs.push_back(AssignedReg); 5872 5873 // If this is an expanded reference, add the rest of the regs to Regs. 5874 if (NumRegs != 1) { 5875 TargetRegisterClass::iterator I = RC->begin(); 5876 for (; *I != AssignedReg; ++I) 5877 assert(I != RC->end() && "Didn't find reg!"); 5878 5879 // Already added the first reg. 5880 --NumRegs; ++I; 5881 for (; NumRegs; --NumRegs, ++I) { 5882 assert(I != RC->end() && "Ran out of registers to allocate!"); 5883 Regs.push_back(*I); 5884 } 5885 } 5886 5887 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5888 return; 5889 } 5890 5891 // Otherwise, if this was a reference to an LLVM register class, create vregs 5892 // for this reference. 5893 if (const TargetRegisterClass *RC = PhysReg.second) { 5894 RegVT = *RC->vt_begin(); 5895 if (OpInfo.ConstraintVT == MVT::Other) 5896 ValueVT = RegVT; 5897 5898 // Create the appropriate number of virtual registers. 5899 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5900 for (; NumRegs; --NumRegs) 5901 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5902 5903 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5904 return; 5905 } 5906 5907 // Otherwise, we couldn't allocate enough registers for this. 5908 } 5909 5910 /// visitInlineAsm - Handle a call to an InlineAsm object. 5911 /// 5912 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5913 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5914 5915 /// ConstraintOperands - Information about all of the constraints. 5916 SDISelAsmOperandInfoVector ConstraintOperands; 5917 5918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5919 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 5920 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 5921 5922 bool hasMemory = false; 5923 5924 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5925 unsigned ResNo = 0; // ResNo - The result number of the next output. 5926 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5927 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5928 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5929 5930 MVT OpVT = MVT::Other; 5931 5932 // Compute the value type for each operand. 5933 switch (OpInfo.Type) { 5934 case InlineAsm::isOutput: 5935 // Indirect outputs just consume an argument. 5936 if (OpInfo.isIndirect) { 5937 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5938 break; 5939 } 5940 5941 // The return value of the call is this value. As such, there is no 5942 // corresponding argument. 5943 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5944 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5945 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 5946 STy->getElementType(ResNo)); 5947 } else { 5948 assert(ResNo == 0 && "Asm only has one result!"); 5949 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 5950 } 5951 ++ResNo; 5952 break; 5953 case InlineAsm::isInput: 5954 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5955 break; 5956 case InlineAsm::isClobber: 5957 // Nothing to do. 5958 break; 5959 } 5960 5961 // If this is an input or an indirect output, process the call argument. 5962 // BasicBlocks are labels, currently appearing only in asm's. 5963 if (OpInfo.CallOperandVal) { 5964 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5965 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5966 } else { 5967 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5968 } 5969 5970 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 5971 DAG.getDataLayout()).getSimpleVT(); 5972 } 5973 5974 OpInfo.ConstraintVT = OpVT; 5975 5976 // Indirect operand accesses access memory. 5977 if (OpInfo.isIndirect) 5978 hasMemory = true; 5979 else { 5980 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5981 TargetLowering::ConstraintType 5982 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5983 if (CType == TargetLowering::C_Memory) { 5984 hasMemory = true; 5985 break; 5986 } 5987 } 5988 } 5989 } 5990 5991 SDValue Chain, Flag; 5992 5993 // We won't need to flush pending loads if this asm doesn't touch 5994 // memory and is nonvolatile. 5995 if (hasMemory || IA->hasSideEffects()) 5996 Chain = getRoot(); 5997 else 5998 Chain = DAG.getRoot(); 5999 6000 // Second pass over the constraints: compute which constraint option to use 6001 // and assign registers to constraints that want a specific physreg. 6002 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6003 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6004 6005 // If this is an output operand with a matching input operand, look up the 6006 // matching input. If their types mismatch, e.g. one is an integer, the 6007 // other is floating point, or their sizes are different, flag it as an 6008 // error. 6009 if (OpInfo.hasMatchingInput()) { 6010 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6011 6012 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6013 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6014 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6015 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6016 OpInfo.ConstraintVT); 6017 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6018 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6019 Input.ConstraintVT); 6020 if ((OpInfo.ConstraintVT.isInteger() != 6021 Input.ConstraintVT.isInteger()) || 6022 (MatchRC.second != InputRC.second)) { 6023 report_fatal_error("Unsupported asm: input constraint" 6024 " with a matching output constraint of" 6025 " incompatible type!"); 6026 } 6027 Input.ConstraintVT = OpInfo.ConstraintVT; 6028 } 6029 } 6030 6031 // Compute the constraint code and ConstraintType to use. 6032 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6033 6034 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6035 OpInfo.Type == InlineAsm::isClobber) 6036 continue; 6037 6038 // If this is a memory input, and if the operand is not indirect, do what we 6039 // need to to provide an address for the memory input. 6040 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6041 !OpInfo.isIndirect) { 6042 assert((OpInfo.isMultipleAlternative || 6043 (OpInfo.Type == InlineAsm::isInput)) && 6044 "Can only indirectify direct input operands!"); 6045 6046 // Memory operands really want the address of the value. If we don't have 6047 // an indirect input, put it in the constpool if we can, otherwise spill 6048 // it to a stack slot. 6049 // TODO: This isn't quite right. We need to handle these according to 6050 // the addressing mode that the constraint wants. Also, this may take 6051 // an additional register for the computation and we don't want that 6052 // either. 6053 6054 // If the operand is a float, integer, or vector constant, spill to a 6055 // constant pool entry to get its address. 6056 const Value *OpVal = OpInfo.CallOperandVal; 6057 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6058 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6059 OpInfo.CallOperand = DAG.getConstantPool( 6060 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6061 } else { 6062 // Otherwise, create a stack slot and emit a store to it before the 6063 // asm. 6064 Type *Ty = OpVal->getType(); 6065 auto &DL = DAG.getDataLayout(); 6066 uint64_t TySize = DL.getTypeAllocSize(Ty); 6067 unsigned Align = DL.getPrefTypeAlignment(Ty); 6068 MachineFunction &MF = DAG.getMachineFunction(); 6069 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6070 SDValue StackSlot = 6071 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6072 Chain = DAG.getStore(Chain, getCurSDLoc(), 6073 OpInfo.CallOperand, StackSlot, 6074 MachinePointerInfo::getFixedStack(SSFI), 6075 false, false, 0); 6076 OpInfo.CallOperand = StackSlot; 6077 } 6078 6079 // There is no longer a Value* corresponding to this operand. 6080 OpInfo.CallOperandVal = nullptr; 6081 6082 // It is now an indirect operand. 6083 OpInfo.isIndirect = true; 6084 } 6085 6086 // If this constraint is for a specific register, allocate it before 6087 // anything else. 6088 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6089 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6090 } 6091 6092 // Second pass - Loop over all of the operands, assigning virtual or physregs 6093 // to register class operands. 6094 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6095 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6096 6097 // C_Register operands have already been allocated, Other/Memory don't need 6098 // to be. 6099 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6100 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6101 } 6102 6103 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6104 std::vector<SDValue> AsmNodeOperands; 6105 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6106 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6107 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6108 6109 // If we have a !srcloc metadata node associated with it, we want to attach 6110 // this to the ultimately generated inline asm machineinstr. To do this, we 6111 // pass in the third operand as this (potentially null) inline asm MDNode. 6112 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6113 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6114 6115 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6116 // bits as operand 3. 6117 unsigned ExtraInfo = 0; 6118 if (IA->hasSideEffects()) 6119 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6120 if (IA->isAlignStack()) 6121 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6122 // Set the asm dialect. 6123 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6124 6125 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6126 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6127 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6128 6129 // Compute the constraint code and ConstraintType to use. 6130 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6131 6132 // Ideally, we would only check against memory constraints. However, the 6133 // meaning of an other constraint can be target-specific and we can't easily 6134 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6135 // for other constriants as well. 6136 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6137 OpInfo.ConstraintType == TargetLowering::C_Other) { 6138 if (OpInfo.Type == InlineAsm::isInput) 6139 ExtraInfo |= InlineAsm::Extra_MayLoad; 6140 else if (OpInfo.Type == InlineAsm::isOutput) 6141 ExtraInfo |= InlineAsm::Extra_MayStore; 6142 else if (OpInfo.Type == InlineAsm::isClobber) 6143 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6144 } 6145 } 6146 6147 AsmNodeOperands.push_back(DAG.getTargetConstant( 6148 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6149 6150 // Loop over all of the inputs, copying the operand values into the 6151 // appropriate registers and processing the output regs. 6152 RegsForValue RetValRegs; 6153 6154 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6155 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6156 6157 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6158 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6159 6160 switch (OpInfo.Type) { 6161 case InlineAsm::isOutput: { 6162 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6163 OpInfo.ConstraintType != TargetLowering::C_Register) { 6164 // Memory output, or 'other' output (e.g. 'X' constraint). 6165 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6166 6167 unsigned ConstraintID = 6168 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6169 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6170 "Failed to convert memory constraint code to constraint id."); 6171 6172 // Add information to the INLINEASM node to know about this output. 6173 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6174 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6175 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6176 MVT::i32)); 6177 AsmNodeOperands.push_back(OpInfo.CallOperand); 6178 break; 6179 } 6180 6181 // Otherwise, this is a register or register class output. 6182 6183 // Copy the output from the appropriate register. Find a register that 6184 // we can use. 6185 if (OpInfo.AssignedRegs.Regs.empty()) { 6186 LLVMContext &Ctx = *DAG.getContext(); 6187 Ctx.emitError(CS.getInstruction(), 6188 "couldn't allocate output register for constraint '" + 6189 Twine(OpInfo.ConstraintCode) + "'"); 6190 return; 6191 } 6192 6193 // If this is an indirect operand, store through the pointer after the 6194 // asm. 6195 if (OpInfo.isIndirect) { 6196 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6197 OpInfo.CallOperandVal)); 6198 } else { 6199 // This is the result value of the call. 6200 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6201 // Concatenate this output onto the outputs list. 6202 RetValRegs.append(OpInfo.AssignedRegs); 6203 } 6204 6205 // Add information to the INLINEASM node to know that this register is 6206 // set. 6207 OpInfo.AssignedRegs 6208 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6209 ? InlineAsm::Kind_RegDefEarlyClobber 6210 : InlineAsm::Kind_RegDef, 6211 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6212 break; 6213 } 6214 case InlineAsm::isInput: { 6215 SDValue InOperandVal = OpInfo.CallOperand; 6216 6217 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6218 // If this is required to match an output register we have already set, 6219 // just use its register. 6220 unsigned OperandNo = OpInfo.getMatchedOperand(); 6221 6222 // Scan until we find the definition we already emitted of this operand. 6223 // When we find it, create a RegsForValue operand. 6224 unsigned CurOp = InlineAsm::Op_FirstOperand; 6225 for (; OperandNo; --OperandNo) { 6226 // Advance to the next operand. 6227 unsigned OpFlag = 6228 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6229 assert((InlineAsm::isRegDefKind(OpFlag) || 6230 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6231 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6232 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6233 } 6234 6235 unsigned OpFlag = 6236 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6237 if (InlineAsm::isRegDefKind(OpFlag) || 6238 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6239 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6240 if (OpInfo.isIndirect) { 6241 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6242 LLVMContext &Ctx = *DAG.getContext(); 6243 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6244 " don't know how to handle tied " 6245 "indirect register inputs"); 6246 return; 6247 } 6248 6249 RegsForValue MatchedRegs; 6250 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6251 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6252 MatchedRegs.RegVTs.push_back(RegVT); 6253 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6254 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6255 i != e; ++i) { 6256 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6257 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6258 else { 6259 LLVMContext &Ctx = *DAG.getContext(); 6260 Ctx.emitError(CS.getInstruction(), 6261 "inline asm error: This value" 6262 " type register class is not natively supported!"); 6263 return; 6264 } 6265 } 6266 SDLoc dl = getCurSDLoc(); 6267 // Use the produced MatchedRegs object to 6268 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6269 Chain, &Flag, CS.getInstruction()); 6270 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6271 true, OpInfo.getMatchedOperand(), dl, 6272 DAG, AsmNodeOperands); 6273 break; 6274 } 6275 6276 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6277 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6278 "Unexpected number of operands"); 6279 // Add information to the INLINEASM node to know about this input. 6280 // See InlineAsm.h isUseOperandTiedToDef. 6281 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6282 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6283 OpInfo.getMatchedOperand()); 6284 AsmNodeOperands.push_back(DAG.getTargetConstant( 6285 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6286 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6287 break; 6288 } 6289 6290 // Treat indirect 'X' constraint as memory. 6291 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6292 OpInfo.isIndirect) 6293 OpInfo.ConstraintType = TargetLowering::C_Memory; 6294 6295 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6296 std::vector<SDValue> Ops; 6297 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6298 Ops, DAG); 6299 if (Ops.empty()) { 6300 LLVMContext &Ctx = *DAG.getContext(); 6301 Ctx.emitError(CS.getInstruction(), 6302 "invalid operand for inline asm constraint '" + 6303 Twine(OpInfo.ConstraintCode) + "'"); 6304 return; 6305 } 6306 6307 // Add information to the INLINEASM node to know about this input. 6308 unsigned ResOpType = 6309 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6310 AsmNodeOperands.push_back(DAG.getTargetConstant( 6311 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6312 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6313 break; 6314 } 6315 6316 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6317 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6318 assert(InOperandVal.getValueType() == 6319 TLI.getPointerTy(DAG.getDataLayout()) && 6320 "Memory operands expect pointer values"); 6321 6322 unsigned ConstraintID = 6323 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6324 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6325 "Failed to convert memory constraint code to constraint id."); 6326 6327 // Add information to the INLINEASM node to know about this input. 6328 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6329 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6330 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6331 getCurSDLoc(), 6332 MVT::i32)); 6333 AsmNodeOperands.push_back(InOperandVal); 6334 break; 6335 } 6336 6337 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6338 OpInfo.ConstraintType == TargetLowering::C_Register) && 6339 "Unknown constraint type!"); 6340 6341 // TODO: Support this. 6342 if (OpInfo.isIndirect) { 6343 LLVMContext &Ctx = *DAG.getContext(); 6344 Ctx.emitError(CS.getInstruction(), 6345 "Don't know how to handle indirect register inputs yet " 6346 "for constraint '" + 6347 Twine(OpInfo.ConstraintCode) + "'"); 6348 return; 6349 } 6350 6351 // Copy the input into the appropriate registers. 6352 if (OpInfo.AssignedRegs.Regs.empty()) { 6353 LLVMContext &Ctx = *DAG.getContext(); 6354 Ctx.emitError(CS.getInstruction(), 6355 "couldn't allocate input reg for constraint '" + 6356 Twine(OpInfo.ConstraintCode) + "'"); 6357 return; 6358 } 6359 6360 SDLoc dl = getCurSDLoc(); 6361 6362 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6363 Chain, &Flag, CS.getInstruction()); 6364 6365 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6366 dl, DAG, AsmNodeOperands); 6367 break; 6368 } 6369 case InlineAsm::isClobber: { 6370 // Add the clobbered value to the operand list, so that the register 6371 // allocator is aware that the physreg got clobbered. 6372 if (!OpInfo.AssignedRegs.Regs.empty()) 6373 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6374 false, 0, getCurSDLoc(), DAG, 6375 AsmNodeOperands); 6376 break; 6377 } 6378 } 6379 } 6380 6381 // Finish up input operands. Set the input chain and add the flag last. 6382 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6383 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6384 6385 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6386 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6387 Flag = Chain.getValue(1); 6388 6389 // If this asm returns a register value, copy the result from that register 6390 // and set it as the value of the call. 6391 if (!RetValRegs.Regs.empty()) { 6392 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6393 Chain, &Flag, CS.getInstruction()); 6394 6395 // FIXME: Why don't we do this for inline asms with MRVs? 6396 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6397 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6398 6399 // If any of the results of the inline asm is a vector, it may have the 6400 // wrong width/num elts. This can happen for register classes that can 6401 // contain multiple different value types. The preg or vreg allocated may 6402 // not have the same VT as was expected. Convert it to the right type 6403 // with bit_convert. 6404 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6405 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6406 ResultType, Val); 6407 6408 } else if (ResultType != Val.getValueType() && 6409 ResultType.isInteger() && Val.getValueType().isInteger()) { 6410 // If a result value was tied to an input value, the computed result may 6411 // have a wider width than the expected result. Extract the relevant 6412 // portion. 6413 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6414 } 6415 6416 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6417 } 6418 6419 setValue(CS.getInstruction(), Val); 6420 // Don't need to use this as a chain in this case. 6421 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6422 return; 6423 } 6424 6425 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6426 6427 // Process indirect outputs, first output all of the flagged copies out of 6428 // physregs. 6429 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6430 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6431 const Value *Ptr = IndirectStoresToEmit[i].second; 6432 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6433 Chain, &Flag, IA); 6434 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6435 } 6436 6437 // Emit the non-flagged stores from the physregs. 6438 SmallVector<SDValue, 8> OutChains; 6439 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6440 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6441 StoresToEmit[i].first, 6442 getValue(StoresToEmit[i].second), 6443 MachinePointerInfo(StoresToEmit[i].second), 6444 false, false, 0); 6445 OutChains.push_back(Val); 6446 } 6447 6448 if (!OutChains.empty()) 6449 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6450 6451 DAG.setRoot(Chain); 6452 } 6453 6454 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6455 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6456 MVT::Other, getRoot(), 6457 getValue(I.getArgOperand(0)), 6458 DAG.getSrcValue(I.getArgOperand(0)))); 6459 } 6460 6461 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6462 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6463 const DataLayout &DL = DAG.getDataLayout(); 6464 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6465 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6466 DAG.getSrcValue(I.getOperand(0)), 6467 DL.getABITypeAlignment(I.getType())); 6468 setValue(&I, V); 6469 DAG.setRoot(V.getValue(1)); 6470 } 6471 6472 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6473 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6474 MVT::Other, getRoot(), 6475 getValue(I.getArgOperand(0)), 6476 DAG.getSrcValue(I.getArgOperand(0)))); 6477 } 6478 6479 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6480 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6481 MVT::Other, getRoot(), 6482 getValue(I.getArgOperand(0)), 6483 getValue(I.getArgOperand(1)), 6484 DAG.getSrcValue(I.getArgOperand(0)), 6485 DAG.getSrcValue(I.getArgOperand(1)))); 6486 } 6487 6488 /// \brief Lower an argument list according to the target calling convention. 6489 /// 6490 /// \return A tuple of <return-value, token-chain> 6491 /// 6492 /// This is a helper for lowering intrinsics that follow a target calling 6493 /// convention or require stack pointer adjustment. Only a subset of the 6494 /// intrinsic's operands need to participate in the calling convention. 6495 std::pair<SDValue, SDValue> 6496 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6497 unsigned NumArgs, SDValue Callee, 6498 Type *ReturnTy, 6499 MachineBasicBlock *LandingPad, 6500 bool IsPatchPoint) { 6501 TargetLowering::ArgListTy Args; 6502 Args.reserve(NumArgs); 6503 6504 // Populate the argument list. 6505 // Attributes for args start at offset 1, after the return attribute. 6506 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6507 ArgI != ArgE; ++ArgI) { 6508 const Value *V = CS->getOperand(ArgI); 6509 6510 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6511 6512 TargetLowering::ArgListEntry Entry; 6513 Entry.Node = getValue(V); 6514 Entry.Ty = V->getType(); 6515 Entry.setAttributes(&CS, AttrI); 6516 Args.push_back(Entry); 6517 } 6518 6519 TargetLowering::CallLoweringInfo CLI(DAG); 6520 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6521 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6522 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6523 6524 return lowerInvokable(CLI, LandingPad); 6525 } 6526 6527 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6528 /// or patchpoint target node's operand list. 6529 /// 6530 /// Constants are converted to TargetConstants purely as an optimization to 6531 /// avoid constant materialization and register allocation. 6532 /// 6533 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6534 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6535 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6536 /// address materialization and register allocation, but may also be required 6537 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6538 /// alloca in the entry block, then the runtime may assume that the alloca's 6539 /// StackMap location can be read immediately after compilation and that the 6540 /// location is valid at any point during execution (this is similar to the 6541 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6542 /// only available in a register, then the runtime would need to trap when 6543 /// execution reaches the StackMap in order to read the alloca's location. 6544 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6545 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6546 SelectionDAGBuilder &Builder) { 6547 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6548 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6549 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6550 Ops.push_back( 6551 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6552 Ops.push_back( 6553 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6554 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6555 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6556 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6557 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6558 } else 6559 Ops.push_back(OpVal); 6560 } 6561 } 6562 6563 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6564 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6565 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6566 // [live variables...]) 6567 6568 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6569 6570 SDValue Chain, InFlag, Callee, NullPtr; 6571 SmallVector<SDValue, 32> Ops; 6572 6573 SDLoc DL = getCurSDLoc(); 6574 Callee = getValue(CI.getCalledValue()); 6575 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6576 6577 // The stackmap intrinsic only records the live variables (the arguemnts 6578 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6579 // intrinsic, this won't be lowered to a function call. This means we don't 6580 // have to worry about calling conventions and target specific lowering code. 6581 // Instead we perform the call lowering right here. 6582 // 6583 // chain, flag = CALLSEQ_START(chain, 0) 6584 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6585 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6586 // 6587 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6588 InFlag = Chain.getValue(1); 6589 6590 // Add the <id> and <numBytes> constants. 6591 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6592 Ops.push_back(DAG.getTargetConstant( 6593 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6594 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6595 Ops.push_back(DAG.getTargetConstant( 6596 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6597 MVT::i32)); 6598 6599 // Push live variables for the stack map. 6600 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6601 6602 // We are not pushing any register mask info here on the operands list, 6603 // because the stackmap doesn't clobber anything. 6604 6605 // Push the chain and the glue flag. 6606 Ops.push_back(Chain); 6607 Ops.push_back(InFlag); 6608 6609 // Create the STACKMAP node. 6610 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6611 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6612 Chain = SDValue(SM, 0); 6613 InFlag = Chain.getValue(1); 6614 6615 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6616 6617 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6618 6619 // Set the root to the target-lowered call chain. 6620 DAG.setRoot(Chain); 6621 6622 // Inform the Frame Information that we have a stackmap in this function. 6623 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6624 } 6625 6626 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6627 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6628 MachineBasicBlock *LandingPad) { 6629 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6630 // i32 <numBytes>, 6631 // i8* <target>, 6632 // i32 <numArgs>, 6633 // [Args...], 6634 // [live variables...]) 6635 6636 CallingConv::ID CC = CS.getCallingConv(); 6637 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6638 bool HasDef = !CS->getType()->isVoidTy(); 6639 SDLoc dl = getCurSDLoc(); 6640 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6641 6642 // Handle immediate and symbolic callees. 6643 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6644 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6645 /*isTarget=*/true); 6646 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6647 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6648 SDLoc(SymbolicCallee), 6649 SymbolicCallee->getValueType(0)); 6650 6651 // Get the real number of arguments participating in the call <numArgs> 6652 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6653 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6654 6655 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6656 // Intrinsics include all meta-operands up to but not including CC. 6657 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6658 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6659 "Not enough arguments provided to the patchpoint intrinsic"); 6660 6661 // For AnyRegCC the arguments are lowered later on manually. 6662 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6663 Type *ReturnTy = 6664 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6665 std::pair<SDValue, SDValue> Result = 6666 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 6667 LandingPad, true); 6668 6669 SDNode *CallEnd = Result.second.getNode(); 6670 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6671 CallEnd = CallEnd->getOperand(0).getNode(); 6672 6673 /// Get a call instruction from the call sequence chain. 6674 /// Tail calls are not allowed. 6675 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6676 "Expected a callseq node."); 6677 SDNode *Call = CallEnd->getOperand(0).getNode(); 6678 bool HasGlue = Call->getGluedNode(); 6679 6680 // Replace the target specific call node with the patchable intrinsic. 6681 SmallVector<SDValue, 8> Ops; 6682 6683 // Add the <id> and <numBytes> constants. 6684 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6685 Ops.push_back(DAG.getTargetConstant( 6686 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6687 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6688 Ops.push_back(DAG.getTargetConstant( 6689 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6690 MVT::i32)); 6691 6692 // Add the callee. 6693 Ops.push_back(Callee); 6694 6695 // Adjust <numArgs> to account for any arguments that have been passed on the 6696 // stack instead. 6697 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6698 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6699 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6700 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6701 6702 // Add the calling convention 6703 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6704 6705 // Add the arguments we omitted previously. The register allocator should 6706 // place these in any free register. 6707 if (IsAnyRegCC) 6708 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6709 Ops.push_back(getValue(CS.getArgument(i))); 6710 6711 // Push the arguments from the call instruction up to the register mask. 6712 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6713 Ops.append(Call->op_begin() + 2, e); 6714 6715 // Push live variables for the stack map. 6716 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6717 6718 // Push the register mask info. 6719 if (HasGlue) 6720 Ops.push_back(*(Call->op_end()-2)); 6721 else 6722 Ops.push_back(*(Call->op_end()-1)); 6723 6724 // Push the chain (this is originally the first operand of the call, but 6725 // becomes now the last or second to last operand). 6726 Ops.push_back(*(Call->op_begin())); 6727 6728 // Push the glue flag (last operand). 6729 if (HasGlue) 6730 Ops.push_back(*(Call->op_end()-1)); 6731 6732 SDVTList NodeTys; 6733 if (IsAnyRegCC && HasDef) { 6734 // Create the return types based on the intrinsic definition 6735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6736 SmallVector<EVT, 3> ValueVTs; 6737 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6738 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6739 6740 // There is always a chain and a glue type at the end 6741 ValueVTs.push_back(MVT::Other); 6742 ValueVTs.push_back(MVT::Glue); 6743 NodeTys = DAG.getVTList(ValueVTs); 6744 } else 6745 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6746 6747 // Replace the target specific call node with a PATCHPOINT node. 6748 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6749 dl, NodeTys, Ops); 6750 6751 // Update the NodeMap. 6752 if (HasDef) { 6753 if (IsAnyRegCC) 6754 setValue(CS.getInstruction(), SDValue(MN, 0)); 6755 else 6756 setValue(CS.getInstruction(), Result.first); 6757 } 6758 6759 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6760 // call sequence. Furthermore the location of the chain and glue can change 6761 // when the AnyReg calling convention is used and the intrinsic returns a 6762 // value. 6763 if (IsAnyRegCC && HasDef) { 6764 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6765 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6766 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6767 } else 6768 DAG.ReplaceAllUsesWith(Call, MN); 6769 DAG.DeleteNode(Call); 6770 6771 // Inform the Frame Information that we have a patchpoint in this function. 6772 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6773 } 6774 6775 /// Returns an AttributeSet representing the attributes applied to the return 6776 /// value of the given call. 6777 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6778 SmallVector<Attribute::AttrKind, 2> Attrs; 6779 if (CLI.RetSExt) 6780 Attrs.push_back(Attribute::SExt); 6781 if (CLI.RetZExt) 6782 Attrs.push_back(Attribute::ZExt); 6783 if (CLI.IsInReg) 6784 Attrs.push_back(Attribute::InReg); 6785 6786 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6787 Attrs); 6788 } 6789 6790 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6791 /// implementation, which just calls LowerCall. 6792 /// FIXME: When all targets are 6793 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6794 std::pair<SDValue, SDValue> 6795 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6796 // Handle the incoming return values from the call. 6797 CLI.Ins.clear(); 6798 Type *OrigRetTy = CLI.RetTy; 6799 SmallVector<EVT, 4> RetTys; 6800 SmallVector<uint64_t, 4> Offsets; 6801 auto &DL = CLI.DAG.getDataLayout(); 6802 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6803 6804 SmallVector<ISD::OutputArg, 4> Outs; 6805 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6806 6807 bool CanLowerReturn = 6808 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6809 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6810 6811 SDValue DemoteStackSlot; 6812 int DemoteStackIdx = -100; 6813 if (!CanLowerReturn) { 6814 // FIXME: equivalent assert? 6815 // assert(!CS.hasInAllocaArgument() && 6816 // "sret demotion is incompatible with inalloca"); 6817 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 6818 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 6819 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6820 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6821 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6822 6823 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 6824 ArgListEntry Entry; 6825 Entry.Node = DemoteStackSlot; 6826 Entry.Ty = StackSlotPtrType; 6827 Entry.isSExt = false; 6828 Entry.isZExt = false; 6829 Entry.isInReg = false; 6830 Entry.isSRet = true; 6831 Entry.isNest = false; 6832 Entry.isByVal = false; 6833 Entry.isReturned = false; 6834 Entry.Alignment = Align; 6835 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6836 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6837 6838 // sret demotion isn't compatible with tail-calls, since the sret argument 6839 // points into the callers stack frame. 6840 CLI.IsTailCall = false; 6841 } else { 6842 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6843 EVT VT = RetTys[I]; 6844 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6845 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6846 for (unsigned i = 0; i != NumRegs; ++i) { 6847 ISD::InputArg MyFlags; 6848 MyFlags.VT = RegisterVT; 6849 MyFlags.ArgVT = VT; 6850 MyFlags.Used = CLI.IsReturnValueUsed; 6851 if (CLI.RetSExt) 6852 MyFlags.Flags.setSExt(); 6853 if (CLI.RetZExt) 6854 MyFlags.Flags.setZExt(); 6855 if (CLI.IsInReg) 6856 MyFlags.Flags.setInReg(); 6857 CLI.Ins.push_back(MyFlags); 6858 } 6859 } 6860 } 6861 6862 // Handle all of the outgoing arguments. 6863 CLI.Outs.clear(); 6864 CLI.OutVals.clear(); 6865 ArgListTy &Args = CLI.getArgs(); 6866 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6867 SmallVector<EVT, 4> ValueVTs; 6868 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 6869 Type *FinalType = Args[i].Ty; 6870 if (Args[i].isByVal) 6871 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6872 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6873 FinalType, CLI.CallConv, CLI.IsVarArg); 6874 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6875 ++Value) { 6876 EVT VT = ValueVTs[Value]; 6877 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6878 SDValue Op = SDValue(Args[i].Node.getNode(), 6879 Args[i].Node.getResNo() + Value); 6880 ISD::ArgFlagsTy Flags; 6881 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 6882 6883 if (Args[i].isZExt) 6884 Flags.setZExt(); 6885 if (Args[i].isSExt) 6886 Flags.setSExt(); 6887 if (Args[i].isInReg) 6888 Flags.setInReg(); 6889 if (Args[i].isSRet) 6890 Flags.setSRet(); 6891 if (Args[i].isByVal) 6892 Flags.setByVal(); 6893 if (Args[i].isInAlloca) { 6894 Flags.setInAlloca(); 6895 // Set the byval flag for CCAssignFn callbacks that don't know about 6896 // inalloca. This way we can know how many bytes we should've allocated 6897 // and how many bytes a callee cleanup function will pop. If we port 6898 // inalloca to more targets, we'll have to add custom inalloca handling 6899 // in the various CC lowering callbacks. 6900 Flags.setByVal(); 6901 } 6902 if (Args[i].isByVal || Args[i].isInAlloca) { 6903 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6904 Type *ElementTy = Ty->getElementType(); 6905 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 6906 // For ByVal, alignment should come from FE. BE will guess if this 6907 // info is not there but there are cases it cannot get right. 6908 unsigned FrameAlign; 6909 if (Args[i].Alignment) 6910 FrameAlign = Args[i].Alignment; 6911 else 6912 FrameAlign = getByValTypeAlignment(ElementTy, DL); 6913 Flags.setByValAlign(FrameAlign); 6914 } 6915 if (Args[i].isNest) 6916 Flags.setNest(); 6917 if (NeedsRegBlock) 6918 Flags.setInConsecutiveRegs(); 6919 Flags.setOrigAlign(OriginalAlignment); 6920 6921 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6922 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6923 SmallVector<SDValue, 4> Parts(NumParts); 6924 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6925 6926 if (Args[i].isSExt) 6927 ExtendKind = ISD::SIGN_EXTEND; 6928 else if (Args[i].isZExt) 6929 ExtendKind = ISD::ZERO_EXTEND; 6930 6931 // Conservatively only handle 'returned' on non-vectors for now 6932 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6933 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6934 "unexpected use of 'returned'"); 6935 // Before passing 'returned' to the target lowering code, ensure that 6936 // either the register MVT and the actual EVT are the same size or that 6937 // the return value and argument are extended in the same way; in these 6938 // cases it's safe to pass the argument register value unchanged as the 6939 // return register value (although it's at the target's option whether 6940 // to do so) 6941 // TODO: allow code generation to take advantage of partially preserved 6942 // registers rather than clobbering the entire register when the 6943 // parameter extension method is not compatible with the return 6944 // extension method 6945 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6946 (ExtendKind != ISD::ANY_EXTEND && 6947 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6948 Flags.setReturned(); 6949 } 6950 6951 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6952 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6953 6954 for (unsigned j = 0; j != NumParts; ++j) { 6955 // if it isn't first piece, alignment must be 1 6956 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6957 i < CLI.NumFixedArgs, 6958 i, j*Parts[j].getValueType().getStoreSize()); 6959 if (NumParts > 1 && j == 0) 6960 MyFlags.Flags.setSplit(); 6961 else if (j != 0) 6962 MyFlags.Flags.setOrigAlign(1); 6963 6964 CLI.Outs.push_back(MyFlags); 6965 CLI.OutVals.push_back(Parts[j]); 6966 } 6967 6968 if (NeedsRegBlock && Value == NumValues - 1) 6969 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6970 } 6971 } 6972 6973 SmallVector<SDValue, 4> InVals; 6974 CLI.Chain = LowerCall(CLI, InVals); 6975 6976 // Verify that the target's LowerCall behaved as expected. 6977 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6978 "LowerCall didn't return a valid chain!"); 6979 assert((!CLI.IsTailCall || InVals.empty()) && 6980 "LowerCall emitted a return value for a tail call!"); 6981 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6982 "LowerCall didn't emit the correct number of values!"); 6983 6984 // For a tail call, the return value is merely live-out and there aren't 6985 // any nodes in the DAG representing it. Return a special value to 6986 // indicate that a tail call has been emitted and no more Instructions 6987 // should be processed in the current block. 6988 if (CLI.IsTailCall) { 6989 CLI.DAG.setRoot(CLI.Chain); 6990 return std::make_pair(SDValue(), SDValue()); 6991 } 6992 6993 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6994 assert(InVals[i].getNode() && 6995 "LowerCall emitted a null value!"); 6996 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6997 "LowerCall emitted a value with the wrong type!"); 6998 }); 6999 7000 SmallVector<SDValue, 4> ReturnValues; 7001 if (!CanLowerReturn) { 7002 // The instruction result is the result of loading from the 7003 // hidden sret parameter. 7004 SmallVector<EVT, 1> PVTs; 7005 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7006 7007 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7008 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7009 EVT PtrVT = PVTs[0]; 7010 7011 unsigned NumValues = RetTys.size(); 7012 ReturnValues.resize(NumValues); 7013 SmallVector<SDValue, 4> Chains(NumValues); 7014 7015 for (unsigned i = 0; i < NumValues; ++i) { 7016 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7017 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7018 PtrVT)); 7019 SDValue L = CLI.DAG.getLoad( 7020 RetTys[i], CLI.DL, CLI.Chain, Add, 7021 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7022 false, false, 1); 7023 ReturnValues[i] = L; 7024 Chains[i] = L.getValue(1); 7025 } 7026 7027 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7028 } else { 7029 // Collect the legal value parts into potentially illegal values 7030 // that correspond to the original function's return values. 7031 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7032 if (CLI.RetSExt) 7033 AssertOp = ISD::AssertSext; 7034 else if (CLI.RetZExt) 7035 AssertOp = ISD::AssertZext; 7036 unsigned CurReg = 0; 7037 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7038 EVT VT = RetTys[I]; 7039 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7040 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7041 7042 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7043 NumRegs, RegisterVT, VT, nullptr, 7044 AssertOp)); 7045 CurReg += NumRegs; 7046 } 7047 7048 // For a function returning void, there is no return value. We can't create 7049 // such a node, so we just return a null return value in that case. In 7050 // that case, nothing will actually look at the value. 7051 if (ReturnValues.empty()) 7052 return std::make_pair(SDValue(), CLI.Chain); 7053 } 7054 7055 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7056 CLI.DAG.getVTList(RetTys), ReturnValues); 7057 return std::make_pair(Res, CLI.Chain); 7058 } 7059 7060 void TargetLowering::LowerOperationWrapper(SDNode *N, 7061 SmallVectorImpl<SDValue> &Results, 7062 SelectionDAG &DAG) const { 7063 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7064 if (Res.getNode()) 7065 Results.push_back(Res); 7066 } 7067 7068 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7069 llvm_unreachable("LowerOperation not implemented for this target!"); 7070 } 7071 7072 void 7073 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7074 SDValue Op = getNonRegisterValue(V); 7075 assert((Op.getOpcode() != ISD::CopyFromReg || 7076 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7077 "Copy from a reg to the same reg!"); 7078 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7079 7080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7081 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7082 V->getType()); 7083 SDValue Chain = DAG.getEntryNode(); 7084 7085 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7086 FuncInfo.PreferredExtendType.end()) 7087 ? ISD::ANY_EXTEND 7088 : FuncInfo.PreferredExtendType[V]; 7089 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7090 PendingExports.push_back(Chain); 7091 } 7092 7093 #include "llvm/CodeGen/SelectionDAGISel.h" 7094 7095 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7096 /// entry block, return true. This includes arguments used by switches, since 7097 /// the switch may expand into multiple basic blocks. 7098 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7099 // With FastISel active, we may be splitting blocks, so force creation 7100 // of virtual registers for all non-dead arguments. 7101 if (FastISel) 7102 return A->use_empty(); 7103 7104 const BasicBlock *Entry = A->getParent()->begin(); 7105 for (const User *U : A->users()) 7106 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7107 return false; // Use not in entry block. 7108 7109 return true; 7110 } 7111 7112 void SelectionDAGISel::LowerArguments(const Function &F) { 7113 SelectionDAG &DAG = SDB->DAG; 7114 SDLoc dl = SDB->getCurSDLoc(); 7115 const DataLayout &DL = DAG.getDataLayout(); 7116 SmallVector<ISD::InputArg, 16> Ins; 7117 7118 if (!FuncInfo->CanLowerReturn) { 7119 // Put in an sret pointer parameter before all the other parameters. 7120 SmallVector<EVT, 1> ValueVTs; 7121 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7122 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7123 7124 // NOTE: Assuming that a pointer will never break down to more than one VT 7125 // or one register. 7126 ISD::ArgFlagsTy Flags; 7127 Flags.setSRet(); 7128 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7129 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7130 ISD::InputArg::NoArgIndex, 0); 7131 Ins.push_back(RetArg); 7132 } 7133 7134 // Set up the incoming argument description vector. 7135 unsigned Idx = 1; 7136 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7137 I != E; ++I, ++Idx) { 7138 SmallVector<EVT, 4> ValueVTs; 7139 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7140 bool isArgValueUsed = !I->use_empty(); 7141 unsigned PartBase = 0; 7142 Type *FinalType = I->getType(); 7143 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7144 FinalType = cast<PointerType>(FinalType)->getElementType(); 7145 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7146 FinalType, F.getCallingConv(), F.isVarArg()); 7147 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7148 Value != NumValues; ++Value) { 7149 EVT VT = ValueVTs[Value]; 7150 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7151 ISD::ArgFlagsTy Flags; 7152 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7153 7154 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7155 Flags.setZExt(); 7156 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7157 Flags.setSExt(); 7158 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7159 Flags.setInReg(); 7160 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7161 Flags.setSRet(); 7162 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7163 Flags.setByVal(); 7164 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7165 Flags.setInAlloca(); 7166 // Set the byval flag for CCAssignFn callbacks that don't know about 7167 // inalloca. This way we can know how many bytes we should've allocated 7168 // and how many bytes a callee cleanup function will pop. If we port 7169 // inalloca to more targets, we'll have to add custom inalloca handling 7170 // in the various CC lowering callbacks. 7171 Flags.setByVal(); 7172 } 7173 if (Flags.isByVal() || Flags.isInAlloca()) { 7174 PointerType *Ty = cast<PointerType>(I->getType()); 7175 Type *ElementTy = Ty->getElementType(); 7176 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7177 // For ByVal, alignment should be passed from FE. BE will guess if 7178 // this info is not there but there are cases it cannot get right. 7179 unsigned FrameAlign; 7180 if (F.getParamAlignment(Idx)) 7181 FrameAlign = F.getParamAlignment(Idx); 7182 else 7183 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7184 Flags.setByValAlign(FrameAlign); 7185 } 7186 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7187 Flags.setNest(); 7188 if (NeedsRegBlock) 7189 Flags.setInConsecutiveRegs(); 7190 Flags.setOrigAlign(OriginalAlignment); 7191 7192 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7193 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7194 for (unsigned i = 0; i != NumRegs; ++i) { 7195 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7196 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7197 if (NumRegs > 1 && i == 0) 7198 MyFlags.Flags.setSplit(); 7199 // if it isn't first piece, alignment must be 1 7200 else if (i > 0) 7201 MyFlags.Flags.setOrigAlign(1); 7202 Ins.push_back(MyFlags); 7203 } 7204 if (NeedsRegBlock && Value == NumValues - 1) 7205 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7206 PartBase += VT.getStoreSize(); 7207 } 7208 } 7209 7210 // Call the target to set up the argument values. 7211 SmallVector<SDValue, 8> InVals; 7212 SDValue NewRoot = TLI->LowerFormalArguments( 7213 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7214 7215 // Verify that the target's LowerFormalArguments behaved as expected. 7216 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7217 "LowerFormalArguments didn't return a valid chain!"); 7218 assert(InVals.size() == Ins.size() && 7219 "LowerFormalArguments didn't emit the correct number of values!"); 7220 DEBUG({ 7221 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7222 assert(InVals[i].getNode() && 7223 "LowerFormalArguments emitted a null value!"); 7224 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7225 "LowerFormalArguments emitted a value with the wrong type!"); 7226 } 7227 }); 7228 7229 // Update the DAG with the new chain value resulting from argument lowering. 7230 DAG.setRoot(NewRoot); 7231 7232 // Set up the argument values. 7233 unsigned i = 0; 7234 Idx = 1; 7235 if (!FuncInfo->CanLowerReturn) { 7236 // Create a virtual register for the sret pointer, and put in a copy 7237 // from the sret argument into it. 7238 SmallVector<EVT, 1> ValueVTs; 7239 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7240 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7241 MVT VT = ValueVTs[0].getSimpleVT(); 7242 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7243 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7244 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7245 RegVT, VT, nullptr, AssertOp); 7246 7247 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7248 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7249 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7250 FuncInfo->DemoteRegister = SRetReg; 7251 NewRoot = 7252 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7253 DAG.setRoot(NewRoot); 7254 7255 // i indexes lowered arguments. Bump it past the hidden sret argument. 7256 // Idx indexes LLVM arguments. Don't touch it. 7257 ++i; 7258 } 7259 7260 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7261 ++I, ++Idx) { 7262 SmallVector<SDValue, 4> ArgValues; 7263 SmallVector<EVT, 4> ValueVTs; 7264 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7265 unsigned NumValues = ValueVTs.size(); 7266 7267 // If this argument is unused then remember its value. It is used to generate 7268 // debugging information. 7269 if (I->use_empty() && NumValues) { 7270 SDB->setUnusedArgValue(I, InVals[i]); 7271 7272 // Also remember any frame index for use in FastISel. 7273 if (FrameIndexSDNode *FI = 7274 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7275 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7276 } 7277 7278 for (unsigned Val = 0; Val != NumValues; ++Val) { 7279 EVT VT = ValueVTs[Val]; 7280 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7281 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7282 7283 if (!I->use_empty()) { 7284 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7285 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7286 AssertOp = ISD::AssertSext; 7287 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7288 AssertOp = ISD::AssertZext; 7289 7290 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7291 NumParts, PartVT, VT, 7292 nullptr, AssertOp)); 7293 } 7294 7295 i += NumParts; 7296 } 7297 7298 // We don't need to do anything else for unused arguments. 7299 if (ArgValues.empty()) 7300 continue; 7301 7302 // Note down frame index. 7303 if (FrameIndexSDNode *FI = 7304 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7305 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7306 7307 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7308 SDB->getCurSDLoc()); 7309 7310 SDB->setValue(I, Res); 7311 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7312 if (LoadSDNode *LNode = 7313 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7314 if (FrameIndexSDNode *FI = 7315 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7316 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7317 } 7318 7319 // If this argument is live outside of the entry block, insert a copy from 7320 // wherever we got it to the vreg that other BB's will reference it as. 7321 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7322 // If we can, though, try to skip creating an unnecessary vreg. 7323 // FIXME: This isn't very clean... it would be nice to make this more 7324 // general. It's also subtly incompatible with the hacks FastISel 7325 // uses with vregs. 7326 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7327 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7328 FuncInfo->ValueMap[I] = Reg; 7329 continue; 7330 } 7331 } 7332 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7333 FuncInfo->InitializeRegForValue(I); 7334 SDB->CopyToExportRegsIfNeeded(I); 7335 } 7336 } 7337 7338 assert(i == InVals.size() && "Argument register count mismatch!"); 7339 7340 // Finally, if the target has anything special to do, allow it to do so. 7341 EmitFunctionEntryCode(); 7342 } 7343 7344 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7345 /// ensure constants are generated when needed. Remember the virtual registers 7346 /// that need to be added to the Machine PHI nodes as input. We cannot just 7347 /// directly add them, because expansion might result in multiple MBB's for one 7348 /// BB. As such, the start of the BB might correspond to a different MBB than 7349 /// the end. 7350 /// 7351 void 7352 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7353 const TerminatorInst *TI = LLVMBB->getTerminator(); 7354 7355 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7356 7357 // Check PHI nodes in successors that expect a value to be available from this 7358 // block. 7359 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7360 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7361 if (!isa<PHINode>(SuccBB->begin())) continue; 7362 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7363 7364 // If this terminator has multiple identical successors (common for 7365 // switches), only handle each succ once. 7366 if (!SuccsHandled.insert(SuccMBB).second) 7367 continue; 7368 7369 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7370 7371 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7372 // nodes and Machine PHI nodes, but the incoming operands have not been 7373 // emitted yet. 7374 for (BasicBlock::const_iterator I = SuccBB->begin(); 7375 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7376 // Ignore dead phi's. 7377 if (PN->use_empty()) continue; 7378 7379 // Skip empty types 7380 if (PN->getType()->isEmptyTy()) 7381 continue; 7382 7383 unsigned Reg; 7384 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7385 7386 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7387 unsigned &RegOut = ConstantsOut[C]; 7388 if (RegOut == 0) { 7389 RegOut = FuncInfo.CreateRegs(C->getType()); 7390 CopyValueToVirtualRegister(C, RegOut); 7391 } 7392 Reg = RegOut; 7393 } else { 7394 DenseMap<const Value *, unsigned>::iterator I = 7395 FuncInfo.ValueMap.find(PHIOp); 7396 if (I != FuncInfo.ValueMap.end()) 7397 Reg = I->second; 7398 else { 7399 assert(isa<AllocaInst>(PHIOp) && 7400 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7401 "Didn't codegen value into a register!??"); 7402 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7403 CopyValueToVirtualRegister(PHIOp, Reg); 7404 } 7405 } 7406 7407 // Remember that this register needs to added to the machine PHI node as 7408 // the input for this MBB. 7409 SmallVector<EVT, 4> ValueVTs; 7410 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7411 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7412 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7413 EVT VT = ValueVTs[vti]; 7414 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7415 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7416 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7417 Reg += NumRegisters; 7418 } 7419 } 7420 } 7421 7422 ConstantsOut.clear(); 7423 } 7424 7425 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7426 /// is 0. 7427 MachineBasicBlock * 7428 SelectionDAGBuilder::StackProtectorDescriptor:: 7429 AddSuccessorMBB(const BasicBlock *BB, 7430 MachineBasicBlock *ParentMBB, 7431 bool IsLikely, 7432 MachineBasicBlock *SuccMBB) { 7433 // If SuccBB has not been created yet, create it. 7434 if (!SuccMBB) { 7435 MachineFunction *MF = ParentMBB->getParent(); 7436 MachineFunction::iterator BBI = ParentMBB; 7437 SuccMBB = MF->CreateMachineBasicBlock(BB); 7438 MF->insert(++BBI, SuccMBB); 7439 } 7440 // Add it as a successor of ParentMBB. 7441 ParentMBB->addSuccessor( 7442 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7443 return SuccMBB; 7444 } 7445 7446 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7447 MachineFunction::iterator I = MBB; 7448 if (++I == FuncInfo.MF->end()) 7449 return nullptr; 7450 return I; 7451 } 7452 7453 /// During lowering new call nodes can be created (such as memset, etc.). 7454 /// Those will become new roots of the current DAG, but complications arise 7455 /// when they are tail calls. In such cases, the call lowering will update 7456 /// the root, but the builder still needs to know that a tail call has been 7457 /// lowered in order to avoid generating an additional return. 7458 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7459 // If the node is null, we do have a tail call. 7460 if (MaybeTC.getNode() != nullptr) 7461 DAG.setRoot(MaybeTC); 7462 else 7463 HasTailCall = true; 7464 } 7465 7466 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7467 unsigned *TotalCases, unsigned First, 7468 unsigned Last) { 7469 assert(Last >= First); 7470 assert(TotalCases[Last] >= TotalCases[First]); 7471 7472 APInt LowCase = Clusters[First].Low->getValue(); 7473 APInt HighCase = Clusters[Last].High->getValue(); 7474 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7475 7476 // FIXME: A range of consecutive cases has 100% density, but only requires one 7477 // comparison to lower. We should discriminate against such consecutive ranges 7478 // in jump tables. 7479 7480 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7481 uint64_t Range = Diff + 1; 7482 7483 uint64_t NumCases = 7484 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7485 7486 assert(NumCases < UINT64_MAX / 100); 7487 assert(Range >= NumCases); 7488 7489 return NumCases * 100 >= Range * MinJumpTableDensity; 7490 } 7491 7492 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7493 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7494 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7495 } 7496 7497 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7498 unsigned First, unsigned Last, 7499 const SwitchInst *SI, 7500 MachineBasicBlock *DefaultMBB, 7501 CaseCluster &JTCluster) { 7502 assert(First <= Last); 7503 7504 uint32_t Weight = 0; 7505 unsigned NumCmps = 0; 7506 std::vector<MachineBasicBlock*> Table; 7507 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7508 for (unsigned I = First; I <= Last; ++I) { 7509 assert(Clusters[I].Kind == CC_Range); 7510 Weight += Clusters[I].Weight; 7511 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7512 APInt Low = Clusters[I].Low->getValue(); 7513 APInt High = Clusters[I].High->getValue(); 7514 NumCmps += (Low == High) ? 1 : 2; 7515 if (I != First) { 7516 // Fill the gap between this and the previous cluster. 7517 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7518 assert(PreviousHigh.slt(Low)); 7519 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7520 for (uint64_t J = 0; J < Gap; J++) 7521 Table.push_back(DefaultMBB); 7522 } 7523 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7524 for (uint64_t J = 0; J < ClusterSize; ++J) 7525 Table.push_back(Clusters[I].MBB); 7526 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7527 } 7528 7529 unsigned NumDests = JTWeights.size(); 7530 if (isSuitableForBitTests(NumDests, NumCmps, 7531 Clusters[First].Low->getValue(), 7532 Clusters[Last].High->getValue())) { 7533 // Clusters[First..Last] should be lowered as bit tests instead. 7534 return false; 7535 } 7536 7537 // Create the MBB that will load from and jump through the table. 7538 // Note: We create it here, but it's not inserted into the function yet. 7539 MachineFunction *CurMF = FuncInfo.MF; 7540 MachineBasicBlock *JumpTableMBB = 7541 CurMF->CreateMachineBasicBlock(SI->getParent()); 7542 7543 // Add successors. Note: use table order for determinism. 7544 SmallPtrSet<MachineBasicBlock *, 8> Done; 7545 for (MachineBasicBlock *Succ : Table) { 7546 if (Done.count(Succ)) 7547 continue; 7548 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7549 Done.insert(Succ); 7550 } 7551 7552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7553 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7554 ->createJumpTableIndex(Table); 7555 7556 // Set up the jump table info. 7557 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7558 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7559 Clusters[Last].High->getValue(), SI->getCondition(), 7560 nullptr, false); 7561 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7562 7563 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7564 JTCases.size() - 1, Weight); 7565 return true; 7566 } 7567 7568 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7569 const SwitchInst *SI, 7570 MachineBasicBlock *DefaultMBB) { 7571 #ifndef NDEBUG 7572 // Clusters must be non-empty, sorted, and only contain Range clusters. 7573 assert(!Clusters.empty()); 7574 for (CaseCluster &C : Clusters) 7575 assert(C.Kind == CC_Range); 7576 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7577 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7578 #endif 7579 7580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7581 if (!areJTsAllowed(TLI)) 7582 return; 7583 7584 const int64_t N = Clusters.size(); 7585 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7586 7587 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7588 SmallVector<unsigned, 8> TotalCases(N); 7589 7590 for (unsigned i = 0; i < N; ++i) { 7591 APInt Hi = Clusters[i].High->getValue(); 7592 APInt Lo = Clusters[i].Low->getValue(); 7593 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7594 if (i != 0) 7595 TotalCases[i] += TotalCases[i - 1]; 7596 } 7597 7598 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7599 // Cheap case: the whole range might be suitable for jump table. 7600 CaseCluster JTCluster; 7601 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7602 Clusters[0] = JTCluster; 7603 Clusters.resize(1); 7604 return; 7605 } 7606 } 7607 7608 // The algorithm below is not suitable for -O0. 7609 if (TM.getOptLevel() == CodeGenOpt::None) 7610 return; 7611 7612 // Split Clusters into minimum number of dense partitions. The algorithm uses 7613 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7614 // for the Case Statement'" (1994), but builds the MinPartitions array in 7615 // reverse order to make it easier to reconstruct the partitions in ascending 7616 // order. In the choice between two optimal partitionings, it picks the one 7617 // which yields more jump tables. 7618 7619 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7620 SmallVector<unsigned, 8> MinPartitions(N); 7621 // LastElement[i] is the last element of the partition starting at i. 7622 SmallVector<unsigned, 8> LastElement(N); 7623 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7624 SmallVector<unsigned, 8> NumTables(N); 7625 7626 // Base case: There is only one way to partition Clusters[N-1]. 7627 MinPartitions[N - 1] = 1; 7628 LastElement[N - 1] = N - 1; 7629 assert(MinJumpTableSize > 1); 7630 NumTables[N - 1] = 0; 7631 7632 // Note: loop indexes are signed to avoid underflow. 7633 for (int64_t i = N - 2; i >= 0; i--) { 7634 // Find optimal partitioning of Clusters[i..N-1]. 7635 // Baseline: Put Clusters[i] into a partition on its own. 7636 MinPartitions[i] = MinPartitions[i + 1] + 1; 7637 LastElement[i] = i; 7638 NumTables[i] = NumTables[i + 1]; 7639 7640 // Search for a solution that results in fewer partitions. 7641 for (int64_t j = N - 1; j > i; j--) { 7642 // Try building a partition from Clusters[i..j]. 7643 if (isDense(Clusters, &TotalCases[0], i, j)) { 7644 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7645 bool IsTable = j - i + 1 >= MinJumpTableSize; 7646 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7647 7648 // If this j leads to fewer partitions, or same number of partitions 7649 // with more lookup tables, it is a better partitioning. 7650 if (NumPartitions < MinPartitions[i] || 7651 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7652 MinPartitions[i] = NumPartitions; 7653 LastElement[i] = j; 7654 NumTables[i] = Tables; 7655 } 7656 } 7657 } 7658 } 7659 7660 // Iterate over the partitions, replacing some with jump tables in-place. 7661 unsigned DstIndex = 0; 7662 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7663 Last = LastElement[First]; 7664 assert(Last >= First); 7665 assert(DstIndex <= First); 7666 unsigned NumClusters = Last - First + 1; 7667 7668 CaseCluster JTCluster; 7669 if (NumClusters >= MinJumpTableSize && 7670 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7671 Clusters[DstIndex++] = JTCluster; 7672 } else { 7673 for (unsigned I = First; I <= Last; ++I) 7674 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7675 } 7676 } 7677 Clusters.resize(DstIndex); 7678 } 7679 7680 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7681 // FIXME: Using the pointer type doesn't seem ideal. 7682 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7683 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7684 return Range <= BW; 7685 } 7686 7687 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7688 unsigned NumCmps, 7689 const APInt &Low, 7690 const APInt &High) { 7691 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7692 // range of cases both require only one branch to lower. Just looking at the 7693 // number of clusters and destinations should be enough to decide whether to 7694 // build bit tests. 7695 7696 // To lower a range with bit tests, the range must fit the bitwidth of a 7697 // machine word. 7698 if (!rangeFitsInWord(Low, High)) 7699 return false; 7700 7701 // Decide whether it's profitable to lower this range with bit tests. Each 7702 // destination requires a bit test and branch, and there is an overall range 7703 // check branch. For a small number of clusters, separate comparisons might be 7704 // cheaper, and for many destinations, splitting the range might be better. 7705 return (NumDests == 1 && NumCmps >= 3) || 7706 (NumDests == 2 && NumCmps >= 5) || 7707 (NumDests == 3 && NumCmps >= 6); 7708 } 7709 7710 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7711 unsigned First, unsigned Last, 7712 const SwitchInst *SI, 7713 CaseCluster &BTCluster) { 7714 assert(First <= Last); 7715 if (First == Last) 7716 return false; 7717 7718 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7719 unsigned NumCmps = 0; 7720 for (int64_t I = First; I <= Last; ++I) { 7721 assert(Clusters[I].Kind == CC_Range); 7722 Dests.set(Clusters[I].MBB->getNumber()); 7723 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7724 } 7725 unsigned NumDests = Dests.count(); 7726 7727 APInt Low = Clusters[First].Low->getValue(); 7728 APInt High = Clusters[Last].High->getValue(); 7729 assert(Low.slt(High)); 7730 7731 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7732 return false; 7733 7734 APInt LowBound; 7735 APInt CmpRange; 7736 7737 const int BitWidth = DAG.getTargetLoweringInfo() 7738 .getPointerTy(DAG.getDataLayout()) 7739 .getSizeInBits(); 7740 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7741 7742 if (Low.isNonNegative() && High.slt(BitWidth)) { 7743 // Optimize the case where all the case values fit in a 7744 // word without having to subtract minValue. In this case, 7745 // we can optimize away the subtraction. 7746 LowBound = APInt::getNullValue(Low.getBitWidth()); 7747 CmpRange = High; 7748 } else { 7749 LowBound = Low; 7750 CmpRange = High - Low; 7751 } 7752 7753 CaseBitsVector CBV; 7754 uint32_t TotalWeight = 0; 7755 for (unsigned i = First; i <= Last; ++i) { 7756 // Find the CaseBits for this destination. 7757 unsigned j; 7758 for (j = 0; j < CBV.size(); ++j) 7759 if (CBV[j].BB == Clusters[i].MBB) 7760 break; 7761 if (j == CBV.size()) 7762 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7763 CaseBits *CB = &CBV[j]; 7764 7765 // Update Mask, Bits and ExtraWeight. 7766 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7767 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7768 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7769 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7770 CB->Bits += Hi - Lo + 1; 7771 CB->ExtraWeight += Clusters[i].Weight; 7772 TotalWeight += Clusters[i].Weight; 7773 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7774 } 7775 7776 BitTestInfo BTI; 7777 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7778 // Sort by weight first, number of bits second. 7779 if (a.ExtraWeight != b.ExtraWeight) 7780 return a.ExtraWeight > b.ExtraWeight; 7781 return a.Bits > b.Bits; 7782 }); 7783 7784 for (auto &CB : CBV) { 7785 MachineBasicBlock *BitTestBB = 7786 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7787 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7788 } 7789 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7790 SI->getCondition(), -1U, MVT::Other, false, nullptr, 7791 nullptr, std::move(BTI)); 7792 7793 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7794 BitTestCases.size() - 1, TotalWeight); 7795 return true; 7796 } 7797 7798 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7799 const SwitchInst *SI) { 7800 // Partition Clusters into as few subsets as possible, where each subset has a 7801 // range that fits in a machine word and has <= 3 unique destinations. 7802 7803 #ifndef NDEBUG 7804 // Clusters must be sorted and contain Range or JumpTable clusters. 7805 assert(!Clusters.empty()); 7806 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7807 for (const CaseCluster &C : Clusters) 7808 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7809 for (unsigned i = 1; i < Clusters.size(); ++i) 7810 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7811 #endif 7812 7813 // The algorithm below is not suitable for -O0. 7814 if (TM.getOptLevel() == CodeGenOpt::None) 7815 return; 7816 7817 // If target does not have legal shift left, do not emit bit tests at all. 7818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7819 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 7820 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7821 return; 7822 7823 int BitWidth = PTy.getSizeInBits(); 7824 const int64_t N = Clusters.size(); 7825 7826 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7827 SmallVector<unsigned, 8> MinPartitions(N); 7828 // LastElement[i] is the last element of the partition starting at i. 7829 SmallVector<unsigned, 8> LastElement(N); 7830 7831 // FIXME: This might not be the best algorithm for finding bit test clusters. 7832 7833 // Base case: There is only one way to partition Clusters[N-1]. 7834 MinPartitions[N - 1] = 1; 7835 LastElement[N - 1] = N - 1; 7836 7837 // Note: loop indexes are signed to avoid underflow. 7838 for (int64_t i = N - 2; i >= 0; --i) { 7839 // Find optimal partitioning of Clusters[i..N-1]. 7840 // Baseline: Put Clusters[i] into a partition on its own. 7841 MinPartitions[i] = MinPartitions[i + 1] + 1; 7842 LastElement[i] = i; 7843 7844 // Search for a solution that results in fewer partitions. 7845 // Note: the search is limited by BitWidth, reducing time complexity. 7846 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7847 // Try building a partition from Clusters[i..j]. 7848 7849 // Check the range. 7850 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7851 Clusters[j].High->getValue())) 7852 continue; 7853 7854 // Check nbr of destinations and cluster types. 7855 // FIXME: This works, but doesn't seem very efficient. 7856 bool RangesOnly = true; 7857 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7858 for (int64_t k = i; k <= j; k++) { 7859 if (Clusters[k].Kind != CC_Range) { 7860 RangesOnly = false; 7861 break; 7862 } 7863 Dests.set(Clusters[k].MBB->getNumber()); 7864 } 7865 if (!RangesOnly || Dests.count() > 3) 7866 break; 7867 7868 // Check if it's a better partition. 7869 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7870 if (NumPartitions < MinPartitions[i]) { 7871 // Found a better partition. 7872 MinPartitions[i] = NumPartitions; 7873 LastElement[i] = j; 7874 } 7875 } 7876 } 7877 7878 // Iterate over the partitions, replacing with bit-test clusters in-place. 7879 unsigned DstIndex = 0; 7880 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7881 Last = LastElement[First]; 7882 assert(First <= Last); 7883 assert(DstIndex <= First); 7884 7885 CaseCluster BitTestCluster; 7886 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7887 Clusters[DstIndex++] = BitTestCluster; 7888 } else { 7889 size_t NumClusters = Last - First + 1; 7890 std::memmove(&Clusters[DstIndex], &Clusters[First], 7891 sizeof(Clusters[0]) * NumClusters); 7892 DstIndex += NumClusters; 7893 } 7894 } 7895 Clusters.resize(DstIndex); 7896 } 7897 7898 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7899 MachineBasicBlock *SwitchMBB, 7900 MachineBasicBlock *DefaultMBB) { 7901 MachineFunction *CurMF = FuncInfo.MF; 7902 MachineBasicBlock *NextMBB = nullptr; 7903 MachineFunction::iterator BBI = W.MBB; 7904 if (++BBI != FuncInfo.MF->end()) 7905 NextMBB = BBI; 7906 7907 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7908 7909 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7910 7911 if (Size == 2 && W.MBB == SwitchMBB) { 7912 // If any two of the cases has the same destination, and if one value 7913 // is the same as the other, but has one bit unset that the other has set, 7914 // use bit manipulation to do two compares at once. For example: 7915 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7916 // TODO: This could be extended to merge any 2 cases in switches with 3 7917 // cases. 7918 // TODO: Handle cases where W.CaseBB != SwitchBB. 7919 CaseCluster &Small = *W.FirstCluster; 7920 CaseCluster &Big = *W.LastCluster; 7921 7922 if (Small.Low == Small.High && Big.Low == Big.High && 7923 Small.MBB == Big.MBB) { 7924 const APInt &SmallValue = Small.Low->getValue(); 7925 const APInt &BigValue = Big.Low->getValue(); 7926 7927 // Check that there is only one bit different. 7928 APInt CommonBit = BigValue ^ SmallValue; 7929 if (CommonBit.isPowerOf2()) { 7930 SDValue CondLHS = getValue(Cond); 7931 EVT VT = CondLHS.getValueType(); 7932 SDLoc DL = getCurSDLoc(); 7933 7934 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7935 DAG.getConstant(CommonBit, DL, VT)); 7936 SDValue Cond = DAG.getSetCC( 7937 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 7938 ISD::SETEQ); 7939 7940 // Update successor info. 7941 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7942 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7943 addSuccessorWithWeight( 7944 SwitchMBB, DefaultMBB, 7945 // The default destination is the first successor in IR. 7946 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7947 : 0); 7948 7949 // Insert the true branch. 7950 SDValue BrCond = 7951 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7952 DAG.getBasicBlock(Small.MBB)); 7953 // Insert the false branch. 7954 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7955 DAG.getBasicBlock(DefaultMBB)); 7956 7957 DAG.setRoot(BrCond); 7958 return; 7959 } 7960 } 7961 } 7962 7963 if (TM.getOptLevel() != CodeGenOpt::None) { 7964 // Order cases by weight so the most likely case will be checked first. 7965 std::sort(W.FirstCluster, W.LastCluster + 1, 7966 [](const CaseCluster &a, const CaseCluster &b) { 7967 return a.Weight > b.Weight; 7968 }); 7969 7970 // Rearrange the case blocks so that the last one falls through if possible 7971 // without without changing the order of weights. 7972 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7973 --I; 7974 if (I->Weight > W.LastCluster->Weight) 7975 break; 7976 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7977 std::swap(*I, *W.LastCluster); 7978 break; 7979 } 7980 } 7981 } 7982 7983 // Compute total weight. 7984 uint32_t UnhandledWeights = 0; 7985 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7986 UnhandledWeights += I->Weight; 7987 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7988 } 7989 7990 MachineBasicBlock *CurMBB = W.MBB; 7991 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7992 MachineBasicBlock *Fallthrough; 7993 if (I == W.LastCluster) { 7994 // For the last cluster, fall through to the default destination. 7995 Fallthrough = DefaultMBB; 7996 } else { 7997 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7998 CurMF->insert(BBI, Fallthrough); 7999 // Put Cond in a virtual register to make it available from the new blocks. 8000 ExportFromCurrentBlock(Cond); 8001 } 8002 8003 switch (I->Kind) { 8004 case CC_JumpTable: { 8005 // FIXME: Optimize away range check based on pivot comparisons. 8006 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8007 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8008 8009 // The jump block hasn't been inserted yet; insert it here. 8010 MachineBasicBlock *JumpMBB = JT->MBB; 8011 CurMF->insert(BBI, JumpMBB); 8012 addSuccessorWithWeight(CurMBB, Fallthrough); 8013 addSuccessorWithWeight(CurMBB, JumpMBB); 8014 8015 // The jump table header will be inserted in our current block, do the 8016 // range check, and fall through to our fallthrough block. 8017 JTH->HeaderBB = CurMBB; 8018 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8019 8020 // If we're in the right place, emit the jump table header right now. 8021 if (CurMBB == SwitchMBB) { 8022 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8023 JTH->Emitted = true; 8024 } 8025 break; 8026 } 8027 case CC_BitTests: { 8028 // FIXME: Optimize away range check based on pivot comparisons. 8029 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8030 8031 // The bit test blocks haven't been inserted yet; insert them here. 8032 for (BitTestCase &BTC : BTB->Cases) 8033 CurMF->insert(BBI, BTC.ThisBB); 8034 8035 // Fill in fields of the BitTestBlock. 8036 BTB->Parent = CurMBB; 8037 BTB->Default = Fallthrough; 8038 8039 // If we're in the right place, emit the bit test header header right now. 8040 if (CurMBB ==SwitchMBB) { 8041 visitBitTestHeader(*BTB, SwitchMBB); 8042 BTB->Emitted = true; 8043 } 8044 break; 8045 } 8046 case CC_Range: { 8047 const Value *RHS, *LHS, *MHS; 8048 ISD::CondCode CC; 8049 if (I->Low == I->High) { 8050 // Check Cond == I->Low. 8051 CC = ISD::SETEQ; 8052 LHS = Cond; 8053 RHS=I->Low; 8054 MHS = nullptr; 8055 } else { 8056 // Check I->Low <= Cond <= I->High. 8057 CC = ISD::SETLE; 8058 LHS = I->Low; 8059 MHS = Cond; 8060 RHS = I->High; 8061 } 8062 8063 // The false weight is the sum of all unhandled cases. 8064 UnhandledWeights -= I->Weight; 8065 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8066 UnhandledWeights); 8067 8068 if (CurMBB == SwitchMBB) 8069 visitSwitchCase(CB, SwitchMBB); 8070 else 8071 SwitchCases.push_back(CB); 8072 8073 break; 8074 } 8075 } 8076 CurMBB = Fallthrough; 8077 } 8078 } 8079 8080 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8081 CaseClusterIt First, 8082 CaseClusterIt Last) { 8083 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8084 if (X.Weight != CC.Weight) 8085 return X.Weight > CC.Weight; 8086 8087 // Ties are broken by comparing the case value. 8088 return X.Low->getValue().slt(CC.Low->getValue()); 8089 }); 8090 } 8091 8092 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8093 const SwitchWorkListItem &W, 8094 Value *Cond, 8095 MachineBasicBlock *SwitchMBB) { 8096 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8097 "Clusters not sorted?"); 8098 8099 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8100 8101 // Balance the tree based on branch weights to create a near-optimal (in terms 8102 // of search time given key frequency) binary search tree. See e.g. Kurt 8103 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8104 CaseClusterIt LastLeft = W.FirstCluster; 8105 CaseClusterIt FirstRight = W.LastCluster; 8106 uint32_t LeftWeight = LastLeft->Weight; 8107 uint32_t RightWeight = FirstRight->Weight; 8108 8109 // Move LastLeft and FirstRight towards each other from opposite directions to 8110 // find a partitioning of the clusters which balances the weight on both 8111 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8112 // taken to ensure 0-weight nodes are distributed evenly. 8113 unsigned I = 0; 8114 while (LastLeft + 1 < FirstRight) { 8115 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8116 LeftWeight += (++LastLeft)->Weight; 8117 else 8118 RightWeight += (--FirstRight)->Weight; 8119 I++; 8120 } 8121 8122 for (;;) { 8123 // Our binary search tree differs from a typical BST in that ours can have up 8124 // to three values in each leaf. The pivot selection above doesn't take that 8125 // into account, which means the tree might require more nodes and be less 8126 // efficient. We compensate for this here. 8127 8128 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8129 unsigned NumRight = W.LastCluster - FirstRight + 1; 8130 8131 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8132 // If one side has less than 3 clusters, and the other has more than 3, 8133 // consider taking a cluster from the other side. 8134 8135 if (NumLeft < NumRight) { 8136 // Consider moving the first cluster on the right to the left side. 8137 CaseCluster &CC = *FirstRight; 8138 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8139 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8140 if (LeftSideRank <= RightSideRank) { 8141 // Moving the cluster to the left does not demote it. 8142 ++LastLeft; 8143 ++FirstRight; 8144 continue; 8145 } 8146 } else { 8147 assert(NumRight < NumLeft); 8148 // Consider moving the last element on the left to the right side. 8149 CaseCluster &CC = *LastLeft; 8150 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8151 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8152 if (RightSideRank <= LeftSideRank) { 8153 // Moving the cluster to the right does not demot it. 8154 --LastLeft; 8155 --FirstRight; 8156 continue; 8157 } 8158 } 8159 } 8160 break; 8161 } 8162 8163 assert(LastLeft + 1 == FirstRight); 8164 assert(LastLeft >= W.FirstCluster); 8165 assert(FirstRight <= W.LastCluster); 8166 8167 // Use the first element on the right as pivot since we will make less-than 8168 // comparisons against it. 8169 CaseClusterIt PivotCluster = FirstRight; 8170 assert(PivotCluster > W.FirstCluster); 8171 assert(PivotCluster <= W.LastCluster); 8172 8173 CaseClusterIt FirstLeft = W.FirstCluster; 8174 CaseClusterIt LastRight = W.LastCluster; 8175 8176 const ConstantInt *Pivot = PivotCluster->Low; 8177 8178 // New blocks will be inserted immediately after the current one. 8179 MachineFunction::iterator BBI = W.MBB; 8180 ++BBI; 8181 8182 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8183 // we can branch to its destination directly if it's squeezed exactly in 8184 // between the known lower bound and Pivot - 1. 8185 MachineBasicBlock *LeftMBB; 8186 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8187 FirstLeft->Low == W.GE && 8188 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8189 LeftMBB = FirstLeft->MBB; 8190 } else { 8191 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8192 FuncInfo.MF->insert(BBI, LeftMBB); 8193 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8194 // Put Cond in a virtual register to make it available from the new blocks. 8195 ExportFromCurrentBlock(Cond); 8196 } 8197 8198 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8199 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8200 // directly if RHS.High equals the current upper bound. 8201 MachineBasicBlock *RightMBB; 8202 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8203 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8204 RightMBB = FirstRight->MBB; 8205 } else { 8206 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8207 FuncInfo.MF->insert(BBI, RightMBB); 8208 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8209 // Put Cond in a virtual register to make it available from the new blocks. 8210 ExportFromCurrentBlock(Cond); 8211 } 8212 8213 // Create the CaseBlock record that will be used to lower the branch. 8214 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8215 LeftWeight, RightWeight); 8216 8217 if (W.MBB == SwitchMBB) 8218 visitSwitchCase(CB, SwitchMBB); 8219 else 8220 SwitchCases.push_back(CB); 8221 } 8222 8223 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8224 // Extract cases from the switch. 8225 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8226 CaseClusterVector Clusters; 8227 Clusters.reserve(SI.getNumCases()); 8228 for (auto I : SI.cases()) { 8229 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8230 const ConstantInt *CaseVal = I.getCaseValue(); 8231 uint32_t Weight = 8232 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8233 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8234 } 8235 8236 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8237 8238 // Cluster adjacent cases with the same destination. We do this at all 8239 // optimization levels because it's cheap to do and will make codegen faster 8240 // if there are many clusters. 8241 sortAndRangeify(Clusters); 8242 8243 if (TM.getOptLevel() != CodeGenOpt::None) { 8244 // Replace an unreachable default with the most popular destination. 8245 // FIXME: Exploit unreachable default more aggressively. 8246 bool UnreachableDefault = 8247 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8248 if (UnreachableDefault && !Clusters.empty()) { 8249 DenseMap<const BasicBlock *, unsigned> Popularity; 8250 unsigned MaxPop = 0; 8251 const BasicBlock *MaxBB = nullptr; 8252 for (auto I : SI.cases()) { 8253 const BasicBlock *BB = I.getCaseSuccessor(); 8254 if (++Popularity[BB] > MaxPop) { 8255 MaxPop = Popularity[BB]; 8256 MaxBB = BB; 8257 } 8258 } 8259 // Set new default. 8260 assert(MaxPop > 0 && MaxBB); 8261 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8262 8263 // Remove cases that were pointing to the destination that is now the 8264 // default. 8265 CaseClusterVector New; 8266 New.reserve(Clusters.size()); 8267 for (CaseCluster &CC : Clusters) { 8268 if (CC.MBB != DefaultMBB) 8269 New.push_back(CC); 8270 } 8271 Clusters = std::move(New); 8272 } 8273 } 8274 8275 // If there is only the default destination, jump there directly. 8276 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8277 if (Clusters.empty()) { 8278 SwitchMBB->addSuccessor(DefaultMBB); 8279 if (DefaultMBB != NextBlock(SwitchMBB)) { 8280 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8281 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8282 } 8283 return; 8284 } 8285 8286 findJumpTables(Clusters, &SI, DefaultMBB); 8287 findBitTestClusters(Clusters, &SI); 8288 8289 DEBUG({ 8290 dbgs() << "Case clusters: "; 8291 for (const CaseCluster &C : Clusters) { 8292 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8293 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8294 8295 C.Low->getValue().print(dbgs(), true); 8296 if (C.Low != C.High) { 8297 dbgs() << '-'; 8298 C.High->getValue().print(dbgs(), true); 8299 } 8300 dbgs() << ' '; 8301 } 8302 dbgs() << '\n'; 8303 }); 8304 8305 assert(!Clusters.empty()); 8306 SwitchWorkList WorkList; 8307 CaseClusterIt First = Clusters.begin(); 8308 CaseClusterIt Last = Clusters.end() - 1; 8309 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8310 8311 while (!WorkList.empty()) { 8312 SwitchWorkListItem W = WorkList.back(); 8313 WorkList.pop_back(); 8314 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8315 8316 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8317 // For optimized builds, lower large range as a balanced binary tree. 8318 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8319 continue; 8320 } 8321 8322 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8323 } 8324 } 8325