xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision deb4bb2b3abd216aceaa109a5304f025a234540f)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/BlockFrequencyInfo.h"
27 #include "llvm/Analysis/BranchProbabilityInfo.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/CodeGen/Analysis.h"
37 #include "llvm/CodeGen/FunctionLoweringInfo.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfo.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/RuntimeLibcalls.h"
50 #include "llvm/CodeGen/SelectionDAG.h"
51 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
54 #include "llvm/CodeGen/TargetFrameLowering.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/WinEHFuncInfo.h"
60 #include "llvm/IR/Argument.h"
61 #include "llvm/IR/Attributes.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/CFG.h"
64 #include "llvm/IR/CallingConv.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/ConstantRange.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugInfoMetadata.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/MC/MCSymbol.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <cstring>
103 #include <iterator>
104 #include <limits>
105 #include <numeric>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 // Return the calling convention if the Value passed requires ABI mangling as it
153 // is a parameter to a function or a return value from a function which is not
154 // an intrinsic.
155 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
156   if (auto *R = dyn_cast<ReturnInst>(V))
157     return R->getParent()->getParent()->getCallingConv();
158 
159   if (auto *CI = dyn_cast<CallInst>(V)) {
160     const bool IsInlineAsm = CI->isInlineAsm();
161     const bool IsIndirectFunctionCall =
162         !IsInlineAsm && !CI->getCalledFunction();
163 
164     // It is possible that the call instruction is an inline asm statement or an
165     // indirect function call in which case the return value of
166     // getCalledFunction() would be nullptr.
167     const bool IsInstrinsicCall =
168         !IsInlineAsm && !IsIndirectFunctionCall &&
169         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
170 
171     if (!IsInlineAsm && !IsInstrinsicCall)
172       return CI->getCallingConv();
173   }
174 
175   return None;
176 }
177 
178 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
179                                       const SDValue *Parts, unsigned NumParts,
180                                       MVT PartVT, EVT ValueVT, const Value *V,
181                                       Optional<CallingConv::ID> CC);
182 
183 /// getCopyFromParts - Create a value that contains the specified legal parts
184 /// combined into the value they represent.  If the parts combine to a type
185 /// larger than ValueVT then AssertOp can be used to specify whether the extra
186 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
187 /// (ISD::AssertSext).
188 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
189                                 const SDValue *Parts, unsigned NumParts,
190                                 MVT PartVT, EVT ValueVT, const Value *V,
191                                 Optional<CallingConv::ID> CC = None,
192                                 Optional<ISD::NodeType> AssertOp = None) {
193   // Let the target assemble the parts if it wants to
194   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
195   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
196                                                    PartVT, ValueVT, CC))
197     return Val;
198 
199   if (ValueVT.isVector())
200     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
201                                   CC);
202 
203   assert(NumParts > 0 && "No parts to assemble!");
204   SDValue Val = Parts[0];
205 
206   if (NumParts > 1) {
207     // Assemble the value from multiple parts.
208     if (ValueVT.isInteger()) {
209       unsigned PartBits = PartVT.getSizeInBits();
210       unsigned ValueBits = ValueVT.getSizeInBits();
211 
212       // Assemble the power of 2 part.
213       unsigned RoundParts =
214           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
215       unsigned RoundBits = PartBits * RoundParts;
216       EVT RoundVT = RoundBits == ValueBits ?
217         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
218       SDValue Lo, Hi;
219 
220       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
221 
222       if (RoundParts > 2) {
223         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
224                               PartVT, HalfVT, V);
225         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
226                               RoundParts / 2, PartVT, HalfVT, V);
227       } else {
228         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
229         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
230       }
231 
232       if (DAG.getDataLayout().isBigEndian())
233         std::swap(Lo, Hi);
234 
235       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
236 
237       if (RoundParts < NumParts) {
238         // Assemble the trailing non-power-of-2 part.
239         unsigned OddParts = NumParts - RoundParts;
240         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
241         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
242                               OddVT, V, CC);
243 
244         // Combine the round and odd parts.
245         Lo = Val;
246         if (DAG.getDataLayout().isBigEndian())
247           std::swap(Lo, Hi);
248         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
249         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
250         Hi =
251             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
252                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
253                                         TLI.getPointerTy(DAG.getDataLayout())));
254         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
255         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
256       }
257     } else if (PartVT.isFloatingPoint()) {
258       // FP split into multiple FP parts (for ppcf128)
259       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
260              "Unexpected split");
261       SDValue Lo, Hi;
262       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
263       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
264       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
265         std::swap(Lo, Hi);
266       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
267     } else {
268       // FP split into integer parts (soft fp)
269       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
270              !PartVT.isVector() && "Unexpected split");
271       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
272       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
273     }
274   }
275 
276   // There is now one part, held in Val.  Correct it to match ValueVT.
277   // PartEVT is the type of the register class that holds the value.
278   // ValueVT is the type of the inline asm operation.
279   EVT PartEVT = Val.getValueType();
280 
281   if (PartEVT == ValueVT)
282     return Val;
283 
284   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
285       ValueVT.bitsLT(PartEVT)) {
286     // For an FP value in an integer part, we need to truncate to the right
287     // width first.
288     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
289     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
290   }
291 
292   // Handle types that have the same size.
293   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
294     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
295 
296   // Handle types with different sizes.
297   if (PartEVT.isInteger() && ValueVT.isInteger()) {
298     if (ValueVT.bitsLT(PartEVT)) {
299       // For a truncate, see if we have any information to
300       // indicate whether the truncated bits will always be
301       // zero or sign-extension.
302       if (AssertOp.hasValue())
303         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
304                           DAG.getValueType(ValueVT));
305       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
306     }
307     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
308   }
309 
310   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
311     // FP_ROUND's are always exact here.
312     if (ValueVT.bitsLT(Val.getValueType()))
313       return DAG.getNode(
314           ISD::FP_ROUND, DL, ValueVT, Val,
315           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
316 
317     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
318   }
319 
320   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
321   // then truncating.
322   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
323       ValueVT.bitsLT(PartEVT)) {
324     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
325     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
326   }
327 
328   report_fatal_error("Unknown mismatch in getCopyFromParts!");
329 }
330 
331 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
332                                               const Twine &ErrMsg) {
333   const Instruction *I = dyn_cast_or_null<Instruction>(V);
334   if (!V)
335     return Ctx.emitError(ErrMsg);
336 
337   const char *AsmError = ", possible invalid constraint for vector type";
338   if (const CallInst *CI = dyn_cast<CallInst>(I))
339     if (CI->isInlineAsm())
340       return Ctx.emitError(I, ErrMsg + AsmError);
341 
342   return Ctx.emitError(I, ErrMsg);
343 }
344 
345 /// getCopyFromPartsVector - Create a value that contains the specified legal
346 /// parts combined into the value they represent.  If the parts combine to a
347 /// type larger than ValueVT then AssertOp can be used to specify whether the
348 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
349 /// ValueVT (ISD::AssertSext).
350 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
351                                       const SDValue *Parts, unsigned NumParts,
352                                       MVT PartVT, EVT ValueVT, const Value *V,
353                                       Optional<CallingConv::ID> CallConv) {
354   assert(ValueVT.isVector() && "Not a vector value");
355   assert(NumParts > 0 && "No parts to assemble!");
356   const bool IsABIRegCopy = CallConv.hasValue();
357 
358   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
359   SDValue Val = Parts[0];
360 
361   // Handle a multi-element vector.
362   if (NumParts > 1) {
363     EVT IntermediateVT;
364     MVT RegisterVT;
365     unsigned NumIntermediates;
366     unsigned NumRegs;
367 
368     if (IsABIRegCopy) {
369       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
370           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
371           NumIntermediates, RegisterVT);
372     } else {
373       NumRegs =
374           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
375                                      NumIntermediates, RegisterVT);
376     }
377 
378     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
379     NumParts = NumRegs; // Silence a compiler warning.
380     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
381     assert(RegisterVT.getSizeInBits() ==
382            Parts[0].getSimpleValueType().getSizeInBits() &&
383            "Part type sizes don't match!");
384 
385     // Assemble the parts into intermediate operands.
386     SmallVector<SDValue, 8> Ops(NumIntermediates);
387     if (NumIntermediates == NumParts) {
388       // If the register was not expanded, truncate or copy the value,
389       // as appropriate.
390       for (unsigned i = 0; i != NumParts; ++i)
391         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
392                                   PartVT, IntermediateVT, V);
393     } else if (NumParts > 0) {
394       // If the intermediate type was expanded, build the intermediate
395       // operands from the parts.
396       assert(NumParts % NumIntermediates == 0 &&
397              "Must expand into a divisible number of parts!");
398       unsigned Factor = NumParts / NumIntermediates;
399       for (unsigned i = 0; i != NumIntermediates; ++i)
400         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
401                                   PartVT, IntermediateVT, V);
402     }
403 
404     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
405     // intermediate operands.
406     EVT BuiltVectorTy =
407         IntermediateVT.isVector()
408             ? EVT::getVectorVT(
409                   *DAG.getContext(), IntermediateVT.getScalarType(),
410                   IntermediateVT.getVectorElementCount() * NumParts)
411             : EVT::getVectorVT(*DAG.getContext(),
412                                IntermediateVT.getScalarType(),
413                                NumIntermediates);
414     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
415                                                 : ISD::BUILD_VECTOR,
416                       DL, BuiltVectorTy, Ops);
417   }
418 
419   // There is now one part, held in Val.  Correct it to match ValueVT.
420   EVT PartEVT = Val.getValueType();
421 
422   if (PartEVT == ValueVT)
423     return Val;
424 
425   if (PartEVT.isVector()) {
426     // If the element type of the source/dest vectors are the same, but the
427     // parts vector has more elements than the value vector, then we have a
428     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
429     // elements we want.
430     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
431       assert((PartEVT.getVectorElementCount().Min >
432               ValueVT.getVectorElementCount().Min) &&
433              (PartEVT.getVectorElementCount().Scalable ==
434               ValueVT.getVectorElementCount().Scalable) &&
435              "Cannot narrow, it would be a lossy transformation");
436       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437                          DAG.getVectorIdxConstant(0, DL));
438     }
439 
440     // Vector/Vector bitcast.
441     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
443 
444     assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() &&
445       "Cannot handle this kind of promotion");
446     // Promoted vector extract
447     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
448 
449   }
450 
451   // Trivial bitcast if the types are the same size and the destination
452   // vector type is legal.
453   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454       TLI.isTypeLegal(ValueVT))
455     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
456 
457   if (ValueVT.getVectorNumElements() != 1) {
458      // Certain ABIs require that vectors are passed as integers. For vectors
459      // are the same size, this is an obvious bitcast.
460      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463        // Bitcast Val back the original type and extract the corresponding
464        // vector we want.
465        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467                                            ValueVT.getVectorElementType(), Elts);
468        Val = DAG.getBitcast(WiderVecType, Val);
469        return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
470                           DAG.getVectorIdxConstant(0, DL));
471      }
472 
473      diagnosePossiblyInvalidConstraint(
474          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
475      return DAG.getUNDEF(ValueVT);
476   }
477 
478   // Handle cases such as i8 -> <1 x i1>
479   EVT ValueSVT = ValueVT.getVectorElementType();
480   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
481     if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
482       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
483     else
484       Val = ValueVT.isFloatingPoint()
485                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
486                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
487   }
488 
489   return DAG.getBuildVector(ValueVT, DL, Val);
490 }
491 
492 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V,
495                                  Optional<CallingConv::ID> CallConv);
496 
497 /// getCopyToParts - Create a series of nodes that contain the specified value
498 /// split into legal parts.  If the parts contain more bits than Val, then, for
499 /// integers, ExtendKind can be used to specify how to generate the extra bits.
500 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
501                            SDValue *Parts, unsigned NumParts, MVT PartVT,
502                            const Value *V,
503                            Optional<CallingConv::ID> CallConv = None,
504                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
505   // Let the target split the parts if it wants to
506   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
507   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
508                                       CallConv))
509     return;
510   EVT ValueVT = Val.getValueType();
511 
512   // Handle the vector case separately.
513   if (ValueVT.isVector())
514     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
515                                 CallConv);
516 
517   unsigned PartBits = PartVT.getSizeInBits();
518   unsigned OrigNumParts = NumParts;
519   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
520          "Copying to an illegal type!");
521 
522   if (NumParts == 0)
523     return;
524 
525   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
526   EVT PartEVT = PartVT;
527   if (PartEVT == ValueVT) {
528     assert(NumParts == 1 && "No-op copy with multiple parts!");
529     Parts[0] = Val;
530     return;
531   }
532 
533   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
534     // If the parts cover more bits than the value has, promote the value.
535     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
536       assert(NumParts == 1 && "Do not know what to promote to!");
537       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
538     } else {
539       if (ValueVT.isFloatingPoint()) {
540         // FP values need to be bitcast, then extended if they are being put
541         // into a larger container.
542         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
543         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
544       }
545       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
546              ValueVT.isInteger() &&
547              "Unknown mismatch!");
548       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
549       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
550       if (PartVT == MVT::x86mmx)
551         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
552     }
553   } else if (PartBits == ValueVT.getSizeInBits()) {
554     // Different types of the same size.
555     assert(NumParts == 1 && PartEVT != ValueVT);
556     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
557   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
558     // If the parts cover less bits than value has, truncate the value.
559     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
560            ValueVT.isInteger() &&
561            "Unknown mismatch!");
562     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
563     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
564     if (PartVT == MVT::x86mmx)
565       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
566   }
567 
568   // The value may have changed - recompute ValueVT.
569   ValueVT = Val.getValueType();
570   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
571          "Failed to tile the value with PartVT!");
572 
573   if (NumParts == 1) {
574     if (PartEVT != ValueVT) {
575       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
576                                         "scalar-to-vector conversion failed");
577       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
578     }
579 
580     Parts[0] = Val;
581     return;
582   }
583 
584   // Expand the value into multiple parts.
585   if (NumParts & (NumParts - 1)) {
586     // The number of parts is not a power of 2.  Split off and copy the tail.
587     assert(PartVT.isInteger() && ValueVT.isInteger() &&
588            "Do not know what to expand to!");
589     unsigned RoundParts = 1 << Log2_32(NumParts);
590     unsigned RoundBits = RoundParts * PartBits;
591     unsigned OddParts = NumParts - RoundParts;
592     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
593       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
594 
595     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
596                    CallConv);
597 
598     if (DAG.getDataLayout().isBigEndian())
599       // The odd parts were reversed by getCopyToParts - unreverse them.
600       std::reverse(Parts + RoundParts, Parts + NumParts);
601 
602     NumParts = RoundParts;
603     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
604     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
605   }
606 
607   // The number of parts is a power of 2.  Repeatedly bisect the value using
608   // EXTRACT_ELEMENT.
609   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
610                          EVT::getIntegerVT(*DAG.getContext(),
611                                            ValueVT.getSizeInBits()),
612                          Val);
613 
614   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
615     for (unsigned i = 0; i < NumParts; i += StepSize) {
616       unsigned ThisBits = StepSize * PartBits / 2;
617       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
618       SDValue &Part0 = Parts[i];
619       SDValue &Part1 = Parts[i+StepSize/2];
620 
621       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
622                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
623       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
624                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
625 
626       if (ThisBits == PartBits && ThisVT != PartVT) {
627         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
628         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
629       }
630     }
631   }
632 
633   if (DAG.getDataLayout().isBigEndian())
634     std::reverse(Parts, Parts + OrigNumParts);
635 }
636 
637 static SDValue widenVectorToPartType(SelectionDAG &DAG,
638                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
639   if (!PartVT.isFixedLengthVector())
640     return SDValue();
641 
642   EVT ValueVT = Val.getValueType();
643   unsigned PartNumElts = PartVT.getVectorNumElements();
644   unsigned ValueNumElts = ValueVT.getVectorNumElements();
645   if (PartNumElts > ValueNumElts &&
646       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
647     EVT ElementVT = PartVT.getVectorElementType();
648     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
649     // undef elements.
650     SmallVector<SDValue, 16> Ops;
651     DAG.ExtractVectorElements(Val, Ops);
652     SDValue EltUndef = DAG.getUNDEF(ElementVT);
653     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
654       Ops.push_back(EltUndef);
655 
656     // FIXME: Use CONCAT for 2x -> 4x.
657     return DAG.getBuildVector(PartVT, DL, Ops);
658   }
659 
660   return SDValue();
661 }
662 
663 /// getCopyToPartsVector - Create a series of nodes that contain the specified
664 /// value split into legal parts.
665 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
666                                  SDValue Val, SDValue *Parts, unsigned NumParts,
667                                  MVT PartVT, const Value *V,
668                                  Optional<CallingConv::ID> CallConv) {
669   EVT ValueVT = Val.getValueType();
670   assert(ValueVT.isVector() && "Not a vector");
671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
672   const bool IsABIRegCopy = CallConv.hasValue();
673 
674   if (NumParts == 1) {
675     EVT PartEVT = PartVT;
676     if (PartEVT == ValueVT) {
677       // Nothing to do.
678     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
679       // Bitconvert vector->vector case.
680       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
681     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
682       Val = Widened;
683     } else if (PartVT.isVector() &&
684                PartEVT.getVectorElementType().bitsGE(
685                    ValueVT.getVectorElementType()) &&
686                PartEVT.getVectorElementCount() ==
687                    ValueVT.getVectorElementCount()) {
688 
689       // Promoted vector extract
690       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
691     } else {
692       if (ValueVT.getVectorNumElements() == 1) {
693         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
694                           DAG.getVectorIdxConstant(0, DL));
695       } else {
696         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
697                "lossy conversion of vector to scalar type");
698         EVT IntermediateType =
699             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
700         Val = DAG.getBitcast(IntermediateType, Val);
701         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
702       }
703     }
704 
705     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
706     Parts[0] = Val;
707     return;
708   }
709 
710   // Handle a multi-element vector.
711   EVT IntermediateVT;
712   MVT RegisterVT;
713   unsigned NumIntermediates;
714   unsigned NumRegs;
715   if (IsABIRegCopy) {
716     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
717         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
718         NumIntermediates, RegisterVT);
719   } else {
720     NumRegs =
721         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
722                                    NumIntermediates, RegisterVT);
723   }
724 
725   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
726   NumParts = NumRegs; // Silence a compiler warning.
727   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
728 
729   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
730          "Mixing scalable and fixed vectors when copying in parts");
731 
732   ElementCount DestEltCnt;
733 
734   if (IntermediateVT.isVector())
735     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
736   else
737     DestEltCnt = ElementCount(NumIntermediates, false);
738 
739   EVT BuiltVectorTy = EVT::getVectorVT(
740       *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt);
741   if (ValueVT != BuiltVectorTy) {
742     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
743       Val = Widened;
744 
745     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
746   }
747 
748   // Split the vector into intermediate operands.
749   SmallVector<SDValue, 8> Ops(NumIntermediates);
750   for (unsigned i = 0; i != NumIntermediates; ++i) {
751     if (IntermediateVT.isVector()) {
752       // This does something sensible for scalable vectors - see the
753       // definition of EXTRACT_SUBVECTOR for further details.
754       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
755       Ops[i] =
756           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
757                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
758     } else {
759       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
760                            DAG.getVectorIdxConstant(i, DL));
761     }
762   }
763 
764   // Split the intermediate operands into legal parts.
765   if (NumParts == NumIntermediates) {
766     // If the register was not expanded, promote or copy the value,
767     // as appropriate.
768     for (unsigned i = 0; i != NumParts; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
770   } else if (NumParts > 0) {
771     // If the intermediate type was expanded, split each the value into
772     // legal parts.
773     assert(NumIntermediates != 0 && "division by zero");
774     assert(NumParts % NumIntermediates == 0 &&
775            "Must expand into a divisible number of parts!");
776     unsigned Factor = NumParts / NumIntermediates;
777     for (unsigned i = 0; i != NumIntermediates; ++i)
778       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
779                      CallConv);
780   }
781 }
782 
783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
784                            EVT valuevt, Optional<CallingConv::ID> CC)
785     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
786       RegCount(1, regs.size()), CallConv(CC) {}
787 
788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
789                            const DataLayout &DL, unsigned Reg, Type *Ty,
790                            Optional<CallingConv::ID> CC) {
791   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
792 
793   CallConv = CC;
794 
795   for (EVT ValueVT : ValueVTs) {
796     unsigned NumRegs =
797         isABIMangled()
798             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
799             : TLI.getNumRegisters(Context, ValueVT);
800     MVT RegisterVT =
801         isABIMangled()
802             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
803             : TLI.getRegisterType(Context, ValueVT);
804     for (unsigned i = 0; i != NumRegs; ++i)
805       Regs.push_back(Reg + i);
806     RegVTs.push_back(RegisterVT);
807     RegCount.push_back(NumRegs);
808     Reg += NumRegs;
809   }
810 }
811 
812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
813                                       FunctionLoweringInfo &FuncInfo,
814                                       const SDLoc &dl, SDValue &Chain,
815                                       SDValue *Flag, const Value *V) const {
816   // A Value with type {} or [0 x %t] needs no registers.
817   if (ValueVTs.empty())
818     return SDValue();
819 
820   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821 
822   // Assemble the legal parts into the final values.
823   SmallVector<SDValue, 4> Values(ValueVTs.size());
824   SmallVector<SDValue, 8> Parts;
825   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
826     // Copy the legal parts from the registers.
827     EVT ValueVT = ValueVTs[Value];
828     unsigned NumRegs = RegCount[Value];
829     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
830                                           *DAG.getContext(),
831                                           CallConv.getValue(), RegVTs[Value])
832                                     : RegVTs[Value];
833 
834     Parts.resize(NumRegs);
835     for (unsigned i = 0; i != NumRegs; ++i) {
836       SDValue P;
837       if (!Flag) {
838         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
839       } else {
840         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
841         *Flag = P.getValue(2);
842       }
843 
844       Chain = P.getValue(1);
845       Parts[i] = P;
846 
847       // If the source register was virtual and if we know something about it,
848       // add an assert node.
849       if (!Register::isVirtualRegister(Regs[Part + i]) ||
850           !RegisterVT.isInteger())
851         continue;
852 
853       const FunctionLoweringInfo::LiveOutInfo *LOI =
854         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
855       if (!LOI)
856         continue;
857 
858       unsigned RegSize = RegisterVT.getScalarSizeInBits();
859       unsigned NumSignBits = LOI->NumSignBits;
860       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
861 
862       if (NumZeroBits == RegSize) {
863         // The current value is a zero.
864         // Explicitly express that as it would be easier for
865         // optimizations to kick in.
866         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
867         continue;
868       }
869 
870       // FIXME: We capture more information than the dag can represent.  For
871       // now, just use the tightest assertzext/assertsext possible.
872       bool isSExt;
873       EVT FromVT(MVT::Other);
874       if (NumZeroBits) {
875         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
876         isSExt = false;
877       } else if (NumSignBits > 1) {
878         FromVT =
879             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
880         isSExt = true;
881       } else {
882         continue;
883       }
884       // Add an assertion node.
885       assert(FromVT != MVT::Other);
886       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
887                              RegisterVT, P, DAG.getValueType(FromVT));
888     }
889 
890     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
891                                      RegisterVT, ValueVT, V, CallConv);
892     Part += NumRegs;
893     Parts.clear();
894   }
895 
896   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
897 }
898 
899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
900                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
901                                  const Value *V,
902                                  ISD::NodeType PreferredExtendType) const {
903   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
904   ISD::NodeType ExtendKind = PreferredExtendType;
905 
906   // Get the list of the values's legal parts.
907   unsigned NumRegs = Regs.size();
908   SmallVector<SDValue, 8> Parts(NumRegs);
909   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
910     unsigned NumParts = RegCount[Value];
911 
912     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
913                                           *DAG.getContext(),
914                                           CallConv.getValue(), RegVTs[Value])
915                                     : RegVTs[Value];
916 
917     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
918       ExtendKind = ISD::ZERO_EXTEND;
919 
920     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
921                    NumParts, RegisterVT, V, CallConv, ExtendKind);
922     Part += NumParts;
923   }
924 
925   // Copy the parts into the registers.
926   SmallVector<SDValue, 8> Chains(NumRegs);
927   for (unsigned i = 0; i != NumRegs; ++i) {
928     SDValue Part;
929     if (!Flag) {
930       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
931     } else {
932       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
933       *Flag = Part.getValue(1);
934     }
935 
936     Chains[i] = Part.getValue(0);
937   }
938 
939   if (NumRegs == 1 || Flag)
940     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941     // flagged to it. That is the CopyToReg nodes and the user are considered
942     // a single scheduling unit. If we create a TokenFactor and return it as
943     // chain, then the TokenFactor is both a predecessor (operand) of the
944     // user as well as a successor (the TF operands are flagged to the user).
945     // c1, f1 = CopyToReg
946     // c2, f2 = CopyToReg
947     // c3     = TokenFactor c1, c2
948     // ...
949     //        = op c3, ..., f2
950     Chain = Chains[NumRegs-1];
951   else
952     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
953 }
954 
955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
956                                         unsigned MatchingIdx, const SDLoc &dl,
957                                         SelectionDAG &DAG,
958                                         std::vector<SDValue> &Ops) const {
959   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
960 
961   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
962   if (HasMatching)
963     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
964   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
965     // Put the register class of the virtual registers in the flag word.  That
966     // way, later passes can recompute register class constraints for inline
967     // assembly as well as normal instructions.
968     // Don't do this for tied operands that can use the regclass information
969     // from the def.
970     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
971     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
972     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
973   }
974 
975   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
976   Ops.push_back(Res);
977 
978   if (Code == InlineAsm::Kind_Clobber) {
979     // Clobbers should always have a 1:1 mapping with registers, and may
980     // reference registers that have illegal (e.g. vector) types. Hence, we
981     // shouldn't try to apply any sort of splitting logic to them.
982     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
983            "No 1:1 mapping from clobbers to regs?");
984     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
985     (void)SP;
986     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
987       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
988       assert(
989           (Regs[I] != SP ||
990            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991           "If we clobbered the stack pointer, MFI should know about it.");
992     }
993     return;
994   }
995 
996   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
997     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
998     MVT RegisterVT = RegVTs[Value];
999     for (unsigned i = 0; i != NumRegs; ++i) {
1000       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1001       unsigned TheReg = Regs[Reg++];
1002       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1003     }
1004   }
1005 }
1006 
1007 SmallVector<std::pair<unsigned, unsigned>, 4>
1008 RegsForValue::getRegsAndSizes() const {
1009   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1010   unsigned I = 0;
1011   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1012     unsigned RegCount = std::get<0>(CountAndVT);
1013     MVT RegisterVT = std::get<1>(CountAndVT);
1014     unsigned RegisterSize = RegisterVT.getSizeInBits();
1015     for (unsigned E = I + RegCount; I != E; ++I)
1016       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1017   }
1018   return OutVec;
1019 }
1020 
1021 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1022                                const TargetLibraryInfo *li) {
1023   AA = aa;
1024   GFI = gfi;
1025   LibInfo = li;
1026   DL = &DAG.getDataLayout();
1027   Context = DAG.getContext();
1028   LPadToCallSiteMap.clear();
1029   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1030 }
1031 
1032 void SelectionDAGBuilder::clear() {
1033   NodeMap.clear();
1034   UnusedArgNodeMap.clear();
1035   PendingLoads.clear();
1036   PendingExports.clear();
1037   PendingConstrainedFP.clear();
1038   PendingConstrainedFPStrict.clear();
1039   CurInst = nullptr;
1040   HasTailCall = false;
1041   SDNodeOrder = LowestSDNodeOrder;
1042   StatepointLowering.clear();
1043 }
1044 
1045 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1046   DanglingDebugInfoMap.clear();
1047 }
1048 
1049 // Update DAG root to include dependencies on Pending chains.
1050 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1051   SDValue Root = DAG.getRoot();
1052 
1053   if (Pending.empty())
1054     return Root;
1055 
1056   // Add current root to PendingChains, unless we already indirectly
1057   // depend on it.
1058   if (Root.getOpcode() != ISD::EntryToken) {
1059     unsigned i = 0, e = Pending.size();
1060     for (; i != e; ++i) {
1061       assert(Pending[i].getNode()->getNumOperands() > 1);
1062       if (Pending[i].getNode()->getOperand(0) == Root)
1063         break;  // Don't add the root if we already indirectly depend on it.
1064     }
1065 
1066     if (i == e)
1067       Pending.push_back(Root);
1068   }
1069 
1070   if (Pending.size() == 1)
1071     Root = Pending[0];
1072   else
1073     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1074 
1075   DAG.setRoot(Root);
1076   Pending.clear();
1077   return Root;
1078 }
1079 
1080 SDValue SelectionDAGBuilder::getMemoryRoot() {
1081   return updateRoot(PendingLoads);
1082 }
1083 
1084 SDValue SelectionDAGBuilder::getRoot() {
1085   // Chain up all pending constrained intrinsics together with all
1086   // pending loads, by simply appending them to PendingLoads and
1087   // then calling getMemoryRoot().
1088   PendingLoads.reserve(PendingLoads.size() +
1089                        PendingConstrainedFP.size() +
1090                        PendingConstrainedFPStrict.size());
1091   PendingLoads.append(PendingConstrainedFP.begin(),
1092                       PendingConstrainedFP.end());
1093   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1094                       PendingConstrainedFPStrict.end());
1095   PendingConstrainedFP.clear();
1096   PendingConstrainedFPStrict.clear();
1097   return getMemoryRoot();
1098 }
1099 
1100 SDValue SelectionDAGBuilder::getControlRoot() {
1101   // We need to emit pending fpexcept.strict constrained intrinsics,
1102   // so append them to the PendingExports list.
1103   PendingExports.append(PendingConstrainedFPStrict.begin(),
1104                         PendingConstrainedFPStrict.end());
1105   PendingConstrainedFPStrict.clear();
1106   return updateRoot(PendingExports);
1107 }
1108 
1109 void SelectionDAGBuilder::visit(const Instruction &I) {
1110   // Set up outgoing PHI node register values before emitting the terminator.
1111   if (I.isTerminator()) {
1112     HandlePHINodesInSuccessorBlocks(I.getParent());
1113   }
1114 
1115   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1116   if (!isa<DbgInfoIntrinsic>(I))
1117     ++SDNodeOrder;
1118 
1119   CurInst = &I;
1120 
1121   visit(I.getOpcode(), I);
1122 
1123   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1124     // ConstrainedFPIntrinsics handle their own FMF.
1125     if (!isa<ConstrainedFPIntrinsic>(&I)) {
1126       // Propagate the fast-math-flags of this IR instruction to the DAG node that
1127       // maps to this instruction.
1128       // TODO: We could handle all flags (nsw, etc) here.
1129       // TODO: If an IR instruction maps to >1 node, only the final node will have
1130       //       flags set.
1131       if (SDNode *Node = getNodeForIRValue(&I)) {
1132         SDNodeFlags IncomingFlags;
1133         IncomingFlags.copyFMF(*FPMO);
1134         if (!Node->getFlags().isDefined())
1135           Node->setFlags(IncomingFlags);
1136         else
1137           Node->intersectFlagsWith(IncomingFlags);
1138       }
1139     }
1140   }
1141 
1142   if (!I.isTerminator() && !HasTailCall &&
1143       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1144     CopyToExportRegsIfNeeded(&I);
1145 
1146   CurInst = nullptr;
1147 }
1148 
1149 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1150   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1151 }
1152 
1153 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1154   // Note: this doesn't use InstVisitor, because it has to work with
1155   // ConstantExpr's in addition to instructions.
1156   switch (Opcode) {
1157   default: llvm_unreachable("Unknown instruction type encountered!");
1158     // Build the switch statement using the Instruction.def file.
1159 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1160     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1161 #include "llvm/IR/Instruction.def"
1162   }
1163 }
1164 
1165 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1166                                                 const DIExpression *Expr) {
1167   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1168     const DbgValueInst *DI = DDI.getDI();
1169     DIVariable *DanglingVariable = DI->getVariable();
1170     DIExpression *DanglingExpr = DI->getExpression();
1171     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1172       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1173       return true;
1174     }
1175     return false;
1176   };
1177 
1178   for (auto &DDIMI : DanglingDebugInfoMap) {
1179     DanglingDebugInfoVector &DDIV = DDIMI.second;
1180 
1181     // If debug info is to be dropped, run it through final checks to see
1182     // whether it can be salvaged.
1183     for (auto &DDI : DDIV)
1184       if (isMatchingDbgValue(DDI))
1185         salvageUnresolvedDbgValue(DDI);
1186 
1187     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1188   }
1189 }
1190 
1191 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1192 // generate the debug data structures now that we've seen its definition.
1193 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1194                                                    SDValue Val) {
1195   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1196   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1197     return;
1198 
1199   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1200   for (auto &DDI : DDIV) {
1201     const DbgValueInst *DI = DDI.getDI();
1202     assert(DI && "Ill-formed DanglingDebugInfo");
1203     DebugLoc dl = DDI.getdl();
1204     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1205     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1206     DILocalVariable *Variable = DI->getVariable();
1207     DIExpression *Expr = DI->getExpression();
1208     assert(Variable->isValidLocationForIntrinsic(dl) &&
1209            "Expected inlined-at fields to agree");
1210     SDDbgValue *SDV;
1211     if (Val.getNode()) {
1212       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1213       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1214       // we couldn't resolve it directly when examining the DbgValue intrinsic
1215       // in the first place we should not be more successful here). Unless we
1216       // have some test case that prove this to be correct we should avoid
1217       // calling EmitFuncArgumentDbgValue here.
1218       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1219         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1220                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1221         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1222         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1223         // inserted after the definition of Val when emitting the instructions
1224         // after ISel. An alternative could be to teach
1225         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1226         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1227                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1228                    << ValSDNodeOrder << "\n");
1229         SDV = getDbgValue(Val, Variable, Expr, dl,
1230                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1231         DAG.AddDbgValue(SDV, Val.getNode(), false);
1232       } else
1233         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1234                           << "in EmitFuncArgumentDbgValue\n");
1235     } else {
1236       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1237       auto Undef =
1238           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1239       auto SDV =
1240           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1241       DAG.AddDbgValue(SDV, nullptr, false);
1242     }
1243   }
1244   DDIV.clear();
1245 }
1246 
1247 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1248   Value *V = DDI.getDI()->getValue();
1249   DILocalVariable *Var = DDI.getDI()->getVariable();
1250   DIExpression *Expr = DDI.getDI()->getExpression();
1251   DebugLoc DL = DDI.getdl();
1252   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1253   unsigned SDOrder = DDI.getSDNodeOrder();
1254 
1255   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1256   // that DW_OP_stack_value is desired.
1257   assert(isa<DbgValueInst>(DDI.getDI()));
1258   bool StackValue = true;
1259 
1260   // Can this Value can be encoded without any further work?
1261   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1262     return;
1263 
1264   // Attempt to salvage back through as many instructions as possible. Bail if
1265   // a non-instruction is seen, such as a constant expression or global
1266   // variable. FIXME: Further work could recover those too.
1267   while (isa<Instruction>(V)) {
1268     Instruction &VAsInst = *cast<Instruction>(V);
1269     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1270 
1271     // If we cannot salvage any further, and haven't yet found a suitable debug
1272     // expression, bail out.
1273     if (!NewExpr)
1274       break;
1275 
1276     // New value and expr now represent this debuginfo.
1277     V = VAsInst.getOperand(0);
1278     Expr = NewExpr;
1279 
1280     // Some kind of simplification occurred: check whether the operand of the
1281     // salvaged debug expression can be encoded in this DAG.
1282     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1283       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1284                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1285       return;
1286     }
1287   }
1288 
1289   // This was the final opportunity to salvage this debug information, and it
1290   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1291   // any earlier variable location.
1292   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1293   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1294   DAG.AddDbgValue(SDV, nullptr, false);
1295 
1296   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1297                     << "\n");
1298   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1299                     << "\n");
1300 }
1301 
1302 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1303                                            DIExpression *Expr, DebugLoc dl,
1304                                            DebugLoc InstDL, unsigned Order) {
1305   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1306   SDDbgValue *SDV;
1307   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1308       isa<ConstantPointerNull>(V)) {
1309     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1310     DAG.AddDbgValue(SDV, nullptr, false);
1311     return true;
1312   }
1313 
1314   // If the Value is a frame index, we can create a FrameIndex debug value
1315   // without relying on the DAG at all.
1316   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1317     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1318     if (SI != FuncInfo.StaticAllocaMap.end()) {
1319       auto SDV =
1320           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1321                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1322       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1323       // is still available even if the SDNode gets optimized out.
1324       DAG.AddDbgValue(SDV, nullptr, false);
1325       return true;
1326     }
1327   }
1328 
1329   // Do not use getValue() in here; we don't want to generate code at
1330   // this point if it hasn't been done yet.
1331   SDValue N = NodeMap[V];
1332   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1333     N = UnusedArgNodeMap[V];
1334   if (N.getNode()) {
1335     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1336       return true;
1337     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1338     DAG.AddDbgValue(SDV, N.getNode(), false);
1339     return true;
1340   }
1341 
1342   // Special rules apply for the first dbg.values of parameter variables in a
1343   // function. Identify them by the fact they reference Argument Values, that
1344   // they're parameters, and they are parameters of the current function. We
1345   // need to let them dangle until they get an SDNode.
1346   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1347                        !InstDL.getInlinedAt();
1348   if (!IsParamOfFunc) {
1349     // The value is not used in this block yet (or it would have an SDNode).
1350     // We still want the value to appear for the user if possible -- if it has
1351     // an associated VReg, we can refer to that instead.
1352     auto VMI = FuncInfo.ValueMap.find(V);
1353     if (VMI != FuncInfo.ValueMap.end()) {
1354       unsigned Reg = VMI->second;
1355       // If this is a PHI node, it may be split up into several MI PHI nodes
1356       // (in FunctionLoweringInfo::set).
1357       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1358                        V->getType(), None);
1359       if (RFV.occupiesMultipleRegs()) {
1360         unsigned Offset = 0;
1361         unsigned BitsToDescribe = 0;
1362         if (auto VarSize = Var->getSizeInBits())
1363           BitsToDescribe = *VarSize;
1364         if (auto Fragment = Expr->getFragmentInfo())
1365           BitsToDescribe = Fragment->SizeInBits;
1366         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1367           unsigned RegisterSize = RegAndSize.second;
1368           // Bail out if all bits are described already.
1369           if (Offset >= BitsToDescribe)
1370             break;
1371           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1372               ? BitsToDescribe - Offset
1373               : RegisterSize;
1374           auto FragmentExpr = DIExpression::createFragmentExpression(
1375               Expr, Offset, FragmentSize);
1376           if (!FragmentExpr)
1377               continue;
1378           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1379                                     false, dl, SDNodeOrder);
1380           DAG.AddDbgValue(SDV, nullptr, false);
1381           Offset += RegisterSize;
1382         }
1383       } else {
1384         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1385         DAG.AddDbgValue(SDV, nullptr, false);
1386       }
1387       return true;
1388     }
1389   }
1390 
1391   return false;
1392 }
1393 
1394 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1395   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1396   for (auto &Pair : DanglingDebugInfoMap)
1397     for (auto &DDI : Pair.second)
1398       salvageUnresolvedDbgValue(DDI);
1399   clearDanglingDebugInfo();
1400 }
1401 
1402 /// getCopyFromRegs - If there was virtual register allocated for the value V
1403 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1404 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1405   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1406   SDValue Result;
1407 
1408   if (It != FuncInfo.ValueMap.end()) {
1409     Register InReg = It->second;
1410 
1411     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1412                      DAG.getDataLayout(), InReg, Ty,
1413                      None); // This is not an ABI copy.
1414     SDValue Chain = DAG.getEntryNode();
1415     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1416                                  V);
1417     resolveDanglingDebugInfo(V, Result);
1418   }
1419 
1420   return Result;
1421 }
1422 
1423 /// getValue - Return an SDValue for the given Value.
1424 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1425   // If we already have an SDValue for this value, use it. It's important
1426   // to do this first, so that we don't create a CopyFromReg if we already
1427   // have a regular SDValue.
1428   SDValue &N = NodeMap[V];
1429   if (N.getNode()) return N;
1430 
1431   // If there's a virtual register allocated and initialized for this
1432   // value, use it.
1433   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1434     return copyFromReg;
1435 
1436   // Otherwise create a new SDValue and remember it.
1437   SDValue Val = getValueImpl(V);
1438   NodeMap[V] = Val;
1439   resolveDanglingDebugInfo(V, Val);
1440   return Val;
1441 }
1442 
1443 /// getNonRegisterValue - Return an SDValue for the given Value, but
1444 /// don't look in FuncInfo.ValueMap for a virtual register.
1445 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1446   // If we already have an SDValue for this value, use it.
1447   SDValue &N = NodeMap[V];
1448   if (N.getNode()) {
1449     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1450       // Remove the debug location from the node as the node is about to be used
1451       // in a location which may differ from the original debug location.  This
1452       // is relevant to Constant and ConstantFP nodes because they can appear
1453       // as constant expressions inside PHI nodes.
1454       N->setDebugLoc(DebugLoc());
1455     }
1456     return N;
1457   }
1458 
1459   // Otherwise create a new SDValue and remember it.
1460   SDValue Val = getValueImpl(V);
1461   NodeMap[V] = Val;
1462   resolveDanglingDebugInfo(V, Val);
1463   return Val;
1464 }
1465 
1466 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1467 /// Create an SDValue for the given value.
1468 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1469   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1470 
1471   if (const Constant *C = dyn_cast<Constant>(V)) {
1472     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1473 
1474     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1475       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1476 
1477     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1478       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1479 
1480     if (isa<ConstantPointerNull>(C)) {
1481       unsigned AS = V->getType()->getPointerAddressSpace();
1482       return DAG.getConstant(0, getCurSDLoc(),
1483                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1484     }
1485 
1486     if (match(C, m_VScale(DAG.getDataLayout())))
1487       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1488 
1489     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1490       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1491 
1492     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1493       return DAG.getUNDEF(VT);
1494 
1495     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1496       visit(CE->getOpcode(), *CE);
1497       SDValue N1 = NodeMap[V];
1498       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1499       return N1;
1500     }
1501 
1502     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1503       SmallVector<SDValue, 4> Constants;
1504       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1505            OI != OE; ++OI) {
1506         SDNode *Val = getValue(*OI).getNode();
1507         // If the operand is an empty aggregate, there are no values.
1508         if (!Val) continue;
1509         // Add each leaf value from the operand to the Constants list
1510         // to form a flattened list of all the values.
1511         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1512           Constants.push_back(SDValue(Val, i));
1513       }
1514 
1515       return DAG.getMergeValues(Constants, getCurSDLoc());
1516     }
1517 
1518     if (const ConstantDataSequential *CDS =
1519           dyn_cast<ConstantDataSequential>(C)) {
1520       SmallVector<SDValue, 4> Ops;
1521       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1522         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1523         // Add each leaf value from the operand to the Constants list
1524         // to form a flattened list of all the values.
1525         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1526           Ops.push_back(SDValue(Val, i));
1527       }
1528 
1529       if (isa<ArrayType>(CDS->getType()))
1530         return DAG.getMergeValues(Ops, getCurSDLoc());
1531       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1532     }
1533 
1534     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1535       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1536              "Unknown struct or array constant!");
1537 
1538       SmallVector<EVT, 4> ValueVTs;
1539       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1540       unsigned NumElts = ValueVTs.size();
1541       if (NumElts == 0)
1542         return SDValue(); // empty struct
1543       SmallVector<SDValue, 4> Constants(NumElts);
1544       for (unsigned i = 0; i != NumElts; ++i) {
1545         EVT EltVT = ValueVTs[i];
1546         if (isa<UndefValue>(C))
1547           Constants[i] = DAG.getUNDEF(EltVT);
1548         else if (EltVT.isFloatingPoint())
1549           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550         else
1551           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552       }
1553 
1554       return DAG.getMergeValues(Constants, getCurSDLoc());
1555     }
1556 
1557     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1558       return DAG.getBlockAddress(BA, VT);
1559 
1560     VectorType *VecTy = cast<VectorType>(V->getType());
1561 
1562     // Now that we know the number and type of the elements, get that number of
1563     // elements into the Ops array based on what kind of constant it is.
1564     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1565       SmallVector<SDValue, 16> Ops;
1566       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1567       for (unsigned i = 0; i != NumElements; ++i)
1568         Ops.push_back(getValue(CV->getOperand(i)));
1569 
1570       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1571     } else if (isa<ConstantAggregateZero>(C)) {
1572       EVT EltVT =
1573           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1574 
1575       SDValue Op;
1576       if (EltVT.isFloatingPoint())
1577         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1578       else
1579         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1580 
1581       if (isa<ScalableVectorType>(VecTy))
1582         return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1583       else {
1584         SmallVector<SDValue, 16> Ops;
1585         Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1586         return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1587       }
1588     }
1589     llvm_unreachable("Unknown vector constant");
1590   }
1591 
1592   // If this is a static alloca, generate it as the frameindex instead of
1593   // computation.
1594   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1595     DenseMap<const AllocaInst*, int>::iterator SI =
1596       FuncInfo.StaticAllocaMap.find(AI);
1597     if (SI != FuncInfo.StaticAllocaMap.end())
1598       return DAG.getFrameIndex(SI->second,
1599                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1600   }
1601 
1602   // If this is an instruction which fast-isel has deferred, select it now.
1603   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1604     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1605 
1606     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1607                      Inst->getType(), getABIRegCopyCC(V));
1608     SDValue Chain = DAG.getEntryNode();
1609     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1610   }
1611 
1612   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1613     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1614   }
1615   llvm_unreachable("Can't get register for value!");
1616 }
1617 
1618 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1619   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1620   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1621   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1622   bool IsSEH = isAsynchronousEHPersonality(Pers);
1623   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1624   if (!IsSEH)
1625     CatchPadMBB->setIsEHScopeEntry();
1626   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1627   if (IsMSVCCXX || IsCoreCLR)
1628     CatchPadMBB->setIsEHFuncletEntry();
1629 }
1630 
1631 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1632   // Update machine-CFG edge.
1633   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1634   FuncInfo.MBB->addSuccessor(TargetMBB);
1635 
1636   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637   bool IsSEH = isAsynchronousEHPersonality(Pers);
1638   if (IsSEH) {
1639     // If this is not a fall-through branch or optimizations are switched off,
1640     // emit the branch.
1641     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1642         TM.getOptLevel() == CodeGenOpt::None)
1643       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1644                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1645     return;
1646   }
1647 
1648   // Figure out the funclet membership for the catchret's successor.
1649   // This will be used by the FuncletLayout pass to determine how to order the
1650   // BB's.
1651   // A 'catchret' returns to the outer scope's color.
1652   Value *ParentPad = I.getCatchSwitchParentPad();
1653   const BasicBlock *SuccessorColor;
1654   if (isa<ConstantTokenNone>(ParentPad))
1655     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1656   else
1657     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1658   assert(SuccessorColor && "No parent funclet for catchret!");
1659   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1660   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1661 
1662   // Create the terminator node.
1663   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1664                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1665                             DAG.getBasicBlock(SuccessorColorMBB));
1666   DAG.setRoot(Ret);
1667 }
1668 
1669 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1670   // Don't emit any special code for the cleanuppad instruction. It just marks
1671   // the start of an EH scope/funclet.
1672   FuncInfo.MBB->setIsEHScopeEntry();
1673   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1674   if (Pers != EHPersonality::Wasm_CXX) {
1675     FuncInfo.MBB->setIsEHFuncletEntry();
1676     FuncInfo.MBB->setIsCleanupFuncletEntry();
1677   }
1678 }
1679 
1680 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1681 // the control flow always stops at the single catch pad, as it does for a
1682 // cleanup pad. In case the exception caught is not of the types the catch pad
1683 // catches, it will be rethrown by a rethrow.
1684 static void findWasmUnwindDestinations(
1685     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1686     BranchProbability Prob,
1687     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1688         &UnwindDests) {
1689   while (EHPadBB) {
1690     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1691     if (isa<CleanupPadInst>(Pad)) {
1692       // Stop on cleanup pads.
1693       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1694       UnwindDests.back().first->setIsEHScopeEntry();
1695       break;
1696     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1697       // Add the catchpad handlers to the possible destinations. We don't
1698       // continue to the unwind destination of the catchswitch for wasm.
1699       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1700         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1701         UnwindDests.back().first->setIsEHScopeEntry();
1702       }
1703       break;
1704     } else {
1705       continue;
1706     }
1707   }
1708 }
1709 
1710 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1711 /// many places it could ultimately go. In the IR, we have a single unwind
1712 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1713 /// This function skips over imaginary basic blocks that hold catchswitch
1714 /// instructions, and finds all the "real" machine
1715 /// basic block destinations. As those destinations may not be successors of
1716 /// EHPadBB, here we also calculate the edge probability to those destinations.
1717 /// The passed-in Prob is the edge probability to EHPadBB.
1718 static void findUnwindDestinations(
1719     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1720     BranchProbability Prob,
1721     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1722         &UnwindDests) {
1723   EHPersonality Personality =
1724     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1725   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1726   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1727   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1728   bool IsSEH = isAsynchronousEHPersonality(Personality);
1729 
1730   if (IsWasmCXX) {
1731     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1732     assert(UnwindDests.size() <= 1 &&
1733            "There should be at most one unwind destination for wasm");
1734     return;
1735   }
1736 
1737   while (EHPadBB) {
1738     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1739     BasicBlock *NewEHPadBB = nullptr;
1740     if (isa<LandingPadInst>(Pad)) {
1741       // Stop on landingpads. They are not funclets.
1742       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1743       break;
1744     } else if (isa<CleanupPadInst>(Pad)) {
1745       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1746       // personalities.
1747       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1748       UnwindDests.back().first->setIsEHScopeEntry();
1749       UnwindDests.back().first->setIsEHFuncletEntry();
1750       break;
1751     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1752       // Add the catchpad handlers to the possible destinations.
1753       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1754         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1755         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1756         if (IsMSVCCXX || IsCoreCLR)
1757           UnwindDests.back().first->setIsEHFuncletEntry();
1758         if (!IsSEH)
1759           UnwindDests.back().first->setIsEHScopeEntry();
1760       }
1761       NewEHPadBB = CatchSwitch->getUnwindDest();
1762     } else {
1763       continue;
1764     }
1765 
1766     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1767     if (BPI && NewEHPadBB)
1768       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1769     EHPadBB = NewEHPadBB;
1770   }
1771 }
1772 
1773 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1774   // Update successor info.
1775   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1776   auto UnwindDest = I.getUnwindDest();
1777   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1778   BranchProbability UnwindDestProb =
1779       (BPI && UnwindDest)
1780           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1781           : BranchProbability::getZero();
1782   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1783   for (auto &UnwindDest : UnwindDests) {
1784     UnwindDest.first->setIsEHPad();
1785     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1786   }
1787   FuncInfo.MBB->normalizeSuccProbs();
1788 
1789   // Create the terminator node.
1790   SDValue Ret =
1791       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1792   DAG.setRoot(Ret);
1793 }
1794 
1795 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1796   report_fatal_error("visitCatchSwitch not yet implemented!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1800   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1801   auto &DL = DAG.getDataLayout();
1802   SDValue Chain = getControlRoot();
1803   SmallVector<ISD::OutputArg, 8> Outs;
1804   SmallVector<SDValue, 8> OutVals;
1805 
1806   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1807   // lower
1808   //
1809   //   %val = call <ty> @llvm.experimental.deoptimize()
1810   //   ret <ty> %val
1811   //
1812   // differently.
1813   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1814     LowerDeoptimizingReturn();
1815     return;
1816   }
1817 
1818   if (!FuncInfo.CanLowerReturn) {
1819     unsigned DemoteReg = FuncInfo.DemoteRegister;
1820     const Function *F = I.getParent()->getParent();
1821 
1822     // Emit a store of the return value through the virtual register.
1823     // Leave Outs empty so that LowerReturn won't try to load return
1824     // registers the usual way.
1825     SmallVector<EVT, 1> PtrValueVTs;
1826     ComputeValueVTs(TLI, DL,
1827                     F->getReturnType()->getPointerTo(
1828                         DAG.getDataLayout().getAllocaAddrSpace()),
1829                     PtrValueVTs);
1830 
1831     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1832                                         DemoteReg, PtrValueVTs[0]);
1833     SDValue RetOp = getValue(I.getOperand(0));
1834 
1835     SmallVector<EVT, 4> ValueVTs, MemVTs;
1836     SmallVector<uint64_t, 4> Offsets;
1837     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1838                     &Offsets);
1839     unsigned NumValues = ValueVTs.size();
1840 
1841     SmallVector<SDValue, 4> Chains(NumValues);
1842     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1843     for (unsigned i = 0; i != NumValues; ++i) {
1844       // An aggregate return value cannot wrap around the address space, so
1845       // offsets to its parts don't wrap either.
1846       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1847 
1848       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1849       if (MemVTs[i] != ValueVTs[i])
1850         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1851       Chains[i] = DAG.getStore(
1852           Chain, getCurSDLoc(), Val,
1853           // FIXME: better loc info would be nice.
1854           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1855           commonAlignment(BaseAlign, Offsets[i]));
1856     }
1857 
1858     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1859                         MVT::Other, Chains);
1860   } else if (I.getNumOperands() != 0) {
1861     SmallVector<EVT, 4> ValueVTs;
1862     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1863     unsigned NumValues = ValueVTs.size();
1864     if (NumValues) {
1865       SDValue RetOp = getValue(I.getOperand(0));
1866 
1867       const Function *F = I.getParent()->getParent();
1868 
1869       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1870           I.getOperand(0)->getType(), F->getCallingConv(),
1871           /*IsVarArg*/ false);
1872 
1873       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1874       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1875                                           Attribute::SExt))
1876         ExtendKind = ISD::SIGN_EXTEND;
1877       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1878                                                Attribute::ZExt))
1879         ExtendKind = ISD::ZERO_EXTEND;
1880 
1881       LLVMContext &Context = F->getContext();
1882       bool RetInReg = F->getAttributes().hasAttribute(
1883           AttributeList::ReturnIndex, Attribute::InReg);
1884 
1885       for (unsigned j = 0; j != NumValues; ++j) {
1886         EVT VT = ValueVTs[j];
1887 
1888         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1889           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1890 
1891         CallingConv::ID CC = F->getCallingConv();
1892 
1893         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1894         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1895         SmallVector<SDValue, 4> Parts(NumParts);
1896         getCopyToParts(DAG, getCurSDLoc(),
1897                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1898                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1899 
1900         // 'inreg' on function refers to return value
1901         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1902         if (RetInReg)
1903           Flags.setInReg();
1904 
1905         if (I.getOperand(0)->getType()->isPointerTy()) {
1906           Flags.setPointer();
1907           Flags.setPointerAddrSpace(
1908               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1909         }
1910 
1911         if (NeedsRegBlock) {
1912           Flags.setInConsecutiveRegs();
1913           if (j == NumValues - 1)
1914             Flags.setInConsecutiveRegsLast();
1915         }
1916 
1917         // Propagate extension type if any
1918         if (ExtendKind == ISD::SIGN_EXTEND)
1919           Flags.setSExt();
1920         else if (ExtendKind == ISD::ZERO_EXTEND)
1921           Flags.setZExt();
1922 
1923         for (unsigned i = 0; i < NumParts; ++i) {
1924           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1925                                         VT, /*isfixed=*/true, 0, 0));
1926           OutVals.push_back(Parts[i]);
1927         }
1928       }
1929     }
1930   }
1931 
1932   // Push in swifterror virtual register as the last element of Outs. This makes
1933   // sure swifterror virtual register will be returned in the swifterror
1934   // physical register.
1935   const Function *F = I.getParent()->getParent();
1936   if (TLI.supportSwiftError() &&
1937       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1938     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1939     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1940     Flags.setSwiftError();
1941     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1942                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1943                                   true /*isfixed*/, 1 /*origidx*/,
1944                                   0 /*partOffs*/));
1945     // Create SDNode for the swifterror virtual register.
1946     OutVals.push_back(
1947         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1948                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1949                         EVT(TLI.getPointerTy(DL))));
1950   }
1951 
1952   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1953   CallingConv::ID CallConv =
1954     DAG.getMachineFunction().getFunction().getCallingConv();
1955   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1956       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1957 
1958   // Verify that the target's LowerReturn behaved as expected.
1959   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1960          "LowerReturn didn't return a valid chain!");
1961 
1962   // Update the DAG with the new chain value resulting from return lowering.
1963   DAG.setRoot(Chain);
1964 }
1965 
1966 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1967 /// created for it, emit nodes to copy the value into the virtual
1968 /// registers.
1969 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1970   // Skip empty types
1971   if (V->getType()->isEmptyTy())
1972     return;
1973 
1974   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
1975   if (VMI != FuncInfo.ValueMap.end()) {
1976     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1977     CopyValueToVirtualRegister(V, VMI->second);
1978   }
1979 }
1980 
1981 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1982 /// the current basic block, add it to ValueMap now so that we'll get a
1983 /// CopyTo/FromReg.
1984 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1985   // No need to export constants.
1986   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1987 
1988   // Already exported?
1989   if (FuncInfo.isExportedInst(V)) return;
1990 
1991   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1992   CopyValueToVirtualRegister(V, Reg);
1993 }
1994 
1995 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1996                                                      const BasicBlock *FromBB) {
1997   // The operands of the setcc have to be in this block.  We don't know
1998   // how to export them from some other block.
1999   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2000     // Can export from current BB.
2001     if (VI->getParent() == FromBB)
2002       return true;
2003 
2004     // Is already exported, noop.
2005     return FuncInfo.isExportedInst(V);
2006   }
2007 
2008   // If this is an argument, we can export it if the BB is the entry block or
2009   // if it is already exported.
2010   if (isa<Argument>(V)) {
2011     if (FromBB == &FromBB->getParent()->getEntryBlock())
2012       return true;
2013 
2014     // Otherwise, can only export this if it is already exported.
2015     return FuncInfo.isExportedInst(V);
2016   }
2017 
2018   // Otherwise, constants can always be exported.
2019   return true;
2020 }
2021 
2022 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2023 BranchProbability
2024 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2025                                         const MachineBasicBlock *Dst) const {
2026   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2027   const BasicBlock *SrcBB = Src->getBasicBlock();
2028   const BasicBlock *DstBB = Dst->getBasicBlock();
2029   if (!BPI) {
2030     // If BPI is not available, set the default probability as 1 / N, where N is
2031     // the number of successors.
2032     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2033     return BranchProbability(1, SuccSize);
2034   }
2035   return BPI->getEdgeProbability(SrcBB, DstBB);
2036 }
2037 
2038 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2039                                                MachineBasicBlock *Dst,
2040                                                BranchProbability Prob) {
2041   if (!FuncInfo.BPI)
2042     Src->addSuccessorWithoutProb(Dst);
2043   else {
2044     if (Prob.isUnknown())
2045       Prob = getEdgeProbability(Src, Dst);
2046     Src->addSuccessor(Dst, Prob);
2047   }
2048 }
2049 
2050 static bool InBlock(const Value *V, const BasicBlock *BB) {
2051   if (const Instruction *I = dyn_cast<Instruction>(V))
2052     return I->getParent() == BB;
2053   return true;
2054 }
2055 
2056 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2057 /// This function emits a branch and is used at the leaves of an OR or an
2058 /// AND operator tree.
2059 void
2060 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2061                                                   MachineBasicBlock *TBB,
2062                                                   MachineBasicBlock *FBB,
2063                                                   MachineBasicBlock *CurBB,
2064                                                   MachineBasicBlock *SwitchBB,
2065                                                   BranchProbability TProb,
2066                                                   BranchProbability FProb,
2067                                                   bool InvertCond) {
2068   const BasicBlock *BB = CurBB->getBasicBlock();
2069 
2070   // If the leaf of the tree is a comparison, merge the condition into
2071   // the caseblock.
2072   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2073     // The operands of the cmp have to be in this block.  We don't know
2074     // how to export them from some other block.  If this is the first block
2075     // of the sequence, no exporting is needed.
2076     if (CurBB == SwitchBB ||
2077         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2078          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2079       ISD::CondCode Condition;
2080       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2081         ICmpInst::Predicate Pred =
2082             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2083         Condition = getICmpCondCode(Pred);
2084       } else {
2085         const FCmpInst *FC = cast<FCmpInst>(Cond);
2086         FCmpInst::Predicate Pred =
2087             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2088         Condition = getFCmpCondCode(Pred);
2089         if (TM.Options.NoNaNsFPMath)
2090           Condition = getFCmpCodeWithoutNaN(Condition);
2091       }
2092 
2093       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2094                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2095       SL->SwitchCases.push_back(CB);
2096       return;
2097     }
2098   }
2099 
2100   // Create a CaseBlock record representing this branch.
2101   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2102   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2103                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2104   SL->SwitchCases.push_back(CB);
2105 }
2106 
2107 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2108                                                MachineBasicBlock *TBB,
2109                                                MachineBasicBlock *FBB,
2110                                                MachineBasicBlock *CurBB,
2111                                                MachineBasicBlock *SwitchBB,
2112                                                Instruction::BinaryOps Opc,
2113                                                BranchProbability TProb,
2114                                                BranchProbability FProb,
2115                                                bool InvertCond) {
2116   // Skip over not part of the tree and remember to invert op and operands at
2117   // next level.
2118   Value *NotCond;
2119   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2120       InBlock(NotCond, CurBB->getBasicBlock())) {
2121     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2122                          !InvertCond);
2123     return;
2124   }
2125 
2126   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2127   // Compute the effective opcode for Cond, taking into account whether it needs
2128   // to be inverted, e.g.
2129   //   and (not (or A, B)), C
2130   // gets lowered as
2131   //   and (and (not A, not B), C)
2132   unsigned BOpc = 0;
2133   if (BOp) {
2134     BOpc = BOp->getOpcode();
2135     if (InvertCond) {
2136       if (BOpc == Instruction::And)
2137         BOpc = Instruction::Or;
2138       else if (BOpc == Instruction::Or)
2139         BOpc = Instruction::And;
2140     }
2141   }
2142 
2143   // If this node is not part of the or/and tree, emit it as a branch.
2144   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2145       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2146       BOp->getParent() != CurBB->getBasicBlock() ||
2147       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2148       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2149     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2150                                  TProb, FProb, InvertCond);
2151     return;
2152   }
2153 
2154   //  Create TmpBB after CurBB.
2155   MachineFunction::iterator BBI(CurBB);
2156   MachineFunction &MF = DAG.getMachineFunction();
2157   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2158   CurBB->getParent()->insert(++BBI, TmpBB);
2159 
2160   if (Opc == Instruction::Or) {
2161     // Codegen X | Y as:
2162     // BB1:
2163     //   jmp_if_X TBB
2164     //   jmp TmpBB
2165     // TmpBB:
2166     //   jmp_if_Y TBB
2167     //   jmp FBB
2168     //
2169 
2170     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2171     // The requirement is that
2172     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2173     //     = TrueProb for original BB.
2174     // Assuming the original probabilities are A and B, one choice is to set
2175     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2176     // A/(1+B) and 2B/(1+B). This choice assumes that
2177     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2178     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2179     // TmpBB, but the math is more complicated.
2180 
2181     auto NewTrueProb = TProb / 2;
2182     auto NewFalseProb = TProb / 2 + FProb;
2183     // Emit the LHS condition.
2184     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2185                          NewTrueProb, NewFalseProb, InvertCond);
2186 
2187     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2188     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2189     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2190     // Emit the RHS condition into TmpBB.
2191     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2192                          Probs[0], Probs[1], InvertCond);
2193   } else {
2194     assert(Opc == Instruction::And && "Unknown merge op!");
2195     // Codegen X & Y as:
2196     // BB1:
2197     //   jmp_if_X TmpBB
2198     //   jmp FBB
2199     // TmpBB:
2200     //   jmp_if_Y TBB
2201     //   jmp FBB
2202     //
2203     //  This requires creation of TmpBB after CurBB.
2204 
2205     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2206     // The requirement is that
2207     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2208     //     = FalseProb for original BB.
2209     // Assuming the original probabilities are A and B, one choice is to set
2210     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2211     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2212     // TrueProb for BB1 * FalseProb for TmpBB.
2213 
2214     auto NewTrueProb = TProb + FProb / 2;
2215     auto NewFalseProb = FProb / 2;
2216     // Emit the LHS condition.
2217     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2218                          NewTrueProb, NewFalseProb, InvertCond);
2219 
2220     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2221     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2222     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2223     // Emit the RHS condition into TmpBB.
2224     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2225                          Probs[0], Probs[1], InvertCond);
2226   }
2227 }
2228 
2229 /// If the set of cases should be emitted as a series of branches, return true.
2230 /// If we should emit this as a bunch of and/or'd together conditions, return
2231 /// false.
2232 bool
2233 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2234   if (Cases.size() != 2) return true;
2235 
2236   // If this is two comparisons of the same values or'd or and'd together, they
2237   // will get folded into a single comparison, so don't emit two blocks.
2238   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2239        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2240       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2241        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2242     return false;
2243   }
2244 
2245   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2246   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2247   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2248       Cases[0].CC == Cases[1].CC &&
2249       isa<Constant>(Cases[0].CmpRHS) &&
2250       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2251     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2252       return false;
2253     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2254       return false;
2255   }
2256 
2257   return true;
2258 }
2259 
2260 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2261   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2262 
2263   // Update machine-CFG edges.
2264   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2265 
2266   if (I.isUnconditional()) {
2267     // Update machine-CFG edges.
2268     BrMBB->addSuccessor(Succ0MBB);
2269 
2270     // If this is not a fall-through branch or optimizations are switched off,
2271     // emit the branch.
2272     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2273       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2274                               MVT::Other, getControlRoot(),
2275                               DAG.getBasicBlock(Succ0MBB)));
2276 
2277     return;
2278   }
2279 
2280   // If this condition is one of the special cases we handle, do special stuff
2281   // now.
2282   const Value *CondVal = I.getCondition();
2283   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2284 
2285   // If this is a series of conditions that are or'd or and'd together, emit
2286   // this as a sequence of branches instead of setcc's with and/or operations.
2287   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2288   // unpredictable branches, and vector extracts because those jumps are likely
2289   // expensive for any target), this should improve performance.
2290   // For example, instead of something like:
2291   //     cmp A, B
2292   //     C = seteq
2293   //     cmp D, E
2294   //     F = setle
2295   //     or C, F
2296   //     jnz foo
2297   // Emit:
2298   //     cmp A, B
2299   //     je foo
2300   //     cmp D, E
2301   //     jle foo
2302   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2303     Instruction::BinaryOps Opcode = BOp->getOpcode();
2304     Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1);
2305     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2306         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2307         (Opcode == Instruction::And || Opcode == Instruction::Or) &&
2308         !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2309           match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2310       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2311                            Opcode,
2312                            getEdgeProbability(BrMBB, Succ0MBB),
2313                            getEdgeProbability(BrMBB, Succ1MBB),
2314                            /*InvertCond=*/false);
2315       // If the compares in later blocks need to use values not currently
2316       // exported from this block, export them now.  This block should always
2317       // be the first entry.
2318       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2319 
2320       // Allow some cases to be rejected.
2321       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2322         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2323           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2324           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2325         }
2326 
2327         // Emit the branch for this block.
2328         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2329         SL->SwitchCases.erase(SL->SwitchCases.begin());
2330         return;
2331       }
2332 
2333       // Okay, we decided not to do this, remove any inserted MBB's and clear
2334       // SwitchCases.
2335       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2336         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2337 
2338       SL->SwitchCases.clear();
2339     }
2340   }
2341 
2342   // Create a CaseBlock record representing this branch.
2343   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2344                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2345 
2346   // Use visitSwitchCase to actually insert the fast branch sequence for this
2347   // cond branch.
2348   visitSwitchCase(CB, BrMBB);
2349 }
2350 
2351 /// visitSwitchCase - Emits the necessary code to represent a single node in
2352 /// the binary search tree resulting from lowering a switch instruction.
2353 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2354                                           MachineBasicBlock *SwitchBB) {
2355   SDValue Cond;
2356   SDValue CondLHS = getValue(CB.CmpLHS);
2357   SDLoc dl = CB.DL;
2358 
2359   if (CB.CC == ISD::SETTRUE) {
2360     // Branch or fall through to TrueBB.
2361     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2362     SwitchBB->normalizeSuccProbs();
2363     if (CB.TrueBB != NextBlock(SwitchBB)) {
2364       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2365                               DAG.getBasicBlock(CB.TrueBB)));
2366     }
2367     return;
2368   }
2369 
2370   auto &TLI = DAG.getTargetLoweringInfo();
2371   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2372 
2373   // Build the setcc now.
2374   if (!CB.CmpMHS) {
2375     // Fold "(X == true)" to X and "(X == false)" to !X to
2376     // handle common cases produced by branch lowering.
2377     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2378         CB.CC == ISD::SETEQ)
2379       Cond = CondLHS;
2380     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2381              CB.CC == ISD::SETEQ) {
2382       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2383       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2384     } else {
2385       SDValue CondRHS = getValue(CB.CmpRHS);
2386 
2387       // If a pointer's DAG type is larger than its memory type then the DAG
2388       // values are zero-extended. This breaks signed comparisons so truncate
2389       // back to the underlying type before doing the compare.
2390       if (CondLHS.getValueType() != MemVT) {
2391         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2392         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2393       }
2394       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2395     }
2396   } else {
2397     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2398 
2399     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2400     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2401 
2402     SDValue CmpOp = getValue(CB.CmpMHS);
2403     EVT VT = CmpOp.getValueType();
2404 
2405     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2406       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2407                           ISD::SETLE);
2408     } else {
2409       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2410                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2411       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2412                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2413     }
2414   }
2415 
2416   // Update successor info
2417   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2418   // TrueBB and FalseBB are always different unless the incoming IR is
2419   // degenerate. This only happens when running llc on weird IR.
2420   if (CB.TrueBB != CB.FalseBB)
2421     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2422   SwitchBB->normalizeSuccProbs();
2423 
2424   // If the lhs block is the next block, invert the condition so that we can
2425   // fall through to the lhs instead of the rhs block.
2426   if (CB.TrueBB == NextBlock(SwitchBB)) {
2427     std::swap(CB.TrueBB, CB.FalseBB);
2428     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2429     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2430   }
2431 
2432   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2433                                MVT::Other, getControlRoot(), Cond,
2434                                DAG.getBasicBlock(CB.TrueBB));
2435 
2436   // Insert the false branch. Do this even if it's a fall through branch,
2437   // this makes it easier to do DAG optimizations which require inverting
2438   // the branch condition.
2439   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2440                        DAG.getBasicBlock(CB.FalseBB));
2441 
2442   DAG.setRoot(BrCond);
2443 }
2444 
2445 /// visitJumpTable - Emit JumpTable node in the current MBB
2446 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2447   // Emit the code for the jump table
2448   assert(JT.Reg != -1U && "Should lower JT Header first!");
2449   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2450   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2451                                      JT.Reg, PTy);
2452   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2453   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2454                                     MVT::Other, Index.getValue(1),
2455                                     Table, Index);
2456   DAG.setRoot(BrJumpTable);
2457 }
2458 
2459 /// visitJumpTableHeader - This function emits necessary code to produce index
2460 /// in the JumpTable from switch case.
2461 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2462                                                JumpTableHeader &JTH,
2463                                                MachineBasicBlock *SwitchBB) {
2464   SDLoc dl = getCurSDLoc();
2465 
2466   // Subtract the lowest switch case value from the value being switched on.
2467   SDValue SwitchOp = getValue(JTH.SValue);
2468   EVT VT = SwitchOp.getValueType();
2469   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2470                             DAG.getConstant(JTH.First, dl, VT));
2471 
2472   // The SDNode we just created, which holds the value being switched on minus
2473   // the smallest case value, needs to be copied to a virtual register so it
2474   // can be used as an index into the jump table in a subsequent basic block.
2475   // This value may be smaller or larger than the target's pointer type, and
2476   // therefore require extension or truncating.
2477   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2478   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2479 
2480   unsigned JumpTableReg =
2481       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2482   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2483                                     JumpTableReg, SwitchOp);
2484   JT.Reg = JumpTableReg;
2485 
2486   if (!JTH.OmitRangeCheck) {
2487     // Emit the range check for the jump table, and branch to the default block
2488     // for the switch statement if the value being switched on exceeds the
2489     // largest case in the switch.
2490     SDValue CMP = DAG.getSetCC(
2491         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2492                                    Sub.getValueType()),
2493         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2494 
2495     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2496                                  MVT::Other, CopyTo, CMP,
2497                                  DAG.getBasicBlock(JT.Default));
2498 
2499     // Avoid emitting unnecessary branches to the next block.
2500     if (JT.MBB != NextBlock(SwitchBB))
2501       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2502                            DAG.getBasicBlock(JT.MBB));
2503 
2504     DAG.setRoot(BrCond);
2505   } else {
2506     // Avoid emitting unnecessary branches to the next block.
2507     if (JT.MBB != NextBlock(SwitchBB))
2508       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2509                               DAG.getBasicBlock(JT.MBB)));
2510     else
2511       DAG.setRoot(CopyTo);
2512   }
2513 }
2514 
2515 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2516 /// variable if there exists one.
2517 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2518                                  SDValue &Chain) {
2519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2520   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2521   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2522   MachineFunction &MF = DAG.getMachineFunction();
2523   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2524   MachineSDNode *Node =
2525       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2526   if (Global) {
2527     MachinePointerInfo MPInfo(Global);
2528     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2529                  MachineMemOperand::MODereferenceable;
2530     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2531         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2532     DAG.setNodeMemRefs(Node, {MemRef});
2533   }
2534   if (PtrTy != PtrMemTy)
2535     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2536   return SDValue(Node, 0);
2537 }
2538 
2539 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2540 /// tail spliced into a stack protector check success bb.
2541 ///
2542 /// For a high level explanation of how this fits into the stack protector
2543 /// generation see the comment on the declaration of class
2544 /// StackProtectorDescriptor.
2545 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2546                                                   MachineBasicBlock *ParentBB) {
2547 
2548   // First create the loads to the guard/stack slot for the comparison.
2549   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2550   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2551   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2552 
2553   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2554   int FI = MFI.getStackProtectorIndex();
2555 
2556   SDValue Guard;
2557   SDLoc dl = getCurSDLoc();
2558   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2559   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2560   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2561 
2562   // Generate code to load the content of the guard slot.
2563   SDValue GuardVal = DAG.getLoad(
2564       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2565       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2566       MachineMemOperand::MOVolatile);
2567 
2568   if (TLI.useStackGuardXorFP())
2569     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2570 
2571   // Retrieve guard check function, nullptr if instrumentation is inlined.
2572   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2573     // The target provides a guard check function to validate the guard value.
2574     // Generate a call to that function with the content of the guard slot as
2575     // argument.
2576     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2577     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2578 
2579     TargetLowering::ArgListTy Args;
2580     TargetLowering::ArgListEntry Entry;
2581     Entry.Node = GuardVal;
2582     Entry.Ty = FnTy->getParamType(0);
2583     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2584       Entry.IsInReg = true;
2585     Args.push_back(Entry);
2586 
2587     TargetLowering::CallLoweringInfo CLI(DAG);
2588     CLI.setDebugLoc(getCurSDLoc())
2589         .setChain(DAG.getEntryNode())
2590         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2591                    getValue(GuardCheckFn), std::move(Args));
2592 
2593     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2594     DAG.setRoot(Result.second);
2595     return;
2596   }
2597 
2598   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2599   // Otherwise, emit a volatile load to retrieve the stack guard value.
2600   SDValue Chain = DAG.getEntryNode();
2601   if (TLI.useLoadStackGuardNode()) {
2602     Guard = getLoadStackGuard(DAG, dl, Chain);
2603   } else {
2604     const Value *IRGuard = TLI.getSDagStackGuard(M);
2605     SDValue GuardPtr = getValue(IRGuard);
2606 
2607     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2608                         MachinePointerInfo(IRGuard, 0), Align,
2609                         MachineMemOperand::MOVolatile);
2610   }
2611 
2612   // Perform the comparison via a getsetcc.
2613   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2614                                                         *DAG.getContext(),
2615                                                         Guard.getValueType()),
2616                              Guard, GuardVal, ISD::SETNE);
2617 
2618   // If the guard/stackslot do not equal, branch to failure MBB.
2619   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2620                                MVT::Other, GuardVal.getOperand(0),
2621                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2622   // Otherwise branch to success MBB.
2623   SDValue Br = DAG.getNode(ISD::BR, dl,
2624                            MVT::Other, BrCond,
2625                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2626 
2627   DAG.setRoot(Br);
2628 }
2629 
2630 /// Codegen the failure basic block for a stack protector check.
2631 ///
2632 /// A failure stack protector machine basic block consists simply of a call to
2633 /// __stack_chk_fail().
2634 ///
2635 /// For a high level explanation of how this fits into the stack protector
2636 /// generation see the comment on the declaration of class
2637 /// StackProtectorDescriptor.
2638 void
2639 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2641   TargetLowering::MakeLibCallOptions CallOptions;
2642   CallOptions.setDiscardResult(true);
2643   SDValue Chain =
2644       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2645                       None, CallOptions, getCurSDLoc()).second;
2646   // On PS4, the "return address" must still be within the calling function,
2647   // even if it's at the very end, so emit an explicit TRAP here.
2648   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2649   if (TM.getTargetTriple().isPS4CPU())
2650     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2651   // WebAssembly needs an unreachable instruction after a non-returning call,
2652   // because the function return type can be different from __stack_chk_fail's
2653   // return type (void).
2654   if (TM.getTargetTriple().isWasm())
2655     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2656 
2657   DAG.setRoot(Chain);
2658 }
2659 
2660 /// visitBitTestHeader - This function emits necessary code to produce value
2661 /// suitable for "bit tests"
2662 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2663                                              MachineBasicBlock *SwitchBB) {
2664   SDLoc dl = getCurSDLoc();
2665 
2666   // Subtract the minimum value.
2667   SDValue SwitchOp = getValue(B.SValue);
2668   EVT VT = SwitchOp.getValueType();
2669   SDValue RangeSub =
2670       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2671 
2672   // Determine the type of the test operands.
2673   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2674   bool UsePtrType = false;
2675   if (!TLI.isTypeLegal(VT)) {
2676     UsePtrType = true;
2677   } else {
2678     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2679       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2680         // Switch table case range are encoded into series of masks.
2681         // Just use pointer type, it's guaranteed to fit.
2682         UsePtrType = true;
2683         break;
2684       }
2685   }
2686   SDValue Sub = RangeSub;
2687   if (UsePtrType) {
2688     VT = TLI.getPointerTy(DAG.getDataLayout());
2689     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2690   }
2691 
2692   B.RegVT = VT.getSimpleVT();
2693   B.Reg = FuncInfo.CreateReg(B.RegVT);
2694   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2695 
2696   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2697 
2698   if (!B.OmitRangeCheck)
2699     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2700   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2701   SwitchBB->normalizeSuccProbs();
2702 
2703   SDValue Root = CopyTo;
2704   if (!B.OmitRangeCheck) {
2705     // Conditional branch to the default block.
2706     SDValue RangeCmp = DAG.getSetCC(dl,
2707         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2708                                RangeSub.getValueType()),
2709         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2710         ISD::SETUGT);
2711 
2712     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2713                        DAG.getBasicBlock(B.Default));
2714   }
2715 
2716   // Avoid emitting unnecessary branches to the next block.
2717   if (MBB != NextBlock(SwitchBB))
2718     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2719 
2720   DAG.setRoot(Root);
2721 }
2722 
2723 /// visitBitTestCase - this function produces one "bit test"
2724 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2725                                            MachineBasicBlock* NextMBB,
2726                                            BranchProbability BranchProbToNext,
2727                                            unsigned Reg,
2728                                            BitTestCase &B,
2729                                            MachineBasicBlock *SwitchBB) {
2730   SDLoc dl = getCurSDLoc();
2731   MVT VT = BB.RegVT;
2732   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2733   SDValue Cmp;
2734   unsigned PopCount = countPopulation(B.Mask);
2735   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2736   if (PopCount == 1) {
2737     // Testing for a single bit; just compare the shift count with what it
2738     // would need to be to shift a 1 bit in that position.
2739     Cmp = DAG.getSetCC(
2740         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2741         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2742         ISD::SETEQ);
2743   } else if (PopCount == BB.Range) {
2744     // There is only one zero bit in the range, test for it directly.
2745     Cmp = DAG.getSetCC(
2746         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2747         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2748         ISD::SETNE);
2749   } else {
2750     // Make desired shift
2751     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2752                                     DAG.getConstant(1, dl, VT), ShiftOp);
2753 
2754     // Emit bit tests and jumps
2755     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2756                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2757     Cmp = DAG.getSetCC(
2758         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2759         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2760   }
2761 
2762   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2763   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2764   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2765   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2766   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2767   // one as they are relative probabilities (and thus work more like weights),
2768   // and hence we need to normalize them to let the sum of them become one.
2769   SwitchBB->normalizeSuccProbs();
2770 
2771   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2772                               MVT::Other, getControlRoot(),
2773                               Cmp, DAG.getBasicBlock(B.TargetBB));
2774 
2775   // Avoid emitting unnecessary branches to the next block.
2776   if (NextMBB != NextBlock(SwitchBB))
2777     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2778                         DAG.getBasicBlock(NextMBB));
2779 
2780   DAG.setRoot(BrAnd);
2781 }
2782 
2783 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2784   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2785 
2786   // Retrieve successors. Look through artificial IR level blocks like
2787   // catchswitch for successors.
2788   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2789   const BasicBlock *EHPadBB = I.getSuccessor(1);
2790 
2791   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2792   // have to do anything here to lower funclet bundles.
2793   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2794                                         LLVMContext::OB_gc_transition,
2795                                         LLVMContext::OB_gc_live,
2796                                         LLVMContext::OB_funclet,
2797                                         LLVMContext::OB_cfguardtarget}) &&
2798          "Cannot lower invokes with arbitrary operand bundles yet!");
2799 
2800   const Value *Callee(I.getCalledOperand());
2801   const Function *Fn = dyn_cast<Function>(Callee);
2802   if (isa<InlineAsm>(Callee))
2803     visitInlineAsm(I);
2804   else if (Fn && Fn->isIntrinsic()) {
2805     switch (Fn->getIntrinsicID()) {
2806     default:
2807       llvm_unreachable("Cannot invoke this intrinsic");
2808     case Intrinsic::donothing:
2809       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2810       break;
2811     case Intrinsic::experimental_patchpoint_void:
2812     case Intrinsic::experimental_patchpoint_i64:
2813       visitPatchpoint(I, EHPadBB);
2814       break;
2815     case Intrinsic::experimental_gc_statepoint:
2816       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2817       break;
2818     case Intrinsic::wasm_rethrow_in_catch: {
2819       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2820       // special because it can be invoked, so we manually lower it to a DAG
2821       // node here.
2822       SmallVector<SDValue, 8> Ops;
2823       Ops.push_back(getRoot()); // inchain
2824       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2825       Ops.push_back(
2826           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2827                                 TLI.getPointerTy(DAG.getDataLayout())));
2828       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2829       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2830       break;
2831     }
2832     }
2833   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2834     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2835     // Eventually we will support lowering the @llvm.experimental.deoptimize
2836     // intrinsic, and right now there are no plans to support other intrinsics
2837     // with deopt state.
2838     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2839   } else {
2840     LowerCallTo(I, getValue(Callee), false, EHPadBB);
2841   }
2842 
2843   // If the value of the invoke is used outside of its defining block, make it
2844   // available as a virtual register.
2845   // We already took care of the exported value for the statepoint instruction
2846   // during call to the LowerStatepoint.
2847   if (!isa<GCStatepointInst>(I)) {
2848     CopyToExportRegsIfNeeded(&I);
2849   }
2850 
2851   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2852   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2853   BranchProbability EHPadBBProb =
2854       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2855           : BranchProbability::getZero();
2856   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2857 
2858   // Update successor info.
2859   addSuccessorWithProb(InvokeMBB, Return);
2860   for (auto &UnwindDest : UnwindDests) {
2861     UnwindDest.first->setIsEHPad();
2862     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2863   }
2864   InvokeMBB->normalizeSuccProbs();
2865 
2866   // Drop into normal successor.
2867   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2868                           DAG.getBasicBlock(Return)));
2869 }
2870 
2871 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2872   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2873 
2874   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2875   // have to do anything here to lower funclet bundles.
2876   assert(!I.hasOperandBundlesOtherThan(
2877              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2878          "Cannot lower callbrs with arbitrary operand bundles yet!");
2879 
2880   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2881   visitInlineAsm(I);
2882   CopyToExportRegsIfNeeded(&I);
2883 
2884   // Retrieve successors.
2885   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2886 
2887   // Update successor info.
2888   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2889   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2890     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2891     addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2892     Target->setIsInlineAsmBrIndirectTarget();
2893   }
2894   CallBrMBB->normalizeSuccProbs();
2895 
2896   // Drop into default successor.
2897   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2898                           MVT::Other, getControlRoot(),
2899                           DAG.getBasicBlock(Return)));
2900 }
2901 
2902 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2903   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2904 }
2905 
2906 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2907   assert(FuncInfo.MBB->isEHPad() &&
2908          "Call to landingpad not in landing pad!");
2909 
2910   // If there aren't registers to copy the values into (e.g., during SjLj
2911   // exceptions), then don't bother to create these DAG nodes.
2912   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2913   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2914   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2915       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2916     return;
2917 
2918   // If landingpad's return type is token type, we don't create DAG nodes
2919   // for its exception pointer and selector value. The extraction of exception
2920   // pointer or selector value from token type landingpads is not currently
2921   // supported.
2922   if (LP.getType()->isTokenTy())
2923     return;
2924 
2925   SmallVector<EVT, 2> ValueVTs;
2926   SDLoc dl = getCurSDLoc();
2927   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2928   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2929 
2930   // Get the two live-in registers as SDValues. The physregs have already been
2931   // copied into virtual registers.
2932   SDValue Ops[2];
2933   if (FuncInfo.ExceptionPointerVirtReg) {
2934     Ops[0] = DAG.getZExtOrTrunc(
2935         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2936                            FuncInfo.ExceptionPointerVirtReg,
2937                            TLI.getPointerTy(DAG.getDataLayout())),
2938         dl, ValueVTs[0]);
2939   } else {
2940     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2941   }
2942   Ops[1] = DAG.getZExtOrTrunc(
2943       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2944                          FuncInfo.ExceptionSelectorVirtReg,
2945                          TLI.getPointerTy(DAG.getDataLayout())),
2946       dl, ValueVTs[1]);
2947 
2948   // Merge into one.
2949   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2950                             DAG.getVTList(ValueVTs), Ops);
2951   setValue(&LP, Res);
2952 }
2953 
2954 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2955                                            MachineBasicBlock *Last) {
2956   // Update JTCases.
2957   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2958     if (SL->JTCases[i].first.HeaderBB == First)
2959       SL->JTCases[i].first.HeaderBB = Last;
2960 
2961   // Update BitTestCases.
2962   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2963     if (SL->BitTestCases[i].Parent == First)
2964       SL->BitTestCases[i].Parent = Last;
2965 }
2966 
2967 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2968   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2969 
2970   // Update machine-CFG edges with unique successors.
2971   SmallSet<BasicBlock*, 32> Done;
2972   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2973     BasicBlock *BB = I.getSuccessor(i);
2974     bool Inserted = Done.insert(BB).second;
2975     if (!Inserted)
2976         continue;
2977 
2978     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2979     addSuccessorWithProb(IndirectBrMBB, Succ);
2980   }
2981   IndirectBrMBB->normalizeSuccProbs();
2982 
2983   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2984                           MVT::Other, getControlRoot(),
2985                           getValue(I.getAddress())));
2986 }
2987 
2988 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2989   if (!DAG.getTarget().Options.TrapUnreachable)
2990     return;
2991 
2992   // We may be able to ignore unreachable behind a noreturn call.
2993   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2994     const BasicBlock &BB = *I.getParent();
2995     if (&I != &BB.front()) {
2996       BasicBlock::const_iterator PredI =
2997         std::prev(BasicBlock::const_iterator(&I));
2998       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2999         if (Call->doesNotReturn())
3000           return;
3001       }
3002     }
3003   }
3004 
3005   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3006 }
3007 
3008 void SelectionDAGBuilder::visitFSub(const User &I) {
3009   // -0.0 - X --> fneg
3010   Type *Ty = I.getType();
3011   if (isa<Constant>(I.getOperand(0)) &&
3012       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
3013     SDValue Op2 = getValue(I.getOperand(1));
3014     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
3015                              Op2.getValueType(), Op2));
3016     return;
3017   }
3018 
3019   visitBinary(I, ISD::FSUB);
3020 }
3021 
3022 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3023   SDNodeFlags Flags;
3024 
3025   SDValue Op = getValue(I.getOperand(0));
3026   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3027                                     Op, Flags);
3028   setValue(&I, UnNodeValue);
3029 }
3030 
3031 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3032   SDNodeFlags Flags;
3033   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3034     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3035     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3036   }
3037   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3038     Flags.setExact(ExactOp->isExact());
3039   }
3040 
3041   SDValue Op1 = getValue(I.getOperand(0));
3042   SDValue Op2 = getValue(I.getOperand(1));
3043   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3044                                      Op1, Op2, Flags);
3045   setValue(&I, BinNodeValue);
3046 }
3047 
3048 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3049   SDValue Op1 = getValue(I.getOperand(0));
3050   SDValue Op2 = getValue(I.getOperand(1));
3051 
3052   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3053       Op1.getValueType(), DAG.getDataLayout());
3054 
3055   // Coerce the shift amount to the right type if we can.
3056   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3057     unsigned ShiftSize = ShiftTy.getSizeInBits();
3058     unsigned Op2Size = Op2.getValueSizeInBits();
3059     SDLoc DL = getCurSDLoc();
3060 
3061     // If the operand is smaller than the shift count type, promote it.
3062     if (ShiftSize > Op2Size)
3063       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3064 
3065     // If the operand is larger than the shift count type but the shift
3066     // count type has enough bits to represent any shift value, truncate
3067     // it now. This is a common case and it exposes the truncate to
3068     // optimization early.
3069     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3070       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3071     // Otherwise we'll need to temporarily settle for some other convenient
3072     // type.  Type legalization will make adjustments once the shiftee is split.
3073     else
3074       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3075   }
3076 
3077   bool nuw = false;
3078   bool nsw = false;
3079   bool exact = false;
3080 
3081   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3082 
3083     if (const OverflowingBinaryOperator *OFBinOp =
3084             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3085       nuw = OFBinOp->hasNoUnsignedWrap();
3086       nsw = OFBinOp->hasNoSignedWrap();
3087     }
3088     if (const PossiblyExactOperator *ExactOp =
3089             dyn_cast<const PossiblyExactOperator>(&I))
3090       exact = ExactOp->isExact();
3091   }
3092   SDNodeFlags Flags;
3093   Flags.setExact(exact);
3094   Flags.setNoSignedWrap(nsw);
3095   Flags.setNoUnsignedWrap(nuw);
3096   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3097                             Flags);
3098   setValue(&I, Res);
3099 }
3100 
3101 void SelectionDAGBuilder::visitSDiv(const User &I) {
3102   SDValue Op1 = getValue(I.getOperand(0));
3103   SDValue Op2 = getValue(I.getOperand(1));
3104 
3105   SDNodeFlags Flags;
3106   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3107                  cast<PossiblyExactOperator>(&I)->isExact());
3108   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3109                            Op2, Flags));
3110 }
3111 
3112 void SelectionDAGBuilder::visitICmp(const User &I) {
3113   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3114   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3115     predicate = IC->getPredicate();
3116   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3117     predicate = ICmpInst::Predicate(IC->getPredicate());
3118   SDValue Op1 = getValue(I.getOperand(0));
3119   SDValue Op2 = getValue(I.getOperand(1));
3120   ISD::CondCode Opcode = getICmpCondCode(predicate);
3121 
3122   auto &TLI = DAG.getTargetLoweringInfo();
3123   EVT MemVT =
3124       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3125 
3126   // If a pointer's DAG type is larger than its memory type then the DAG values
3127   // are zero-extended. This breaks signed comparisons so truncate back to the
3128   // underlying type before doing the compare.
3129   if (Op1.getValueType() != MemVT) {
3130     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3131     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3132   }
3133 
3134   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3135                                                         I.getType());
3136   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3137 }
3138 
3139 void SelectionDAGBuilder::visitFCmp(const User &I) {
3140   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3141   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3142     predicate = FC->getPredicate();
3143   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3144     predicate = FCmpInst::Predicate(FC->getPredicate());
3145   SDValue Op1 = getValue(I.getOperand(0));
3146   SDValue Op2 = getValue(I.getOperand(1));
3147 
3148   ISD::CondCode Condition = getFCmpCondCode(predicate);
3149   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3150   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3151     Condition = getFCmpCodeWithoutNaN(Condition);
3152 
3153   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3154                                                         I.getType());
3155   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3156 }
3157 
3158 // Check if the condition of the select has one use or two users that are both
3159 // selects with the same condition.
3160 static bool hasOnlySelectUsers(const Value *Cond) {
3161   return llvm::all_of(Cond->users(), [](const Value *V) {
3162     return isa<SelectInst>(V);
3163   });
3164 }
3165 
3166 void SelectionDAGBuilder::visitSelect(const User &I) {
3167   SmallVector<EVT, 4> ValueVTs;
3168   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3169                   ValueVTs);
3170   unsigned NumValues = ValueVTs.size();
3171   if (NumValues == 0) return;
3172 
3173   SmallVector<SDValue, 4> Values(NumValues);
3174   SDValue Cond     = getValue(I.getOperand(0));
3175   SDValue LHSVal   = getValue(I.getOperand(1));
3176   SDValue RHSVal   = getValue(I.getOperand(2));
3177   SmallVector<SDValue, 1> BaseOps(1, Cond);
3178   ISD::NodeType OpCode =
3179       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3180 
3181   bool IsUnaryAbs = false;
3182 
3183   // Min/max matching is only viable if all output VTs are the same.
3184   if (is_splat(ValueVTs)) {
3185     EVT VT = ValueVTs[0];
3186     LLVMContext &Ctx = *DAG.getContext();
3187     auto &TLI = DAG.getTargetLoweringInfo();
3188 
3189     // We care about the legality of the operation after it has been type
3190     // legalized.
3191     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3192       VT = TLI.getTypeToTransformTo(Ctx, VT);
3193 
3194     // If the vselect is legal, assume we want to leave this as a vector setcc +
3195     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3196     // min/max is legal on the scalar type.
3197     bool UseScalarMinMax = VT.isVector() &&
3198       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3199 
3200     Value *LHS, *RHS;
3201     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3202     ISD::NodeType Opc = ISD::DELETED_NODE;
3203     switch (SPR.Flavor) {
3204     case SPF_UMAX:    Opc = ISD::UMAX; break;
3205     case SPF_UMIN:    Opc = ISD::UMIN; break;
3206     case SPF_SMAX:    Opc = ISD::SMAX; break;
3207     case SPF_SMIN:    Opc = ISD::SMIN; break;
3208     case SPF_FMINNUM:
3209       switch (SPR.NaNBehavior) {
3210       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3211       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3212       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3213       case SPNB_RETURNS_ANY: {
3214         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3215           Opc = ISD::FMINNUM;
3216         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3217           Opc = ISD::FMINIMUM;
3218         else if (UseScalarMinMax)
3219           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3220             ISD::FMINNUM : ISD::FMINIMUM;
3221         break;
3222       }
3223       }
3224       break;
3225     case SPF_FMAXNUM:
3226       switch (SPR.NaNBehavior) {
3227       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3228       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3229       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3230       case SPNB_RETURNS_ANY:
3231 
3232         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3233           Opc = ISD::FMAXNUM;
3234         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3235           Opc = ISD::FMAXIMUM;
3236         else if (UseScalarMinMax)
3237           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3238             ISD::FMAXNUM : ISD::FMAXIMUM;
3239         break;
3240       }
3241       break;
3242     case SPF_ABS:
3243       IsUnaryAbs = true;
3244       Opc = ISD::ABS;
3245       break;
3246     case SPF_NABS:
3247       // TODO: we need to produce sub(0, abs(X)).
3248     default: break;
3249     }
3250 
3251     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3252         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3253          (UseScalarMinMax &&
3254           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3255         // If the underlying comparison instruction is used by any other
3256         // instruction, the consumed instructions won't be destroyed, so it is
3257         // not profitable to convert to a min/max.
3258         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3259       OpCode = Opc;
3260       LHSVal = getValue(LHS);
3261       RHSVal = getValue(RHS);
3262       BaseOps.clear();
3263     }
3264 
3265     if (IsUnaryAbs) {
3266       OpCode = Opc;
3267       LHSVal = getValue(LHS);
3268       BaseOps.clear();
3269     }
3270   }
3271 
3272   if (IsUnaryAbs) {
3273     for (unsigned i = 0; i != NumValues; ++i) {
3274       Values[i] =
3275           DAG.getNode(OpCode, getCurSDLoc(),
3276                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3277                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3278     }
3279   } else {
3280     for (unsigned i = 0; i != NumValues; ++i) {
3281       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3282       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3283       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3284       Values[i] = DAG.getNode(
3285           OpCode, getCurSDLoc(),
3286           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3287     }
3288   }
3289 
3290   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3291                            DAG.getVTList(ValueVTs), Values));
3292 }
3293 
3294 void SelectionDAGBuilder::visitTrunc(const User &I) {
3295   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3296   SDValue N = getValue(I.getOperand(0));
3297   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3298                                                         I.getType());
3299   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3300 }
3301 
3302 void SelectionDAGBuilder::visitZExt(const User &I) {
3303   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3304   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3305   SDValue N = getValue(I.getOperand(0));
3306   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3307                                                         I.getType());
3308   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3309 }
3310 
3311 void SelectionDAGBuilder::visitSExt(const User &I) {
3312   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3313   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3314   SDValue N = getValue(I.getOperand(0));
3315   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3316                                                         I.getType());
3317   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3318 }
3319 
3320 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3321   // FPTrunc is never a no-op cast, no need to check
3322   SDValue N = getValue(I.getOperand(0));
3323   SDLoc dl = getCurSDLoc();
3324   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3325   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3326   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3327                            DAG.getTargetConstant(
3328                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3329 }
3330 
3331 void SelectionDAGBuilder::visitFPExt(const User &I) {
3332   // FPExt is never a no-op cast, no need to check
3333   SDValue N = getValue(I.getOperand(0));
3334   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3335                                                         I.getType());
3336   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3337 }
3338 
3339 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3340   // FPToUI is never a no-op cast, no need to check
3341   SDValue N = getValue(I.getOperand(0));
3342   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3343                                                         I.getType());
3344   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3345 }
3346 
3347 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3348   // FPToSI is never a no-op cast, no need to check
3349   SDValue N = getValue(I.getOperand(0));
3350   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3351                                                         I.getType());
3352   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3353 }
3354 
3355 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3356   // UIToFP is never a no-op cast, no need to check
3357   SDValue N = getValue(I.getOperand(0));
3358   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3359                                                         I.getType());
3360   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3361 }
3362 
3363 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3364   // SIToFP is never a no-op cast, no need to check
3365   SDValue N = getValue(I.getOperand(0));
3366   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3367                                                         I.getType());
3368   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3369 }
3370 
3371 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3372   // What to do depends on the size of the integer and the size of the pointer.
3373   // We can either truncate, zero extend, or no-op, accordingly.
3374   SDValue N = getValue(I.getOperand(0));
3375   auto &TLI = DAG.getTargetLoweringInfo();
3376   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3377                                                         I.getType());
3378   EVT PtrMemVT =
3379       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3380   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3381   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3382   setValue(&I, N);
3383 }
3384 
3385 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3386   // What to do depends on the size of the integer and the size of the pointer.
3387   // We can either truncate, zero extend, or no-op, accordingly.
3388   SDValue N = getValue(I.getOperand(0));
3389   auto &TLI = DAG.getTargetLoweringInfo();
3390   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3391   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3392   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3393   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3394   setValue(&I, N);
3395 }
3396 
3397 void SelectionDAGBuilder::visitBitCast(const User &I) {
3398   SDValue N = getValue(I.getOperand(0));
3399   SDLoc dl = getCurSDLoc();
3400   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3401                                                         I.getType());
3402 
3403   // BitCast assures us that source and destination are the same size so this is
3404   // either a BITCAST or a no-op.
3405   if (DestVT != N.getValueType())
3406     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3407                              DestVT, N)); // convert types.
3408   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3409   // might fold any kind of constant expression to an integer constant and that
3410   // is not what we are looking for. Only recognize a bitcast of a genuine
3411   // constant integer as an opaque constant.
3412   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3413     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3414                                  /*isOpaque*/true));
3415   else
3416     setValue(&I, N);            // noop cast.
3417 }
3418 
3419 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3420   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3421   const Value *SV = I.getOperand(0);
3422   SDValue N = getValue(SV);
3423   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3424 
3425   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3426   unsigned DestAS = I.getType()->getPointerAddressSpace();
3427 
3428   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3429     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3430 
3431   setValue(&I, N);
3432 }
3433 
3434 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3435   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3436   SDValue InVec = getValue(I.getOperand(0));
3437   SDValue InVal = getValue(I.getOperand(1));
3438   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3439                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3440   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3441                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3442                            InVec, InVal, InIdx));
3443 }
3444 
3445 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3446   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3447   SDValue InVec = getValue(I.getOperand(0));
3448   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3449                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3450   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3451                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3452                            InVec, InIdx));
3453 }
3454 
3455 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3456   SDValue Src1 = getValue(I.getOperand(0));
3457   SDValue Src2 = getValue(I.getOperand(1));
3458   ArrayRef<int> Mask;
3459   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3460     Mask = SVI->getShuffleMask();
3461   else
3462     Mask = cast<ConstantExpr>(I).getShuffleMask();
3463   SDLoc DL = getCurSDLoc();
3464   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3465   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3466   EVT SrcVT = Src1.getValueType();
3467 
3468   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3469       VT.isScalableVector()) {
3470     // Canonical splat form of first element of first input vector.
3471     SDValue FirstElt =
3472         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3473                     DAG.getVectorIdxConstant(0, DL));
3474     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3475     return;
3476   }
3477 
3478   // For now, we only handle splats for scalable vectors.
3479   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3480   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3481   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3482 
3483   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3484   unsigned MaskNumElts = Mask.size();
3485 
3486   if (SrcNumElts == MaskNumElts) {
3487     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3488     return;
3489   }
3490 
3491   // Normalize the shuffle vector since mask and vector length don't match.
3492   if (SrcNumElts < MaskNumElts) {
3493     // Mask is longer than the source vectors. We can use concatenate vector to
3494     // make the mask and vectors lengths match.
3495 
3496     if (MaskNumElts % SrcNumElts == 0) {
3497       // Mask length is a multiple of the source vector length.
3498       // Check if the shuffle is some kind of concatenation of the input
3499       // vectors.
3500       unsigned NumConcat = MaskNumElts / SrcNumElts;
3501       bool IsConcat = true;
3502       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3503       for (unsigned i = 0; i != MaskNumElts; ++i) {
3504         int Idx = Mask[i];
3505         if (Idx < 0)
3506           continue;
3507         // Ensure the indices in each SrcVT sized piece are sequential and that
3508         // the same source is used for the whole piece.
3509         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3510             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3511              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3512           IsConcat = false;
3513           break;
3514         }
3515         // Remember which source this index came from.
3516         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3517       }
3518 
3519       // The shuffle is concatenating multiple vectors together. Just emit
3520       // a CONCAT_VECTORS operation.
3521       if (IsConcat) {
3522         SmallVector<SDValue, 8> ConcatOps;
3523         for (auto Src : ConcatSrcs) {
3524           if (Src < 0)
3525             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3526           else if (Src == 0)
3527             ConcatOps.push_back(Src1);
3528           else
3529             ConcatOps.push_back(Src2);
3530         }
3531         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3532         return;
3533       }
3534     }
3535 
3536     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3537     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3538     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3539                                     PaddedMaskNumElts);
3540 
3541     // Pad both vectors with undefs to make them the same length as the mask.
3542     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3543 
3544     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3545     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3546     MOps1[0] = Src1;
3547     MOps2[0] = Src2;
3548 
3549     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3550     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3551 
3552     // Readjust mask for new input vector length.
3553     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3554     for (unsigned i = 0; i != MaskNumElts; ++i) {
3555       int Idx = Mask[i];
3556       if (Idx >= (int)SrcNumElts)
3557         Idx -= SrcNumElts - PaddedMaskNumElts;
3558       MappedOps[i] = Idx;
3559     }
3560 
3561     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3562 
3563     // If the concatenated vector was padded, extract a subvector with the
3564     // correct number of elements.
3565     if (MaskNumElts != PaddedMaskNumElts)
3566       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3567                            DAG.getVectorIdxConstant(0, DL));
3568 
3569     setValue(&I, Result);
3570     return;
3571   }
3572 
3573   if (SrcNumElts > MaskNumElts) {
3574     // Analyze the access pattern of the vector to see if we can extract
3575     // two subvectors and do the shuffle.
3576     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3577     bool CanExtract = true;
3578     for (int Idx : Mask) {
3579       unsigned Input = 0;
3580       if (Idx < 0)
3581         continue;
3582 
3583       if (Idx >= (int)SrcNumElts) {
3584         Input = 1;
3585         Idx -= SrcNumElts;
3586       }
3587 
3588       // If all the indices come from the same MaskNumElts sized portion of
3589       // the sources we can use extract. Also make sure the extract wouldn't
3590       // extract past the end of the source.
3591       int NewStartIdx = alignDown(Idx, MaskNumElts);
3592       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3593           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3594         CanExtract = false;
3595       // Make sure we always update StartIdx as we use it to track if all
3596       // elements are undef.
3597       StartIdx[Input] = NewStartIdx;
3598     }
3599 
3600     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3601       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3602       return;
3603     }
3604     if (CanExtract) {
3605       // Extract appropriate subvector and generate a vector shuffle
3606       for (unsigned Input = 0; Input < 2; ++Input) {
3607         SDValue &Src = Input == 0 ? Src1 : Src2;
3608         if (StartIdx[Input] < 0)
3609           Src = DAG.getUNDEF(VT);
3610         else {
3611           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3612                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3613         }
3614       }
3615 
3616       // Calculate new mask.
3617       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3618       for (int &Idx : MappedOps) {
3619         if (Idx >= (int)SrcNumElts)
3620           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3621         else if (Idx >= 0)
3622           Idx -= StartIdx[0];
3623       }
3624 
3625       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3626       return;
3627     }
3628   }
3629 
3630   // We can't use either concat vectors or extract subvectors so fall back to
3631   // replacing the shuffle with extract and build vector.
3632   // to insert and build vector.
3633   EVT EltVT = VT.getVectorElementType();
3634   SmallVector<SDValue,8> Ops;
3635   for (int Idx : Mask) {
3636     SDValue Res;
3637 
3638     if (Idx < 0) {
3639       Res = DAG.getUNDEF(EltVT);
3640     } else {
3641       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3642       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3643 
3644       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3645                         DAG.getVectorIdxConstant(Idx, DL));
3646     }
3647 
3648     Ops.push_back(Res);
3649   }
3650 
3651   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3652 }
3653 
3654 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3655   ArrayRef<unsigned> Indices;
3656   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3657     Indices = IV->getIndices();
3658   else
3659     Indices = cast<ConstantExpr>(&I)->getIndices();
3660 
3661   const Value *Op0 = I.getOperand(0);
3662   const Value *Op1 = I.getOperand(1);
3663   Type *AggTy = I.getType();
3664   Type *ValTy = Op1->getType();
3665   bool IntoUndef = isa<UndefValue>(Op0);
3666   bool FromUndef = isa<UndefValue>(Op1);
3667 
3668   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3669 
3670   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3671   SmallVector<EVT, 4> AggValueVTs;
3672   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3673   SmallVector<EVT, 4> ValValueVTs;
3674   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3675 
3676   unsigned NumAggValues = AggValueVTs.size();
3677   unsigned NumValValues = ValValueVTs.size();
3678   SmallVector<SDValue, 4> Values(NumAggValues);
3679 
3680   // Ignore an insertvalue that produces an empty object
3681   if (!NumAggValues) {
3682     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3683     return;
3684   }
3685 
3686   SDValue Agg = getValue(Op0);
3687   unsigned i = 0;
3688   // Copy the beginning value(s) from the original aggregate.
3689   for (; i != LinearIndex; ++i)
3690     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3691                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3692   // Copy values from the inserted value(s).
3693   if (NumValValues) {
3694     SDValue Val = getValue(Op1);
3695     for (; i != LinearIndex + NumValValues; ++i)
3696       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3697                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3698   }
3699   // Copy remaining value(s) from the original aggregate.
3700   for (; i != NumAggValues; ++i)
3701     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3702                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3703 
3704   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3705                            DAG.getVTList(AggValueVTs), Values));
3706 }
3707 
3708 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3709   ArrayRef<unsigned> Indices;
3710   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3711     Indices = EV->getIndices();
3712   else
3713     Indices = cast<ConstantExpr>(&I)->getIndices();
3714 
3715   const Value *Op0 = I.getOperand(0);
3716   Type *AggTy = Op0->getType();
3717   Type *ValTy = I.getType();
3718   bool OutOfUndef = isa<UndefValue>(Op0);
3719 
3720   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3721 
3722   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3723   SmallVector<EVT, 4> ValValueVTs;
3724   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3725 
3726   unsigned NumValValues = ValValueVTs.size();
3727 
3728   // Ignore a extractvalue that produces an empty object
3729   if (!NumValValues) {
3730     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3731     return;
3732   }
3733 
3734   SmallVector<SDValue, 4> Values(NumValValues);
3735 
3736   SDValue Agg = getValue(Op0);
3737   // Copy out the selected value(s).
3738   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3739     Values[i - LinearIndex] =
3740       OutOfUndef ?
3741         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3742         SDValue(Agg.getNode(), Agg.getResNo() + i);
3743 
3744   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3745                            DAG.getVTList(ValValueVTs), Values));
3746 }
3747 
3748 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3749   Value *Op0 = I.getOperand(0);
3750   // Note that the pointer operand may be a vector of pointers. Take the scalar
3751   // element which holds a pointer.
3752   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3753   SDValue N = getValue(Op0);
3754   SDLoc dl = getCurSDLoc();
3755   auto &TLI = DAG.getTargetLoweringInfo();
3756   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3757   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3758 
3759   // Normalize Vector GEP - all scalar operands should be converted to the
3760   // splat vector.
3761   bool IsVectorGEP = I.getType()->isVectorTy();
3762   ElementCount VectorElementCount =
3763       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3764                   : ElementCount(0, false);
3765 
3766   if (IsVectorGEP && !N.getValueType().isVector()) {
3767     LLVMContext &Context = *DAG.getContext();
3768     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3769     if (VectorElementCount.Scalable)
3770       N = DAG.getSplatVector(VT, dl, N);
3771     else
3772       N = DAG.getSplatBuildVector(VT, dl, N);
3773   }
3774 
3775   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3776        GTI != E; ++GTI) {
3777     const Value *Idx = GTI.getOperand();
3778     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3779       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3780       if (Field) {
3781         // N = N + Offset
3782         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3783 
3784         // In an inbounds GEP with an offset that is nonnegative even when
3785         // interpreted as signed, assume there is no unsigned overflow.
3786         SDNodeFlags Flags;
3787         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3788           Flags.setNoUnsignedWrap(true);
3789 
3790         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3791                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3792       }
3793     } else {
3794       // IdxSize is the width of the arithmetic according to IR semantics.
3795       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3796       // (and fix up the result later).
3797       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3798       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3799       TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3800       // We intentionally mask away the high bits here; ElementSize may not
3801       // fit in IdxTy.
3802       APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3803       bool ElementScalable = ElementSize.isScalable();
3804 
3805       // If this is a scalar constant or a splat vector of constants,
3806       // handle it quickly.
3807       const auto *C = dyn_cast<Constant>(Idx);
3808       if (C && isa<VectorType>(C->getType()))
3809         C = C->getSplatValue();
3810 
3811       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3812       if (CI && CI->isZero())
3813         continue;
3814       if (CI && !ElementScalable) {
3815         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3816         LLVMContext &Context = *DAG.getContext();
3817         SDValue OffsVal;
3818         if (IsVectorGEP)
3819           OffsVal = DAG.getConstant(
3820               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3821         else
3822           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3823 
3824         // In an inbounds GEP with an offset that is nonnegative even when
3825         // interpreted as signed, assume there is no unsigned overflow.
3826         SDNodeFlags Flags;
3827         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3828           Flags.setNoUnsignedWrap(true);
3829 
3830         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3831 
3832         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3833         continue;
3834       }
3835 
3836       // N = N + Idx * ElementMul;
3837       SDValue IdxN = getValue(Idx);
3838 
3839       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3840         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3841                                   VectorElementCount);
3842         if (VectorElementCount.Scalable)
3843           IdxN = DAG.getSplatVector(VT, dl, IdxN);
3844         else
3845           IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3846       }
3847 
3848       // If the index is smaller or larger than intptr_t, truncate or extend
3849       // it.
3850       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3851 
3852       if (ElementScalable) {
3853         EVT VScaleTy = N.getValueType().getScalarType();
3854         SDValue VScale = DAG.getNode(
3855             ISD::VSCALE, dl, VScaleTy,
3856             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3857         if (IsVectorGEP)
3858           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3859         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3860       } else {
3861         // If this is a multiply by a power of two, turn it into a shl
3862         // immediately.  This is a very common case.
3863         if (ElementMul != 1) {
3864           if (ElementMul.isPowerOf2()) {
3865             unsigned Amt = ElementMul.logBase2();
3866             IdxN = DAG.getNode(ISD::SHL, dl,
3867                                N.getValueType(), IdxN,
3868                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
3869           } else {
3870             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3871                                             IdxN.getValueType());
3872             IdxN = DAG.getNode(ISD::MUL, dl,
3873                                N.getValueType(), IdxN, Scale);
3874           }
3875         }
3876       }
3877 
3878       N = DAG.getNode(ISD::ADD, dl,
3879                       N.getValueType(), N, IdxN);
3880     }
3881   }
3882 
3883   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3884     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3885 
3886   setValue(&I, N);
3887 }
3888 
3889 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3890   // If this is a fixed sized alloca in the entry block of the function,
3891   // allocate it statically on the stack.
3892   if (FuncInfo.StaticAllocaMap.count(&I))
3893     return;   // getValue will auto-populate this.
3894 
3895   SDLoc dl = getCurSDLoc();
3896   Type *Ty = I.getAllocatedType();
3897   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3898   auto &DL = DAG.getDataLayout();
3899   uint64_t TySize = DL.getTypeAllocSize(Ty);
3900   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3901 
3902   SDValue AllocSize = getValue(I.getArraySize());
3903 
3904   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3905   if (AllocSize.getValueType() != IntPtr)
3906     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3907 
3908   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3909                           AllocSize,
3910                           DAG.getConstant(TySize, dl, IntPtr));
3911 
3912   // Handle alignment.  If the requested alignment is less than or equal to
3913   // the stack alignment, ignore it.  If the size is greater than or equal to
3914   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3915   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
3916   if (*Alignment <= StackAlign)
3917     Alignment = None;
3918 
3919   const uint64_t StackAlignMask = StackAlign.value() - 1U;
3920   // Round the size of the allocation up to the stack alignment size
3921   // by add SA-1 to the size. This doesn't overflow because we're computing
3922   // an address inside an alloca.
3923   SDNodeFlags Flags;
3924   Flags.setNoUnsignedWrap(true);
3925   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3926                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
3927 
3928   // Mask out the low bits for alignment purposes.
3929   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3930                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
3931 
3932   SDValue Ops[] = {
3933       getRoot(), AllocSize,
3934       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
3935   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3936   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3937   setValue(&I, DSA);
3938   DAG.setRoot(DSA.getValue(1));
3939 
3940   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3941 }
3942 
3943 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3944   if (I.isAtomic())
3945     return visitAtomicLoad(I);
3946 
3947   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3948   const Value *SV = I.getOperand(0);
3949   if (TLI.supportSwiftError()) {
3950     // Swifterror values can come from either a function parameter with
3951     // swifterror attribute or an alloca with swifterror attribute.
3952     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3953       if (Arg->hasSwiftErrorAttr())
3954         return visitLoadFromSwiftError(I);
3955     }
3956 
3957     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3958       if (Alloca->isSwiftError())
3959         return visitLoadFromSwiftError(I);
3960     }
3961   }
3962 
3963   SDValue Ptr = getValue(SV);
3964 
3965   Type *Ty = I.getType();
3966   Align Alignment = I.getAlign();
3967 
3968   AAMDNodes AAInfo;
3969   I.getAAMetadata(AAInfo);
3970   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3971 
3972   SmallVector<EVT, 4> ValueVTs, MemVTs;
3973   SmallVector<uint64_t, 4> Offsets;
3974   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
3975   unsigned NumValues = ValueVTs.size();
3976   if (NumValues == 0)
3977     return;
3978 
3979   bool isVolatile = I.isVolatile();
3980 
3981   SDValue Root;
3982   bool ConstantMemory = false;
3983   if (isVolatile)
3984     // Serialize volatile loads with other side effects.
3985     Root = getRoot();
3986   else if (NumValues > MaxParallelChains)
3987     Root = getMemoryRoot();
3988   else if (AA &&
3989            AA->pointsToConstantMemory(MemoryLocation(
3990                SV,
3991                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3992                AAInfo))) {
3993     // Do not serialize (non-volatile) loads of constant memory with anything.
3994     Root = DAG.getEntryNode();
3995     ConstantMemory = true;
3996   } else {
3997     // Do not serialize non-volatile loads against each other.
3998     Root = DAG.getRoot();
3999   }
4000 
4001   SDLoc dl = getCurSDLoc();
4002 
4003   if (isVolatile)
4004     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4005 
4006   // An aggregate load cannot wrap around the address space, so offsets to its
4007   // parts don't wrap either.
4008   SDNodeFlags Flags;
4009   Flags.setNoUnsignedWrap(true);
4010 
4011   SmallVector<SDValue, 4> Values(NumValues);
4012   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4013   EVT PtrVT = Ptr.getValueType();
4014 
4015   MachineMemOperand::Flags MMOFlags
4016     = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4017 
4018   unsigned ChainI = 0;
4019   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4020     // Serializing loads here may result in excessive register pressure, and
4021     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4022     // could recover a bit by hoisting nodes upward in the chain by recognizing
4023     // they are side-effect free or do not alias. The optimizer should really
4024     // avoid this case by converting large object/array copies to llvm.memcpy
4025     // (MaxParallelChains should always remain as failsafe).
4026     if (ChainI == MaxParallelChains) {
4027       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4028       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4029                                   makeArrayRef(Chains.data(), ChainI));
4030       Root = Chain;
4031       ChainI = 0;
4032     }
4033     SDValue A = DAG.getNode(ISD::ADD, dl,
4034                             PtrVT, Ptr,
4035                             DAG.getConstant(Offsets[i], dl, PtrVT),
4036                             Flags);
4037 
4038     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4039                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4040                             MMOFlags, AAInfo, Ranges);
4041     Chains[ChainI] = L.getValue(1);
4042 
4043     if (MemVTs[i] != ValueVTs[i])
4044       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4045 
4046     Values[i] = L;
4047   }
4048 
4049   if (!ConstantMemory) {
4050     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4051                                 makeArrayRef(Chains.data(), ChainI));
4052     if (isVolatile)
4053       DAG.setRoot(Chain);
4054     else
4055       PendingLoads.push_back(Chain);
4056   }
4057 
4058   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4059                            DAG.getVTList(ValueVTs), Values));
4060 }
4061 
4062 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4063   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4064          "call visitStoreToSwiftError when backend supports swifterror");
4065 
4066   SmallVector<EVT, 4> ValueVTs;
4067   SmallVector<uint64_t, 4> Offsets;
4068   const Value *SrcV = I.getOperand(0);
4069   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4070                   SrcV->getType(), ValueVTs, &Offsets);
4071   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4072          "expect a single EVT for swifterror");
4073 
4074   SDValue Src = getValue(SrcV);
4075   // Create a virtual register, then update the virtual register.
4076   Register VReg =
4077       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4078   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4079   // Chain can be getRoot or getControlRoot.
4080   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4081                                       SDValue(Src.getNode(), Src.getResNo()));
4082   DAG.setRoot(CopyNode);
4083 }
4084 
4085 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4086   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4087          "call visitLoadFromSwiftError when backend supports swifterror");
4088 
4089   assert(!I.isVolatile() &&
4090          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4091          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4092          "Support volatile, non temporal, invariant for load_from_swift_error");
4093 
4094   const Value *SV = I.getOperand(0);
4095   Type *Ty = I.getType();
4096   AAMDNodes AAInfo;
4097   I.getAAMetadata(AAInfo);
4098   assert(
4099       (!AA ||
4100        !AA->pointsToConstantMemory(MemoryLocation(
4101            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4102            AAInfo))) &&
4103       "load_from_swift_error should not be constant memory");
4104 
4105   SmallVector<EVT, 4> ValueVTs;
4106   SmallVector<uint64_t, 4> Offsets;
4107   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4108                   ValueVTs, &Offsets);
4109   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4110          "expect a single EVT for swifterror");
4111 
4112   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4113   SDValue L = DAG.getCopyFromReg(
4114       getRoot(), getCurSDLoc(),
4115       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4116 
4117   setValue(&I, L);
4118 }
4119 
4120 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4121   if (I.isAtomic())
4122     return visitAtomicStore(I);
4123 
4124   const Value *SrcV = I.getOperand(0);
4125   const Value *PtrV = I.getOperand(1);
4126 
4127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4128   if (TLI.supportSwiftError()) {
4129     // Swifterror values can come from either a function parameter with
4130     // swifterror attribute or an alloca with swifterror attribute.
4131     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4132       if (Arg->hasSwiftErrorAttr())
4133         return visitStoreToSwiftError(I);
4134     }
4135 
4136     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4137       if (Alloca->isSwiftError())
4138         return visitStoreToSwiftError(I);
4139     }
4140   }
4141 
4142   SmallVector<EVT, 4> ValueVTs, MemVTs;
4143   SmallVector<uint64_t, 4> Offsets;
4144   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4145                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4146   unsigned NumValues = ValueVTs.size();
4147   if (NumValues == 0)
4148     return;
4149 
4150   // Get the lowered operands. Note that we do this after
4151   // checking if NumResults is zero, because with zero results
4152   // the operands won't have values in the map.
4153   SDValue Src = getValue(SrcV);
4154   SDValue Ptr = getValue(PtrV);
4155 
4156   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4157   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4158   SDLoc dl = getCurSDLoc();
4159   Align Alignment = I.getAlign();
4160   AAMDNodes AAInfo;
4161   I.getAAMetadata(AAInfo);
4162 
4163   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4164 
4165   // An aggregate load cannot wrap around the address space, so offsets to its
4166   // parts don't wrap either.
4167   SDNodeFlags Flags;
4168   Flags.setNoUnsignedWrap(true);
4169 
4170   unsigned ChainI = 0;
4171   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4172     // See visitLoad comments.
4173     if (ChainI == MaxParallelChains) {
4174       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4175                                   makeArrayRef(Chains.data(), ChainI));
4176       Root = Chain;
4177       ChainI = 0;
4178     }
4179     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4180     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4181     if (MemVTs[i] != ValueVTs[i])
4182       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4183     SDValue St =
4184         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4185                      Alignment, MMOFlags, AAInfo);
4186     Chains[ChainI] = St;
4187   }
4188 
4189   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4190                                   makeArrayRef(Chains.data(), ChainI));
4191   DAG.setRoot(StoreNode);
4192 }
4193 
4194 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4195                                            bool IsCompressing) {
4196   SDLoc sdl = getCurSDLoc();
4197 
4198   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4199                                MaybeAlign &Alignment) {
4200     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4201     Src0 = I.getArgOperand(0);
4202     Ptr = I.getArgOperand(1);
4203     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4204     Mask = I.getArgOperand(3);
4205   };
4206   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4207                                     MaybeAlign &Alignment) {
4208     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4209     Src0 = I.getArgOperand(0);
4210     Ptr = I.getArgOperand(1);
4211     Mask = I.getArgOperand(2);
4212     Alignment = None;
4213   };
4214 
4215   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4216   MaybeAlign Alignment;
4217   if (IsCompressing)
4218     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4219   else
4220     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4221 
4222   SDValue Ptr = getValue(PtrOperand);
4223   SDValue Src0 = getValue(Src0Operand);
4224   SDValue Mask = getValue(MaskOperand);
4225   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4226 
4227   EVT VT = Src0.getValueType();
4228   if (!Alignment)
4229     Alignment = DAG.getEVTAlign(VT);
4230 
4231   AAMDNodes AAInfo;
4232   I.getAAMetadata(AAInfo);
4233 
4234   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4235       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4236       // TODO: Make MachineMemOperands aware of scalable
4237       // vectors.
4238       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4239   SDValue StoreNode =
4240       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4241                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4242   DAG.setRoot(StoreNode);
4243   setValue(&I, StoreNode);
4244 }
4245 
4246 // Get a uniform base for the Gather/Scatter intrinsic.
4247 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4248 // We try to represent it as a base pointer + vector of indices.
4249 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4250 // The first operand of the GEP may be a single pointer or a vector of pointers
4251 // Example:
4252 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4253 //  or
4254 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4255 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4256 //
4257 // When the first GEP operand is a single pointer - it is the uniform base we
4258 // are looking for. If first operand of the GEP is a splat vector - we
4259 // extract the splat value and use it as a uniform base.
4260 // In all other cases the function returns 'false'.
4261 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4262                            ISD::MemIndexType &IndexType, SDValue &Scale,
4263                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4264   SelectionDAG& DAG = SDB->DAG;
4265   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4266   const DataLayout &DL = DAG.getDataLayout();
4267 
4268   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4269 
4270   // Handle splat constant pointer.
4271   if (auto *C = dyn_cast<Constant>(Ptr)) {
4272     C = C->getSplatValue();
4273     if (!C)
4274       return false;
4275 
4276     Base = SDB->getValue(C);
4277 
4278     unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements();
4279     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4280     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4281     IndexType = ISD::SIGNED_SCALED;
4282     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4283     return true;
4284   }
4285 
4286   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4287   if (!GEP || GEP->getParent() != CurBB)
4288     return false;
4289 
4290   if (GEP->getNumOperands() != 2)
4291     return false;
4292 
4293   const Value *BasePtr = GEP->getPointerOperand();
4294   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4295 
4296   // Make sure the base is scalar and the index is a vector.
4297   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4298     return false;
4299 
4300   Base = SDB->getValue(BasePtr);
4301   Index = SDB->getValue(IndexVal);
4302   IndexType = ISD::SIGNED_SCALED;
4303   Scale = DAG.getTargetConstant(
4304               DL.getTypeAllocSize(GEP->getResultElementType()),
4305               SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4306   return true;
4307 }
4308 
4309 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4310   SDLoc sdl = getCurSDLoc();
4311 
4312   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4313   const Value *Ptr = I.getArgOperand(1);
4314   SDValue Src0 = getValue(I.getArgOperand(0));
4315   SDValue Mask = getValue(I.getArgOperand(3));
4316   EVT VT = Src0.getValueType();
4317   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4318                         ->getMaybeAlignValue()
4319                         .getValueOr(DAG.getEVTAlign(VT));
4320   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4321 
4322   AAMDNodes AAInfo;
4323   I.getAAMetadata(AAInfo);
4324 
4325   SDValue Base;
4326   SDValue Index;
4327   ISD::MemIndexType IndexType;
4328   SDValue Scale;
4329   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4330                                     I.getParent());
4331 
4332   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4333   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4334       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4335       // TODO: Make MachineMemOperands aware of scalable
4336       // vectors.
4337       MemoryLocation::UnknownSize, Alignment, AAInfo);
4338   if (!UniformBase) {
4339     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4340     Index = getValue(Ptr);
4341     IndexType = ISD::SIGNED_SCALED;
4342     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4343   }
4344   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4345   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4346                                          Ops, MMO, IndexType);
4347   DAG.setRoot(Scatter);
4348   setValue(&I, Scatter);
4349 }
4350 
4351 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4352   SDLoc sdl = getCurSDLoc();
4353 
4354   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4355                               MaybeAlign &Alignment) {
4356     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4357     Ptr = I.getArgOperand(0);
4358     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4359     Mask = I.getArgOperand(2);
4360     Src0 = I.getArgOperand(3);
4361   };
4362   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4363                                  MaybeAlign &Alignment) {
4364     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4365     Ptr = I.getArgOperand(0);
4366     Alignment = None;
4367     Mask = I.getArgOperand(1);
4368     Src0 = I.getArgOperand(2);
4369   };
4370 
4371   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4372   MaybeAlign Alignment;
4373   if (IsExpanding)
4374     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4375   else
4376     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4377 
4378   SDValue Ptr = getValue(PtrOperand);
4379   SDValue Src0 = getValue(Src0Operand);
4380   SDValue Mask = getValue(MaskOperand);
4381   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4382 
4383   EVT VT = Src0.getValueType();
4384   if (!Alignment)
4385     Alignment = DAG.getEVTAlign(VT);
4386 
4387   AAMDNodes AAInfo;
4388   I.getAAMetadata(AAInfo);
4389   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4390 
4391   // Do not serialize masked loads of constant memory with anything.
4392   MemoryLocation ML;
4393   if (VT.isScalableVector())
4394     ML = MemoryLocation(PtrOperand);
4395   else
4396     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4397                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4398                            AAInfo);
4399   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4400 
4401   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4402 
4403   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4404       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4405       // TODO: Make MachineMemOperands aware of scalable
4406       // vectors.
4407       VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4408 
4409   SDValue Load =
4410       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4411                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4412   if (AddToChain)
4413     PendingLoads.push_back(Load.getValue(1));
4414   setValue(&I, Load);
4415 }
4416 
4417 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4418   SDLoc sdl = getCurSDLoc();
4419 
4420   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4421   const Value *Ptr = I.getArgOperand(0);
4422   SDValue Src0 = getValue(I.getArgOperand(3));
4423   SDValue Mask = getValue(I.getArgOperand(2));
4424 
4425   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4426   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4427   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4428                         ->getMaybeAlignValue()
4429                         .getValueOr(DAG.getEVTAlign(VT));
4430 
4431   AAMDNodes AAInfo;
4432   I.getAAMetadata(AAInfo);
4433   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4434 
4435   SDValue Root = DAG.getRoot();
4436   SDValue Base;
4437   SDValue Index;
4438   ISD::MemIndexType IndexType;
4439   SDValue Scale;
4440   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4441                                     I.getParent());
4442   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4443   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4444       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4445       // TODO: Make MachineMemOperands aware of scalable
4446       // vectors.
4447       MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4448 
4449   if (!UniformBase) {
4450     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4451     Index = getValue(Ptr);
4452     IndexType = ISD::SIGNED_SCALED;
4453     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4454   }
4455   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4456   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4457                                        Ops, MMO, IndexType);
4458 
4459   PendingLoads.push_back(Gather.getValue(1));
4460   setValue(&I, Gather);
4461 }
4462 
4463 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4464   SDLoc dl = getCurSDLoc();
4465   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4466   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4467   SyncScope::ID SSID = I.getSyncScopeID();
4468 
4469   SDValue InChain = getRoot();
4470 
4471   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4472   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4473 
4474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4475   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4476 
4477   MachineFunction &MF = DAG.getMachineFunction();
4478   MachineMemOperand *MMO = MF.getMachineMemOperand(
4479       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4480       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4481       FailureOrdering);
4482 
4483   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4484                                    dl, MemVT, VTs, InChain,
4485                                    getValue(I.getPointerOperand()),
4486                                    getValue(I.getCompareOperand()),
4487                                    getValue(I.getNewValOperand()), MMO);
4488 
4489   SDValue OutChain = L.getValue(2);
4490 
4491   setValue(&I, L);
4492   DAG.setRoot(OutChain);
4493 }
4494 
4495 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4496   SDLoc dl = getCurSDLoc();
4497   ISD::NodeType NT;
4498   switch (I.getOperation()) {
4499   default: llvm_unreachable("Unknown atomicrmw operation");
4500   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4501   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4502   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4503   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4504   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4505   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4506   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4507   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4508   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4509   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4510   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4511   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4512   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4513   }
4514   AtomicOrdering Ordering = I.getOrdering();
4515   SyncScope::ID SSID = I.getSyncScopeID();
4516 
4517   SDValue InChain = getRoot();
4518 
4519   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4520   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4521   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4522 
4523   MachineFunction &MF = DAG.getMachineFunction();
4524   MachineMemOperand *MMO = MF.getMachineMemOperand(
4525       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4526       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4527 
4528   SDValue L =
4529     DAG.getAtomic(NT, dl, MemVT, InChain,
4530                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4531                   MMO);
4532 
4533   SDValue OutChain = L.getValue(1);
4534 
4535   setValue(&I, L);
4536   DAG.setRoot(OutChain);
4537 }
4538 
4539 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4540   SDLoc dl = getCurSDLoc();
4541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4542   SDValue Ops[3];
4543   Ops[0] = getRoot();
4544   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4545                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4546   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4547                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4548   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4549 }
4550 
4551 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4552   SDLoc dl = getCurSDLoc();
4553   AtomicOrdering Order = I.getOrdering();
4554   SyncScope::ID SSID = I.getSyncScopeID();
4555 
4556   SDValue InChain = getRoot();
4557 
4558   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4559   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4560   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4561 
4562   if (!TLI.supportsUnalignedAtomics() &&
4563       I.getAlignment() < MemVT.getSizeInBits() / 8)
4564     report_fatal_error("Cannot generate unaligned atomic load");
4565 
4566   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4567 
4568   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4569       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4570       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4571 
4572   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4573 
4574   SDValue Ptr = getValue(I.getPointerOperand());
4575 
4576   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4577     // TODO: Once this is better exercised by tests, it should be merged with
4578     // the normal path for loads to prevent future divergence.
4579     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4580     if (MemVT != VT)
4581       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4582 
4583     setValue(&I, L);
4584     SDValue OutChain = L.getValue(1);
4585     if (!I.isUnordered())
4586       DAG.setRoot(OutChain);
4587     else
4588       PendingLoads.push_back(OutChain);
4589     return;
4590   }
4591 
4592   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4593                             Ptr, MMO);
4594 
4595   SDValue OutChain = L.getValue(1);
4596   if (MemVT != VT)
4597     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4598 
4599   setValue(&I, L);
4600   DAG.setRoot(OutChain);
4601 }
4602 
4603 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4604   SDLoc dl = getCurSDLoc();
4605 
4606   AtomicOrdering Ordering = I.getOrdering();
4607   SyncScope::ID SSID = I.getSyncScopeID();
4608 
4609   SDValue InChain = getRoot();
4610 
4611   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4612   EVT MemVT =
4613       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4614 
4615   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4616     report_fatal_error("Cannot generate unaligned atomic store");
4617 
4618   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4619 
4620   MachineFunction &MF = DAG.getMachineFunction();
4621   MachineMemOperand *MMO = MF.getMachineMemOperand(
4622       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4623       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4624 
4625   SDValue Val = getValue(I.getValueOperand());
4626   if (Val.getValueType() != MemVT)
4627     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4628   SDValue Ptr = getValue(I.getPointerOperand());
4629 
4630   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4631     // TODO: Once this is better exercised by tests, it should be merged with
4632     // the normal path for stores to prevent future divergence.
4633     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4634     DAG.setRoot(S);
4635     return;
4636   }
4637   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4638                                    Ptr, Val, MMO);
4639 
4640 
4641   DAG.setRoot(OutChain);
4642 }
4643 
4644 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4645 /// node.
4646 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4647                                                unsigned Intrinsic) {
4648   // Ignore the callsite's attributes. A specific call site may be marked with
4649   // readnone, but the lowering code will expect the chain based on the
4650   // definition.
4651   const Function *F = I.getCalledFunction();
4652   bool HasChain = !F->doesNotAccessMemory();
4653   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4654 
4655   // Build the operand list.
4656   SmallVector<SDValue, 8> Ops;
4657   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4658     if (OnlyLoad) {
4659       // We don't need to serialize loads against other loads.
4660       Ops.push_back(DAG.getRoot());
4661     } else {
4662       Ops.push_back(getRoot());
4663     }
4664   }
4665 
4666   // Info is set by getTgtMemInstrinsic
4667   TargetLowering::IntrinsicInfo Info;
4668   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4669   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4670                                                DAG.getMachineFunction(),
4671                                                Intrinsic);
4672 
4673   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4674   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4675       Info.opc == ISD::INTRINSIC_W_CHAIN)
4676     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4677                                         TLI.getPointerTy(DAG.getDataLayout())));
4678 
4679   // Add all operands of the call to the operand list.
4680   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4681     const Value *Arg = I.getArgOperand(i);
4682     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4683       Ops.push_back(getValue(Arg));
4684       continue;
4685     }
4686 
4687     // Use TargetConstant instead of a regular constant for immarg.
4688     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4689     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4690       assert(CI->getBitWidth() <= 64 &&
4691              "large intrinsic immediates not handled");
4692       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4693     } else {
4694       Ops.push_back(
4695           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4696     }
4697   }
4698 
4699   SmallVector<EVT, 4> ValueVTs;
4700   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4701 
4702   if (HasChain)
4703     ValueVTs.push_back(MVT::Other);
4704 
4705   SDVTList VTs = DAG.getVTList(ValueVTs);
4706 
4707   // Create the node.
4708   SDValue Result;
4709   if (IsTgtIntrinsic) {
4710     // This is target intrinsic that touches memory
4711     AAMDNodes AAInfo;
4712     I.getAAMetadata(AAInfo);
4713     Result =
4714         DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4715                                 MachinePointerInfo(Info.ptrVal, Info.offset),
4716                                 Info.align, Info.flags, Info.size, AAInfo);
4717   } else if (!HasChain) {
4718     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4719   } else if (!I.getType()->isVoidTy()) {
4720     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4721   } else {
4722     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4723   }
4724 
4725   if (HasChain) {
4726     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4727     if (OnlyLoad)
4728       PendingLoads.push_back(Chain);
4729     else
4730       DAG.setRoot(Chain);
4731   }
4732 
4733   if (!I.getType()->isVoidTy()) {
4734     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4735       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4736       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4737     } else
4738       Result = lowerRangeToAssertZExt(DAG, I, Result);
4739 
4740     MaybeAlign Alignment = I.getRetAlign();
4741     if (!Alignment)
4742       Alignment = F->getAttributes().getRetAlignment();
4743     // Insert `assertalign` node if there's an alignment.
4744     if (InsertAssertAlign && Alignment) {
4745       Result =
4746           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4747     }
4748 
4749     setValue(&I, Result);
4750   }
4751 }
4752 
4753 /// GetSignificand - Get the significand and build it into a floating-point
4754 /// number with exponent of 1:
4755 ///
4756 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4757 ///
4758 /// where Op is the hexadecimal representation of floating point value.
4759 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4760   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4761                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4762   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4763                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4764   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4765 }
4766 
4767 /// GetExponent - Get the exponent:
4768 ///
4769 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4770 ///
4771 /// where Op is the hexadecimal representation of floating point value.
4772 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4773                            const TargetLowering &TLI, const SDLoc &dl) {
4774   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4775                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4776   SDValue t1 = DAG.getNode(
4777       ISD::SRL, dl, MVT::i32, t0,
4778       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4779   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4780                            DAG.getConstant(127, dl, MVT::i32));
4781   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4782 }
4783 
4784 /// getF32Constant - Get 32-bit floating point constant.
4785 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4786                               const SDLoc &dl) {
4787   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4788                            MVT::f32);
4789 }
4790 
4791 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4792                                        SelectionDAG &DAG) {
4793   // TODO: What fast-math-flags should be set on the floating-point nodes?
4794 
4795   //   IntegerPartOfX = ((int32_t)(t0);
4796   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4797 
4798   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4799   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4800   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4801 
4802   //   IntegerPartOfX <<= 23;
4803   IntegerPartOfX = DAG.getNode(
4804       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4805       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4806                                   DAG.getDataLayout())));
4807 
4808   SDValue TwoToFractionalPartOfX;
4809   if (LimitFloatPrecision <= 6) {
4810     // For floating-point precision of 6:
4811     //
4812     //   TwoToFractionalPartOfX =
4813     //     0.997535578f +
4814     //       (0.735607626f + 0.252464424f * x) * x;
4815     //
4816     // error 0.0144103317, which is 6 bits
4817     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4818                              getF32Constant(DAG, 0x3e814304, dl));
4819     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4820                              getF32Constant(DAG, 0x3f3c50c8, dl));
4821     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4822     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4823                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4824   } else if (LimitFloatPrecision <= 12) {
4825     // For floating-point precision of 12:
4826     //
4827     //   TwoToFractionalPartOfX =
4828     //     0.999892986f +
4829     //       (0.696457318f +
4830     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4831     //
4832     // error 0.000107046256, which is 13 to 14 bits
4833     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4834                              getF32Constant(DAG, 0x3da235e3, dl));
4835     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4836                              getF32Constant(DAG, 0x3e65b8f3, dl));
4837     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4838     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4839                              getF32Constant(DAG, 0x3f324b07, dl));
4840     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4841     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4842                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4843   } else { // LimitFloatPrecision <= 18
4844     // For floating-point precision of 18:
4845     //
4846     //   TwoToFractionalPartOfX =
4847     //     0.999999982f +
4848     //       (0.693148872f +
4849     //         (0.240227044f +
4850     //           (0.554906021e-1f +
4851     //             (0.961591928e-2f +
4852     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4853     // error 2.47208000*10^(-7), which is better than 18 bits
4854     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4855                              getF32Constant(DAG, 0x3924b03e, dl));
4856     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4857                              getF32Constant(DAG, 0x3ab24b87, dl));
4858     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4859     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4860                              getF32Constant(DAG, 0x3c1d8c17, dl));
4861     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4862     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4863                              getF32Constant(DAG, 0x3d634a1d, dl));
4864     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4865     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4866                              getF32Constant(DAG, 0x3e75fe14, dl));
4867     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4868     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4869                               getF32Constant(DAG, 0x3f317234, dl));
4870     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4871     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4872                                          getF32Constant(DAG, 0x3f800000, dl));
4873   }
4874 
4875   // Add the exponent into the result in integer domain.
4876   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4877   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4878                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4879 }
4880 
4881 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4882 /// limited-precision mode.
4883 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4884                          const TargetLowering &TLI) {
4885   if (Op.getValueType() == MVT::f32 &&
4886       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4887 
4888     // Put the exponent in the right bit position for later addition to the
4889     // final result:
4890     //
4891     // t0 = Op * log2(e)
4892 
4893     // TODO: What fast-math-flags should be set here?
4894     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4895                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
4896     return getLimitedPrecisionExp2(t0, dl, DAG);
4897   }
4898 
4899   // No special expansion.
4900   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4901 }
4902 
4903 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4904 /// limited-precision mode.
4905 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4906                          const TargetLowering &TLI) {
4907   // TODO: What fast-math-flags should be set on the floating-point nodes?
4908 
4909   if (Op.getValueType() == MVT::f32 &&
4910       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4911     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4912 
4913     // Scale the exponent by log(2).
4914     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4915     SDValue LogOfExponent =
4916         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4917                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
4918 
4919     // Get the significand and build it into a floating-point number with
4920     // exponent of 1.
4921     SDValue X = GetSignificand(DAG, Op1, dl);
4922 
4923     SDValue LogOfMantissa;
4924     if (LimitFloatPrecision <= 6) {
4925       // For floating-point precision of 6:
4926       //
4927       //   LogofMantissa =
4928       //     -1.1609546f +
4929       //       (1.4034025f - 0.23903021f * x) * x;
4930       //
4931       // error 0.0034276066, which is better than 8 bits
4932       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4933                                getF32Constant(DAG, 0xbe74c456, dl));
4934       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4935                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4936       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4937       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4938                                   getF32Constant(DAG, 0x3f949a29, dl));
4939     } else if (LimitFloatPrecision <= 12) {
4940       // For floating-point precision of 12:
4941       //
4942       //   LogOfMantissa =
4943       //     -1.7417939f +
4944       //       (2.8212026f +
4945       //         (-1.4699568f +
4946       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4947       //
4948       // error 0.000061011436, which is 14 bits
4949       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4950                                getF32Constant(DAG, 0xbd67b6d6, dl));
4951       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4952                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4953       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4954       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4955                                getF32Constant(DAG, 0x3fbc278b, dl));
4956       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4957       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4958                                getF32Constant(DAG, 0x40348e95, dl));
4959       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4960       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4961                                   getF32Constant(DAG, 0x3fdef31a, dl));
4962     } else { // LimitFloatPrecision <= 18
4963       // For floating-point precision of 18:
4964       //
4965       //   LogOfMantissa =
4966       //     -2.1072184f +
4967       //       (4.2372794f +
4968       //         (-3.7029485f +
4969       //           (2.2781945f +
4970       //             (-0.87823314f +
4971       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4972       //
4973       // error 0.0000023660568, which is better than 18 bits
4974       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4975                                getF32Constant(DAG, 0xbc91e5ac, dl));
4976       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4977                                getF32Constant(DAG, 0x3e4350aa, dl));
4978       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4979       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4980                                getF32Constant(DAG, 0x3f60d3e3, dl));
4981       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4982       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4983                                getF32Constant(DAG, 0x4011cdf0, dl));
4984       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4985       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4986                                getF32Constant(DAG, 0x406cfd1c, dl));
4987       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4988       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4989                                getF32Constant(DAG, 0x408797cb, dl));
4990       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4991       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4992                                   getF32Constant(DAG, 0x4006dcab, dl));
4993     }
4994 
4995     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4996   }
4997 
4998   // No special expansion.
4999   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5000 }
5001 
5002 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5003 /// limited-precision mode.
5004 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5005                           const TargetLowering &TLI) {
5006   // TODO: What fast-math-flags should be set on the floating-point nodes?
5007 
5008   if (Op.getValueType() == MVT::f32 &&
5009       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5010     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5011 
5012     // Get the exponent.
5013     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5014 
5015     // Get the significand and build it into a floating-point number with
5016     // exponent of 1.
5017     SDValue X = GetSignificand(DAG, Op1, dl);
5018 
5019     // Different possible minimax approximations of significand in
5020     // floating-point for various degrees of accuracy over [1,2].
5021     SDValue Log2ofMantissa;
5022     if (LimitFloatPrecision <= 6) {
5023       // For floating-point precision of 6:
5024       //
5025       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5026       //
5027       // error 0.0049451742, which is more than 7 bits
5028       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5029                                getF32Constant(DAG, 0xbeb08fe0, dl));
5030       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5031                                getF32Constant(DAG, 0x40019463, dl));
5032       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5033       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5034                                    getF32Constant(DAG, 0x3fd6633d, dl));
5035     } else if (LimitFloatPrecision <= 12) {
5036       // For floating-point precision of 12:
5037       //
5038       //   Log2ofMantissa =
5039       //     -2.51285454f +
5040       //       (4.07009056f +
5041       //         (-2.12067489f +
5042       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5043       //
5044       // error 0.0000876136000, which is better than 13 bits
5045       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5046                                getF32Constant(DAG, 0xbda7262e, dl));
5047       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5048                                getF32Constant(DAG, 0x3f25280b, dl));
5049       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5050       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5051                                getF32Constant(DAG, 0x4007b923, dl));
5052       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5053       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5054                                getF32Constant(DAG, 0x40823e2f, dl));
5055       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5056       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5057                                    getF32Constant(DAG, 0x4020d29c, dl));
5058     } else { // LimitFloatPrecision <= 18
5059       // For floating-point precision of 18:
5060       //
5061       //   Log2ofMantissa =
5062       //     -3.0400495f +
5063       //       (6.1129976f +
5064       //         (-5.3420409f +
5065       //           (3.2865683f +
5066       //             (-1.2669343f +
5067       //               (0.27515199f -
5068       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5069       //
5070       // error 0.0000018516, which is better than 18 bits
5071       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5072                                getF32Constant(DAG, 0xbcd2769e, dl));
5073       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5074                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5075       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5076       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5077                                getF32Constant(DAG, 0x3fa22ae7, dl));
5078       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5079       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5080                                getF32Constant(DAG, 0x40525723, dl));
5081       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5082       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5083                                getF32Constant(DAG, 0x40aaf200, dl));
5084       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5085       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5086                                getF32Constant(DAG, 0x40c39dad, dl));
5087       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5088       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5089                                    getF32Constant(DAG, 0x4042902c, dl));
5090     }
5091 
5092     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5093   }
5094 
5095   // No special expansion.
5096   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5097 }
5098 
5099 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5100 /// limited-precision mode.
5101 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5102                            const TargetLowering &TLI) {
5103   // TODO: What fast-math-flags should be set on the floating-point nodes?
5104 
5105   if (Op.getValueType() == MVT::f32 &&
5106       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5107     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5108 
5109     // Scale the exponent by log10(2) [0.30102999f].
5110     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5111     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5112                                         getF32Constant(DAG, 0x3e9a209a, dl));
5113 
5114     // Get the significand and build it into a floating-point number with
5115     // exponent of 1.
5116     SDValue X = GetSignificand(DAG, Op1, dl);
5117 
5118     SDValue Log10ofMantissa;
5119     if (LimitFloatPrecision <= 6) {
5120       // For floating-point precision of 6:
5121       //
5122       //   Log10ofMantissa =
5123       //     -0.50419619f +
5124       //       (0.60948995f - 0.10380950f * x) * x;
5125       //
5126       // error 0.0014886165, which is 6 bits
5127       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5128                                getF32Constant(DAG, 0xbdd49a13, dl));
5129       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5130                                getF32Constant(DAG, 0x3f1c0789, dl));
5131       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5132       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5133                                     getF32Constant(DAG, 0x3f011300, dl));
5134     } else if (LimitFloatPrecision <= 12) {
5135       // For floating-point precision of 12:
5136       //
5137       //   Log10ofMantissa =
5138       //     -0.64831180f +
5139       //       (0.91751397f +
5140       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5141       //
5142       // error 0.00019228036, which is better than 12 bits
5143       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5144                                getF32Constant(DAG, 0x3d431f31, dl));
5145       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5146                                getF32Constant(DAG, 0x3ea21fb2, dl));
5147       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5148       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5149                                getF32Constant(DAG, 0x3f6ae232, dl));
5150       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5151       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5152                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5153     } else { // LimitFloatPrecision <= 18
5154       // For floating-point precision of 18:
5155       //
5156       //   Log10ofMantissa =
5157       //     -0.84299375f +
5158       //       (1.5327582f +
5159       //         (-1.0688956f +
5160       //           (0.49102474f +
5161       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5162       //
5163       // error 0.0000037995730, which is better than 18 bits
5164       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5165                                getF32Constant(DAG, 0x3c5d51ce, dl));
5166       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5167                                getF32Constant(DAG, 0x3e00685a, dl));
5168       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5169       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5170                                getF32Constant(DAG, 0x3efb6798, dl));
5171       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5172       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5173                                getF32Constant(DAG, 0x3f88d192, dl));
5174       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5175       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5176                                getF32Constant(DAG, 0x3fc4316c, dl));
5177       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5178       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5179                                     getF32Constant(DAG, 0x3f57ce70, dl));
5180     }
5181 
5182     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5183   }
5184 
5185   // No special expansion.
5186   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5187 }
5188 
5189 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5190 /// limited-precision mode.
5191 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5192                           const TargetLowering &TLI) {
5193   if (Op.getValueType() == MVT::f32 &&
5194       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5195     return getLimitedPrecisionExp2(Op, dl, DAG);
5196 
5197   // No special expansion.
5198   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5199 }
5200 
5201 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5202 /// limited-precision mode with x == 10.0f.
5203 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5204                          SelectionDAG &DAG, const TargetLowering &TLI) {
5205   bool IsExp10 = false;
5206   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5207       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5208     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5209       APFloat Ten(10.0f);
5210       IsExp10 = LHSC->isExactlyValue(Ten);
5211     }
5212   }
5213 
5214   // TODO: What fast-math-flags should be set on the FMUL node?
5215   if (IsExp10) {
5216     // Put the exponent in the right bit position for later addition to the
5217     // final result:
5218     //
5219     //   #define LOG2OF10 3.3219281f
5220     //   t0 = Op * LOG2OF10;
5221     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5222                              getF32Constant(DAG, 0x40549a78, dl));
5223     return getLimitedPrecisionExp2(t0, dl, DAG);
5224   }
5225 
5226   // No special expansion.
5227   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5228 }
5229 
5230 /// ExpandPowI - Expand a llvm.powi intrinsic.
5231 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5232                           SelectionDAG &DAG) {
5233   // If RHS is a constant, we can expand this out to a multiplication tree,
5234   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5235   // optimizing for size, we only want to do this if the expansion would produce
5236   // a small number of multiplies, otherwise we do the full expansion.
5237   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5238     // Get the exponent as a positive value.
5239     unsigned Val = RHSC->getSExtValue();
5240     if ((int)Val < 0) Val = -Val;
5241 
5242     // powi(x, 0) -> 1.0
5243     if (Val == 0)
5244       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5245 
5246     bool OptForSize = DAG.shouldOptForSize();
5247     if (!OptForSize ||
5248         // If optimizing for size, don't insert too many multiplies.
5249         // This inserts up to 5 multiplies.
5250         countPopulation(Val) + Log2_32(Val) < 7) {
5251       // We use the simple binary decomposition method to generate the multiply
5252       // sequence.  There are more optimal ways to do this (for example,
5253       // powi(x,15) generates one more multiply than it should), but this has
5254       // the benefit of being both really simple and much better than a libcall.
5255       SDValue Res;  // Logically starts equal to 1.0
5256       SDValue CurSquare = LHS;
5257       // TODO: Intrinsics should have fast-math-flags that propagate to these
5258       // nodes.
5259       while (Val) {
5260         if (Val & 1) {
5261           if (Res.getNode())
5262             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5263           else
5264             Res = CurSquare;  // 1.0*CurSquare.
5265         }
5266 
5267         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5268                                 CurSquare, CurSquare);
5269         Val >>= 1;
5270       }
5271 
5272       // If the original was negative, invert the result, producing 1/(x*x*x).
5273       if (RHSC->getSExtValue() < 0)
5274         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5275                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5276       return Res;
5277     }
5278   }
5279 
5280   // Otherwise, expand to a libcall.
5281   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5282 }
5283 
5284 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5285                             SDValue LHS, SDValue RHS, SDValue Scale,
5286                             SelectionDAG &DAG, const TargetLowering &TLI) {
5287   EVT VT = LHS.getValueType();
5288   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5289   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5290   LLVMContext &Ctx = *DAG.getContext();
5291 
5292   // If the type is legal but the operation isn't, this node might survive all
5293   // the way to operation legalization. If we end up there and we do not have
5294   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5295   // node.
5296 
5297   // Coax the legalizer into expanding the node during type legalization instead
5298   // by bumping the size by one bit. This will force it to Promote, enabling the
5299   // early expansion and avoiding the need to expand later.
5300 
5301   // We don't have to do this if Scale is 0; that can always be expanded, unless
5302   // it's a saturating signed operation. Those can experience true integer
5303   // division overflow, a case which we must avoid.
5304 
5305   // FIXME: We wouldn't have to do this (or any of the early
5306   // expansion/promotion) if it was possible to expand a libcall of an
5307   // illegal type during operation legalization. But it's not, so things
5308   // get a bit hacky.
5309   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5310   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5311       (TLI.isTypeLegal(VT) ||
5312        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5313     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5314         Opcode, VT, ScaleInt);
5315     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5316       EVT PromVT;
5317       if (VT.isScalarInteger())
5318         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5319       else if (VT.isVector()) {
5320         PromVT = VT.getVectorElementType();
5321         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5322         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5323       } else
5324         llvm_unreachable("Wrong VT for DIVFIX?");
5325       if (Signed) {
5326         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5327         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5328       } else {
5329         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5330         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5331       }
5332       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5333       // For saturating operations, we need to shift up the LHS to get the
5334       // proper saturation width, and then shift down again afterwards.
5335       if (Saturating)
5336         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5337                           DAG.getConstant(1, DL, ShiftTy));
5338       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5339       if (Saturating)
5340         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5341                           DAG.getConstant(1, DL, ShiftTy));
5342       return DAG.getZExtOrTrunc(Res, DL, VT);
5343     }
5344   }
5345 
5346   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5347 }
5348 
5349 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5350 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5351 static void
5352 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5353                      const SDValue &N) {
5354   switch (N.getOpcode()) {
5355   case ISD::CopyFromReg: {
5356     SDValue Op = N.getOperand(1);
5357     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5358                       Op.getValueType().getSizeInBits());
5359     return;
5360   }
5361   case ISD::BITCAST:
5362   case ISD::AssertZext:
5363   case ISD::AssertSext:
5364   case ISD::TRUNCATE:
5365     getUnderlyingArgRegs(Regs, N.getOperand(0));
5366     return;
5367   case ISD::BUILD_PAIR:
5368   case ISD::BUILD_VECTOR:
5369   case ISD::CONCAT_VECTORS:
5370     for (SDValue Op : N->op_values())
5371       getUnderlyingArgRegs(Regs, Op);
5372     return;
5373   default:
5374     return;
5375   }
5376 }
5377 
5378 /// If the DbgValueInst is a dbg_value of a function argument, create the
5379 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5380 /// instruction selection, they will be inserted to the entry BB.
5381 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5382     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5383     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5384   const Argument *Arg = dyn_cast<Argument>(V);
5385   if (!Arg)
5386     return false;
5387 
5388   if (!IsDbgDeclare) {
5389     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5390     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5391     // the entry block.
5392     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5393     if (!IsInEntryBlock)
5394       return false;
5395 
5396     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5397     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5398     // variable that also is a param.
5399     //
5400     // Although, if we are at the top of the entry block already, we can still
5401     // emit using ArgDbgValue. This might catch some situations when the
5402     // dbg.value refers to an argument that isn't used in the entry block, so
5403     // any CopyToReg node would be optimized out and the only way to express
5404     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5405     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5406     // we should only emit as ArgDbgValue if the Variable is an argument to the
5407     // current function, and the dbg.value intrinsic is found in the entry
5408     // block.
5409     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5410         !DL->getInlinedAt();
5411     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5412     if (!IsInPrologue && !VariableIsFunctionInputArg)
5413       return false;
5414 
5415     // Here we assume that a function argument on IR level only can be used to
5416     // describe one input parameter on source level. If we for example have
5417     // source code like this
5418     //
5419     //    struct A { long x, y; };
5420     //    void foo(struct A a, long b) {
5421     //      ...
5422     //      b = a.x;
5423     //      ...
5424     //    }
5425     //
5426     // and IR like this
5427     //
5428     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5429     //  entry:
5430     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5431     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5432     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5433     //    ...
5434     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5435     //    ...
5436     //
5437     // then the last dbg.value is describing a parameter "b" using a value that
5438     // is an argument. But since we already has used %a1 to describe a parameter
5439     // we should not handle that last dbg.value here (that would result in an
5440     // incorrect hoisting of the DBG_VALUE to the function entry).
5441     // Notice that we allow one dbg.value per IR level argument, to accommodate
5442     // for the situation with fragments above.
5443     if (VariableIsFunctionInputArg) {
5444       unsigned ArgNo = Arg->getArgNo();
5445       if (ArgNo >= FuncInfo.DescribedArgs.size())
5446         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5447       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5448         return false;
5449       FuncInfo.DescribedArgs.set(ArgNo);
5450     }
5451   }
5452 
5453   MachineFunction &MF = DAG.getMachineFunction();
5454   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5455 
5456   bool IsIndirect = false;
5457   Optional<MachineOperand> Op;
5458   // Some arguments' frame index is recorded during argument lowering.
5459   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5460   if (FI != std::numeric_limits<int>::max())
5461     Op = MachineOperand::CreateFI(FI);
5462 
5463   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5464   if (!Op && N.getNode()) {
5465     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5466     Register Reg;
5467     if (ArgRegsAndSizes.size() == 1)
5468       Reg = ArgRegsAndSizes.front().first;
5469 
5470     if (Reg && Reg.isVirtual()) {
5471       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5472       Register PR = RegInfo.getLiveInPhysReg(Reg);
5473       if (PR)
5474         Reg = PR;
5475     }
5476     if (Reg) {
5477       Op = MachineOperand::CreateReg(Reg, false);
5478       IsIndirect = IsDbgDeclare;
5479     }
5480   }
5481 
5482   if (!Op && N.getNode()) {
5483     // Check if frame index is available.
5484     SDValue LCandidate = peekThroughBitcasts(N);
5485     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5486       if (FrameIndexSDNode *FINode =
5487           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5488         Op = MachineOperand::CreateFI(FINode->getIndex());
5489   }
5490 
5491   if (!Op) {
5492     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5493     auto splitMultiRegDbgValue
5494       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5495       unsigned Offset = 0;
5496       for (auto RegAndSize : SplitRegs) {
5497         // If the expression is already a fragment, the current register
5498         // offset+size might extend beyond the fragment. In this case, only
5499         // the register bits that are inside the fragment are relevant.
5500         int RegFragmentSizeInBits = RegAndSize.second;
5501         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5502           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5503           // The register is entirely outside the expression fragment,
5504           // so is irrelevant for debug info.
5505           if (Offset >= ExprFragmentSizeInBits)
5506             break;
5507           // The register is partially outside the expression fragment, only
5508           // the low bits within the fragment are relevant for debug info.
5509           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5510             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5511           }
5512         }
5513 
5514         auto FragmentExpr = DIExpression::createFragmentExpression(
5515             Expr, Offset, RegFragmentSizeInBits);
5516         Offset += RegAndSize.second;
5517         // If a valid fragment expression cannot be created, the variable's
5518         // correct value cannot be determined and so it is set as Undef.
5519         if (!FragmentExpr) {
5520           SDDbgValue *SDV = DAG.getConstantDbgValue(
5521               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5522           DAG.AddDbgValue(SDV, nullptr, false);
5523           continue;
5524         }
5525         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5526         FuncInfo.ArgDbgValues.push_back(
5527           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5528                   RegAndSize.first, Variable, *FragmentExpr));
5529       }
5530     };
5531 
5532     // Check if ValueMap has reg number.
5533     DenseMap<const Value *, Register>::const_iterator
5534       VMI = FuncInfo.ValueMap.find(V);
5535     if (VMI != FuncInfo.ValueMap.end()) {
5536       const auto &TLI = DAG.getTargetLoweringInfo();
5537       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5538                        V->getType(), getABIRegCopyCC(V));
5539       if (RFV.occupiesMultipleRegs()) {
5540         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5541         return true;
5542       }
5543 
5544       Op = MachineOperand::CreateReg(VMI->second, false);
5545       IsIndirect = IsDbgDeclare;
5546     } else if (ArgRegsAndSizes.size() > 1) {
5547       // This was split due to the calling convention, and no virtual register
5548       // mapping exists for the value.
5549       splitMultiRegDbgValue(ArgRegsAndSizes);
5550       return true;
5551     }
5552   }
5553 
5554   if (!Op)
5555     return false;
5556 
5557   assert(Variable->isValidLocationForIntrinsic(DL) &&
5558          "Expected inlined-at fields to agree");
5559   IsIndirect = (Op->isReg()) ? IsIndirect : true;
5560   FuncInfo.ArgDbgValues.push_back(
5561       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5562               *Op, Variable, Expr));
5563 
5564   return true;
5565 }
5566 
5567 /// Return the appropriate SDDbgValue based on N.
5568 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5569                                              DILocalVariable *Variable,
5570                                              DIExpression *Expr,
5571                                              const DebugLoc &dl,
5572                                              unsigned DbgSDNodeOrder) {
5573   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5574     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5575     // stack slot locations.
5576     //
5577     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5578     // debug values here after optimization:
5579     //
5580     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5581     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5582     //
5583     // Both describe the direct values of their associated variables.
5584     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5585                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5586   }
5587   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5588                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5589 }
5590 
5591 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5592   switch (Intrinsic) {
5593   case Intrinsic::smul_fix:
5594     return ISD::SMULFIX;
5595   case Intrinsic::umul_fix:
5596     return ISD::UMULFIX;
5597   case Intrinsic::smul_fix_sat:
5598     return ISD::SMULFIXSAT;
5599   case Intrinsic::umul_fix_sat:
5600     return ISD::UMULFIXSAT;
5601   case Intrinsic::sdiv_fix:
5602     return ISD::SDIVFIX;
5603   case Intrinsic::udiv_fix:
5604     return ISD::UDIVFIX;
5605   case Intrinsic::sdiv_fix_sat:
5606     return ISD::SDIVFIXSAT;
5607   case Intrinsic::udiv_fix_sat:
5608     return ISD::UDIVFIXSAT;
5609   default:
5610     llvm_unreachable("Unhandled fixed point intrinsic");
5611   }
5612 }
5613 
5614 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5615                                            const char *FunctionName) {
5616   assert(FunctionName && "FunctionName must not be nullptr");
5617   SDValue Callee = DAG.getExternalSymbol(
5618       FunctionName,
5619       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5620   LowerCallTo(I, Callee, I.isTailCall());
5621 }
5622 
5623 /// Given a @llvm.call.preallocated.setup, return the corresponding
5624 /// preallocated call.
5625 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5626   assert(cast<CallBase>(PreallocatedSetup)
5627                  ->getCalledFunction()
5628                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5629          "expected call_preallocated_setup Value");
5630   for (auto *U : PreallocatedSetup->users()) {
5631     auto *UseCall = cast<CallBase>(U);
5632     const Function *Fn = UseCall->getCalledFunction();
5633     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5634       return UseCall;
5635     }
5636   }
5637   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5638 }
5639 
5640 /// Lower the call to the specified intrinsic function.
5641 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5642                                              unsigned Intrinsic) {
5643   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5644   SDLoc sdl = getCurSDLoc();
5645   DebugLoc dl = getCurDebugLoc();
5646   SDValue Res;
5647 
5648   switch (Intrinsic) {
5649   default:
5650     // By default, turn this into a target intrinsic node.
5651     visitTargetIntrinsic(I, Intrinsic);
5652     return;
5653   case Intrinsic::vscale: {
5654     match(&I, m_VScale(DAG.getDataLayout()));
5655     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5656     setValue(&I,
5657              DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5658     return;
5659   }
5660   case Intrinsic::vastart:  visitVAStart(I); return;
5661   case Intrinsic::vaend:    visitVAEnd(I); return;
5662   case Intrinsic::vacopy:   visitVACopy(I); return;
5663   case Intrinsic::returnaddress:
5664     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5665                              TLI.getPointerTy(DAG.getDataLayout()),
5666                              getValue(I.getArgOperand(0))));
5667     return;
5668   case Intrinsic::addressofreturnaddress:
5669     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5670                              TLI.getPointerTy(DAG.getDataLayout())));
5671     return;
5672   case Intrinsic::sponentry:
5673     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5674                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5675     return;
5676   case Intrinsic::frameaddress:
5677     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5678                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5679                              getValue(I.getArgOperand(0))));
5680     return;
5681   case Intrinsic::read_volatile_register:
5682   case Intrinsic::read_register: {
5683     Value *Reg = I.getArgOperand(0);
5684     SDValue Chain = getRoot();
5685     SDValue RegName =
5686         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5687     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5688     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5689       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5690     setValue(&I, Res);
5691     DAG.setRoot(Res.getValue(1));
5692     return;
5693   }
5694   case Intrinsic::write_register: {
5695     Value *Reg = I.getArgOperand(0);
5696     Value *RegValue = I.getArgOperand(1);
5697     SDValue Chain = getRoot();
5698     SDValue RegName =
5699         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5700     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5701                             RegName, getValue(RegValue)));
5702     return;
5703   }
5704   case Intrinsic::memcpy: {
5705     const auto &MCI = cast<MemCpyInst>(I);
5706     SDValue Op1 = getValue(I.getArgOperand(0));
5707     SDValue Op2 = getValue(I.getArgOperand(1));
5708     SDValue Op3 = getValue(I.getArgOperand(2));
5709     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5710     Align DstAlign = MCI.getDestAlign().valueOrOne();
5711     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5712     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5713     bool isVol = MCI.isVolatile();
5714     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5715     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5716     // node.
5717     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5718     SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5719                                /* AlwaysInline */ false, isTC,
5720                                MachinePointerInfo(I.getArgOperand(0)),
5721                                MachinePointerInfo(I.getArgOperand(1)));
5722     updateDAGForMaybeTailCall(MC);
5723     return;
5724   }
5725   case Intrinsic::memcpy_inline: {
5726     const auto &MCI = cast<MemCpyInlineInst>(I);
5727     SDValue Dst = getValue(I.getArgOperand(0));
5728     SDValue Src = getValue(I.getArgOperand(1));
5729     SDValue Size = getValue(I.getArgOperand(2));
5730     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5731     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5732     Align DstAlign = MCI.getDestAlign().valueOrOne();
5733     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5734     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5735     bool isVol = MCI.isVolatile();
5736     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5737     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5738     // node.
5739     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5740                                /* AlwaysInline */ true, isTC,
5741                                MachinePointerInfo(I.getArgOperand(0)),
5742                                MachinePointerInfo(I.getArgOperand(1)));
5743     updateDAGForMaybeTailCall(MC);
5744     return;
5745   }
5746   case Intrinsic::memset: {
5747     const auto &MSI = cast<MemSetInst>(I);
5748     SDValue Op1 = getValue(I.getArgOperand(0));
5749     SDValue Op2 = getValue(I.getArgOperand(1));
5750     SDValue Op3 = getValue(I.getArgOperand(2));
5751     // @llvm.memset defines 0 and 1 to both mean no alignment.
5752     Align Alignment = MSI.getDestAlign().valueOrOne();
5753     bool isVol = MSI.isVolatile();
5754     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5755     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5756     SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5757                                MachinePointerInfo(I.getArgOperand(0)));
5758     updateDAGForMaybeTailCall(MS);
5759     return;
5760   }
5761   case Intrinsic::memmove: {
5762     const auto &MMI = cast<MemMoveInst>(I);
5763     SDValue Op1 = getValue(I.getArgOperand(0));
5764     SDValue Op2 = getValue(I.getArgOperand(1));
5765     SDValue Op3 = getValue(I.getArgOperand(2));
5766     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5767     Align DstAlign = MMI.getDestAlign().valueOrOne();
5768     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5769     Align Alignment = commonAlignment(DstAlign, SrcAlign);
5770     bool isVol = MMI.isVolatile();
5771     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5772     // FIXME: Support passing different dest/src alignments to the memmove DAG
5773     // node.
5774     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5775     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5776                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5777                                 MachinePointerInfo(I.getArgOperand(1)));
5778     updateDAGForMaybeTailCall(MM);
5779     return;
5780   }
5781   case Intrinsic::memcpy_element_unordered_atomic: {
5782     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5783     SDValue Dst = getValue(MI.getRawDest());
5784     SDValue Src = getValue(MI.getRawSource());
5785     SDValue Length = getValue(MI.getLength());
5786 
5787     unsigned DstAlign = MI.getDestAlignment();
5788     unsigned SrcAlign = MI.getSourceAlignment();
5789     Type *LengthTy = MI.getLength()->getType();
5790     unsigned ElemSz = MI.getElementSizeInBytes();
5791     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5792     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5793                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5794                                      MachinePointerInfo(MI.getRawDest()),
5795                                      MachinePointerInfo(MI.getRawSource()));
5796     updateDAGForMaybeTailCall(MC);
5797     return;
5798   }
5799   case Intrinsic::memmove_element_unordered_atomic: {
5800     auto &MI = cast<AtomicMemMoveInst>(I);
5801     SDValue Dst = getValue(MI.getRawDest());
5802     SDValue Src = getValue(MI.getRawSource());
5803     SDValue Length = getValue(MI.getLength());
5804 
5805     unsigned DstAlign = MI.getDestAlignment();
5806     unsigned SrcAlign = MI.getSourceAlignment();
5807     Type *LengthTy = MI.getLength()->getType();
5808     unsigned ElemSz = MI.getElementSizeInBytes();
5809     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5810     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5811                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5812                                       MachinePointerInfo(MI.getRawDest()),
5813                                       MachinePointerInfo(MI.getRawSource()));
5814     updateDAGForMaybeTailCall(MC);
5815     return;
5816   }
5817   case Intrinsic::memset_element_unordered_atomic: {
5818     auto &MI = cast<AtomicMemSetInst>(I);
5819     SDValue Dst = getValue(MI.getRawDest());
5820     SDValue Val = getValue(MI.getValue());
5821     SDValue Length = getValue(MI.getLength());
5822 
5823     unsigned DstAlign = MI.getDestAlignment();
5824     Type *LengthTy = MI.getLength()->getType();
5825     unsigned ElemSz = MI.getElementSizeInBytes();
5826     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5827     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5828                                      LengthTy, ElemSz, isTC,
5829                                      MachinePointerInfo(MI.getRawDest()));
5830     updateDAGForMaybeTailCall(MC);
5831     return;
5832   }
5833   case Intrinsic::call_preallocated_setup: {
5834     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5835     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5836     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
5837                               getRoot(), SrcValue);
5838     setValue(&I, Res);
5839     DAG.setRoot(Res);
5840     return;
5841   }
5842   case Intrinsic::call_preallocated_arg: {
5843     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
5844     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
5845     SDValue Ops[3];
5846     Ops[0] = getRoot();
5847     Ops[1] = SrcValue;
5848     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
5849                                    MVT::i32); // arg index
5850     SDValue Res = DAG.getNode(
5851         ISD::PREALLOCATED_ARG, sdl,
5852         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
5853     setValue(&I, Res);
5854     DAG.setRoot(Res.getValue(1));
5855     return;
5856   }
5857   case Intrinsic::dbg_addr:
5858   case Intrinsic::dbg_declare: {
5859     const auto &DI = cast<DbgVariableIntrinsic>(I);
5860     DILocalVariable *Variable = DI.getVariable();
5861     DIExpression *Expression = DI.getExpression();
5862     dropDanglingDebugInfo(Variable, Expression);
5863     assert(Variable && "Missing variable");
5864     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
5865                       << "\n");
5866     // Check if address has undef value.
5867     const Value *Address = DI.getVariableLocation();
5868     if (!Address || isa<UndefValue>(Address) ||
5869         (Address->use_empty() && !isa<Argument>(Address))) {
5870       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5871                         << " (bad/undef/unused-arg address)\n");
5872       return;
5873     }
5874 
5875     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5876 
5877     // Check if this variable can be described by a frame index, typically
5878     // either as a static alloca or a byval parameter.
5879     int FI = std::numeric_limits<int>::max();
5880     if (const auto *AI =
5881             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5882       if (AI->isStaticAlloca()) {
5883         auto I = FuncInfo.StaticAllocaMap.find(AI);
5884         if (I != FuncInfo.StaticAllocaMap.end())
5885           FI = I->second;
5886       }
5887     } else if (const auto *Arg = dyn_cast<Argument>(
5888                    Address->stripInBoundsConstantOffsets())) {
5889       FI = FuncInfo.getArgumentFrameIndex(Arg);
5890     }
5891 
5892     // llvm.dbg.addr is control dependent and always generates indirect
5893     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5894     // the MachineFunction variable table.
5895     if (FI != std::numeric_limits<int>::max()) {
5896       if (Intrinsic == Intrinsic::dbg_addr) {
5897         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5898             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5899         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5900       } else {
5901         LLVM_DEBUG(dbgs() << "Skipping " << DI
5902                           << " (variable info stashed in MF side table)\n");
5903       }
5904       return;
5905     }
5906 
5907     SDValue &N = NodeMap[Address];
5908     if (!N.getNode() && isa<Argument>(Address))
5909       // Check unused arguments map.
5910       N = UnusedArgNodeMap[Address];
5911     SDDbgValue *SDV;
5912     if (N.getNode()) {
5913       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5914         Address = BCI->getOperand(0);
5915       // Parameters are handled specially.
5916       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5917       if (isParameter && FINode) {
5918         // Byval parameter. We have a frame index at this point.
5919         SDV =
5920             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5921                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5922       } else if (isa<Argument>(Address)) {
5923         // Address is an argument, so try to emit its dbg value using
5924         // virtual register info from the FuncInfo.ValueMap.
5925         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5926         return;
5927       } else {
5928         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5929                               true, dl, SDNodeOrder);
5930       }
5931       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5932     } else {
5933       // If Address is an argument then try to emit its dbg value using
5934       // virtual register info from the FuncInfo.ValueMap.
5935       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5936                                     N)) {
5937         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
5938                           << " (could not emit func-arg dbg_value)\n");
5939       }
5940     }
5941     return;
5942   }
5943   case Intrinsic::dbg_label: {
5944     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5945     DILabel *Label = DI.getLabel();
5946     assert(Label && "Missing label");
5947 
5948     SDDbgLabel *SDV;
5949     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5950     DAG.AddDbgLabel(SDV);
5951     return;
5952   }
5953   case Intrinsic::dbg_value: {
5954     const DbgValueInst &DI = cast<DbgValueInst>(I);
5955     assert(DI.getVariable() && "Missing variable");
5956 
5957     DILocalVariable *Variable = DI.getVariable();
5958     DIExpression *Expression = DI.getExpression();
5959     dropDanglingDebugInfo(Variable, Expression);
5960     const Value *V = DI.getValue();
5961     if (!V)
5962       return;
5963 
5964     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5965         SDNodeOrder))
5966       return;
5967 
5968     // TODO: Dangling debug info will eventually either be resolved or produce
5969     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5970     // between the original dbg.value location and its resolved DBG_VALUE, which
5971     // we should ideally fill with an extra Undef DBG_VALUE.
5972 
5973     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5974     return;
5975   }
5976 
5977   case Intrinsic::eh_typeid_for: {
5978     // Find the type id for the given typeinfo.
5979     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5980     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5981     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5982     setValue(&I, Res);
5983     return;
5984   }
5985 
5986   case Intrinsic::eh_return_i32:
5987   case Intrinsic::eh_return_i64:
5988     DAG.getMachineFunction().setCallsEHReturn(true);
5989     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5990                             MVT::Other,
5991                             getControlRoot(),
5992                             getValue(I.getArgOperand(0)),
5993                             getValue(I.getArgOperand(1))));
5994     return;
5995   case Intrinsic::eh_unwind_init:
5996     DAG.getMachineFunction().setCallsUnwindInit(true);
5997     return;
5998   case Intrinsic::eh_dwarf_cfa:
5999     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6000                              TLI.getPointerTy(DAG.getDataLayout()),
6001                              getValue(I.getArgOperand(0))));
6002     return;
6003   case Intrinsic::eh_sjlj_callsite: {
6004     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6005     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6006     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6007     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6008 
6009     MMI.setCurrentCallSite(CI->getZExtValue());
6010     return;
6011   }
6012   case Intrinsic::eh_sjlj_functioncontext: {
6013     // Get and store the index of the function context.
6014     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6015     AllocaInst *FnCtx =
6016       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6017     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6018     MFI.setFunctionContextIndex(FI);
6019     return;
6020   }
6021   case Intrinsic::eh_sjlj_setjmp: {
6022     SDValue Ops[2];
6023     Ops[0] = getRoot();
6024     Ops[1] = getValue(I.getArgOperand(0));
6025     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6026                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6027     setValue(&I, Op.getValue(0));
6028     DAG.setRoot(Op.getValue(1));
6029     return;
6030   }
6031   case Intrinsic::eh_sjlj_longjmp:
6032     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6033                             getRoot(), getValue(I.getArgOperand(0))));
6034     return;
6035   case Intrinsic::eh_sjlj_setup_dispatch:
6036     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6037                             getRoot()));
6038     return;
6039   case Intrinsic::masked_gather:
6040     visitMaskedGather(I);
6041     return;
6042   case Intrinsic::masked_load:
6043     visitMaskedLoad(I);
6044     return;
6045   case Intrinsic::masked_scatter:
6046     visitMaskedScatter(I);
6047     return;
6048   case Intrinsic::masked_store:
6049     visitMaskedStore(I);
6050     return;
6051   case Intrinsic::masked_expandload:
6052     visitMaskedLoad(I, true /* IsExpanding */);
6053     return;
6054   case Intrinsic::masked_compressstore:
6055     visitMaskedStore(I, true /* IsCompressing */);
6056     return;
6057   case Intrinsic::powi:
6058     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6059                             getValue(I.getArgOperand(1)), DAG));
6060     return;
6061   case Intrinsic::log:
6062     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6063     return;
6064   case Intrinsic::log2:
6065     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6066     return;
6067   case Intrinsic::log10:
6068     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6069     return;
6070   case Intrinsic::exp:
6071     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6072     return;
6073   case Intrinsic::exp2:
6074     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6075     return;
6076   case Intrinsic::pow:
6077     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6078                            getValue(I.getArgOperand(1)), DAG, TLI));
6079     return;
6080   case Intrinsic::sqrt:
6081   case Intrinsic::fabs:
6082   case Intrinsic::sin:
6083   case Intrinsic::cos:
6084   case Intrinsic::floor:
6085   case Intrinsic::ceil:
6086   case Intrinsic::trunc:
6087   case Intrinsic::rint:
6088   case Intrinsic::nearbyint:
6089   case Intrinsic::round:
6090   case Intrinsic::roundeven:
6091   case Intrinsic::canonicalize: {
6092     unsigned Opcode;
6093     switch (Intrinsic) {
6094     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6095     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6096     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6097     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6098     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6099     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6100     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6101     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6102     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6103     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6104     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6105     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6106     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6107     }
6108 
6109     setValue(&I, DAG.getNode(Opcode, sdl,
6110                              getValue(I.getArgOperand(0)).getValueType(),
6111                              getValue(I.getArgOperand(0))));
6112     return;
6113   }
6114   case Intrinsic::lround:
6115   case Intrinsic::llround:
6116   case Intrinsic::lrint:
6117   case Intrinsic::llrint: {
6118     unsigned Opcode;
6119     switch (Intrinsic) {
6120     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6121     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6122     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6123     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6124     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6125     }
6126 
6127     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6128     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6129                              getValue(I.getArgOperand(0))));
6130     return;
6131   }
6132   case Intrinsic::minnum:
6133     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6134                              getValue(I.getArgOperand(0)).getValueType(),
6135                              getValue(I.getArgOperand(0)),
6136                              getValue(I.getArgOperand(1))));
6137     return;
6138   case Intrinsic::maxnum:
6139     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6140                              getValue(I.getArgOperand(0)).getValueType(),
6141                              getValue(I.getArgOperand(0)),
6142                              getValue(I.getArgOperand(1))));
6143     return;
6144   case Intrinsic::minimum:
6145     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6146                              getValue(I.getArgOperand(0)).getValueType(),
6147                              getValue(I.getArgOperand(0)),
6148                              getValue(I.getArgOperand(1))));
6149     return;
6150   case Intrinsic::maximum:
6151     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6152                              getValue(I.getArgOperand(0)).getValueType(),
6153                              getValue(I.getArgOperand(0)),
6154                              getValue(I.getArgOperand(1))));
6155     return;
6156   case Intrinsic::copysign:
6157     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6158                              getValue(I.getArgOperand(0)).getValueType(),
6159                              getValue(I.getArgOperand(0)),
6160                              getValue(I.getArgOperand(1))));
6161     return;
6162   case Intrinsic::fma:
6163     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6164                              getValue(I.getArgOperand(0)).getValueType(),
6165                              getValue(I.getArgOperand(0)),
6166                              getValue(I.getArgOperand(1)),
6167                              getValue(I.getArgOperand(2))));
6168     return;
6169 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6170   case Intrinsic::INTRINSIC:
6171 #include "llvm/IR/ConstrainedOps.def"
6172     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6173     return;
6174   case Intrinsic::fmuladd: {
6175     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6176     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6177         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6178       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6179                                getValue(I.getArgOperand(0)).getValueType(),
6180                                getValue(I.getArgOperand(0)),
6181                                getValue(I.getArgOperand(1)),
6182                                getValue(I.getArgOperand(2))));
6183     } else {
6184       // TODO: Intrinsic calls should have fast-math-flags.
6185       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6186                                 getValue(I.getArgOperand(0)).getValueType(),
6187                                 getValue(I.getArgOperand(0)),
6188                                 getValue(I.getArgOperand(1)));
6189       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6190                                 getValue(I.getArgOperand(0)).getValueType(),
6191                                 Mul,
6192                                 getValue(I.getArgOperand(2)));
6193       setValue(&I, Add);
6194     }
6195     return;
6196   }
6197   case Intrinsic::convert_to_fp16:
6198     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6199                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6200                                          getValue(I.getArgOperand(0)),
6201                                          DAG.getTargetConstant(0, sdl,
6202                                                                MVT::i32))));
6203     return;
6204   case Intrinsic::convert_from_fp16:
6205     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6206                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6207                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6208                                          getValue(I.getArgOperand(0)))));
6209     return;
6210   case Intrinsic::pcmarker: {
6211     SDValue Tmp = getValue(I.getArgOperand(0));
6212     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6213     return;
6214   }
6215   case Intrinsic::readcyclecounter: {
6216     SDValue Op = getRoot();
6217     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6218                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6219     setValue(&I, Res);
6220     DAG.setRoot(Res.getValue(1));
6221     return;
6222   }
6223   case Intrinsic::bitreverse:
6224     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6225                              getValue(I.getArgOperand(0)).getValueType(),
6226                              getValue(I.getArgOperand(0))));
6227     return;
6228   case Intrinsic::bswap:
6229     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6230                              getValue(I.getArgOperand(0)).getValueType(),
6231                              getValue(I.getArgOperand(0))));
6232     return;
6233   case Intrinsic::cttz: {
6234     SDValue Arg = getValue(I.getArgOperand(0));
6235     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6236     EVT Ty = Arg.getValueType();
6237     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6238                              sdl, Ty, Arg));
6239     return;
6240   }
6241   case Intrinsic::ctlz: {
6242     SDValue Arg = getValue(I.getArgOperand(0));
6243     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6244     EVT Ty = Arg.getValueType();
6245     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6246                              sdl, Ty, Arg));
6247     return;
6248   }
6249   case Intrinsic::ctpop: {
6250     SDValue Arg = getValue(I.getArgOperand(0));
6251     EVT Ty = Arg.getValueType();
6252     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6253     return;
6254   }
6255   case Intrinsic::fshl:
6256   case Intrinsic::fshr: {
6257     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6258     SDValue X = getValue(I.getArgOperand(0));
6259     SDValue Y = getValue(I.getArgOperand(1));
6260     SDValue Z = getValue(I.getArgOperand(2));
6261     EVT VT = X.getValueType();
6262     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6263     SDValue Zero = DAG.getConstant(0, sdl, VT);
6264     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6265 
6266     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6267     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6268       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6269       return;
6270     }
6271 
6272     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6273     // avoid the select that is necessary in the general case to filter out
6274     // the 0-shift possibility that leads to UB.
6275     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6276       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6277       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6278         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6279         return;
6280       }
6281 
6282       // Some targets only rotate one way. Try the opposite direction.
6283       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6284       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6285         // Negate the shift amount because it is safe to ignore the high bits.
6286         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6287         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6288         return;
6289       }
6290 
6291       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6292       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6293       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6294       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6295       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6296       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6297       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6298       return;
6299     }
6300 
6301     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6302     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6303     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6304     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6305     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6306     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6307 
6308     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6309     // and that is undefined. We must compare and select to avoid UB.
6310     EVT CCVT = MVT::i1;
6311     if (VT.isVector())
6312       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6313 
6314     // For fshl, 0-shift returns the 1st arg (X).
6315     // For fshr, 0-shift returns the 2nd arg (Y).
6316     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6317     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6318     return;
6319   }
6320   case Intrinsic::sadd_sat: {
6321     SDValue Op1 = getValue(I.getArgOperand(0));
6322     SDValue Op2 = getValue(I.getArgOperand(1));
6323     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6324     return;
6325   }
6326   case Intrinsic::uadd_sat: {
6327     SDValue Op1 = getValue(I.getArgOperand(0));
6328     SDValue Op2 = getValue(I.getArgOperand(1));
6329     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6330     return;
6331   }
6332   case Intrinsic::ssub_sat: {
6333     SDValue Op1 = getValue(I.getArgOperand(0));
6334     SDValue Op2 = getValue(I.getArgOperand(1));
6335     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6336     return;
6337   }
6338   case Intrinsic::usub_sat: {
6339     SDValue Op1 = getValue(I.getArgOperand(0));
6340     SDValue Op2 = getValue(I.getArgOperand(1));
6341     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6342     return;
6343   }
6344   case Intrinsic::smul_fix:
6345   case Intrinsic::umul_fix:
6346   case Intrinsic::smul_fix_sat:
6347   case Intrinsic::umul_fix_sat: {
6348     SDValue Op1 = getValue(I.getArgOperand(0));
6349     SDValue Op2 = getValue(I.getArgOperand(1));
6350     SDValue Op3 = getValue(I.getArgOperand(2));
6351     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6352                              Op1.getValueType(), Op1, Op2, Op3));
6353     return;
6354   }
6355   case Intrinsic::sdiv_fix:
6356   case Intrinsic::udiv_fix:
6357   case Intrinsic::sdiv_fix_sat:
6358   case Intrinsic::udiv_fix_sat: {
6359     SDValue Op1 = getValue(I.getArgOperand(0));
6360     SDValue Op2 = getValue(I.getArgOperand(1));
6361     SDValue Op3 = getValue(I.getArgOperand(2));
6362     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6363                               Op1, Op2, Op3, DAG, TLI));
6364     return;
6365   }
6366   case Intrinsic::smax: {
6367     SDValue Op1 = getValue(I.getArgOperand(0));
6368     SDValue Op2 = getValue(I.getArgOperand(1));
6369     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6370     return;
6371   }
6372   case Intrinsic::smin: {
6373     SDValue Op1 = getValue(I.getArgOperand(0));
6374     SDValue Op2 = getValue(I.getArgOperand(1));
6375     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6376     return;
6377   }
6378   case Intrinsic::umax: {
6379     SDValue Op1 = getValue(I.getArgOperand(0));
6380     SDValue Op2 = getValue(I.getArgOperand(1));
6381     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6382     return;
6383   }
6384   case Intrinsic::umin: {
6385     SDValue Op1 = getValue(I.getArgOperand(0));
6386     SDValue Op2 = getValue(I.getArgOperand(1));
6387     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6388     return;
6389   }
6390   case Intrinsic::abs: {
6391     // TODO: Preserve "int min is poison" arg in SDAG?
6392     SDValue Op1 = getValue(I.getArgOperand(0));
6393     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6394     return;
6395   }
6396   case Intrinsic::stacksave: {
6397     SDValue Op = getRoot();
6398     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6399     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6400     setValue(&I, Res);
6401     DAG.setRoot(Res.getValue(1));
6402     return;
6403   }
6404   case Intrinsic::stackrestore:
6405     Res = getValue(I.getArgOperand(0));
6406     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6407     return;
6408   case Intrinsic::get_dynamic_area_offset: {
6409     SDValue Op = getRoot();
6410     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6411     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6412     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6413     // target.
6414     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6415       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6416                          " intrinsic!");
6417     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6418                       Op);
6419     DAG.setRoot(Op);
6420     setValue(&I, Res);
6421     return;
6422   }
6423   case Intrinsic::stackguard: {
6424     MachineFunction &MF = DAG.getMachineFunction();
6425     const Module &M = *MF.getFunction().getParent();
6426     SDValue Chain = getRoot();
6427     if (TLI.useLoadStackGuardNode()) {
6428       Res = getLoadStackGuard(DAG, sdl, Chain);
6429     } else {
6430       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6431       const Value *Global = TLI.getSDagStackGuard(M);
6432       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6433       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6434                         MachinePointerInfo(Global, 0), Align,
6435                         MachineMemOperand::MOVolatile);
6436     }
6437     if (TLI.useStackGuardXorFP())
6438       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6439     DAG.setRoot(Chain);
6440     setValue(&I, Res);
6441     return;
6442   }
6443   case Intrinsic::stackprotector: {
6444     // Emit code into the DAG to store the stack guard onto the stack.
6445     MachineFunction &MF = DAG.getMachineFunction();
6446     MachineFrameInfo &MFI = MF.getFrameInfo();
6447     SDValue Src, Chain = getRoot();
6448 
6449     if (TLI.useLoadStackGuardNode())
6450       Src = getLoadStackGuard(DAG, sdl, Chain);
6451     else
6452       Src = getValue(I.getArgOperand(0));   // The guard's value.
6453 
6454     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6455 
6456     int FI = FuncInfo.StaticAllocaMap[Slot];
6457     MFI.setStackProtectorIndex(FI);
6458     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6459 
6460     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6461 
6462     // Store the stack protector onto the stack.
6463     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6464                                                  DAG.getMachineFunction(), FI),
6465                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6466     setValue(&I, Res);
6467     DAG.setRoot(Res);
6468     return;
6469   }
6470   case Intrinsic::objectsize:
6471     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6472 
6473   case Intrinsic::is_constant:
6474     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6475 
6476   case Intrinsic::annotation:
6477   case Intrinsic::ptr_annotation:
6478   case Intrinsic::launder_invariant_group:
6479   case Intrinsic::strip_invariant_group:
6480     // Drop the intrinsic, but forward the value
6481     setValue(&I, getValue(I.getOperand(0)));
6482     return;
6483   case Intrinsic::assume:
6484   case Intrinsic::var_annotation:
6485   case Intrinsic::sideeffect:
6486     // Discard annotate attributes, assumptions, and artificial side-effects.
6487     return;
6488 
6489   case Intrinsic::codeview_annotation: {
6490     // Emit a label associated with this metadata.
6491     MachineFunction &MF = DAG.getMachineFunction();
6492     MCSymbol *Label =
6493         MF.getMMI().getContext().createTempSymbol("annotation", true);
6494     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6495     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6496     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6497     DAG.setRoot(Res);
6498     return;
6499   }
6500 
6501   case Intrinsic::init_trampoline: {
6502     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6503 
6504     SDValue Ops[6];
6505     Ops[0] = getRoot();
6506     Ops[1] = getValue(I.getArgOperand(0));
6507     Ops[2] = getValue(I.getArgOperand(1));
6508     Ops[3] = getValue(I.getArgOperand(2));
6509     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6510     Ops[5] = DAG.getSrcValue(F);
6511 
6512     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6513 
6514     DAG.setRoot(Res);
6515     return;
6516   }
6517   case Intrinsic::adjust_trampoline:
6518     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6519                              TLI.getPointerTy(DAG.getDataLayout()),
6520                              getValue(I.getArgOperand(0))));
6521     return;
6522   case Intrinsic::gcroot: {
6523     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6524            "only valid in functions with gc specified, enforced by Verifier");
6525     assert(GFI && "implied by previous");
6526     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6527     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6528 
6529     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6530     GFI->addStackRoot(FI->getIndex(), TypeMap);
6531     return;
6532   }
6533   case Intrinsic::gcread:
6534   case Intrinsic::gcwrite:
6535     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6536   case Intrinsic::flt_rounds:
6537     Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6538     setValue(&I, Res);
6539     DAG.setRoot(Res.getValue(1));
6540     return;
6541 
6542   case Intrinsic::expect:
6543     // Just replace __builtin_expect(exp, c) with EXP.
6544     setValue(&I, getValue(I.getArgOperand(0)));
6545     return;
6546 
6547   case Intrinsic::debugtrap:
6548   case Intrinsic::trap: {
6549     StringRef TrapFuncName =
6550         I.getAttributes()
6551             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6552             .getValueAsString();
6553     if (TrapFuncName.empty()) {
6554       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6555         ISD::TRAP : ISD::DEBUGTRAP;
6556       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6557       return;
6558     }
6559     TargetLowering::ArgListTy Args;
6560 
6561     TargetLowering::CallLoweringInfo CLI(DAG);
6562     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6563         CallingConv::C, I.getType(),
6564         DAG.getExternalSymbol(TrapFuncName.data(),
6565                               TLI.getPointerTy(DAG.getDataLayout())),
6566         std::move(Args));
6567 
6568     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6569     DAG.setRoot(Result.second);
6570     return;
6571   }
6572 
6573   case Intrinsic::uadd_with_overflow:
6574   case Intrinsic::sadd_with_overflow:
6575   case Intrinsic::usub_with_overflow:
6576   case Intrinsic::ssub_with_overflow:
6577   case Intrinsic::umul_with_overflow:
6578   case Intrinsic::smul_with_overflow: {
6579     ISD::NodeType Op;
6580     switch (Intrinsic) {
6581     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6582     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6583     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6584     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6585     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6586     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6587     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6588     }
6589     SDValue Op1 = getValue(I.getArgOperand(0));
6590     SDValue Op2 = getValue(I.getArgOperand(1));
6591 
6592     EVT ResultVT = Op1.getValueType();
6593     EVT OverflowVT = MVT::i1;
6594     if (ResultVT.isVector())
6595       OverflowVT = EVT::getVectorVT(
6596           *Context, OverflowVT, ResultVT.getVectorNumElements());
6597 
6598     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6599     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6600     return;
6601   }
6602   case Intrinsic::prefetch: {
6603     SDValue Ops[5];
6604     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6605     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6606     Ops[0] = DAG.getRoot();
6607     Ops[1] = getValue(I.getArgOperand(0));
6608     Ops[2] = getValue(I.getArgOperand(1));
6609     Ops[3] = getValue(I.getArgOperand(2));
6610     Ops[4] = getValue(I.getArgOperand(3));
6611     SDValue Result = DAG.getMemIntrinsicNode(
6612         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6613         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6614         /* align */ None, Flags);
6615 
6616     // Chain the prefetch in parallell with any pending loads, to stay out of
6617     // the way of later optimizations.
6618     PendingLoads.push_back(Result);
6619     Result = getRoot();
6620     DAG.setRoot(Result);
6621     return;
6622   }
6623   case Intrinsic::lifetime_start:
6624   case Intrinsic::lifetime_end: {
6625     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6626     // Stack coloring is not enabled in O0, discard region information.
6627     if (TM.getOptLevel() == CodeGenOpt::None)
6628       return;
6629 
6630     const int64_t ObjectSize =
6631         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6632     Value *const ObjectPtr = I.getArgOperand(1);
6633     SmallVector<const Value *, 4> Allocas;
6634     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6635 
6636     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6637            E = Allocas.end(); Object != E; ++Object) {
6638       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6639 
6640       // Could not find an Alloca.
6641       if (!LifetimeObject)
6642         continue;
6643 
6644       // First check that the Alloca is static, otherwise it won't have a
6645       // valid frame index.
6646       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6647       if (SI == FuncInfo.StaticAllocaMap.end())
6648         return;
6649 
6650       const int FrameIndex = SI->second;
6651       int64_t Offset;
6652       if (GetPointerBaseWithConstantOffset(
6653               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6654         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6655       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6656                                 Offset);
6657       DAG.setRoot(Res);
6658     }
6659     return;
6660   }
6661   case Intrinsic::invariant_start:
6662     // Discard region information.
6663     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6664     return;
6665   case Intrinsic::invariant_end:
6666     // Discard region information.
6667     return;
6668   case Intrinsic::clear_cache:
6669     /// FunctionName may be null.
6670     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6671       lowerCallToExternalSymbol(I, FunctionName);
6672     return;
6673   case Intrinsic::donothing:
6674     // ignore
6675     return;
6676   case Intrinsic::experimental_stackmap:
6677     visitStackmap(I);
6678     return;
6679   case Intrinsic::experimental_patchpoint_void:
6680   case Intrinsic::experimental_patchpoint_i64:
6681     visitPatchpoint(I);
6682     return;
6683   case Intrinsic::experimental_gc_statepoint:
6684     LowerStatepoint(cast<GCStatepointInst>(I));
6685     return;
6686   case Intrinsic::experimental_gc_result:
6687     visitGCResult(cast<GCResultInst>(I));
6688     return;
6689   case Intrinsic::experimental_gc_relocate:
6690     visitGCRelocate(cast<GCRelocateInst>(I));
6691     return;
6692   case Intrinsic::instrprof_increment:
6693     llvm_unreachable("instrprof failed to lower an increment");
6694   case Intrinsic::instrprof_value_profile:
6695     llvm_unreachable("instrprof failed to lower a value profiling call");
6696   case Intrinsic::localescape: {
6697     MachineFunction &MF = DAG.getMachineFunction();
6698     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6699 
6700     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6701     // is the same on all targets.
6702     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6703       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6704       if (isa<ConstantPointerNull>(Arg))
6705         continue; // Skip null pointers. They represent a hole in index space.
6706       AllocaInst *Slot = cast<AllocaInst>(Arg);
6707       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6708              "can only escape static allocas");
6709       int FI = FuncInfo.StaticAllocaMap[Slot];
6710       MCSymbol *FrameAllocSym =
6711           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6712               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6713       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6714               TII->get(TargetOpcode::LOCAL_ESCAPE))
6715           .addSym(FrameAllocSym)
6716           .addFrameIndex(FI);
6717     }
6718 
6719     return;
6720   }
6721 
6722   case Intrinsic::localrecover: {
6723     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6724     MachineFunction &MF = DAG.getMachineFunction();
6725 
6726     // Get the symbol that defines the frame offset.
6727     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6728     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6729     unsigned IdxVal =
6730         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6731     MCSymbol *FrameAllocSym =
6732         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6733             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6734 
6735     Value *FP = I.getArgOperand(1);
6736     SDValue FPVal = getValue(FP);
6737     EVT PtrVT = FPVal.getValueType();
6738 
6739     // Create a MCSymbol for the label to avoid any target lowering
6740     // that would make this PC relative.
6741     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6742     SDValue OffsetVal =
6743         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6744 
6745     // Add the offset to the FP.
6746     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6747     setValue(&I, Add);
6748 
6749     return;
6750   }
6751 
6752   case Intrinsic::eh_exceptionpointer:
6753   case Intrinsic::eh_exceptioncode: {
6754     // Get the exception pointer vreg, copy from it, and resize it to fit.
6755     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6756     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6757     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6758     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6759     SDValue N =
6760         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6761     if (Intrinsic == Intrinsic::eh_exceptioncode)
6762       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6763     setValue(&I, N);
6764     return;
6765   }
6766   case Intrinsic::xray_customevent: {
6767     // Here we want to make sure that the intrinsic behaves as if it has a
6768     // specific calling convention, and only for x86_64.
6769     // FIXME: Support other platforms later.
6770     const auto &Triple = DAG.getTarget().getTargetTriple();
6771     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6772       return;
6773 
6774     SDLoc DL = getCurSDLoc();
6775     SmallVector<SDValue, 8> Ops;
6776 
6777     // We want to say that we always want the arguments in registers.
6778     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6779     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6780     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6781     SDValue Chain = getRoot();
6782     Ops.push_back(LogEntryVal);
6783     Ops.push_back(StrSizeVal);
6784     Ops.push_back(Chain);
6785 
6786     // We need to enforce the calling convention for the callsite, so that
6787     // argument ordering is enforced correctly, and that register allocation can
6788     // see that some registers may be assumed clobbered and have to preserve
6789     // them across calls to the intrinsic.
6790     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6791                                            DL, NodeTys, Ops);
6792     SDValue patchableNode = SDValue(MN, 0);
6793     DAG.setRoot(patchableNode);
6794     setValue(&I, patchableNode);
6795     return;
6796   }
6797   case Intrinsic::xray_typedevent: {
6798     // Here we want to make sure that the intrinsic behaves as if it has a
6799     // specific calling convention, and only for x86_64.
6800     // FIXME: Support other platforms later.
6801     const auto &Triple = DAG.getTarget().getTargetTriple();
6802     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6803       return;
6804 
6805     SDLoc DL = getCurSDLoc();
6806     SmallVector<SDValue, 8> Ops;
6807 
6808     // We want to say that we always want the arguments in registers.
6809     // It's unclear to me how manipulating the selection DAG here forces callers
6810     // to provide arguments in registers instead of on the stack.
6811     SDValue LogTypeId = getValue(I.getArgOperand(0));
6812     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6813     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6814     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6815     SDValue Chain = getRoot();
6816     Ops.push_back(LogTypeId);
6817     Ops.push_back(LogEntryVal);
6818     Ops.push_back(StrSizeVal);
6819     Ops.push_back(Chain);
6820 
6821     // We need to enforce the calling convention for the callsite, so that
6822     // argument ordering is enforced correctly, and that register allocation can
6823     // see that some registers may be assumed clobbered and have to preserve
6824     // them across calls to the intrinsic.
6825     MachineSDNode *MN = DAG.getMachineNode(
6826         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6827     SDValue patchableNode = SDValue(MN, 0);
6828     DAG.setRoot(patchableNode);
6829     setValue(&I, patchableNode);
6830     return;
6831   }
6832   case Intrinsic::experimental_deoptimize:
6833     LowerDeoptimizeCall(&I);
6834     return;
6835 
6836   case Intrinsic::experimental_vector_reduce_v2_fadd:
6837   case Intrinsic::experimental_vector_reduce_v2_fmul:
6838   case Intrinsic::experimental_vector_reduce_add:
6839   case Intrinsic::experimental_vector_reduce_mul:
6840   case Intrinsic::experimental_vector_reduce_and:
6841   case Intrinsic::experimental_vector_reduce_or:
6842   case Intrinsic::experimental_vector_reduce_xor:
6843   case Intrinsic::experimental_vector_reduce_smax:
6844   case Intrinsic::experimental_vector_reduce_smin:
6845   case Intrinsic::experimental_vector_reduce_umax:
6846   case Intrinsic::experimental_vector_reduce_umin:
6847   case Intrinsic::experimental_vector_reduce_fmax:
6848   case Intrinsic::experimental_vector_reduce_fmin:
6849     visitVectorReduce(I, Intrinsic);
6850     return;
6851 
6852   case Intrinsic::icall_branch_funnel: {
6853     SmallVector<SDValue, 16> Ops;
6854     Ops.push_back(getValue(I.getArgOperand(0)));
6855 
6856     int64_t Offset;
6857     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6858         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6859     if (!Base)
6860       report_fatal_error(
6861           "llvm.icall.branch.funnel operand must be a GlobalValue");
6862     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6863 
6864     struct BranchFunnelTarget {
6865       int64_t Offset;
6866       SDValue Target;
6867     };
6868     SmallVector<BranchFunnelTarget, 8> Targets;
6869 
6870     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6871       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6872           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6873       if (ElemBase != Base)
6874         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6875                            "to the same GlobalValue");
6876 
6877       SDValue Val = getValue(I.getArgOperand(Op + 1));
6878       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6879       if (!GA)
6880         report_fatal_error(
6881             "llvm.icall.branch.funnel operand must be a GlobalValue");
6882       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6883                                      GA->getGlobal(), getCurSDLoc(),
6884                                      Val.getValueType(), GA->getOffset())});
6885     }
6886     llvm::sort(Targets,
6887                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6888                  return T1.Offset < T2.Offset;
6889                });
6890 
6891     for (auto &T : Targets) {
6892       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6893       Ops.push_back(T.Target);
6894     }
6895 
6896     Ops.push_back(DAG.getRoot()); // Chain
6897     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6898                                  getCurSDLoc(), MVT::Other, Ops),
6899               0);
6900     DAG.setRoot(N);
6901     setValue(&I, N);
6902     HasTailCall = true;
6903     return;
6904   }
6905 
6906   case Intrinsic::wasm_landingpad_index:
6907     // Information this intrinsic contained has been transferred to
6908     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6909     // delete it now.
6910     return;
6911 
6912   case Intrinsic::aarch64_settag:
6913   case Intrinsic::aarch64_settag_zero: {
6914     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6915     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6916     SDValue Val = TSI.EmitTargetCodeForSetTag(
6917         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6918         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6919         ZeroMemory);
6920     DAG.setRoot(Val);
6921     setValue(&I, Val);
6922     return;
6923   }
6924   case Intrinsic::ptrmask: {
6925     SDValue Ptr = getValue(I.getOperand(0));
6926     SDValue Const = getValue(I.getOperand(1));
6927 
6928     EVT PtrVT = Ptr.getValueType();
6929     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
6930                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
6931     return;
6932   }
6933   case Intrinsic::get_active_lane_mask: {
6934     auto DL = getCurSDLoc();
6935     SDValue Index = getValue(I.getOperand(0));
6936     SDValue BTC = getValue(I.getOperand(1));
6937     Type *ElementTy = I.getOperand(0)->getType();
6938     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6939     unsigned VecWidth = VT.getVectorNumElements();
6940 
6941     SmallVector<SDValue, 16> OpsBTC;
6942     SmallVector<SDValue, 16> OpsIndex;
6943     SmallVector<SDValue, 16> OpsStepConstants;
6944     for (unsigned i = 0; i < VecWidth; i++) {
6945       OpsBTC.push_back(BTC);
6946       OpsIndex.push_back(Index);
6947       OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy)));
6948     }
6949 
6950     EVT CCVT = MVT::i1;
6951     CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth);
6952 
6953     auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth));
6954     SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
6955     SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
6956     SDValue VectorInduction = DAG.getNode(
6957        ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
6958     SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC);
6959     SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
6960                                  VectorBTC, ISD::CondCode::SETULE);
6961     setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
6962                              DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
6963                              SetCC));
6964     return;
6965   }
6966   }
6967 }
6968 
6969 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6970     const ConstrainedFPIntrinsic &FPI) {
6971   SDLoc sdl = getCurSDLoc();
6972 
6973   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6974   SmallVector<EVT, 4> ValueVTs;
6975   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6976   ValueVTs.push_back(MVT::Other); // Out chain
6977 
6978   // We do not need to serialize constrained FP intrinsics against
6979   // each other or against (nonvolatile) loads, so they can be
6980   // chained like loads.
6981   SDValue Chain = DAG.getRoot();
6982   SmallVector<SDValue, 4> Opers;
6983   Opers.push_back(Chain);
6984   if (FPI.isUnaryOp()) {
6985     Opers.push_back(getValue(FPI.getArgOperand(0)));
6986   } else if (FPI.isTernaryOp()) {
6987     Opers.push_back(getValue(FPI.getArgOperand(0)));
6988     Opers.push_back(getValue(FPI.getArgOperand(1)));
6989     Opers.push_back(getValue(FPI.getArgOperand(2)));
6990   } else {
6991     Opers.push_back(getValue(FPI.getArgOperand(0)));
6992     Opers.push_back(getValue(FPI.getArgOperand(1)));
6993   }
6994 
6995   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
6996     assert(Result.getNode()->getNumValues() == 2);
6997 
6998     // Push node to the appropriate list so that future instructions can be
6999     // chained up correctly.
7000     SDValue OutChain = Result.getValue(1);
7001     switch (EB) {
7002     case fp::ExceptionBehavior::ebIgnore:
7003       // The only reason why ebIgnore nodes still need to be chained is that
7004       // they might depend on the current rounding mode, and therefore must
7005       // not be moved across instruction that may change that mode.
7006       LLVM_FALLTHROUGH;
7007     case fp::ExceptionBehavior::ebMayTrap:
7008       // These must not be moved across calls or instructions that may change
7009       // floating-point exception masks.
7010       PendingConstrainedFP.push_back(OutChain);
7011       break;
7012     case fp::ExceptionBehavior::ebStrict:
7013       // These must not be moved across calls or instructions that may change
7014       // floating-point exception masks or read floating-point exception flags.
7015       // In addition, they cannot be optimized out even if unused.
7016       PendingConstrainedFPStrict.push_back(OutChain);
7017       break;
7018     }
7019   };
7020 
7021   SDVTList VTs = DAG.getVTList(ValueVTs);
7022   fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7023 
7024   SDNodeFlags Flags;
7025   if (EB == fp::ExceptionBehavior::ebIgnore)
7026     Flags.setNoFPExcept(true);
7027 
7028   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7029     Flags.copyFMF(*FPOp);
7030 
7031   unsigned Opcode;
7032   switch (FPI.getIntrinsicID()) {
7033   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7034 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7035   case Intrinsic::INTRINSIC:                                                   \
7036     Opcode = ISD::STRICT_##DAGN;                                               \
7037     break;
7038 #include "llvm/IR/ConstrainedOps.def"
7039   case Intrinsic::experimental_constrained_fmuladd: {
7040     Opcode = ISD::STRICT_FMA;
7041     // Break fmuladd into fmul and fadd.
7042     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7043         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7044                                         ValueVTs[0])) {
7045       Opers.pop_back();
7046       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7047       pushOutChain(Mul, EB);
7048       Opcode = ISD::STRICT_FADD;
7049       Opers.clear();
7050       Opers.push_back(Mul.getValue(1));
7051       Opers.push_back(Mul.getValue(0));
7052       Opers.push_back(getValue(FPI.getArgOperand(2)));
7053     }
7054     break;
7055   }
7056   }
7057 
7058   // A few strict DAG nodes carry additional operands that are not
7059   // set up by the default code above.
7060   switch (Opcode) {
7061   default: break;
7062   case ISD::STRICT_FP_ROUND:
7063     Opers.push_back(
7064         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7065     break;
7066   case ISD::STRICT_FSETCC:
7067   case ISD::STRICT_FSETCCS: {
7068     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7069     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
7070     break;
7071   }
7072   }
7073 
7074   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7075   pushOutChain(Result, EB);
7076 
7077   SDValue FPResult = Result.getValue(0);
7078   setValue(&FPI, FPResult);
7079 }
7080 
7081 std::pair<SDValue, SDValue>
7082 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7083                                     const BasicBlock *EHPadBB) {
7084   MachineFunction &MF = DAG.getMachineFunction();
7085   MachineModuleInfo &MMI = MF.getMMI();
7086   MCSymbol *BeginLabel = nullptr;
7087 
7088   if (EHPadBB) {
7089     // Insert a label before the invoke call to mark the try range.  This can be
7090     // used to detect deletion of the invoke via the MachineModuleInfo.
7091     BeginLabel = MMI.getContext().createTempSymbol();
7092 
7093     // For SjLj, keep track of which landing pads go with which invokes
7094     // so as to maintain the ordering of pads in the LSDA.
7095     unsigned CallSiteIndex = MMI.getCurrentCallSite();
7096     if (CallSiteIndex) {
7097       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7098       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7099 
7100       // Now that the call site is handled, stop tracking it.
7101       MMI.setCurrentCallSite(0);
7102     }
7103 
7104     // Both PendingLoads and PendingExports must be flushed here;
7105     // this call might not return.
7106     (void)getRoot();
7107     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7108 
7109     CLI.setChain(getRoot());
7110   }
7111   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7112   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7113 
7114   assert((CLI.IsTailCall || Result.second.getNode()) &&
7115          "Non-null chain expected with non-tail call!");
7116   assert((Result.second.getNode() || !Result.first.getNode()) &&
7117          "Null value expected with tail call!");
7118 
7119   if (!Result.second.getNode()) {
7120     // As a special case, a null chain means that a tail call has been emitted
7121     // and the DAG root is already updated.
7122     HasTailCall = true;
7123 
7124     // Since there's no actual continuation from this block, nothing can be
7125     // relying on us setting vregs for them.
7126     PendingExports.clear();
7127   } else {
7128     DAG.setRoot(Result.second);
7129   }
7130 
7131   if (EHPadBB) {
7132     // Insert a label at the end of the invoke call to mark the try range.  This
7133     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7134     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7135     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7136 
7137     // Inform MachineModuleInfo of range.
7138     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7139     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7140     // actually use outlined funclets and their LSDA info style.
7141     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7142       assert(CLI.CB);
7143       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7144       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel);
7145     } else if (!isScopedEHPersonality(Pers)) {
7146       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7147     }
7148   }
7149 
7150   return Result;
7151 }
7152 
7153 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7154                                       bool isTailCall,
7155                                       const BasicBlock *EHPadBB) {
7156   auto &DL = DAG.getDataLayout();
7157   FunctionType *FTy = CB.getFunctionType();
7158   Type *RetTy = CB.getType();
7159 
7160   TargetLowering::ArgListTy Args;
7161   Args.reserve(CB.arg_size());
7162 
7163   const Value *SwiftErrorVal = nullptr;
7164   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7165 
7166   if (isTailCall) {
7167     // Avoid emitting tail calls in functions with the disable-tail-calls
7168     // attribute.
7169     auto *Caller = CB.getParent()->getParent();
7170     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7171         "true")
7172       isTailCall = false;
7173 
7174     // We can't tail call inside a function with a swifterror argument. Lowering
7175     // does not support this yet. It would have to move into the swifterror
7176     // register before the call.
7177     if (TLI.supportSwiftError() &&
7178         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7179       isTailCall = false;
7180   }
7181 
7182   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7183     TargetLowering::ArgListEntry Entry;
7184     const Value *V = *I;
7185 
7186     // Skip empty types
7187     if (V->getType()->isEmptyTy())
7188       continue;
7189 
7190     SDValue ArgNode = getValue(V);
7191     Entry.Node = ArgNode; Entry.Ty = V->getType();
7192 
7193     Entry.setAttributes(&CB, I - CB.arg_begin());
7194 
7195     // Use swifterror virtual register as input to the call.
7196     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7197       SwiftErrorVal = V;
7198       // We find the virtual register for the actual swifterror argument.
7199       // Instead of using the Value, we use the virtual register instead.
7200       Entry.Node =
7201           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7202                           EVT(TLI.getPointerTy(DL)));
7203     }
7204 
7205     Args.push_back(Entry);
7206 
7207     // If we have an explicit sret argument that is an Instruction, (i.e., it
7208     // might point to function-local memory), we can't meaningfully tail-call.
7209     if (Entry.IsSRet && isa<Instruction>(V))
7210       isTailCall = false;
7211   }
7212 
7213   // If call site has a cfguardtarget operand bundle, create and add an
7214   // additional ArgListEntry.
7215   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7216     TargetLowering::ArgListEntry Entry;
7217     Value *V = Bundle->Inputs[0];
7218     SDValue ArgNode = getValue(V);
7219     Entry.Node = ArgNode;
7220     Entry.Ty = V->getType();
7221     Entry.IsCFGuardTarget = true;
7222     Args.push_back(Entry);
7223   }
7224 
7225   // Check if target-independent constraints permit a tail call here.
7226   // Target-dependent constraints are checked within TLI->LowerCallTo.
7227   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7228     isTailCall = false;
7229 
7230   // Disable tail calls if there is an swifterror argument. Targets have not
7231   // been updated to support tail calls.
7232   if (TLI.supportSwiftError() && SwiftErrorVal)
7233     isTailCall = false;
7234 
7235   TargetLowering::CallLoweringInfo CLI(DAG);
7236   CLI.setDebugLoc(getCurSDLoc())
7237       .setChain(getRoot())
7238       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7239       .setTailCall(isTailCall)
7240       .setConvergent(CB.isConvergent())
7241       .setIsPreallocated(
7242           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7243   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7244 
7245   if (Result.first.getNode()) {
7246     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7247     setValue(&CB, Result.first);
7248   }
7249 
7250   // The last element of CLI.InVals has the SDValue for swifterror return.
7251   // Here we copy it to a virtual register and update SwiftErrorMap for
7252   // book-keeping.
7253   if (SwiftErrorVal && TLI.supportSwiftError()) {
7254     // Get the last element of InVals.
7255     SDValue Src = CLI.InVals.back();
7256     Register VReg =
7257         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7258     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7259     DAG.setRoot(CopyNode);
7260   }
7261 }
7262 
7263 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7264                              SelectionDAGBuilder &Builder) {
7265   // Check to see if this load can be trivially constant folded, e.g. if the
7266   // input is from a string literal.
7267   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7268     // Cast pointer to the type we really want to load.
7269     Type *LoadTy =
7270         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7271     if (LoadVT.isVector())
7272       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7273 
7274     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7275                                          PointerType::getUnqual(LoadTy));
7276 
7277     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7278             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7279       return Builder.getValue(LoadCst);
7280   }
7281 
7282   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7283   // still constant memory, the input chain can be the entry node.
7284   SDValue Root;
7285   bool ConstantMemory = false;
7286 
7287   // Do not serialize (non-volatile) loads of constant memory with anything.
7288   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7289     Root = Builder.DAG.getEntryNode();
7290     ConstantMemory = true;
7291   } else {
7292     // Do not serialize non-volatile loads against each other.
7293     Root = Builder.DAG.getRoot();
7294   }
7295 
7296   SDValue Ptr = Builder.getValue(PtrVal);
7297   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7298                                         Ptr, MachinePointerInfo(PtrVal),
7299                                         /* Alignment = */ 1);
7300 
7301   if (!ConstantMemory)
7302     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7303   return LoadVal;
7304 }
7305 
7306 /// Record the value for an instruction that produces an integer result,
7307 /// converting the type where necessary.
7308 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7309                                                   SDValue Value,
7310                                                   bool IsSigned) {
7311   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7312                                                     I.getType(), true);
7313   if (IsSigned)
7314     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7315   else
7316     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7317   setValue(&I, Value);
7318 }
7319 
7320 /// See if we can lower a memcmp call into an optimized form. If so, return
7321 /// true and lower it. Otherwise return false, and it will be lowered like a
7322 /// normal call.
7323 /// The caller already checked that \p I calls the appropriate LibFunc with a
7324 /// correct prototype.
7325 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7326   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7327   const Value *Size = I.getArgOperand(2);
7328   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7329   if (CSize && CSize->getZExtValue() == 0) {
7330     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7331                                                           I.getType(), true);
7332     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7333     return true;
7334   }
7335 
7336   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7337   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7338       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7339       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7340   if (Res.first.getNode()) {
7341     processIntegerCallValue(I, Res.first, true);
7342     PendingLoads.push_back(Res.second);
7343     return true;
7344   }
7345 
7346   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7347   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7348   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7349     return false;
7350 
7351   // If the target has a fast compare for the given size, it will return a
7352   // preferred load type for that size. Require that the load VT is legal and
7353   // that the target supports unaligned loads of that type. Otherwise, return
7354   // INVALID.
7355   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7356     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7357     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7358     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7359       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7360       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7361       // TODO: Check alignment of src and dest ptrs.
7362       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7363       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7364       if (!TLI.isTypeLegal(LVT) ||
7365           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7366           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7367         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7368     }
7369 
7370     return LVT;
7371   };
7372 
7373   // This turns into unaligned loads. We only do this if the target natively
7374   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7375   // we'll only produce a small number of byte loads.
7376   MVT LoadVT;
7377   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7378   switch (NumBitsToCompare) {
7379   default:
7380     return false;
7381   case 16:
7382     LoadVT = MVT::i16;
7383     break;
7384   case 32:
7385     LoadVT = MVT::i32;
7386     break;
7387   case 64:
7388   case 128:
7389   case 256:
7390     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7391     break;
7392   }
7393 
7394   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7395     return false;
7396 
7397   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7398   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7399 
7400   // Bitcast to a wide integer type if the loads are vectors.
7401   if (LoadVT.isVector()) {
7402     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7403     LoadL = DAG.getBitcast(CmpVT, LoadL);
7404     LoadR = DAG.getBitcast(CmpVT, LoadR);
7405   }
7406 
7407   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7408   processIntegerCallValue(I, Cmp, false);
7409   return true;
7410 }
7411 
7412 /// See if we can lower a memchr call into an optimized form. If so, return
7413 /// true and lower it. Otherwise return false, and it will be lowered like a
7414 /// normal call.
7415 /// The caller already checked that \p I calls the appropriate LibFunc with a
7416 /// correct prototype.
7417 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7418   const Value *Src = I.getArgOperand(0);
7419   const Value *Char = I.getArgOperand(1);
7420   const Value *Length = I.getArgOperand(2);
7421 
7422   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7423   std::pair<SDValue, SDValue> Res =
7424     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7425                                 getValue(Src), getValue(Char), getValue(Length),
7426                                 MachinePointerInfo(Src));
7427   if (Res.first.getNode()) {
7428     setValue(&I, Res.first);
7429     PendingLoads.push_back(Res.second);
7430     return true;
7431   }
7432 
7433   return false;
7434 }
7435 
7436 /// See if we can lower a mempcpy call into an optimized form. If so, return
7437 /// true and lower it. Otherwise return false, and it will be lowered like a
7438 /// normal call.
7439 /// The caller already checked that \p I calls the appropriate LibFunc with a
7440 /// correct prototype.
7441 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7442   SDValue Dst = getValue(I.getArgOperand(0));
7443   SDValue Src = getValue(I.getArgOperand(1));
7444   SDValue Size = getValue(I.getArgOperand(2));
7445 
7446   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7447   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7448   // DAG::getMemcpy needs Alignment to be defined.
7449   Align Alignment = std::min(DstAlign, SrcAlign);
7450 
7451   bool isVol = false;
7452   SDLoc sdl = getCurSDLoc();
7453 
7454   // In the mempcpy context we need to pass in a false value for isTailCall
7455   // because the return pointer needs to be adjusted by the size of
7456   // the copied memory.
7457   SDValue Root = isVol ? getRoot() : getMemoryRoot();
7458   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7459                              /*isTailCall=*/false,
7460                              MachinePointerInfo(I.getArgOperand(0)),
7461                              MachinePointerInfo(I.getArgOperand(1)));
7462   assert(MC.getNode() != nullptr &&
7463          "** memcpy should not be lowered as TailCall in mempcpy context **");
7464   DAG.setRoot(MC);
7465 
7466   // Check if Size needs to be truncated or extended.
7467   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7468 
7469   // Adjust return pointer to point just past the last dst byte.
7470   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7471                                     Dst, Size);
7472   setValue(&I, DstPlusSize);
7473   return true;
7474 }
7475 
7476 /// See if we can lower a strcpy call into an optimized form.  If so, return
7477 /// true and lower it, otherwise return false and it will be lowered like a
7478 /// normal call.
7479 /// The caller already checked that \p I calls the appropriate LibFunc with a
7480 /// correct prototype.
7481 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7482   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7483 
7484   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7485   std::pair<SDValue, SDValue> Res =
7486     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7487                                 getValue(Arg0), getValue(Arg1),
7488                                 MachinePointerInfo(Arg0),
7489                                 MachinePointerInfo(Arg1), isStpcpy);
7490   if (Res.first.getNode()) {
7491     setValue(&I, Res.first);
7492     DAG.setRoot(Res.second);
7493     return true;
7494   }
7495 
7496   return false;
7497 }
7498 
7499 /// See if we can lower a strcmp call into an optimized form.  If so, return
7500 /// true and lower it, otherwise return false and it will be lowered like a
7501 /// normal call.
7502 /// The caller already checked that \p I calls the appropriate LibFunc with a
7503 /// correct prototype.
7504 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7505   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7506 
7507   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7508   std::pair<SDValue, SDValue> Res =
7509     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7510                                 getValue(Arg0), getValue(Arg1),
7511                                 MachinePointerInfo(Arg0),
7512                                 MachinePointerInfo(Arg1));
7513   if (Res.first.getNode()) {
7514     processIntegerCallValue(I, Res.first, true);
7515     PendingLoads.push_back(Res.second);
7516     return true;
7517   }
7518 
7519   return false;
7520 }
7521 
7522 /// See if we can lower a strlen call into an optimized form.  If so, return
7523 /// true and lower it, otherwise return false and it will be lowered like a
7524 /// normal call.
7525 /// The caller already checked that \p I calls the appropriate LibFunc with a
7526 /// correct prototype.
7527 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7528   const Value *Arg0 = I.getArgOperand(0);
7529 
7530   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7531   std::pair<SDValue, SDValue> Res =
7532     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7533                                 getValue(Arg0), MachinePointerInfo(Arg0));
7534   if (Res.first.getNode()) {
7535     processIntegerCallValue(I, Res.first, false);
7536     PendingLoads.push_back(Res.second);
7537     return true;
7538   }
7539 
7540   return false;
7541 }
7542 
7543 /// See if we can lower a strnlen call into an optimized form.  If so, return
7544 /// true and lower it, otherwise return false and it will be lowered like a
7545 /// normal call.
7546 /// The caller already checked that \p I calls the appropriate LibFunc with a
7547 /// correct prototype.
7548 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7549   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7550 
7551   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7552   std::pair<SDValue, SDValue> Res =
7553     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7554                                  getValue(Arg0), getValue(Arg1),
7555                                  MachinePointerInfo(Arg0));
7556   if (Res.first.getNode()) {
7557     processIntegerCallValue(I, Res.first, false);
7558     PendingLoads.push_back(Res.second);
7559     return true;
7560   }
7561 
7562   return false;
7563 }
7564 
7565 /// See if we can lower a unary floating-point operation into an SDNode with
7566 /// the specified Opcode.  If so, return true and lower it, otherwise return
7567 /// false and it will be lowered like a normal call.
7568 /// The caller already checked that \p I calls the appropriate LibFunc with a
7569 /// correct prototype.
7570 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7571                                               unsigned Opcode) {
7572   // We already checked this call's prototype; verify it doesn't modify errno.
7573   if (!I.onlyReadsMemory())
7574     return false;
7575 
7576   SDValue Tmp = getValue(I.getArgOperand(0));
7577   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7578   return true;
7579 }
7580 
7581 /// See if we can lower a binary floating-point operation into an SDNode with
7582 /// the specified Opcode. If so, return true and lower it. Otherwise return
7583 /// false, and it will be lowered like a normal call.
7584 /// The caller already checked that \p I calls the appropriate LibFunc with a
7585 /// correct prototype.
7586 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7587                                                unsigned Opcode) {
7588   // We already checked this call's prototype; verify it doesn't modify errno.
7589   if (!I.onlyReadsMemory())
7590     return false;
7591 
7592   SDValue Tmp0 = getValue(I.getArgOperand(0));
7593   SDValue Tmp1 = getValue(I.getArgOperand(1));
7594   EVT VT = Tmp0.getValueType();
7595   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7596   return true;
7597 }
7598 
7599 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7600   // Handle inline assembly differently.
7601   if (I.isInlineAsm()) {
7602     visitInlineAsm(I);
7603     return;
7604   }
7605 
7606   if (Function *F = I.getCalledFunction()) {
7607     if (F->isDeclaration()) {
7608       // Is this an LLVM intrinsic or a target-specific intrinsic?
7609       unsigned IID = F->getIntrinsicID();
7610       if (!IID)
7611         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7612           IID = II->getIntrinsicID(F);
7613 
7614       if (IID) {
7615         visitIntrinsicCall(I, IID);
7616         return;
7617       }
7618     }
7619 
7620     // Check for well-known libc/libm calls.  If the function is internal, it
7621     // can't be a library call.  Don't do the check if marked as nobuiltin for
7622     // some reason or the call site requires strict floating point semantics.
7623     LibFunc Func;
7624     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7625         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7626         LibInfo->hasOptimizedCodeGen(Func)) {
7627       switch (Func) {
7628       default: break;
7629       case LibFunc_copysign:
7630       case LibFunc_copysignf:
7631       case LibFunc_copysignl:
7632         // We already checked this call's prototype; verify it doesn't modify
7633         // errno.
7634         if (I.onlyReadsMemory()) {
7635           SDValue LHS = getValue(I.getArgOperand(0));
7636           SDValue RHS = getValue(I.getArgOperand(1));
7637           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7638                                    LHS.getValueType(), LHS, RHS));
7639           return;
7640         }
7641         break;
7642       case LibFunc_fabs:
7643       case LibFunc_fabsf:
7644       case LibFunc_fabsl:
7645         if (visitUnaryFloatCall(I, ISD::FABS))
7646           return;
7647         break;
7648       case LibFunc_fmin:
7649       case LibFunc_fminf:
7650       case LibFunc_fminl:
7651         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7652           return;
7653         break;
7654       case LibFunc_fmax:
7655       case LibFunc_fmaxf:
7656       case LibFunc_fmaxl:
7657         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7658           return;
7659         break;
7660       case LibFunc_sin:
7661       case LibFunc_sinf:
7662       case LibFunc_sinl:
7663         if (visitUnaryFloatCall(I, ISD::FSIN))
7664           return;
7665         break;
7666       case LibFunc_cos:
7667       case LibFunc_cosf:
7668       case LibFunc_cosl:
7669         if (visitUnaryFloatCall(I, ISD::FCOS))
7670           return;
7671         break;
7672       case LibFunc_sqrt:
7673       case LibFunc_sqrtf:
7674       case LibFunc_sqrtl:
7675       case LibFunc_sqrt_finite:
7676       case LibFunc_sqrtf_finite:
7677       case LibFunc_sqrtl_finite:
7678         if (visitUnaryFloatCall(I, ISD::FSQRT))
7679           return;
7680         break;
7681       case LibFunc_floor:
7682       case LibFunc_floorf:
7683       case LibFunc_floorl:
7684         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7685           return;
7686         break;
7687       case LibFunc_nearbyint:
7688       case LibFunc_nearbyintf:
7689       case LibFunc_nearbyintl:
7690         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7691           return;
7692         break;
7693       case LibFunc_ceil:
7694       case LibFunc_ceilf:
7695       case LibFunc_ceill:
7696         if (visitUnaryFloatCall(I, ISD::FCEIL))
7697           return;
7698         break;
7699       case LibFunc_rint:
7700       case LibFunc_rintf:
7701       case LibFunc_rintl:
7702         if (visitUnaryFloatCall(I, ISD::FRINT))
7703           return;
7704         break;
7705       case LibFunc_round:
7706       case LibFunc_roundf:
7707       case LibFunc_roundl:
7708         if (visitUnaryFloatCall(I, ISD::FROUND))
7709           return;
7710         break;
7711       case LibFunc_trunc:
7712       case LibFunc_truncf:
7713       case LibFunc_truncl:
7714         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7715           return;
7716         break;
7717       case LibFunc_log2:
7718       case LibFunc_log2f:
7719       case LibFunc_log2l:
7720         if (visitUnaryFloatCall(I, ISD::FLOG2))
7721           return;
7722         break;
7723       case LibFunc_exp2:
7724       case LibFunc_exp2f:
7725       case LibFunc_exp2l:
7726         if (visitUnaryFloatCall(I, ISD::FEXP2))
7727           return;
7728         break;
7729       case LibFunc_memcmp:
7730         if (visitMemCmpCall(I))
7731           return;
7732         break;
7733       case LibFunc_mempcpy:
7734         if (visitMemPCpyCall(I))
7735           return;
7736         break;
7737       case LibFunc_memchr:
7738         if (visitMemChrCall(I))
7739           return;
7740         break;
7741       case LibFunc_strcpy:
7742         if (visitStrCpyCall(I, false))
7743           return;
7744         break;
7745       case LibFunc_stpcpy:
7746         if (visitStrCpyCall(I, true))
7747           return;
7748         break;
7749       case LibFunc_strcmp:
7750         if (visitStrCmpCall(I))
7751           return;
7752         break;
7753       case LibFunc_strlen:
7754         if (visitStrLenCall(I))
7755           return;
7756         break;
7757       case LibFunc_strnlen:
7758         if (visitStrNLenCall(I))
7759           return;
7760         break;
7761       }
7762     }
7763   }
7764 
7765   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7766   // have to do anything here to lower funclet bundles.
7767   // CFGuardTarget bundles are lowered in LowerCallTo.
7768   assert(!I.hasOperandBundlesOtherThan(
7769              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
7770               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) &&
7771          "Cannot lower calls with arbitrary operand bundles!");
7772 
7773   SDValue Callee = getValue(I.getCalledOperand());
7774 
7775   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7776     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7777   else
7778     // Check if we can potentially perform a tail call. More detailed checking
7779     // is be done within LowerCallTo, after more information about the call is
7780     // known.
7781     LowerCallTo(I, Callee, I.isTailCall());
7782 }
7783 
7784 namespace {
7785 
7786 /// AsmOperandInfo - This contains information for each constraint that we are
7787 /// lowering.
7788 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7789 public:
7790   /// CallOperand - If this is the result output operand or a clobber
7791   /// this is null, otherwise it is the incoming operand to the CallInst.
7792   /// This gets modified as the asm is processed.
7793   SDValue CallOperand;
7794 
7795   /// AssignedRegs - If this is a register or register class operand, this
7796   /// contains the set of register corresponding to the operand.
7797   RegsForValue AssignedRegs;
7798 
7799   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7800     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7801   }
7802 
7803   /// Whether or not this operand accesses memory
7804   bool hasMemory(const TargetLowering &TLI) const {
7805     // Indirect operand accesses access memory.
7806     if (isIndirect)
7807       return true;
7808 
7809     for (const auto &Code : Codes)
7810       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7811         return true;
7812 
7813     return false;
7814   }
7815 
7816   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7817   /// corresponds to.  If there is no Value* for this operand, it returns
7818   /// MVT::Other.
7819   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7820                            const DataLayout &DL) const {
7821     if (!CallOperandVal) return MVT::Other;
7822 
7823     if (isa<BasicBlock>(CallOperandVal))
7824       return TLI.getProgramPointerTy(DL);
7825 
7826     llvm::Type *OpTy = CallOperandVal->getType();
7827 
7828     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7829     // If this is an indirect operand, the operand is a pointer to the
7830     // accessed type.
7831     if (isIndirect) {
7832       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7833       if (!PtrTy)
7834         report_fatal_error("Indirect operand for inline asm not a pointer!");
7835       OpTy = PtrTy->getElementType();
7836     }
7837 
7838     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7839     if (StructType *STy = dyn_cast<StructType>(OpTy))
7840       if (STy->getNumElements() == 1)
7841         OpTy = STy->getElementType(0);
7842 
7843     // If OpTy is not a single value, it may be a struct/union that we
7844     // can tile with integers.
7845     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7846       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7847       switch (BitSize) {
7848       default: break;
7849       case 1:
7850       case 8:
7851       case 16:
7852       case 32:
7853       case 64:
7854       case 128:
7855         OpTy = IntegerType::get(Context, BitSize);
7856         break;
7857       }
7858     }
7859 
7860     return TLI.getValueType(DL, OpTy, true);
7861   }
7862 };
7863 
7864 
7865 } // end anonymous namespace
7866 
7867 /// Make sure that the output operand \p OpInfo and its corresponding input
7868 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7869 /// out).
7870 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7871                                SDISelAsmOperandInfo &MatchingOpInfo,
7872                                SelectionDAG &DAG) {
7873   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7874     return;
7875 
7876   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7877   const auto &TLI = DAG.getTargetLoweringInfo();
7878 
7879   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7880       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7881                                        OpInfo.ConstraintVT);
7882   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7883       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7884                                        MatchingOpInfo.ConstraintVT);
7885   if ((OpInfo.ConstraintVT.isInteger() !=
7886        MatchingOpInfo.ConstraintVT.isInteger()) ||
7887       (MatchRC.second != InputRC.second)) {
7888     // FIXME: error out in a more elegant fashion
7889     report_fatal_error("Unsupported asm: input constraint"
7890                        " with a matching output constraint of"
7891                        " incompatible type!");
7892   }
7893   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7894 }
7895 
7896 /// Get a direct memory input to behave well as an indirect operand.
7897 /// This may introduce stores, hence the need for a \p Chain.
7898 /// \return The (possibly updated) chain.
7899 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7900                                         SDISelAsmOperandInfo &OpInfo,
7901                                         SelectionDAG &DAG) {
7902   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7903 
7904   // If we don't have an indirect input, put it in the constpool if we can,
7905   // otherwise spill it to a stack slot.
7906   // TODO: This isn't quite right. We need to handle these according to
7907   // the addressing mode that the constraint wants. Also, this may take
7908   // an additional register for the computation and we don't want that
7909   // either.
7910 
7911   // If the operand is a float, integer, or vector constant, spill to a
7912   // constant pool entry to get its address.
7913   const Value *OpVal = OpInfo.CallOperandVal;
7914   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7915       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7916     OpInfo.CallOperand = DAG.getConstantPool(
7917         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7918     return Chain;
7919   }
7920 
7921   // Otherwise, create a stack slot and emit a store to it before the asm.
7922   Type *Ty = OpVal->getType();
7923   auto &DL = DAG.getDataLayout();
7924   uint64_t TySize = DL.getTypeAllocSize(Ty);
7925   MachineFunction &MF = DAG.getMachineFunction();
7926   int SSFI = MF.getFrameInfo().CreateStackObject(
7927       TySize, DL.getPrefTypeAlign(Ty), false);
7928   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7929   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7930                             MachinePointerInfo::getFixedStack(MF, SSFI),
7931                             TLI.getMemValueType(DL, Ty));
7932   OpInfo.CallOperand = StackSlot;
7933 
7934   return Chain;
7935 }
7936 
7937 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7938 /// specified operand.  We prefer to assign virtual registers, to allow the
7939 /// register allocator to handle the assignment process.  However, if the asm
7940 /// uses features that we can't model on machineinstrs, we have SDISel do the
7941 /// allocation.  This produces generally horrible, but correct, code.
7942 ///
7943 ///   OpInfo describes the operand
7944 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7945 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7946                                  SDISelAsmOperandInfo &OpInfo,
7947                                  SDISelAsmOperandInfo &RefOpInfo) {
7948   LLVMContext &Context = *DAG.getContext();
7949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7950 
7951   MachineFunction &MF = DAG.getMachineFunction();
7952   SmallVector<unsigned, 4> Regs;
7953   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7954 
7955   // No work to do for memory operations.
7956   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7957     return;
7958 
7959   // If this is a constraint for a single physreg, or a constraint for a
7960   // register class, find it.
7961   unsigned AssignedReg;
7962   const TargetRegisterClass *RC;
7963   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7964       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7965   // RC is unset only on failure. Return immediately.
7966   if (!RC)
7967     return;
7968 
7969   // Get the actual register value type.  This is important, because the user
7970   // may have asked for (e.g.) the AX register in i32 type.  We need to
7971   // remember that AX is actually i16 to get the right extension.
7972   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7973 
7974   if (OpInfo.ConstraintVT != MVT::Other) {
7975     // If this is an FP operand in an integer register (or visa versa), or more
7976     // generally if the operand value disagrees with the register class we plan
7977     // to stick it in, fix the operand type.
7978     //
7979     // If this is an input value, the bitcast to the new type is done now.
7980     // Bitcast for output value is done at the end of visitInlineAsm().
7981     if ((OpInfo.Type == InlineAsm::isOutput ||
7982          OpInfo.Type == InlineAsm::isInput) &&
7983         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7984       // Try to convert to the first EVT that the reg class contains.  If the
7985       // types are identical size, use a bitcast to convert (e.g. two differing
7986       // vector types).  Note: output bitcast is done at the end of
7987       // visitInlineAsm().
7988       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7989         // Exclude indirect inputs while they are unsupported because the code
7990         // to perform the load is missing and thus OpInfo.CallOperand still
7991         // refers to the input address rather than the pointed-to value.
7992         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7993           OpInfo.CallOperand =
7994               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7995         OpInfo.ConstraintVT = RegVT;
7996         // If the operand is an FP value and we want it in integer registers,
7997         // use the corresponding integer type. This turns an f64 value into
7998         // i64, which can be passed with two i32 values on a 32-bit machine.
7999       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8000         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8001         if (OpInfo.Type == InlineAsm::isInput)
8002           OpInfo.CallOperand =
8003               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8004         OpInfo.ConstraintVT = VT;
8005       }
8006     }
8007   }
8008 
8009   // No need to allocate a matching input constraint since the constraint it's
8010   // matching to has already been allocated.
8011   if (OpInfo.isMatchingInputConstraint())
8012     return;
8013 
8014   EVT ValueVT = OpInfo.ConstraintVT;
8015   if (OpInfo.ConstraintVT == MVT::Other)
8016     ValueVT = RegVT;
8017 
8018   // Initialize NumRegs.
8019   unsigned NumRegs = 1;
8020   if (OpInfo.ConstraintVT != MVT::Other)
8021     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
8022 
8023   // If this is a constraint for a specific physical register, like {r17},
8024   // assign it now.
8025 
8026   // If this associated to a specific register, initialize iterator to correct
8027   // place. If virtual, make sure we have enough registers
8028 
8029   // Initialize iterator if necessary
8030   TargetRegisterClass::iterator I = RC->begin();
8031   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8032 
8033   // Do not check for single registers.
8034   if (AssignedReg) {
8035       for (; *I != AssignedReg; ++I)
8036         assert(I != RC->end() && "AssignedReg should be member of RC");
8037   }
8038 
8039   for (; NumRegs; --NumRegs, ++I) {
8040     assert(I != RC->end() && "Ran out of registers to allocate!");
8041     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8042     Regs.push_back(R);
8043   }
8044 
8045   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8046 }
8047 
8048 static unsigned
8049 findMatchingInlineAsmOperand(unsigned OperandNo,
8050                              const std::vector<SDValue> &AsmNodeOperands) {
8051   // Scan until we find the definition we already emitted of this operand.
8052   unsigned CurOp = InlineAsm::Op_FirstOperand;
8053   for (; OperandNo; --OperandNo) {
8054     // Advance to the next operand.
8055     unsigned OpFlag =
8056         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8057     assert((InlineAsm::isRegDefKind(OpFlag) ||
8058             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8059             InlineAsm::isMemKind(OpFlag)) &&
8060            "Skipped past definitions?");
8061     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8062   }
8063   return CurOp;
8064 }
8065 
8066 namespace {
8067 
8068 class ExtraFlags {
8069   unsigned Flags = 0;
8070 
8071 public:
8072   explicit ExtraFlags(const CallBase &Call) {
8073     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8074     if (IA->hasSideEffects())
8075       Flags |= InlineAsm::Extra_HasSideEffects;
8076     if (IA->isAlignStack())
8077       Flags |= InlineAsm::Extra_IsAlignStack;
8078     if (Call.isConvergent())
8079       Flags |= InlineAsm::Extra_IsConvergent;
8080     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8081   }
8082 
8083   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8084     // Ideally, we would only check against memory constraints.  However, the
8085     // meaning of an Other constraint can be target-specific and we can't easily
8086     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8087     // for Other constraints as well.
8088     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8089         OpInfo.ConstraintType == TargetLowering::C_Other) {
8090       if (OpInfo.Type == InlineAsm::isInput)
8091         Flags |= InlineAsm::Extra_MayLoad;
8092       else if (OpInfo.Type == InlineAsm::isOutput)
8093         Flags |= InlineAsm::Extra_MayStore;
8094       else if (OpInfo.Type == InlineAsm::isClobber)
8095         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8096     }
8097   }
8098 
8099   unsigned get() const { return Flags; }
8100 };
8101 
8102 } // end anonymous namespace
8103 
8104 /// visitInlineAsm - Handle a call to an InlineAsm object.
8105 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) {
8106   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8107 
8108   /// ConstraintOperands - Information about all of the constraints.
8109   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8110 
8111   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8112   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8113       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8114 
8115   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8116   // AsmDialect, MayLoad, MayStore).
8117   bool HasSideEffect = IA->hasSideEffects();
8118   ExtraFlags ExtraInfo(Call);
8119 
8120   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8121   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8122   unsigned NumMatchingOps = 0;
8123   for (auto &T : TargetConstraints) {
8124     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8125     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8126 
8127     // Compute the value type for each operand.
8128     if (OpInfo.Type == InlineAsm::isInput ||
8129         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8130       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8131 
8132       // Process the call argument. BasicBlocks are labels, currently appearing
8133       // only in asm's.
8134       if (isa<CallBrInst>(Call) &&
8135           ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8136                         cast<CallBrInst>(&Call)->getNumIndirectDests() -
8137                         NumMatchingOps) &&
8138           (NumMatchingOps == 0 ||
8139            ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8140                         NumMatchingOps))) {
8141         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8142         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8143         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8144       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8145         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8146       } else {
8147         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8148       }
8149 
8150       OpInfo.ConstraintVT =
8151           OpInfo
8152               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8153               .getSimpleVT();
8154     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8155       // The return value of the call is this value.  As such, there is no
8156       // corresponding argument.
8157       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8158       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8159         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8160             DAG.getDataLayout(), STy->getElementType(ResNo));
8161       } else {
8162         assert(ResNo == 0 && "Asm only has one result!");
8163         OpInfo.ConstraintVT =
8164             TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType());
8165       }
8166       ++ResNo;
8167     } else {
8168       OpInfo.ConstraintVT = MVT::Other;
8169     }
8170 
8171     if (OpInfo.hasMatchingInput())
8172       ++NumMatchingOps;
8173 
8174     if (!HasSideEffect)
8175       HasSideEffect = OpInfo.hasMemory(TLI);
8176 
8177     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8178     // FIXME: Could we compute this on OpInfo rather than T?
8179 
8180     // Compute the constraint code and ConstraintType to use.
8181     TLI.ComputeConstraintToUse(T, SDValue());
8182 
8183     if (T.ConstraintType == TargetLowering::C_Immediate &&
8184         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8185       // We've delayed emitting a diagnostic like the "n" constraint because
8186       // inlining could cause an integer showing up.
8187       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8188                                           "' expects an integer constant "
8189                                           "expression");
8190 
8191     ExtraInfo.update(T);
8192   }
8193 
8194 
8195   // We won't need to flush pending loads if this asm doesn't touch
8196   // memory and is nonvolatile.
8197   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8198 
8199   bool IsCallBr = isa<CallBrInst>(Call);
8200   if (IsCallBr) {
8201     // If this is a callbr we need to flush pending exports since inlineasm_br
8202     // is a terminator. We need to do this before nodes are glued to
8203     // the inlineasm_br node.
8204     Chain = getControlRoot();
8205   }
8206 
8207   // Second pass over the constraints: compute which constraint option to use.
8208   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8209     // If this is an output operand with a matching input operand, look up the
8210     // matching input. If their types mismatch, e.g. one is an integer, the
8211     // other is floating point, or their sizes are different, flag it as an
8212     // error.
8213     if (OpInfo.hasMatchingInput()) {
8214       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8215       patchMatchingInput(OpInfo, Input, DAG);
8216     }
8217 
8218     // Compute the constraint code and ConstraintType to use.
8219     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8220 
8221     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8222         OpInfo.Type == InlineAsm::isClobber)
8223       continue;
8224 
8225     // If this is a memory input, and if the operand is not indirect, do what we
8226     // need to provide an address for the memory input.
8227     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8228         !OpInfo.isIndirect) {
8229       assert((OpInfo.isMultipleAlternative ||
8230               (OpInfo.Type == InlineAsm::isInput)) &&
8231              "Can only indirectify direct input operands!");
8232 
8233       // Memory operands really want the address of the value.
8234       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8235 
8236       // There is no longer a Value* corresponding to this operand.
8237       OpInfo.CallOperandVal = nullptr;
8238 
8239       // It is now an indirect operand.
8240       OpInfo.isIndirect = true;
8241     }
8242 
8243   }
8244 
8245   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8246   std::vector<SDValue> AsmNodeOperands;
8247   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8248   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8249       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8250 
8251   // If we have a !srcloc metadata node associated with it, we want to attach
8252   // this to the ultimately generated inline asm machineinstr.  To do this, we
8253   // pass in the third operand as this (potentially null) inline asm MDNode.
8254   const MDNode *SrcLoc = Call.getMetadata("srcloc");
8255   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8256 
8257   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8258   // bits as operand 3.
8259   AsmNodeOperands.push_back(DAG.getTargetConstant(
8260       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8261 
8262   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8263   // this, assign virtual and physical registers for inputs and otput.
8264   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8265     // Assign Registers.
8266     SDISelAsmOperandInfo &RefOpInfo =
8267         OpInfo.isMatchingInputConstraint()
8268             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8269             : OpInfo;
8270     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8271 
8272     auto DetectWriteToReservedRegister = [&]() {
8273       const MachineFunction &MF = DAG.getMachineFunction();
8274       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8275       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8276         if (Register::isPhysicalRegister(Reg) &&
8277             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8278           const char *RegName = TRI.getName(Reg);
8279           emitInlineAsmError(Call, "write to reserved register '" +
8280                                        Twine(RegName) + "'");
8281           return true;
8282         }
8283       }
8284       return false;
8285     };
8286 
8287     switch (OpInfo.Type) {
8288     case InlineAsm::isOutput:
8289       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8290         unsigned ConstraintID =
8291             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8292         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8293                "Failed to convert memory constraint code to constraint id.");
8294 
8295         // Add information to the INLINEASM node to know about this output.
8296         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8297         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8298         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8299                                                         MVT::i32));
8300         AsmNodeOperands.push_back(OpInfo.CallOperand);
8301       } else {
8302         // Otherwise, this outputs to a register (directly for C_Register /
8303         // C_RegisterClass, and a target-defined fashion for
8304         // C_Immediate/C_Other). Find a register that we can use.
8305         if (OpInfo.AssignedRegs.Regs.empty()) {
8306           emitInlineAsmError(
8307               Call, "couldn't allocate output register for constraint '" +
8308                         Twine(OpInfo.ConstraintCode) + "'");
8309           return;
8310         }
8311 
8312         if (DetectWriteToReservedRegister())
8313           return;
8314 
8315         // Add information to the INLINEASM node to know that this register is
8316         // set.
8317         OpInfo.AssignedRegs.AddInlineAsmOperands(
8318             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8319                                   : InlineAsm::Kind_RegDef,
8320             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8321       }
8322       break;
8323 
8324     case InlineAsm::isInput: {
8325       SDValue InOperandVal = OpInfo.CallOperand;
8326 
8327       if (OpInfo.isMatchingInputConstraint()) {
8328         // If this is required to match an output register we have already set,
8329         // just use its register.
8330         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8331                                                   AsmNodeOperands);
8332         unsigned OpFlag =
8333           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8334         if (InlineAsm::isRegDefKind(OpFlag) ||
8335             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8336           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8337           if (OpInfo.isIndirect) {
8338             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8339             emitInlineAsmError(Call, "inline asm not supported yet: "
8340                                      "don't know how to handle tied "
8341                                      "indirect register inputs");
8342             return;
8343           }
8344 
8345           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8346           SmallVector<unsigned, 4> Regs;
8347 
8348           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8349             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8350             MachineRegisterInfo &RegInfo =
8351                 DAG.getMachineFunction().getRegInfo();
8352             for (unsigned i = 0; i != NumRegs; ++i)
8353               Regs.push_back(RegInfo.createVirtualRegister(RC));
8354           } else {
8355             emitInlineAsmError(Call,
8356                                "inline asm error: This value type register "
8357                                "class is not natively supported!");
8358             return;
8359           }
8360 
8361           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8362 
8363           SDLoc dl = getCurSDLoc();
8364           // Use the produced MatchedRegs object to
8365           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8366           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8367                                            true, OpInfo.getMatchedOperand(), dl,
8368                                            DAG, AsmNodeOperands);
8369           break;
8370         }
8371 
8372         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8373         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8374                "Unexpected number of operands");
8375         // Add information to the INLINEASM node to know about this input.
8376         // See InlineAsm.h isUseOperandTiedToDef.
8377         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8378         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8379                                                     OpInfo.getMatchedOperand());
8380         AsmNodeOperands.push_back(DAG.getTargetConstant(
8381             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8382         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8383         break;
8384       }
8385 
8386       // Treat indirect 'X' constraint as memory.
8387       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8388           OpInfo.isIndirect)
8389         OpInfo.ConstraintType = TargetLowering::C_Memory;
8390 
8391       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8392           OpInfo.ConstraintType == TargetLowering::C_Other) {
8393         std::vector<SDValue> Ops;
8394         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8395                                           Ops, DAG);
8396         if (Ops.empty()) {
8397           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8398             if (isa<ConstantSDNode>(InOperandVal)) {
8399               emitInlineAsmError(Call, "value out of range for constraint '" +
8400                                            Twine(OpInfo.ConstraintCode) + "'");
8401               return;
8402             }
8403 
8404           emitInlineAsmError(Call,
8405                              "invalid operand for inline asm constraint '" +
8406                                  Twine(OpInfo.ConstraintCode) + "'");
8407           return;
8408         }
8409 
8410         // Add information to the INLINEASM node to know about this input.
8411         unsigned ResOpType =
8412           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8413         AsmNodeOperands.push_back(DAG.getTargetConstant(
8414             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8415         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8416         break;
8417       }
8418 
8419       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8420         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8421         assert(InOperandVal.getValueType() ==
8422                    TLI.getPointerTy(DAG.getDataLayout()) &&
8423                "Memory operands expect pointer values");
8424 
8425         unsigned ConstraintID =
8426             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8427         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8428                "Failed to convert memory constraint code to constraint id.");
8429 
8430         // Add information to the INLINEASM node to know about this input.
8431         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8432         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8433         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8434                                                         getCurSDLoc(),
8435                                                         MVT::i32));
8436         AsmNodeOperands.push_back(InOperandVal);
8437         break;
8438       }
8439 
8440       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8441               OpInfo.ConstraintType == TargetLowering::C_Register) &&
8442              "Unknown constraint type!");
8443 
8444       // TODO: Support this.
8445       if (OpInfo.isIndirect) {
8446         emitInlineAsmError(
8447             Call, "Don't know how to handle indirect register inputs yet "
8448                   "for constraint '" +
8449                       Twine(OpInfo.ConstraintCode) + "'");
8450         return;
8451       }
8452 
8453       // Copy the input into the appropriate registers.
8454       if (OpInfo.AssignedRegs.Regs.empty()) {
8455         emitInlineAsmError(Call,
8456                            "couldn't allocate input reg for constraint '" +
8457                                Twine(OpInfo.ConstraintCode) + "'");
8458         return;
8459       }
8460 
8461       if (DetectWriteToReservedRegister())
8462         return;
8463 
8464       SDLoc dl = getCurSDLoc();
8465 
8466       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8467                                         &Call);
8468 
8469       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8470                                                dl, DAG, AsmNodeOperands);
8471       break;
8472     }
8473     case InlineAsm::isClobber:
8474       // Add the clobbered value to the operand list, so that the register
8475       // allocator is aware that the physreg got clobbered.
8476       if (!OpInfo.AssignedRegs.Regs.empty())
8477         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8478                                                  false, 0, getCurSDLoc(), DAG,
8479                                                  AsmNodeOperands);
8480       break;
8481     }
8482   }
8483 
8484   // Finish up input operands.  Set the input chain and add the flag last.
8485   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8486   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8487 
8488   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8489   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8490                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8491   Flag = Chain.getValue(1);
8492 
8493   // Do additional work to generate outputs.
8494 
8495   SmallVector<EVT, 1> ResultVTs;
8496   SmallVector<SDValue, 1> ResultValues;
8497   SmallVector<SDValue, 8> OutChains;
8498 
8499   llvm::Type *CallResultType = Call.getType();
8500   ArrayRef<Type *> ResultTypes;
8501   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8502     ResultTypes = StructResult->elements();
8503   else if (!CallResultType->isVoidTy())
8504     ResultTypes = makeArrayRef(CallResultType);
8505 
8506   auto CurResultType = ResultTypes.begin();
8507   auto handleRegAssign = [&](SDValue V) {
8508     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8509     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8510     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8511     ++CurResultType;
8512     // If the type of the inline asm call site return value is different but has
8513     // same size as the type of the asm output bitcast it.  One example of this
8514     // is for vectors with different width / number of elements.  This can
8515     // happen for register classes that can contain multiple different value
8516     // types.  The preg or vreg allocated may not have the same VT as was
8517     // expected.
8518     //
8519     // This can also happen for a return value that disagrees with the register
8520     // class it is put in, eg. a double in a general-purpose register on a
8521     // 32-bit machine.
8522     if (ResultVT != V.getValueType() &&
8523         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8524       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8525     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8526              V.getValueType().isInteger()) {
8527       // If a result value was tied to an input value, the computed result
8528       // may have a wider width than the expected result.  Extract the
8529       // relevant portion.
8530       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8531     }
8532     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8533     ResultVTs.push_back(ResultVT);
8534     ResultValues.push_back(V);
8535   };
8536 
8537   // Deal with output operands.
8538   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8539     if (OpInfo.Type == InlineAsm::isOutput) {
8540       SDValue Val;
8541       // Skip trivial output operands.
8542       if (OpInfo.AssignedRegs.Regs.empty())
8543         continue;
8544 
8545       switch (OpInfo.ConstraintType) {
8546       case TargetLowering::C_Register:
8547       case TargetLowering::C_RegisterClass:
8548         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8549                                                   Chain, &Flag, &Call);
8550         break;
8551       case TargetLowering::C_Immediate:
8552       case TargetLowering::C_Other:
8553         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8554                                               OpInfo, DAG);
8555         break;
8556       case TargetLowering::C_Memory:
8557         break; // Already handled.
8558       case TargetLowering::C_Unknown:
8559         assert(false && "Unexpected unknown constraint");
8560       }
8561 
8562       // Indirect output manifest as stores. Record output chains.
8563       if (OpInfo.isIndirect) {
8564         const Value *Ptr = OpInfo.CallOperandVal;
8565         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8566         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8567                                      MachinePointerInfo(Ptr));
8568         OutChains.push_back(Store);
8569       } else {
8570         // generate CopyFromRegs to associated registers.
8571         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8572         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8573           for (const SDValue &V : Val->op_values())
8574             handleRegAssign(V);
8575         } else
8576           handleRegAssign(Val);
8577       }
8578     }
8579   }
8580 
8581   // Set results.
8582   if (!ResultValues.empty()) {
8583     assert(CurResultType == ResultTypes.end() &&
8584            "Mismatch in number of ResultTypes");
8585     assert(ResultValues.size() == ResultTypes.size() &&
8586            "Mismatch in number of output operands in asm result");
8587 
8588     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8589                             DAG.getVTList(ResultVTs), ResultValues);
8590     setValue(&Call, V);
8591   }
8592 
8593   // Collect store chains.
8594   if (!OutChains.empty())
8595     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8596 
8597   // Only Update Root if inline assembly has a memory effect.
8598   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8599     DAG.setRoot(Chain);
8600 }
8601 
8602 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8603                                              const Twine &Message) {
8604   LLVMContext &Ctx = *DAG.getContext();
8605   Ctx.emitError(&Call, Message);
8606 
8607   // Make sure we leave the DAG in a valid state
8608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8609   SmallVector<EVT, 1> ValueVTs;
8610   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8611 
8612   if (ValueVTs.empty())
8613     return;
8614 
8615   SmallVector<SDValue, 1> Ops;
8616   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8617     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8618 
8619   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8620 }
8621 
8622 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8623   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8624                           MVT::Other, getRoot(),
8625                           getValue(I.getArgOperand(0)),
8626                           DAG.getSrcValue(I.getArgOperand(0))));
8627 }
8628 
8629 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8630   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8631   const DataLayout &DL = DAG.getDataLayout();
8632   SDValue V = DAG.getVAArg(
8633       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8634       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8635       DL.getABITypeAlign(I.getType()).value());
8636   DAG.setRoot(V.getValue(1));
8637 
8638   if (I.getType()->isPointerTy())
8639     V = DAG.getPtrExtOrTrunc(
8640         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8641   setValue(&I, V);
8642 }
8643 
8644 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8645   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8646                           MVT::Other, getRoot(),
8647                           getValue(I.getArgOperand(0)),
8648                           DAG.getSrcValue(I.getArgOperand(0))));
8649 }
8650 
8651 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8652   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8653                           MVT::Other, getRoot(),
8654                           getValue(I.getArgOperand(0)),
8655                           getValue(I.getArgOperand(1)),
8656                           DAG.getSrcValue(I.getArgOperand(0)),
8657                           DAG.getSrcValue(I.getArgOperand(1))));
8658 }
8659 
8660 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8661                                                     const Instruction &I,
8662                                                     SDValue Op) {
8663   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8664   if (!Range)
8665     return Op;
8666 
8667   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8668   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8669     return Op;
8670 
8671   APInt Lo = CR.getUnsignedMin();
8672   if (!Lo.isMinValue())
8673     return Op;
8674 
8675   APInt Hi = CR.getUnsignedMax();
8676   unsigned Bits = std::max(Hi.getActiveBits(),
8677                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8678 
8679   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8680 
8681   SDLoc SL = getCurSDLoc();
8682 
8683   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8684                              DAG.getValueType(SmallVT));
8685   unsigned NumVals = Op.getNode()->getNumValues();
8686   if (NumVals == 1)
8687     return ZExt;
8688 
8689   SmallVector<SDValue, 4> Ops;
8690 
8691   Ops.push_back(ZExt);
8692   for (unsigned I = 1; I != NumVals; ++I)
8693     Ops.push_back(Op.getValue(I));
8694 
8695   return DAG.getMergeValues(Ops, SL);
8696 }
8697 
8698 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8699 /// the call being lowered.
8700 ///
8701 /// This is a helper for lowering intrinsics that follow a target calling
8702 /// convention or require stack pointer adjustment. Only a subset of the
8703 /// intrinsic's operands need to participate in the calling convention.
8704 void SelectionDAGBuilder::populateCallLoweringInfo(
8705     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8706     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8707     bool IsPatchPoint) {
8708   TargetLowering::ArgListTy Args;
8709   Args.reserve(NumArgs);
8710 
8711   // Populate the argument list.
8712   // Attributes for args start at offset 1, after the return attribute.
8713   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8714        ArgI != ArgE; ++ArgI) {
8715     const Value *V = Call->getOperand(ArgI);
8716 
8717     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8718 
8719     TargetLowering::ArgListEntry Entry;
8720     Entry.Node = getValue(V);
8721     Entry.Ty = V->getType();
8722     Entry.setAttributes(Call, ArgI);
8723     Args.push_back(Entry);
8724   }
8725 
8726   CLI.setDebugLoc(getCurSDLoc())
8727       .setChain(getRoot())
8728       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8729       .setDiscardResult(Call->use_empty())
8730       .setIsPatchPoint(IsPatchPoint)
8731       .setIsPreallocated(
8732           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
8733 }
8734 
8735 /// Add a stack map intrinsic call's live variable operands to a stackmap
8736 /// or patchpoint target node's operand list.
8737 ///
8738 /// Constants are converted to TargetConstants purely as an optimization to
8739 /// avoid constant materialization and register allocation.
8740 ///
8741 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8742 /// generate addess computation nodes, and so FinalizeISel can convert the
8743 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8744 /// address materialization and register allocation, but may also be required
8745 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8746 /// alloca in the entry block, then the runtime may assume that the alloca's
8747 /// StackMap location can be read immediately after compilation and that the
8748 /// location is valid at any point during execution (this is similar to the
8749 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8750 /// only available in a register, then the runtime would need to trap when
8751 /// execution reaches the StackMap in order to read the alloca's location.
8752 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
8753                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8754                                 SelectionDAGBuilder &Builder) {
8755   for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
8756     SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
8757     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8758       Ops.push_back(
8759         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8760       Ops.push_back(
8761         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8762     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8763       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8764       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8765           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8766     } else
8767       Ops.push_back(OpVal);
8768   }
8769 }
8770 
8771 /// Lower llvm.experimental.stackmap directly to its target opcode.
8772 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8773   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8774   //                                  [live variables...])
8775 
8776   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8777 
8778   SDValue Chain, InFlag, Callee, NullPtr;
8779   SmallVector<SDValue, 32> Ops;
8780 
8781   SDLoc DL = getCurSDLoc();
8782   Callee = getValue(CI.getCalledOperand());
8783   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8784 
8785   // The stackmap intrinsic only records the live variables (the arguments
8786   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8787   // intrinsic, this won't be lowered to a function call. This means we don't
8788   // have to worry about calling conventions and target specific lowering code.
8789   // Instead we perform the call lowering right here.
8790   //
8791   // chain, flag = CALLSEQ_START(chain, 0, 0)
8792   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8793   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8794   //
8795   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8796   InFlag = Chain.getValue(1);
8797 
8798   // Add the <id> and <numBytes> constants.
8799   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8800   Ops.push_back(DAG.getTargetConstant(
8801                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8802   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8803   Ops.push_back(DAG.getTargetConstant(
8804                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8805                   MVT::i32));
8806 
8807   // Push live variables for the stack map.
8808   addStackMapLiveVars(CI, 2, DL, Ops, *this);
8809 
8810   // We are not pushing any register mask info here on the operands list,
8811   // because the stackmap doesn't clobber anything.
8812 
8813   // Push the chain and the glue flag.
8814   Ops.push_back(Chain);
8815   Ops.push_back(InFlag);
8816 
8817   // Create the STACKMAP node.
8818   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8819   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8820   Chain = SDValue(SM, 0);
8821   InFlag = Chain.getValue(1);
8822 
8823   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8824 
8825   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8826 
8827   // Set the root to the target-lowered call chain.
8828   DAG.setRoot(Chain);
8829 
8830   // Inform the Frame Information that we have a stackmap in this function.
8831   FuncInfo.MF->getFrameInfo().setHasStackMap();
8832 }
8833 
8834 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8835 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
8836                                           const BasicBlock *EHPadBB) {
8837   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8838   //                                                 i32 <numBytes>,
8839   //                                                 i8* <target>,
8840   //                                                 i32 <numArgs>,
8841   //                                                 [Args...],
8842   //                                                 [live variables...])
8843 
8844   CallingConv::ID CC = CB.getCallingConv();
8845   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8846   bool HasDef = !CB.getType()->isVoidTy();
8847   SDLoc dl = getCurSDLoc();
8848   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
8849 
8850   // Handle immediate and symbolic callees.
8851   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8852     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8853                                    /*isTarget=*/true);
8854   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8855     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8856                                          SDLoc(SymbolicCallee),
8857                                          SymbolicCallee->getValueType(0));
8858 
8859   // Get the real number of arguments participating in the call <numArgs>
8860   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
8861   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8862 
8863   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8864   // Intrinsics include all meta-operands up to but not including CC.
8865   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8866   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
8867          "Not enough arguments provided to the patchpoint intrinsic");
8868 
8869   // For AnyRegCC the arguments are lowered later on manually.
8870   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8871   Type *ReturnTy =
8872       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
8873 
8874   TargetLowering::CallLoweringInfo CLI(DAG);
8875   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
8876                            ReturnTy, true);
8877   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8878 
8879   SDNode *CallEnd = Result.second.getNode();
8880   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8881     CallEnd = CallEnd->getOperand(0).getNode();
8882 
8883   /// Get a call instruction from the call sequence chain.
8884   /// Tail calls are not allowed.
8885   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8886          "Expected a callseq node.");
8887   SDNode *Call = CallEnd->getOperand(0).getNode();
8888   bool HasGlue = Call->getGluedNode();
8889 
8890   // Replace the target specific call node with the patchable intrinsic.
8891   SmallVector<SDValue, 8> Ops;
8892 
8893   // Add the <id> and <numBytes> constants.
8894   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
8895   Ops.push_back(DAG.getTargetConstant(
8896                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8897   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
8898   Ops.push_back(DAG.getTargetConstant(
8899                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8900                   MVT::i32));
8901 
8902   // Add the callee.
8903   Ops.push_back(Callee);
8904 
8905   // Adjust <numArgs> to account for any arguments that have been passed on the
8906   // stack instead.
8907   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8908   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8909   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8910   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8911 
8912   // Add the calling convention
8913   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8914 
8915   // Add the arguments we omitted previously. The register allocator should
8916   // place these in any free register.
8917   if (IsAnyRegCC)
8918     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8919       Ops.push_back(getValue(CB.getArgOperand(i)));
8920 
8921   // Push the arguments from the call instruction up to the register mask.
8922   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8923   Ops.append(Call->op_begin() + 2, e);
8924 
8925   // Push live variables for the stack map.
8926   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
8927 
8928   // Push the register mask info.
8929   if (HasGlue)
8930     Ops.push_back(*(Call->op_end()-2));
8931   else
8932     Ops.push_back(*(Call->op_end()-1));
8933 
8934   // Push the chain (this is originally the first operand of the call, but
8935   // becomes now the last or second to last operand).
8936   Ops.push_back(*(Call->op_begin()));
8937 
8938   // Push the glue flag (last operand).
8939   if (HasGlue)
8940     Ops.push_back(*(Call->op_end()-1));
8941 
8942   SDVTList NodeTys;
8943   if (IsAnyRegCC && HasDef) {
8944     // Create the return types based on the intrinsic definition
8945     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8946     SmallVector<EVT, 3> ValueVTs;
8947     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
8948     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8949 
8950     // There is always a chain and a glue type at the end
8951     ValueVTs.push_back(MVT::Other);
8952     ValueVTs.push_back(MVT::Glue);
8953     NodeTys = DAG.getVTList(ValueVTs);
8954   } else
8955     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8956 
8957   // Replace the target specific call node with a PATCHPOINT node.
8958   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8959                                          dl, NodeTys, Ops);
8960 
8961   // Update the NodeMap.
8962   if (HasDef) {
8963     if (IsAnyRegCC)
8964       setValue(&CB, SDValue(MN, 0));
8965     else
8966       setValue(&CB, Result.first);
8967   }
8968 
8969   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8970   // call sequence. Furthermore the location of the chain and glue can change
8971   // when the AnyReg calling convention is used and the intrinsic returns a
8972   // value.
8973   if (IsAnyRegCC && HasDef) {
8974     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8975     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8976     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8977   } else
8978     DAG.ReplaceAllUsesWith(Call, MN);
8979   DAG.DeleteNode(Call);
8980 
8981   // Inform the Frame Information that we have a patchpoint in this function.
8982   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8983 }
8984 
8985 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8986                                             unsigned Intrinsic) {
8987   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8988   SDValue Op1 = getValue(I.getArgOperand(0));
8989   SDValue Op2;
8990   if (I.getNumArgOperands() > 1)
8991     Op2 = getValue(I.getArgOperand(1));
8992   SDLoc dl = getCurSDLoc();
8993   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8994   SDValue Res;
8995   FastMathFlags FMF;
8996   if (isa<FPMathOperator>(I))
8997     FMF = I.getFastMathFlags();
8998 
8999   switch (Intrinsic) {
9000   case Intrinsic::experimental_vector_reduce_v2_fadd:
9001     if (FMF.allowReassoc())
9002       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9003                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
9004     else
9005       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
9006     break;
9007   case Intrinsic::experimental_vector_reduce_v2_fmul:
9008     if (FMF.allowReassoc())
9009       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9010                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
9011     else
9012       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
9013     break;
9014   case Intrinsic::experimental_vector_reduce_add:
9015     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9016     break;
9017   case Intrinsic::experimental_vector_reduce_mul:
9018     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9019     break;
9020   case Intrinsic::experimental_vector_reduce_and:
9021     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9022     break;
9023   case Intrinsic::experimental_vector_reduce_or:
9024     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9025     break;
9026   case Intrinsic::experimental_vector_reduce_xor:
9027     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9028     break;
9029   case Intrinsic::experimental_vector_reduce_smax:
9030     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9031     break;
9032   case Intrinsic::experimental_vector_reduce_smin:
9033     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9034     break;
9035   case Intrinsic::experimental_vector_reduce_umax:
9036     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9037     break;
9038   case Intrinsic::experimental_vector_reduce_umin:
9039     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9040     break;
9041   case Intrinsic::experimental_vector_reduce_fmax:
9042     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
9043     break;
9044   case Intrinsic::experimental_vector_reduce_fmin:
9045     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
9046     break;
9047   default:
9048     llvm_unreachable("Unhandled vector reduce intrinsic");
9049   }
9050   setValue(&I, Res);
9051 }
9052 
9053 /// Returns an AttributeList representing the attributes applied to the return
9054 /// value of the given call.
9055 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9056   SmallVector<Attribute::AttrKind, 2> Attrs;
9057   if (CLI.RetSExt)
9058     Attrs.push_back(Attribute::SExt);
9059   if (CLI.RetZExt)
9060     Attrs.push_back(Attribute::ZExt);
9061   if (CLI.IsInReg)
9062     Attrs.push_back(Attribute::InReg);
9063 
9064   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9065                             Attrs);
9066 }
9067 
9068 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9069 /// implementation, which just calls LowerCall.
9070 /// FIXME: When all targets are
9071 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9072 std::pair<SDValue, SDValue>
9073 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9074   // Handle the incoming return values from the call.
9075   CLI.Ins.clear();
9076   Type *OrigRetTy = CLI.RetTy;
9077   SmallVector<EVT, 4> RetTys;
9078   SmallVector<uint64_t, 4> Offsets;
9079   auto &DL = CLI.DAG.getDataLayout();
9080   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9081 
9082   if (CLI.IsPostTypeLegalization) {
9083     // If we are lowering a libcall after legalization, split the return type.
9084     SmallVector<EVT, 4> OldRetTys;
9085     SmallVector<uint64_t, 4> OldOffsets;
9086     RetTys.swap(OldRetTys);
9087     Offsets.swap(OldOffsets);
9088 
9089     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9090       EVT RetVT = OldRetTys[i];
9091       uint64_t Offset = OldOffsets[i];
9092       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9093       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9094       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9095       RetTys.append(NumRegs, RegisterVT);
9096       for (unsigned j = 0; j != NumRegs; ++j)
9097         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9098     }
9099   }
9100 
9101   SmallVector<ISD::OutputArg, 4> Outs;
9102   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9103 
9104   bool CanLowerReturn =
9105       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9106                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9107 
9108   SDValue DemoteStackSlot;
9109   int DemoteStackIdx = -100;
9110   if (!CanLowerReturn) {
9111     // FIXME: equivalent assert?
9112     // assert(!CS.hasInAllocaArgument() &&
9113     //        "sret demotion is incompatible with inalloca");
9114     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9115     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9116     MachineFunction &MF = CLI.DAG.getMachineFunction();
9117     DemoteStackIdx =
9118         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9119     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9120                                               DL.getAllocaAddrSpace());
9121 
9122     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9123     ArgListEntry Entry;
9124     Entry.Node = DemoteStackSlot;
9125     Entry.Ty = StackSlotPtrType;
9126     Entry.IsSExt = false;
9127     Entry.IsZExt = false;
9128     Entry.IsInReg = false;
9129     Entry.IsSRet = true;
9130     Entry.IsNest = false;
9131     Entry.IsByVal = false;
9132     Entry.IsByRef = false;
9133     Entry.IsReturned = false;
9134     Entry.IsSwiftSelf = false;
9135     Entry.IsSwiftError = false;
9136     Entry.IsCFGuardTarget = false;
9137     Entry.Alignment = Alignment;
9138     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9139     CLI.NumFixedArgs += 1;
9140     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9141 
9142     // sret demotion isn't compatible with tail-calls, since the sret argument
9143     // points into the callers stack frame.
9144     CLI.IsTailCall = false;
9145   } else {
9146     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9147         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9148     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9149       ISD::ArgFlagsTy Flags;
9150       if (NeedsRegBlock) {
9151         Flags.setInConsecutiveRegs();
9152         if (I == RetTys.size() - 1)
9153           Flags.setInConsecutiveRegsLast();
9154       }
9155       EVT VT = RetTys[I];
9156       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9157                                                      CLI.CallConv, VT);
9158       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9159                                                        CLI.CallConv, VT);
9160       for (unsigned i = 0; i != NumRegs; ++i) {
9161         ISD::InputArg MyFlags;
9162         MyFlags.Flags = Flags;
9163         MyFlags.VT = RegisterVT;
9164         MyFlags.ArgVT = VT;
9165         MyFlags.Used = CLI.IsReturnValueUsed;
9166         if (CLI.RetTy->isPointerTy()) {
9167           MyFlags.Flags.setPointer();
9168           MyFlags.Flags.setPointerAddrSpace(
9169               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9170         }
9171         if (CLI.RetSExt)
9172           MyFlags.Flags.setSExt();
9173         if (CLI.RetZExt)
9174           MyFlags.Flags.setZExt();
9175         if (CLI.IsInReg)
9176           MyFlags.Flags.setInReg();
9177         CLI.Ins.push_back(MyFlags);
9178       }
9179     }
9180   }
9181 
9182   // We push in swifterror return as the last element of CLI.Ins.
9183   ArgListTy &Args = CLI.getArgs();
9184   if (supportSwiftError()) {
9185     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9186       if (Args[i].IsSwiftError) {
9187         ISD::InputArg MyFlags;
9188         MyFlags.VT = getPointerTy(DL);
9189         MyFlags.ArgVT = EVT(getPointerTy(DL));
9190         MyFlags.Flags.setSwiftError();
9191         CLI.Ins.push_back(MyFlags);
9192       }
9193     }
9194   }
9195 
9196   // Handle all of the outgoing arguments.
9197   CLI.Outs.clear();
9198   CLI.OutVals.clear();
9199   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9200     SmallVector<EVT, 4> ValueVTs;
9201     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9202     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9203     Type *FinalType = Args[i].Ty;
9204     if (Args[i].IsByVal)
9205       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9206     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9207         FinalType, CLI.CallConv, CLI.IsVarArg);
9208     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9209          ++Value) {
9210       EVT VT = ValueVTs[Value];
9211       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9212       SDValue Op = SDValue(Args[i].Node.getNode(),
9213                            Args[i].Node.getResNo() + Value);
9214       ISD::ArgFlagsTy Flags;
9215 
9216       // Certain targets (such as MIPS), may have a different ABI alignment
9217       // for a type depending on the context. Give the target a chance to
9218       // specify the alignment it wants.
9219       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9220 
9221       if (Args[i].Ty->isPointerTy()) {
9222         Flags.setPointer();
9223         Flags.setPointerAddrSpace(
9224             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9225       }
9226       if (Args[i].IsZExt)
9227         Flags.setZExt();
9228       if (Args[i].IsSExt)
9229         Flags.setSExt();
9230       if (Args[i].IsInReg) {
9231         // If we are using vectorcall calling convention, a structure that is
9232         // passed InReg - is surely an HVA
9233         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9234             isa<StructType>(FinalType)) {
9235           // The first value of a structure is marked
9236           if (0 == Value)
9237             Flags.setHvaStart();
9238           Flags.setHva();
9239         }
9240         // Set InReg Flag
9241         Flags.setInReg();
9242       }
9243       if (Args[i].IsSRet)
9244         Flags.setSRet();
9245       if (Args[i].IsSwiftSelf)
9246         Flags.setSwiftSelf();
9247       if (Args[i].IsSwiftError)
9248         Flags.setSwiftError();
9249       if (Args[i].IsCFGuardTarget)
9250         Flags.setCFGuardTarget();
9251       if (Args[i].IsByVal)
9252         Flags.setByVal();
9253       if (Args[i].IsByRef)
9254         Flags.setByRef();
9255       if (Args[i].IsPreallocated) {
9256         Flags.setPreallocated();
9257         // Set the byval flag for CCAssignFn callbacks that don't know about
9258         // preallocated.  This way we can know how many bytes we should've
9259         // allocated and how many bytes a callee cleanup function will pop.  If
9260         // we port preallocated to more targets, we'll have to add custom
9261         // preallocated handling in the various CC lowering callbacks.
9262         Flags.setByVal();
9263       }
9264       if (Args[i].IsInAlloca) {
9265         Flags.setInAlloca();
9266         // Set the byval flag for CCAssignFn callbacks that don't know about
9267         // inalloca.  This way we can know how many bytes we should've allocated
9268         // and how many bytes a callee cleanup function will pop.  If we port
9269         // inalloca to more targets, we'll have to add custom inalloca handling
9270         // in the various CC lowering callbacks.
9271         Flags.setByVal();
9272       }
9273       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9274         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9275         Type *ElementTy = Ty->getElementType();
9276 
9277         unsigned FrameSize = DL.getTypeAllocSize(
9278             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9279         Flags.setByValSize(FrameSize);
9280 
9281         // info is not there but there are cases it cannot get right.
9282         Align FrameAlign;
9283         if (auto MA = Args[i].Alignment)
9284           FrameAlign = *MA;
9285         else
9286           FrameAlign = Align(getByValTypeAlignment(ElementTy, DL));
9287         Flags.setByValAlign(FrameAlign);
9288       }
9289       if (Args[i].IsNest)
9290         Flags.setNest();
9291       if (NeedsRegBlock)
9292         Flags.setInConsecutiveRegs();
9293       Flags.setOrigAlign(OriginalAlignment);
9294 
9295       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9296                                                  CLI.CallConv, VT);
9297       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9298                                                         CLI.CallConv, VT);
9299       SmallVector<SDValue, 4> Parts(NumParts);
9300       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9301 
9302       if (Args[i].IsSExt)
9303         ExtendKind = ISD::SIGN_EXTEND;
9304       else if (Args[i].IsZExt)
9305         ExtendKind = ISD::ZERO_EXTEND;
9306 
9307       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9308       // for now.
9309       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9310           CanLowerReturn) {
9311         assert((CLI.RetTy == Args[i].Ty ||
9312                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9313                  CLI.RetTy->getPointerAddressSpace() ==
9314                      Args[i].Ty->getPointerAddressSpace())) &&
9315                RetTys.size() == NumValues && "unexpected use of 'returned'");
9316         // Before passing 'returned' to the target lowering code, ensure that
9317         // either the register MVT and the actual EVT are the same size or that
9318         // the return value and argument are extended in the same way; in these
9319         // cases it's safe to pass the argument register value unchanged as the
9320         // return register value (although it's at the target's option whether
9321         // to do so)
9322         // TODO: allow code generation to take advantage of partially preserved
9323         // registers rather than clobbering the entire register when the
9324         // parameter extension method is not compatible with the return
9325         // extension method
9326         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9327             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9328              CLI.RetZExt == Args[i].IsZExt))
9329           Flags.setReturned();
9330       }
9331 
9332       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9333                      CLI.CallConv, ExtendKind);
9334 
9335       for (unsigned j = 0; j != NumParts; ++j) {
9336         // if it isn't first piece, alignment must be 1
9337         // For scalable vectors the scalable part is currently handled
9338         // by individual targets, so we just use the known minimum size here.
9339         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9340                     i < CLI.NumFixedArgs, i,
9341                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9342         if (NumParts > 1 && j == 0)
9343           MyFlags.Flags.setSplit();
9344         else if (j != 0) {
9345           MyFlags.Flags.setOrigAlign(Align(1));
9346           if (j == NumParts - 1)
9347             MyFlags.Flags.setSplitEnd();
9348         }
9349 
9350         CLI.Outs.push_back(MyFlags);
9351         CLI.OutVals.push_back(Parts[j]);
9352       }
9353 
9354       if (NeedsRegBlock && Value == NumValues - 1)
9355         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9356     }
9357   }
9358 
9359   SmallVector<SDValue, 4> InVals;
9360   CLI.Chain = LowerCall(CLI, InVals);
9361 
9362   // Update CLI.InVals to use outside of this function.
9363   CLI.InVals = InVals;
9364 
9365   // Verify that the target's LowerCall behaved as expected.
9366   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9367          "LowerCall didn't return a valid chain!");
9368   assert((!CLI.IsTailCall || InVals.empty()) &&
9369          "LowerCall emitted a return value for a tail call!");
9370   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9371          "LowerCall didn't emit the correct number of values!");
9372 
9373   // For a tail call, the return value is merely live-out and there aren't
9374   // any nodes in the DAG representing it. Return a special value to
9375   // indicate that a tail call has been emitted and no more Instructions
9376   // should be processed in the current block.
9377   if (CLI.IsTailCall) {
9378     CLI.DAG.setRoot(CLI.Chain);
9379     return std::make_pair(SDValue(), SDValue());
9380   }
9381 
9382 #ifndef NDEBUG
9383   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9384     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9385     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9386            "LowerCall emitted a value with the wrong type!");
9387   }
9388 #endif
9389 
9390   SmallVector<SDValue, 4> ReturnValues;
9391   if (!CanLowerReturn) {
9392     // The instruction result is the result of loading from the
9393     // hidden sret parameter.
9394     SmallVector<EVT, 1> PVTs;
9395     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9396 
9397     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9398     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9399     EVT PtrVT = PVTs[0];
9400 
9401     unsigned NumValues = RetTys.size();
9402     ReturnValues.resize(NumValues);
9403     SmallVector<SDValue, 4> Chains(NumValues);
9404 
9405     // An aggregate return value cannot wrap around the address space, so
9406     // offsets to its parts don't wrap either.
9407     SDNodeFlags Flags;
9408     Flags.setNoUnsignedWrap(true);
9409 
9410     MachineFunction &MF = CLI.DAG.getMachineFunction();
9411     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9412     for (unsigned i = 0; i < NumValues; ++i) {
9413       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9414                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9415                                                         PtrVT), Flags);
9416       SDValue L = CLI.DAG.getLoad(
9417           RetTys[i], CLI.DL, CLI.Chain, Add,
9418           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9419                                             DemoteStackIdx, Offsets[i]),
9420           HiddenSRetAlign);
9421       ReturnValues[i] = L;
9422       Chains[i] = L.getValue(1);
9423     }
9424 
9425     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9426   } else {
9427     // Collect the legal value parts into potentially illegal values
9428     // that correspond to the original function's return values.
9429     Optional<ISD::NodeType> AssertOp;
9430     if (CLI.RetSExt)
9431       AssertOp = ISD::AssertSext;
9432     else if (CLI.RetZExt)
9433       AssertOp = ISD::AssertZext;
9434     unsigned CurReg = 0;
9435     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9436       EVT VT = RetTys[I];
9437       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9438                                                      CLI.CallConv, VT);
9439       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9440                                                        CLI.CallConv, VT);
9441 
9442       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9443                                               NumRegs, RegisterVT, VT, nullptr,
9444                                               CLI.CallConv, AssertOp));
9445       CurReg += NumRegs;
9446     }
9447 
9448     // For a function returning void, there is no return value. We can't create
9449     // such a node, so we just return a null return value in that case. In
9450     // that case, nothing will actually look at the value.
9451     if (ReturnValues.empty())
9452       return std::make_pair(SDValue(), CLI.Chain);
9453   }
9454 
9455   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9456                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9457   return std::make_pair(Res, CLI.Chain);
9458 }
9459 
9460 void TargetLowering::LowerOperationWrapper(SDNode *N,
9461                                            SmallVectorImpl<SDValue> &Results,
9462                                            SelectionDAG &DAG) const {
9463   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9464     Results.push_back(Res);
9465 }
9466 
9467 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9468   llvm_unreachable("LowerOperation not implemented for this target!");
9469 }
9470 
9471 void
9472 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9473   SDValue Op = getNonRegisterValue(V);
9474   assert((Op.getOpcode() != ISD::CopyFromReg ||
9475           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9476          "Copy from a reg to the same reg!");
9477   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9478 
9479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9480   // If this is an InlineAsm we have to match the registers required, not the
9481   // notional registers required by the type.
9482 
9483   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9484                    None); // This is not an ABI copy.
9485   SDValue Chain = DAG.getEntryNode();
9486 
9487   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9488                               FuncInfo.PreferredExtendType.end())
9489                                  ? ISD::ANY_EXTEND
9490                                  : FuncInfo.PreferredExtendType[V];
9491   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9492   PendingExports.push_back(Chain);
9493 }
9494 
9495 #include "llvm/CodeGen/SelectionDAGISel.h"
9496 
9497 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9498 /// entry block, return true.  This includes arguments used by switches, since
9499 /// the switch may expand into multiple basic blocks.
9500 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9501   // With FastISel active, we may be splitting blocks, so force creation
9502   // of virtual registers for all non-dead arguments.
9503   if (FastISel)
9504     return A->use_empty();
9505 
9506   const BasicBlock &Entry = A->getParent()->front();
9507   for (const User *U : A->users())
9508     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9509       return false;  // Use not in entry block.
9510 
9511   return true;
9512 }
9513 
9514 using ArgCopyElisionMapTy =
9515     DenseMap<const Argument *,
9516              std::pair<const AllocaInst *, const StoreInst *>>;
9517 
9518 /// Scan the entry block of the function in FuncInfo for arguments that look
9519 /// like copies into a local alloca. Record any copied arguments in
9520 /// ArgCopyElisionCandidates.
9521 static void
9522 findArgumentCopyElisionCandidates(const DataLayout &DL,
9523                                   FunctionLoweringInfo *FuncInfo,
9524                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9525   // Record the state of every static alloca used in the entry block. Argument
9526   // allocas are all used in the entry block, so we need approximately as many
9527   // entries as we have arguments.
9528   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9529   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9530   unsigned NumArgs = FuncInfo->Fn->arg_size();
9531   StaticAllocas.reserve(NumArgs * 2);
9532 
9533   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9534     if (!V)
9535       return nullptr;
9536     V = V->stripPointerCasts();
9537     const auto *AI = dyn_cast<AllocaInst>(V);
9538     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9539       return nullptr;
9540     auto Iter = StaticAllocas.insert({AI, Unknown});
9541     return &Iter.first->second;
9542   };
9543 
9544   // Look for stores of arguments to static allocas. Look through bitcasts and
9545   // GEPs to handle type coercions, as long as the alloca is fully initialized
9546   // by the store. Any non-store use of an alloca escapes it and any subsequent
9547   // unanalyzed store might write it.
9548   // FIXME: Handle structs initialized with multiple stores.
9549   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9550     // Look for stores, and handle non-store uses conservatively.
9551     const auto *SI = dyn_cast<StoreInst>(&I);
9552     if (!SI) {
9553       // We will look through cast uses, so ignore them completely.
9554       if (I.isCast())
9555         continue;
9556       // Ignore debug info intrinsics, they don't escape or store to allocas.
9557       if (isa<DbgInfoIntrinsic>(I))
9558         continue;
9559       // This is an unknown instruction. Assume it escapes or writes to all
9560       // static alloca operands.
9561       for (const Use &U : I.operands()) {
9562         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9563           *Info = StaticAllocaInfo::Clobbered;
9564       }
9565       continue;
9566     }
9567 
9568     // If the stored value is a static alloca, mark it as escaped.
9569     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9570       *Info = StaticAllocaInfo::Clobbered;
9571 
9572     // Check if the destination is a static alloca.
9573     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9574     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9575     if (!Info)
9576       continue;
9577     const AllocaInst *AI = cast<AllocaInst>(Dst);
9578 
9579     // Skip allocas that have been initialized or clobbered.
9580     if (*Info != StaticAllocaInfo::Unknown)
9581       continue;
9582 
9583     // Check if the stored value is an argument, and that this store fully
9584     // initializes the alloca. Don't elide copies from the same argument twice.
9585     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9586     const auto *Arg = dyn_cast<Argument>(Val);
9587     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9588         Arg->getType()->isEmptyTy() ||
9589         DL.getTypeStoreSize(Arg->getType()) !=
9590             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9591         ArgCopyElisionCandidates.count(Arg)) {
9592       *Info = StaticAllocaInfo::Clobbered;
9593       continue;
9594     }
9595 
9596     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9597                       << '\n');
9598 
9599     // Mark this alloca and store for argument copy elision.
9600     *Info = StaticAllocaInfo::Elidable;
9601     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9602 
9603     // Stop scanning if we've seen all arguments. This will happen early in -O0
9604     // builds, which is useful, because -O0 builds have large entry blocks and
9605     // many allocas.
9606     if (ArgCopyElisionCandidates.size() == NumArgs)
9607       break;
9608   }
9609 }
9610 
9611 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9612 /// ArgVal is a load from a suitable fixed stack object.
9613 static void tryToElideArgumentCopy(
9614     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
9615     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9616     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9617     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9618     SDValue ArgVal, bool &ArgHasUses) {
9619   // Check if this is a load from a fixed stack object.
9620   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9621   if (!LNode)
9622     return;
9623   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9624   if (!FINode)
9625     return;
9626 
9627   // Check that the fixed stack object is the right size and alignment.
9628   // Look at the alignment that the user wrote on the alloca instead of looking
9629   // at the stack object.
9630   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9631   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9632   const AllocaInst *AI = ArgCopyIter->second.first;
9633   int FixedIndex = FINode->getIndex();
9634   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
9635   int OldIndex = AllocaIndex;
9636   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
9637   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9638     LLVM_DEBUG(
9639         dbgs() << "  argument copy elision failed due to bad fixed stack "
9640                   "object size\n");
9641     return;
9642   }
9643   Align RequiredAlignment = AI->getAlign();
9644   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
9645     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9646                          "greater than stack argument alignment ("
9647                       << DebugStr(RequiredAlignment) << " vs "
9648                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
9649     return;
9650   }
9651 
9652   // Perform the elision. Delete the old stack object and replace its only use
9653   // in the variable info map. Mark the stack object as mutable.
9654   LLVM_DEBUG({
9655     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9656            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9657            << '\n';
9658   });
9659   MFI.RemoveStackObject(OldIndex);
9660   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9661   AllocaIndex = FixedIndex;
9662   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9663   Chains.push_back(ArgVal.getValue(1));
9664 
9665   // Avoid emitting code for the store implementing the copy.
9666   const StoreInst *SI = ArgCopyIter->second.second;
9667   ElidedArgCopyInstrs.insert(SI);
9668 
9669   // Check for uses of the argument again so that we can avoid exporting ArgVal
9670   // if it is't used by anything other than the store.
9671   for (const Value *U : Arg.users()) {
9672     if (U != SI) {
9673       ArgHasUses = true;
9674       break;
9675     }
9676   }
9677 }
9678 
9679 void SelectionDAGISel::LowerArguments(const Function &F) {
9680   SelectionDAG &DAG = SDB->DAG;
9681   SDLoc dl = SDB->getCurSDLoc();
9682   const DataLayout &DL = DAG.getDataLayout();
9683   SmallVector<ISD::InputArg, 16> Ins;
9684 
9685   // In Naked functions we aren't going to save any registers.
9686   if (F.hasFnAttribute(Attribute::Naked))
9687     return;
9688 
9689   if (!FuncInfo->CanLowerReturn) {
9690     // Put in an sret pointer parameter before all the other parameters.
9691     SmallVector<EVT, 1> ValueVTs;
9692     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9693                     F.getReturnType()->getPointerTo(
9694                         DAG.getDataLayout().getAllocaAddrSpace()),
9695                     ValueVTs);
9696 
9697     // NOTE: Assuming that a pointer will never break down to more than one VT
9698     // or one register.
9699     ISD::ArgFlagsTy Flags;
9700     Flags.setSRet();
9701     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9702     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9703                          ISD::InputArg::NoArgIndex, 0);
9704     Ins.push_back(RetArg);
9705   }
9706 
9707   // Look for stores of arguments to static allocas. Mark such arguments with a
9708   // flag to ask the target to give us the memory location of that argument if
9709   // available.
9710   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9711   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
9712                                     ArgCopyElisionCandidates);
9713 
9714   // Set up the incoming argument description vector.
9715   for (const Argument &Arg : F.args()) {
9716     unsigned ArgNo = Arg.getArgNo();
9717     SmallVector<EVT, 4> ValueVTs;
9718     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9719     bool isArgValueUsed = !Arg.use_empty();
9720     unsigned PartBase = 0;
9721     Type *FinalType = Arg.getType();
9722     if (Arg.hasAttribute(Attribute::ByVal))
9723       FinalType = Arg.getParamByValType();
9724     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9725         FinalType, F.getCallingConv(), F.isVarArg());
9726     for (unsigned Value = 0, NumValues = ValueVTs.size();
9727          Value != NumValues; ++Value) {
9728       EVT VT = ValueVTs[Value];
9729       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9730       ISD::ArgFlagsTy Flags;
9731 
9732       // Certain targets (such as MIPS), may have a different ABI alignment
9733       // for a type depending on the context. Give the target a chance to
9734       // specify the alignment it wants.
9735       const Align OriginalAlignment(
9736           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9737 
9738       if (Arg.getType()->isPointerTy()) {
9739         Flags.setPointer();
9740         Flags.setPointerAddrSpace(
9741             cast<PointerType>(Arg.getType())->getAddressSpace());
9742       }
9743       if (Arg.hasAttribute(Attribute::ZExt))
9744         Flags.setZExt();
9745       if (Arg.hasAttribute(Attribute::SExt))
9746         Flags.setSExt();
9747       if (Arg.hasAttribute(Attribute::InReg)) {
9748         // If we are using vectorcall calling convention, a structure that is
9749         // passed InReg - is surely an HVA
9750         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9751             isa<StructType>(Arg.getType())) {
9752           // The first value of a structure is marked
9753           if (0 == Value)
9754             Flags.setHvaStart();
9755           Flags.setHva();
9756         }
9757         // Set InReg Flag
9758         Flags.setInReg();
9759       }
9760       if (Arg.hasAttribute(Attribute::StructRet))
9761         Flags.setSRet();
9762       if (Arg.hasAttribute(Attribute::SwiftSelf))
9763         Flags.setSwiftSelf();
9764       if (Arg.hasAttribute(Attribute::SwiftError))
9765         Flags.setSwiftError();
9766       if (Arg.hasAttribute(Attribute::ByVal))
9767         Flags.setByVal();
9768       if (Arg.hasAttribute(Attribute::ByRef))
9769         Flags.setByRef();
9770       if (Arg.hasAttribute(Attribute::InAlloca)) {
9771         Flags.setInAlloca();
9772         // Set the byval flag for CCAssignFn callbacks that don't know about
9773         // inalloca.  This way we can know how many bytes we should've allocated
9774         // and how many bytes a callee cleanup function will pop.  If we port
9775         // inalloca to more targets, we'll have to add custom inalloca handling
9776         // in the various CC lowering callbacks.
9777         Flags.setByVal();
9778       }
9779       if (Arg.hasAttribute(Attribute::Preallocated)) {
9780         Flags.setPreallocated();
9781         // Set the byval flag for CCAssignFn callbacks that don't know about
9782         // preallocated.  This way we can know how many bytes we should've
9783         // allocated and how many bytes a callee cleanup function will pop.  If
9784         // we port preallocated to more targets, we'll have to add custom
9785         // preallocated handling in the various CC lowering callbacks.
9786         Flags.setByVal();
9787       }
9788 
9789       Type *ArgMemTy = nullptr;
9790       if (F.getCallingConv() == CallingConv::X86_INTR) {
9791         // IA Interrupt passes frame (1st parameter) by value in the stack.
9792         if (ArgNo == 0) {
9793           Flags.setByVal();
9794           // FIXME: Dependence on pointee element type. See bug 46672.
9795           ArgMemTy = Arg.getType()->getPointerElementType();
9796         }
9797       }
9798       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
9799           Flags.isByRef()) {
9800         if (!ArgMemTy)
9801           ArgMemTy = Arg.getPointeeInMemoryValueType();
9802 
9803         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
9804 
9805         // For in-memory arguments, size and alignment should be passed from FE.
9806         // BE will guess if this info is not there but there are cases it cannot
9807         // get right.
9808         MaybeAlign MemAlign = Arg.getParamAlign();
9809         if (!MemAlign)
9810           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
9811 
9812         if (Flags.isByRef()) {
9813           Flags.setByRefSize(MemSize);
9814           Flags.setByRefAlign(*MemAlign);
9815         } else {
9816           Flags.setByValSize(MemSize);
9817           Flags.setByValAlign(*MemAlign);
9818         }
9819       }
9820 
9821       if (Arg.hasAttribute(Attribute::Nest))
9822         Flags.setNest();
9823       if (NeedsRegBlock)
9824         Flags.setInConsecutiveRegs();
9825       Flags.setOrigAlign(OriginalAlignment);
9826       if (ArgCopyElisionCandidates.count(&Arg))
9827         Flags.setCopyElisionCandidate();
9828       if (Arg.hasAttribute(Attribute::Returned))
9829         Flags.setReturned();
9830 
9831       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9832           *CurDAG->getContext(), F.getCallingConv(), VT);
9833       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9834           *CurDAG->getContext(), F.getCallingConv(), VT);
9835       for (unsigned i = 0; i != NumRegs; ++i) {
9836         // For scalable vectors, use the minimum size; individual targets
9837         // are responsible for handling scalable vector arguments and
9838         // return values.
9839         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9840                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9841         if (NumRegs > 1 && i == 0)
9842           MyFlags.Flags.setSplit();
9843         // if it isn't first piece, alignment must be 1
9844         else if (i > 0) {
9845           MyFlags.Flags.setOrigAlign(Align(1));
9846           if (i == NumRegs - 1)
9847             MyFlags.Flags.setSplitEnd();
9848         }
9849         Ins.push_back(MyFlags);
9850       }
9851       if (NeedsRegBlock && Value == NumValues - 1)
9852         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9853       PartBase += VT.getStoreSize().getKnownMinSize();
9854     }
9855   }
9856 
9857   // Call the target to set up the argument values.
9858   SmallVector<SDValue, 8> InVals;
9859   SDValue NewRoot = TLI->LowerFormalArguments(
9860       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9861 
9862   // Verify that the target's LowerFormalArguments behaved as expected.
9863   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9864          "LowerFormalArguments didn't return a valid chain!");
9865   assert(InVals.size() == Ins.size() &&
9866          "LowerFormalArguments didn't emit the correct number of values!");
9867   LLVM_DEBUG({
9868     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9869       assert(InVals[i].getNode() &&
9870              "LowerFormalArguments emitted a null value!");
9871       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9872              "LowerFormalArguments emitted a value with the wrong type!");
9873     }
9874   });
9875 
9876   // Update the DAG with the new chain value resulting from argument lowering.
9877   DAG.setRoot(NewRoot);
9878 
9879   // Set up the argument values.
9880   unsigned i = 0;
9881   if (!FuncInfo->CanLowerReturn) {
9882     // Create a virtual register for the sret pointer, and put in a copy
9883     // from the sret argument into it.
9884     SmallVector<EVT, 1> ValueVTs;
9885     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9886                     F.getReturnType()->getPointerTo(
9887                         DAG.getDataLayout().getAllocaAddrSpace()),
9888                     ValueVTs);
9889     MVT VT = ValueVTs[0].getSimpleVT();
9890     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9891     Optional<ISD::NodeType> AssertOp = None;
9892     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9893                                         nullptr, F.getCallingConv(), AssertOp);
9894 
9895     MachineFunction& MF = SDB->DAG.getMachineFunction();
9896     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9897     Register SRetReg =
9898         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9899     FuncInfo->DemoteRegister = SRetReg;
9900     NewRoot =
9901         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9902     DAG.setRoot(NewRoot);
9903 
9904     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9905     ++i;
9906   }
9907 
9908   SmallVector<SDValue, 4> Chains;
9909   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9910   for (const Argument &Arg : F.args()) {
9911     SmallVector<SDValue, 4> ArgValues;
9912     SmallVector<EVT, 4> ValueVTs;
9913     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9914     unsigned NumValues = ValueVTs.size();
9915     if (NumValues == 0)
9916       continue;
9917 
9918     bool ArgHasUses = !Arg.use_empty();
9919 
9920     // Elide the copying store if the target loaded this argument from a
9921     // suitable fixed stack object.
9922     if (Ins[i].Flags.isCopyElisionCandidate()) {
9923       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9924                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9925                              InVals[i], ArgHasUses);
9926     }
9927 
9928     // If this argument is unused then remember its value. It is used to generate
9929     // debugging information.
9930     bool isSwiftErrorArg =
9931         TLI->supportSwiftError() &&
9932         Arg.hasAttribute(Attribute::SwiftError);
9933     if (!ArgHasUses && !isSwiftErrorArg) {
9934       SDB->setUnusedArgValue(&Arg, InVals[i]);
9935 
9936       // Also remember any frame index for use in FastISel.
9937       if (FrameIndexSDNode *FI =
9938           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9939         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9940     }
9941 
9942     for (unsigned Val = 0; Val != NumValues; ++Val) {
9943       EVT VT = ValueVTs[Val];
9944       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9945                                                       F.getCallingConv(), VT);
9946       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9947           *CurDAG->getContext(), F.getCallingConv(), VT);
9948 
9949       // Even an apparent 'unused' swifterror argument needs to be returned. So
9950       // we do generate a copy for it that can be used on return from the
9951       // function.
9952       if (ArgHasUses || isSwiftErrorArg) {
9953         Optional<ISD::NodeType> AssertOp;
9954         if (Arg.hasAttribute(Attribute::SExt))
9955           AssertOp = ISD::AssertSext;
9956         else if (Arg.hasAttribute(Attribute::ZExt))
9957           AssertOp = ISD::AssertZext;
9958 
9959         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9960                                              PartVT, VT, nullptr,
9961                                              F.getCallingConv(), AssertOp));
9962       }
9963 
9964       i += NumParts;
9965     }
9966 
9967     // We don't need to do anything else for unused arguments.
9968     if (ArgValues.empty())
9969       continue;
9970 
9971     // Note down frame index.
9972     if (FrameIndexSDNode *FI =
9973         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9974       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9975 
9976     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9977                                      SDB->getCurSDLoc());
9978 
9979     SDB->setValue(&Arg, Res);
9980     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9981       // We want to associate the argument with the frame index, among
9982       // involved operands, that correspond to the lowest address. The
9983       // getCopyFromParts function, called earlier, is swapping the order of
9984       // the operands to BUILD_PAIR depending on endianness. The result of
9985       // that swapping is that the least significant bits of the argument will
9986       // be in the first operand of the BUILD_PAIR node, and the most
9987       // significant bits will be in the second operand.
9988       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9989       if (LoadSDNode *LNode =
9990           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9991         if (FrameIndexSDNode *FI =
9992             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9993           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9994     }
9995 
9996     // Analyses past this point are naive and don't expect an assertion.
9997     if (Res.getOpcode() == ISD::AssertZext)
9998       Res = Res.getOperand(0);
9999 
10000     // Update the SwiftErrorVRegDefMap.
10001     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10002       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10003       if (Register::isVirtualRegister(Reg))
10004         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10005                                    Reg);
10006     }
10007 
10008     // If this argument is live outside of the entry block, insert a copy from
10009     // wherever we got it to the vreg that other BB's will reference it as.
10010     if (Res.getOpcode() == ISD::CopyFromReg) {
10011       // If we can, though, try to skip creating an unnecessary vreg.
10012       // FIXME: This isn't very clean... it would be nice to make this more
10013       // general.
10014       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10015       if (Register::isVirtualRegister(Reg)) {
10016         FuncInfo->ValueMap[&Arg] = Reg;
10017         continue;
10018       }
10019     }
10020     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10021       FuncInfo->InitializeRegForValue(&Arg);
10022       SDB->CopyToExportRegsIfNeeded(&Arg);
10023     }
10024   }
10025 
10026   if (!Chains.empty()) {
10027     Chains.push_back(NewRoot);
10028     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10029   }
10030 
10031   DAG.setRoot(NewRoot);
10032 
10033   assert(i == InVals.size() && "Argument register count mismatch!");
10034 
10035   // If any argument copy elisions occurred and we have debug info, update the
10036   // stale frame indices used in the dbg.declare variable info table.
10037   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10038   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10039     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10040       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10041       if (I != ArgCopyElisionFrameIndexMap.end())
10042         VI.Slot = I->second;
10043     }
10044   }
10045 
10046   // Finally, if the target has anything special to do, allow it to do so.
10047   emitFunctionEntryCode();
10048 }
10049 
10050 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10051 /// ensure constants are generated when needed.  Remember the virtual registers
10052 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10053 /// directly add them, because expansion might result in multiple MBB's for one
10054 /// BB.  As such, the start of the BB might correspond to a different MBB than
10055 /// the end.
10056 void
10057 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10058   const Instruction *TI = LLVMBB->getTerminator();
10059 
10060   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10061 
10062   // Check PHI nodes in successors that expect a value to be available from this
10063   // block.
10064   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10065     const BasicBlock *SuccBB = TI->getSuccessor(succ);
10066     if (!isa<PHINode>(SuccBB->begin())) continue;
10067     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10068 
10069     // If this terminator has multiple identical successors (common for
10070     // switches), only handle each succ once.
10071     if (!SuccsHandled.insert(SuccMBB).second)
10072       continue;
10073 
10074     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10075 
10076     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10077     // nodes and Machine PHI nodes, but the incoming operands have not been
10078     // emitted yet.
10079     for (const PHINode &PN : SuccBB->phis()) {
10080       // Ignore dead phi's.
10081       if (PN.use_empty())
10082         continue;
10083 
10084       // Skip empty types
10085       if (PN.getType()->isEmptyTy())
10086         continue;
10087 
10088       unsigned Reg;
10089       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10090 
10091       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10092         unsigned &RegOut = ConstantsOut[C];
10093         if (RegOut == 0) {
10094           RegOut = FuncInfo.CreateRegs(C);
10095           CopyValueToVirtualRegister(C, RegOut);
10096         }
10097         Reg = RegOut;
10098       } else {
10099         DenseMap<const Value *, Register>::iterator I =
10100           FuncInfo.ValueMap.find(PHIOp);
10101         if (I != FuncInfo.ValueMap.end())
10102           Reg = I->second;
10103         else {
10104           assert(isa<AllocaInst>(PHIOp) &&
10105                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10106                  "Didn't codegen value into a register!??");
10107           Reg = FuncInfo.CreateRegs(PHIOp);
10108           CopyValueToVirtualRegister(PHIOp, Reg);
10109         }
10110       }
10111 
10112       // Remember that this register needs to added to the machine PHI node as
10113       // the input for this MBB.
10114       SmallVector<EVT, 4> ValueVTs;
10115       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10116       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10117       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10118         EVT VT = ValueVTs[vti];
10119         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10120         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10121           FuncInfo.PHINodesToUpdate.push_back(
10122               std::make_pair(&*MBBI++, Reg + i));
10123         Reg += NumRegisters;
10124       }
10125     }
10126   }
10127 
10128   ConstantsOut.clear();
10129 }
10130 
10131 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10132 /// is 0.
10133 MachineBasicBlock *
10134 SelectionDAGBuilder::StackProtectorDescriptor::
10135 AddSuccessorMBB(const BasicBlock *BB,
10136                 MachineBasicBlock *ParentMBB,
10137                 bool IsLikely,
10138                 MachineBasicBlock *SuccMBB) {
10139   // If SuccBB has not been created yet, create it.
10140   if (!SuccMBB) {
10141     MachineFunction *MF = ParentMBB->getParent();
10142     MachineFunction::iterator BBI(ParentMBB);
10143     SuccMBB = MF->CreateMachineBasicBlock(BB);
10144     MF->insert(++BBI, SuccMBB);
10145   }
10146   // Add it as a successor of ParentMBB.
10147   ParentMBB->addSuccessor(
10148       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10149   return SuccMBB;
10150 }
10151 
10152 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10153   MachineFunction::iterator I(MBB);
10154   if (++I == FuncInfo.MF->end())
10155     return nullptr;
10156   return &*I;
10157 }
10158 
10159 /// During lowering new call nodes can be created (such as memset, etc.).
10160 /// Those will become new roots of the current DAG, but complications arise
10161 /// when they are tail calls. In such cases, the call lowering will update
10162 /// the root, but the builder still needs to know that a tail call has been
10163 /// lowered in order to avoid generating an additional return.
10164 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10165   // If the node is null, we do have a tail call.
10166   if (MaybeTC.getNode() != nullptr)
10167     DAG.setRoot(MaybeTC);
10168   else
10169     HasTailCall = true;
10170 }
10171 
10172 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10173                                         MachineBasicBlock *SwitchMBB,
10174                                         MachineBasicBlock *DefaultMBB) {
10175   MachineFunction *CurMF = FuncInfo.MF;
10176   MachineBasicBlock *NextMBB = nullptr;
10177   MachineFunction::iterator BBI(W.MBB);
10178   if (++BBI != FuncInfo.MF->end())
10179     NextMBB = &*BBI;
10180 
10181   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10182 
10183   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10184 
10185   if (Size == 2 && W.MBB == SwitchMBB) {
10186     // If any two of the cases has the same destination, and if one value
10187     // is the same as the other, but has one bit unset that the other has set,
10188     // use bit manipulation to do two compares at once.  For example:
10189     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10190     // TODO: This could be extended to merge any 2 cases in switches with 3
10191     // cases.
10192     // TODO: Handle cases where W.CaseBB != SwitchBB.
10193     CaseCluster &Small = *W.FirstCluster;
10194     CaseCluster &Big = *W.LastCluster;
10195 
10196     if (Small.Low == Small.High && Big.Low == Big.High &&
10197         Small.MBB == Big.MBB) {
10198       const APInt &SmallValue = Small.Low->getValue();
10199       const APInt &BigValue = Big.Low->getValue();
10200 
10201       // Check that there is only one bit different.
10202       APInt CommonBit = BigValue ^ SmallValue;
10203       if (CommonBit.isPowerOf2()) {
10204         SDValue CondLHS = getValue(Cond);
10205         EVT VT = CondLHS.getValueType();
10206         SDLoc DL = getCurSDLoc();
10207 
10208         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10209                                  DAG.getConstant(CommonBit, DL, VT));
10210         SDValue Cond = DAG.getSetCC(
10211             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10212             ISD::SETEQ);
10213 
10214         // Update successor info.
10215         // Both Small and Big will jump to Small.BB, so we sum up the
10216         // probabilities.
10217         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10218         if (BPI)
10219           addSuccessorWithProb(
10220               SwitchMBB, DefaultMBB,
10221               // The default destination is the first successor in IR.
10222               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10223         else
10224           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10225 
10226         // Insert the true branch.
10227         SDValue BrCond =
10228             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10229                         DAG.getBasicBlock(Small.MBB));
10230         // Insert the false branch.
10231         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10232                              DAG.getBasicBlock(DefaultMBB));
10233 
10234         DAG.setRoot(BrCond);
10235         return;
10236       }
10237     }
10238   }
10239 
10240   if (TM.getOptLevel() != CodeGenOpt::None) {
10241     // Here, we order cases by probability so the most likely case will be
10242     // checked first. However, two clusters can have the same probability in
10243     // which case their relative ordering is non-deterministic. So we use Low
10244     // as a tie-breaker as clusters are guaranteed to never overlap.
10245     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10246                [](const CaseCluster &a, const CaseCluster &b) {
10247       return a.Prob != b.Prob ?
10248              a.Prob > b.Prob :
10249              a.Low->getValue().slt(b.Low->getValue());
10250     });
10251 
10252     // Rearrange the case blocks so that the last one falls through if possible
10253     // without changing the order of probabilities.
10254     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10255       --I;
10256       if (I->Prob > W.LastCluster->Prob)
10257         break;
10258       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10259         std::swap(*I, *W.LastCluster);
10260         break;
10261       }
10262     }
10263   }
10264 
10265   // Compute total probability.
10266   BranchProbability DefaultProb = W.DefaultProb;
10267   BranchProbability UnhandledProbs = DefaultProb;
10268   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10269     UnhandledProbs += I->Prob;
10270 
10271   MachineBasicBlock *CurMBB = W.MBB;
10272   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10273     bool FallthroughUnreachable = false;
10274     MachineBasicBlock *Fallthrough;
10275     if (I == W.LastCluster) {
10276       // For the last cluster, fall through to the default destination.
10277       Fallthrough = DefaultMBB;
10278       FallthroughUnreachable = isa<UnreachableInst>(
10279           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10280     } else {
10281       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10282       CurMF->insert(BBI, Fallthrough);
10283       // Put Cond in a virtual register to make it available from the new blocks.
10284       ExportFromCurrentBlock(Cond);
10285     }
10286     UnhandledProbs -= I->Prob;
10287 
10288     switch (I->Kind) {
10289       case CC_JumpTable: {
10290         // FIXME: Optimize away range check based on pivot comparisons.
10291         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10292         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10293 
10294         // The jump block hasn't been inserted yet; insert it here.
10295         MachineBasicBlock *JumpMBB = JT->MBB;
10296         CurMF->insert(BBI, JumpMBB);
10297 
10298         auto JumpProb = I->Prob;
10299         auto FallthroughProb = UnhandledProbs;
10300 
10301         // If the default statement is a target of the jump table, we evenly
10302         // distribute the default probability to successors of CurMBB. Also
10303         // update the probability on the edge from JumpMBB to Fallthrough.
10304         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10305                                               SE = JumpMBB->succ_end();
10306              SI != SE; ++SI) {
10307           if (*SI == DefaultMBB) {
10308             JumpProb += DefaultProb / 2;
10309             FallthroughProb -= DefaultProb / 2;
10310             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10311             JumpMBB->normalizeSuccProbs();
10312             break;
10313           }
10314         }
10315 
10316         if (FallthroughUnreachable) {
10317           // Skip the range check if the fallthrough block is unreachable.
10318           JTH->OmitRangeCheck = true;
10319         }
10320 
10321         if (!JTH->OmitRangeCheck)
10322           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10323         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10324         CurMBB->normalizeSuccProbs();
10325 
10326         // The jump table header will be inserted in our current block, do the
10327         // range check, and fall through to our fallthrough block.
10328         JTH->HeaderBB = CurMBB;
10329         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10330 
10331         // If we're in the right place, emit the jump table header right now.
10332         if (CurMBB == SwitchMBB) {
10333           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10334           JTH->Emitted = true;
10335         }
10336         break;
10337       }
10338       case CC_BitTests: {
10339         // FIXME: Optimize away range check based on pivot comparisons.
10340         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10341 
10342         // The bit test blocks haven't been inserted yet; insert them here.
10343         for (BitTestCase &BTC : BTB->Cases)
10344           CurMF->insert(BBI, BTC.ThisBB);
10345 
10346         // Fill in fields of the BitTestBlock.
10347         BTB->Parent = CurMBB;
10348         BTB->Default = Fallthrough;
10349 
10350         BTB->DefaultProb = UnhandledProbs;
10351         // If the cases in bit test don't form a contiguous range, we evenly
10352         // distribute the probability on the edge to Fallthrough to two
10353         // successors of CurMBB.
10354         if (!BTB->ContiguousRange) {
10355           BTB->Prob += DefaultProb / 2;
10356           BTB->DefaultProb -= DefaultProb / 2;
10357         }
10358 
10359         if (FallthroughUnreachable) {
10360           // Skip the range check if the fallthrough block is unreachable.
10361           BTB->OmitRangeCheck = true;
10362         }
10363 
10364         // If we're in the right place, emit the bit test header right now.
10365         if (CurMBB == SwitchMBB) {
10366           visitBitTestHeader(*BTB, SwitchMBB);
10367           BTB->Emitted = true;
10368         }
10369         break;
10370       }
10371       case CC_Range: {
10372         const Value *RHS, *LHS, *MHS;
10373         ISD::CondCode CC;
10374         if (I->Low == I->High) {
10375           // Check Cond == I->Low.
10376           CC = ISD::SETEQ;
10377           LHS = Cond;
10378           RHS=I->Low;
10379           MHS = nullptr;
10380         } else {
10381           // Check I->Low <= Cond <= I->High.
10382           CC = ISD::SETLE;
10383           LHS = I->Low;
10384           MHS = Cond;
10385           RHS = I->High;
10386         }
10387 
10388         // If Fallthrough is unreachable, fold away the comparison.
10389         if (FallthroughUnreachable)
10390           CC = ISD::SETTRUE;
10391 
10392         // The false probability is the sum of all unhandled cases.
10393         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10394                      getCurSDLoc(), I->Prob, UnhandledProbs);
10395 
10396         if (CurMBB == SwitchMBB)
10397           visitSwitchCase(CB, SwitchMBB);
10398         else
10399           SL->SwitchCases.push_back(CB);
10400 
10401         break;
10402       }
10403     }
10404     CurMBB = Fallthrough;
10405   }
10406 }
10407 
10408 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10409                                               CaseClusterIt First,
10410                                               CaseClusterIt Last) {
10411   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10412     if (X.Prob != CC.Prob)
10413       return X.Prob > CC.Prob;
10414 
10415     // Ties are broken by comparing the case value.
10416     return X.Low->getValue().slt(CC.Low->getValue());
10417   });
10418 }
10419 
10420 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10421                                         const SwitchWorkListItem &W,
10422                                         Value *Cond,
10423                                         MachineBasicBlock *SwitchMBB) {
10424   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10425          "Clusters not sorted?");
10426 
10427   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10428 
10429   // Balance the tree based on branch probabilities to create a near-optimal (in
10430   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10431   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10432   CaseClusterIt LastLeft = W.FirstCluster;
10433   CaseClusterIt FirstRight = W.LastCluster;
10434   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10435   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10436 
10437   // Move LastLeft and FirstRight towards each other from opposite directions to
10438   // find a partitioning of the clusters which balances the probability on both
10439   // sides. If LeftProb and RightProb are equal, alternate which side is
10440   // taken to ensure 0-probability nodes are distributed evenly.
10441   unsigned I = 0;
10442   while (LastLeft + 1 < FirstRight) {
10443     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10444       LeftProb += (++LastLeft)->Prob;
10445     else
10446       RightProb += (--FirstRight)->Prob;
10447     I++;
10448   }
10449 
10450   while (true) {
10451     // Our binary search tree differs from a typical BST in that ours can have up
10452     // to three values in each leaf. The pivot selection above doesn't take that
10453     // into account, which means the tree might require more nodes and be less
10454     // efficient. We compensate for this here.
10455 
10456     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10457     unsigned NumRight = W.LastCluster - FirstRight + 1;
10458 
10459     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10460       // If one side has less than 3 clusters, and the other has more than 3,
10461       // consider taking a cluster from the other side.
10462 
10463       if (NumLeft < NumRight) {
10464         // Consider moving the first cluster on the right to the left side.
10465         CaseCluster &CC = *FirstRight;
10466         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10467         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10468         if (LeftSideRank <= RightSideRank) {
10469           // Moving the cluster to the left does not demote it.
10470           ++LastLeft;
10471           ++FirstRight;
10472           continue;
10473         }
10474       } else {
10475         assert(NumRight < NumLeft);
10476         // Consider moving the last element on the left to the right side.
10477         CaseCluster &CC = *LastLeft;
10478         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10479         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10480         if (RightSideRank <= LeftSideRank) {
10481           // Moving the cluster to the right does not demot it.
10482           --LastLeft;
10483           --FirstRight;
10484           continue;
10485         }
10486       }
10487     }
10488     break;
10489   }
10490 
10491   assert(LastLeft + 1 == FirstRight);
10492   assert(LastLeft >= W.FirstCluster);
10493   assert(FirstRight <= W.LastCluster);
10494 
10495   // Use the first element on the right as pivot since we will make less-than
10496   // comparisons against it.
10497   CaseClusterIt PivotCluster = FirstRight;
10498   assert(PivotCluster > W.FirstCluster);
10499   assert(PivotCluster <= W.LastCluster);
10500 
10501   CaseClusterIt FirstLeft = W.FirstCluster;
10502   CaseClusterIt LastRight = W.LastCluster;
10503 
10504   const ConstantInt *Pivot = PivotCluster->Low;
10505 
10506   // New blocks will be inserted immediately after the current one.
10507   MachineFunction::iterator BBI(W.MBB);
10508   ++BBI;
10509 
10510   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10511   // we can branch to its destination directly if it's squeezed exactly in
10512   // between the known lower bound and Pivot - 1.
10513   MachineBasicBlock *LeftMBB;
10514   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10515       FirstLeft->Low == W.GE &&
10516       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10517     LeftMBB = FirstLeft->MBB;
10518   } else {
10519     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10520     FuncInfo.MF->insert(BBI, LeftMBB);
10521     WorkList.push_back(
10522         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10523     // Put Cond in a virtual register to make it available from the new blocks.
10524     ExportFromCurrentBlock(Cond);
10525   }
10526 
10527   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10528   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10529   // directly if RHS.High equals the current upper bound.
10530   MachineBasicBlock *RightMBB;
10531   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10532       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10533     RightMBB = FirstRight->MBB;
10534   } else {
10535     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10536     FuncInfo.MF->insert(BBI, RightMBB);
10537     WorkList.push_back(
10538         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10539     // Put Cond in a virtual register to make it available from the new blocks.
10540     ExportFromCurrentBlock(Cond);
10541   }
10542 
10543   // Create the CaseBlock record that will be used to lower the branch.
10544   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10545                getCurSDLoc(), LeftProb, RightProb);
10546 
10547   if (W.MBB == SwitchMBB)
10548     visitSwitchCase(CB, SwitchMBB);
10549   else
10550     SL->SwitchCases.push_back(CB);
10551 }
10552 
10553 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10554 // from the swith statement.
10555 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10556                                             BranchProbability PeeledCaseProb) {
10557   if (PeeledCaseProb == BranchProbability::getOne())
10558     return BranchProbability::getZero();
10559   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10560 
10561   uint32_t Numerator = CaseProb.getNumerator();
10562   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10563   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10564 }
10565 
10566 // Try to peel the top probability case if it exceeds the threshold.
10567 // Return current MachineBasicBlock for the switch statement if the peeling
10568 // does not occur.
10569 // If the peeling is performed, return the newly created MachineBasicBlock
10570 // for the peeled switch statement. Also update Clusters to remove the peeled
10571 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10572 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10573     const SwitchInst &SI, CaseClusterVector &Clusters,
10574     BranchProbability &PeeledCaseProb) {
10575   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10576   // Don't perform if there is only one cluster or optimizing for size.
10577   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10578       TM.getOptLevel() == CodeGenOpt::None ||
10579       SwitchMBB->getParent()->getFunction().hasMinSize())
10580     return SwitchMBB;
10581 
10582   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10583   unsigned PeeledCaseIndex = 0;
10584   bool SwitchPeeled = false;
10585   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10586     CaseCluster &CC = Clusters[Index];
10587     if (CC.Prob < TopCaseProb)
10588       continue;
10589     TopCaseProb = CC.Prob;
10590     PeeledCaseIndex = Index;
10591     SwitchPeeled = true;
10592   }
10593   if (!SwitchPeeled)
10594     return SwitchMBB;
10595 
10596   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10597                     << TopCaseProb << "\n");
10598 
10599   // Record the MBB for the peeled switch statement.
10600   MachineFunction::iterator BBI(SwitchMBB);
10601   ++BBI;
10602   MachineBasicBlock *PeeledSwitchMBB =
10603       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10604   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10605 
10606   ExportFromCurrentBlock(SI.getCondition());
10607   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10608   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10609                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10610   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10611 
10612   Clusters.erase(PeeledCaseIt);
10613   for (CaseCluster &CC : Clusters) {
10614     LLVM_DEBUG(
10615         dbgs() << "Scale the probablity for one cluster, before scaling: "
10616                << CC.Prob << "\n");
10617     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10618     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10619   }
10620   PeeledCaseProb = TopCaseProb;
10621   return PeeledSwitchMBB;
10622 }
10623 
10624 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10625   // Extract cases from the switch.
10626   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10627   CaseClusterVector Clusters;
10628   Clusters.reserve(SI.getNumCases());
10629   for (auto I : SI.cases()) {
10630     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10631     const ConstantInt *CaseVal = I.getCaseValue();
10632     BranchProbability Prob =
10633         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10634             : BranchProbability(1, SI.getNumCases() + 1);
10635     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10636   }
10637 
10638   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10639 
10640   // Cluster adjacent cases with the same destination. We do this at all
10641   // optimization levels because it's cheap to do and will make codegen faster
10642   // if there are many clusters.
10643   sortAndRangeify(Clusters);
10644 
10645   // The branch probablity of the peeled case.
10646   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10647   MachineBasicBlock *PeeledSwitchMBB =
10648       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10649 
10650   // If there is only the default destination, jump there directly.
10651   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10652   if (Clusters.empty()) {
10653     assert(PeeledSwitchMBB == SwitchMBB);
10654     SwitchMBB->addSuccessor(DefaultMBB);
10655     if (DefaultMBB != NextBlock(SwitchMBB)) {
10656       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10657                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10658     }
10659     return;
10660   }
10661 
10662   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10663   SL->findBitTestClusters(Clusters, &SI);
10664 
10665   LLVM_DEBUG({
10666     dbgs() << "Case clusters: ";
10667     for (const CaseCluster &C : Clusters) {
10668       if (C.Kind == CC_JumpTable)
10669         dbgs() << "JT:";
10670       if (C.Kind == CC_BitTests)
10671         dbgs() << "BT:";
10672 
10673       C.Low->getValue().print(dbgs(), true);
10674       if (C.Low != C.High) {
10675         dbgs() << '-';
10676         C.High->getValue().print(dbgs(), true);
10677       }
10678       dbgs() << ' ';
10679     }
10680     dbgs() << '\n';
10681   });
10682 
10683   assert(!Clusters.empty());
10684   SwitchWorkList WorkList;
10685   CaseClusterIt First = Clusters.begin();
10686   CaseClusterIt Last = Clusters.end() - 1;
10687   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10688   // Scale the branchprobability for DefaultMBB if the peel occurs and
10689   // DefaultMBB is not replaced.
10690   if (PeeledCaseProb != BranchProbability::getZero() &&
10691       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10692     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10693   WorkList.push_back(
10694       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10695 
10696   while (!WorkList.empty()) {
10697     SwitchWorkListItem W = WorkList.back();
10698     WorkList.pop_back();
10699     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10700 
10701     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10702         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10703       // For optimized builds, lower large range as a balanced binary tree.
10704       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10705       continue;
10706     }
10707 
10708     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10709   }
10710 }
10711 
10712 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10713   SmallVector<EVT, 4> ValueVTs;
10714   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
10715                   ValueVTs);
10716   unsigned NumValues = ValueVTs.size();
10717   if (NumValues == 0) return;
10718 
10719   SmallVector<SDValue, 4> Values(NumValues);
10720   SDValue Op = getValue(I.getOperand(0));
10721 
10722   for (unsigned i = 0; i != NumValues; ++i)
10723     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
10724                             SDValue(Op.getNode(), Op.getResNo() + i));
10725 
10726   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
10727                            DAG.getVTList(ValueVTs), Values));
10728 }
10729